Sample records for brain function behavior

  1. Complex network analysis of brain functional connectivity under a multi-step cognitive task

    NASA Astrophysics Data System (ADS)

    Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun

    2017-01-01

    Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.

  2. Joint Attention and Brain Functional Connectivity in Infants and Toddlers.

    PubMed

    Eggebrecht, Adam T; Elison, Jed T; Feczko, Eric; Todorov, Alexandre; Wolff, Jason J; Kandala, Sridhar; Adams, Chloe M; Snyder, Abraham Z; Lewis, John D; Estes, Annette M; Zwaigenbaum, Lonnie; Botteron, Kelly N; McKinstry, Robert C; Constantino, John N; Evans, Alan; Hazlett, Heather C; Dager, Stephen; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Gerig, Guido; Das, Samir; Kostopoulos, Penelope; Schlaggar, Bradley L; Petersen, Steven E; Piven, Joseph; Pruett, John R

    2017-03-01

    Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development. © The Author 2017. Published by Oxford University Press.

  3. Joint Attention and Brain Functional Connectivity in Infants and Toddlers

    PubMed Central

    Eggebrecht, Adam T.; Elison, Jed T.; Feczko, Eric; Todorov, Alexandre; Wolff, Jason J.; Kandala, Sridhar; Adams, Chloe M.; Snyder, Abraham Z.; Lewis, John D.; Estes, Annette M.; Zwaigenbaum, Lonnie; Botteron, Kelly N.; McKinstry, Robert C.; Constantino, John N.; Evans, Alan; Hazlett, Heather C.; Dager, Stephen; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Gerig, Guido; Das, Samir; Kostopoulos, Penelope; Schlaggar, Bradley L.; Petersen, Steven E.; Piven, Joseph; Pruett, John R.

    2017-01-01

    Abstract Initiating joint attention (IJA), the behavioral instigation of coordinated focus of 2 people on an object, emerges over the first 2 years of life and supports social-communicative functioning related to the healthy development of aspects of language, empathy, and theory of mind. Deficits in IJA provide strong early indicators for autism spectrum disorder, and therapies targeting joint attention have shown tremendous promise. However, the brain systems underlying IJA in early childhood are poorly understood, due in part to significant methodological challenges in imaging localized brain function that supports social behaviors during the first 2 years of life. Herein, we show that the functional organization of the brain is intimately related to the emergence of IJA using functional connectivity magnetic resonance imaging and dimensional behavioral assessments in a large semilongitudinal cohort of infants and toddlers. In particular, though functional connections spanning the brain are involved in IJA, the strongest brain-behavior associations cluster within connections between a small subset of functional brain networks; namely between the visual network and dorsal attention network and between the visual network and posterior cingulate aspects of the default mode network. These observations mark the earliest known description of how functional brain systems underlie a burgeoning fundamental social behavior, may help improve the design of targeted therapies for neurodevelopmental disorders, and, more generally, elucidate physiological mechanisms essential to healthy social behavior development. PMID:28062515

  4. Genes and Social Behavior

    PubMed Central

    Robinson, Gene E.; Fernald, Russell D.; Clayton, David F.

    2011-01-01

    What specific genes and regulatory sequences contribute to the organization and functioning of brain circuits that support social behavior? How does social experience interact with information in the genome to modulate these brain circuits? Here we address these questions by highlighting progress that has been made in identifying and understanding two key “vectors of influence” that link genes, brain, and social behavior: 1) social information alters gene readout in the brain to influence behavior; and 2) genetic variation influences brain function and social behavior. We also briefly discuss how evolutionary changes in genomic elements influence social behavior and outline prospects for a systems biology of social behavior. PMID:18988841

  5. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.

    PubMed

    Naumann, Eva A; Fitzgerald, James E; Dunn, Timothy W; Rihel, Jason; Sompolinsky, Haim; Engert, Florian

    2016-11-03

    Detailed descriptions of brain-scale sensorimotor circuits underlying vertebrate behavior remain elusive. Recent advances in zebrafish neuroscience offer new opportunities to dissect such circuits via whole-brain imaging, behavioral analysis, functional perturbations, and network modeling. Here, we harness these tools to generate a brain-scale circuit model of the optomotor response, an orienting behavior evoked by visual motion. We show that such motion is processed by diverse neural response types distributed across multiple brain regions. To transform sensory input into action, these regions sequentially integrate eye- and direction-specific sensory streams, refine representations via interhemispheric inhibition, and demix locomotor instructions to independently drive turning and forward swimming. While experiments revealed many neural response types throughout the brain, modeling identified the dimensions of functional connectivity most critical for the behavior. We thus reveal how distributed neurons collaborate to generate behavior and illustrate a paradigm for distilling functional circuit models from whole-brain data. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A Set of Functional Brain Networks for the Comprehensive Evaluation of Human Characteristics.

    PubMed

    Sung, Yul-Wan; Kawachi, Yousuke; Choi, Uk-Su; Kang, Daehun; Abe, Chihiro; Otomo, Yuki; Ogawa, Seiji

    2018-01-01

    Many human characteristics must be evaluated to comprehensively understand an individual, and measurements of the corresponding cognition/behavior are required. Brain imaging by functional MRI (fMRI) has been widely used to examine brain function related to human cognition/behavior. However, few aspects of cognition/behavior of individuals or experimental groups can be examined through task-based fMRI. Recently, resting state fMRI (rs-fMRI) signals have been shown to represent functional infrastructure in the brain that is highly involved in processing information related to cognition/behavior. Using rs-fMRI may allow diverse information about the brain through a single MRI scan to be obtained, as rs-fMRI does not require stimulus tasks. In this study, we attempted to identify a set of functional networks representing cognition/behavior that are related to a wide variety of human characteristics and to evaluate these characteristics using rs-fMRI data. If possible, these findings would support the potential of rs-fMRI to provide diverse information about the brain. We used resting-state fMRI and a set of 130 psychometric parameters that cover most human characteristics, including those related to intelligence and emotional quotients and social ability/skill. We identified 163 brain regions by VBM analysis using regression analysis with 130 psychometric parameters. Next, using a 163 × 163 correlation matrix, we identified functional networks related to 111 of the 130 psychometric parameters. Finally, we made an 8-class support vector machine classifiers corresponding to these 111 functional networks. Our results demonstrate that rs-fMRI signals contain intrinsic information about brain function related to cognition/behaviors and that this set of 111 networks/classifiers can be used to comprehensively evaluate human characteristics.

  7. Human sexual behavior related to pathology and activity of the brain.

    PubMed

    Komisaruk, Barry R; Rodriguez Del Cerro, Maria Cruz

    2015-01-01

    Reviewed in this chapter are: (1) correlations among human sexual behavior, brain pathology, and brain activity, including caveats regarding the interpretation of "cause and effect" among these factors, and the degree to which "hypersexuality" and reported changes in sexual orientation correlated with brain pathology are uniquely sexual or are attributable to a generalized disinhibition of brain function; (2) the effects, in some cases inhibitory, in others facilitatory, on sexual behavior and motivation, of stroke, epileptic seizures, traumatic brain injury, and brain surgery; and (3) insights into sexual motivation and behavior recently gained from functional brain imaging research and its interpretive limitations. We conclude from the reviewed research that the neural orchestra underlying the symphony of human sexuality comprises, rather than brain "centers," multiple integrated brain systems, and that there are more questions than answers in our understanding of the control of human sexual behavior by the brain - a level of understanding that is still in embryonic form. © 2015 Elsevier B.V. All rights reserved.

  8. Applying gene regulatory network logic to the evolution of social behavior.

    PubMed

    Baran, Nicole M; McGrath, Patrick T; Streelman, J Todd

    2017-06-06

    Animal behavior is ultimately the product of gene regulatory networks (GRNs) for brain development and neural networks for brain function. The GRN approach has advanced the fields of genomics and development, and we identify organizational similarities between networks of genes that build the brain and networks of neurons that encode brain function. In this perspective, we engage the analogy between developmental networks and neural networks, exploring the advantages of using GRN logic to study behavior. Applying the GRN approach to the brain and behavior provides a quantitative and manipulative framework for discovery. We illustrate features of this framework using the example of social behavior and the neural circuitry of aggression.

  9. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  10. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    PubMed

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    PubMed

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life. Copyright © 2015 the authors 0270-6474/15/3510822-10$15.00/0.

  12. Reorganization of brain function after a short-term behavioral intervention for stuttering.

    PubMed

    Lu, Chunming; Zheng, Lifen; Long, Yuhang; Yan, Qian; Ding, Guosheng; Liu, Li; Peng, Danling; Howell, Peter

    2017-05-01

    This study investigated changes in brain function that occurred over a 7-day behavioral intervention for adults who stutter (AWS). Thirteen AWS received the intervention (AWS+), and 13 AWS did not receive the intervention (AWS-). There were 13 fluent controls (FC-). All participants were scanned before and after the intervention. Whole-brain analysis pre-intervention showed significant differences in task-related brain activation between AWS and FC- in the right inferior frontal cortex (IFC) and left middle temporal cortex, but there were no differences between the two AWS groups. Across the 7-day period of the intervention, AWS+ alone showed a significant increase of brain activation in the left ventral IFC/insula. There were no changes in brain function for the other two groups. Further analysis revealed that the change did not correlate with resting-state functional connectivity (RSFC) that AWS showed in the cerebellum (Lu et al., 2012). However, both changes in task-related brain function and RSFC correlated with changes in speech fluency level. Together, these findings suggest that functional reorganization in a brain region close to the left IFC that shows anomalous function in AWS, occurs after a short-term behavioral intervention for stuttering. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  14. Early life stress induces attention-deficit hyperactivity disorder (ADHD)-like behavioral and brain metabolic dysfunctions: functional imaging of methylphenidate treatment in a novel rodent model.

    PubMed

    Bock, J; Breuer, S; Poeggel, G; Braun, K

    2017-03-01

    In a novel animal model Octodon degus we tested the hypothesis that, in addition to genetic predisposition, early life stress (ELS) contributes to the etiology of attention-deficit hyperactivity disorder-like behavioral symptoms and the associated brain functional deficits. Since previous neurochemical observations revealed that early life stress impairs dopaminergic functions, we predicted that these symptoms can be normalized by treatment with methylphenidate. In line with our hypothesis, the behavioral analysis revealed that repeated ELS induced locomotor hyperactivity and reduced attention towards an emotionally relevant acoustic stimulus. Functional imaging using ( 14 C)-2-fluoro-deoxyglucose-autoradiography revealed that the behavioral symptoms are paralleled by metabolic hypoactivity of prefrontal, mesolimbic and subcortical brain areas. Finally, the pharmacological intervention provided further evidence that the behavioral and metabolic dysfunctions are due to impaired dopaminergic neurotransmission. Elevating dopamine in ELS animals by methylphenidate normalized locomotor hyperactivity and attention-deficit and ameliorated brain metabolic hypoactivity in a dose-dependent manner.

  15. Simulated driving and brain imaging: combining behavior, brain activity, and virtual reality.

    PubMed

    Carvalho, Kara N; Pearlson, Godfrey D; Astur, Robert S; Calhoun, Vince D

    2006-01-01

    Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving. We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center. Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA. Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined. In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.

  16. Gut-Brain Axis and Behavior.

    PubMed

    Martin, Clair R; Mayer, Emeran A

    2017-01-01

    In the last 5 years, interest in the interactions among the gut microbiome, brain, and behavior has exploded. Preclinical evidence supports a role of the gut microbiome in behavioral responses associated with pain, emotion, social interactions, and food intake. Limited, but growing, clinical evidence comes primarily from associations of gut microbial composition and function to behavioral and clinical features and brain structure and function. Converging evidence suggests that the brain and the gut microbiota are in bidirectional communication. Observed dysbiotic states in depression, chronic stress, and autism may reflect altered brain signaling to the gut, while altered gut microbial signaling to the brain may play a role in reinforcing brain alterations. On the other hand, primary dysbiotic states due to Western diets may signal to the brain, altering ingestive behavior. While studies performed in patients with depression and rodent models generated by fecal microbial transfer from such patients suggest causation, evidence for an influence of acute gut microbial alterations on human behavioral and clinical parameters is lacking. Only recently has an open-label microbial transfer therapy in children with autism tentatively validated the gut microbiota as a therapeutic target. The translational potential of preclinical findings remains unclear without further clinical investigation. © 2017 Nestec Ltd., Vevey/S. Karger AG, Basel.

  17. Estimating direction in brain-behavior interactions: Proactive and reactive brain states in driving.

    PubMed

    Garcia, Javier O; Brooks, Justin; Kerick, Scott; Johnson, Tony; Mullen, Tim R; Vettel, Jean M

    2017-04-15

    Conventional neuroimaging analyses have ascribed function to particular brain regions, exploiting the power of the subtraction technique in fMRI and event-related potential analyses in EEG. Moving beyond this convention, many researchers have begun exploring network-based neurodynamics and coordination between brain regions as a function of behavioral parameters or environmental statistics; however, most approaches average evoked activity across the experimental session to study task-dependent networks. Here, we examined on-going oscillatory activity as measured with EEG and use a methodology to estimate directionality in brain-behavior interactions. After source reconstruction, activity within specific frequency bands (delta: 2-3Hz; theta: 4-7Hz; alpha: 8-12Hz; beta: 13-25Hz) in a priori regions of interest was linked to continuous behavioral measurements, and we used a predictive filtering scheme to estimate the asymmetry between brain-to-behavior and behavior-to-brain prediction using a variant of Granger causality. We applied this approach to a simulated driving task and examined directed relationships between brain activity and continuous driving performance (steering behavior or vehicle heading error). Our results indicated that two neuro-behavioral states may be explored with this methodology: a Proactive brain state that actively plans the response to the sensory information and is characterized by delta-beta activity, and a Reactive brain state that processes incoming information and reacts to environmental statistics primarily within the alpha band. Published by Elsevier Inc.

  18. A comparison of functional brain changes associated with surgical versus behavioral weight loss

    PubMed Central

    Bruce, Amanda S.; Bruce, Jared M.; Ness, Abigail R.; Lepping, Rebecca J.; Malley, Stephen; Hancock, Laura; Powell, Josh; Patrician, Trisha M.; Breslin, Florence J.; Martin, Laura E.; Donnelly, Joseph E.; Brooks, William M.; Savage, Cary R.

    2013-01-01

    Objective Few studies have examined brain changes in response to effective weight loss; none have compared different methods of weight-loss intervention. We compared functional brain changes associated with a behavioral weight loss intervention to those associated with bariatric surgery. Methods 15 obese participants were recruited prior to adjustable gastric banding surgery and 16 obese participants were recruited prior to a behavioral diet intervention. Groups were matched for demographics and amount of weight lost. fMRI scans (visual food motivation paradigm while hungry and following a meal) were conducted before, and 12 weeks after surgery/behavioral intervention. Results When compared to bariatric patients in the pre-meal analyses, behavioral dieters showed increased activation to food images in right medial PFC and left precuneus following weight loss. When compared to behavioral dieters, bariatric patients showed increased activation in in bilateral temporal cortex following the weight loss. Conclusions Behavioral dieters showed increased responses to food cues in medial PFC – a region associated with valuation and processing of self-referent information – when compared to bariatric patients. Bariatric patients showed increased responses to food cues in brain regions associated with higher level perception—when compared to behavioral dieters. The method of weight loss determines unique changes in brain function. PMID:24115765

  19. Sex in the brain: hormones and sex differences.

    PubMed

    Marrocco, Jordan; McEwen, Bruce S

    2016-12-01

    Contrary to popular belief, sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Many neural and behavioral functions are affected by estrogens, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences, and responses to sex hormones in brain regions and upon functions not previously regarded as subject to such differences, indicate that we are entering a new era in our ability to understand and appreciate the diversity of gender-related behaviors and brain functions.

  20. Adolescent brain development in normality and psychopathology

    PubMed Central

    LUCIANA, MONICA

    2014-01-01

    Since this journal’s inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical–cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology–context interactions, represent the field’s most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled. PMID:24342843

  1. Adolescent brain development in normality and psychopathology.

    PubMed

    Luciana, Monica

    2013-11-01

    Since this journal's inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical-cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology-context interactions, represent the field's most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled.

  2. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function.

    PubMed

    Lenz, Kathryn M; Nelson, Lars H

    2018-01-01

    Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.

  3. Perinatal inflammation and adult psychopathology: From preclinical models to humans.

    PubMed

    Depino, Amaicha Mara

    2018-05-01

    Perinatal environment plays a crucial role in brain development and determines its function through life. Epidemiological studies and clinical reports link perinatal exposure to infection and/or immune activation to various psychiatric disorders. In addition, accumulating evidence from animal models shows that perinatal inflammation can affect various behaviors relevant to psychiatric disorders such as schizophrenia, autism, anxiety and depression. Remarkably, the effects on behavior and brain function do not always depend on the type of inflammatory stimulus or the perinatal age targeted, so diverse inflammatory events can have similar consequences on the brain. Moreover, other perinatal environmental factors that affect behavior (e.g. diet and stress) also elicit inflammatory responses. Understanding the interplay between perinatal environment and inflammation on brain development is required to identify the mechanisms through which perinatal inflammation affect brain function in the adult animal. Evidence for the role of the peripheral immune system and glia on perinatal programming of behavior is discussed in this review, along with recent evidence for the role of epigenetic mechanisms affecting gene expression in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function.

    PubMed

    Inoue, Takeshi; Hoshino, Hajime; Yamashita, Taiga; Shimoyama, Seira; Agata, Kiyokazu

    2015-01-01

    Planarians belong to an evolutionarily early group of organisms that possess a central nervous system including a well-organized brain with a simple architecture but many types of neurons. Planarians display a number of behaviors, such as phototaxis and thermotaxis, in response to external stimuli, and it has been shown that various molecules and neural pathways in the brain are involved in controlling these behaviors. However, due to the lack of combinatorial assay methods, it remains obscure whether planarians possess higher brain functions, including integration in the brain, in which multiple signals coming from outside are coordinated and used in determining behavioral strategies. In the present study, we designed chemotaxis and thigmotaxis/kinesis tracking assays to measure several planarian behaviors in addition to those measured by phototaxis and thermotaxis assays previously established by our group, and used these tests to analyze planarian chemotactic and thigmotactic/kinetic behaviors. We found that headless planarian body fragments and planarians that had specifically lost neural activity following regeneration-dependent conditional gene knockdown (Readyknock) of synaptotagmin in the brain lost both chemotactic and thigmotactic behaviors, suggesting that neural activity in the brain is required for the planarian's chemotactic and thigmotactic behaviors. Furthermore, we compared the strength of phototaxis, chemotaxis, thigmotaxis/kinesis, and thermotaxis by presenting simultaneous binary stimuli to planarians. We found that planarians showed a clear order of predominance of these behaviors. For example, when planarians were simultaneously exposed to 400 lux of light and a chemoattractant, they showed chemoattractive behavior irrespective of the direction of the light source, although exposure to light of this intensity alone induces evasive behavior away from the light source. In contrast, when the light intensity was increased to 800 or 1600 lux and the same dose of chemoattractant was presented, planarian behaviors were gradually shifted to negative phototaxis rather than chemoattraction. These results suggest that planarians may be capable of selecting behavioral strategies via the integration of discrete brain functions when exposed to multiple stimuli. The planarian brain processes external signals received through the respective sensory neurons, thereby resulting in the production of appropriate behaviors. In addition, planarians can adjust behavioral features in response to stimulus conditions by integrating multiple external signals in the brain.

  5. Coherent activity between brain regions that code for value is linked to the malleability of human behavior

    PubMed Central

    Cooper, Nicole; Bassett, Danielle S.; Falk, Emily B.

    2017-01-01

    Brain activity in medial prefrontal cortex (MPFC) during exposure to persuasive messages can predict health behavior change. This brain-behavior relationship has been linked to areas of MPFC previously associated with self-related processing; however, the mechanism underlying this relationship is unclear. We explore two components of self-related processing – self-reflection and subjective valuation – and examine coherent activity between relevant networks of brain regions during exposure to health messages encouraging exercise and discouraging sedentary behaviors. We find that objectively logged reductions in sedentary behavior in the following month are linked to functional connectivity within brain regions associated with positive valuation, but not within regions associated with self-reflection on personality traits. Furthermore, functional connectivity between valuation regions contributes additional information compared to average brain activation within single brain regions. These data support an account in which MPFC integrates the value of messages to the self during persuasive health messaging and speak to broader questions of how humans make decisions about how to behave. PMID:28240271

  6. Brain State Differentiation and Behavioral Inflexibility in Autism†

    PubMed Central

    Uddin, Lucina Q.; Supekar, Kaustubh; Lynch, Charles J.; Cheng, Katherine M.; Odriozola, Paola; Barth, Maria E.; Phillips, Jennifer; Feinstein, Carl; Abrams, Daniel A.; Menon, Vinod

    2015-01-01

    Autism spectrum disorders (ASDs) are characterized by social impairments alongside cognitive and behavioral inflexibility. While social deficits in ASDs have extensively been characterized, the neurobiological basis of inflexibility and its relation to core clinical symptoms of the disorder are unknown. We acquired functional neuroimaging data from 2 cohorts, each consisting of 17 children with ASDs and 17 age- and IQ-matched typically developing (TD) children, during stimulus-evoked brain states involving performance of social attention and numerical problem solving tasks, as well as during intrinsic, resting brain states. Effective connectivity between key nodes of the salience network, default mode network, and central executive network was used to obtain indices of functional organization across evoked and intrinsic brain states. In both cohorts examined, a machine learning algorithm was able to discriminate intrinsic (resting) and evoked (task) functional brain network configurations more accurately in TD children than in children with ASD. Brain state discriminability was related to severity of restricted and repetitive behaviors, indicating that weak modulation of brain states may contribute to behavioral inflexibility in ASD. These findings provide novel evidence for a potential link between neurophysiological inflexibility and core symptoms of this complex neurodevelopmental disorder. PMID:25073720

  7. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    PubMed

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  8. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  9. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    PubMed

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Laser technique for anatomical-functional study of the medial prefrontal cortex of the brain

    NASA Astrophysics Data System (ADS)

    Sanchez-Huerta, Laura; Hernandez, Adan; Ayala, Griselda; Marroquin, Javier; Silva, Adriana B.; Khotiaintsev, Konstantin S.; Svirid, Vladimir A.; Flores, Gonzalo; Khotiaintsev, Sergei N.

    1999-05-01

    The brain represents one of the most complex systems that we know yet. In its study, non-destructive methods -- in particular, behavioral studies play an important role. By alteration of brain functioning (e.g. by pharmacological means) and observation of consequent behavior changes an important information on brain organization and functioning is obtained. For inducing local alterations, permanent brain lesions are employed. However, for correct results this technique has to be quasi-non-destructive, i.e. not to affect the normal brain function. Hence, the lesions should be very small, accurate and applied precisely over the structure (e.g. the brain nucleus) of interest. These specifications are difficult to meet with the existing techniques for brain lesions -- specifically, neurotoxical, mechanical and electrical means because they result in too extensive damage. In this paper, we present new laser technique for quasi-non- destructive anatomical-functional mapping in vivo of the medial prefrontal cortex (MPFC) of the rat. The technique is based on producing of small-size, well-controlled laser- induced lesions over some areas of the MPFC. The anesthetized animals are subjected to stereotactic surgery and certain points of the MPFC are exposed the confined radiation of the 10 W cw CO2 laser. Subsequent behavioral changes observed in neonatal and adult animals as well as histological data prove effectiveness of this technology for anatomical- functional studies of the brain by areas, and as a treatment method for some pathologies.

  11. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    PubMed

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Prefrontal Brain Activity Predicts Temporally Extended Decision-Making Behavior

    ERIC Educational Resources Information Center

    Yarkoni, Tal; Braver, Todd S.; Gray, Jeremy R.; Green, Leonard

    2005-01-01

    Although functional neuroimaging studies of human decision-making processes are increasingly common, most of the research in this area has relied on passive tasks that generate little individual variability. Relatively little attention has been paid to the ability of brain activity to predict overt behavior. Using functional magnetic resonance…

  13. Brain functional connectivity changes in children that differ in impulsivity temperamental trait

    PubMed Central

    Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V.; García-Santos, Jose M.; Fuentes, Luis J.

    2014-01-01

    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior. PMID:24834038

  14. Brain functional connectivity changes in children that differ in impulsivity temperamental trait.

    PubMed

    Inuggi, Alberto; Sanz-Arigita, Ernesto; González-Salinas, Carmen; Valero-García, Ana V; García-Santos, Jose M; Fuentes, Luis J

    2014-01-01

    Impulsivity is a core personality trait forming part of normal behavior and contributing to adaptive functioning. However, in typically developing children, altered patterns of impulsivity constitute a risk factor for the development of behavioral problems. Since both pathological and non-pathological states are commonly characterized by continuous transitions, we used a correlative approach to investigate the potential link between personality and brain dynamics. We related brain functional connectivity of typically developing children, measured with magnetic resonance imaging at rest, with their impulsivity scores obtained from a questionnaire completed by their parents. We first looked for areas within the default mode network (DMN) whose functional connectivity might be modulated by trait impulsivity. Then, we calculated the functional connectivity among these regions and the rest of the brain in order to assess if impulsivity trait altered their relationships. We found two DMN clusters located at the posterior cingulate cortex and the right angular gyrus which were negatively correlated with impulsivity scores. The whole-brain correlation analysis revealed the classic network of correlating and anti-correlating areas with respect to the DMN. The impulsivity trait modulated such pattern showing that the canonical anti-phasic relation between DMN and action-related network was reduced in high impulsive children. These results represent the first evidence that the impulsivity, measured as personality trait assessed through parents' report, exerts a modulatory influence over the functional connectivity of resting state brain networks in typically developing children. The present study goes further to connect developmental approaches, mainly based on data collected through the use of questionnaires, and behavioral neuroscience, interested in how differences in brain structure and functions reflect in differences in behavior.

  15. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  16. Functional brain networks associated with eating behaviors in obesity.

    PubMed

    Park, Bo-Yong; Seo, Jongbum; Park, Hyunjin

    2016-03-31

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores.

  17. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  18. Brain Evolution: The Origins of Social and Cognitive Behaviors.

    ERIC Educational Resources Information Center

    MacLean, Paul

    1983-01-01

    Argues that common anatomical and functional characteristics exist among the brains of reptiles, mammals, and man--the most significant commonality for educators being social behavior. Illustrates inherited behavior, including behavior observed in classroom and believed to be learned by placing it in context of a model "triune"…

  19. How Oral Contraceptives Impact Social-Emotional Behavior and Brain Function.

    PubMed

    Montoya, Estrella R; Bos, Peter A

    2017-02-01

    Millions of women worldwide use oral contraceptives ('the pill'; OCs), often starting at a pubertal age when their brains are in a crucial developmental stage. Research into the social-emotional effects of OCs is of utmost importance. In this review, we provide an overview of studies that have emerged over the past decade investigating how OCs, and their main ingredients estradiol (E) and progesterone (P), influence social-emotional behaviors and underlying brain functions. Based on this overview, we present a heuristic model that postulates that OCs modulate core social-emotional behaviors and brain systems. Research domains and challenges for the future, as well as implications, are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Brain Prize 2014: complex human functions.

    PubMed

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Transsexualism: A Different Viewpoint to Brain Changes.

    PubMed

    Mohammadi, Mohammad Reza; Khaleghi, Ali

    2018-05-31

    Transsexualism refers to a condition or belief which results in gender dysphoria in individuals and makes them insist that their biological gender is different from their psychological and experienced gender. Although the etiology of gender dysphoria (or transsexualism) is still unknown, different neuroimaging studies show that structural and functional changes of the brain result from this sexual incongruence. The question here is whether these reported changes form part of the etiology of transsexualism or themselves result from transsexualism culture, behaviors and lifestyle. Responding to this question can be more precise by consideration of cultural neuroscience concepts, particularly the culture-behavior-brain (CBB) loop model and the interactions between behavior, culture and brain. In this article, we first review the studies on the brain of transgender people and then we will discuss the validity of this claim based on the CBB loop model. In summary, transgender individuals experience change in lifestyle, context of beliefs and concepts and, as a result, their culture and behaviors. Given the close relationship and interaction between culture, behavior and brain, the individual's brain adapts itself to the new condition (culture) and concepts and starts to alter its function and structure.

  2. Systemic Analysis of Brain Mechanisms Underlying Learning Disabilities: An Introduction to the Brain Behavior Relationship.

    ERIC Educational Resources Information Center

    Scaramella-Nowinski, Valerie L.

    The paper presents a discussion of human mental processes as they relate to learning disabilities. Pathognomonic symptoms associated with disturbances to brain areas or functional systems are discussed, as well as treatment procedures. This brain behavior relationship is offered as a basis for a classification system that is seen to more clearly…

  3. Is there a neuroanatomical basis of the vulnerability to suicidal behavior? A coordinate-based meta-analysis of structural and functional MRI studies

    PubMed Central

    van Heeringen, Kees; Bijttebier, Stijn; Desmyter, Stefanie; Vervaet, Myriam; Baeken, Chris

    2014-01-01

    Objective: We conducted meta-analyses of functional and structural neuroimaging studies comparing adolescent and adult individuals with a history of suicidal behavior and a psychiatric disorder to psychiatric controls in order to objectify changes in brain structure and function in association with a vulnerability to suicidal behavior. Methods: Magnetic resonance imaging studies published up to July 2013 investigating structural or functional brain correlates of suicidal behavior were identified through computerized and manual literature searches. Activation foci from 12 studies encompassing 475 individuals, i.e., 213 suicide attempters and 262 psychiatric controls were subjected to meta-analytical study using anatomic or activation likelihood estimation (ALE). Result: Activation likelihood estimation revealed structural deficits and functional changes in association with a history of suicidal behavior. Structural findings included reduced volumes of the rectal gyrus, superior temporal gyrus and caudate nucleus. Functional differences between study groups included an increased reactivity of the anterior and posterior cingulate cortices. Discussion: A history of suicidal behavior appears to be associated with (probably interrelated) structural deficits and functional overactivation in brain areas, which contribute to a decision-making network. The findings suggest that a vulnerability to suicidal behavior can be defined in terms of a reduced motivational control over the intentional behavioral reaction to salient negative stimuli. PMID:25374525

  4. Real-time fMRI: a tool for local brain regulation.

    PubMed

    Caria, Andrea; Sitaram, Ranganatha; Birbaumer, Niels

    2012-10-01

    Real-time fMRI permits simultaneous measurement and observation of brain activity during an ongoing task. One of the most challenging applications of real-time fMRI in neuroscientific and clinical research is the possibility of acquiring volitional control of localized brain activity using real-time fMRI-based neurofeedback protocols. Real-time fMRI allows the experimenter to noninvasively manipulate brain activity as an independent variable to observe the effects on behavior. Real-time fMRI neurofeedback studies demonstrated that learned control of the local brain activity leads to specific changes in behavior. Here, the authors describe the implementation and application of real-time fMRI with particular emphasis on the self-regulation of local brain activity and the investigation of brain-function relationships. Real-time fMRI represents a promising new approach to cognitive neuroscience that could complement traditional neuroimaging techniques by providing more causal insights into the functional role of circumscribed brain regions in behavior.

  5. Sex differences in brain and behavior in adolescence: Findings from the Philadelphia Neurodevelopmental Cohort.

    PubMed

    Gur, Raquel E; Gur, Ruben C

    2016-11-01

    Sex differences in brain and behavior were investigated across the lifespan. Parameters include neurobehavioral measures linkable to neuroanatomic and neurophysiologic indicators of brain structure and function. Sexual differentiation of behavior has been related to organizational factors during sensitive periods of development, with adolescence and puberty gaining increased attention. Adolescence is a critical developmental period where transition to adulthood is impacted by multiple factors that can enhance vulnerability to brain dysfunction. Here we highlight sex differences in neurobehavioral measures in adolescence that are linked to brain function. We summarize neuroimaging studies examining brain structure, connectivity and perfusion, underscoring the relationship to sex differences in behavioral measures and commenting on hormonal findings. We focus on relevant data from the Philadelphia Neurodevelopmental Cohort (PNC), a community-based sample of nearly 10,000 clinically and neurocognitively phenotyped youths age 8-21 of whom 1600 have received multimodal neuroimaging. These data indicate early and pervasive sexual differentiation in neurocognitive measures that is linkable to brain parameters. We conclude by describing possible clinical implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sex differences in brain and behavior in adolescence: Findings from the Philadelphia Neurodevelopmental Cohort

    PubMed Central

    Gur, Raquel E.; Gur, Ruben C.

    2016-01-01

    Sex differences in brain and behavior were investigated across the lifespan. Parameters include neurobehavioral measures linkable to neuroanatomic and neurophysiologic indicators of brain structure and function. Sexual differentiation of behavior has been related to organizational factors during sensitive periods of development, with adolescence and puberty gaining increased attention. Adolescence is a critical developmental period where transition to adulthood is impacted by multiple factors that can enhance vulnerability to brain dysfunction. Here we highlight sex differences in neurobehavioral measures in adolescence that are linked to brain function. We summarize neuroimaging studies examining brain structure, connectivity and perfusion, underscoring the relationship to sex differences in behavioral measures and commenting on hormonal findings. We focus on relevant data from the Philadelphia Neurodevelopmental Cohort (PNC), a community-based sample of nearly 10,000 clinically and neurocognitively phenotyped youths age 8–21 of whom 1600 have received multimodal neuroimaging. These data indicate early and pervasive sexual differentiation in neurocognitive measures that is linkable to brain parameters. We conclude by describing possible clinical implications. PMID:27498084

  7. Dynamic Connectivity Patterns in Conscious and Unconscious Brain

    PubMed Central

    Ma, Yuncong; Hamilton, Christina

    2017-01-01

    Abstract Brain functional connectivity undergoes dynamic changes from the awake to unconscious states. However, how the dynamics of functional connectivity patterns are linked to consciousness at the behavioral level remains elusive. In this study, we acquired resting-state functional magnetic resonance imaging data during wakefulness and graded levels of consciousness in rats. Data were analyzed using a dynamic approach combining the sliding window method and k-means clustering. Our results demonstrate that whole-brain networks contained several quasi-stable patterns that dynamically recurred from the awake state into anesthetized states. Remarkably, two brain connectivity states with distinct spatial similarity to the structure of anatomical connectivity were strongly biased toward high and low consciousness levels, respectively. These results provide compelling neuroimaging evidence linking the dynamics of whole-brain functional connectivity patterns and states of consciousness at the behavioral level. PMID:27846731

  8. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules

    PubMed Central

    Bock, Jörg; Rether, Kathy; Gröger, Nicole; Xie, Lan; Braun, Katharina

    2014-01-01

    Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life. PMID:24550772

  9. Developmental process emerges from extended brain-body-behavior networks

    PubMed Central

    Byrge, Lisa; Sporns, Olaf; Smith, Linda B.

    2014-01-01

    Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251

  10. Evidence for a distributed hierarchy of action representation in the brain

    PubMed Central

    Grafton, Scott T.; de C. Hamilton, Antonia F.

    2007-01-01

    Complex human behavior is organized around temporally distal outcomes. Behavioral studies based on tasks such as normal prehension, multi-step object use and imitation establish the existence of relative hierarchies of motor control. The retrieval errors in apraxia also support the notion of a hierarchical model for representing action in the brain. In this review, three functional brain imaging studies of action observation using the method of repetition suppression are used to identify a putative neural architecture that supports action understanding at the level of kinematics, object centered goals and ultimately, motor outcomes. These results, based on observation, may match a similar functional anatomic hierarchy for action planning and execution. If this is true, then the findings support a functional anatomic model that is distributed across a set of interconnected brain areas that are differentially recruited for different aspects of goal oriented behavior, rather than a homogeneous mirror neuron system for organizing and understanding all behavior. PMID:17706312

  11. Disrupted functional connectome in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2017-08-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.

  12. Disrupted functional connectome in antisocial personality disorder

    PubMed Central

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen

    2017-01-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949

  13. Sex Differences in the Brain.

    ERIC Educational Resources Information Center

    Kimura, Doreen

    1992-01-01

    Explores the neural and hormonal basis of human intellectual function that gives rise to sex differences in the brain. Discusses behavioral, neurological, endocrinological studies, and studies of the effects of hormones on brain functioning that show a relationship between cognitive variations and sex. (MCO)

  14. Anomalous brain functional connectivity contributing to poor adaptive behavior in Down syndrome.

    PubMed

    Pujol, Jesus; del Hoyo, Laura; Blanco-Hinojo, Laura; de Sola, Susana; Macià, Dídac; Martínez-Vilavella, Gerard; Amor, Marta; Deus, Joan; Rodríguez, Joan; Farré, Magí; Dierssen, Mara; de la Torre, Rafael

    2015-03-01

    Research in Down syndrome has substantially progressed in the understanding of the effect of gene overexpression at the molecular level, but there is a paucity of information on the ultimate consequences on overall brain functional organization. We have assessed the brain functional status in Down syndrome using functional connectivity MRI. Resting-state whole-brain connectivity degree maps were generated in 20 Down syndrome individuals and 20 control subjects to identify sites showing anomalous synchrony with other areas. A subsequent region-of-interest mapping served to detail the anomalies and to assess their potential contribution to poor adaptive behavior. Down syndrome individuals showed higher regional connectivity in a ventral brain system involving the amygdala/anterior temporal region and the ventral aspect of both the anterior cingulate and frontal cortices. By contrast, lower functional connectivity was identified in dorsal executive networks involving dorsal prefrontal and anterior cingulate cortices and posterior insula. Both functional connectivity increases and decreases contributed to account for patient scoring on adaptive behavior related to communication skills. The data overall suggest a distinctive functional organization with system-specific anomalies associated with reduced adaptive efficiency. Opposite effects were identified on distinct frontal and anterior temporal structures and relative sparing of posterior brain areas, which is generally consistent with Down syndrome cognitive profile. Relevantly, measurable connectivity changes, as a marker of the brain functional anomaly, could have a role in the development of therapeutic strategies addressed to improve the quality of life in Down syndrome individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior.

    PubMed

    Burger, Kyle S; Berner, Laura A

    2014-09-01

    Adequate energy intake is vital for the survival of humans and is regulated by complex homeostatic and hedonic mechanisms. Supported by functional MRI (fMRI) studies that consistently demonstrate differences in brain response as a function of weight status during exposure to appetizing food stimuli, it has been posited that hedonically driven food intake contributes to weight gain and obesity maintenance. These food reward theories of obesity are reliant on the notion that the aberrant brain response to food stimuli relates directly to ingestive behavior, specifically, excess food intake. Importantly, functioning of homeostatic neuroendocrine regulators of food intake, such as leptin and ghrelin, are impacted by weight status. Thus, data from studies that evaluate the effect on weight status on brain response to food may be a result of differences in neuroendocrine functioning and/or behavior. In the present review, we examine the influence of weight and weight change, exogenous administration of appetitive hormones, and ingestive behavior on BOLD response to food stimuli. Published by Elsevier Inc.

  16. Imagine All the People: How the Brain Creates and Uses Personality Models to Predict Behavior

    PubMed Central

    Hassabis, Demis; Spreng, R. Nathan; Rusu, Andrei A.; Robbins, Clifford A.; Mar, Raymond A.; Schacter, Daniel L.

    2014-01-01

    The behaviors of other people are often central to envisioning the future. The ability to accurately predict the thoughts and actions of others is essential for successful social interactions, with far-reaching consequences. Despite its importance, little is known about how the brain represents people in order to predict behavior. In this functional magnetic resonance imaging study, participants learned the unique personality of 4 protagonists and imagined how each would behave in different scenarios. The protagonists' personalities were composed of 2 traits: Agreeableness and Extraversion. Which protagonist was being imagined was accurately inferred based solely on activity patterns in the medial prefrontal cortex using multivariate pattern classification, providing novel evidence that brain activity can reveal whom someone is thinking about. Lateral temporal and posterior cingulate cortex discriminated between different degrees of agreeableness and extraversion, respectively. Functional connectivity analysis confirmed that regions associated with trait-processing and individual identities were functionally coupled. Activity during the imagination task, and revealed by functional connectivity, was consistent with the default network. Our results suggest that distinct regions code for personality traits, and that the brain combines these traits to represent individuals. The brain then uses this “personality model” to predict the behavior of others in novel situations. PMID:23463340

  17. Variations of the Functional Brain Network Efficiency in a Young Clinical Sample within the Autism Spectrum: A fNIRS Investigation.

    PubMed

    Li, Yanwei; Yu, Dongchuan

    2018-01-01

    Autism is a neurodevelopmental disorder with dimensional behavioral symptoms and various damages in the structural and functional brain. Previous neuroimaging studies focused on exploring the differences of brain development between individuals with and without autism spectrum disorders (ASD). However, few of them have attempted to investigate the individual differences of the brain features among subjects within the Autism spectrum. Our main goal was to explore the individual differences of neurodevelopment in young children with Autism by testing for the association between the functional network efficiency and levels of autistic behaviors, as well as the association between the functional network efficiency and age. Forty-six children with Autism (ages 2.0-8.9 years old) participated in the current study, with levels of autistic behaviors evaluated by their parents. The network efficiency (global and local network efficiency) were obtained from the functional networks based on the oxy-, deoxy-, and total-Hemoglobin series, respectively. Results indicated that the network efficiency decreased with age in young children with Autism in the deoxy- and total-Hemoglobin-based-networks, and children with a relatively higher level of autistic behaviors showed decreased network efficiency in the oxy-hemoglobin-based network. Results suggest individual differences of brain development in young children within the Autism spectrum, providing new insights into the psychopathology of ASD.

  18. Sex on the brain: Are gender-dependent structural and functional differences associated with behavior?

    PubMed

    Grabowska, Anna

    2017-01-02

    A substantial number of studies provide evidence documenting a variety of sex differences in the brain. It remains unclear whether sexual differentiation at the neural level is related to that observed in daily behavior, cognitive function, and the risk of developing certain psychiatric and neurological disorders. Some investigators have questioned whether the brain is truly sexually differentiated and support this view with several arguments including the following: (1) brain structural or functional differences are not necessarily reflected in appropriate differences at the behavioral level, which might suggest that these two phenomena are not linked to each other; and (2) sex-related differences in the brain are rather small and concern features that significantly overlap between males and females. This review polemicizes with those opinions and presents examples of sex-related local neural differences underpinning a variety of sex differences in behaviors, skills, and cognitive/emotional abilities. Although male/female brain differentiation may vary in pattern and scale, nonetheless, in some respects (e.g., relative local gray matter volumes) it can be substantial, taking the form of sexual dimorphism and involving large areas of the brain (the cortex in particular). A significant part of this review is devoted to arguing that some sex differences in the brain may serve to prevent (in the case where they are maladaptive), rather than to produce, differences at the behavioral/skill level. Specifically, some differences might result from compensatory mechanisms aimed at maintaining similar intellectual capacities across the sexes, despite the smaller average volume of the brain in females compared with males. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Cognitive accuracy and intelligent executive function in the brain and in business.

    PubMed

    Bailey, Charles E

    2007-11-01

    This article reviews research on cognition, language, organizational culture, brain, behavior, and evolution to posit the value of operating with a stable reference point based on cognitive accuracy and a rational bias. Drawing on rational-emotive behavioral science, social neuroscience, and cognitive organizational science on the one hand and a general model of brain and frontal lobe executive function on the other, I suggest implications for organizational success. Cognitive thought processes depend on specific brain structures functioning as effectively as possible under conditions of cognitive accuracy. However, typical cognitive processes in hierarchical business structures promote the adoption and application of subjective organizational beliefs and, thus, cognitive inaccuracies. Applying informed frontal lobe executive functioning to cognition, emotion, and organizational behavior helps minimize the negative effects of indiscriminate application of personal and cultural belief systems to business. Doing so enhances cognitive accuracy and improves communication and cooperation. Organizations operating with cognitive accuracy will tend to respond more nimbly to market pressures and achieve an overall higher level of performance and employee satisfaction.

  20. Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.

    PubMed

    Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M

    2006-01-01

    Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.

  1. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury.

    PubMed

    Porter, S; Torres, I J; Panenka, W; Rajwani, Z; Fawcett, D; Hyder, A; Virji-Babul, N

    2017-08-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG) recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.

  2. Oxytocin And Vasopressin Modulation Of The Neural Correlates Of Motivation And Emotion: Results From Functional MRI Studies In Awake Rats

    PubMed Central

    Febo, Marcelo; Ferris, Craig F.

    2014-01-01

    Oxytocin and vasopressin modulate a range of species typical behavioral functions that include social recognition, maternal-infant attachment, and modulation of memory, offensive aggression, defensive fear reactions, and reward seeking. We have employed novel functional magnetic resonance mapping techniques in awake rats to explore the roles of these neuropeptides in the maternal and non-maternal brain. Results from the functional neuroimaging studies that are summarized here have directly and indirectly confirmed and supported previous findings. Oxytocin is released within the lactating rat brain during suckling stimulation and activates specific subcortical networks in the maternal brain. Both vasopressin and oxytocin modulate brain regions involved unconditioned fear, processing of social stimuli and the expression of agonistic behaviors. Across studies there are relatively consistent brain networks associated with internal motivational drives and emotional states that are modulated by oxytocin and vasopressin. PMID:24486356

  3. Flexible modulation of network connectivity related to cognition in Alzheimer's disease.

    PubMed

    McLaren, Donald G; Sperling, Reisa A; Atri, Alireza

    2014-10-15

    Functional neuroimaging tools, such as fMRI methods, may elucidate the neural correlates of clinical, behavioral, and cognitive performance. Most functional imaging studies focus on regional task-related activity or resting state connectivity rather than how changes in functional connectivity across conditions and tasks are related to cognitive and behavioral performance. To investigate the promise of characterizing context-dependent connectivity-behavior relationships, this study applies the method of generalized psychophysiological interactions (gPPI) to assess the patterns of associative-memory-related fMRI hippocampal functional connectivity in Alzheimer's disease (AD) associated with performance on memory and other cognitively demanding neuropsychological tests and clinical measures. Twenty-four subjects with mild AD dementia (ages 54-82, nine females) participated in a face-name paired-associate encoding memory study. Generalized PPI analysis was used to estimate the connectivity between the hippocampus and the whole brain during encoding. The difference in hippocampal-whole brain connectivity between encoding novel and encoding repeated face-name pairs was used in multiple-regression analyses as an independent predictor for 10 behavioral, neuropsychological and clinical tests. The analysis revealed connectivity-behavior relationships that were distributed, dynamically overlapping, and task-specific within and across intrinsic networks; hippocampal-whole brain connectivity-behavior relationships were not isolated to single networks, but spanned multiple brain networks. Importantly, these spatially distributed performance patterns were unique for each measure. In general, out-of-network behavioral associations with encoding novel greater than repeated face-name pairs hippocampal-connectivity were observed in the default-mode network, while correlations with encoding repeated greater than novel face-name pairs hippocampal-connectivity were observed in the executive control network (p<0.05, cluster corrected). Psychophysiological interactions revealed significantly more extensive and robust associations between paired-associate encoding task-dependent hippocampal-whole brain connectivity and performance on memory and behavioral/clinical measures than previously revealed by standard activity-behavior analysis. Compared to resting state and task-activation methods, gPPI analyses may be more sensitive to reveal additional complementary information regarding subtle within- and between-network relations. The patterns of robust correlations between hippocampal-whole brain connectivity and behavioral measures identified here suggest that there are 'coordinated states' in the brain; that the dynamic range of these states is related to behavior and cognition; and that these states can be observed and quantified, even in individuals with mild AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The human sexual response cycle: brain imaging evidence linking sex to other pleasures.

    PubMed

    Georgiadis, J R; Kringelbach, M L

    2012-07-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable to that involved in processing other rewarding stimuli. Sexual behavior clearly follows the established principles and phases for wanting, liking and satiety involved in the pleasure cycle of other rewards. The studies have uncovered the brain networks involved in sexual wanting or motivation/anticipation, as well as sexual liking or arousal/consummation, while there is very little data on sexual satiety or post-orgasmic refractory period. Human sexual behavior also interacts with other pleasures, most notably social interaction and high arousal states. We discuss the changes in the underlying brain networks supporting sexual behavior in the context of the pleasure cycle, the changes to this cycle over the individual's life-time and the interactions between them. Overall, it is clear from the data that the functional neuroanatomy of sex is very similar to that of other pleasures and that it is unlikely that there is anything special about the brain mechanisms and networks underlying sex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.

    PubMed

    Pillai, Ajay S; Jirsa, Viktor K

    2017-06-07

    In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Transsexualism: A Different Viewpoint to Brain Changes

    PubMed Central

    Mohammadi, Mohammad Reza

    2018-01-01

    Transsexualism refers to a condition or belief which results in gender dysphoria in individuals and makes them insist that their biological gender is different from their psychological and experienced gender. Although the etiology of gender dysphoria (or transsexualism) is still unknown, different neuroimaging studies show that structural and functional changes of the brain result from this sexual incongruence. The question here is whether these reported changes form part of the etiology of transsexualism or themselves result from transsexualism culture, behaviors and lifestyle. Responding to this question can be more precise by consideration of cultural neuroscience concepts, particularly the culture–behavior–brain (CBB) loop model and the interactions between behavior, culture and brain. In this article, we first review the studies on the brain of transgender people and then we will discuss the validity of this claim based on the CBB loop model. In summary, transgender individuals experience change in lifestyle, context of beliefs and concepts and, as a result, their culture and behaviors. Given the close relationship and interaction between culture, behavior and brain, the individual’s brain adapts itself to the new condition (culture) and concepts and starts to alter its function and structure. PMID:29739126

  7. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    PubMed

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  8. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  9. Brain abnormalities in antisocial individuals: implications for the law.

    PubMed

    Yang, Yaling; Glenn, Andrea L; Raine, Adrian

    2008-01-01

    With the increasing popularity in the use of brain imaging on antisocial individuals, an increasing number of brain imaging studies have revealed structural and functional impairments in antisocial, psychopathic, and violent individuals. This review summarizes key findings from brain imaging studies on antisocial/aggressive behavior. Key regions commonly found to be impaired in antisocial populations include the prefrontal cortex (particularly orbitofrontal and dorsolateral prefrontal cortex), superior temporal gyrus, amygdala-hippocampal complex, and anterior cingulate cortex. Key functions of these regions are reviewed to provide a better understanding on how deficits in these regions may predispose to antisocial behavior. Objections to the use of imaging findings in a legal context are outlined, and alternative perspectives raised. It is argued that brain dysfunction is a risk factor for antisocial behavior and that it is likely that imaging will play an increasing (albeit limited) role in legal decision-making. (c) 2008 John Wiley & Sons, Ltd.

  10. Brain Connectivity and Visual Attention

    PubMed Central

    Parks, Emily L.

    2013-01-01

    Abstract Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures. PMID:23597177

  11. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior

    PubMed Central

    Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-01-01

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219

  12. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    PubMed

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  13. The Effects of Spaceflight on Neurocognitive Performance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, Rachael D.; Bloomberg, Jacob; Wood, Scott; Mason, Sara; Mulavara, Ajit; Kofman, Igor; De Dios, Yiri; Gadd, Nicole; Stepanyan, Vahagn; Szecsy, Darcy

    2017-01-01

    Spaceflight effects on gait, balance, & manual motor control have been well studied; some evidence for cognitive deficits. Rodent cortical motor & sensory systems show neural structural alterations with spaceflight. We found extensive changes in behavior, brain structure & brain function following 70 days of HDBR. Specific Aim: Aim 1-Identify changes in brain structure, function, and network integrity as a function of spaceflight and characterize their time course. Aim 2-Specify relationships between structural and functional brain changes and performance and characterize their time course.

  14. Neural Stability, Sparing, and Behavioral Recovery Following Brain Damage

    ERIC Educational Resources Information Center

    LeVere, T. E.

    1975-01-01

    The present article discusses the possibility that behavioral recovery following brain damage is not dependent on the functional reorganization of neural tissue but is rather the result of the continued normal operation of spared neural mechanisms. (Editor)

  15. Parent Psychological Functioning and Communication Predict Externalizing Behavior Problems After Pediatric Traumatic Brain Injury

    PubMed Central

    Raj, Stacey P.; Cassedy, Amy; Taylor, H. Gerry; Stancin, Terry; Brown, Tanya M.; Kirkwood, Michael W.

    2014-01-01

    Objective Adolescents sustaining traumatic brain injury (TBI) show increased prevalence of behavior problems. This study investigated the associations of parent mental health, family functioning, and parent–adolescent interaction with adolescent externalizing behavior problems in the initial months after TBI, and examined whether injury severity moderated these associations. Methods 117 parent–adolescent dyads completed measures of family functioning, adolescent behavior, and parent mental health an average of 108 days post-TBI. Dyads also engaged in a 10-min video-recorded problem-solving activity coded for parent behavior and tone of interaction. Results Overall, higher ratings of effective parent communication were associated with fewer externalizing behavior problems, whereas poorer caregiver psychological functioning was associated with greater adolescent externalizing behaviors. Results failed to reveal moderating effects of TBI severity on the relationship between socio-environmental factors and behavior problems. Conclusions Interventions targeting parent communication and/or improving caregiver psychological health may ameliorate potential externalizing behavior problems after adolescent TBI. PMID:24065551

  16. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    PubMed

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  17. Précis of The brain and emotion.

    PubMed

    Rolls, E T

    2000-04-01

    The topics treated in The brain and emotion include the definition, nature, and functions of emotion (Ch. 3); the neural bases of emotion (Ch. 4); reward, punishment, and emotion in brain design (Ch. 10); a theory of consciousness and its application to understanding emotion and pleasure (Ch. 9); and neural networks and emotion-related learning (Appendix). The approach is that emotions can be considered as states elicited by reinforcers (rewards and punishers). This approach helps with understanding the functions of emotion, with classifying different emotions, and in understanding what information-processing systems in the brain are involved in emotion, and how they are involved. The hypothesis is developed that brains are designed around reward- and punishment-evaluation systems, because this is the way that genes can build a complex system that will produce appropriate but flexible behavior to increase fitness (Ch. 10). By specifying goals rather than particular behavioral patterns of responses, genes leave much more open the possible behavioral strategies that might be required to increase fitness. The importance of reward and punishment systems in brain design also provides a basis for understanding the brain mechanisms of motivation, as described in Chapters 2 for appetite and feeding, 5 for brain-stimulation reward, 6 for addiction, 7 for thirst, and 8 for sexual behavior.

  18. Probiotics drive gut microbiome triggering emotional brain signatures.

    PubMed

    Bagga, Deepika; Reichert, Johanna Louise; Koschutnig, Karl; Aigner, Christoph Stefan; Holzer, Peter; Koskinen, Kaisa; Eichinger, Christine Moissl; Schöpf, Veronika

    2018-05-03

    Experimental manipulation of the gut microbiome was found to modify emotional and cognitive behavior, neurotransmitter expression and brain function in rodents, but corresponding human data remain scarce. The present double-blind, placebo-controlled randomised study aimed at investigating the effects of 4 weeks' probiotic administration on behavior, brain function and gut microbial composition in healthy volunteers. Forty-five healthy participants divided equally into three groups (probiotic, placebo and no intervention) underwent functional MRI (emotional decision-making and emotional recognition memory tasks). In addition, stool samples were collected to investigate the gut microbial composition. Probiotic administration for 4 weeks was associated with changes in brain activation patterns in response to emotional memory and emotional decision-making tasks, which were also accompanied by subtle shifts in gut microbiome profile. Microbiome composition mirrored self-reported behavioral measures and memory performance. This is the first study reporting a distinct influence of probiotic administration at behavioral, neural, and microbiome levels at the same time in healthy volunteers. The findings provide a basis for future investigations into the role of the gut microbiota and potential therapeutic application of probiotics.

  19. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  20. The neurogenetic frontier--lessons from misbehaving zebrafish.

    PubMed

    Burgess, Harold A; Granato, Michael

    2008-11-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.

  1. The neurogenetic frontier—lessons from misbehaving zebrafish

    PubMed Central

    Granato, Michael

    2008-01-01

    One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish. PMID:18836206

  2. Perspectives from the symposium: The role of nutrition in infant and toddler brain and behavioral development.

    PubMed

    Rosales, Francisco J; Zeisel, Steven H

    2008-06-01

    This symposium examined current trends in neuroscience and developmental psychology as they apply to assessing the effects of nutrients on brain and behavioral development of 0-6-year-olds. Although the spectrum of nutrients with brain effects has not changed much in the last 25 years, there has been an explosion in new knowledge about the genetics, structure and function of the brain. This has helped to link the brain mechanistic pathway by which these nutrients act with cognitive functions. A clear example of this is linking of brain structural changes due to hypoglycemia versus hyperglycemia with cognitive functions by using magnetic resonance imaging (MRI) to assess changes in brain-region volumes in combination with cognitive test of intelligence, memory and processing speed. Another example is the use of event-related potential (ERP) studies to show that infants of diabetic mothers have impairments in memory from birth through 8 months of age that are consistent with alterations in mechanistic pathways of memory observed in animal models of perinatal iron deficiency. However, gaps remain in the understanding of how nutrients and neurotrophic factors interact with each other in optimizing brain development and function.

  3. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    PubMed

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  4. The Affective Neuroscience of Aging

    PubMed Central

    Mather, Mara

    2018-01-01

    While aging is associated with clear declines in physical and cognitive processes, emotional functioning fares relatively well. Consistent with this behavioral profile, two core emotional brain regions, the amygdala and ventromedial prefrontal cortex, show little structural and functional decline in aging, compared with other regions. However, emotional processes depend on interacting systems of neurotransmitters and brain regions that go beyond these structures. This review examines how age-related brain changes influence processes such as attending to and remembering emotional stimuli, regulating emotion, recognizing emotional expressions, empathy, risk taking, impulsivity, behavior change and attentional focus. PMID:26436717

  5. The Affective Neuroscience of Aging.

    PubMed

    Mather, Mara

    2016-01-01

    Although aging is associated with clear declines in physical and cognitive processes, emotional functioning fares relatively well. Consistent with this behavioral profile, two core emotional brain regions, the amygdala and ventromedial prefrontal cortex, show little structural and functional decline in aging, compared with other regions. However, emotional processes depend on interacting systems of neurotransmitters and brain regions that go beyond these structures. This review examines how age-related brain changes influence processes such as attending to and remembering emotional stimuli, regulating emotion, and recognizing emotional expressions, as well as empathy, risk taking, impulsivity, behavior change, and attentional focus.

  6. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface.

    PubMed

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Song, Jie; Nair, Veena A; Grogan, Scott W; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2014-01-01

    This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.

  7. Complementarity of Sex Differences in Brain and Behavior: From Laterality to Multi-Modal Neuroimaging

    PubMed Central

    Gur, Ruben C.; Gur, Raquel E.

    2016-01-01

    While overwhelmingly behavior is similar in males and females, and correspondingly the brains are similar, sex differences permeate both brain and behavioral measures and these differences have been the focus of increasing scrutiny by neuroscientists. Here we describe milestones of over three decades of research in brain and behavior. This research was necessarily bound by available methodology, and we began by indirect behavioral indicators of brain function such as handedness. We proceeded to using neuropsychological batteries and then to structural and functional neuroimaging that provided the foundations of a cognitive neuroscience based computerized neurocognitive battery. Sex differences were apparent and consistent in neurocognitive measures, with females performing better on memory and social cognition tasks and males on spatial processing and motor speed. Sex differences were also prominent on all major brain parameters, including higher rates of cerebral blood flow, higher percent of gray matter tissue and higher inter-hemispheric connectivity in females compared to higher percent of white matter and greater intra-hemispheric connectivity, as well as higher glucose metabolism in limbic regions in males. Many of these differences are present in childhood but they become more prominent with adolescence, perhaps linked to puberty. Together they indicate complementarity between the sexes that would result in higher adaptive diversity. PMID:27870413

  8. Kisspeptin modulates sexual and emotional brain processing in humans.

    PubMed

    Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S

    2017-02-01

    Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

  9. The Effects of Long Duration Head Down Tilt Bed Rest on Neurocognitive Performance: The Effects of Exercise Interventions

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.

  10. Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan, P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.; hide

    2017-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that are conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. We have collected data on several crewmembers and preliminary findings will be presented. Eventual comparison to results from our parallel bed rest study will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe.

  11. Iron and Mechanisms of Emotional Behavior

    PubMed Central

    Kim, Jonghan; Wessling-Resnick, Marianne

    2014-01-01

    Iron is required for appropriate behavioral organization. Iron deficiency results in poor brain myelination and impaired monoamine metabolism. Glutamate and GABA homeostasis is modified by changes in brain iron status. Such changes not only produce deficits in memory/learning capacity and motor skills, but also emotional and psychological problems. An accumulating body of evidence indicates that both energy metabolism and neurotransmitter homeostasis influence emotional behavior, and both functions are influenced by brain iron status. Like other neurobehavioral aspects, the influence of iron metabolism on mechanisms of emotional behavior are multifactorial: brain region-specific control of behavior, regulation of neurotransmitters and associated proteins, temporal and regional differences in iron requirements, oxidative stress responses to excess iron, sex differences in metabolism, and interactions between iron and other metals. To better understand the role that brain iron plays in emotional behavior and mental health, this review discusses the pathologies associated with anxiety and other emotional disorders with respect to body iron status. PMID:25154570

  12. Prenatal Tobacco Exposure and Brain Morphology: A Prospective Study in Young Children

    PubMed Central

    El Marroun, Hanan; Schmidt, Marcus N; Franken, Ingmar H A; Jaddoe, Vincent W V; Hofman, Albert; van der Lugt, Aad; Verhulst, Frank C; Tiemeier, Henning; White, Tonya

    2014-01-01

    It is well known that smoking during pregnancy can affect offspring health. Prenatal tobacco exposure has been associated with negative behavioral and cognitive outcomes in childhood, adolescence, and young adulthood. These associations between prenatal tobacco exposure and psychopathology in offspring could possibly be explained by the influence of prenatal tobacco exposure on brain development. In this prospective study, we investigated the association between prenatal tobacco exposure, behavioral and emotional functioning and brain morphology in young children. On the basis of age and gender, we matched 113 children prenatally exposed to tobacco with 113 unexposed controls. These children were part of a population-based study in the Netherlands, the Generation R Study, and were followed from pregnancy onward. Behavioral and emotional functioning was assessed at age 6 with the Child Behavior Checklist. We assessed brain morphology using magnetic resonance imaging techniques in children aged 6–8 years. Children exposed to tobacco throughout pregnancy have smaller total brain volumes and smaller cortical gray matter volumes. Continued prenatal tobacco exposure was associated with cortical thinning, primarily in the superior frontal, superior parietal, and precentral cortices. These children also demonstrated increased scores of affective problems. In addition, thickness of the precentral and superior frontal cortices was associated with affective problems. Importantly, brain development in offspring of mothers who quit smoking during pregnancy resembled that of nonexposed controls (no smaller brain volumes and no thinning of the cortex). Our findings suggest an association between continued prenatal tobacco exposure and brain structure and function in school-aged children. PMID:24096296

  13. Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits

    PubMed Central

    Niwa, Minae; Kamiya, Atsushi; Murai, Rina; Kubo, Ken-ichiro; Gruber, Aaron J; Tomita, Kenji; Lu, Lingling; Tomisato, Shuta; Jaaro-Peled, Hanna; Seshadri, Saurav; Hiyama, Hideki; Huang, Beverly; Kohda, Kazuhisa; Noda, Yukihiro; O’Donnell, Patricio; Nakajima, Kazunori; Sawa, Akira; Nabeshima, Toshitaka

    2011-01-01

    SUMMARY Adult brain function and behavior are influenced by neuronal network formation during development. Genetic susceptibility factors for adult psychiatric illnesses, such as Neuregulin-1 and Disrupted-in-Schizophrenia-1 (DISC1), influence adult high brain functions, including cognition and information processing. These factors have roles during neurodevelopment and are likely to cooperate, forming “pathways” or “signalosomes.” Here we report the potential to generate an animal model via in utero gene transfer in order to address an important question of how nonlethal deficits in early development may affect postnatal brain maturation and high brain functions in adulthood, which are impaired in various psychiatric illnesses, such as schizophrenia. We show that transient knockdown of DISC1 in the pre- and peri-natal stages, specifically in a lineage of pyramidal neurons mainly in the prefrontal cortex, leads to selective abnormalities in postnatal mesocortical dopaminergic maturation and behavioral abnormalities associated with disturbed cortical neurocircuitry after puberty. PMID:20188653

  14. A fructose receptor functions as a nutrient sensor in the Drosophila brain

    PubMed Central

    Miyamoto, Tetsuya; Slone, Jesse; Song, Xiangyu; Amrein, Hubert

    2012-01-01

    SUMMARY Internal nutrient sensors play important roles in feeding behavior, yet their molecular structure and mechanism of action are poorly understood. Using Ca2+ imaging and behavioral assays, we show that the Gustatory Receptor 43a functions as a narrowly tuned fructose receptor in taste neurons. Remarkably, GR43a also functions as a fructose receptor in the brain. Interestingly, hemolymph fructose levels are tightly linked to feeding status: after nutritious carbohydrate consumption, fructose levels rise several fold and reach a concentration sufficient to activate GR43a in the brain. By using different feeding paradigms and artificial activation of Gr43a-expressing brain neurons, we show that GR43a is both necessary and sufficient to sense hemolymph fructose and promote feeding in hungry flies, but suppress feeding in satiated flies. Thus, our studies indicate that the Gr43a-expressing brain neurons function as a nutrient sensor for hemolymph fructose and assign opposing valence to feeding experiences in a satiation-dependent manner. PMID:23178127

  15. Two hands, one brain, and aging.

    PubMed

    Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P

    2017-04-01

    Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Oxytocin and vasopressin modulation of the neural correlates of motivation and emotion: results from functional MRI studies in awake rats.

    PubMed

    Febo, Marcelo; Ferris, Craig F

    2014-09-11

    Oxytocin and vasopressin modulate a range of species typical behavioral functions that include social recognition, maternal-infant attachment, and modulation of memory, offensive aggression, defensive fear reactions, and reward seeking. We have employed novel functional magnetic resonance mapping techniques in awake rats to explore the roles of these neuropeptides in the maternal and non-maternal brain. Results from the functional neuroimaging studies that are summarized here have directly and indirectly confirmed and supported previous findings. Oxytocin is released within the lactating rat brain during suckling stimulation and activates specific subcortical networks in the maternal brain. Both vasopressin and oxytocin modulate brain regions involved unconditioned fear, processing of social stimuli and the expression of agonistic behaviors. Across studies there are relatively consistent brain networks associated with internal motivational drives and emotional states that are modulated by oxytocin and vasopressin. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. How the brain attunes to sentence processing: Relating behavior, structure, and function

    PubMed Central

    Fengler, Anja; Meyer, Lars; Friederici, Angela D.

    2016-01-01

    Unlike other aspects of language comprehension, the ability to process complex sentences develops rather late in life. Brain maturation as well as verbal working memory (vWM) expansion have been discussed as possible reasons. To determine the factors contributing to this functional development, we assessed three aspects in different age-groups (5–6 years, 7–8 years, and adults): first, functional brain activity during the processing of increasingly complex sentences; second, brain structure in language-related ROIs; and third, the behavioral comprehension performance on complex sentences and the performance on an independent vWM test. At the whole-brain level, brain functional data revealed a qualitatively similar neural network in children and adults including the left pars opercularis (PO), the left inferior parietal lobe together with the posterior superior temporal gyrus (IPL/pSTG), the supplementary motor area, and the cerebellum. While functional activation of the language-related ROIs PO and IPL/pSTG predicted sentence comprehension performance for all age-groups, only adults showed a functional selectivity in these brain regions with increased activation for more complex sentences. The attunement of both the PO and IPL/pSTG toward a functional selectivity for complex sentences is predicted by region-specific gray matter reduction while that of the IPL/pSTG is additionally predicted by vWM span. Thus, both structural brain maturation and vWM expansion provide the basis for the emergence of functional selectivity in language-related brain regions leading to more efficient sentence processing during development. PMID:26777477

  18. Enhancement of Sexual Behavior in Female Rats by Neonatal Transplantation of Brain Tissue from Males

    NASA Astrophysics Data System (ADS)

    Arendash, Gary W.; Gorski, Roger A.

    1982-09-01

    Transplantation of preoptic tissue from male rat neonates into the preoptic area of female littermates increased masculine and feminine sexual behavior in the recipients during adulthood. This suggests that functional connections develop between the transplanted neural tissue and the host brain. A new intraparenchymal brain transplantation technique was used to achieve these results.

  19. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress.

    PubMed

    Zelikowsky, Moriel; Hui, May; Karigo, Tomomi; Choe, Andrea; Yang, Bin; Blanco, Mario R; Beadle, Keith; Gradinaru, Viviana; Deverman, Benjamin E; Anderson, David J

    2018-05-17

    Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Family-Based Training Program Improves Brain Function, Cognition, and Behavior in Lower Socioeconomic Status Preschoolers

    ERIC Educational Resources Information Center

    Pakulak, Eric; Stevens, Courtney; Bell, Theodore A.; Fanning, Jessica; Klein, Scott; Isbell, Elif; Neville, Helen

    2013-01-01

    Over the course of several years of research, the authors have employed psychophysics, electrophysiological (ERP) and magnetic resonance imaging (MRI) techniques to study the development and neuroplasticity of the human brain. During this time, they observed that different brain systems and related functions display markedly different degrees or…

  1. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics

    PubMed Central

    Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella

    2015-01-01

    Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468

  2. Segregated Systems of Human Brain Networks.

    PubMed

    Wig, Gagan S

    2017-12-01

    The organization of the brain network enables its function. Evaluation of this organization has revealed that large-scale brain networks consist of multiple segregated subnetworks of interacting brain areas. Descriptions of resting-state network architecture have provided clues for understanding the functional significance of these segregated subnetworks, many of which correspond to distinct brain systems. The present report synthesizes accumulating evidence to reveal how maintaining segregated brain systems renders the human brain network functionally specialized, adaptable to task demands, and largely resilient following focal brain damage. The organizational properties that support system segregation are harmonious with the properties that promote integration across the network, but confer unique and important features to the brain network that are central to its function and behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  4. The Effects of Spaceflight and a Spaceflight Analog on Neurocognitive Perfonnance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility, and alterations in brain structure and function, in association with extended bed rest.

  5. Modeling fluctuations in default-mode brain network using a spiking neural network.

    PubMed

    Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko

    2012-08-01

    Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.

  6. Compulsive sexual behavior: Prefrontal and limbic volume and interactions.

    PubMed

    Schmidt, Casper; Morris, Laurel S; Kvamme, Timo L; Hall, Paula; Birchard, Thaddeus; Voon, Valerie

    2017-03-01

    Compulsive sexual behaviors (CSB) are relatively common and associated with significant personal and social dysfunction. The underlying neurobiology is still poorly understood. The present study examines brain volumes and resting state functional connectivity in CSB compared with matched healthy volunteers (HV). Structural MRI (MPRAGE) data were collected in 92 subjects (23 CSB males and 69 age-matched male HV) and analyzed using voxel-based morphometry. Resting state functional MRI data using multi-echo planar sequence and independent components analysis (ME-ICA) were collected in 68 subjects (23 CSB subjects and 45 age-matched HV). CSB subjects showed greater left amygdala gray matter volumes (small volume corrected, Bonferroni adjusted P < 0.01) and reduced resting state functional connectivity between the left amygdala seed and bilateral dorsolateral prefrontal cortex (whole brain, cluster corrected FWE P < 0.05) compared with HV. CSB is associated with elevated volumes in limbic regions relevant to motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions. Future studies should aim to assess longitudinal measures to investigate whether these findings are risk factors that predate the onset of the behaviors or are consequences of the behaviors. Hum Brain Mapp 38:1182-1190, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  7. Insights from neuroenergetics into the interpretation of functional neuroimaging: an alternative empirical model for studying the brain's support of behavior

    PubMed Central

    Shulman, Robert G; Hyder, Fahmeed; Rothman, Douglas L

    2014-01-01

    Functional neuroimaging measures quantitative changes in neurophysiological parameters coupled to neuronal activity during observable behavior. These results have usually been interpreted by assuming that mental causation of behavior arises from the simultaneous actions of distinct psychological mechanisms or modules. However, reproducible localization of these modules in the brain using functional magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging has been elusive other than for sensory systems. In this paper, we show that neuroenergetic studies using PET, calibrated functional magnetic resonance imaging (fMRI), 13C magnetic resonance spectroscopy, and electrical recordings do not support the standard approach, which identifies the location of mental modules from changes in brain activity. Of importance in reaching this conclusion is that changes in neuronal activities underlying the fMRI signal are many times smaller than the high ubiquitous, baseline neuronal activity, or energy in resting, awake humans. Furthermore, the incremental signal depends on the baseline activity contradicting theoretical assumptions about linearity and insertion of mental modules. To avoid these problems, while making use of these valuable results, we propose that neuroimaging should be used to identify observable brain activities that are necessary for a person's observable behavior rather than being used to seek hypothesized mental processes. PMID:25160670

  8. Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injury.

    PubMed

    Gross, H; Kling, A; Henry, G; Herndon, C; Lavretsky, H

    1996-01-01

    A retrospective study of 20 patients with mild traumatic brain injury (MTBI) examined brain regions of interest by comparing [18F]-2-deoxyglucose PET, neuropsychological test results, and continuing behavioral dysfunction. Abnormal local cerebral metabolic rates (rLCMs) were most prominent in midtemporal, anterior cingulate, precuneus, anterior temporal, frontal white, and corpus callosum brain regions. Abnormal rLCMs were significantly correlated statistically with 1) overall clinical complaints, most specifically with inconsistent attention/concentration and 2) overall neuropsychological test results. The authors conclude that 1) even mild TBI may result in continuing brain behavioral deficits; 2) PET can help elucidate dysfunctional brain circuitry in neurobehavioral disorders; and 3) specific brain areas may correlate with deficits in daily neurobehavioral functioning and neuropsychological test findings.

  9. In pursuit of resilience: stress, epigenetics, and brain plasticity.

    PubMed

    McEwen, Bruce S

    2016-06-01

    The brain is the central organ for adaptation to experiences, including stressors, which are capable of changing brain architecture as well as altering systemic function through neuroendocrine, autonomic, immune, and metabolic systems. Because the brain is the master regulator of these systems, as well as of behavior, alterations in brain function by chronic stress can have direct and indirect effects on cumulative allostatic overload, which refers to the cost of adaptation. There is much new knowledge on the neural control of systemic physiology and the feedback actions of physiologic mediators on brain regions regulating higher cognitive function, emotional regulation, and self-regulation. The healthy brain has a considerable capacity for resilience, based upon its ability to respond to interventions designed to open "windows of plasticity" and redirect its function toward better health. As a result, plasticity-facilitating treatments should be given within the framework of a positive behavioral intervention; negative experiences during this window may even make matters worse. Indeed, there are no magic bullets and drugs cannot substitute for targeted interventions that help an individual become resilient, of which mindfulness-based stress reduction and meditation are emerging as useful tools. © 2016 New York Academy of Sciences.

  10. Brain structure differences between Chinese and Caucasian cohorts: A comprehensive morphometry study.

    PubMed

    Tang, Yuchun; Zhao, Lu; Lou, Yunxia; Shi, Yonggang; Fang, Rui; Lin, Xiangtao; Liu, Shuwei; Toga, Arthur

    2018-05-01

    Numerous behavioral observations and brain function studies have demonstrated that neurological differences exist between East Asians and Westerners. However, the extent to which these factors relate to differences in brain structure is still not clear. As the basis of brain functions, the anatomical differences in brain structure play a primary and critical role in the origination of functional and behavior differences. To investigate the underlying differences in brain structure between the two cultural/ethnic groups, we conducted a comparative study on education-matched right-handed young male adults (age = 22-29 years) from two cohorts, Han Chinese (n = 45) and Caucasians (n = 45), using high-dimensional structural magnetic resonance imaging (MRI) data. Using two well-validated imaging analysis techniques, surface-based morphometry (SBM) and voxel-based morphometry (VBM), we performed a comprehensive vertex-wise morphometric analysis of the brain structures between Chinese and Caucasian cohorts. We identified consistent significant between-group differences in cortical thickness, volume, and surface area in the frontal, temporal, parietal, occipital, and insular lobes as well as the cingulate cortices. The SBM analyses revealed that compared with Caucasians, the Chinese population showed larger cortical structures in the temporal and cingulate regions, and smaller structural measures in the frontal and parietal cortices. The VBM data of the same sample was well-aligned with the SBM findings. Our findings systematically revealed comprehensive brain structural differences between young male Chinese and Caucasians, and provided new neuroanatomical insights to the behavioral and functional distinctions in the two cultural/ethnic populations. © 2018 Wiley Periodicals, Inc.

  11. Functional brain networks for learning predictive statistics.

    PubMed

    Giorgio, Joseph; Karlaftis, Vasilis M; Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew; Kourtzi, Zoe

    2017-08-18

    Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. This skill relies on extracting regular patterns in space and time by mere exposure to the environment (i.e., without explicit feedback). Yet, we know little about the functional brain networks that mediate this type of statistical learning. Here, we test whether changes in the processing and connectivity of functional brain networks due to training relate to our ability to learn temporal regularities. By combining behavioral training and functional brain connectivity analysis, we demonstrate that individuals adapt to the environment's statistics as they change over time from simple repetition to probabilistic combinations. Further, we show that individual learning of temporal structures relates to decision strategy. Our fMRI results demonstrate that learning-dependent changes in fMRI activation within and functional connectivity between brain networks relate to individual variability in strategy. In particular, extracting the exact sequence statistics (i.e., matching) relates to changes in brain networks known to be involved in memory and stimulus-response associations, while selecting the most probable outcomes in a given context (i.e., maximizing) relates to changes in frontal and striatal networks. Thus, our findings provide evidence that dissociable brain networks mediate individual ability in learning behaviorally-relevant statistics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders

    PubMed Central

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  13. Brain mast cells link the immune system to anxiety-like behavior

    PubMed Central

    Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae

    2008-01-01

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805

  14. Brain mast cells link the immune system to anxiety-like behavior.

    PubMed

    Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae

    2008-11-18

    Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.

  15. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior

    PubMed Central

    Baslow, Morris H.

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525

  16. The future of music in therapy and medicine.

    PubMed

    Thaut, Michael H

    2005-12-01

    The understanding of music's role and function in therapy and medicine is undergoing a rapid transformation, based on neuroscientific research showing the reciprocal relationship between studying the neurobiological foundations of music in the brain and how musical behavior through learning and experience changes brain and behavior function. Through this research the theory and clinical practice of music therapy is changing more and more from a social science model, based on cultural roles and general well-being concepts, to a neuroscience-guided model based on brain function and music perception. This paradigm shift has the potential to move music therapy from an adjunct modality to a central treatment modality in rehabilitation and therapy.

  17. Observed Measures of Negative Parenting Predict Brain Development during Adolescence.

    PubMed

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G; Sheeber, Lisa; Allen, Nicholas B

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11-20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation.

  18. Observed Measures of Negative Parenting Predict Brain Development during Adolescence

    PubMed Central

    Whittle, Sarah; Vijayakumar, Nandita; Dennison, Meg; Schwartz, Orli; Simmons, Julian G.; Sheeber, Lisa; Allen, Nicholas B.

    2016-01-01

    Limited attention has been directed toward the influence of non-abusive parenting behaviour on brain structure in adolescents. It has been suggested that environmental influences during this period are likely to impact the way that the brain develops over time. The aim of this study was to investigate the association between aggressive and positive parenting behaviors on brain development from early to late adolescence, and in turn, psychological and academic functioning during late adolescence, using a multi-wave longitudinal design. Three hundred and sixty seven magnetic resonance imaging (MRI) scans were obtained over three time points from 166 adolescents (11–20 years). At the first time point, observed measures of maternal aggressive and positive behaviors were obtained. At the final time point, measures of psychological and academic functioning were obtained. Results indicated that a higher frequency of maternal aggressive behavior was associated with alterations in the development of right superior frontal and lateral parietal cortical thickness, and of nucleus accumbens volume, in males. Development of the superior frontal cortex in males mediated the relationship between maternal aggressive behaviour and measures of late adolescent functioning. We suggest that our results support an association between negative parenting and adolescent functioning, which may be mediated by immature or delayed brain maturation. PMID:26824348

  19. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis.

    PubMed

    Stillman, Chelsea M; Cohen, Jamie; Lehman, Morgan E; Erickson, Kirk I

    2016-01-01

    Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.

  20. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

    PubMed

    Feierstein, C E; Portugues, R; Orger, M B

    2015-06-18

    In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal. Copyright © 2014. Published by Elsevier Ltd.

  1. Critical role of androgen receptor in the postnatal period in male sexual behavior in rats.

    PubMed

    Yamada, Shunji; Ohoya, Miku; Takanami, Keiko; Matsuda, Ken Ichi; Kawata, Mitsuhiro

    2015-11-16

    Gonadal hormones have a developmental role in organization of the nervous system that regulates sexually dimorphic behavior. It is well known that androgen secreted from testes in the perinatal period is converted to estrogen by aromatase in rodent brain, and that estrogen and its receptor play a pivotal role in masculinization of brain structure and function. Treatment with flutamide, an androgen receptor (AR) antagonist, during the perinatal period inhibits development of malespecific brain structure and function, suggesting that androgen signaling via AR also influences brain masculinization. In this study, we investigated which stage during the postnatal period is critical for androgen signaling in brain masculinization. The postnatal period was designated as postnatal days (PD) 0-22, and divided into stages I (PD 0-7), II (PD 8-14), and III (PD 15-22). Newborn male rats were given flutamide subcutaneously in each stage. After adulthood, the effects of postnatal flutamide treatment on brain masculinization were evaluated byanalysis of male sexual behavior. Continuous inhibition of AR throughout stages I and II caused a robust reduction of the intromission ratio and ejaculation frequency compared with other groups. AR inhibition in stage I, II, or III did not cause any change. AR inhibition had no effect onmount behavior. These results show that stage-specific AR activation in the first two postnatal weeks may contribute to brain masculinization mediating male sexual behavior in adulthood. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Kisspeptin modulates sexual and emotional brain processing in humans

    PubMed Central

    Comninos, Alexander N.; Wall, Matthew B.; Demetriou, Lysia; Shah, Amar J.; Clarke, Sophie A.; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K.; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M.; Jayasena, Channa N.; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A.; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Wilson, Steven Ray; Brown, Rachel C.; Thomas, Sarah A.; Bloom, Stephen R.; Dhillo, Waljit S.

    2017-01-01

    BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC). PMID:28112678

  3. Lesion network localization of criminal behavior

    PubMed Central

    Darby, R. Ryan; Horn, Andreas; Fox, Michael D.

    2018-01-01

    Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior. PMID:29255017

  4. Complementarity of sex differences in brain and behavior: From laterality to multimodal neuroimaging.

    PubMed

    Gur, Ruben C; Gur, Raquel E

    2017-01-02

    Although, overwhelmingly, behavior is similar in males and females, and, correspondingly, the brains are similar, sex differences permeate both brain and behavioral measures, and these differences have been the focus of increasing scrutiny by neuroscientists. This Review describes milestones from more than 3 decades of research in brain and behavior. This research was necessarily bound by available methodology, and we began with indirect behavioral indicators of brain function such as handedness. We proceeded to the use of neuropsychological batteries and then to structural and functional neuroimaging that provided the foundations of a cognitive neuroscience-based computerized neurocognitive battery. Sex differences were apparent and consistent in neurocognitive measures, with females performing better on memory and social cognition tasks and males on spatial processing and motor speed. Sex differences were also prominent in all major brain parameters, including higher rates of cerebral blood flow, higher percentage of gray matter tissue, and higher interhemispheric connectivity in females, compared with higher percentage of white matter and greater intrahemispheric connectivity as well as higher glucose metabolism in limbic regions in males. Many of these differences are present in childhood, but they become more prominent with adolescence, perhaps linked to puberty. Overall, they indicate complementarity between the sexes that would result in greater adaptive diversity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Behavioral predictors of outpatient mental health service utilization within 6 months after traumatic brain injury in adolescents.

    PubMed

    Kurowski, Brad G; Wade, Shari L; Kirkwood, Michael W; Brown, Tanya M; Stancin, Terry; Taylor, H Gerry

    2013-12-01

    To characterize utilization of mental health services and determine the ability of a behavior problem and clinical functioning assessment to predict utilization of such services within the first 6 months after moderate and severe traumatic brain injury in a large cohort of adolescents. Multicenter cross-sectional study. Outpatient setting of 4 tertiary pediatric hospitals, 2 tertiary general medical centers, and 1 specialized children's hospital. Adolescents age 12-17 years (n = 132), 1-6 months after moderate-to-severe traumatic brain injury. Logistic regression was used to determine the association of mental health service utilization with clinical functioning as assessed by the Child and Adolescent Functional Assessment Scale and behavior problems assessed by the Child Behavioral Checklist. Mental health service utilization measured by the Service Assessment for Children and Adolescents. Behavioral or functional impairment occurred in 37%-56%. Of the total study population, 24.2% reported receiving outpatient mental health services, 8.3% reported receiving school services, and 28.8% reported receiving any type of mental health service. Use of any (school or outpatient) mental health service was associated with borderline to impaired total Child and Adolescent Functional Assessment Scale (odds ratio 3.50 [95% confidence interval, 1.46-8.40]; P < .01) and the Child Behavioral Checklist Total Competence (odds ratio 5.08 [95% confidence interval, 2.02-12.76]; P < .01). A large proportion of participants had unmet mental health needs. Both the Child and Adolescent Functional Assessment Scale and the Child Behavioral Checklist identified individuals who would likely benefit from mental health services in outpatient or school settings. Future research should focus on methods to ensure early identification by health care providers of adolescents with traumatic brain injury in need of mental health services. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. The Myth of Optimality in Clinical Neuroscience.

    PubMed

    Holmes, Avram J; Patrick, Lauren M

    2018-03-01

    Clear evidence supports a dimensional view of psychiatric illness. Within this framework the expression of disorder-relevant phenotypes is often interpreted as a breakdown or departure from normal brain function. Conversely, health is reified, conceptualized as possessing a single ideal state. We challenge this concept here, arguing that there is no universally optimal profile of brain functioning. The evolutionary forces that shape our species select for a staggering diversity of human behaviors. To support our position we highlight pervasive population-level variability within large-scale functional networks and discrete circuits. We propose that, instead of examining behaviors in isolation, psychiatric illnesses can be best understood through the study of domains of functioning and associated multivariate patterns of variation across distributed brain systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    PubMed

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  8. From Brain-Environment Connections to Temporal Dynamics and Social Interaction: Principles of Human Brain Function.

    PubMed

    Hari, Riitta

    2017-06-07

    Experimental data about brain function accumulate faster than does our understanding of how the brain works. To tackle some general principles at the grain level of behavior, I start from the omnipresent brain-environment connection that forces regularities of the physical world to shape the brain. Based on top-down processing, added by sparse sensory information, people are able to form individual "caricature worlds," which are similar enough to be shared among other people and which allow quick and purposeful reactions to abrupt changes. Temporal dynamics and social interaction in natural environments serve as further essential organizing principles of human brain function. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effects of a spaceflight analog environment on brain connectivity and behavior.

    PubMed

    Cassady, Kaitlin; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Castenada, Roy Riascos; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2016-11-01

    Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8days prior to bed rest; 7, 50, and 70days during bed rest; and 8 and 12days after bed rest. To assess potential confounding effects due to scanning interval or task practice, we also acquired rs-fMRI and behavioral measurements from 14 control participants at four time points. 70days of head-down tilt (HDT) bed rest resulted in significant changes in the functional connectivity of motor, somatosensory, and vestibular areas of the brain. Moreover, several of these network alterations were significantly associated with changes in sensorimotor and spatial working memory performance, which suggests that neuroplasticity mechanisms may facilitate adaptation to the microgravity analog environment. The findings from this study provide novel insights into the underlying neural mechanisms and operational risks of spaceflight analog-related changes in sensorimotor performance. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Robust prediction of individual creative ability from brain functional connectivity.

    PubMed

    Beaty, Roger E; Kenett, Yoed N; Christensen, Alexander P; Rosenberg, Monica D; Benedek, Mathias; Chen, Qunlin; Fink, Andreas; Qiu, Jiang; Kwapil, Thomas R; Kane, Michael J; Silvia, Paul J

    2018-01-30

    People's ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis-connectome-based predictive modeling-to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences ( r = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems-intrinsic functional networks that tend to work in opposition-suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.

  11. Alcohol affects brain functional connectivity and its coupling with behavior: greater effects in male heavy drinkers.

    PubMed

    Shokri-Kojori, E; Tomasi, D; Wiers, C E; Wang, G-J; Volkow, N D

    2017-08-01

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here, we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD, N=16, 16 males) and normal controls (NM, N=24, 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default mode network regions and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed that alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced 'neurocognitive coupling', the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared with NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain FCD and individual differences in behavioral performance.

  12. Driving working memory with frequency-tuned noninvasive brain stimulation.

    PubMed

    Albouy, Philippe; Baillet, Sylvain; Zatorre, Robert J

    2018-04-29

    Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches. © 2018 New York Academy of Sciences.

  13. Alcohol Dose Effects on Brain Circuits During Simulated Driving: An fMRI Study

    PubMed Central

    Meda, Shashwath A.; Calhoun, Vince D.; Astur, Robert S.; Turner, Beth M.; Ruopp, Kathryn; Pearlson, Godfrey D.

    2009-01-01

    Driving while intoxicated remains a major public health hazard. Driving is a complex task involving simultaneous recruitment of multiple cognitive functions. The investigators studied the neural substrates of driving and their response to different blood alcohol concentrations (BACs), using functional magnetic resonance imaging (fMRI) and a virtual reality driving simulator. We used independent component analysis (ICA) to isolate spatially independent and temporally correlated driving-related brain circuits in 40 healthy, adult moderate social drinkers. Each subject received three individualized, separate single-blind doses of beverage alcohol to produce BACs of 0.05% (moderate), 0.10% (high), or 0% (placebo). 3 T fMRI scanning and continuous behavioral measurement occurred during simulated driving. Brain function was assessed and compared using both ICA and a conventional general linear model (GLM) analysis. ICA results replicated and significantly extended our previous 1.5T study (Calhoun et al. [2004a]: Neuropsychopharmacology 29:2097–2017). GLM analysis revealed significant dose-related functional differences, complementing ICA data. Driving behaviors including opposite white line crossings and mean speed independently demonstrated significant dose-dependent changes. Behavior-based factors also predicted a frontal-basal-temporal circuit to be functionally impaired with alcohol dosage across baseline scaled, good versus poorly performing drivers. We report neural correlates of driving behavior and found dose-related spatio-temporal disruptions in critical driving-associated regions including the superior, middle and orbito frontal gyri, anterior cingulate, primary/supplementary motor areas, basal ganglia, and cerebellum. Overall, results suggest that alcohol (especially at high doses) causes significant impairment of both driving behavior and brain functionality related to motor planning and control, goal directedness, error monitoring, and memory. PMID:18571794

  14. Running is rewarding and antidepressive.

    PubMed

    Brené, Stefan; Bjørnebekk, Astrid; Aberg, Elin; Mathé, Aleksander A; Olson, Lars; Werme, Martin

    2007-09-10

    Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent in activating the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus.

  15. Running is rewarding and antidepressive

    PubMed Central

    Brené, Stefan; Bjørnebekk, Astrid; Åberg, Elin; Mathé, Aleksander A; Olson, Lars; Werme, Martin

    2007-01-01

    Natural behaviors such as eating, drinking, reproduction and exercise activate brain reward pathways and consequently the individual engages in these behaviors to receive the reward. However, drugs of abuse are even more potent to activate the reward pathways. Rewarding behaviors and addictive drugs also affect other parts of the brain not directly involved in the mediation of reward. For instance, running increases neurogenesis in hippocampus and is beneficial as an antidepressant in a genetic animal model of depression and in depressed humans. Here we discuss and compare neurochemical and functional changes in the brain after addictive drugs and exercise with a focus on brain reward pathways and hippocampus. PMID:17561174

  16. Frank Beach Award Winner: Steroids as Neuromodulators of Brain Circuits and Behavior

    PubMed Central

    Remage-Healey, Luke

    2014-01-01

    Neurons communicate primarily via action potentials that transmit information on the timescale of milliseconds. Neurons also integrate information via alterations in gene transcription and protein translation that are sustained for hours to days after initiation. Positioned between these two signaling timescales are the minute-by-minute actions of neuromodulators. Over the course of minutes, the classical neuromodulators (such as serotonin, dopamine, octopamine, and norepinephrine) can alter and/or stabilize neural circuit patterning as well as behavioral states. Neuromodulators allow many flexible outputs from neural circuits and can encode information content into the firing state of neural networks. The idea that steroid molecules can operate as genuine behavioral neuromodulators - synthesized by and acting within brain circuits on a minute-by-minute timescale - has gained traction in recent years. Evidence for brain steroid synthesis at synaptic terminals has converged with evidence for the rapid actions of brain-derived steroids on neural circuits and behavior. The general principle emerging from this work is that the production of steroid hormones within brain circuits can alter their functional connectivity and shift sensory representations by enhancing their information coding. Steroids produced in the brain can therefore change the information content of neuronal networks to rapidly modulate sensory experience and sensorimotor functions. PMID:25110187

  17. Impulse control and underlying functions of the left DLPFC mediate age-related and age-independent individual differences in strategic social behavior.

    PubMed

    Steinbeis, Nikolaus; Bernhardt, Boris C; Singer, Tania

    2012-03-08

    Human social exchange is often characterized by conflicts of interest requiring strategic behavior for their resolution. To investigate the development of the cognitive and neural mechanisms underlying strategic behavior, we studied children's decisions while they played two types of economic exchange games with differing demands of strategic behavior. We show an increase of strategic behavior with age, which could not be explained by age-related changes in social preferences but instead by developmental differences in impulsivity and associated brain functions of the left dorsolateral prefrontal cortex (DLPFC). Furthermore, observed differences in cortical thickness of lDLPFC were predictive of differences in impulsivity and strategic behavior irrespective of age. We conclude that egoistic behavior in younger children is not caused by a lack of understanding right or wrong, but by the inability to implement behavioral control when tempted to act selfishly; a function relying on brain regions maturing only late in ontogeny. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Executive Functions in Adolescence: Inferences from Brain and Behavior

    ERIC Educational Resources Information Center

    Crone, Eveline A.

    2009-01-01

    Despite the advances in understanding cognitive improvements in executive function in adolescence, much less is known about the influence of affective and social modulators on executive function and the biological underpinnings of these functions and sensitivities. Here, recent behavioral and neuroscientific studies are summarized that have used…

  19. [Brain imaging in autism spectrum disorders. A review].

    PubMed

    Dziobek, I; Köhne, S

    2011-05-01

    In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.

  20. Computational Neuroscience.

    ERIC Educational Resources Information Center

    Sejnowski, Terrence J.; And Others

    1988-01-01

    Describes the use of brain models to connect the microscopic level accessible by molecular and cellular techniques with the systems level accessible by the study of behavior. Discusses classes of brain models, and specific examples of such models. Evaluates the strengths and weaknesses of using brain modelling to understand human brain function.…

  1. Epilepsy in Adults with TSC

    MedlinePlus

    ... are episodes of disturbed brain function that cause changes in attention or behavior. They are caused by abnormally excited electrical signals in the brain, like a lightning storm in the brain. Seizure types vary ... all seizures result from a sudden change in how the cells of the brain send ...

  2. An Update Overview on Brain Imaging Studies of Internet Gaming Disorder

    PubMed Central

    Weinstein, Aviv M.

    2017-01-01

    There are a growing number of studies on structural and functional brain mechanisms underlying Internet gaming disorder (IGD). Recent functional magnetic resonance imaging studies showed that IGD adolescents and adults had reduced gray matter volume in regions associated with attention motor coordination executive function and perception. Adolescents with IGD showed lower white matter (WM) integrity measures in several brain regions that are involved in decision-making, behavioral inhibition, and emotional regulation. IGD adolescents had also disruption in the functional connectivity in areas responsible for learning memory and executive function, processing of auditory, visual, and somatosensory stimuli and relay of sensory and motor signals. IGD adolescents also had decreased functional connectivity of PFC-striatal circuits, increased risk-taking choices, and impaired ability to control their impulses similar to other impulse control disorders. Recent studies indicated that altered executive control mechanisms in attention deficit hyperactivity disorder (ADHD) would be a predisposition for developing IGD. Finally, patients with IGD have also shown an increased functional connectivity of several executive control brain regions that may related to comorbidity with ADHD and depression. The behavioral addiction model argues that IGD shows the features of excessive use despite adverse consequences, withdrawal phenomena, and tolerance that characterize substance use disorders. The evidence supports the behavioral addiction model of IGD by showing structural and functional changes in the mechanisms of reward and craving (but not withdrawal) in IGD. Future studies need to investigate WM density and functional connectivity in IGD in order to validate these findings. Furthermore, more research is required about the similarity in neurochemical and neurocognitive brain circuits in IGD and comorbid conditions such as ADHD and depression. PMID:29033857

  3. Impulsivity and the Modular Organization of Resting-State Neural Networks

    PubMed Central

    Davis, F. Caroline; Knodt, Annchen R.; Sporns, Olaf; Lahey, Benjamin B.; Zald, David H.; Brigidi, Bart D.; Hariri, Ahmad R.

    2013-01-01

    Impulsivity is a complex trait associated with a range of maladaptive behaviors, including many forms of psychopathology. Previous research has implicated multiple neural circuits and neurotransmitter systems in impulsive behavior, but the relationship between impulsivity and organization of whole-brain networks has not yet been explored. Using graph theory analyses, we characterized the relationship between impulsivity and the functional segregation (“modularity”) of the whole-brain network architecture derived from resting-state functional magnetic resonance imaging (fMRI) data. These analyses revealed remarkable differences in network organization across the impulsivity spectrum. Specifically, in highly impulsive individuals, regulatory structures including medial and lateral regions of the prefrontal cortex were isolated from subcortical structures associated with appetitive drive, whereas these brain areas clustered together within the same module in less impulsive individuals. Further exploration of the modular organization of whole-brain networks revealed novel shifts in the functional connectivity between visual, sensorimotor, cortical, and subcortical structures across the impulsivity spectrum. The current findings highlight the utility of graph theory analyses of resting-state fMRI data in furthering our understanding of the neurobiological architecture of complex behaviors. PMID:22645253

  4. The Effects of Tai Chi Intervention on Healthy Elderly by Means of Neuroimaging and EEG: A Systematic Review.

    PubMed

    Pan, Zhujun; Su, Xiwen; Fang, Qun; Hou, Lijuan; Lee, Younghan; Chen, Chih C; Lamberth, John; Kim, Mi-Lyang

    2018-01-01

    Aging is a process associated with a decline in cognitive and motor functions, which can be attributed to neurological changes in the brain. Tai Chi, a multimodal mind-body exercise, can be practiced by people across all ages. Previous research identified effects of Tai Chi practice on delaying cognitive and motor degeneration. Benefits in behavioral performance included improved fine and gross motor skills, postural control, muscle strength, and so forth. Neural plasticity remained in the aging brain implies that Tai Chi-associated benefits may not be limited to the behavioral level. Instead, neurological changes in the human brain play a significant role in corresponding to the behavioral improvement. However, previous studies mainly focused on the effects of behavioral performance, leaving neurological changes largely unknown. This systematic review summarized extant studies that used brain imaging techniques and EEG to examine the effects of Tai Chi on older adults. Eleven articles were eligible for the final review. Three neuroimaging techniques including fMRI ( N = 6), EEG ( N = 4), and MRI ( N = 1), were employed for different study interests. Significant changes were reported on subjects' cortical thickness, functional connectivity and homogeneity of the brain, and executive network neural function after Tai Chi intervention. The findings suggested that Tai Chi intervention give rise to beneficial neurological changes in the human brain. Future research should develop valid and convincing study design by applying neuroimaging techniques to detect effects of Tai Chi intervention on the central nervous system of older adults. By integrating neuroimaging techniques into randomized controlled trials involved with Tai Chi intervention, researchers can extend the current research focus from behavioral domain to neurological level.

  5. Translating birdsong: songbirds as a model for basic and applied medical research.

    PubMed

    Brainard, Michael S; Doupe, Allison J

    2013-07-08

    Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.

  6. Translating Birdsong: Songbirds as a model for basic and applied medical research

    PubMed Central

    2014-01-01

    Songbirds, long of interest to basic neuroscientists, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning, and more specifically resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production, but that has strong similarities to mammalian brain pathways. The combination of a highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both normally and in disease. Here we highlight 1) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and 2) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair. PMID:23750515

  7. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    PubMed

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  8. Emotions and hemispheric specialization.

    PubMed

    Kyle, N L

    1988-09-01

    Studies of lateralization and specialization of brain function have increased our understanding of emotional processes in the brain. It has been said that the way in which we understand the emotional interrelatedness of brain layers and segments may have important effects on human society. Earlier studies of brain function, especially of limbic effects, suggested a dichotomous state of affairs between the phylogenetically older brain and the newer cortical areas--between affect and cognition. Such concepts are considered here in the light of specialization studies. From the beginning hemispheric laterality research has implicated emotionality and emotional pathology. It also appears that some limbic functions may be mediated in a lateralized fashion. Neuropsychologists have directed much work toward localization of function from its earliest stage; since the 1960s an emphasis has been on "mapping" of cortical functions in terms of psychopathologic disabilities. Various disability groups have been studied in this way, and it may be concluded that neuropsychologic measures are sensitive to changes in cerebral functioning and may have effective lateralizing and localizing ability under specified conditions. Studies of limbic effects in the brain emphasize their importance in emotional behavior but also their interrelatedness with other structures, for example, the frontal and temporal lobes, and particularly the right hemisphere. Studies of commissurotomy (split-brain) patients tend to bear out these relationships. In split-brain subjects the marked reduction in affective verbal and nonverbal behavior reflects the interruption of transcallosal impulses that normally permit emotional infusion of cortical structures to take place. These effects include verbal, visual, and auditory patterns that mediate the ability to decode complex nonverbal patterns and may result in a reduction of "inner speech," that is, symbollexia. They may further lead to a condition of "functional commissurotomy" in psychiatric patients with presumably intact brains. It would also appear that lateralization may be variable in terms of inhibitory and facilitative effects; emotional factors may play a part in this variability in some clinical cases in which functional or reactive features predominate, for example, in alexithymia. Ideas of hemispheric specialization have been extended to other areas of individual and social behavior. Creative ability has been understood by some authors to be a product of the relatively dynamic relationships existing between specialized areas of the brain.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures

    PubMed Central

    Holmes, Avram J.; Hollinshead, Marisa O.; O’Keefe, Timothy M.; Petrov, Victor I.; Fariello, Gabriele R.; Wald, Lawrence L.; Fischl, Bruce; Rosen, Bruce R.; Mair, Ross W.; Roffman, Joshua L.; Smoller, Jordan W.; Buckner, Randy L.

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset’s utility. PMID:26175908

  10. Brain Genomics Superstruct Project initial data release with structural, functional, and behavioral measures.

    PubMed

    Holmes, Avram J; Hollinshead, Marisa O; O'Keefe, Timothy M; Petrov, Victor I; Fariello, Gabriele R; Wald, Lawrence L; Fischl, Bruce; Rosen, Bruce R; Mair, Ross W; Roffman, Joshua L; Smoller, Jordan W; Buckner, Randy L

    2015-01-01

    The goal of the Brain Genomics Superstruct Project (GSP) is to enable large-scale exploration of the links between brain function, behavior, and ultimately genetic variation. To provide the broader scientific community data to probe these associations, a repository of structural and functional magnetic resonance imaging (MRI) scans linked to genetic information was constructed from a sample of healthy individuals. The initial release, detailed in the present manuscript, encompasses quality screened cross-sectional data from 1,570 participants ages 18 to 35 years who were scanned with MRI and completed demographic and health questionnaires. Personality and cognitive measures were obtained on a subset of participants. Each dataset contains a T1-weighted structural MRI scan and either one (n=1,570) or two (n=1,139) resting state functional MRI scans. Test-retest reliability datasets are included from 69 participants scanned within six months of their initial visit. For the majority of participants self-report behavioral and cognitive measures are included (n=926 and n=892 respectively). Analyses of data quality, structure, function, personality, and cognition are presented to demonstrate the dataset's utility.

  11. Shotgun proteomic analysis of Bombyx mori brain: emphasis on regulation of behavior and development of the nervous system.

    PubMed

    Wang, Guo-Bao; Zheng, Qin; Shen, Yun-Wang; Wu, Xiao-Feng

    2016-02-01

    The insect brain plays crucial roles in the regulation of growth and development and in all types of behavior. We used sodium dodecyl sulfate polyacrylamide gel electrophoresis and high-performance liquid chromatography - electron spray ionization tandem mass spectrometry (ESI-MS/MS) shotgun to identify the proteome of the silkworm brain, to investigate its protein composition and to understand their biological functions. A total of 2210 proteins with molecular weights in the range of 5.64-1539.82 kDa and isoelectric points in the range of 3.78-12.55 were identified. These proteins were annotated according to Gene Ontology Annotation into the categories of molecular function, biological process and cellular component. We characterized two categories of proteins: one includes behavior-related proteins involved in the regulation of behaviors, such as locomotion, reproduction and learning; the other consists of proteins related to the development or function of the nervous system. The identified proteins were classified into 283 different pathways according to KEGG analysis, including the PI3K-Akt signaling pathway which plays a crucial role in mediating survival signals in a wide range of neuronal cell types. This extensive protein profile provides a basis for further understanding of the physiological functions in the silkworm brain. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  12. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    PubMed

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks. © 2014 Wiley Periodicals, Inc.

  13. Nonimpact brain injury: neuropsychological and behavioral correlates with consideration of physiological findings.

    PubMed

    Henry, G K; Gross, H S; Herndon, C A; Furst, C J

    2000-01-01

    This retrospective clinical study investigated the neuropsychological, physiological, and behavioral functioning of 32 adult outpatients up to 65 months following nonimpact brain injury (i.e., whiplash). All participants were administered a flexible battery of cognitive tests, and some underwent neurodiagnostic procedures and sleep studies. Compared with published norms, neuropsychological data revealed significant and persistent age-adjusted cognitive deficits, primarily in the area of executive functioning. Participants frequently complained of problems with behavioral control, sleep, and sexuality. Although structural neuroimaging was not sensitive in detecting brain pathology, quantitative electroencephalography was abnormal in all the participants evaluated, showing frontocentral slowing and increased spike wave activity. We propose that whiplash injury can produce wide-ranging circuitry dysfunction and that test selection is critical in identifying cognitive deficits.

  14. Optimizing real time fMRI neurofeedback for therapeutic discovery and development

    PubMed Central

    Stoeckel, L.E.; Garrison, K.A.; Ghosh, S.; Wighton, P.; Hanlon, C.A.; Gilman, J.M.; Greer, S.; Turk-Browne, N.B.; deBettencourt, M.T.; Scheinost, D.; Craddock, C.; Thompson, T.; Calderon, V.; Bauer, C.C.; George, M.; Breiter, H.C.; Whitfield-Gabrieli, S.; Gabrieli, J.D.; LaConte, S.M.; Hirshberg, L.; Brewer, J.A.; Hampson, M.; Van Der Kouwe, A.; Mackey, S.; Evins, A.E.

    2014-01-01

    While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders. PMID:25161891

  15. The Metastable Brain

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or “bound” together when people attend to a stimulus, perceive, think and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral and social functions. PMID:24411730

  16. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    PubMed

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  17. Sex Differences in the Adolescent Brain

    ERIC Educational Resources Information Center

    Lenroot, Rhoshel K.; Giedd, Jay N.

    2010-01-01

    Adolescence is a time of increased divergence between males and females in physical characteristics, behavior, and risk for psychopathology. Here we will review data regarding sex differences in brain structure and function during this period of the lifespan. The most consistent sex difference in brain morphometry is the 9-12% larger brain size…

  18. The Insula: A ‘Hub of Activity’ in Migraine

    PubMed Central

    Borsook, David; Veggeberg, Rosanna; Erpelding, Nathalie; Borra, Ronald; Linnman, Clas; Burstein, Rami; Becerra, Lino

    2017-01-01

    The insula, a ‘cortical hub’ buried within the lateral sulcus, is involved in a number of processes including goal-directed cognition, conscious awareness, autonomic regulation, interoception and somatosensation. While some of these processes are well known in the clinical presentation of migraine (i.e., autonomic and somatosensory alterations), other more complex behaviors in migraine, such as conscious awareness and error detection, are less well described. Since the insula processes and relays afferent inputs from brain areas involved in these functions to areas involved in higher cortical function such as frontal, temporal and parietal regions, it may be implicated as a brain region that translates the signals of altered internal milieu in migraine, along with other chronic pain conditions, through the insula into complex behaviors. Here we review how the insula function and structure is altered in migraine. As a brain region of a number of brain functions, it may serve as a model to study new potential clinical perspectives for migraine treatment. PMID:26290446

  19. What has fMRI told us about the Development of Cognitive Control through Adolescence?

    PubMed Central

    Luna, Beatriz; Padmanabhan, Aarthi; O’Hearn, Kirsten

    2009-01-01

    Cognitive control, the ability to voluntarily guide our behavior, continues to improve throughout adolescence. Below we review the literature on age-related changes in brain function related to response inhibition and working memory, which support cognitive control. Findings from studies using functional magnetic imaging (fMRI) indicate that processing errors, sustaining a cognitive control state, and reaching adult levels of precision, persist through adolescence. Developmental changes in patterns of brain function suggest that core regions of the circuitry underlying cognitive control are on-line early in development. However, age-related changes in localized processes across the brain and in establishing long range connections that support top-down modulation of behavior may support more effective neural processing for optimal mature executive function. While great progress has been made in understanding the age-related changes in brain processes underlying cognitive development, there are still important challenges in developmental neuroimaging methods and the interpretation of data that need to be addressed. PMID:19765880

  20. Yawning and Stretching Predict Brain Temperature Changes in Rats: Support for the Thermoregulatory Hypothesis

    PubMed Central

    Shoup-Knox, Melanie L.; Gallup, Andrew C.; Gallup, Gordon G.; McNay, Ewan C.

    2010-01-01

    Recent research suggests that yawning is an adaptive behavior that functions to promote brain thermoregulation among homeotherms. To explore the relationship between brain temperature and yawning we implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during and after yawning. Temperature recordings indicate that yawns and stretches occurred during increases in brain temperature, with brain temperatures being restored to baseline following the execution of each of these behaviors. The circulatory changes that accompany yawning and stretching may explain some of the thermal similarities surrounding these events. These results suggest that yawning and stretching may serve to maintain brain thermal homeostasis. PMID:21031034

  1. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains.

    PubMed

    Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K

    2012-07-12

    The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Systematic Review of Prenatal Cocaine Exposure and Adolescent Development

    PubMed Central

    Buckingham-Howes, Stacy; Berger, Sarah Shafer; Scaletti, Laura A.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Previous research found that prenatal cocaine exposure (PCE) may increase children's vulnerability to behavior and cognition problems. Maturational changes in brain and social development make adolescence an ideal time to reexamine associations. The objective was to conduct a systematic review of published studies examining associations between PCE and adolescent development (behavior, cognition/school outcomes, physiologic responses, and brain morphology/functioning). METHODS: Articles were obtained from PubMed, PsycInfo, Web of Science, and CINAHL databases through July 2012 with search terms: prenatal drug, substance, or cocaine exposure; adolescence/adolescent; and in utero substance/drug exposure. Criteria for inclusion were nonexposed comparison group, human adolescents aged 11 to 19, peer-reviewed, English-language, and adolescent outcomes. RESULTS: Twenty-seven studies representing 9 cohorts met the criteria. Four outcome categories were identified: behavior, cognition/school performance, brain structure/function, and physiologic responses. Eleven examined behavior; 7 found small but significant differences favoring nonexposed adolescents, with small effect sizes. Eight examined cognition/school performance; 6 reported significantly lower scores on language and memory tasks among adolescents with PCE, with varying effect sizes varied. Eight examined brain structure/function and reported morphologic differences with few functional differences. Three examined physiologic responses with discordant findings. Most studies controlled for other prenatal exposures, caregiving environment, and violence exposure; few examined mechanisms. CONCLUSIONS: Consistent with findings among younger children, PCE increases the risk for small but significantly less favorable adolescent functioning. Although the clinical importance of differences is often unknown, the caregiving environment and violence exposure pose additional threats. Future research should investigate mechanisms linking PCE with adolescent functioning. PMID:23713107

  3. Understanding the broad influence of sex hormones and sex differences in the brain.

    PubMed

    McEwen, Bruce S; Milner, Teresa A

    2017-01-02

    Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Understanding the Broad Influence of Sex Hormones and Sex Differences in the Brain

    PubMed Central

    McEwen, Bruce S.; Milner, Teresa A.

    2016-01-01

    Sex hormones act throughout the entire brain of both males and females via both genomic and non-genomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes where they are associated with presynaptic terminals, mitochondria, spine apparatus, post-synaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects upon gene expression induce spine synapses, up- or down-regulate and alter the distribution of neurotransmitter receptors, regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not-yet-precisely-defined genetic factors including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, and upon functions not previously regarded as subject to such differences, indicates that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. PMID:27870427

  5. Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio)

    PubMed Central

    Shang, Chunfeng; Yang, Wenbin; Bai, Lu; Du, Jiulin

    2017-01-01

    The internal brain dynamics that link sensation and action are arguably better studied during natural animal behaviors. Here, we report on a novel volume imaging and 3D tracking technique that monitors whole brain neural activity in freely swimming larval zebrafish (Danio rerio). We demonstrated the capability of our system through functional imaging of neural activity during visually evoked and prey capture behaviors in larval zebrafish. PMID:28930070

  6. The Place of Drugs in the Management of Behavior Disorders after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Rose, Martyn J.

    1988-01-01

    The article examines the role of drug treatment stressing the need to treat disorders of brain function rather than direct behavior control. Treatment principles concern classification, dosage, monitoring effects, timing of therapy, the distinction between passive and active disorders as well as syndromal, manipulative, ritualistic, cyclothymic,…

  7. Dynamic functional connectivity: Promise, issues, and interpretations

    PubMed Central

    Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie

    2013-01-01

    The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587

  8. Structural and synaptic plasticity in stress-related disorders

    PubMed Central

    Christoffel, Daniel J.; Golden, Sam A.; Russo, Scott J.

    2011-01-01

    Stress can have a lasting impact on the structure and function of brain circuitry that results in long-lasting changes in the behavior of an organism. Synaptic plasticity is the mechanism by which information is stored and maintained within individual synapses, neurons, and neuronal circuits to guide the behavior of an organism. Although these mechanisms allow the organism to adapt to its constantly evolving environment, not all of these adaptations are beneficial. Under prolonged bouts of physical or psychological stress, these mechanisms become dysregulated, and the connectivity between brain regions becomes unbalanced, resulting in pathological behaviors. In this review, we highlight the effects of stress on the structure and function of neurons within the mesocorticolimbic brain systems known to regulate mood and motivation. We then discuss the implications of these spine adaptations on neuronal activity and pathological behaviors implicated in mood disorders. Finally, we end by discussing recent brain imaging studies in human depression within the context of these basic findings to provide insight into the underlying mechanisms leading to neural dysfunction in depression. PMID:21967517

  9. Insights into Human Behavior from Lesions to the Prefrontal Cortex

    PubMed Central

    Szczepanski, Sara M.; Knight, Robert T.

    2014-01-01

    SUMMARY The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have lead to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient, conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based upon behavioral and neural changes resulting from damage to PFC in both human patients and non-human primates. PMID:25175878

  10. Visceral Inflammation and Immune Activation Stress the Brain

    PubMed Central

    Holzer, Peter; Farzi, Aitak; Hassan, Ahmed M.; Zenz, Geraldine; Jačan, Angela; Reichmann, Florian

    2017-01-01

    Stress refers to a dynamic process in which the homeostasis of an organism is challenged, the outcome depending on the type, severity, and duration of stressors involved, the stress responses triggered, and the stress resilience of the organism. Importantly, the relationship between stress and the immune system is bidirectional, as not only stressors have an impact on immune function, but alterations in immune function themselves can elicit stress responses. Such bidirectional interactions have been prominently identified to occur in the gastrointestinal tract in which there is a close cross-talk between the gut microbiota and the local immune system, governed by the permeability of the intestinal mucosa. External stressors disturb the homeostasis between microbiota and gut, these disturbances being signaled to the brain via multiple communication pathways constituting the gut–brain axis, ultimately eliciting stress responses and perturbations of brain function. In view of these relationships, the present article sets out to highlight some of the interactions between peripheral immune activation, especially in the visceral system, and brain function, behavior, and stress coping. These issues are exemplified by the way through which the intestinal microbiota as well as microbe-associated molecular patterns including lipopolysaccharide communicate with the immune system and brain, and the mechanisms whereby overt inflammation in the GI tract impacts on emotional-affective behavior, pain sensitivity, and stress coping. The interactions between the peripheral immune system and the brain take place along the gut–brain axis, the major communication pathways of which comprise microbial metabolites, gut hormones, immune mediators, and sensory neurons. Through these signaling systems, several transmitter and neuropeptide systems within the brain are altered under conditions of peripheral immune stress, enabling adaptive processes related to stress coping and resilience to take place. These aspects of the impact of immune stress on molecular and behavioral processes in the brain have a bearing on several disturbances of mental health and highlight novel opportunities of therapeutic intervention. PMID:29213271

  11. Endocrine modulation of the adolescent brain: a review.

    PubMed

    Vigil, Pilar; Orellana, Renán F; Cortés, Manuel E; Molina, Carmen T; Switzer, Barbara E; Klaus, Hanna

    2011-12-01

    Neurophysiological and behavioral development is particularly complex in adolescence. Youngsters experience strong emotions and impulsivity, reduced self-control, and preference for actions which offer immediate rewards, among other behavioral patterns. Given the growing interest in endocrine effects on adolescent central nervous system development and their implications on later stages of life, this article reviews the effects of gonadal steroid hormones on the adolescent brain. These effects are classified as organizational, the capacity of steroids to determine nervous system structure during development, and activational, the ability of steroids to modify nervous activity to promote certain behaviors. During transition from puberty to adolescence, steroid hormones trigger various organizational phenomena related to structural brain circuit remodelling, determining adult behavioral response to steroids or sensory stimuli. These changes account for most male-female sexual dimorphism. In this stage sex steroids are involved in the main functional mechanisms responsible for organizational changes, namely myelination, neural pruning, apoptosis, and dendritic spine remodelling, activated only during embryonic development and during the transition from puberty to adolescence. This stage becomes a critical organizational window when the appropriately and timely exerted functions of steroid hormones and their interaction with some neurotransmitters on adolescent brain development are fundamental. Thus, understanding the phenomena linking steroid hormones and adolescent brain organization is crucial in the study of teenage behavior and in later assessment and treatment of anxiety, mood disorders, and depression. Adolescent behavior clearly evidences a stage of brain development influenced for the most part by steroid hormones. Copyright © 2011 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  12. Using connectome-based predictive modeling to predict individual behavior from brain connectivity

    PubMed Central

    Shen, Xilin; Finn, Emily S.; Scheinost, Dustin; Rosenberg, Monica D.; Chun, Marvin M.; Papademetris, Xenophon; Constable, R Todd

    2017-01-01

    Neuroimaging is a fast developing research area where anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale datasets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: 1) feature selection, 2) feature summarization, 3) model building, and 4) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a significant amount of the variance in these measures. It has been demonstrated that the CPM protocol performs equivalently or better than most of the existing approaches in brain-behavior prediction. However, because CPM focuses on linear modeling and a purely data-driven driven approach, neuroscientists with limited or no experience in machine learning or optimization would find it easy to implement the protocols. Depending on the volume of data to be processed, the protocol can take 10–100 minutes for model building, 1–48 hours for permutation testing, and 10–20 minutes for visualization of results. PMID:28182017

  13. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    PubMed

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  14. Attentional performance is correlated with the local regional efficiency of intrinsic brain networks.

    PubMed

    Xu, Junhai; Yin, Xuntao; Ge, Haitao; Han, Yan; Pang, Zengchang; Tang, Yuchun; Liu, Baolin; Liu, Shuwei

    2015-01-01

    Attention is a crucial brain function for human beings. Using neuropsychological paradigms and task-based functional brain imaging, previous studies have indicated that widely distributed brain regions are engaged in three distinct attention subsystems: alerting, orienting and executive control (EC). Here, we explored the potential contribution of spontaneous brain activity to attention by examining whether resting-state activity could account for individual differences of the attentional performance in normal individuals. The resting-state functional images and behavioral data from attention network test (ANT) task were collected in 59 healthy subjects. Graph analysis was conducted to obtain the characteristics of functional brain networks and linear regression analyses were used to explore their relationships with behavioral performances of the three attentional components. We found that there was no significant relationship between the attentional performance and the global measures, while the attentional performance was associated with specific local regional efficiency. These regions related to the scores of alerting, orienting and EC largely overlapped with the regions activated in previous task-related functional imaging studies, and were consistent with the intrinsic dorsal and ventral attention networks (DAN/VAN). In addition, the strong associations between the attentional performance and specific regional efficiency suggested that there was a possible relationship between the DAN/VAN and task performances in the ANT. We concluded that the intrinsic activity of the human brain could reflect the processing efficiency of the attention system. Our findings revealed a robust evidence for the functional significance of the efficiently organized intrinsic brain network for highly productive cognitions and the hypothesized role of the DAN/VAN at rest.

  15. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin.

    PubMed

    Gao, Xiao-Bing

    2012-01-01

    The hypothalamus is a critical brain structure regulating physiological functions essential to the survival of individuals and species. One of the striking characteristics of this brain region is the abundance of nerve cells (neurons) expressing a great numbers of neurotransmitters and neuromodulators, among which are hormones released into the blood stream through brain neuroendocrinological routes. The neurons in the lateral hypothalamus take part in intra- and extrahypothalamic circuits controlling basic physiological functions essential for the well being of animal bodies (such as cardiovascular function, respiratory function, immune responses, etc.), animal behaviors required for the maintenance of the survival of individuals (food foraging, flight, fight, etc.) and species (reproductive function), and higher brain functions (learning and memory, mental state, etc.). Hypocretin (also called orexin) comprises of two neuropeptides exclusively synthesized by neurons in the perifornical/lateral hypothalamus. Although hypocretin/orexin was initially found to enhance food intake, it is now clear that the functions mediated by hypocretin/orexin are well beyond what were originally proposed. Specifically, hypocretin/orexin is a crucial promoter of wakefulness; deficiency in the hypocretin/orexin system leads to diseases and disorders such as narcolepsy. It is clear that neurons synthesizing hypocretin/orexin are consistently under regulation originating from various parts of the brain and that the status of activity in hypocretin/orexin neurons is closely related with the nutritional and behavioral state of animals. Therefore, the demand to make adaptive changes in hypocretin/orexin neurons to accommodate the changes in the external environment and behavioral state of animals is expected. The latest developments in the studies of plasticity in hypocretin/orexin neurons under the challenges from environmental and behavioral factors have dramatically shaped the understanding of the roles of hypocretin/orexin neurons in the maintenance of the survival of animals. More importantly, the studies of plasticity in hypocretin/orexin neurons as the consequence of physiological, behavioral, and environmental challenges may shed new insight on the understanding and treatment of sleep disorders (such as insomnia). Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Adolescent silymarin treatment increases anxiety-like behaviors in adult mice.

    PubMed

    Kosari-Nasab, Morteza; Rabiei, Afshin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-08-01

    Adolescence is one of the most important periods of brain development in mammals. There is increasing evidence that some medicines during this period can affect brain and behavioral functions in adulthood. Silymarin (SM), a mixture of flavonolignans extracted from the milk thistle Silybum marianum, is known as a hepatoprotective, anti-inflammatory, and neuroprotective drug. Although researchers have extensively studied the effects of SM during adulthood, to date there is no information on the effects of this drug during the stages of brain development on behavioral functions in adulthood. In the current study, we investigated the effects of adolescent SM treatment on body weight and anxiety-like behaviors in adult male and female mice. Adolescent NMRI mice (postnatal day 30-50) were treated orally with water or SM (50 and 100 mg/kg). Animals were weighed during drug treatment and were then subjected to open field, elevated plus maze, and light-dark box tests from postnatal day 70. The results indicated that adolescent SM treatment increased anxiety-like behaviors in open field, elevated plus maze, and light-dark box in adult mice, while not altering body weight. Collectively, these findings suggest that adolescent SM treatment may have profound effects on the development of brain and behavior in adulthood.

  17. Anesthesia, brain changes, and behavior: Insights from neural systems biology.

    PubMed

    Colon, Elisabeth; Bittner, Edward A; Kussman, Barry; McCann, Mary Ellen; Soriano, Sulpicio; Borsook, David

    2017-06-01

    Long-term consequences of anesthetic exposure in humans are not well understood. It is possible that alterations in brain function occur beyond the initial anesthetic administration. Research in children and adults has reported cognitive and/or behavioral changes after surgery and general anesthesia that may be short lived in some patients, while in others, such changes may persist. The changes observed in humans are corroborated by a large body of evidence from animal studies that support a role for alterations in neuronal survival (neuroapoptosis) or structure (altered dendritic and glial morphology) and later behavioral deficits at older age after exposure to various anesthetic agents during fetal or early life. The potential of anesthetics to induce long-term alterations in brain function, particularly in vulnerable populations, warrants investigation. In this review, we critically evaluate the available preclinical and clinical data on the developing and aging brain, and in known vulnerable populations to provide insights into potential changes that may affect the general population of patients in a more, subtle manner. In addition this review summarizes underlying processes of how general anesthetics produce changes in the brain at the cellular and systems level and the current understanding underlying mechanisms of anesthetics agents on brain systems. Finally, we present how neuroimaging techniques currently emerge as promising approaches to evaluate and define changes in brain function resulting from anesthesia, both in the short and the long-term. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism.

    PubMed

    Ferris, Heather A; Perry, Rachel J; Moreira, Gabriela V; Shulman, Gerald I; Horton, Jay D; Kahn, C Ronald

    2017-01-31

    Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.

  19. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism

    PubMed Central

    Ferris, Heather A.; Perry, Rachel J.; Moreira, Gabriela V.; Shulman, Gerald I.; Horton, Jay D.; Kahn, C. Ronald

    2017-01-01

    Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function. PMID:28096339

  20. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity.

    PubMed

    Val-Laillet, D; Aarts, E; Weber, B; Ferrari, M; Quaresima, V; Stoeckel, L E; Alonso-Alonso, M; Audette, M; Malbert, C H; Stice, E

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain-behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.

  1. Influence of sex steroid hormones on the adolescent brain and behavior: An update

    PubMed Central

    Vigil, Pilar; del Río, Juan Pablo; Carrera, BÁrbara; ArÁnguiz, Florencia C.

    2016-01-01

    This review explains the main effects exerted by sex steroids and other hormones on the adolescent brain. During the transition from puberty to adolescence, these hormones participate in the organizational phenomena that structurally shape some brain circuits. In adulthood, this will propitiate some specific behavior as responses to the hormones now activating those neural circuits. Adolescence is, then, a critical “organizational window” for the brain to develop adequately, since steroid hormones perform important functions at this stage. For this reason, the adolescent years are very important for future behaviors in human beings. Changes that occur or fail to occur during adolescence will determine behaviors for the rest of one's lifetime. Consequently, understanding the link between adolescent behavior and brain development as influenced by sex steroids and other hormones and compounds is very important in order to interpret various psycho-affective pathologies. Lay Summary: The effect of steroid hormones on the development of the adolescent brain, and therefore, on adolescent behavior, is noticeable. This review presents their main activational and organizational effects. During the transition from puberty to adolescence, organizational phenomena triggered by steroids structurally affect the remodeling of brain circuits. Later in adulthood, these changes will be reflected in behavioral responses to such hormones. Adolescence can then be seen as a fundamental “organizational window” during which sex steroids and other hormones and compounds play relevant roles. The understanding of the relationship between adolescent behavior and the way hormones influence brain development help understand some psychological disorders. PMID:27833209

  2. Biological Risk for the Development of Problem Behavior in Adolescence: Integrating Insights from Behavioral Genetics and Neuroscience.

    PubMed

    Harden, K Paige; Mann, Frank D

    2015-12-01

    Adolescence is a time of increasing engagement in a variety of problem behaviors, including substance use and delinquency. Genetic risk for problem behavior increases over adolescence, is mediated partially by individual differences in sensation seeking, and is exacerbated by involvement with deviant peers. In this article, we describe how findings from behavioral genetic research on problem behavior intersect with research from developmental neuroscience. In particular, the incentive-processing system, including the ventral striatum, responds increasingly to rewards in adolescence, particularly in peer contexts. This developmental shift may be influenced by hormonal changes at puberty. Individual differences in the structure and function of reward-responsive brain regions may be intermediary phenotypes that mediate adolescents' genetic risk for problem behavior. The study of problem behavior can be enriched by interdisciplinary research that integrates measures of brain structure and function into genetically informed studies.

  3. The androgen receptor governs the execution, but not programming, of male sexual and territorial behaviors

    PubMed Central

    Juntti, Scott A; Tollkuhn, Jessica; Wu, Melody V; Fraser, Eleanor J; Soderborg, Taylor; Tan, Stella; Honda, Shin-Ichiro; Harada, Nobuhiro; Shah, Nirao M

    2010-01-01

    SUMMARY Testosterone and estrogen are essential for male behaviors in vertebrates. How these two signaling pathways interact to control masculinization of the brain and behavior remains to be established. Circulating testosterone activates the androgen receptor (AR) and also serves as the source of estrogen in the brain. We have used a genetic strategy to delete AR specifically in the mouse nervous system. This approach permits us to determine the function of AR in sexually dimorphic behaviors in males while maintaining circulating testosterone levels within the normal range. We find that AR mutant males exhibit masculine sexual and territorial displays, but they have striking deficits in specific components of these behaviors. Taken together with the surprisingly limited expression of AR in the developing brain, our findings indicate that testosterone acts as a precursor to estrogen to masculinize the brain and behavior, and signals via AR to control the levels of male behavioral displays. PMID:20435002

  4. Smaller Brains and Optic Lobes in Reproductive Workers of the Ant Harpegnathos

    NASA Astrophysics Data System (ADS)

    Gronenberg, Wulfila; Liebig, Jürgen

    Most animals show long-term modifications of their behavior which often reflect an adaptation to seasonal variations (e.g., hibernation) or result from changes in the animal's internal state (e.g., estrous cycle or sexual maturity). Such modifications may substantially affect the nervous system [1, 2]. A particularly striking behavioral change can occur in workers of the ant Harpegnathos. A few young workers in the colony may become reproductives and are thus confined to their dark nest chambers, whereas most workers spend their lives as foragers, employing acute vision when hunting prey. This behavioral difference coincides with a marked decrease in brain volume and with an even stronger reduction in the large visual brain centers. Instead of maintaining superfluous brain functions, these ants reduce brain matter which is expensive to support.

  5. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    PubMed

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Neural mechanisms of behavioral change in young adults with high-functioning autism receiving virtual reality social cognition training: A pilot study.

    PubMed

    Yang, Y J Daniel; Allen, Tandra; Abdullahi, Sebiha M; Pelphrey, Kevin A; Volkmar, Fred R; Chapman, Sandra B

    2018-05-01

    Measuring treatment efficacy in individuals with Autism Spectrum Disorder (ASD) relies primarily on behaviors, with limited evidence as to the neural mechanisms underlying these behavioral gains. This pilot study addresses this void by investigating neural and behavioral changes in a Phase I trial in young adults with high-functioning ASD who received an evidence-based behavioral intervention, Virtual Reality-Social Cognition Training over 5 weeks for a total of 10 hr. The participants were tested pre- and post-training with a validated biological/social versus scrambled/nonsocial motion neuroimaging task, previously shown to activate regions within the social brain networks. Three significant brain-behavior changes were identified. First, the right posterior superior temporal sulcus, a hub for socio-cognitive processing, showed increased brain activation to social versus nonsocial stimuli in individuals with greater gains on a theory-of-mind measure. Second, the left inferior frontal gyrus, a region for socio-emotional processing, tracked individual gains in emotion recognition with decreased activation to social versus nonsocial stimuli. Finally, the left superior parietal lobule, a region for visual attention, showed significantly decreased activation to nonsocial versus social stimuli across all participants, where heightened attention to nonsocial contingencies has been considered a disabling aspect of ASD. This study provides, albeit preliminary, some of the first evidence of the harnessable neuroplasticity in adults with ASD through an age-appropriate intervention in brain regions tightly linked to social abilities. This pilot trial motivates future efforts to develop and test social interventions to improve behaviors and supporting brain networks in adults with ASD. Autism Res 2018, 11: 713-725. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. This study addresses how the behavioral changes after treatment for ASD reflect underlying brain changes. Before and after receiving VR-SCT, young adults with high-functioning ASD passively viewed biological motion stimuli in a MRI scanner, tapping changes in the social brain network. The results reveal neuroplasticity in this age population, extending the window of opportunity for interventions to impact social competency in adults with ASD. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc.

  7. Experience-Dependent Neural Plasticity in the Adult Damaged Brain

    ERIC Educational Resources Information Center

    Kerr, Abigail L.; Cheng, Shao-Ying; Jones, Theresa A.

    2011-01-01

    Behavioral experience is at work modifying the structure and function of the brain throughout the lifespan, but it has a particularly dramatic influence after brain injury. This review summarizes recent findings on the role of experience in reorganizing the adult damaged brain, with a focus on findings from rodent stroke models of chronic upper…

  8. Epilepsy, behavior, and art (Epilepsy, Brain, and Mind, part 1).

    PubMed

    Rektor, Ivan; Schachter, Steven C; Arzy, Shahar; Baloyannis, Stavros J; Bazil, Carl; Brázdil, Milan; Engel, Jerome; Helmstaedter, Gerhard; Hesdorffer, Dale C; Jones-Gotman, Marilyn; Kesner, Ladislav; Komárek, Vladimír; Krämer, Günter; Leppik, Ilo E; Mann, Michael W; Mula, Marco; Risse, Gail L; Stoker, Guy W; Kasteleijn-Nolst Trenité, Dorothée G A; Trimble, Michael; Tyrliková, Ivana; Korczyn, Amos D

    2013-08-01

    Epilepsy is both a disease of the brain and the mind. Brain diseases, structural and/or functional, underlie the appearance of epilepsy, but the notion of epilepsy is larger and cannot be reduced exclusively to the brain. We can therefore look at epilepsy from two angles. The first perspective is intrinsic: the etiology and pathophysiology, problems of therapy, impact on the brain networks, and the "mind" aspects of brain functions - cognitive, emotional, and affective. The second perspective is extrinsic: the social interactions of the person with epilepsy, the influence of the surrounding environment, and the influences of epilepsy on society. All these aspects reaching far beyond the pure biological nature of epilepsy have been the topics of two International Congresses of Epilepsy, Brain, and Mind that were held in Prague, Czech Republic, in 2010 and 2012 (the third Congress will be held in Brno, Czech Republic on April 3-5, 2014; www.epilepsy-brain-mind2014.eu). Here, we present the first of two papers with extended summaries of selected presentations of the 2012 Congress that focused on epilepsy, behavior, and art. Copyright © 2013. Published by Elsevier Inc.

  9. Optical manipulation for optogenetics: otoliths manipulation in zebrafish (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Favre-Bulle, Itia A.; Scott, Ethan; Rubinsztein-Dunlop, Halina

    2016-03-01

    Otoliths play an important role in Zebrafish in terms of hearing and sense of balance. Many studies have been conducted to understand its structure and function, however the encoding of its movement in the brain remains unknown. Here we developed a noninvasive system capable of manipulating the otolith using optical trapping while we image its behavioral response and brain activity. We'll also present our tools for behavioral response detection and brain activity mapping. Acceleration is sensed through movements of the otoliths in the inner ear. Because experimental manipulations involve movements, electrophysiology and fluorescence microscopy are difficult. As a result, the neural codes underlying acceleration sensation are poorly understood. We have developed a technique for optically trapping otoliths, allowing us to simulate acceleration in stationary larval zebrafish. By applying forces to the otoliths, we can elicit behavioral responses consistent with compensation for perceived acceleration. Since the animal is stationary, we can use calcium imaging in these animals' brains to identify the functional circuits responsible for mediating responses to acceleration in natural settings.

  10. Neuroimaging of child abuse: a critical review

    PubMed Central

    Hart, Heledd; Rubia, Katya

    2012-01-01

    Childhood maltreatment is a stressor that can lead to the development of behavior problems and affect brain structure and function. This review summarizes the current evidence for the effects of childhood maltreatment on behavior, cognition and the brain in adults and children. Neuropsychological studies suggest an association between child abuse and deficits in IQ, memory, working memory, attention, response inhibition and emotion discrimination. Structural neuroimaging studies provide evidence for deficits in brain volume, gray and white matter of several regions, most prominently the dorsolateral and ventromedial prefrontal cortex but also hippocampus, amygdala, and corpus callosum (CC). Diffusion tensor imaging (DTI) studies show evidence for deficits in structural interregional connectivity between these areas, suggesting neural network abnormalities. Functional imaging studies support this evidence by reporting atypical activation in the same brain regions during response inhibition, working memory, and emotion processing. There are, however, several limitations of the abuse research literature which are discussed, most prominently the lack of control for co-morbid psychiatric disorders, which make it difficult to disentangle which of the above effects are due to maltreatment, the associated psychiatric conditions or a combination or interaction between both. Overall, the better controlled studies that show a direct correlation between childhood abuse and brain measures suggest that the most prominent deficits associated with early childhood abuse are in the function and structure of lateral and ventromedial fronto-limbic brain areas and networks that mediate behavioral and affect control. Future, large scale multimodal neuroimaging studies in medication-naïve subjects, however, are needed that control for psychiatric co-morbidities in order to elucidate the structural and functional brain sequelae that are associated with early environmental adversity, independently of secondary co-morbid conditions. PMID:22457645

  11. Assisting Students with a Traumatic Brain Injury in School Interventions

    ERIC Educational Resources Information Center

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  12. Organotins in Neuronal Damage, Brain Function, and Behavior: A Short Review

    PubMed Central

    Ferraz da Silva, Igor; Freitas-Lima, Leandro Ceotto; Graceli, Jones Bernardes; Rodrigues, Lívia Carla de Melo

    2018-01-01

    The consequences of exposure to environmental contaminants have shown significant effects on brain function and behavior in different experimental models. The endocrine-disrupting chemicals (EDC) present various classes of pollutants with potential neurotoxic actions, such as organotins (OTs). OTs have received special attention due to their toxic effects on the central nervous system, leading to abnormal mammalian neuroendocrine axis function. OTs are organometallic pollutants with a tin atom bound to one or more carbon atoms. OT exposure may occur through the food chain and/or contaminated water, since they have multiple applications in industry and agriculture. In addition, OTs have been used with few legal restrictions in the last decades, despite being highly toxic. In addition to their action as EDC, OTs can also cross the blood–brain barrier and show relevant neurotoxic effects, as observed in several animal model studies specifically involving the development of neurodegenerative processes, neuroinflammation, and oxidative stress. Thus, the aim of this short review is to summarize the toxic effects of the most common OT compounds, such as trimethyltin, tributyltin, triethyltin, and triphenyltin, on the brain with a focus on neuronal damage as a result of oxidative stress and neuroinflammation. We also aim to present evidence for the disruption of behavioral functions, neurotransmitters, and neuroendocrine pathways caused by OTs. PMID:29358929

  13. Mapping brain function in freely moving subjects

    PubMed Central

    Holschneider, Daniel P.; Maarek, Jean-Michel I.

    2014-01-01

    Expression of many fundamental mammalian behaviors such as, for example, aggression, mating, foraging or social behaviors, depend on locomotor activity. A central dilemma in the functional neuroimaging of these behaviors has been the fact that conventional neuroimaging techniques generally rely on immobilization of the subject, which extinguishes all but the simplest activity. Ideally, imaging could occur in freely moving subjects, while presenting minimal interference with the subject’s natural behavior. Here we provide an overview of several approaches that have been undertaken in the past to achieve this aim in both tethered and freely moving animals, as well as in nonrestrained human subjects. Applications of specific radiotracers to single photon emission computed tomography and positron emission tomography are discussed in which brain activation is imaged after completion of the behavioral task and capture of the tracer. Potential applications to clinical neuropsychiatry are discussed, as well as challenges inherent to constraint-free functional neuroimaging. Future applications of these methods promise to increase our understanding of the neural circuits underlying mammalian behavior in health and disease. PMID:15465134

  14. Investigating a Proposed Model of Social Competence in Children With Traumatic Brain Injuries

    PubMed Central

    Rubin, Kenneth H.; Dennis, Maureen; Taylor, H. Gerry; Stancin, Terry; Gerhardt, Cynthia A.; Vannatta, Kathryn; Bigler, Erin D.; Yeates, Keith Owen

    2016-01-01

    Objective The goal of the current study was to test a proposed model of social competence for children who have suffered a traumatic brain injury (TBI). We hypothesized that both peer and teacher reports of social behavior would mediate the relation between intraindividual characteristics (e.g., executive function) and peer acceptance. Methods Participants were 52 children with TBI (M age = 10.29; M time after injury: 2.46 years). Severity of TBI ranged from complicated mild to severe. Classroom and laboratory measures were used to assess executive function, social behavior, and peer acceptance. Results Analyses revealed that peer reports of social behavior were a better mediator than teacher reports of the associations between executive function, social behaviors, and peer acceptance. Discussion The results underscore the importance of including peer reports of social behavior when developing interventions designed to improve the social, emotional, and behavioral outcomes of children with TBI. PMID:26374864

  15. Neural activations associated with feedback and retrieval success

    NASA Astrophysics Data System (ADS)

    Wiklund-Hörnqvist, Carola; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2017-11-01

    There is substantial behavioral evidence for a phenomenon commonly called "the testing effect", i.e. superior memory performance after repeated testing compared to re-study of to-be-learned materials. However, considerably less is known about the underlying neuro-cognitive processes that are involved in the initial testing phase, and thus underlies the actual testing effect. Here, we investigated functional brain activity related to test-enhanced learning with feedback. Subjects learned foreign vocabulary across three consecutive tests with correct-answer feedback. Functional brain-activity responses were analyzed in relation to retrieval and feedback events, respectively. Results revealed up-regulated activity in fronto-striatal regions during the first successful retrieval, followed by a marked reduction in activity as a function of improved learning. Whereas feedback improved behavioral performance across consecutive tests, feedback had a negligable role after the first successful retrieval for functional brain-activity modulations. It is suggested that the beneficial effects of test-enhanced learning is regulated by feedback-induced updating of memory representations, mediated via the striatum, that might underlie the stabilization of memory commonly seen in behavioral studies of the testing effect.

  16. Gene, Brain, and Behavior Relationships in Fragile X Syndrome: Evidence from Neuroimaging Studies

    ERIC Educational Resources Information Center

    Lightbody, Amy A.; Reiss, Allan L.

    2009-01-01

    Fragile X syndrome (FraX) remains the most common inherited cause of intellectual disability and provides a valuable model for studying gene-brain-behavior relationships. Over the past 15 years, structural and functional magnetic resonance imaging studies have emerged with the goal of better understanding the neural pathways contributing to the…

  17. Robust Transient Dynamics and Brain Functions

    PubMed Central

    Rabinovich, Mikhail I.; Varona, Pablo

    2011-01-01

    In the last few decades several concepts of dynamical systems theory (DST) have guided psychologists, cognitive scientists, and neuroscientists to rethink about sensory motor behavior and embodied cognition. A critical step in the progress of DST application to the brain (supported by modern methods of brain imaging and multi-electrode recording techniques) has been the transfer of its initial success in motor behavior to mental function, i.e., perception, emotion, and cognition. Open questions from research in genetics, ecology, brain sciences, etc., have changed DST itself and lead to the discovery of a new dynamical phenomenon, i.e., reproducible and robust transients that are at the same time sensitive to informational signals. The goal of this review is to describe a new mathematical framework – heteroclinic sequential dynamics – to understand self-organized activity in the brain that can explain certain aspects of robust itinerant behavior. Specifically, we discuss a hierarchy of coarse-grain models of mental dynamics in the form of kinetic equations of modes. These modes compete for resources at three levels: (i) within the same modality, (ii) among different modalities from the same family (like perception), and (iii) among modalities from different families (like emotion and cognition). The analysis of the conditions for robustness, i.e., the structural stability of transient (sequential) dynamics, give us the possibility to explain phenomena like the finite capacity of our sequential working memory – a vital cognitive function –, and to find specific dynamical signatures – different kinds of instabilities – of several brain functions and mental diseases. PMID:21716642

  18. Behavioral and neural Darwinism: selectionist function and mechanism in adaptive behavior dynamics.

    PubMed

    McDowell, J J

    2010-05-01

    An evolutionary theory of behavior dynamics and a theory of neuronal group selection share a common selectionist framework. The theory of behavior dynamics instantiates abstractly the idea that behavior is selected by its consequences. It implements Darwinian principles of selection, reproduction, and mutation to generate adaptive behavior in virtual organisms. The behavior generated by the theory has been shown to be quantitatively indistinguishable from that of live organisms. The theory of neuronal group selection suggests a mechanism whereby the abstract principles of the evolutionary theory may be implemented in the nervous systems of biological organisms. According to this theory, groups of neurons subserving behavior may be selected by synaptic modifications that occur when the consequences of behavior activate value systems in the brain. Together, these theories constitute a framework for a comprehensive account of adaptive behavior that extends from brain function to the behavior of whole organisms in quantitative detail. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Developing a clinical translational neuroscience taxonomy for anxiety and mood disorder: protocol for the baseline-follow up Research domain criteria Anxiety and Depression ("RAD") project.

    PubMed

    Williams, Leanne M; Goldstein-Piekarski, Andrea N; Chowdhry, Nowreen; Grisanzio, Katherine A; Haug, Nancy A; Samara, Zoe; Etkin, Amit; O'Hara, Ruth; Schatzberg, Alan F; Suppes, Trisha; Yesavage, Jerome

    2016-03-15

    Understanding how brain circuit dysfunctions relate to specific symptoms offers promise for developing a brain-based taxonomy for classifying psychopathology, identifying targets for mechanistic studies and ultimately for guiding treatment choice. The goal of the Research Domain Criteria (RDoC) initiative of the National Institute of Mental Health is to accelerate the development of such neurobiological models of mental disorder independent of traditional diagnostic criteria. In our RDoC Anxiety and Depression ("RAD") project we focus trans-diagnostically on the spectrum of depression and anxiety psychopathology. Our aims are a) to use brain imaging to define cohesive dimensions defined by dysfunction of circuits involved in reactivity to and regulation of negatively valenced emotional stimulation and in cognitive control, b) to assess the relationships between these dimension and specific symptoms, behavioral performance and the real world capacity to function socially and at work and c) to assess the stability of brain-symptom-behavior-function relationships over time. Here we present the protocol for the "RAD" project, one of the first RDoC studies to use brain circuit functioning to define new dimensions of psychopathology. The RAD project follows baseline-follow up design. In line with RDoC principles we use a strategy for recruiting all clients who "walk through the door" of a large community mental health clinic as well as the surrounding community. The clinic attends to a broad spectrum of anxiety and mood-related symptoms. Participants are unmedicated and studied at baseline using a standardized battery of functional brain imaging, structural brain imaging and behavioral probes that assay constructs of threat reactivity, threat regulation and cognitive control. The battery also includes self-report measures of anxiety and mood symptoms, and social and occupational functioning. After baseline assessments, therapists in the clinic apply treatment planning as usual. Follow-up assessments are undertaken at 3 months, to establish the reliability of brain-based subgroups over time and to assess whether these subgroups predict real-world functional capacity over time. First enrollment was August 2013, and is ongoing. This project is designed to advance knowledge toward a neural circuit taxonomy for mental disorder. Data will be shared via the RDoC database for dissemination to the scientific community. The clinical translational neuroscience goals of the project are to develop brain-behavior profile reports for each individual participant and to refine these reports with therapist feedback. Reporting of results is expected from December 2016 onward. ClinicalTrials.gov Identifier: NCT02220309 . Registered: August 13, 2014.

  20. Effect of non-selective dopaminergic receptor agonist on disrupted maternal behavior in olfactory bulbectomized mice.

    PubMed

    Sato, Atsushi; Nakagawasai, Osamu; Tan-No, Koichi; Onogi, Hiroshi; Niijima, Fukie; Tadano, Takeshi

    2010-07-11

    Olfactory bulbectomy (OBX) animals are considered a putative model of depression that produces behavioral, physiological, and neurochemical alterations resembling clinical depression. Depression is a critical cause of child abuse and neglect, and it has been reported that maternal behavior involves dopaminergic neurons of the mesolimbic pathway. In this study, we investigated the effect of apomorphine, a non-selective dopaminergic receptor agonist, on maternal behavior to examine the influence of activated brain dopaminergic function in OBX mice. In addition, we conducted the sucrose preference test to examine the reward system which has a critical relationship to mesolimbic dopaminergic function and maternal behavior. Maternal behavior was observed on postnatal day (PND) 0 and 4. OBX female mice showed a reduction in sucrose preference 2 weeks post surgery. OBX dams showed maternal behavior deficits on PND 0, and these deficits were ameliorated by administration of apomorphine. These results suggest that maternal behavior deficits in OBX dams may involve brain hypodopaminergic function in the central nervous system induced by OBX. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Manipulating motor performance and memory through real-time fMRI neurofeedback.

    PubMed

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-05-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Manipulating motor performance and memory through real-time fMRI neurofeedback

    PubMed Central

    Scharnowski, Frank; Veit, Ralf; Zopf, Regine; Studer, Petra; Bock, Simon; Diedrichsen, Jörn; Goebel, Rainer; Mathiak, Klaus; Birbaumer, Niels; Weiskopf, Nikolaus

    2015-01-01

    Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. PMID:25796342

  3. Positive effects of neurofeedback on autism symptoms correlate with brain activation during imitation and observation.

    PubMed

    Datko, Michael; Pineda, Jaime A; Müller, Ralph-Axel

    2018-03-01

    Autism has been characterized by atypical task-related brain activation and functional connections, coinciding with deficits in sociocommunicative abilities. However, evidence of the brain's experience-dependent plasticity suggests that abnormal activity patterns may be reversed with treatment. In particular, neurofeedback training (NFT), an intervention based on operant conditioning resulting in self-regulation of brain electrical oscillations, has shown increasing promise in addressing abnormalities in brain function and behavior. We examined the effects of ≥ 20 h of sensorimotor mu-rhythm-based NFT in children with high-functioning autism spectrum disorders (ASD) and a matched control group of typically developing children (ages 8-17). During a functional magnetic resonance imaging imitation and observation task, the ASD group showed increased activation in regions of the human mirror neuron system following the NFT, as part of a significant interaction between group (ASD vs. controls) and training (pre- vs. post-training). These changes were positively correlated with behavioral improvements in the ASD participants, indicating that mu-rhythm NFT may be beneficial to individuals with ASD. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology

    PubMed Central

    Saulnier, Delphine M.; Ringel, Yehuda; Heyman, Melvin B.; Foster, Jane A.; Bercik, Premysl; Shulman, Robert J.; Versalovic, James; Verdu, Elena F.; Dinan, Ted G.; Hecht, Gail; Guarner, Francisco

    2013-01-01

    The brain-gut axis allows bidirectional communication between the central nervous system (CNS) and the enteric nervous system (ENS), linking emotional and cognitive centers of the brain with peripheral intestinal functions. Recent experimental work suggests that the gut microbiota have an impact on the brain-gut axis. A group of experts convened by the International Scientific Association for Probiotics and Prebiotics (ISAPP) discussed the role of gut bacteria on brain functions and the implications for probiotic and prebiotic science. The experts reviewed and discussed current available data on the role of gut microbiota on epithelial cell function, gastrointestinal motility, visceral sensitivity, perception and behavior. Data, mostly gathered from animal studies, suggest interactions of gut microbiota not only with the enteric nervous system but also with the central nervous system via neural, neuroendocrine, neuroimmune and humoral links. Microbial colonization impacts mammalian brain development in early life and subsequent adult behavior. These findings provide novel insights for improved understanding of the potential role of gut microbial communities on psychological disorders, most particularly in the field of psychological comorbidities associated with functional bowel disorders like irritable bowel syndrome (IBS) and should present new opportunity for interventions with pro- and prebiotics. PMID:23202796

  5. Morning nutrition and executive function processes in preadolescents: modulation of frontal event-related theta, beta and gamma EEG oscillations during a go/ no-go task

    USDA-ARS?s Scientific Manuscript database

    Executive functions (i.e., goal-directed behavior such as inhibition and flexibility of action) have been linked to frontal brain regions and to covariations in oscillatory brain activity, e.g., theta and gamma activity. We studied the effects of morning nutritional status on executive function rel...

  6. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    PubMed

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  7. Found in translation: Understanding the biology and behavior of experimental traumatic brain injury.

    PubMed

    Bondi, Corina O; Semple, Bridgette D; Noble-Haeusslein, Linda J; Osier, Nicole D; Carlson, Shaun W; Dixon, C Edward; Giza, Christopher C; Kline, Anthony E

    2015-11-01

    The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The Mechanosensory Lateral Line System Mediates Activation of Socially-Relevant Brain Regions during Territorial Interactions.

    PubMed

    Butler, Julie M; Maruska, Karen P

    2016-01-01

    Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and -ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during territorial interactions to mediate crucial behavioral choices such as whether or not to engage in a territorial fight. To our knowledge, this is also the first evidence of a subpallial nucleus receiving mechanosensory input, providing important information for elucidating homologies of decision-making circuits across vertebrates. These novel results highlight the importance of considering multimodal sensory input in mediating context-appropriate behaviors that will provide broad insights on the evolution of decision-making networks across all taxa.

  9. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum.

    PubMed

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin L; Lu, Kun; Fonzo, Greg A; Parnass, Jason; Liu, Thomas; Paulus, Martin P

    2016-09-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.

  10. Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

    PubMed Central

    Mackey, Scott; Olafsson, Valur; Aupperle, Robin; Lu, Kun; Fonzo, Greg; Parnass, Jason; Liu, Thomas; Paulus, Martin P.

    2015-01-01

    The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior. PMID:26271206

  11. Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience

    PubMed Central

    Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami

    2014-01-01

    The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819

  12. A critical review of 5-HT brain microdialysis and behavior.

    PubMed

    Rueter, L E; Fornal, C A; Jacobs, B L

    1997-01-01

    Serotonin (5-HT) has been implicated in many central nervous system-mediated functions including sleep, arousal, feeding, motor activity and the stress response. In order to help establish the precise role of 5-HT in physiology and behavior, in vivo microdialysis studies have sought to identify the conditions under which the release of 5-HT is altered. Extracellular 5-HT levels have been monitored in more than fifteen regions of the brain during a variety of spontaneous behaviors, and in response to several physiological, environmental, and behavioral manipulations. The vast majority of these studies found increases (30-100%) in 5-HT release in almost all brain regions studied. Since electrophysiological studies have shown that behavioral arousal is the primary determinant of brain serotonergic neuronal activity, we suggest that the increase in 5-HT release seen during a wide variety of experimental conditions is largely due to one factor, namely an increase in behavioral arousal/motor activity associated with the manipulation.

  13. Functional Connectivity in Brain Networks Underlying Cognitive Control in Chronic Cannabis Users

    PubMed Central

    Harding, Ian H; Solowij, Nadia; Harrison, Ben J; Takagi, Michael; Lorenzetti, Valentina; Lubman, Dan I; Seal, Marc L; Pantelis, Christos; Yücel, Murat

    2012-01-01

    The long-term effect of regular cannabis use on brain function underlying cognitive control remains equivocal. Cognitive control abilities are thought to have a major role in everyday functioning, and their dysfunction has been implicated in the maintenance of maladaptive drug-taking patterns. In this study, the Multi-Source Interference Task was employed alongside functional magnetic resonance imaging and psychophysiological interaction methods to investigate functional interactions between brain regions underlying cognitive control. Current cannabis users with a history of greater than 10 years of daily or near-daily cannabis smoking (n=21) were compared with age, gender, and IQ-matched non-using controls (n=21). No differences in behavioral performance or magnitude of task-related brain activations were evident between the groups. However, greater connectivity between the prefrontal cortex and the occipitoparietal cortex was evident in cannabis users, as compared with controls, as cognitive control demands increased. The magnitude of this connectivity was positively associated with age of onset and lifetime exposure to cannabis. These findings suggest that brain regions responsible for coordinating behavioral control have an increased influence on the direction and switching of attention in cannabis users, and that these changes may have a compensatory role in mitigating cannabis-related impairments in cognitive control or perceptual processes. PMID:22534625

  14. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior

    PubMed Central

    Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.

    2015-01-01

    HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581

  15. Altered Odor-Induced Brain Activity as an Early Manifestation of Cognitive Decline in Patients With Type 2 Diabetes.

    PubMed

    Zhang, Zhou; Zhang, Bing; Wang, Xin; Zhang, Xin; Yang, Qing X; Qing, Zhao; Lu, Jiaming; Bi, Yan; Zhu, Dalong

    2018-05-01

    Type 2 diabetes is reported to be associated with olfactory dysfunction and cognitive decline. However, whether and how olfactory neural circuit abnormalities involve cognitive impairment in diabetes remains uncovered. This study thus aimed to investigate olfactory network alterations and the associations of odor-induced brain activity with cognitive and metabolic parameters in type 2 diabetes. Participants with normal cognition, including 51 patients with type 2 diabetes and 41 control subjects without diabetes, underwent detailed cognitive assessment, olfactory behavior tests, and odor-induced functional MRI measurements. Olfactory brain regions showing significantly different activation between the two groups were selected for functional connectivity analysis. Compared with the control subjects, patients with diabetes demonstrated significantly lower olfactory threshold score, decreased brain activation, and disrupted functional connectivity in the olfactory network. Positive associations of the disrupted functional connectivity with decreased neuropsychology test scores and reduced pancreatic function were observed in patients with diabetes. Notably, the association between pancreatic function and executive function was mediated by olfactory behavior and olfactory functional connectivity. Our results suggested the alteration of olfactory network is present before clinically measurable cognitive decrements in type 2 diabetes, bridging the gap between the central olfactory system and cognitive decline in diabetes. © 2018 by the American Diabetes Association.

  16. Basal ganglia systems in ritualistic social displays: reptiles and humans; function and illness.

    PubMed

    Baxter, Lewis R

    2003-08-01

    Complex, situation-specific territorial maintenance routines are similar across living terrestrial vertebrates (=amniotes). Decades ago, Paul MacLean et al., at the Laboratory of Brain Evolution and Behavior of the National Institute of Mental Health, postulated that these are evolutionarily conserved behaviors whose expression is mediated by the similarly conserved amniote basal ganglia and related brain systems (BG systems). Therefore, they undertook studies in nonhuman primates and in small social lizards (the common green anole, Anolis carolinensis) to examine this idea. MacLean et al. also postulated that when BG systems misfunction in humans, behavioral abnormalities result, some of them under the rubric of psychiatric illnesses. Obsessive-compulsive disorder (OCD) was singled out as one likely candidate. In the last dozen years, functional brain imaging studies of OCD patients have validated the contention that this is, in fact, a condition involving dysfunctioning BG systems. Inspired by the MacLean group's original investigations, my colleagues and I have now applied related functional imaging techniques in naturalistic experiments using Anolis to better understand BG systems' roles in the mediation of complex behavioral routines in healthy amniotes. Here, I will review this functional imaging work in primates (man, and a little in monkey) and in lizards. I believe the literature not only supports MacLean et al.'s contentions about BG systems and behavior in general, but also validates Paul MacLean's life-long contention that human behavioral medicine can profit from a broad comparative approach.

  17. Functional Plasticity in Childhood Brain Disorders: When, What, How, and Whom to Assess

    PubMed Central

    Dennis, Maureen; Spiegler, Brenda J.; Simic, Nevena; Sinopoli, Katia J.; Wilkinson, Amy; Yeates, Keith Owen; Taylor, H. Gerry; Bigler, Erin D.; Fletcher, Jack M.

    2014-01-01

    At every point in the lifespan, the brain balances malleable processes representing neural plasticity that promote change with homeostatic processes that promote stability. Whether a child develops typically or with brain injury, his or her neural and behavioral outcome is constructed through transactions between plastic and homeostatic processes and the environment. In clinical research with children in whom the developing brain has been malformed or injured, behavioral outcomes provide an index of the result of plasticity, homeostasis, and environmental transactions. When should we assess outcome in relation to age at brain insult, time since brain insult, and age of the child at testing? What should we measure? Functions involving reacting to the past and predicting the future, as well as social-affective skills, are important. How should we assess outcome? Information from performance variability, direct measures and informants, overt and covert measures, and laboratory and ecological measures should be considered. In whom are we assessing outcome? Assessment should be cognizant of individual differences in gene, socio-economic status (SES), parenting, nutrition, and interpersonal supports, which are moderators that interact with other factors influencing functional outcome. PMID:24821533

  18. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats

    PubMed Central

    McBride, Devin W.; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H.

    2015-01-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 hours after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in a significantly elevated frontal lobe brain water content 24 and 72 hours after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study’s results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 hours post-SBI. PMID:25975171

  19. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    PubMed

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Advance Preparation in Task-Switching: Converging Evidence from Behavioral, Brain Activation, and Model-Based Approaches

    PubMed Central

    Karayanidis, Frini; Jamadar, Sharna; Ruge, Hannes; Phillips, Natalie; Heathcote, Andrew; Forstmann, Birte U.

    2010-01-01

    Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching. PMID:21833196

  1. Multi-agent Simulations of Population Behavior: A Promising Tool for Systems Biology.

    PubMed

    Colosimo, Alfredo

    2018-01-01

    This contribution reports on the simulation of some dynamical events observed in the collective behavior of different kinds of populations, ranging from shape-changing cells in a Petri dish to functionally correlated brain areas in vivo. The unifying methodological approach, based upon a Multi-Agent Simulation (MAS) paradigm as incorporated in the NetLogo™ interpreter, is a direct consequence of the cornerstone that simple, individual actions within a population of interacting agents often give rise to complex, collective behavior.The discussion will mainly focus on the emergence and spreading of synchronous activities within the population, as well as on the modulation of the collective behavior exerted by environmental force-fields. A relevant section of this contribution is dedicated to the extension of the MAS paradigm to Brain Network models. In such a general framework some recent applications taken from the direct experience of the author, and exploring the activation patterns characteristic of specific brain functional states, are described, and their impact on the Systems-Biology universe underlined.

  2. Factors Influencing Cerebral Plasticity in the Normal and Injured Brain

    PubMed Central

    Kolb, Bryan; Teskey, G. Campbell; Gibb, Robbin

    2010-01-01

    An important development in behavioral neuroscience in the past 20 years has been the demonstration that it is possible to stimulate functional recovery after cerebral injury in laboratory animals. Rodent models of cerebral injury provide an important tool for developing such rehabilitation programs. The models include analysis at different levels including detailed behavioral paradigms, electrophysiology, neuronal morphology, protein chemistry, and epigenetics. A significant challenge for the next 20 years will be the translation of this work to improve the outcome from brain injury and disease in humans. Our goal in the article will be to synthesize the multidisciplinary laboratory work on brain plasticity and behavior in the injured brain to inform the development of rehabilitation programs. PMID:21120136

  3. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress.

    PubMed

    Chen, Guotao; Yang, Baibing; Chen, Jianhuai; Zhu, Leilei; Jiang, Hesong; Yu, Wen; Zang, Fengchao; Chen, Yun; Dai, Yutian

    2018-02-01

    Non-organic erectile dysfunction (noED) at functional imaging has been related to abnormal brain activity and requires animal models for further research on the associated molecular mechanisms. To develop a noED animal model based on chronic mild stress and investigate brain activity changes. We used 6 weeks of chronic mild stress to induce depression. The sucrose consumption test was used to assess the hedonic state. The apomorphine test and sexual behavior test were used to select male rats with ED. Rats with depression and ED were considered to have noED. Blood oxygen level-dependent-based resting-state functional magnetic resonance imaging (fMRI) studies were conducted on these rats, and the amplitude of low-frequency fluctuations and functional connectivity were analyzed to determine brain activity changes. The sexual behavior test and resting-state fMRI were used for outcome measures. The induction of depression was confirmed by the sucrose consumption test. A low intromission ratio and increased mount and intromission latencies were observed in male rats with depression. No erection was observed in male rats with depression during the apomorphine test. Male rats with depression and ED were considered to have noED. The possible central pathologic mechanism shown by fMRI involved the amygdaloid body, dorsal thalamus, hypothalamus, caudate-putamen, cingulate gyrus, insular cortex, visual cortex, sensory cortex, motor cortex, and cerebellum. Similar findings have been found in humans. The present study provided a novel noED rat model for further research on the central mechanism of noED. The present study developed a novel noED rat model and analyzed brain activity changes based at fMRI. The observed brain activity alterations might not extend to humans. The present study developed a novel noED rat model with brain activity alterations related to sexual arousal and erection, which will be helpful for further research involving the central mechanism of noED. Chen G, Yang B, Chen J, et al. Changes in Male Rat Sexual Behavior and Brain Activity Revealed by Functional Magnetic Resonance Imaging in Response to Chronic Mild Stress. J Sex Med 2018;15:136-147. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  4. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy

    PubMed Central

    Rabiller, Gratianne; He, Ji-Wei; Nishijima, Yasuo; Wong, Aaron; Liu, Jialing

    2015-01-01

    Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG) in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1–4 Hz, 20–200 μV), θ (4–8 Hz, 10 μV), α (8–12 Hz, 20–200 μV), β (12–30 Hz, 5–10 μV), and γ (30–80 Hz, low amplitude). Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy. PMID:26516838

  5. Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior.

    PubMed

    Sokolov, Alexander N; Pavlova, Marina A; Klosterhalfen, Sibylle; Enck, Paul

    2013-12-01

    Cocoa products and chocolate have recently been recognized as a rich source of flavonoids, mainly flavanols, potent antioxidant and anti-inflammatory agents with established benefits for cardiovascular health but largely unproven effects on neurocognition and behavior. In this review, we focus on neuromodulatory and neuroprotective actions of cocoa flavanols in humans. The absorbed flavonoids penetrate and accumulate in the brain regions involved in learning and memory, especially the hippocampus. The neurobiological actions of flavanols are believed to occur in two major ways: (i) via direct interactions with cellular cascades yielding expression of neuroprotective and neuromodulatory proteins that promote neurogenesis, neuronal function and brain connectivity, and (ii) via blood-flow improvement and angiogenesis in the brain and sensory systems. Protective effects of long-term flavanol consumption on neurocognition and behavior, including age- and disease-related cognitive decline, were shown in animal models of normal aging, dementia, and stroke. A few human observational and intervention studies appear to corroborate these findings. Evidence on more immediate action of cocoa flavanols remains limited and inconclusive, but warrants further research. As an outline for future research on cocoa flavanol impact on human cognition, mood, and behavior, we underscore combination of functional neuroimaging with cognitive and behavioral measures of performance. Copyright © 2013. Published by Elsevier Ltd.

  6. Cross-Species Affective Neuroscience Decoding of the Primal Affective Experiences of Humans and Related Animals

    PubMed Central

    Panksepp, Jaak

    2011-01-01

    Background The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. Principal Findings The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as ‘rewards’ and ‘punishments’ in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest nested-hierarchies of BrainMind affective processing, with primal emotional functions being foundational for secondary-process learning and memory mechanisms, which interface with tertiary-process cognitive-thoughtful functions of the BrainMind. PMID:21915252

  7. Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals.

    PubMed

    Panksepp, Jaak

    2011-01-01

    The issue of whether other animals have internally felt experiences has vexed animal behavioral science since its inception. Although most investigators remain agnostic on such contentious issues, there is now abundant experimental evidence indicating that all mammals have negatively and positively-valenced emotional networks concentrated in homologous brain regions that mediate affective experiences when animals are emotionally aroused. That is what the neuroscientific evidence indicates. The relevant lines of evidence are as follows: 1) It is easy to elicit powerful unconditioned emotional responses using localized electrical stimulation of the brain (ESB); these effects are concentrated in ancient subcortical brain regions. Seven types of emotional arousals have been described; using a special capitalized nomenclature for such primary process emotional systems, they are SEEKING, RAGE, FEAR, LUST, CARE, PANIC/GRIEF and PLAY. 2) These brain circuits are situated in homologous subcortical brain regions in all vertebrates tested. Thus, if one activates FEAR arousal circuits in rats, cats or primates, all exhibit similar fear responses. 3) All primary-process emotional-instinctual urges, even ones as complex as social PLAY, remain intact after radical neo-decortication early in life; thus, the neocortex is not essential for the generation of primary-process emotionality. 4) Using diverse measures, one can demonstrate that animals like and dislike ESB of brain regions that evoke unconditioned instinctual emotional behaviors: Such ESBs can serve as 'rewards' and 'punishments' in diverse approach and escape/avoidance learning tasks. 5) Comparable ESB of human brains yield comparable affective experiences. Thus, robust evidence indicates that raw primary-process (i.e., instinctual, unconditioned) emotional behaviors and feelings emanate from homologous brain functions in all mammals (see Appendix S1), which are regulated by higher brain regions. Such findings suggest nested-hierarchies of BrainMind affective processing, with primal emotional functions being foundational for secondary-process learning and memory mechanisms, which interface with tertiary-process cognitive-thoughtful functions of the BrainMind.

  8. Brain regulation of food craving: relationships with weight status and eating behavior.

    PubMed

    Dietrich, A; Hollmann, M; Mathar, D; Villringer, A; Horstmann, A

    2016-06-01

    Food craving is a driving force for overeating and obesity. However, the relationship between brain mechanisms involved in its regulation and weight status is still an open issue. Gaps in the studied body mass index (BMI) distributions and focusing on linear analyses might have contributed to this lack of knowledge. Here, we investigated brain mechanisms of craving regulation using functional magnetic resonance imaging in a balanced sample including normal-weight, overweight and obese participants. We investigated associations between characteristics of obesity, eating behavior and regulatory brain function focusing on nonlinear relationships. Forty-three hungry female volunteers (BMI: 19.4-38.8 kg m(-2), mean: 27.5±5.3 s.d.) were presented with visual food stimuli individually pre-rated according to tastiness and healthiness. The participants were instructed to either admit to the upcoming craving or regulate it. We analyzed the relationships between regulatory brain activity as well as functional connectivity and BMI or eating behavior (Three-Factor Eating Questionnaire, scales: Cognitive Restraint, Disinhibition). During regulation, BMI correlated with brain activity in the left putamen, amygdala and insula in an inverted U-shaped manner. Functional connectivity between the putamen and the dorsolateral prefrontal cortex (dlPFC) correlated positively with BMI, whereas that of amygdala with pallidum and lingual gyrus was nonlinearly (U-shaped) associated with BMI. Disinhibition correlated negatively with the strength of functional connectivity between amygdala and dorsomedial prefrontal (dmPFC) cortex as well as caudate. This study is the first to reveal quadratic relationships of food-related brain processes and BMI. Reported nonlinear associations indicate inverse relationships between regulation-related motivational processing in the range of normal weight/overweight compared with the obese range. Connectivity analyses suggest that the need for top-down (dlPFC) adjustment of striatal value representations increases with BMI, whereas the interplay of self-monitoring (dmPFC) or eating-related strategic action planning (caudate) and salience processing (amygdala) might be hampered with high Disinhibition.

  9. Resting-state brain networks revealed by granger causal connectivity in frogs.

    PubMed

    Xue, Fei; Fang, Guangzhan; Yue, Xizi; Zhao, Ermi; Brauth, Steven E; Tang, Yezhong

    2016-10-15

    Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. Specifically (1) ascending causal connections from the left mesencephalon to both sides of the telencephalon are significantly higher than those from the right mesencephalon, while the right telencephalon gives rise to the strongest efferent projections among all brain regions; (2) causal connections from the left mesencephalon in females are significantly higher than those in males and (3) these connections are similar during both the high and low behavioral activity phases in this species although almost all electroencephalograph (EEG) spectral bands showed higher power in the high activity phase for all nodes. The functional features of this network match important characteristics of auditory perception in this species. Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  11. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity

    PubMed Central

    Val-Laillet, D.; Aarts, E.; Weber, B.; Ferrari, M.; Quaresima, V.; Stoeckel, L.E.; Alonso-Alonso, M.; Audette, M.; Malbert, C.H.; Stice, E.

    2015-01-01

    Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies. PMID:26110109

  12. Sleep in adolescence: physiology, cognition and mental health

    PubMed Central

    Tarokh, Leila; Saletin, Jared M.; Carskadon, Mary A.

    2016-01-01

    Sleep is a core behavior of adolescents, consuming up to a third or more of each day. As part of this special issue on the adolescent brain, we review changes to sleep behaviors and sleep physiology during adolescence with a particular focus on the sleeping brain. We posit that brain activity during sleep may provide a unique window onto adolescent cortical maturation and compliment waking measures. In addition, we review how sleep actively supports waking cognitive functioning in adolescence. Though this review is focused on sleep in healthy adolescents, the striking comorbidity of sleep disruption with nearly all psychiatric and developmental disorders (for reviews see 1,2) further highlights the importance of understanding the determinants and consequences of adolescent sleep for the developing brain. Figure 1 illustrates the overarching themes of our review, linking brain development, sleep development, and behavioral outcomes. PMID:27531236

  13. Social Behavior in Medulloblastoma: Functional Analysis of Tumor-Supporting Glial Cells

    DTIC Science & Technology

    2012-07-01

    AD_________________ Award Number: W81XWH-11-1-0557 TITLE: Social behavior in medulloblastoma ...1 July 2011 – 30 June 2012 4. TITLE AND SUBTITLE Social behavior in medulloblastoma : functional analysis of tumor-supporting glial cells 5a...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Medulloblastoma is the most common malignant pediatric brain tumor. Granule neuron precursors

  14. Leptin and the brain: influences on brain development, cognitive functioning and psychiatric disorders.

    PubMed

    Farr, Olivia M; Tsoukas, Michael A; Mantzoros, Christos S

    2015-01-01

    Receptors of leptin, the prototypical adipokine, are expressed throughout the cortex and several other areas of the brain. Although typically studied for its role in energy intake and expenditure, leptin plays a critical role in many other neurocognitive processes and interacts with various other hormones and neurotransmitters to perform these functions. Here, we review the literature on how leptin influences brain development, neural degradation, Alzheimer's disease, psychiatric disorders, and more complicated cognitive functioning and feeding behaviors. We also discuss modulators of leptin and the leptin receptor as they relate to normal cognitive functioning and may mediate some of the actions of leptin in the brain. Although we are beginning to better understand the critical role leptin plays in normal cognitive functioning, there is much to be discovered. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Lateralized Feeding Behavior is Associated with Asymmetrical Neuroanatomy and Lateralized Gene Expressions in the Brain in Scale-Eating Cichlid Fish.

    PubMed

    Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo; Meyer, Axel

    2017-11-01

    Lateralized behavior ("handedness") is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior-biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Left and Right Hemisphere Brain Functions and Symbolic vs. Spontaneous Communication Processes.

    ERIC Educational Resources Information Center

    Buck, Ross

    Recent findings on the communicative functions of the left versus the right hemisphere of the brain may suggest that there is a distinction between the intentional use of symbols for the sending of specific messages or propositions (language, signing, pantomime) and spontaneous expressive behaviors that signal their meaning through a natural…

  17. How Language Learners Can Improve Their Emotional Functioning: Important Psychological and Psychospiritual Theories

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    Emotion is "the primary human motive" (MacIntyre, 2002, p. 61). The human brain is an emotional brain, creating relationships among thought, emotion, and motivation in a complex dynamic system (Dörnyei, 2009). Emotion "functions as an amplifier, providing the intensity, urgency, and energy to propel our behavior" in…

  18. Effect of environment on the long-term consequences of chronic pain

    PubMed Central

    Bushnell, MC; Case, LK; Ceko, M; Cotton, VA; Gracely, JL; Low, LA; Pitcher, MH; Villemure, C

    2014-01-01

    Much evidence from pain patients and animal models shows that chronic pain does not exist in a vacuum, but has varied co-morbidities and far-reaching consequences. Patients with long-term pain often develop anxiety and depression and can manifest changes in cognitive functioning, particularly with working memory. Longitudinal studies in rodent models also show the development of anxiety-like behavior and cognitive changes weeks to months after an injury causing long-term pain. Brain imaging studies in pain patients and rodent models find that chronic pain is associated with anatomical and functional alterations in the brain. Nevertheless, studies in humans reveal that life-style choices, such as the practice of meditation or yoga, can reduce pain perception and have the opposite effect on the brain as does chronic pain. In rodent models, studies show that physical activity and a socially enriched environment reduce pain behavior and normalize brain function. Together, these studies suggest that the burden of chronic pain can be reduced by non-pharmacological interventions. PMID:25789436

  19. Synaptogenesis and heritable aspects of executive attention.

    PubMed

    Fossella, John A; Sommer, Tobias; Fan, Jin; Pfaff, Don; Posner, Michael I

    2003-01-01

    In humans, changes in brain structure and function can be measured non-invasively during postnatal development. In animals, advanced optical imaging measures can track the formation of synapses during learning and behavior. With the recent progress in these technologies, it is appropriate to begin to assess how the physiological processes of synapse, circuit, and neural network formation relate to the process of cognitive development. Of particular interest is the development of executive function, which develops more gradually in humans. One approach that has shown promise is molecular genetics. The completion of the human genome project and the human genome diversity project make it straightforward to ask whether variation in a particular gene correlates with variation in behavior, brain structure, brain activity, or all of the above. Strategies that unify the wealth of biochemical knowledge pertaining to synapse formation with the functional measures of brain structure and activity may lead to new insights in developmental cognitive psychology. Copyright 2003 Wiley-Liss, Inc.

  20. Brain intrinsic network connectivity in individuals with frequent tanning behavior.

    PubMed

    Ketcherside, Ariel; Filbey, Francesca M; Aubert, Pamela M; Seibyl, John P; Price, Julianne L; Adinoff, Bryon

    2018-05-01

    Emergent studies suggest a bidirectional relationship between brain functioning and the skin. This neurocutaneous connection may be responsible for the reward response to tanning and, thus, may contribute to excessive tanning behavior. To date, however, this association has not yet been examined. To explore whether intrinsic brain functional connectivity within the default mode network (DMN) is related to indoor tanning behavior. Resting state functional connectivity (rsFC) was obtained in twenty adults (16 females) with a history of indoor tanning. Using a seed-based [(posterior cingulate cortex (PCC)] approach, the relationship between tanning severity and FC strength was assessed. Tanning severity was measured with symptom count from the Structured Clinical Interview for Tanning Abuse and Dependence (SITAD) and tanning intensity (lifetime indoor tanning episodes/years tanning). rsFC strength between the PCC and other DMN regions (left globus pallidus, left medial frontal gyrus, left superior frontal gyrus) is positively correlated with tanning symptom count. rsFC strength between the PCC and salience network regions (right anterior cingulate cortex, left inferior parietal lobe, left inferior temporal gyrus) is correlated with tanning intensity. Greater connectivity between tanning severity and DMN and salience network connectivity suggests that heightened self-awareness of salient stimuli may be a mechanism that underlies frequent tanning behavior. These findings add to the growing evidence of brain-skin connection and reflect dysregulation in the reward processing networks in those with frequent tanning.

  1. Description and Validation of a Dynamical Systems Model of Presynaptic Serotonin Function: Genetic Variation, Brain Activation and Impulsivity

    PubMed Central

    Stoltenberg, Scott F.; Nag, Parthasarathi

    2010-01-01

    Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = −.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses. PMID:20111992

  2. The Effects of Face Expertise Training on the Behavioral Performance and Brain Activity of Adults with High Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Faja, Susan; Webb, Sara Jane; Jones, Emily; Merkle, Kristen; Kamara, Dana; Bavaro, Joshua; Aylward, Elizabeth; Dawson, Geraldine

    2012-01-01

    The effect of expertise training with faces was studied in adults with ASD who showed initial impairment in face recognition. Participants were randomly assigned to a computerized training program involving either faces or houses. Pre- and post-testing included standardized and experimental measures of behavior and event-related brain potentials…

  3. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: emerging translational approaches that bridge biology and behavior.

    PubMed

    Feldstein Ewing, Sarah W; Chung, Tammy

    2013-06-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real-time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examine brain-based mechanisms of change, whereas others examine brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. 2013 APA, all rights reserved

  4. Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: Emerging translational approaches that bridge biology and behavior

    PubMed Central

    Feldstein Ewing, Sarah W.; Chung, Tammy

    2013-01-01

    Research on mechanisms of behavior change provides an innovative method to improve treatment for addictive behaviors. An important extension of mechanisms of change research involves the use of translational approaches, which examine how basic biological (i.e., brain-based mechanisms) and behavioral factors interact in initiating and sustaining positive behavior change as a result of psychotherapy. Articles in this special issue include integrative conceptual reviews and innovative empirical research on brain-based mechanisms that may underlie risk for addictive behaviors and response to psychotherapy from adolescence through adulthood. Review articles discuss hypothesized mechanisms of change for cognitive and behavioral therapies, mindfulness-based interventions, and neuroeconomic approaches. Empirical articles cover a range of addictive behaviors, including use of alcohol, cigarettes, marijuana, cocaine, and pathological gambling and represent a variety of imaging approaches including fMRI, magneto-encephalography, real time fMRI, and diffusion tensor imaging. Additionally, a few empirical studies directly examined brain-based mechanisms of change, whereas others examined brain-based indicators as predictors of treatment outcome. Finally, two commentaries discuss craving as a core feature of addiction, and the importance of a developmental approach to examining mechanisms of change. Ultimately, translational research on mechanisms of behavior change holds promise for increasing understanding of how psychotherapy may modify brain structure and functioning and facilitate the initiation and maintenance of positive treatment outcomes for addictive behaviors. PMID:23815447

  5. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    PubMed

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. Copyright © 2017 the American Physiological Society.

  6. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip

    PubMed Central

    Dauth, Stephanie; Maoz, Ben M.; Sheehy, Sean P.; Hemphill, Matthew A.; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M.; Budnik, Bogdan

    2017-01-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. PMID:28031399

  7. Behavioral and neural stability of attention bias to threat in healthy adolescents

    PubMed Central

    Britton, Jennifer C.; Sequeira, Stefanie; Ronkin, Emily G.; Chen, Gang; Bar-Haim, Yair; Shechner, Tomer; Ernst, Monique; Fox, Nathan A.; Leibenluft, Ellen; Pine, Daniel S.

    2016-01-01

    Considerable translational research on anxiety examines attention bias to threat and the efficacy of attention training in reducing symptoms. Imaging research on the stability of brain functions engaged by attention bias tasks could inform such research. Perturbed fronto-amygdala function consistently arises in attention bias research on adolescent anxiety. The current report examines the stability of the activation and functional connectivity of these regions on the dot-probe task. Functional magnetic resonance imaging (fMRI) activation and connectivity data were acquired with the dot-probe task in 39 healthy youth (f =18, Mean Age = 13.71 years, SD = 2.31) at two time points, separated by approximately nine weeks. Intraclass-correlations demonstrate good reliability in both neural activation for the ventrolateral PFC and task-specific connectivity for fronto-amygdala circuitry. Behavioral measures showed generally poor test-retest reliability. These findings suggest potential avenues for future brain imaging work by highlighting brain circuitry manifesting stable functioning on the dot-probe attention bias task. PMID:27129757

  8. Branched-chain amino acids alter neurobehavioral function in rats

    PubMed Central

    Coppola, Anna; Wenner, Brett R.; Ilkayeva, Olga; Stevens, Robert D.; Maggioni, Mauro; Slotkin, Theodore A.; Levin, Edward D.

    2013-01-01

    Recently, we have described a strong association of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) with obesity and insulin resistance. In the current study, we have investigated the potential impact of BCAA on behavioral functions. We demonstrate that supplementation of either a high-sucrose or a high-fat diet with BCAA induces anxiety-like behavior in rats compared with control groups fed on unsupplemented diets. These behavioral changes are associated with a significant decrease in the concentration of tryptophan (Trp) in brain tissues and a consequent decrease in serotonin but no difference in indices of serotonin synaptic function. The anxiety-like behaviors and decreased levels of Trp in the brain of BCAA-fed rats were reversed by supplementation of Trp in the drinking water but not by administration of fluoxetine, a selective serotonin reuptake inhibitor, suggesting that the behavioral changes are independent of the serotonergic pathway of Trp metabolism. Instead, BCAA supplementation lowers the brain levels of another Trp-derived metabolite, kynurenic acid, and these levels are normalized by Trp supplementation. We conclude that supplementation of high-energy diets with BCAA causes neurobehavioral impairment. Since BCAA are elevated spontaneously in human obesity, our studies suggest a potential mechanism for explaining the strong association of obesity and mood disorders. PMID:23249694

  9. Linking Neurons to Network Function and Behavior by Two-Photon Holographic Optogenetics and Volumetric Imaging.

    PubMed

    Dal Maschio, Marco; Donovan, Joseph C; Helmbrecht, Thomas O; Baier, Herwig

    2017-05-17

    We introduce a flexible method for high-resolution interrogation of circuit function, which combines simultaneous 3D two-photon stimulation of multiple targeted neurons, volumetric functional imaging, and quantitative behavioral tracking. This integrated approach was applied to dissect how an ensemble of premotor neurons in the larval zebrafish brain drives a basic motor program, the bending of the tail. We developed an iterative photostimulation strategy to identify minimal subsets of channelrhodopsin (ChR2)-expressing neurons that are sufficient to initiate tail movements. At the same time, the induced network activity was recorded by multiplane GCaMP6 imaging across the brain. From this dataset, we computationally identified activity patterns associated with distinct components of the elicited behavior and characterized the contributions of individual neurons. Using photoactivatable GFP (paGFP), we extended our protocol to visualize single functionally identified neurons and reconstruct their morphologies. Together, this toolkit enables linking behavior to circuit activity with unprecedented resolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Brain-wide neuronal dynamics during motor adaptation in zebrafish

    PubMed Central

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2013-01-01

    A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571

  11. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses

    PubMed Central

    Hopkins, William D.; Misiura, Maria; Pope, Sarah M.; Latash, Elitaveta M.

    2015-01-01

    Contrary to many historical views, recent evidence suggest that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence of that genes play specific roles in determining left–right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the size of the corpus callosum in different primate species. Lastly, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. PMID:26426409

  12. Behavioral and brain asymmetries in primates: a preliminary evaluation of two evolutionary hypotheses.

    PubMed

    Hopkins, William D; Misiura, Maria; Pope, Sarah M; Latash, Elitaveta M

    2015-11-01

    Contrary to many historical views, recent evidence suggests that species-level behavioral and brain asymmetries are evident in nonhuman species. Here, we briefly present evidence of behavioral, perceptual, cognitive, functional, and neuroanatomical asymmetries in nonhuman primates. In addition, we describe two historical accounts of the evolutionary origins of hemispheric specialization and present data from nonhuman primates that address these specific theories. Specifically, we first discuss the evidence that genes play specific roles in determining left-right differences in anatomical and functional asymmetries in primates. We next consider and present data on the hypothesis that hemispheric specialization evolved as a by-product of increasing brain size relative to the surface area of the corpus callosum in different primate species. Last, we discuss some of the challenges in the study of hemispheric specialization in primates and offer some suggestions on how to advance the field. © 2015 New York Academy of Sciences.

  13. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Wang, Xiaoli; Cao, Qingjiu; Wang, Jinhui; Wu, Zhaomin; Wang, Peng; Sun, Li; Cai, Taisheng; Wang, Yufeng

    2016-01-01

    Cognitive-behavioral therapy (CBT) is an efficacious psychological treatment for adults with attention-deficit/hyperactivity disorder (ADHD), but the neural processes underlying the benefits of CBT are not well understood. This study aims to unravel psychosocial mechanisms for treatment ADHD by exploring the effects of CBT on functional brain networks. Ten adults with ADHD were enrolled and resting-state functional magnetic resonance imaging scans were acquired before and after a 12-session CBT. Twelve age- and gender-matched healthy controls were also scanned. We constructed whole-brain functional connectivity networks using graph-theory approaches and further computed the changes of regional functional connectivity strength (rFCS) between pre- and post-CBT in ADHD for measuring the effects of CBT. The results showed that rFCS was increased in the fronto-parietal network and cerebellum, the brain regions that were most often affected by medication, in adults with ADHD following CBT. Furthermore, the enhanced functional coupling between bilateral superior parietal gyrus was positively correlated with the improvement of ADHD symptoms following CBT. Together, these findings provide evidence that CBT can selectively modulate the intrinsic network connectivity in the fronto-parietal network and cerebellum and suggest that the CBT may share common brain mechanism with the pharmacology in adults with ADHD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Developing Brain Vital Signs: Initial Framework for Monitoring Brain Function Changes Over Time

    PubMed Central

    Ghosh Hajra, Sujoy; Liu, Careesa C.; Song, Xiaowei; Fickling, Shaun; Liu, Luke E.; Pawlowski, Gabriela; Jorgensen, Janelle K.; Smith, Aynsley M.; Schnaider-Beeri, Michal; Van Den Broek, Rudi; Rizzotti, Rowena; Fisher, Kirk; D'Arcy, Ryan C. N.

    2016-01-01

    Clinical assessment of brain function relies heavily on indirect behavior-based tests. Unfortunately, behavior-based assessments are subjective and therefore susceptible to several confounding factors. Event-related brain potentials (ERPs), derived from electroencephalography (EEG), are often used to provide objective, physiological measures of brain function. Historically, ERPs have been characterized extensively within research settings, with limited but growing clinical applications. Over the past 20 years, we have developed clinical ERP applications for the evaluation of functional status following serious injury and/or disease. This work has identified an important gap: the need for a clinically accessible framework to evaluate ERP measures. Crucially, this enables baseline measures before brain dysfunction occurs, and might enable the routine collection of brain function metrics in the future much like blood pressure measures today. Here, we propose such a framework for extracting specific ERPs as potential “brain vital signs.” This framework enabled the translation/transformation of complex ERP data into accessible metrics of brain function for wider clinical utilization. To formalize the framework, three essential ERPs were selected as initial indicators: (1) the auditory N100 (Auditory sensation); (2) the auditory oddball P300 (Basic attention); and (3) the auditory speech processing N400 (Cognitive processing). First step validation was conducted on healthy younger and older adults (age range: 22–82 years). Results confirmed specific ERPs at the individual level (86.81–98.96%), verified predictable age-related differences (P300 latency delays in older adults, p < 0.05), and demonstrated successful linear transformation into the proposed brain vital sign (BVS) framework (basic attention latency sub-component of BVS framework reflects delays in older adults, p < 0.05). The findings represent an initial critical step in developing, extracting, and characterizing ERPs as vital signs, critical for subsequent evaluation of dysfunction in conditions like concussion and/or dementia. PMID:27242415

  15. Experimental gastritis leads to anxiety- and depression-like behaviors in female but not male rats

    PubMed Central

    2013-01-01

    Human and animals studies support the idea that there is a gender-related co-morbidity of pain-related and inflammatory gastrointestinal (GI) diseases with psychological disorders. This co-morbidity is the evidence for the existence of GI-brain axis which consists of immune (cytokines), neural (vagus nerve) and neuroendocrine (HPA axis) pathways. Psychological stress causes disturbances in GI physiology, such as altered GI barrier function, changes in motility and secretion, development of visceral hypersensitivity, and dysfunction of inflammatory responses. Whether GI inflammation would exert impact on psychological behavior is not well established. We examined the effect of experimental gastritis on anxiety- and depression-like behaviors in male and female Sprague–Dawley rats, and evaluated potential mechanisms of action. Gastritis was induced by adding 0.1% (w/v) iodoacetamide (IAA) to the sterile drinking water for 7 days. Sucrose preference test assessed the depression-like behavior, open field test and elevated plus maze evaluated the anxiety-like behavior. IAA treatment induced gastric inflammation in rats of either gender. No behavioral abnormality or dysfunction of GI-brain axis was observed in male rats with IAA-induced gastritis. Anxiety- and depression-like behaviors were apparent and the HPA axis was hyperactive in female rats with IAA-induced gastritis. Our results show that gastric inflammation leads to anxiety- and depression-like behaviors in female but not male rats via the neuroendocrine (HPA axis) pathway, suggesting that the GI inflammation can impair normal brain function and induce changes in psychological behavior in a gender-related manner through the GI-to-brain signaling. PMID:24345032

  16. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder.

    PubMed

    Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng

    2018-05-16

    As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.

  17. Topographic Brain Mapping: A Window on Brain Function?

    ERIC Educational Resources Information Center

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  18. Congenital Amusia Persists in the Developing Brain after Daily Music Listening

    PubMed Central

    Mignault Goulet, Geneviève; Moreau, Patricia; Robitaille, Nicolas; Peretz, Isabelle

    2012-01-01

    Congenital amusia is a neurodevelopmental disorder that affects about 3% of the adult population. Adults experiencing this musical disorder in the absence of macroscopically visible brain injury are described as cases of congenital amusia under the assumption that the musical deficits have been present from birth. Here, we show that this disorder can be expressed in the developing brain. We found that (10–13 year-old) children exhibit a marked deficit in the detection of fine-grained pitch differences in both musical and acoustical context in comparison to their normally developing peers comparable in age and general intelligence. This behavioral deficit could be traced down to their abnormal P300 brain responses to the detection of subtle pitch changes. The altered pattern of electrical activity does not seem to arise from an anomalous functioning of the auditory cortex, because all early components of the brain potentials, the N100, the MMN, and the P200 appear normal. Rather, the brain and behavioral measures point to disrupted information propagation from the auditory cortex to other cortical regions. Furthermore, the behavioral and neural manifestations of the disorder remained unchanged after 4 weeks of daily musical listening. These results show that congenital amusia can be detected in childhood despite regular musical exposure and normal intellectual functioning. PMID:22606299

  19. The social brain in psychiatric and neurological disorders

    PubMed Central

    Kennedy, Daniel P.; Adolphs, Ralph

    2013-01-01

    Psychiatric and neurological disorders have historically provided key insights into the structure-function relationships that subserve human social cognition and behavior, informing the concept of the ‘social brain’. In this review, we take stock of the current status of this concept, retaining a focus on disorders that impact social behavior. We discuss how the social brain, social cognition, and social behavior are interdependent, and emphasize the important role of development and compensation. We suggest that the social brain, and its dysfunction and recovery, must be understood not in terms of specific structures, but rather in terms of their interaction in large-scale networks. PMID:23047070

  20. Resting-State Functional Connectivity in the Human Connectome Project: Current Status and Relevance to Understanding Psychopathology.

    PubMed

    Barch, Deanna M

    A key tenet of modern psychiatry is that psychiatric disorders arise from abnormalities in brain circuits that support human behavior. Our ability to examine hypotheses around circuit-level abnormalities in psychiatric disorders has been made possible by advances in human neuroimaging technologies. These advances have provided the basis for recent efforts to develop a more complex understanding of the function of brain circuits in health and of their relationship to behavior-providing, in turn, a foundation for our understanding of how disruptions in such circuits contribute to the development of psychiatric disorders. This review focuses on the use of resting-state functional connectivity MRI to assess brain circuits, on the advances generated by the Human Connectome Project, and on how these advances potentially contribute to understanding neural circuit dysfunction in psychopathology. The review gives particular attention to the methods developed by the Human Connectome Project that may be especially relevant to studies of psychopathology; it outlines some of the key findings about what constitutes a brain region; and it highlights new information about the nature and stability of brain circuits. Some of the Human Connectome Project's new findings particularly relevant to psychopathology-about neural circuits and their relationships to behavior-are also presented. The review ends by discussing the extension of Human Connectome Project methods across the lifespan and into manifest illness. Potential treatment implications are also considered.

  1. Canceled connections: Lesion-derived network mapping helps explain differences in performance on a complex decision-making task

    PubMed Central

    Sutterer, Matthew J.; Bruss, Joel; Boes, Aaron D.; Voss, Michelle W.; Bechara, Antoine; Tranel, Daniel

    2016-01-01

    Studies of patients with brain damage have highlighted a broad neural network of limbic and prefrontal areas as important for adaptive decision-making. However, some patients with damage outside these regions have impaired decision-making behavior, and the behavioral impairments observed in these cases are often attributed to the general variability in behavior following brain damage, rather than a deficit in a specific brain-behavior relationship. A novel approach, lesion-derived network mapping, uses healthy subject resting-state functional connectivity (RSFC) data to infer the areas that would be connected with each patient’s lesion area in healthy adults. Here, we used this approach to investigate whether there was a systematic pattern of connectivity associated with decision-making performance in patients with focal damage in areas not classically associated with decision-making. These patients were categorized a priori into “impaired” or “unimpaired” groups based on their performance on the Iowa Gambling Task (IGT). Lesion-derived network maps based on the impaired patients showed overlap in somatosensory, motor and insula cortices, to a greater extent than patients who showed unimpaired IGT performance. Akin to the classic concept of “diaschisis” (von Monakow, 1914), this focus on the remote effects that focal damage can have on large-scale distributed brain networks has the potential to inform not only differences in decision-making behavior, but also other cognitive functions or neurological syndromes where a distinct phenotype has eluded neuroanatomical classification and brain-behavior relationships appear highly heterogeneous. PMID:26994344

  2. [Neuropsychological evaluation of a case of organic personality disorder due to penetrating brain injury].

    PubMed

    Sanz de la Torre, J C; Pérez-Ríos, M

    1996-06-01

    In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.

  3. Found in translation: understanding the biology and behavior of experimental traumatic brain injury

    PubMed Central

    Bondi, Corina O.; Semple, Bridgette D.; Noble-Haeusslein, Linda J.; Osier, Nicole D.; Carlson, Shaun W.; Dixon, C. Edward; Giza, Christopher C.; Kline, Anthony E.

    2014-01-01

    BONDI, C.O., B.D. Semple, L.J. Noble-Haeusslein, N.D. Osier, S.W. Carlson, C.E. Dixon, C.C. Giza and A.E. Kline. Found in translation: understanding the biology and behavior of experimental traumatic brain injury. NEUROSCI BIOBEHAV REV. The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled “Traumatic brain injury: laboratory and clinical perspectives,” presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided. PMID:25496906

  4. Feasibility of using fMRI to study mothers responding to infant cries.

    PubMed

    Lorberbaum, J P; Newman, J D; Dubno, J R; Horwitz, A R; Nahas, Z; Teneback, C C; Bloomer, C W; Bohning, D E; Vincent, D; Johnson, M R; Emmanuel, N; Brawman-Mintzer, O; Book, S W; Lydiard, R B; Ballenger, J C; George, M S

    1999-01-01

    While parenting is a universal human behavior, its neuroanatomic basis is currently unknown. Animal data suggest that the cingulate may play an important function in mammalian parenting behavior. For example, in rodents cingulate lesions impair maternal behavior. Here, in an attempt to understand the brain basis of human maternal behavior, we had mothers listen to recorded infant cries and white noise control sounds while they underwent functional MRI (fMRI) of the brain. We hypothesized that mothers would show significantly greater cingulate activity during the cries compared to the control sounds. Of 7 subjects scanned, 4 had fMRI data suitable for analysis. When fMRI data were averaged for these 4 subjects, the anterior cingulate and right medial prefrontal cortex were the only brain regions showing statistically increased activity with the cries compared to white noise control sounds (cluster analysis with one-tailed z-map threshold of P < 0.001 and spatial extent threshold of P < 0.05). These results demonstrate the feasibility of using fMRI to study brain activity in mothers listening to infant cries and that the anterior cingulate may be involved in mothers listening to crying babies. We are currently replicating this study in a larger group of mothers. Future work in this area may help (1) unravel the functional neuroanatomy of the parent-infant bond and (2) examine whether markers of this bond, such as maternal brain response to infant crying, can predict maternal style (i.e., child neglect), offspring temperament, or offspring depression or anxiety.

  5. Contribution of Neuroimaging Studies to Understanding Development of Human Cognitive Brain Functions

    PubMed Central

    Morita, Tomoyo; Asada, Minoru; Naito, Eiichi

    2016-01-01

    Humans experience significant physical and mental changes from birth to adulthood, and a variety of perceptual, cognitive and motor functions mature over the course of approximately 20 years following birth. To deeply understand such developmental processes, merely studying behavioral changes is not sufficient; simultaneous investigation of the development of the brain may lead us to a more comprehensive understanding. Recent advances in noninvasive neuroimaging technologies largely contribute to this understanding. Here, it is very important to consider the development of the brain from the perspectives of “structure” and “function” because both structure and function of the human brain mature slowly. In this review, we first discuss the process of structural brain development, i.e., how the structure of the brain, which is crucial when discussing functional brain development, changes with age. Second, we introduce some representative studies and the latest studies related to the functional development of the brain, particularly for visual, facial recognition, and social cognition functions, all of which are important for humans. Finally, we summarize how brain science can contribute to developmental study and discuss the challenges that neuroimaging should address in the future. PMID:27695409

  6. Loss of T cells influences sex differences in behavior and brain structure.

    PubMed

    Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A

    2015-05-01

    Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Neuropsychological Profile for Agenesis of the Corpus Callosum? Cognitive, Academic, Executive, Social, and Behavioral Functioning in School-Age Children.

    PubMed

    Siffredi, Vanessa; Anderson, Vicki; McIlroy, Alissandra; Wood, Amanda G; Leventer, Richard J; Spencer-Smith, Megan M

    2018-05-01

    Agenesis of the corpus callosum (AgCC), characterized by developmental absence of the corpus callosum, is one of the most common congenital brain malformations. To date, there are limited data on the neuropsychological consequences of AgCC and factors that modulate different outcomes, especially in children. This study aimed to describe general intellectual, academic, executive, social and behavioral functioning in a cohort of school-aged children presenting for clinical services to a hospital and diagnosed with AgCC. The influences of age, social risk and neurological factors were examined. Twenty-eight school-aged children (8 to 17 years) diagnosed with AgCC completed tests of general intelligence (IQ) and academic functioning. Executive, social and behavioral functioning in daily life, and social risk, were estimated from parent and teacher rated questionnaires. MRI findings reviewed by a pediatric neurologist confirmed diagnosis and identified brain characteristics. Clinical details including the presence of epilepsy and diagnosed genetic condition were obtained from medical records. In our cohort, ~50% of children experienced general intellectual, academic, executive, social and/or behavioral difficulties and ~20% were functioning at a level comparable to typically developing children. Social risk was important for understanding variability in neuropsychological outcomes. Brain anomalies and complete AgCC were associated with lower mathematics performance and poorer executive functioning. This is the first comprehensive report of general intellectual, academic, executive social and behavioral consequences of AgCC in school-aged children. The findings have important clinical implications, suggesting that support to families and targeted intervention could promote positive neuropsychological functioning in children with AgCC who come to clinical attention. (JINS, 2018, 24, 445-455).

  8. Behavioral Analysis of Genetically Modified Mice Indicates Essential Roles of Neurosteroidal Estrogen

    PubMed Central

    Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro

    2011-01-01

    Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807

  9. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors.

    PubMed

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Brain imaging in the context of food perception and eating.

    PubMed

    Hollmann, Maurice; Pleger, Burkhard; Villringer, Arno; Horstmann, Annette

    2013-02-01

    Eating behavior depends heavily on brain function. In recent years, brain imaging has proved to be a powerful tool to elucidate brain function and brain structure in the context of eating. In this review, we summarize recent findings in the fast growing body of literature in the field and provide an overview of technical aspects as well as the basic brain mechanisms identified with imaging. Furthermore, we highlight findings linking neural processing of eating-related stimuli with obesity. The consumption of food is based on a complex interplay between homeostatic and hedonic mechanisms. Several hormones influence brain activity to regulate food intake and interact with the brain's reward circuitry, which is partly mediated by dopamine signaling. Additionally, it was shown that food stimuli trigger cognitive control mechanisms that incorporate internal goals into food choice. The brain mechanisms observed in this context are strongly influenced by genetic factors, sex and personality traits. Overall, a complex picture arises from brain-imaging findings, because a multitude of factors influence human food choice. Although several key mechanisms have been identified, there is no comprehensive model that is able to explain the behavioral observations to date. Especially a careful characterization of patients according to genotypes and phenotypes could help to better understand the current and future findings in neuroimaging studies.

  11. Cerebrospinal Fluid Biomarkers and Reserve Variables as Predictors of Future "Non-Cognitive" Outcomes of Alzheimer's Disease.

    PubMed

    Ingber, Adam P; Hassenstab, Jason; Fagan, Anne M; Benzinger, Tammie L S; Grant, Elizabeth A; Holtzman, David M; Morris, John C; Roe, Catherine M

    2016-01-01

    The influence of reserve variables and Alzheimer's disease (AD) biomarkers on cognitive test performance has been fairly well-characterized. However, less is known about the influence of these factors on "non-cognitive" outcomes, including functional abilities and mood. We examined whether cognitive and brain reserve variables mediate how AD biomarker levels in cognitively normal persons predict future changes in function, mood, and neuropsychiatric behavior. Non-cognitive outcomes were examined in 328 individuals 50 years and older enrolled in ongoing studies of aging and dementia at the Knight Alzheimer Disease Research Center (ADRC). All participants were cognitively normal at baseline (Clinical Dementia Rating [CDR] 0), completed cerebrospinal fluid (CSF) and structural neuroimaging studies within one year of baseline, and were followed for an average of 4.6 annual visits. Linear mixed effects models explored how cognitive reserve and brain reserve variables mediate the relationships between AD biomarker levels and changes in function, mood, and neuropsychiatric behavior in cognitively normal participants. Education levels did not have a significant effect on predicting non-cognitive decline. However, participants with smaller brain volumes exhibited the worst outcomes on measures of mood, functional abilities, and behavioral disturbance. This effect was most pronounced in individuals who also had abnormal CSF biomarkers. The findings suggest that brain reserve plays a stronger, or earlier, role than cognitive reserve in protecting against non-cognitive impairment in AD.

  12. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  13. Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development.

    PubMed

    Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T

    2012-02-28

    A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene-brain-behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ~6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development.

  14. Parenting style is related to executive dysfunction after brain injury in children.

    PubMed

    Potter, Jennifer L; Wade, Shari L; Walz, Nicolay C; Cassedy, Amy; Stevens, M Hank; Yeates, Keith O; Taylor, H Gerry

    2011-11-01

    The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3-7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI.

  15. Reduced evoked fos expression in activity-related brain regions in animal models of behavioral depression.

    PubMed

    Stone, Eric A; Lehmann, Michael L; Lin, Yan; Quartermain, David

    2007-08-15

    A previous study showed that two mouse models of behavioral depression, immune system activation and depletion of brain monoamines, are accompanied by marked reductions in stimulated neural activity in brain regions involved in motivated behavior. The present study tested whether this effect is common to other depression models by examining the effects of repeated forced swimming, chronic subordination stress or acute intraventricular galanin injection - three additional models - on baseline or stimulated c-fos expression in several brain regions known to be involved in motor or motivational processes (secondary motor, M2, anterior piriform cortex, APIR, posterior cingulate gyrus, CG, nucleus accumbens, NAC). Each of the depression models was found to reduce the fos response stimulated by exposure to a novel cage or a swim stress in all four of these brain areas but not to affect the response of a stress-sensitive region (paraventricular hypothalamus, PVH) that was included for control purposes. Baseline fos expression in these structures was either unaffected or affected in an opposite direction to the stimulated response. Pretreatment with either desmethylimipramine (DMI) or tranylcypromine (tranyl) attenuated these changes. It is concluded that the pattern of a reduced neural function of CNS motor/motivational regions with an increased function of stress areas is common to 5 models of behavioral depression in the mouse and is a potential experimental analog of the neural activity changes occurring in the clinical condition.

  16. Environmental Enrichment Improves Behavior, Cognition, and Brain Functional Markers in Young Senescence-Accelerated Prone Mice (SAMP8).

    PubMed

    Griñan-Ferré, Christian; Pérez-Cáceres, David; Gutiérrez-Zetina, Sofía Martínez; Camins, Antoni; Palomera-Avalos, Verónica; Ortuño-Sahagún, Daniel; Rodrigo, M Teresa; Pallàs, M

    2016-05-01

    The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus.

  17. Preliminary findings of altered functional connectivity of the default mode network linked to functional outcomes one year after pediatric traumatic brain injury.

    PubMed

    Stephens, Jaclyn A; Salorio, Cynthia F; Barber, Anita D; Risen, Sarah R; Mostofsky, Stewart H; Suskauer, Stacy J

    2017-07-10

    This study examined functional connectivity of the default mode network (DMN) and examined brain-behavior relationships in a pilot cohort of children with chronic mild to moderate traumatic brain injury (TBI). Compared to uninjured peers, children with TBI demonstrated less anti-correlated functional connectivity between DMN and right Brodmann Area 40 (BA 40). In children with TBI, more anomalous less anti-correlated) connectivity between DMN and right BA 40 was linked to poorer performance on response inhibition tasks. Collectively, these preliminary findings suggest that functional connectivity between DMN and BA 40 may relate to longterm functional outcomes in chronic pediatric TBI.

  18. Lateralized Feeding Behavior is Associated with Asymmetrical Neuroanatomy and Lateralized Gene Expressions in the Brain in Scale-Eating Cichlid Fish

    PubMed Central

    Lee, Hyuk Je; Schneider, Ralf F; Manousaki, Tereza; Kang, Ji Hyoun; Lein, Etienne; Franchini, Paolo

    2017-01-01

    Abstract Lateralized behavior (“handedness”) is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior—biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain. PMID:29069363

  19. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism.

    PubMed

    Pineda, J A; Juavinett, A; Datko, M

    2012-12-01

    Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies have been reported to ameliorate specific symptoms for some individuals, there is at present no cure for the condition. Nonetheless, among the many incompatible observations about aspects of the development, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by widespread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise compromised, may complicate healthy synchronization and communication among and within different neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life. It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connectivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in individuals with ASD. However, the nature of the brain's experience-dependent structural plasticity suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on operant conditioning that results in self-regulation of brain electrical oscillations, has shown promise in addressing marked abnormalities in functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant connections within and between neural circuits. NF exploits the brain's plasticity to normalize aberrant connectivity patterns apparent in the autistic brain. By grounding this training in known anatomical (e.g., mirror neuron system) and functional markers (e.g., mu rhythms) of autism, NF training holds promise to support current treatments for this complex disorder. The proposed hypothesis specifically states that neurofeedback-induced alpha mu (8-12Hz) rhythm suppression or desynchronization, a marker of cortical activation, should induce neuroplastic changes and lead to normalization in relevant mirroring networks that have been associated with higher-order social cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The opportunities and challenges of large-scale molecular approaches to songbird neurobiology

    PubMed Central

    Mello, C.V.; Clayton, D.F.

    2014-01-01

    High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907

  1. The Conundrum of Functional Brain Networks: Small-World Efficiency or Fractal Modularity

    PubMed Central

    Gallos, Lazaros K.; Sigman, Mariano; Makse, Hernán A.

    2012-01-01

    The human brain has been studied at multiple scales, from neurons, circuits, areas with well-defined anatomical and functional boundaries, to large-scale functional networks which mediate coherent cognition. In a recent work, we addressed the problem of the hierarchical organization in the brain through network analysis. Our analysis identified functional brain modules of fractal structure that were inter-connected in a small-world topology. Here, we provide more details on the use of network science tools to elaborate on this behavior. We indicate the importance of using percolation theory to highlight the modular character of the functional brain network. These modules present a fractal, self-similar topology, identified through fractal network methods. When we lower the threshold of correlations to include weaker ties, the network as a whole assumes a small-world character. These weak ties are organized precisely as predicted by theory maximizing information transfer with minimal wiring costs. PMID:22586406

  2. Fetal alcohol spectrum disorders: an overview.

    PubMed

    Riley, Edward P; Infante, M Alejandra; Warren, Kenneth R

    2011-06-01

    When fetal alcohol syndrome (FAS) was initially described, diagnosis was based upon physical parameters including facial anomalies and growth retardation, with evidence of developmental delay or mental deficiency. Forty years of research has shown that FAS lies towards the extreme end of what are now termed fetal alcohol spectrum disorders (FASD). The most profound effects of prenatal alcohol exposure are on the developing brain and the cognitive and behavioral effects that ensue. Alcohol exposure affects brain development via numerous pathways at all stages from neurogenesis to myelination. For example, the same processes that give rise to the facial characteristics of FAS also cause abnormal brain development. Behaviors as diverse as executive functioning to motor control are affected. This special issue of Neuropsychology Review addresses these changes in brain and behavior highlighting the relationship between the two. A diagnostic goal is to recognize FAS as a disorder of brain rather than one of physical characteristics.

  3. Information flow between interacting human brains: Identification, validation, and relationship to social expertise.

    PubMed

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-04-21

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender's and receiver's temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions.

  4. Brain self-regulation in criminal psychopaths.

    PubMed

    Konicar, Lilian; Veit, Ralf; Eisenbarth, Hedwig; Barth, Beatrix; Tonin, Paolo; Strehl, Ute; Birbaumer, Niels

    2015-03-24

    Psychopathic individuals are characterized by impaired affective processing, impulsivity, sensation-seeking, poor planning skills and heightened aggressiveness with poor self-regulation. Based on brain self-regulation studies using neurofeedback of Slow Cortical Potentials (SCPs) in disorders associated with a dysregulation of cortical activity thresholds and evidence of deficient cortical functioning in psychopathy, a neurobiological approach seems to be promising in the treatment of psychopathy. The results of our intensive brain regulation intervention demonstrate, that psychopathic offenders are able to gain control of their brain excitability over fronto-central brain areas. After SCP self-regulation training, we observed reduced aggression, impulsivity and behavioral approach tendencies, as well as improvements in behavioral-inhibition and increased cortical sensitivity for error-processing. This study demonstrates improvements on the neurophysiological, behavioral and subjective level in severe psychopathic offenders after SCP-neurofeedback training and could constitute a novel neurobiologically-based treatment for a seemingly change-resistant group of criminal psychopaths.

  5. Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms

    PubMed Central

    Bolton, Jessica L.; Bilbo, Staci D.

    2014-01-01

    Obesity is now epidemic worldwide. Beyond associated diseases such as diabetes, obesity is linked to neuropsychiatric disorders such as depression. Alarmingly maternal obesity and high-fat diet consumption during gestation/lactation may “program” offspring longterm for increased obesity themselves, along with increased vulnerability to mood disorders. We review the evidence that programming of brain and behavior by perinatal diet is propagated by inflammatory mechanisms, as obesity and high-fat diets are independently associated with exaggerated systemic levels of inflammatory mediators. Due to the recognized dual role of these immune molecules (eg, interleukin [IL]-6, 11-1β) in placental function and brain development, any disruption of their delicate balance with growth factors or neurotransmitters (eg, serotonin) by inflammation early in life can permanently alter the trajectory of fetal brain development. Finally, epigenetic regulation of inflammatory pathways is a likely candidate for persistent changes in metabolic and brain function as a consequence of the perinatal environment. PMID:25364282

  6. Paralimbic system and striatum are involved in motivational behavior.

    PubMed

    Nishimura, Masahiko; Yoshii, Yoshihiko; Watanabe, Jobu; Ishiuchi, Shogo

    2009-10-28

    Goal-directed rewarded behavior and goal-directed non-rewarded behavior are concerned with motivation. However, the neural substrates involved in goal-directed non-rewarded behaviors are unknown. Using functional magnetic resonance imaging, we investigated the brain activities of healthy individuals during a novel tool use (turning a screwdriver) to elucidate the relationship between the brain mechanism relevant to goal-directed non-rewarded behavior and motivation. We found that our designed behavioral task evoked activities in the orbitofrontal cortex, striatum, anterior insula, lateral prefrontal cortex, and anterior cingulate cortex compared with a meaningless task. These results suggest that activation in these cerebral regions play important roles in motivational behavior without tangible rewards.

  7. Language comprehension and brain function in individuals with an optimal outcome from autism.

    PubMed

    Eigsti, Inge-Marie; Stevens, Michael C; Schultz, Robert T; Barton, Marianne; Kelley, Elizabeth; Naigles, Letitia; Orinstein, Alyssa; Troyb, Eva; Fein, Deborah A

    2016-01-01

    Although Autism Spectrum Disorder (ASD) is generally a lifelong disability, a minority of individuals with ASD overcome their symptoms to such a degree that they are generally indistinguishable from their typically-developing peers. That is, they have achieved an Optimal Outcome (OO). The question addressed by the current study is whether this normalized behavior reflects normalized brain functioning, or alternatively, the action of compensatory systems. Either possibility is plausible, as most participants with OO received years of intensive therapy that could alter brain networks to align with typical function or work around ASD-related neural dysfunction. Individuals ages 8 to 21 years with high-functioning ASD (n = 23), OO (n = 16), or typical development (TD; n = 20) completed a functional MRI scan while performing a sentence comprehension task. Results indicated similar activations in frontal and temporal regions (left middle frontal, left supramarginal, and right superior temporal gyri) and posterior cingulate in OO and ASD groups, where both differed from the TD group. Furthermore, the OO group showed heightened "compensatory" activation in numerous left- and right-lateralized regions (left precentral/postcentral gyri, right precentral gyrus, left inferior parietal lobule, right supramarginal gyrus, left superior temporal/parahippocampal gyrus, left middle occipital gyrus) and cerebellum, relative to both ASD and TD groups. Behaviorally normalized language abilities in OO individuals appear to utilize atypical brain networks, with increased recruitment of language-specific as well as right homologue and other systems. Early intensive learning and experience may normalize behavioral language performance in OO, but some brain regions involved in language processing may continue to display characteristics that are more similar to ASD than typical development, while others show characteristics not like ASD or typical development.

  8. Brain composition and olfactory learning in honey bees

    PubMed Central

    Gronenberg, Wulfila; Couvillon, Margaret J.

    2015-01-01

    Correlations between brain or brain component size and behavioral measures are frequently studied by comparing different animal species, which sometimes introduces variables that complicate interpretation in terms of brain function. Here, we have analyzed the brain composition of honey bees (Apis mellifera) that have been individually tested in an olfactory learning paradigm. We found that the total brain size correlated with the bees’ learning performance. Among different brain components, only the mushroom body, a structure known to be involved in learning and memory, showed a positive correlation with learning performance. In contrast, visual neuropils were relatively smaller in bees that performed better in the olfactory learning task, suggesting modality-specific behavioral specialization of individual bees. This idea is also supported by inter-individual differences in brain composition. Some slight yet statistically significant differences in the brain composition of European and Africanized honey bees are reported. Larger bees had larger brains, and by comparing brains of different sizes, we report isometric correlations for all brain components except for a small structure, the central body. PMID:20060918

  9. Perception of social synchrony induces mother-child gamma coupling in the social brain.

    PubMed

    Levy, Jonathan; Goldstein, Abraham; Feldman, Ruth

    2017-07-01

    The recent call to move from focus on one brain's functioning to two-brain communication initiated a search for mechanisms that enable two humans to coordinate brain response during social interactions. Here, we utilized the mother-child context as a developmentally salient setting to study two-brain coupling. Mothers and their 9-year-old children were videotaped at home in positive and conflictual interactions. Positive interactions were microcoded for social synchrony and conflicts for overall dialogical style. Following, mother and child underwent magnetoencephalography while observing the positive vignettes. Episodes of behavioral synchrony, compared to non-synchrony, increased gamma-band power in the superior temporal sulcus (STS), hub of social cognition, mirroring and mentalizing. This neural pattern was coupled between mother and child. Brain-to-brain coordination was anchored in behavioral synchrony; only during episodes of behavioral synchrony, but not during non-synchronous moments, mother's and child's STS gamma power was coupled. Importantly, neural synchrony was not found during observation of unfamiliar mother-child interaction Maternal empathic/dialogical conflict style predicted mothers' STS activations whereas child withdrawal predicted attenuated STS response in both partners. Results define a novel neural marker for brain-to-brain synchrony, highlight the role of rapid bottom-up oscillatory mechanisms for neural coupling and indicate that behavior-based processes may drive synchrony between two brains during social interactions. © The Author (2017). Published by Oxford University Press.

  10. An Attempt to Determine the Construct Validity of Measures Hypothesized to Represent an Orientation to Right, Left, or Integrated Hemispheric Brain Function for a Sample of Primary School Children.

    ERIC Educational Resources Information Center

    Dumbrower, Jule; And Others

    1981-01-01

    This study attempts to obtain evidence of the construct validity of pupil ability tests hypothesized to represent orientation to right, left, or integrated hemispheric function, and of teacher observation subscales intended to reveal behaviors in school setting that were hypothesized to portray preference for right or left brain function. (Author)

  11. Visual recognition and visually guided action after early bilateral lesion of occipital cortex: a behavioral study of a 4.6-year-old girl.

    PubMed

    Amicuzi, Ileana; Stortini, Massimo; Petrarca, Maurizio; Di Giulio, Paola; Di Rosa, Giuseppe; Fariello, Giuseppe; Longo, Daniela; Cannatà, Vittorio; Genovese, Elisabetta; Castelli, Enrico

    2006-10-01

    We report the case of a 4.6-year-old girl born pre-term with early bilateral occipital damage. It was revealed that the child had non-severely impaired basic visual abilities and ocular motility, a selective perceptual deficit of figure-ground segregation, impaired visual recognition and abnormal navigating through space. Even if the child's visual functioning was not optimal, this was the expression of adaptive anatomic and functional brain modifications that occurred following the early lesion. Anatomic brain structure was studied with anatomic MRI and Diffusor Tensor Imaging (DTI)-MRI. This behavioral study may provide an important contribution to understanding the impact of an early lesion of the visual system on the development of visual functions and on the immature brain's potential for reorganisation related to when the damage occurred.

  12. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  13. Global brain dynamics during social exclusion predict subsequent behavioral conformity

    PubMed Central

    Wasylyshyn, Nick; Hemenway Falk, Brett; Garcia, Javier O; Cascio, Christopher N; O’Donnell, Matthew Brook; Bingham, C Raymond; Simons-Morton, Bruce; Vettel, Jean M; Falk, Emily B

    2018-01-01

    Abstract Individuals react differently to social experiences; for example, people who are more sensitive to negative social experiences, such as being excluded, may be more likely to adapt their behavior to fit in with others. We examined whether functional brain connectivity during social exclusion in the fMRI scanner can be used to predict subsequent conformity to peer norms. Adolescent males (n = 57) completed a two-part study on teen driving risk: a social exclusion task (Cyberball) during an fMRI session and a subsequent driving simulator session in which they drove alone and in the presence of a peer who expressed risk-averse or risk-accepting driving norms. We computed the difference in functional connectivity between social exclusion and social inclusion from each node in the brain to nodes in two brain networks, one previously associated with mentalizing (medial prefrontal cortex, temporoparietal junction, precuneus, temporal poles) and another with social pain (dorsal anterior cingulate cortex, anterior insula). Using predictive modeling, this measure of global connectivity during exclusion predicted the extent of conformity to peer pressure during driving in the subsequent experimental session. These findings extend our understanding of how global neural dynamics guide social behavior, revealing functional network activity that captures individual differences. PMID:29529310

  14. Enhanced functional connectivity and volume between cognitive and reward centers of naïve rodent brain produced by pro-dopaminergic agent KB220Z

    PubMed Central

    Badgaiyan, Rajendra D.; Thanos, Panayotis K.; Kulkarni, Praveen; Giordano, John; Baron, David; Gold, Mark S.

    2017-01-01

    Dopaminergic reward dysfunction in addictive behaviors is well supported in the literature. There is evidence that alterations in synchronous neural activity between brain regions subserving reward and various cognitive functions may significantly contribute to substance-related disorders. This study presents the first evidence showing that a pro-dopaminergic nutraceutical (KB220Z) significantly enhances, above placebo, functional connectivity between reward and cognitive brain areas in the rat. These include the nucleus accumbens, anterior cingulate gyrus, anterior thalamic nuclei, hippocampus, prelimbic and infralimbic loci. Significant functional connectivity, increased brain connectivity volume recruitment (potentially neuroplasticity), and dopaminergic functionality were found across the brain reward circuitry. Increases in functional connectivity were specific to these regions and were not broadly distributed across the brain. While these initial findings have been observed in drug naïve rodents, this robust, yet selective response implies clinical relevance for addicted individuals at risk for relapse, who show reductions in functional connectivity after protracted withdrawal. Future studies will evaluate KB220Z in animal models of addiction. PMID:28445527

  15. A prenatal interruption of DISC1 function in the brain exhibits a lasting impact on adult behaviors, brain metabolism, and interneuron development.

    PubMed

    Deng, Dazhi; Jian, Chongdong; Lei, Ling; Zhou, Yijing; McSweeney, Colleen; Dong, Fengping; Shen, Yilun; Zou, Donghua; Wang, Yonggang; Wu, Yuan; Zhang, Limin; Mao, Yingwei

    2017-10-17

    Mental illnesses like schizophrenia (SCZ) and major depression disorder (MDD) are devastating brain disorders. The SCZ risk gene, disrupted in schizophrenia 1 ( DISC1 ), has been associated with neuropsychiatric conditions. However, little is known regarding the long-lasting impacts on brain metabolism and behavioral outcomes from genetic insults on fetal NPCs during early life. We have established a new mouse model that specifically interrupts DISC1 functions in NPCs in vivo by a dominant-negative DISC1 (DN-DISC1) with a precise temporal and spatial regulation. Interestingly, prenatal interruption of mouse Disc1 function in NPCs leads to abnormal depression-like deficit in adult mice. Here we took a novel unbiased metabonomics approach to identify brain-specific metabolites that are significantly changed in DN-DISC1 mice. Surprisingly, the inhibitory neurotransmitter, GABA, is augmented. Consistently, parvalbumin (PV) interneurons are increased in the cingulate cortex, retrosplenial granular cortex, and motor cortex. Interestingly, somatostatin (SST) positive and neuropeptide Y (NPY) interneurons are decreased in some brain regions, suggesting that DN-DISC1 expression affects the localization of interneuron subtypes. To further explore the cellular mechanisms that cause this change, DN-DISC1 suppresses proliferation and promotes the cell cycle exit of progenitors in the medial ganglionic eminence (MGE), whereas it stimulates ectopic proliferation of neighboring cells through cell non-autonomous effect. Mechanistically, it modulates GSK3 activity and interrupts Dlx2 activity in the Wnt activation. In sum, our results provide evidence that specific genetic insults on NSCs at a short period of time could lead to prolonged changes of brain metabolism and development, eventually behavioral defects.

  16. Sociochemosensory and Emotional Functions: Behavioral Evidence for Shared Mechanisms

    PubMed Central

    Zhou, Wen; Chen, Denise

    2009-01-01

    Olfaction and emotion are distinctively different systems. Nevertheless, there are reasons to suspect that they influence each other on the social level. Functionally, olfactory chemosensory communication is used by a wide range of animals to convey individual and group identity, as well as attraction or repulsion. Anatomically, the olfactory brain overlaps with the socioemotional brain, and is believed to have contributed to the evolution of the latter. Little is known about how the functional and anatomical links are manifested in behavior, however. Using human olfaction as a model, we demonstrate that chemosensory recognition of individuals—one of the most ubiquitous forms of social communication—is interconnected with both the cognitive and the visual processing of emotion. Our results provide the first behavioral evidence for mechanisms being shared by a sensory system and emotion. PMID:19686296

  17. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    PubMed Central

    Grabrucker, Stefanie; Haderspeck, Jasmin C.; Sauer, Ann Katrin; Kittelberger, Nadine; Asoglu, Harun; Abaei, Alireza; Rasche, Volker; Schön, Michael; Boeckers, Tobias M.; Grabrucker, Andreas M.

    2018-01-01

    A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD) patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD) mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1) in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice. PMID:29379414

  18. Nuclear receptor coactivators function in estrogen receptor- and progestin receptor-dependent aspects of sexual behavior in female rats

    PubMed Central

    Molenda-Figueira, Heather A.; Williams, Casey A.; Griffin, Andreana L.; Rutledge, Eric M.; Blaustein, Jeffrey D.; Tetel, Marc J.

    2008-01-01

    The ovarian hormones, estradiol (E) and progesterone (P) facilitate the expression of sexual behavior in female rats. E and P mediate many of these behavioral effects by binding to their respective intracellular receptors in specific brain regions. Nuclear receptor coactivators, including Steroid Receptor Coactivator-1 (SRC-1) and CREB Binding Protein (CBP), dramatically enhance ligand-dependent steroid receptor transcriptional activity in vitro. Previously, our lab has shown that SRC-1 and CBP modulate estrogen receptor (ER)-mediated induction of progestin receptor (PR) gene expression in the ventromedial nucleus of the hypothalamus (VMN) and hormone-dependent sexual receptivity in female rats. Female sexual behaviors can be activated by high doses of E alone in ovariectomized rats, and thus are believed to be ER-dependent. However, the full repertoire of female sexual behavior, in particular, proceptive behaviors such as hopping, darting and ear wiggling, are considered to be PR-dependent. In the present experiments, the function of SRC-1 and CBP in distinct ER- (Exp. 1) and PR- (Exp. 2) dependent aspects of female sexual behavior was investigated. In Exp. 1, infusion of antisense oligodeoxynucleotides to SRC-1 and CBP mRNA into the VMN decreased lordosis intensity in rats treated with E alone, suggesting that these coactivators modulate ER-mediated female sexual behavior. In Exp. 2, antisense to SRC-1 and CBP mRNA around the time of P administration reduced PR-dependent ear wiggling and hopping and darting. Taken together, these data suggest that SRC-1 and CBP modulate ER and PR action in brain and influence distinct aspects of hormone-dependent sexual behaviors. These findings support our previous studies and provide further evidence that SRC-1 and CBP function together to regulate ovarian hormone action in behaviorally-relevant brain regions. PMID:16769066

  19. Neuronal Nitric Oxide Synthase and NADPH Oxidase Interact to Affect Cognitive, Affective, and Social Behaviors in Mice

    PubMed Central

    Walton, James C.; Selvakumar, Balakrishnan; Weil, Zachary M.; Snyder, Solomon H.; Nelson, Randy J.

    2013-01-01

    Both nitric oxide (NO) and reactive oxygen species (ROS) generated by nNOS and NADPH oxidase (NOX), respectively, in the brain have been implicated in an array of behaviors ranging from learning and memory to social interactions. Although recent work has elucidated how these separate redox pathways regulate neural function and behavior, the interaction of these two pathways in the regulation of neural function and behavior remains unspecified. Toward this end, the p47phox subunit of NOX, and nNOS were deleted to generate double knockout mice that were used to characterize the behavioral outcomes of concurrent impairment of the NO and ROS pathways in the brain. Mice were tested in a battery of behavioral tasks to evaluate learning and memory, as well as social, affective, and cognitive behaviors. p47phox deletion did not affect depressive-like behavior, whereas nNOS deletion abolished it. Both p47phox and nNOS deletion singly reduced anxiety-like behavior, increased general locomotor activity, impaired spatial learning and memory, and impaired preference for social novelty. Deletion of both genes concurrently had synergistic effects to elevate locomotor activity, impair spatial learning and memory, and disrupt prepulse inhibition of acoustic startle. Although preference for social novelty was impaired in single knockouts, double knockout mice displayed elevated levels of preference for social novelty above that of wild type littermates. These data demonstrate that, depending upon modality, deletion of p47phox and nNOS genes have dissimilar, similar, or additive effects. The current findings provide evidence that the NOX and nNOS redox signaling cascades interact in the brain to affect both cognitive function and social behavior. PMID:23948215

  20. The study of autism as a distributed disorder

    PubMed Central

    Müller, Ralph-Axel

    2010-01-01

    Past autism research has often been dedicated to tracing the causes of the disorder to a localized neurological abnormality, a single functional network, or a single cognitive-behavioral domain. In this review, I argue that autism is a ‘distributed disorder’ on various levels of study (genetic, neuroanatomical, neurofunctional, behavioral). ‘Localizing’ models are therefore not promising. The large array of potential genetic risk factors suggests that multiple (or all) emerging functional brain networks are affected during early development. This is supported by widespread growth abnormalities throughout the brain. Interactions during development between affected functional networks and atypical experiential effects (associated with atypical behavior) in children with autism further complicate the neurological bases of the disorder, resulting in an ‘exponentially distributed’ profile. Promising approaches to a better characterization of neural endophenotypes in autism are provided by techniques investigating white matter and connectivity, such as MR spectroscopy, diffusion tensor imaging (DTI), and functional connectivity MRI. According to a recent hypothesis, the autistic brain is generally characterized by ‘underconnectivity’. However, not all findings are consistent with this view. The concepts and methodology of functional connectivity need to be refined and results need to be corroborated by anatomical studies (such as DTI tractography) before definitive conclusions can be drawn. PMID:17326118

  1. Infant fMRI: A Model System for Cognitive Neuroscience.

    PubMed

    Ellis, Cameron T; Turk-Browne, Nicholas B

    2018-05-01

    Our understanding of the typical human brain has benefitted greatly from studying different kinds of brains and their associated behavioral repertoires, including animal models and neuropsychological patients. This same comparative perspective can be applied to early development - the environment, behavior, and brains of infants provide a model system for understanding how the mature brain works. This approach requires noninvasive methods for measuring brain function in awake, behaving infants. fMRI is becoming increasingly viable for this purpose, with the unique ability to precisely measure the entire brain, including both cortical and subcortical structures. Here we discuss potential lessons from infant fMRI for several domains of adult cognition and consider the challenges of conducting such research and how they might be mitigated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Profiles of impaired, spared, and recovered neuropsychologic processes in alcoholism.

    PubMed

    Oscar-Berman, Marlene; Valmas, Mary M; Sawyer, Kayle S; Ruiz, Susan Mosher; Luhar, Riya B; Gravitz, Zoe R

    2014-01-01

    Long-term chronic alcoholism is associated with disparate and widespread residual consequences for brain functioning and behavior, and alcoholics suffer a variety of cognitive deficiencies and emotional abnormalities. Alcoholism has heterogeneous origins and outcomes, depending upon factors such as family history, age, gender, and mental or physical health. Consequently, the neuropsychologic profiles associated with alcoholism are not uniform among individuals. Moreover, within and across research studies, variability among subjects is substantial and contributes to characteristics associated with differential treatment outcomes after detoxification. In order to refine our understanding of alcoholism-related impaired, spared, and recovered abilities, we focus on five specific functional domains: (1) memory; (2) executive functions; (3) emotion and psychosocial skills; (4) visuospatial cognition; and (5) psychomotor abilities. Although the entire brain might be vulnerable in uncomplicated alcoholism, the brain systems that are considered to be most at risk are the frontocerebellar and mesocorticolimbic circuitries. Over time, with abstinence from alcohol, the brain appears to become reorganized to provide compensation for structural and behavioral deficits. By relying on a combination of clinical and scientific approaches, future research will help to refine the compensatory roles of healthy brain systems, the degree to which abstinence and treatment facilitate the reversal of brain atrophy and dysfunction, and the importance of individual differences to outcome. © 2014 Elsevier B.V. All rights reserved.

  3. Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training.

    PubMed

    Sun, Jiangzhou; Chen, Qunlin; Zhang, Qinglin; Li, Yadan; Li, Haijiang; Wei, Dongtao; Yang, Wenjing; Qiu, Jiang

    2016-10-01

    Creativity is commonly defined as the ability to produce something both novel and useful. Stimulating creativity has great significance for both individual success and social improvement. Although increasing creative capacity has been confirmed to be possible and effective at the behavioral level, few longitudinal studies have examined the extent to which the brain function and structure underlying creativity are plastic. A cognitive stimulation (20 sessions) method was used in the present study to train subjects and to explore the neuroplasticity induced by training. The behavioral results revealed that both the originality and the fluency of divergent thinking were significantly improved by training. Furthermore, functional changes induced by training were observed in the dorsal anterior cingulate cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and posterior brain regions. Moreover, the gray matter volume (GMV) was significantly increased in the dACC after divergent thinking training. These results suggest that the enhancement of creativity may rely not only on the posterior brain regions that are related to the fundamental cognitive processes of creativity (e.g., semantic processing, generating novel associations), but also on areas that are involved in top-down cognitive control, such as the dACC and DLPFC. Hum Brain Mapp 37:3375-3387, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. The neural correlates of reciprocity are sensitive to prior experience of reciprocity.

    PubMed

    Cáceda, Ricardo; Prendes-Alvarez, Stefania; Hsu, Jung-Jiin; Tripathi, Shanti P; Kilts, Clint D; James, G Andrew

    2017-08-14

    Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior. Published by Elsevier B.V.

  5. Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders.

    PubMed

    Smith, B L; Reyes, T M

    2017-10-01

    Maternal malnutrition significantly increases offspring risk for both metabolic and neurodevelopmental disorders. Animal models of maternal malnutrition have identified behavioral changes in the adult offspring related to executive function and reward processing. Together, these changes in executive and reward-based behaviors likely contribute to the etiology of both metabolic and neurodevelopmental disorders associated with maternal malnutrition. Concomitant with the behavioral effects, maternal malnutrition alters offspring expression of reward-related molecules and inflammatory signals in brain pathways that control executive function and reward. Neuroimmune pathways and microglial interactions in these specific brain circuits, either in early development or later in adulthood, could directly contribute to the maternal malnutrition-induced behavioral phenotypes. Understanding these mechanisms will help advance treatment strategies for metabolic and neurodevelopmental disorders, especially noninvasive dietary supplementation interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  7. Relations between Brain Structure and Attentional Function in Spina Bifida: Utilization of Robust Statistical Approaches

    PubMed Central

    Kulesz, Paulina A.; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M.; Francis, David J.

    2015-01-01

    Objective Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Method Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product moment correlation was compared with four robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator Results All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Conclusions Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PMID:25495830

  8. Relations between volumetric measures of brain structure and attentional function in spina bifida: utilization of robust statistical approaches.

    PubMed

    Kulesz, Paulina A; Tian, Siva; Juranek, Jenifer; Fletcher, Jack M; Francis, David J

    2015-03-01

    Weak structure-function relations for brain and behavior may stem from problems in estimating these relations in small clinical samples with frequently occurring outliers. In the current project, we focused on the utility of using alternative statistics to estimate these relations. Fifty-four children with spina bifida meningomyelocele performed attention tasks and received MRI of the brain. Using a bootstrap sampling process, the Pearson product-moment correlation was compared with 4 robust correlations: the percentage bend correlation, the Winsorized correlation, the skipped correlation using the Donoho-Gasko median, and the skipped correlation using the minimum volume ellipsoid estimator. All methods yielded similar estimates of the relations between measures of brain volume and attention performance. The similarity of estimates across correlation methods suggested that the weak structure-function relations previously found in many studies are not readily attributable to the presence of outlying observations and other factors that violate the assumptions behind the Pearson correlation. Given the difficulty of assembling large samples for brain-behavior studies, estimating correlations using multiple, robust methods may enhance the statistical conclusion validity of studies yielding small, but often clinically significant, correlations. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  9. A Four-Dimensional Probabilistic Atlas of the Human Brain

    PubMed Central

    Mazziotta, John; Toga, Arthur; Evans, Alan; Fox, Peter; Lancaster, Jack; Zilles, Karl; Woods, Roger; Paus, Tomas; Simpson, Gregory; Pike, Bruce; Holmes, Colin; Collins, Louis; Thompson, Paul; MacDonald, David; Iacoboni, Marco; Schormann, Thorsten; Amunts, Katrin; Palomero-Gallagher, Nicola; Geyer, Stefan; Parsons, Larry; Narr, Katherine; Kabani, Noor; Le Goualher, Georges; Feidler, Jordan; Smith, Kenneth; Boomsma, Dorret; Pol, Hilleke Hulshoff; Cannon, Tyrone; Kawashima, Ryuta; Mazoyer, Bernard

    2001-01-01

    The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype– phenotype–behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders. PMID:11522763

  10. Profiles of Impaired, Spared, and Recovered Neuropsychological Processes in Alcoholism

    PubMed Central

    Oscar-Berman, Marlene; Valmas, Mary M.; Sawyer, Kayle S.; Ruiz, Susan Mosher; Luhar, Riya B.; Gravitz, Zoe R.

    2015-01-01

    Long-term chronic alcoholism is associated with disparate and widespread residual consequences for brain functioning and behavior, and alcoholics suffer a variety of cognitive deficiencies and emotional abnormalities. Alcoholism has heterogeneous origins and outcomes, depending upon factors such as family history, age, gender, and mental or physical health. Consequently, the neuropsychological profiles associated with alcoholism are not uniform among individuals. Moreover, within and across research studies, variability among participants is substantial and contributes to characteristics associated with differential treatment outcomes after detoxification. In order to refine our understanding of alcoholism-related impaired, spared, and recovered abilities, we focus on five specific functional domains: (1) memory, (2) executive functions, (3) emotion and psychosocial skills, (4) visuospatial cognition, and (5) psychomotor abilities. The brain systems that are most vulnerable to alcoholism are the frontocerebellar and mesocorticolimbic circuitries. Over time, with abstinence from alcohol, the brain appears to become reorganized to provide compensation for structural and behavioral deficits. By relying on a combination of clinical and scientific approaches, future research will help to refine the compensatory roles of healthy brain systems, the degree to which abstinence and treatment facilitate the reversal of brain atrophy and dysfunction, and the importance of individual differences to outcome. PMID:25307576

  11. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    PubMed

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Organization of brain tissue - Is the brain a noisy processor.

    NASA Technical Reports Server (NTRS)

    Adey, W. R.

    1972-01-01

    This paper presents some thoughts on functional organization in cerebral tissue. 'Spontaneous' wave and unit firing are considered as essential phenomena in the handling of information. Various models are discussed which have been suggested to describe the pseudorandom behavior of brain cells, leading to a view of the brain as an information processor and its role in learning, memory, remembering and forgetting.

  13. Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration

    PubMed Central

    Cole, Michael W.

    2016-01-01

    The human brain is able to exceed modern computers on multiple computational demands (e.g., language, planning) using a small fraction of the energy. The mystery of how the brain can be so efficient is compounded by recent evidence that all brain regions are constantly active as they interact in so-called resting-state networks (RSNs). To investigate the brain's ability to process complex cognitive demands efficiently, we compared functional connectivity (FC) during rest and multiple highly distinct tasks. We found previously that RSNs are present during a wide variety of tasks and that tasks only minimally modify FC patterns throughout the brain. Here, we tested the hypothesis that, although subtle, these task-evoked FC updates from rest nonetheless contribute strongly to behavioral performance. One might expect that larger changes in FC reflect optimization of networks for the task at hand, improving behavioral performance. Alternatively, smaller changes in FC could reflect optimization for efficient (i.e., small) network updates, reducing processing demands to improve behavioral performance. We found across three task domains that high-performing individuals exhibited more efficient brain connectivity updates in the form of smaller changes in functional network architecture between rest and task. These smaller changes suggest that individuals with an optimized intrinsic network configuration for domain-general task performance experience more efficient network updates generally. Confirming this, network update efficiency correlated with general intelligence. The brain's reconfiguration efficiency therefore appears to be a key feature contributing to both its network dynamics and general cognitive ability. SIGNIFICANCE STATEMENT The brain's network configuration varies based on current task demands. For example, functional brain connections are organized in one way when one is resting quietly but in another way if one is asked to make a decision. We found that the efficiency of these updates in brain network organization is positively related to general intelligence, the ability to perform a wide variety of cognitively challenging tasks well. Specifically, we found that brain network configuration at rest was already closer to a wide variety of task configurations in intelligent individuals. This suggests that the ability to modify network connectivity efficiently when task demands change is a hallmark of high intelligence. PMID:27535904

  14. Pain in People With Alzheimer Disease: Potential Applications for Psychophysical and Neurophysiological Research

    PubMed Central

    Monroe, Todd B.; Gore, John C.; Chen, Li Min; Mion, Lorraine C.; Cowan, Ronald L.

    2015-01-01

    Pain management in people with dementia is a critical problem. Recently, psychophysical and neuroimaging techniques have been used to extend our understanding of pain processing in the brain as well as to identify structural and functional changes in Alzheimer disease (AD). But interpreting the complex relationship between AD pathology, brain activation, and pain reports is challenging. This review proposes a conceptual framework for designing and interpreting psychophysical and neuroimaging studies of pain processing in people with AD. Previous human studies describe the lateral (sensory) and medial (affective) pain networks. Although the majority of the literature on pain supports the lateral and medial networks, some evidence supports an additional rostral pain network, which is believed to function in the production of pain behaviors. The sensory perception of pain as assessed through verbal report and behavioral display may be altered in AD. In addition, neural circuits mediating pain perception and behavioral expression may be hyperactive or underactive, depending on the brain region involved, stage of the disease, and type of pain (acute experimental stimuli or chronic medical conditions). People with worsening AD may therefore experience pain but be unable to indicate pain through verbal or behavioral reports, leaving them at great risk of experiencing untreated pain. Psychophysical (verbal or behavioral) and neurophysiological (brain activation) approaches can potentially address gaps in our knowledge of pain processing in AD by revealing the relationship between neural processes and verbal and behavioral outcomes in the presence of acute or chronic pain. PMID:23277361

  15. Resting-state activity in development and maintenance of normal brain function.

    PubMed

    Pizoli, Carolyn E; Shah, Manish N; Snyder, Abraham Z; Shimony, Joshua S; Limbrick, David D; Raichle, Marcus E; Schlaggar, Bradley L; Smyth, Matthew D

    2011-07-12

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level-dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization.

  16. What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations

    PubMed Central

    Fraiman, Daniel; Chialvo, Dante R.

    2012-01-01

    The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058

  17. Child gender influences paternal behavior, language, and brain function

    PubMed Central

    Mascaro, Jennifer S.; Rentscher, Kelly E.; Hackett, Patrick D.; Mehl, Matthias R.; Rilling, James K.

    2017-01-01

    Multiple lines of research indicate that fathers often treat boys and girls differently in ways that impact child outcomes. The complex picture that has emerged, however, is obscured by methodological challenges inherent to the study of parental caregiving, and no studies to date have examined the possibility that gender differences in observed real-world paternal behavior are related to differential paternal brain responses to male and female children. Here we compare fathers of daughters and fathers of sons in terms of naturalistically observed everyday caregiving behavior and neural responses to child picture stimuli. Compared to fathers of sons, fathers of daughters were more attentively engaged with their daughters, sang more to their daughters, used more analytical language and language related to sadness and the body with their daughters, and had a stronger neural response to their daughter’s happy facial expressions in areas of the brain important for reward and emotion regulation (medial and lateral orbitofrontal cortex [OFC]). In contrast, fathers of sons engaged in more rough and tumble play (RTP), used more achievement language with their sons, and had a stronger neural response to their son’s neutral facial expressions in the medial OFC (mOFC). Whereas the mOFC response to happy faces was negatively related to RTP, the mOFC response to neutral faces was positively related to RTP, specifically for fathers of boys. These results indicate that real world paternal behavior and brain function differ as a function of child gender. PMID:28541079

  18. Child gender influences paternal behavior, language, and brain function.

    PubMed

    Mascaro, Jennifer S; Rentscher, Kelly E; Hackett, Patrick D; Mehl, Matthias R; Rilling, James K

    2017-06-01

    Multiple lines of research indicate that fathers often treat boys and girls differently in ways that impact child outcomes. The complex picture that has emerged, however, is obscured by methodological challenges inherent to the study of parental caregiving, and no studies to date have examined the possibility that gender differences in observed real-world paternal behavior are related to differential paternal brain responses to male and female children. Here we compare fathers of daughters and fathers of sons in terms of naturalistically observed everyday caregiving behavior and neural responses to child picture stimuli. Compared with fathers of sons, fathers of daughters were more attentively engaged with their daughters, sang more to their daughters, used more analytical language and language related to sadness and the body with their daughters, and had a stronger neural response to their daughter's happy facial expressions in areas of the brain important for reward and emotion regulation (medial and lateral orbitofrontal cortex [OFC]). In contrast, fathers of sons engaged in more rough and tumble play (RTP), used more achievement language with their sons, and had a stronger neural response to their son's neutral facial expressions in the medial OFC (mOFC). Whereas the mOFC response to happy faces was negatively related to RTP, the mOFC response to neutral faces was positively related to RTP, specifically for fathers of boys. These results indicate that real-world paternal behavior and brain function differ as a function of child gender. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance.

    PubMed

    Kable, Joseph W; Caulfield, M Kathleen; Falcone, Mary; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Hornik, Robert; Diefenbach, Paul; Lee, Frank J; Lerman, Caryn

    2017-08-02

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults ( N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. Copyright © 2017 the authors 0270-6474/17/377390-13$15.00/0.

  20. No Effect of Commercial Cognitive Training on Brain Activity, Choice Behavior, or Cognitive Performance

    PubMed Central

    Caulfield, M. Kathleen; McConnell, Mairead; Bernardo, Leah; Parthasarathi, Trishala; Cooper, Nicole; Ashare, Rebecca; Audrain-McGovern, Janet; Lee, Frank J.; Lerman, Caryn

    2017-01-01

    Increased preference for immediate over delayed rewards and for risky over certain rewards has been associated with unhealthy behavioral choices. Motivated by evidence that enhanced cognitive control can shift choice behavior away from immediate and risky rewards, we tested whether training executive cognitive function could influence choice behavior and brain responses. In this randomized controlled trial, 128 young adults (71 male, 57 female) participated in 10 weeks of training with either a commercial web-based cognitive training program or web-based video games that do not specifically target executive function or adapt the level of difficulty throughout training. Pretraining and post-training, participants completed cognitive assessments and functional magnetic resonance imaging during performance of the following validated decision-making tasks: delay discounting (choices between smaller rewards now vs larger rewards in the future) and risk sensitivity (choices between larger riskier rewards vs smaller certain rewards). Contrary to our hypothesis, we found no evidence that cognitive training influences neural activity during decision-making; nor did we find effects of cognitive training on measures of delay discounting or risk sensitivity. Participants in the commercial training condition improved with practice on the specific tasks they performed during training, but participants in both conditions showed similar improvement on standardized cognitive measures over time. Moreover, the degree of improvement was comparable to that observed in individuals who were reassessed without any training whatsoever. Commercial adaptive cognitive training appears to have no benefits in healthy young adults above those of standard video games for measures of brain activity, choice behavior, or cognitive performance. SIGNIFICANCE STATEMENT Engagement of neural regions and circuits important in executive cognitive function can bias behavioral choices away from immediate rewards. Activity in these regions may be enhanced through adaptive cognitive training. Commercial brain training programs claim to improve a broad range of mental processes; however, evidence for transfer beyond trained tasks is mixed. We undertook the first randomized controlled trial of the effects of commercial adaptive cognitive training (Lumosity) on neural activity and decision-making in young adults (N = 128) compared with an active control (playing on-line video games). We found no evidence for relative benefits of cognitive training with respect to changes in decision-making behavior or brain response, or for cognitive task performance beyond those specifically trained. PMID:28694338

  1. The neural code of thoughts and feelings. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Jaušovec, Norbert

    2017-07-01

    Recently the number of theories trying to explain the brain - cognition - behavior relation has been increased. Promoted on the one hand by the development of sophisticated brain imaging techniques, such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and on the other, by complex computational models based on chaos and graph theory. But has this really advanced our understanding of the brain-behavior relation beyond Descartes's dualistic mind body division? One could critically argue that replacing the pineal body with extracellular electric fields represented in the electroencephalogram (EEG) as rapid transitional processes (RTS), combined with algebraic topology and dubbed brain topodynamics [1] is just putting lipstick on an outmoded evergreen.

  2. Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI

    PubMed Central

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990

  3. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    PubMed

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  4. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology.

    PubMed

    Manzano, Adriana S; Herrel, Anthony; Fabre, Anne-Claire; Abdala, Virginia

    2017-07-01

    Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis. © 2017 Anatomical Society.

  5. Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning

    NASA Astrophysics Data System (ADS)

    Rebesco, James M.; Miller, Lee E.

    2011-02-01

    Normal brain function requires constant adaptation, as an organism learns to associate important sensory stimuli with the appropriate motor actions. Neurological disorders may disrupt these learned associations and require the nervous system to reorganize itself. As a consequence, neural plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. Associative, or Hebbian, pairing of pre- and post-synaptic activity has been shown to alter stimulus-evoked responses in vivo; however, to date, such protocols have not been shown to affect the animal's subsequent behavior. We paired stimulus trains separated by a brief time delay to two electrodes in rat sensorimotor cortex, which changed the statistical pattern of spikes during subsequent behavior. These changes were consistent with strengthened functional connections from the leading electrode to the lagging electrode. We then trained rats to respond to a microstimulation cue, and repeated the paradigm using the cue electrode as the leading electrode. This pairing lowered the rat's ICMS-detection threshold, with the same dependence on intra-electrode time lag that we found for the functional connectivity changes. The timecourse of the behavioral effects was very similar to that of the connectivity changes. We propose that the behavioral changes were a consequence of strengthened functional connections from the cue electrode to other regions of sensorimotor cortex. Such paradigms might be used to augment recovery from a stroke, or to promote adaptation in a bidirectional brain-machine interface.

  6. Dynamic functional connectivity shapes individual differences in associative learning.

    PubMed

    Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal

    2016-11-01

    Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses – The case of behavioral variant frontotemporal dementia

    PubMed Central

    Schroeter, Matthias L.; Laird, Angela R.; Chwiesko, Caroline; Deuschl, Christine; Schneider, Else; Bzdok, Danilo; Eickhoff, Simon B.; Neumann, Jane

    2014-01-01

    Introduction Uniform coordinate systems in neuroimaging research have enabled comprehensive systematic and quantitative meta-analyses. Such approaches are particularly relevant for neuropsychiatric diseases, the understanding of their symptoms, prediction and treatment. Behavioral variant frontotemporal dementia (bvFTD), a common neurodegenerative syndrome, is characterized by deep alterations in behavior and personality. Investigating this ‘nexopathy’ elucidates the healthy social and emotional brain. Methods Here, we combine three multimodal meta-analyses approaches – anatomical & activation likelihood estimates and behavioral domain profiles – to identify neural correlates of bvFTD in 417 patients and 406 control subjects and to extract mental functions associated with this disease by meta-analyzing functional activation studies in the comprehensive probabilistic functional brain atlas of the BrainMap database. Results The analyses identify the frontomedian cortex, basal ganglia, anterior insulae and thalamus as most relevant hubs, with a regional dissociation between atrophy and hypometabolism. Neural networks affected by bvFTD were associated with emotion and reward processing, empathy and executive functions (mainly inhibition), suggesting these functions as core domains affected by the disease and finally leading to its clinical symptoms. In contrast, changes in theory of mind or mentalizing abilities seem to be secondary phenomena of executive dysfunctions. Conclusions The study creates a novel conceptual framework to understand neuropsychiatric diseases by powerful data-driven meta-analytic approaches that shall be extended to the whole neuropsychiatric spectrum in the future. PMID:24763126

  8. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  9. Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task

    PubMed Central

    Raschle, Nora M.; Fehlbaum, Lynn V.; Menks, Willeke M.; Euler, Felix; Sterzer, Philipp; Stadler, Christina

    2017-01-01

    The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI) during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral) prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions) while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula). When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral) within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in emotion related brain regions, and therefore support previous findings investigating emotion–cognition interaction in healthy adults. Moreover, emotion and cognition seem to be tightly related to each other, as indicated by shared neural networks involved in both of these processes. Emotion processing, cognitive control, and their interaction are crucial for healthy functioning and a lack thereof is related to psychiatric disorders such as, disruptive behavior disorders. Future studies may investigate the neural characteristics of children and adolescents with disruptive behavior disorders. PMID:28919871

  10. Autonomy of Lower-Level Perception from Global Processing in Autism: Evidence from Brain Activation and Functional Connectivity

    ERIC Educational Resources Information Center

    Liu, Yanni; Cherkassky, Vladimir L.; Minshew, Nancy J.; Just, Marcel Adam

    2011-01-01

    Previous behavioral studies have shown that individuals with autism are less hindered by interference from global processing during the performance of lower-level perceptual tasks, such as finding embedded figures. The primary goal of this study was to examine the brain manifestation of such atypicality in high-functioning autism using fMRI.…

  11. Perception of social synchrony induces mother–child gamma coupling in the social brain

    PubMed Central

    Levy, Jonathan; Goldstein, Abraham

    2017-01-01

    Abstract The recent call to move from focus on one brain’s functioning to two-brain communication initiated a search for mechanisms that enable two humans to coordinate brain response during social interactions. Here, we utilized the mother–child context as a developmentally salient setting to study two-brain coupling. Mothers and their 9-year-old children were videotaped at home in positive and conflictual interactions. Positive interactions were microcoded for social synchrony and conflicts for overall dialogical style. Following, mother and child underwent magnetoencephalography while observing the positive vignettes. Episodes of behavioral synchrony, compared to non-synchrony, increased gamma-band power in the superior temporal sulcus (STS), hub of social cognition, mirroring and mentalizing. This neural pattern was coupled between mother and child. Brain-to-brain coordination was anchored in behavioral synchrony; only during episodes of behavioral synchrony, but not during non-synchronous moments, mother’s and child's STS gamma power was coupled. Importantly, neural synchrony was not found during observation of unfamiliar mother-child interaction Maternal empathic/dialogical conflict style predicted mothers’ STS activations whereas child withdrawal predicted attenuated STS response in both partners. Results define a novel neural marker for brain-to-brain synchrony, highlight the role of rapid bottom-up oscillatory mechanisms for neural coupling and indicate that behavior-based processes may drive synchrony between two brains during social interactions. PMID:28402479

  12. Histamine and motivation

    PubMed Central

    Torrealba, Fernando; Riveros, Maria E.; Contreras, Marco; Valdes, Jose L.

    2012-01-01

    Brain histamine may affect a variety of different behavioral and physiological functions; however, its role in promoting wakefulness has overshadowed its other important functions. Here, we review evidence indicating that brain histamine plays a central role in motivation and emphasize its differential involvement in the appetitive and consummatory phases of motivated behaviors. We discuss the inputs that control histaminergic neurons of the tuberomamillary nucleus (TMN) of the hypothalamus, which determine the distinct role of these neurons in appetitive behavior, sleep/wake cycles, and food anticipatory responses. Moreover, we review evidence supporting the dysfunction of histaminergic neurons and the cortical input of histamine in regulating specific forms of decreased motivation (apathy). In addition, we discuss the relationship between the histamine system and drug addiction in the context of motivation. PMID:22783171

  13. Real-Time fMRI in Neuroscience Research and Its Use in Studying the Aging Brain

    PubMed Central

    Rana, Mohit; Varan, Andrew Q.; Davoudi, Anis; Cohen, Ronald A.; Sitaram, Ranganatha; Ebner, Natalie C.

    2016-01-01

    Cognitive decline is a major concern in the aging population. It is normative to experience some deterioration in cognitive abilities with advanced age such as related to memory performance, attention distraction to interference, task switching, and processing speed. However, intact cognitive functioning in old age is important for leading an independent day-to-day life. Thus, studying ways to counteract or delay the onset of cognitive decline in aging is crucial. The literature offers various explanations for the decline in cognitive performance in aging; among those are age-related gray and white matter atrophy, synaptic degeneration, blood flow reduction, neurochemical alterations, and change in connectivity patterns with advanced age. An emerging literature on neurofeedback and Brain Computer Interface (BCI) reports exciting results supporting the benefits of volitional modulation of brain activity on cognition and behavior. Neurofeedback studies based on real-time functional magnetic resonance imaging (rtfMRI) have shown behavioral changes in schizophrenia and behavioral benefits in nicotine addiction. This article integrates research on cognitive and brain aging with evidence of brain and behavioral modification due to rtfMRI neurofeedback. We offer a state-of-the-art description of the rtfMRI technique with an eye towards its application in aging. We present preliminary results of a feasibility study exploring the possibility of using rtfMRI to train older adults to volitionally control brain activity. Based on these first findings, we discuss possible implementations of rtfMRI neurofeedback as a novel technique to study and alleviate cognitive decline in healthy and pathological aging. PMID:27803662

  14. Contributions of Philip Teitelbaum to affective neuroscience.

    PubMed

    Berridge, Kent C

    2012-06-01

    As part of a festschrift issue for Philip Teitelbaum, I offer here the thesis that Teitelbaum deserves to be viewed as an important forefather to the contemporary field of affective neuroscience (which studies motivation, emotion and affect in the brain). Teitelbaum's groundbreaking analyses of motivation deficits induced by lateral hypothalamic damage, of roles of food palatability in revealing residual function, and of recovery of 'lost' functions helped shape modern understanding of how motivation circuits operate within the brain. His redefinition of the minimum requirement for identifying motivation raised the conceptual bar for thinking about the topic among behavioral neuroscientists. His meticulous analyses of patterned stages induced by brain manipulations, life development and clinical disorders added new dimensions to our appreciation of how brain systems work. His steadfast highlighting of integrative functions and behavioral complexity helped provide a healthy functionalist counterbalance to reductionist trends in science of the late 20th century. In short, Philip Teitelbaum can be seen to have made remarkable contributions to several domains of psychology and neuroscience, including affective neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Contributions of Philip Teitelbaum to affective neuroscience

    PubMed Central

    Berridge, Kent C.

    2011-01-01

    As part of a festschrift issue for Philip Teitelbaum, I offer here the thesis that Teitelbaum deserves to be viewed as an important forefather to the contemporary field of affective neuroscience (which studies motivation, emotion and affect in the brain). Teitelbaum’s groundbreaking analyses of motivation deficits induced by lateral hypothalamic damage, of roles of food palatability in revealing residual function, and of recovery of ‘lost’ functions helped shape modern understanding of how motivation circuits operate within the brain. His redefinition of the minimum requirement for identifying motivation raised the conceptual bar for thinking about the topic among behavioral neuroscientists. His meticulous analyses of patterned stages induced by brain manipulations, life development and clinical disorders added new dimensions to our appreciation of how brain systems work. His steadfast highlighting of integrative functions and behavioral complexity helped provide a healthy functionalist counterbalance to reductionist trends in science of the late 20th century. In short, Philip Teitelbaum can be seen to have made remarkable contributions to several domains of psychology and neuroscience, including affective neuroscience. PMID:22051942

  16. Voluntary running rescues adult hippocampal neurogenesis after irradiation of the young mouse brain

    PubMed Central

    Naylor, Andrew S.; Bull, Cecilia; Nilsson, Marie K. L.; Zhu, Changlian; Björk-Eriksson, Thomas; Eriksson, Peter S.; Blomgren, Klas; Kuhn, H. Georg

    2008-01-01

    Cranial radiation therapy is commonly used in the treatment of childhood cancers. It is associated with cognitive impairments tentatively linked to the hippocampus, a neurogenic region of the brain important in memory function and learning. Hippocampal neurogenesis is positively regulated by voluntary exercise, which is also known to improve hippocampal-dependent cognitive functions. In this work, we irradiated the brains of C57/BL6 mice on postnatal day 9 and evaluated both the acute effects of irradiation and the effects of voluntary running on hippocampal neurogenesis and behavior 3 months after irradiation. Voluntary running significantly restored precursor cell and neurogenesis levels after a clinically relevant, moderate dose of irradiation. We also found that irradiation perturbed the structural integration of immature neurons in the hippocampus and that this was reversed by voluntary exercise. Furthermore, irradiation-induced behavior alterations observed in the open-field test were ameliorated. Together, these results clearly demonstrate the usefulness of physical exercise for functional and structural recovery from radiation-induced injury to the juvenile brain, and they suggest that exercise should be evaluated in rehabilitation therapy of childhood cancer survivors. PMID:18765809

  17. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    PubMed Central

    Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197

  18. [Determinism and Freedom of Choice in the Brain Functioning].

    PubMed

    Ivanitsky, A M

    2015-01-01

    The problem is considered whether the brain response is completely determined by the stimulus and the personal experience or in some cases the brain is free to choose its behavioral response to achieve the desired goal. The attempt is made to approach to this important philosophical problem basing on modern knowledge about the brain. The paper consists of four parts. In the first part the theoretical views about the free choice problem solving are considered, including views about the freedom of choice as a useful illusion, the hypothesis on appliance of quantum mechanics laws to the brain functioning and the theory of mentalism. In other tree parts consequently the more complicated brain functions such as choice reaction, thinking and creation are analyzed. The general conclusion is that the possibility of quite unpredictable, but sometimes very effective decisions increases when the brain functions are more and more complicated. This fact can be explained with two factors: increasing stochasticity of the brain processes and the role of top-down determinations from mental to neural levels, according to the theory of mentalism.

  19. Reducing proactive aggression through non-invasive brain stimulation

    PubMed Central

    Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T.

    2015-01-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. PMID:25680991

  20. Human Cooperation and Its Underlying Mechanisms.

    PubMed

    Strang, Sabrina; Park, Soyoung Q

    Cooperation is a uniquely human behavior and can be observed across cultures. In order to maintain cooperative behavior in society, people are willing to punish deviant behavior on their own expenses and even without any personal benefits. Cooperation has been object of research in several disciplines. Psychologists, economists, sociologists, biologists, and anthropologists have suggested several motives possibly underlying cooperative behavior. In recent years, there has been substantial progress in understanding neural mechanisms enforcing cooperation. Psychological as well as economic theories were tested for their plausibility using neuroscientific methods. For example, paradigms from behavioral economics were adapted to be tested in the magnetic resonance imaging (MRI) scanner. Also, related brain functions were modulated by using transmagnetic brain stimulation (TMS). While cooperative behavior has often been associated with positive emotions, noncooperative behavior was found to be linked to negative emotions. On a neural level, the temporoparietal junction (TPJ), the striatum, and other reward-related brain areas have been shown to be activated by cooperation, whereas noncooperation has mainly been associated with activity in the insula.

  1. Nuclear Receptor Coactivator Function in Reproductive Physiology and Behavior

    PubMed Central

    Molenda, Heather A.; Kilts, Caitlin P.; Allen, Rachel L.; Tetel, Marc J.

    2009-01-01

    Gonadal steroid hormones act throughout the body to elicit changes in gene expression that result in profound effects on reproductive physiology and behavior. Steroid hormones exert many of these effects by binding to their respective intracellular receptors, which are members of a nuclear receptor superfamily of transcriptional activators. A variety of in vitro studies indicate that nuclear receptor coactivators are required for efficient transcriptional activity of steroid receptors. Many of these coactivators are found in a variety of steroid hormone-responsive reproductive tissues, including the reproductive tract, mammary gland, and brain. While many nuclear receptor coactivators have been investigated in vitro, we are only now beginning to understand their function in reproductive physiology and behavior. In this review, we discuss the general mechanisms of action of nuclear receptor coactivators in steroid-dependent gene transcription. We then review some recent and exciting findings on the function of nuclear receptor coactivators in steroid-dependent brain development and reproductive physiology and behavior. PMID:12855594

  2. Developmental Hypothyroidism Alters Brain-Derived Neurotrophic Factor (BDNF) Expression in Adulthood.

    EPA Science Inventory

    Severe developmental thyroid hormone (TH) insufficiency results in alterations in brain structure/function and lasting behavioral impairments. Environmental toxicants reduce circulating levels of TH, but the disruption is modest and the doseresponse relationships of TH and neuro...

  3. Application of Lateral Brain Research to the Employability Quotient of Core Black Youth: Implications for Occupational Futuring.

    ERIC Educational Resources Information Center

    Toldson, Ivory L.

    Lateral brain research can be used to develop an understanding and appreciation of the vocational and occupational significance of black expressive behavior manifested in some blacks. Historically, employers have placed primary emphasis on cognitive abilities--functions of the left side of the brain. Research has shown, however, that the right…

  4. Childhood Markers of Health Behavior Relate to Hippocampal Health, Memory, and Academic Performance

    ERIC Educational Resources Information Center

    Hassevoort, Kelsey M.; Khan, Naiman A.; Hillman, Charles H.; Cohen, Neal J.

    2016-01-01

    There has been an increasing body of evidence that a variety of factors, including physical activity, nutrition, and body composition, have a relationship with brain structure and function in school-aged children. Within the brain, the hippocampus is particularly sensitive to modulation by these lifestyle factors. This brain structure is known to…

  5. Searching for Factors Underlying Cerebral Plasticity in the Normal and Injured Brain

    ERIC Educational Resources Information Center

    Kolb, Bryan; Muhammad, Arif; Gibb, Robbin

    2011-01-01

    Brain plasticity refers to the capacity of the nervous system to change its structure and ultimately its function over a lifetime. There have been major advances in our understanding of the principles of brain plasticity and behavior in laboratory animals and humans. Over the past decade there have been advances in the application of these…

  6. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  7. Assessing frontal behavioral syndromes and cognitive functions in traumatic brain injury.

    PubMed

    Lengenfelder, Jeannie; Arjunan, Aparna; Chiaravalloti, Nancy; Smith, Angela; DeLuca, John

    2015-01-01

    This study examined the relationship between individual and family ratings on a measure of frontal behaviors using the Frontal Systems Behavior Scale (FrSBe). Additionally, this study investigated whether self-reported symptoms of frontal-lobe dysfunction correspond to neuropsychological performance, particularly those tests measuring executive functions. Thirty-three individuals with moderate-to-severe traumatic brain injury (TBI) and 19 healthy individuals completed the FrSBe and neuropsychological measures. Results indicated that the self-ratings of individuals' apathy, disinhibition, and executive dysfunction significantly increased from before to after injury, as did the family members' ratings, with no significant difference between the patients' and family members' reports for any of the three FrSBe subscales. Although individuals with TBI demonstrated impairments in neuropsychological measures, including measures of executive functioning, few significant correlations were found between the patients' FrSBe ratings and measures of cognitive functioning. This suggests that information from the FrSBe may differ from information gathered during a cognitive evaluation and may enhance our understanding of the behavioral sequelae following TBI that may not be captured by neuropsychological assessment alone.

  8. Social Behavior and Impairments in Social Cognition Following Traumatic Brain Injury.

    PubMed

    May, Michelle; Milders, Maarten; Downey, Bruce; Whyte, Maggie; Higgins, Vanessa; Wojcik, Zuzana; Amin, Sophie; O'Rourke, Suzanne

    2017-05-01

    The negative effect of changes in social behavior following traumatic brain injury (TBI) are known, but much less is known about the neuropsychological impairments that may underlie and predict these changes. The current study investigated possible associations between post-injury behavior and neuropsychological competencies of emotion recognition, understanding intentions, and response selection, that have been proposed as important for social functioning. Forty participants with TBI and 32 matched healthy participants completed a battery of tests assessing the three functions of interest. In addition, self- and proxy reports of pre- and post-injury behavior, mood, and community integration were collected. The TBI group performed significantly poorer than the comparison group on all tasks of emotion recognition, understanding intention, and on one task of response selection. Ratings of current behavior suggested significant changes in the TBI group relative to before the injury and showed significantly poorer community integration and interpersonal behavior than the comparison group. Of the three functions considered, emotion recognition was associated with both post-injury behavior and community integration and this association could not be fully explained by injury severity, time since injury, or education. The current study confirmed earlier findings of associations between emotion recognition and post-TBI behavior, providing partial evidence for models proposing emotion recognition as one of the pre-requisites for adequate social functioning. (JINS, 2017, 23, 400-411).

  9. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    PubMed

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior.

  10. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    PubMed Central

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress-induced dendritic remodeling across OFC, BLA, and DHC. Together, these data suggest the potential for microglia-mediated sex differences in stress effects on neural structure, function, and behavior. PMID:29194444

  11. Moment-to-Moment BOLD Signal Variability Reflects Regional Changes in Neural Flexibility across the Lifespan.

    PubMed

    Nomi, Jason S; Bolt, Taylor S; Ezie, C E Chiemeka; Uddin, Lucina Q; Heller, Aaron S

    2017-05-31

    Variability of neuronal responses is thought to underlie flexible and optimal brain function. Because previous work investigating BOLD signal variability has been conducted within task-based fMRI contexts on adults and older individuals, very little is currently known regarding regional changes in spontaneous BOLD signal variability in the human brain across the lifespan. The current study used resting-state fMRI data from a large sample of male and female human participants covering a wide age range (6-85 years) across two different fMRI acquisition parameters (TR = 0.645 and 1.4 s). Variability in brain regions including a key node of the salience network (anterior insula) increased linearly across the lifespan across datasets. In contrast, variability in most other large-scale networks decreased linearly over the lifespan. These results demonstrate unique lifespan trajectories of BOLD variability related to specific regions of the brain and add to a growing literature demonstrating the importance of identifying normative trajectories of functional brain maturation. SIGNIFICANCE STATEMENT Although brain signal variability has traditionally been considered a source of unwanted noise, recent work demonstrates that variability in brain signals during task performance is related to brain maturation in old age as well as individual differences in behavioral performance. The current results demonstrate that intrinsic fluctuations in resting-state variability exhibit unique maturation trajectories in specific brain regions and systems, particularly those supporting salience detection. These results have implications for investigations of brain development and aging, as well as interpretations of brain function underlying behavioral changes across the lifespan. Copyright © 2017 the authors 0270-6474/17/375539-10$15.00/0.

  12. Eyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks

    PubMed Central

    Vanvinckenroye, Amaury; Vandewalle, Gilles; Chellappa, Sarah L.

    2016-01-01

    Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale, brain function also depends on prior sleep-wake history and circadian processes. However, much remains to be established on how the brain operates at the neuronal level in humans during sleep and wakefulness. A key limitation of human neuroscience is the difficulty in isolating neuronal excitation/inhibition drive in vivo. Therefore, computational models are noninvasive approaches of choice to indirectly access hidden neuronal states. In this review, we present a physiologically driven in silico approach, Dynamic Causal Modelling (DCM), as a means to comprehend brain function under different experimental paradigms. Importantly, DCM has allowed for the understanding of how brain dynamics underscore brain plasticity, cognition, and different states of consciousness. In a broader perspective, noninvasive computational approaches, such as DCM, may help to puzzle out the spatial and temporal dynamics of human brain function at different behavioural states. PMID:26885400

  13. Artistic explorations of the brain

    PubMed Central

    Fetz, Eberhard E.

    2012-01-01

    The symbiotic relationships between art and the brain begin with the obvious fact that brain mechanisms underlie the creation and appreciation of art. Conversely, many spectacular images of neural structures have remarkable aesthetic appeal. But beyond its fascinating forms, the many functions performed by brain mechanisms provide a profound subject for aesthetic exploration. Complex interactions in the tangled neural networks in our brain miraculously generate coherent behavior and cognition. Neuroscientists tackle these phenomena with specialized methodologies that limit the scope of exposition and are comprehensible to an initiated minority. Artists can perform an end run around these limitations by representing the brain's remarkable functions in a manner that can communicate to a wide and receptive audience. This paper explores the ways that brain mechanisms can provide a largely untapped subject for artistic exploration. PMID:22347178

  14. An uncommon case of random fire-setting behavior associated with Todd paralysis: a case report.

    PubMed

    Kanehisa, Masayuki; Morinaga, Katsuhiko; Kohno, Hisae; Maruyama, Yoshihiro; Ninomiya, Taiga; Ishitobi, Yoshinobu; Tanaka, Yoshihiro; Tsuru, Jusen; Hanada, Hiroaki; Yoshikawa, Tomoya; Akiyoshi, Jotaro

    2012-08-31

    The association between fire-setting behavior and psychiatric or medical disorders remains poorly understood. Although a link between fire-setting behavior and various organic brain disorders has been established, associations between fire setting and focal brain lesions have not yet been reported. Here, we describe the case of a 24-year-old first time arsonist who suffered Todd's paralysis prior to the onset of a bizarre and random fire-setting behavior. A case of a 24-year-old man with a sudden onset of a bizarre and random fire-setting behavior is reported. The man, who had been arrested on felony arson charges, complained of difficulties concentrating and of recent memory disturbances with leg weakness. A video-EEG recording demonstrated a close relationship between the focal motor impairment and a clear-cut epileptic ictal discharge involving the bilateral motor cortical areas. The SPECT result was statistically analyzed by comparing with standard SPECT images obtained from our institute (easy Z-score imaging system; eZIS). eZIS revealed hypoperfusion in cingulate cortex, basal ganglia and hyperperfusion in frontal cortex,. A neuropsychological test battery revealed lower than normal scores for executive function, attention, and memory, consistent with frontal lobe dysfunction. The fire-setting behavior and Todd's paralysis, together with an unremarkable performance on tests measuring executive function fifteen months prior, suggested a causal relationship between this organic brain lesion and the fire-setting behavior. The case describes a rare and as yet unreported association between random, impulse-driven fire-setting behavior and damage to the brain and suggests a disconnection of frontal lobe structures as a possible pathogenic mechanism.

  15. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD.

    PubMed

    Ebihara, Ken; Fujiwara, Hironori; Awale, Suresh; Dibwe, Dya Fita; Araki, Ryota; Yabe, Takeshi; Matsumoto, Kinzo

    2017-09-15

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABA A receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABA A receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Shining a Light on Awareness: A Review of Functional Near-Infrared Spectroscopy for Prolonged Disorders of Consciousness

    PubMed Central

    Rupawala, Mohammed; Dehghani, Hamid; Lucas, Samuel J. E.; Tino, Peter; Cruse, Damian

    2018-01-01

    Qualitative clinical assessments of the recovery of awareness after severe brain injury require an assessor to differentiate purposeful behavior from spontaneous behavior. As many such behaviors are minimal and inconsistent, behavioral assessments are susceptible to diagnostic errors. Advanced neuroimaging tools can bypass behavioral responsiveness and reveal evidence of covert awareness and cognition within the brains of some patients, thus providing a means for more accurate diagnoses, more accurate prognoses, and, in some instances, facilitated communication. The majority of reports to date have employed the neuroimaging methods of functional magnetic resonance imaging, positron emission tomography, and electroencephalography (EEG). However, each neuroimaging method has its own advantages and disadvantages (e.g., signal resolution, accessibility, etc.). Here, we describe a burgeoning technique of non-invasive optical neuroimaging—functional near-infrared spectroscopy (fNIRS)—and review its potential to address the clinical challenges of prolonged disorders of consciousness. We also outline the potential for simultaneous EEG to complement the fNIRS signal and suggest the future directions of research that are required in order to realize its clinical potential. PMID:29872420

  17. Large-scale functional brain network changes in taxi drivers: evidence from resting-state fMRI.

    PubMed

    Wang, Lubin; Liu, Qiang; Shen, Hui; Li, Hong; Hu, Dewen

    2015-03-01

    Driving a car in the environment is a complex behavior that involves cognitive processing of visual information to generate the proper motor outputs and action controls. Previous neuroimaging studies have used virtual simulation to identify the brain areas that are associated with various driving-related tasks. Few studies, however, have focused on the specific patterns of functional organization in the driver's brain. The aim of this study was to assess differences in the resting-state networks (RSNs) of the brains of drivers and nondrivers. Forty healthy subjects (20 licensed taxi drivers, 20 nondrivers) underwent an 8-min resting-state functional MRI acquisition. Using independent component analysis, three sensory (primary and extrastriate visual, sensorimotor) RSNs and four cognitive (anterior and posterior default mode, left and right frontoparietal) RSNs were retrieved from the data. We then examined the group differences in the intrinsic brain activity of each RSN and in the functional network connectivity (FNC) between the RSNs. We found that the drivers had reduced intrinsic brain activity in the visual RSNs and reduced FNC between the sensory RSNs compared with the nondrivers. The major finding of this study, however, was that the FNC between the cognitive and sensory RSNs became more positively or less negatively correlated in the drivers relative to that in the nondrivers. Notably, the strength of the FNC between the left frontoparietal and primary visual RSNs was positively correlated with the number of taxi-driving years. Our findings may provide new insight into how the brain supports driving behavior. © 2014 Wiley Periodicals, Inc.

  18. Cerebrospinal Fluid Biomarkers and Reserve Variables as Predictors of Future “Non-Cognitive” Outcomes of Alzheimer’s Disease

    PubMed Central

    Ingber, Adam P.; Hassenstab, Jason; Fagan, Anne M.; Benzinger, Tammie L.S.; Grant, Elizabeth A.; Holtzman, David M.; Morris, John C.; Roe, Catherine M.

    2016-01-01

    Background The influence of reserve variables and Alzheimer’s disease (AD) biomarkers on cognitive test performance has been fairly well-characterized. However, less is known about the influence of these factors on “non-cognitive” outcomes, including functional abilities and mood. Objective We examined whether cognitive and brain reserve variables mediate how AD biomarker levels in cognitively normal persons predict future changes in function, mood, and neuropsychiatric behavior. Methods Non-cognitive outcomes were examined in 328 individuals 50 years and older enrolled in ongoing studies of aging and dementia at the Knight Alzheimer Disease Research Center (ADRC). All participants were cognitively normal at baseline (Clinical Dementia Rating [CDR] 0), completed cerebrospinal fluid (CSF) and structural neuroimaging studies within one year of baseline, and were followed for an average of 4.6 annual visits. Linear mixed effects models explored how cognitive reserve and brain reserve variables mediate the relationships between AD biomarker levels and changes in function, mood, and neuropsychiatric behavior in cognitively normal participants. Results Education levels did not have a significant effect on predicting non-cognitive decline. However, participants with smaller brain volumes exhibited the worst outcomes on measures of mood, functional abilities, and behavioral disturbance. This effect was most pronounced in individuals who also had abnormal CSF biomarkers. Conclusions The findings suggest that brain reserve plays a stronger, or earlier, role than cognitive reserve in protecting against non-cognitive impairment in AD. PMID:27104893

  19. Double Dissociation in the Anatomy of Socioemotional Disinhibition and Executive Functioning in Dementia

    PubMed Central

    Krueger, Casey E.; Laluz, Victor; Rosen, Howard J.; Neuhaus, John M.; Miller, Bruce L.; Kramer, Joel H.

    2010-01-01

    Objective To determine if socioemotional disinhibition and executive dysfunction are related to dissociable patterns of brain atrophy in neurodegenerative disease. Previous studies have indicated that behavioral and cognitive dysfunction in neurodegenerative disease are linked to atrophy in different parts of the frontal lobe, but these prior studies did not establish that these relationships were specific, which would best be demonstrated by a double dissociation. Method Subjects included 157 patients with neurodegenerative disease. A semi-automated parcellation program (Freesurfer) was used to generate regional cortical volumes from structural MRI scans. Regions of interest (ROIs) included anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), middle frontal gyrus (MFG) and inferior frontal gyrus (IFG). Socioemotional disinhibition was measured using the Neuropsychiatric Inventory. Principal component analysis including three tasks of executive function (EF; verbal fluency, Stroop Interference, modified Trails) was used to generate a single factor score to represent EF. Results Partial correlations between ROIs, disinhibition, and EF were computed after controlling for total intracranial volume, MMSE, diagnosis, age, and education. Brain regions significantly correlated with disinhibition (ACC, OFC, IFG, and temporal lobes) and EF (MFG) were entered into separate hierarchical regressions to determine which brain regions predicted disinhibition and EF. OFC was the only brain region to significantly predict disinhibition and MFG significantly predicted executive functioning performance. A multivariate general linear model demonstrated a significant interaction between ROIs and cognitive-behavioral functions. Conclusions These results support a specific association between orbitofrontal areas and behavioral management as compared to dorsolateral areas and EF. PMID:21381829

  20. What can volumes reveal about human brain evolution? A framework for bridging behavioral, histometric, and volumetric perspectives

    PubMed Central

    de Sousa, Alexandra A.; Proulx, Michael J.

    2014-01-01

    An overall relationship between brain size and cognitive ability exists across primates. Can more specific information about neural function be gleaned from cortical area volumes? Numerous studies have found significant relationships between brain structures and behaviors. However, few studies have speculated about brain structure-function relationships from the microanatomical to the macroanatomical level. Here we address this problem in comparative neuroanatomy, where the functional relevance of overall brain size and the sizes of cortical regions have been poorly understood, by considering comparative psychology, with measures of visual acuity and the perception of visual illusions. We outline a model where the macroscopic size (volume or surface area) of a cortical region (such as the primary visual cortex, V1) is related to the microstructure of discrete brain regions. The hypothesis developed here is that an absolutely larger V1 can process more information with greater fidelity due to having more neurons to represent a field of space. This is the first time that the necessary comparative neuroanatomical research at the microstructural level has been brought to bear on the issue. The evidence suggests that as the size of V1 increases: the number of neurons increases, the neuron density decreases, and the density of neuronal connections increases. Thus, we describe how information about gross neuromorphology, using V1 as a model for the study of other cortical areas, may permit interpretations of cortical function. PMID:25009469

  1. Graph theoretical modeling of baby brain networks.

    PubMed

    Zhao, Tengda; Xu, Yuehua; He, Yong

    2018-06-12

    The human brain undergoes explosive growth during the prenatal period and the first few postnatal years, establishing an early infrastructure for the later development of behaviors and cognitions. Revealing the developmental rules during the early phrase is essential in understanding the emergence of brain function and the origin of developmental disorders. The graph-theoretical network modeling in combination with multiple neuroimaging probes provides an important research framework to explore early development of the topological wiring and organizational paradigms of the brain. Here, we reviewed studies which employed neuroimaging and graph-theoretical modeling to investigate brain network development from approximately 20 gestational weeks to 2 years of age. Specifically, the structural and functional brain networks have evolved to highly efficient topological architectures in the early stage; where the structural network remains ahead and paves the way for the development of functional network. The brain network develops in a heterogeneous order, from primary to higher-order systems and from a tendency of network segregation to network integration in the prenatal and postnatal periods. The early brain network topologies show abilities in predicting certain cognitive and behavior performance in later life, and their impairments are likely to continue into childhood and even adulthood. These macroscopic topological changes are found to be associated with possible microstructural maturations, such as axonal growth and myelinations. Collectively, this review provides a detailed delineation of the early changes of the baby brains in the graph-theoretical modeling framework, which opens up a new avenue to understand the developmental principles of the connectome. Copyright © 2018. Published by Elsevier Inc.

  2. Age-dependent effects of esculetin on mood-related behavior and cognition from stressed mice are associated with restoring brain antioxidant status.

    PubMed

    Martín-Aragón, Sagrario; Villar, Ángel; Benedí, Juana

    2016-02-04

    Dietary antioxidants might exert an important role in the aging process by relieving oxidative damage, a likely cause of age-associated brain dysfunctions. This study aims to investigate the influence of esculetin (6,7-dihydroxycoumarin), a naturally occurring antioxidant in the diet, on mood-related behaviors and cognitive function and its relation with age and brain oxidative damage. Behavioral tests were employed in 11-, 17- and 22-month-old male C57BL/6J mice upon an oral 35day-esculetin treatment (25mg/kg). Activity of antioxidant enzymes, GSH and GSSG levels, GSH/GSSG ratio, and mitochondrial function were analyzed in brain cortex at the end of treatment in order to assess the oxidative status related to mouse behavior. Esculetin treatment attenuated the increased immobility time and enhanced the diminished climbing time in the forced swim task elicited by acute restraint stress (ARS) in the 11- and 17-month-old mice versus their counterpart controls. Furthermore, ARS caused an impairment of contextual memory in the step-through passive avoidance both in mature adult and aged mice which was partially reversed by esculetin only in the 11-month-old mice. Esculetin was effective to prevent the ARS-induced oxidative stress mostly in mature adult mice by restoring antioxidant enzyme activities, augmenting the GSH/GSSG ratio and increasing cytochrome c oxidase (COX) activity in cortex. Modulation of the mood-related behavior and cognitive function upon esculetin treatment in a mouse model of ARS depends on age and is partly due to the enhancement of redox status and levels of COX activity in cortex. Copyright © 2015. Published by Elsevier Inc.

  3. Dance and the brain: a review.

    PubMed

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2015-03-01

    Dance is a universal form of human expression that offers a rich source for scientific study. Dance provides a unique opportunity to investigate brain plasticity and its interaction with behavior. Several studies have investigated the behavioral correlates of dance, but less is known about the brain basis of dance. Studies on dance observation suggest that long- and short-term dance training affect brain activity in the action observation and simulation networks. Despite methodological challenges, the feasibility of conducting neuroimaging while dancing has been demonstrated, and several brain regions have been implicated in dance execution. Preliminary work from our laboratory suggests that long-term dance training changes both gray and white matter structure. This article provides a critical summary of work investigating the neural correlates of dance. It covers functional neuroimaging studies of dance observation and performance as well as structural neuroimaging studies of expert dancers. To stimulate ongoing dialogue between dance and science, future directions in dance and brain research as well as implications are discussed. Research on the neuroscience of dance will lead to a better understanding of brain-behavior relationships and brain plasticity in experts and nonexperts and can be applied to the development of dance-based therapy programs. © 2014 New York Academy of Sciences.

  4. Parenting Style Is Related to Executive Dysfunction After Brain Injury in Children

    PubMed Central

    Potter, Jennifer L.; Wade, Shari L.; Walz, Nicolay C.; Cassedy, Amy; Yeates, Keith O.; Stevens, M. Hank; Taylor, H. Gerry

    2013-01-01

    Objective The goal of this study was to examine how parenting style (authoritarian, authoritative, permissive) and family functioning are related to behavioral aspects of executive function following traumatic brain injury (TBI) in young children. Method Participants included 75 children with TBI and 97 children with orthopedic injuries (OI), ages 3–7 years at injury. Pre-injury parenting behavior and family functioning were assessed shortly after injury, and postinjury executive functions were assessed using the Behavior Rating Inventory of Executive Functioning (BRIEF; Gioia & Isquith, 2004) at 6, 12, and 18 months postinjury. Mixed model analyses, using pre-injury executive functioning (assessed by the BRIEF at baseline) as a covariate, examined the relationship of parenting style and family characteristics to executive functioning in children with moderate and severe TBI compared to OI. Results Among children with moderate TBI, higher levels of authoritarian parenting were associated with greater executive difficulties at 12 and 18 months following injury. Permissive and authoritative parenting styles were not significantly associated with postinjury executive skills. Finally, fewer family resources predicted more executive deficits across all of the groups, regardless of injury type. Conclusion These findings provide additional evidence regarding the role of the social and familial environment in emerging behavior problems following childhood TBI. PMID:21928918

  5. APPROACHING THE BIOLOGY OF HUMAN PARENTAL ATTACHMENT: BRAIN IMAGING, OXYTOCIN AND COORDINATED ASSESSMENTS OF MOTHERS AND FATHERS

    PubMed Central

    Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM

    2014-01-01

    Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits toward long-term influence of early-life experiences on offspring. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Known deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses – commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain, and consider a current model and future directions that may have profound implications for intervention long term outcomes in families across risk and resilience profiles. PMID:24637261

  6. Anatomical connectivity influences both intra- and inter-brain synchronizations.

    PubMed

    Dumas, Guillaume; Chavez, Mario; Nadel, Jacqueline; Martinerie, Jacques

    2012-01-01

    Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.

  7. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees.

    PubMed

    Sen Sarma, Moushumi; Whitfield, Charles W; Robinson, Gene E

    2007-06-29

    Honey bees are known for several striking social behaviors, including a complex pattern of behavioral maturation that gives rise to an age-related colony division of labor and a symbolic dance language, by which successful foragers communicate the location of attractive food sources to their nestmates. Our understanding of honey bees is mostly based on studies of the Western honey bee, Apis mellifera, even though there are 9-10 other members of genus Apis, showing interesting variations in social behavior relative to A. mellifera. To facilitate future in-depth genomic and molecular level comparisons of behavior across the genus, we performed a microarray analysis of brain gene expression for A. mellifera and three key species found in Asia, A. cerana, A. florea and A. dorsata. For each species we compared brain gene expression patterns between foragers and adult one-day-old bees on an A. mellifera cDNA microarray and calculated within-species gene expression ratios to facilitate cross-species analysis. The number of cDNA spots showing hybridization fluorescence intensities above the experimental threshold was reduced by an average of 16% in the Asian species compared to A. mellifera, but an average of 71% of genes on the microarray were available for analysis. Brain gene expression profiles between foragers and one-day-olds showed differences that are consistent with a previous study on A. mellifera and were comparable across species. Although 1772 genes showed significant differences in expression between foragers and one-day-olds, only 218 genes showed differences in forager/one-day-old expression between species (p < 0.001). Principal Components Analysis revealed dominant patterns of expression that clearly distinguished between the four species but did not reflect known differences in behavior and ecology. There were species differences in brain expression profiles for functionally related groups of genes. We conclude that the A. mellifera cDNA microarray can be used effectively for cross-species comparisons within the genus. Our results indicate that there is a widespread conservation of the molecular processes in the honey bee brain underlying behavioral maturation. Species differences in brain expression profiles for functionally related groups of genes provide possible clues to the basis of behavioral variation in the genus.

  8. Conflict-related anterior cingulate functional connectivity is associated with past suicidal ideation and behavior in recent-onset schizophrenia.

    PubMed

    Minzenberg, Michael J; Lesh, Tyler; Niendam, Tara; Yoon, Jong H; Cheng, Yaoan; Rhoades, Remy; Carter, Cameron S

    2015-06-01

    Suicide is highly prevalent in schizophrenia (SZ), yet it remains unclear how suicide risk factors such as past suicidal ideation or behavior relate to brain function. Circuits modulated by the prefrontal cortex (PFC) are altered in SZ, including in dorsal anterior cingulate cortex (dACC) during conflict-monitoring (an important component of cognitive control), and dACC changes are observed in post-mortem studies of heterogeneous suicide victims. We tested whether conflict-related dACC functional connectivity is associated with past suicidal ideation and behavior in SZ. 32 patients with recent-onset of DSM-IV-TR-defined SZ were evaluated with the Columbia Suicide Severity Rating Scale and functional MRI during cognitive control (AX-CPT) task performance. Group-level regression models relating past history of suicidal ideation or behavior to dACC-seeded functional connectivity during conflict-monitoring controlled for severity of depression, psychosis and impulsivity. Past suicidal ideation was associated with relatively higher functional connectivity of the dACC with the precuneus during conflict-monitoring. Intensity of worst-point past suicidal ideation was associated with relatively higher dACC functional connectivity in medial parietal lobe and striato-thalamic nuclei. In contrast, among those with past suicidal ideation (n = 17), past suicidal behavior was associated with lower conflict-related dACC connectivity with multiple lateral and medial PFC regions, parietal and temporal cortical regions. This study provides unique evidence that recent-onset schizophrenia patients with past suicidal ideation or behavior show altered dACC-based circuit function during conflict-monitoring. Suicidal ideation and suicidal behavior have divergent patterns of associated dACC functional connectivity, suggesting a differing pattern of conflict-related brain dysfunction with these two distinct features of suicide phenomenology. Published by Elsevier Ltd.

  9. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior

    PubMed Central

    Picciotto, Marina R.; Higley, Michael J.; Mineur, Yann S.

    2012-01-01

    Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss the consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on the site of release, the receptor subtypes, and the target neuronal population, however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. PMID:23040810

  10. Fetal Brain Behavior and Cognitive Development.

    ERIC Educational Resources Information Center

    Joseph, R.

    2000-01-01

    Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…

  11. Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments.

    PubMed

    Shultz, Sandy R; MacFabe, Derrick F; Foley, Kelly A; Taylor, Roy; Cain, Donald P

    2012-04-01

    Sub-concussive brain injuries may result in neurophysiological changes, cumulative effects, and neurodegeneration. The current study investigated the effects of a mild lateral fluid percussion injury (0.50-0.99 atm) on rat behavior and neuropathology to address the need to better understand sub-concussive brain injury. Male Long-Evans rats received either a single mild lateral fluid percussion injury or a sham-injury, followed by either a short (24 h) or long (4 weeks) recovery period. After recovery, rats underwent extensive behavioral testing consisting of tasks for rodent cognition, anxiety- and depression-like behaviors, social behavior, and sensorimotor function. At the completion of behavioral testing rats were sacrificed and brains were examined immunohistochemically with markers for neuroinflammation and axonal injury. No significant group differences were found on behavioral and axonal injury measures. However, rats given one mild fluid percussion injury displayed an acute neuroinflammatory response, consisting of increased microglia/macrophages and reactive astrogliosis, at 4 days post-injury. Neuroinflammation is a mechanism with the potential to contribute to the cumulative and neurodegenerative effects of repeated sub-concussive injuries. The current findings are consistent with findings in humans experiencing a sub-concussive blow, and provide support for the use of mild lateral fluid percussion injury in the rat as a model of sub-concussive brain injury. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Working memory brain activity and capacity link MAOA polymorphism to aggressive behavior during development

    PubMed Central

    Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T

    2012-01-01

    A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene–brain–behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ∼6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development. PMID:22832821

  13. [Behavior and functional state of the dopaminergic brain system in pups of depressive WAG/Rij rats].

    PubMed

    Malyshev, A V; Razumkina, E V; Rogozinskaia, É Ia; Sarkisova, K Iu; Dybynin, V A

    2014-01-01

    In the present work, it has been studied for the first time behavior and functional state of the dopaminergic brain system in pups of "depressive" WAG/Rij rats. Offspring of "depressive" WAG/Rij rats at age of 6-16 days compared with offspring of "normal" (non-depressed) outbred rats of the same age exhibited reduced rate of pshychomotor development, lower body weight, attenuation in integration of coordinated reflexes and vestibular function (greater latency of righting reflex, abnormal negative geotaxis), hyper-reactivity to tactile stimulation, reduced motivation to contact with mother (reduced infant-mother attachment). Differences in a nest seeking response induced by olfactory stimuli (olfactory discrimination test) and in locomotor activity (tests "gait reflex" and "small open field") have not been revealed. Acute injection of the antagonist of D2-like dopamine receptors clebopride 20 min before testing aggravated mother-oriented behavior in 15-days-old pups of both "depressive" and "non-depressive" rats. However this effect was greater in pups of "depressive" WAG/Rij rats compared with pups of "normal" rats that may indicate reduced functional activity of the dopaminergic brain system in offspring of "depressive" rats. It is proposed that reduced attachment behavior in pups of "depressive" WAG/Rij rats might be a consequence of maternal depression and associated with it reduced maternal care. Moreover, reduced attachment behavior in pups of "depressive" rats might be an early precursor (a marker) of depressive-like pathology which become apparent later in life (approximately at age of 3 months).

  14. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits.

    PubMed

    Salamone, J D; Correa, M; Farrar, A; Mingote, S M

    2007-04-01

    Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation. The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry. The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior. Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression.

  15. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Surviving a brain tumor in childhood: impact on family functioning in adolescence.

    PubMed

    Beek, Laura; Schappin, Renske; Gooskens, Rob; Huisman, Jaap; Jongmans, Marian

    2015-01-01

    To investigate family functioning in families with an adolescent survivor of a pediatric brain tumor. We explored whether adolescent, parent, disease and treatment factors, and demographic characteristics predicted family functioning. In this cross-sectional study, 45 adolescent survivors of pediatric brain tumors and their parents completed self-report questionnaires on family functioning, and emotional and behavioral problems. Parents completed questionnaires on their own mental health and the burden of treatment. Compared to general population norms, adolescents reported higher levels of cohesion, expressiveness, organization, control, family values and social orientation, and absence of conflict. Parents reported higher levels of social orientation and lower levels of conflict and family values. The only predictor of family functioning was current age of the adolescent; older adolescents reported less family conflict. No relation was found between family functioning and emotional and behavioral problems, disease- or treatment factors, and demographic variables. In this exploratory study, adolescent survivors of a pediatric brain tumor characterized their families by higher levels of cohesion, expressiveness, organization, control, family values and social orientation, and absence of conflict, which differs from the more normative view held by their parents. A higher adolescent age predicted less family conflict, which may indicate deviant autonomy development in these survivors. Because of limitations of this study, conclusions should be considered provisional; they provide clues for further research in this area. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Right brain, left brain in depressive disorders: Clinical and theoretical implications of behavioral, electrophysiological and neuroimaging findings.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; McGrath, Patrick J

    2017-07-01

    The right and left side of the brain are asymmetric in anatomy and function. We review electrophysiological (EEG and event-related potential), behavioral (dichotic and visual perceptual asymmetry), and neuroimaging (PET, MRI, NIRS) evidence of right-left asymmetry in depressive disorders. Recent electrophysiological and fMRI studies of emotional processing have provided new evidence of altered laterality in depressive disorders. EEG alpha asymmetry and neuroimaging findings at rest and during cognitive or emotional tasks are consistent with reduced left prefrontal activity in depressed patients, which may impair downregulation of amygdala response to negative emotional information. Dichotic listening and visual hemifield findings for non-verbal or emotional processing have revealed abnormal perceptual asymmetry in depressive disorders, and electrophysiological findings have shown reduced right-lateralized responsivity to emotional stimuli in occipitotemporal or parietotemporal cortex. We discuss models of neural networks underlying these alterations. Of clinical relevance, individual differences among depressed patients on measures of right-left brain function are related to diagnostic subtype of depression, comorbidity with anxiety disorders, and clinical response to antidepressants or cognitive behavioral therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Advances in fMRI Real-Time Neurofeedback.

    PubMed

    Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo

    2017-12-01

    Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Impact of Short Social Training on Prosocial Behaviors: An fMRI Study.

    PubMed

    Lukinova, Evgeniya; Myagkov, Mikhail

    2016-01-01

    Efficient brain-computer interfaces (BCIs) are in need of knowledge about the human brain and how it interacts, plays games, and socializes with other brains. A breakthrough can be achieved by revealing the microfoundations of sociality, an additional component of the utility function reflecting the value of contributing to group success derived from social identity. Building upon our previous behavioral work, we conduct a series of functional magnetic resonance imaging (fMRI) experiments (N = 10 in the Pilot Study and N = 15 in the Main Study) to measure whether and how sociality alters the functional activation of and connectivity between specific systems in the brain. The overarching hypothesis of this study is that sociality, even in a minimal form, serves as a natural mechanism of sustainable cooperation by fostering interaction between brain regions associated with social cognition and those related to value calculation. We use group-based manipulations to induce varying levels of sociality and compare behavior in two social dilemmas: Prisoner's Dilemma and variations of Ultimatum Game. We find that activation of the right inferior frontal gyrus, a region previously associated with cognitive control and modulation of the valuation system, is correlated with activity in the medial prefrontal cortex (mPFC) to a greater degree when participants make economic decisions in a game with an acquaintance, high sociality condition, compared to a game with a random individual, low sociality condition. These initial results suggest a specific biological mechanism through which sociality facilitates cooperation, fairness and provision of public goods at the cost of individual gain. Future research should examine neural dynamics in the brain during the computation of utility in the context of strategic games that involve social interaction for a larger sample of subjects.

  20. Mechanisms of interactive specialization and emergence of functional brain circuits supporting cognitive development in children

    NASA Astrophysics Data System (ADS)

    Battista, Christian; Evans, Tanya M.; Ngoon, Tricia J.; Chen, Tianwen; Chen, Lang; Kochalka, John; Menon, Vinod

    2018-01-01

    Cognitive development is thought to depend on the refinement and specialization of functional circuits over time, yet little is known about how this process unfolds over the course of childhood. Here we investigated growth trajectories of functional brain circuits and tested an interactive specialization model of neurocognitive development which posits that the refinement of task-related functional networks is driven by a shared history of co-activation between cortical regions. We tested this model in a longitudinal cohort of 30 children with behavioral and task-related functional brain imaging data at multiple time points spanning childhood and adolescence, focusing on the maturation of parietal circuits associated with numerical problem solving and learning. Hierarchical linear modeling revealed selective strengthening as well as weakening of functional brain circuits. Connectivity between parietal and prefrontal cortex decreased over time, while connectivity within posterior brain regions, including intra-hemispheric and inter-hemispheric parietal connectivity, as well as parietal connectivity with ventral temporal occipital cortex regions implicated in quantity manipulation and numerical symbol recognition, increased over time. Our study provides insights into the longitudinal maturation of functional circuits in the human brain and the mechanisms by which interactive specialization shapes children's cognitive development and learning.

  1. Integrative Analysis of Genetic, Genomic, and Phenotypic Data for Ethanol Behaviors: A Network-Based Pipeline for Identifying Mechanisms and Potential Drug Targets.

    PubMed

    Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F

    2017-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease.

  2. INTEGRATIVE ANALYSIS OF GENETIC, GENOMIC AND PHENOTYPIC DATA FOR ETHANOL BEHAVIORS: A NETWORK-BASED PIPELINE FOR IDENTIFYING MECHANISMS AND POTENTIAL DRUG TARGETS

    PubMed Central

    Bogenpohl, James W.; Mignogna, Kristin M.; Smith, Maren L.; Miles, Michael F.

    2016-01-01

    Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce non-biased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease. PMID:27933543

  3. Vulnerability to omega-3 deprivation in a mouse model of NMDA receptor hypofunction.

    PubMed

    Islam, Rehnuma; Trépanier, Marc-Olivier; Milenkovic, Marija; Horsfall, Wendy; Salahpour, Ali; Bazinet, Richard P; Ramsey, Amy J

    2017-01-01

    Several studies have found decreased levels of ω-3 polyunsaturated fatty acids in the brain and blood of schizophrenia patients. Furthermore, dietary ω-3 supplements may improve schizophrenia symptoms and delay the onset of first-episode psychosis. We used an animal model of NMDA receptor hypofunction, NR1KD mice, to understand whether changes in glutamate neurotransmission could lead to changes in brain and serum fatty acids. We further asked whether dietary manipulations of ω-3, either depletion or supplementation, would affect schizophrenia-relevant behaviors of NR1KD mice. We discovered that NR1KD mice have elevated brain levels of ω-6 fatty acids regardless of their diet. While ω-3 supplementation did not improve any of the NR1KD behavioral abnormalities, ω-3 depletion exacerbated their deficits in executive function. Omega-3 depletion also caused extreme mortality among male mutant mice, with 75% mortality rate by 12 weeks of age. Our studies show that alterations in NMDAR function alter serum and brain lipid composition and make the brain more vulnerable to dietary ω-3 deprivation.

  4. A small frog that makes a big difference: brain wave testing of TV advertisements.

    PubMed

    Ohme, Rafal; Matukin, Michal

    2012-01-01

    It is important for the marketing industry to better understand the role of the unconscious and emotions in advertising communication and shopping behavior. Yet, traditional consumer research is not enough for such a purpose. Conventional paper-and-pencil or verbal declarations favor conscious pragmatism and functionality as the principles underlying consumer decisions and motives. These approaches should be combined with an emerging discipline (consumer neuroscience or neuromarketing) to examine the brain and its functioning in the context of consumer choices. It has been widely acknowledged that patterns of brain activity are closely related to consumers cognition and behavior. Thus, the analysis of consumers neurophysiology may increase the understanding of how consumers process incoming information and how they use their memory and react emotionally (See "Three Types of Brain Wave Research on TV Advertisements"): Moreover, as the majority of consumer mental processes occur below the level of conscious awareness, observations of the brain reactions enable researchers to reach the very core (which is consciously inaccessible) foundations of consumer decisions, emotions, motivations, and preferences.

  5. A brief historical perspective on the advent of brain oscillations in the biological and psychological disciplines.

    PubMed

    Karakaş, Sirel; Barry, Robert J

    2017-04-01

    We aim to review the historical evolution that has led to the study of the brain (body)-mind relationship based on brain oscillations, to outline and illustrate the principles of neuro-oscillatory dynamics using research findings. The paper addresses the relevant developments in behavioral sciences after Wundt established the science of psychology, and developments in the neurosciences after alpha and gamma oscillations were discovered by Berger and Adrian, respectively. Basic neuroscientific studies have led to a number of principles: (1) spontaneous EEG is composed of a set of oscillatory components, (2) the brain responds with oscillatory activity, (3) poststimulus oscillatory activity is a function of prestimulus activity, (4) the brain response results from a superposition of oscillatory components, (5) there are multiplicities with regard to oscillations and functions, and (6) oscillations are spatially integrated. Findings of clinical studies suggest that oscillatory responses can serve as biomarkers for neuropsychiatric disorders. However, the field of psychology is still making limited use of neuro-oscillatory dynamics for a bio-behavioral understanding of cognitive-affective processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Information flow between interacting human brains: Identification, validation, and relationship to social expertise

    PubMed Central

    Bilek, Edda; Ruf, Matthias; Schäfer, Axel; Akdeniz, Ceren; Calhoun, Vince D.; Schmahl, Christian; Demanuele, Charmaine; Tost, Heike; Kirsch, Peter; Meyer-Lindenberg, Andreas

    2015-01-01

    Social interactions are fundamental for human behavior, but the quantification of their neural underpinnings remains challenging. Here, we used hyperscanning functional MRI (fMRI) to study information flow between brains of human dyads during real-time social interaction in a joint attention paradigm. In a hardware setup enabling immersive audiovisual interaction of subjects in linked fMRI scanners, we characterize cross-brain connectivity components that are unique to interacting individuals, identifying information flow between the sender’s and receiver’s temporoparietal junction. We replicate these findings in an independent sample and validate our methods by demonstrating that cross-brain connectivity relates to a key real-world measure of social behavior. Together, our findings support a central role of human-specific cortical areas in the brain dynamics of dyadic interactions and provide an approach for the noninvasive examination of the neural basis of healthy and disturbed human social behavior with minimal a priori assumptions. PMID:25848050

  7. The Effects of Long Duration Bed Rest on Brain Functional Connectivity and Sensorimotor Functioning

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; Castenada, R. Riascos; Kofman, I.; hide

    2016-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor functioning. Prolonged exposure to a head-down tilt (HDT) position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to HDT bed rest on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. To validate that our findings were not due to confounding factors such as time or task practice, we also acquired resting state functional magnetic resonance imaging (rs-fMRI) and behavioral measurements from 14 normative control participants at four time points. Bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Rs-fMRI and behavioral data were obtained at seven time points averaging around: 12 and 8 days prior to bed rest; 7, 50, and 70 days during bed rest; and 8 and 12 days after bed rest. 70 days of HDT bed rest resulted in significant increases in functional connectivity during bed rest followed by a reversal of changes in the post bed rest recovery period between motor cortical and somatosensory areas of the brain. In contrast, decreases in connectivity were observed between temporoparietal regions. Furthermore, post-hoc correlation analyses revealed a significant relationship between motor-somatosensory network connectivity and standing balance performance changes; participants that exhibited the greatest increases in connectivity strength showed the least deterioration in postural equilibrium with HDT bed rest. This suggests that neuroplastic processes may facilitate adaptation to the HDT bed rest environment. The findings from this study provide novel insights into the neurobiology and future risk assessments of long-duration spaceflight.

  8. Conjunctivally administered NGF antibody reduces pain sensitivity and anxiety-like behavioral responses in aged female mice.

    PubMed

    Berry, Alessandra; Aloe, Luigi; Rossi, Simona; Bonsignore, Luca T; Capone, Francesca; Alleva, Enrico; Cirulli, Francesca

    2010-07-11

    This study reports that peripheral administration of Nerve Growth Factor antibodies (ANA) affects behavior in aged female CD-1 mice. ANA increased the propensity of mice to stay and perform behaviors in the anxiogenic open arms of the maze, lowered pain sensitivity and reduced behavioral flexibility in a Morris water maze task, also reducing ChAT immunoreactivity in the basal forebrain. These findings support the hypothesis that topical eye application can represent an alternative route for delivering biologically active compounds into the brain allowing studying the role of NGF on brain cell function. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Non-fluent aphasia and neural reorganization after speech therapy: insights from human sleep electrophysiology and functional magnetic resonance imaging.

    PubMed

    Sarasso, S; Santhanam, P; Määtta, S; Poryazova, R; Ferrarelli, F; Tononi, G; Small, S L

    2010-09-01

    Stroke is associated with long-term functional deficits. Behavioral interventions are often effective in promoting functional recovery and plastic changes. Recent studies in normal subjects have shown that sleep, and particularly slow wave activity (SWA), is tied to local brain plasticity and may be used as a sensitive marker of local cortical reorganization after stroke. In a pilot study, we assessed the local changes induced by a single exposure to a therapeutic session of IMITATE (Intensive Mouth Imitation and Talking for Aphasia Therapeutic Effects), a behavioral therapy used for recovery in patients with post-stroke aphasia. In addition, we measured brain activity changes with functional magnetic resonance imaging (fMRI) in a language observation task before, during and after the full IMITATE rehabilitative program. Speech production improved both after a single exposure and the full therapy program as measured by the Western Aphasia Battery (WAB) Repetition subscale. We found that IMITATE induced reorganization in functionally-connected, speech-relevant areas in the left hemisphere. These preliminary results suggest that sleep hd-EEGs, and the topographical analysis of SWA parameters, are well suited to investigate brain plastic changes underpinning functional recovery in neurological disorders.

  10. Right frontal pole cortical thickness and executive functioning in children with traumatic brain injury: the impact on social problems.

    PubMed

    Levan, Ashley; Black, Garrett; Mietchen, Jonathan; Baxter, Leslie; Brock Kirwan, C; Gale, Shawn D

    2016-12-01

    Cognitive and social outcomes may be negatively affected in children with a history of traumatic brain injury (TBI). We hypothesized that executive function would mediate the association between right frontal pole cortical thickness and problematic social behaviors. Child participants with a history of TBI were recruited from inpatient admissions for long-term follow-up (n = 23; average age = 12.8, average time post-injury =3.2 years). Three measures of executive function, the Trail Making Test, verbal fluency test, and the Conners' Continuous Performance Test-Second edition (CPT-II), were administered to each participant while caregivers completed the Childhood Behavior Checklist (CBCL). All participants underwent brain magnetic resonance imaging following cognitive testing. Regression analysis demonstrated right frontal pole cortical thickness significantly predicted social problems. Measures of executive functioning also significantly predicted social problems; however, the mediation model testing whether executive function mediated the relationship between cortical thickness and social problems was not statistically significant. Right frontal pole cortical thickness and omission errors on the CPT-II predicted Social Problems on the CBCL. Results did not indicate that the association between cortical thickness and social problems was mediated by executive function.

  11. Cerebral energy metabolism and the brain's functional network architecture: an integrative review.

    PubMed

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-09-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.

  12. Hemisphere- and gender-related differences in small-world brain networks: a resting-state functional MRI study.

    PubMed

    Tian, Lixia; Wang, Jinhui; Yan, Chaogan; He, Yong

    2011-01-01

    We employed resting-state functional MRI (R-fMRI) to investigate hemisphere- and gender-related differences in the topological organization of human brain functional networks. Brain networks were first constructed by measuring inter-regional temporal correlations of R-fMRI data within each hemisphere in 86 young, healthy, right-handed adults (38 males and 48 females) followed by a graph-theory analysis. The hemispheric networks exhibit small-world attributes (high clustering and short paths) that are compatible with previous results in the whole-brain functional networks. Furthermore, we found that compared with females, males have a higher normalized clustering coefficient in the right hemispheric network but a lower clustering coefficient in the left hemispheric network, suggesting a gender-hemisphere interaction. Moreover, we observed significant hemisphere-related differences in the regional nodal characteristics in various brain regions, such as the frontal and occipital regions (leftward asymmetry) and the temporal regions (rightward asymmetry), findings that are consistent with previous studies of brain structural and functional asymmetries. Together, our results suggest that the topological organization of human brain functional networks is associated with gender and hemispheres, and they provide insights into the understanding of functional substrates underlying individual differences in behaviors and cognition. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. An Evolutionary Game Theory Model of Spontaneous Brain Functioning.

    PubMed

    Madeo, Dario; Talarico, Agostino; Pascual-Leone, Alvaro; Mocenni, Chiara; Santarnecchi, Emiliano

    2017-11-22

    Our brain is a complex system of interconnected regions spontaneously organized into distinct networks. The integration of information between and within these networks is a continuous process that can be observed even when the brain is at rest, i.e. not engaged in any particular task. Moreover, such spontaneous dynamics show predictive value over individual cognitive profile and constitute a potential marker in neurological and psychiatric conditions, making its understanding of fundamental importance in modern neuroscience. Here we present a theoretical and mathematical model based on an extension of evolutionary game theory on networks (EGN), able to capture brain's interregional dynamics by balancing emulative and non-emulative attitudes among brain regions. This results in the net behavior of nodes composing resting-state networks identified using functional magnetic resonance imaging (fMRI), determining their moment-to-moment level of activation and inhibition as expressed by positive and negative shifts in BOLD fMRI signal. By spontaneously generating low-frequency oscillatory behaviors, the EGN model is able to mimic functional connectivity dynamics, approximate fMRI time series on the basis of initial subset of available data, as well as simulate the impact of network lesions and provide evidence of compensation mechanisms across networks. Results suggest evolutionary game theory on networks as a new potential framework for the understanding of human brain network dynamics.

  14. Delay discounting differences in brain activation, connectivity, and structure in individuals with addiction: a systematic review protocol.

    PubMed

    Owens, Max M; Amlung, Michael T; Beach, Steven R H; Sweet, Lawrence H; MacKillop, James

    2017-07-11

    Delayed reward discounting (DRD), the degree to which future rewards are discounted relative to immediate rewards, is used as an index of impulsive decision-making and has been associated with a number of problematic health behaviors. Given the robust behavioral association between DRD and addictive behavior, there is an expanding literature investigating the differences in the functional and structural correlates of DRD in the brain between addicted and healthy individuals. However, there has yet to be a systematic review which characterizes differences in regional brain activation, functional connectivity, and structure and places them in the larger context of the DRD literature. The objective of this systematic review is to summarize and critically appraise the existing literature examining differences between addicted and healthy individuals in the neural correlates of DRD using magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI). A systematic search strategy will be implemented that uses Boolean search terms in PubMed/MEDLINE and PsycINFO, as well as manual search methods, to identify the studies comprehensively. This review will include studies using MRI or fMRI in humans to directly compare brain activation, functional connectivity, or structure in relation to DRD between addicted and healthy individuals or continuously assess addiction severity in the context of DRD. Two independent reviewers will determine studies that meet the inclusion criteria for this review, extract data from included studies, and assess the quality of included studies using the Grading of Recommendations Assessment, Development and Evaluation framework. Then, narrative review will be used to explicate the differences in structural and functional correlates of DRD implicated by the literature and assess the strength of evidence for this conclusion. This review will provide a needed critical exegesis of the MRI studies that have been conducted investigating brain differences in addictive behavior in relation to healthy samples in the context of DRD. This will provide clarity on the elements of neural activation, connectivity, and structure that are most implicated in the differences in DRD seen in addicted individuals. PROSPERO CRD42017056857.

  15. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae

    PubMed Central

    Pelkowski, Sean D.; Kapoor, Mrinal; Richendrfer, Holly A.; Wang, Xingyue; Colwill, Ruth M.; Creton, Robbert

    2011-01-01

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image twelve multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red ‘bouncing ball’ stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. PMID:21549762

  16. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae.

    PubMed

    Pelkowski, Sean D; Kapoor, Mrinal; Richendrfer, Holly A; Wang, Xingyue; Colwill, Ruth M; Creton, Robbert

    2011-09-30

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image 12 multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red 'bouncing ball' stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Methamphetamine Abuse and Impairment of Social Functioning: A Review of the Underlying Neurophysiological Causes and Behavioral Implications

    ERIC Educational Resources Information Center

    Homer, Bruce D.; Solomon, Todd M.; Moeller, Robert W.; Mascia, Amy; DeRaleau, Lauren; Halkitis, Perry N.

    2008-01-01

    The highly addictive drug methamphetamine has been associated with impairments in social cognitions as evidenced by changes in users' behaviors. Physiological changes in brain structure and functioning, particularly in the frontal lobe, have also been identified. The authors propose a biopsychosocial approach to understanding the effects of…

  18. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  19. Quantitative Tractography and Volumetric MRI in Blast and Blunt Force TBI: Predictors of Neurocognitive and Behavioral Outcome

    DTIC Science & Technology

    2016-10-01

    are related to mechanism of injury as well as white matter integrity using diffusion tensor imaging (DTI). We are also collecting and analyzing...APOE ε4] and brain-derived neurotrophic factor [BDNF]) to brain integrity , neuropsychological functioning, and neurobehavioral outcome. 15. SUBJECT...contribution of genetic factors (Apolipoprotein-E ε-4 [APOE ε4] and brain-derived neurotrophic factor [BDNF]) to brain integrity , neuropsychological

  20. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction

    PubMed Central

    Dang, Baoqi; Chen, Wenli; He, Weichun

    2017-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability. Worldwide, it is the leading cause of disability in the under 40s. Behavioral problems, mood, cognition, particularly memory, attention, and executive function are commonly impaired by TBI. Spending to assist, TBI survivors with disabilities are estimated to be costly per year. Such impaired functional outcomes following TBI can be improved via various rehabilitative approaches. The objective of the present paper is to review the current rehabilitation treatment of traumatic brain injury in adults. PMID:28491478

  1. [Effectiveness of music in brain rehabilitation. A systematic review].

    PubMed

    Sihvonen, Aleksi J; Leo, Vera; Särkämö, Teppo; Soinila, Seppo

    2014-01-01

    There is no curative treatment for diseases causing brain injury. Music causes extensive activation of the brain, promoting the repair of neural systems. Addition of music listening to rehabilitation enhances the regulation or motor functions in Parkinson and stroke patients, accelerates the recovery of speech disorder and cognitive injuries after stroke, and decreases the behavioral disorders of dementia patients. Music enhances the ability to concentrate and decreases mental confusion. The effect of music can also be observed as structural and functional changes of the brain. The effect is based, among other things, on lessening of physiologic stress and depression and on activation of the dopaminergic mesolimbic system.

  2. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain.

    PubMed

    Choe, Katrina Y; Sanchez, Carlos F; Harris, Neil G; Otis, Thomas S; Mathews, Paul J

    2018-06-01

    Complex animal behavior is produced by dynamic interactions between discrete regions of the brain. As such, defining functional connections between brain regions is critical in gaining a full understanding of how the brain generates behavior. Evidence suggests that discrete regions of the cerebellar cortex functionally project to the forebrain, mediating long-range communication potentially important in motor and non-motor behaviors. However, the connectivity map remains largely incomplete owing to the challenge of driving both reliable and selective output from the cerebellar cortex, as well as the need for methods to detect region specific activation across the entire forebrain. Here we utilize a paired optogenetic and fMRI (ofMRI) approach to elucidate the downstream forebrain regions modulated by activating a region of the cerebellum that induces stereotypical, ipsilateral forelimb movements. We demonstrate with ofMRI, that activating this forelimb motor region of the cerebellar cortex results in functional activation of a variety of forebrain and midbrain areas of the brain, including the hippocampus and primary motor, retrosplenial and anterior cingulate cortices. We further validate these findings using optogenetic stimulation paired with multi-electrode array recordings and post-hoc staining for molecular markers of activated neurons (i.e. c-Fos). Together, these findings demonstrate that a single discrete region of the cerebellar cortex is capable of influencing motor output and the activity of a number of downstream forebrain as well as midbrain regions thought to be involved in different aspects of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Emerging roles for neurosteroids in sexual behavior and function.

    PubMed

    King, Steven R

    2008-01-01

    Although gonadal and adrenal steroids heavily impact sexual function at the level of the brain, the nervous system also produces its own steroids de novo that may regulate sexual behavior and reproduction. Current evidence points to important roles for neurosteroids in sexual and gender-typical behaviors, control of ovulation, and behaviors that strongly influence sexual interest and motivation like aggression, anxiety and depression. At the cellular level, neurosteroids act through stimulating rapid changes in excitability and direct activation of membrane receptors in neurons. Thus, unlike peripheral steroids, neurosteroids can have immediate and specific effects on select neuronal pathways to regulate sexual function.

  4. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain's control circuit.

    PubMed

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank; Baler, Ruben

    2010-09-01

    Based on brain imaging findings, we present a model according to which addiction emerges as an imbalance in the information processing and integration among various brain circuits and functions. The dysfunctions reflect (a) decreased sensitivity of reward circuits, (b) enhanced sensitivity of memory circuits to conditioned expectations to drugs and drug cues, stress reactivity, and (c) negative mood, and a weakened control circuit. Although initial experimentation with a drug of abuse is largely a voluntary behavior, continued drug use can eventually impair neuronal circuits in the brain that are involved in free will, turning drug use into an automatic compulsive behavior. The ability of addictive drugs to co-opt neurotransmitter signals between neurons (including dopamine, glutamate, and GABA) modifies the function of different neuronal circuits, which begin to falter at different stages of an addiction trajectory. Upon exposure to the drug, drug cues or stress this results in unrestrained hyperactivation of the motivation/drive circuit that results in the compulsive drug intake that characterizes addiction.

  5. The busy social brain: evidence for automaticity and control in the neural systems supporting social cognition and action understanding.

    PubMed

    Spunt, Robert P; Lieberman, Matthew D

    2013-01-01

    Much social-cognitive processing is believed to occur automatically; however, the relative automaticity of the brain systems underlying social cognition remains largely undetermined. We used functional MRI to test for automaticity in the functioning of two brain systems that research has indicated are important for understanding other people's behavior: the mirror neuron system and the mentalizing system. Participants remembered either easy phone numbers (low cognitive load) or difficult phone numbers (high cognitive load) while observing actions after adopting one of four comprehension goals. For all four goals, mirror neuron system activation showed relatively little evidence of modulation by load; in contrast, the association of mentalizing system activation with the goal of inferring the actor's mental state was extinguished by increased cognitive load. These results support a dual-process model of the brain systems underlying action understanding and social cognition; the mirror neuron system supports automatic behavior identification, and the mentalizing system supports controlled social causal attribution.

  6. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses

    PubMed Central

    Low, Lucie A.; Bauer, Lucy C.; Pitcher, Mark H.; Bushnell, M. Catherine

    2016-01-01

    Abstract With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the “nociceptive” central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli. PMID:27058679

  7. Restraint training for awake functional brain scanning of rodents can cause long-lasting changes in pain and stress responses.

    PubMed

    Low, Lucie A; Bauer, Lucy C; Pitcher, Mark H; Bushnell, M Catherine

    2016-08-01

    With the increased interest in longitudinal brain imaging of awake rodents, it is important to understand both the short-term and long-term effects of restraint on sensory and emotional processing in the brain. To understand the effects of repeated restraint on pain behaviors and stress responses, we modeled a restraint protocol similar to those used to habituate rodents for magnetic resonance imaging scanning, and studied sensory sensitivity and stress hormone responses over 5 days. To uncover lasting effects of training, we also looked at responses to the formalin pain test 2 weeks later. We found that while restraint causes acute increases in the stress hormone corticosterone, it can also cause lasting reductions in nociceptive behavior in the formalin test, coupled with heightened corticosterone levels and increased activation of the "nociceptive" central nucleus of the amygdala, as seen by Fos protein expression. These results suggest that short-term repeated restraint, similar to that used to habituate rats for awake functional brain scanning, could potentially cause long-lasting changes in physiological and brain responses to pain stimuli that are stress-related, and therefore could potentially confound the functional activation patterns seen in awake rodents in response to pain stimuli.

  8. Genetics, Cognition, and Neurobiology of Schizotypal Personality: A Review of the Overlap with Schizophrenia

    PubMed Central

    Ettinger, Ulrich; Meyhöfer, Inga; Steffens, Maria; Wagner, Michael; Koutsouleris, Nikolaos

    2013-01-01

    Schizotypy refers to a set of temporally stable traits that are observed in the general population and that resemble the signs and symptoms of schizophrenia. Here, we review evidence from studies on genetics, cognition, perception, motor and oculomotor control, brain structure, brain function, and psychopharmacology in schizotypy. We specifically focused on identifying areas of overlap between schizotypy and schizophrenia. Evidence was corroborated that significant overlap exists between the two, covering the behavioral brain structural and functional as well molecular levels. In particular, several studies showed that individuals with high levels of schizotypal traits exhibit alterations in neurocognitive task performance and underlying brain function similar to the deficits seen in patients with schizophrenia. Studies of brain structure have shown both volume reductions and increase in schizotypy, pointing to schizophrenia-like deficits as well as possible protective or compensatory mechanisms. Experimental pharmacological studies have shown that high levels of schizotypy are associated with (i) enhanced dopaminergic response in striatum following administration of amphetamine and (ii) improvement of cognitive performance following administration of antipsychotic compounds. Together, this body of work suggests that schizotypy shows overlap with schizophrenia across multiple behavioral and neurobiological domains, suggesting that the study of schizotypal traits may be useful in improving our understanding of the etiology of schizophrenia. PMID:24600411

  9. Functional reorganization during cognitive function tasks in patients with amyotrophic lateral sclerosis.

    PubMed

    Keller, Jürgen; Böhm, Sarah; Aho-Özhan, Helena E A; Loose, Markus; Gorges, Martin; Kassubek, Jan; Uttner, Ingo; Abrahams, Sharon; Ludolph, Albert C; Lulé, Dorothée

    2018-06-01

    Cognitive deficits, especially in the domains of social cognition and executive function including verbal fluency, are common in amyotrophic lateral sclerosis (ALS) patients. There is yet sparse understanding of pathogenesis of the underlying, possibly adaptive, cortical patterns. To address this issue, 65 patients with ALS and 33 age-, gender- and education-matched healthy controls were tested on cognitive and behavioral deficits with the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Using functional magnetic resonance imaging (fMRI), cortical activity during social cognition and executive function tasks (theory of mind, verbal fluency, alternation) adapted from the ECAS was determined in a 3 Tesla scanner. Compared to healthy controls, ALS patients performed worse in the ECAS overall (p < 0.001) and in all of its subdomains (p < 0.02), except memory. Imaging revealed altered cortical activation during all tasks, with patients consistently showing a hyperactivation in relevant brain areas compared to healthy controls. Additionally, cognitively high performing ALS patients consistently exhibited more activation in frontal brain areas than low performing patients and behaviorally unimpaired patients presented with more neuronal activity in orbitofrontal areas than behaviorally impaired patients. In conclusion, hyperactivation in fMRI cognitive tasks seems to represent an early adaptive process to overcome neuronal cell loss in relevant brain areas. The hereby presented cortical pattern change might suggest that, once this loss passes a critical threshold and no cortical buffering is possible, clinical representation of cognitive and behavioral impairment evolves. Future studies might shed light on the pattern of cortical pattern change in the course of ALS.

  10. Enhancing health leadership performance using neurotherapy.

    PubMed

    Swingle, Paul G; Hartney, Elizabeth

    2018-05-01

    The discovery of neuroplasticity means the brain can change, functionally, in response to the environment and to learning. While individuals can develop harmful patterns of brain activity in response to stressors, they can also learn to modify or control neurological conditions associated with specific behaviors. Neurotherapy is one way of changing brain functioning to modify troubling conditions which can impair leadership performance, through responding to feedback on their own brain activity, and enhancing optimal leadership functioning through learning to maximize such cognitive strengths as mental efficiency, focus, creativity, perseverance, and executive functioning. The present article outlines the application of the concept of optimal performance training to organizational leadership in a healthcare context, by describing approaches to neurotherapy and illustrating their application through a case study of a health leader learning to overcome the neurological and emotional sequelae of workplace stress and trauma.

  11. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger.

    PubMed

    Kullmann, Stephanie; Heni, Martin; Veit, Ralf; Scheffler, Klaus; Machann, Jürgen; Häring, Hans-Ulrich; Fritsche, Andreas; Preissl, Hubert

    2017-05-09

    Brain insulin sensitivity is an important link between metabolism and cognitive dysfunction. Intranasal insulin is a promising tool to investigate central insulin action in humans. We evaluated the acute effects of 160 U intranasal insulin on resting-state brain functional connectivity in healthy young adults. Twenty-five lean and twenty-two overweight and obese participants underwent functional magnetic resonance imaging, on two separate days, before and after intranasal insulin or placebo application. Insulin compared to placebo administration resulted in increased functional connectivity between the prefrontal regions of the default-mode network and the hippocampus as well as the hypothalamus. The change in hippocampal functional connectivity significantly correlated with visceral adipose tissue and the change in subjective feeling of hunger after intranasal insulin. Mediation analysis revealed that the intranasal insulin induced hippocampal functional connectivity increase served as a mediator, suppressing the relationship between visceral adipose tissue and hunger. The insulin-induced hypothalamic functional connectivity change showed a significant interaction with peripheral insulin sensitivity. Only participants with high peripheral insulin sensitivity showed a boost in hypothalamic functional connectivity. Hence, brain insulin action may regulate eating behavior and facilitate weight loss by modifying brain functional connectivity within and between cognitive and homeostatic brain regions.

  12. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    PubMed

    Kane, Michael J; Angoa-Peréz, Mariana; Briggs, Denise I; Sykes, Catherine E; Francescutti, Dina M; Rosenberg, David R; Kuhn, Donald M

    2012-01-01

    Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  13. Informing Rodent Behavior in Space: Gene Expression and Hyper-Emotionality Following Prenatal Stress

    NASA Technical Reports Server (NTRS)

    Moyer, E. L.; Talyansky, Y.; Baer, L. A.; Ronca, A. E.

    2017-01-01

    As space exploration pushes our boundaries further away from Earth and for longer durations, we will inevitably require the use of multi-generational studies to continue our expansion. Space is a stressful environment not only due to the deleterious effect of spaceflight on physiology, but also due to confinement, limited social interactions, inherently dangerous circumstances, and many other stresses of an unknown environment. Stress can alter the brain chemistry, and these alterations can affect behavior at all stages of development, but it is especially pronounced during the perinatal period and can have longstanding effects, even into adulthood, which manifest through augmented brain function and psychopathology. This study investigated the nexus of brain chemistry and brain function by observing behavior of adult rats whose mothers were exposed to unpredictable variable prenatal stress (UVPS) while they were in the womb. The UVPS consisted of strobe light, tube restraint, and white noise, and was administered at unpredictable times of the day and also varied in length, both of which were measures taken to prevent habituation to the stressor. The offspring rats were then allowed to reach adulthood and at 90 days were subjected to a series of behavioral tests including novel object, startle response, and an unknown intruder to quantify the adult rats stress response and anxiety. Here we report these results of the behavioral analysis and correlate adult behavioral measures with the expression of genes involved in the hypothalamic-pituitary-adrenal axis, which modulates the animals stress response. We hypothesized that hyper-expression of genes involved in the HPA axis would correlate with the observed anxiety-like behaviors associated with early stress.

  14. Effect of GDNF on depressive-like behavior, spatial learning and key genes of the brain dopamine system in genetically predisposed to behavioral disorders mouse strains.

    PubMed

    Naumenko, Vladimir S; Kondaurova, Elena M; Bazovkina, Daria V; Tsybko, Anton S; Ilchibaeva, Tatyana V; Khotskin, Nikita V; Semenova, Alina A; Popova, Nina K

    2014-11-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and brain dopamine system in predisposed to depressive-like behavior ASC (Antidepressant Sensitive Cataleptics) mice in comparison with the parental "nondepressive" CBA mice was studied. In 7days after administration (800ng, i.c.v.) GDNF decreased escape latency time and the path traveled to reach hidden platform in Morris water maze in ASC mice. GDNF enhanced depressive-like behavioral traits in both "nondepressive" CBA and "depressive" ASC mice. In CBA mice, GDNF decreased functional response to agonists of D1 (chloro-APB hydrobromide) and D2 (sumanirole maleate) receptors in tail suspension test, reduced D2 receptor gene expression in the substantia nigra and increased monoamine oxydase A (MAO A) gene expression in the striatum. GDNF increased D1 and D2 receptor genes expression in the nucleus accumbens of ASC mice but failed to alter expression of catechol-O-methyltransferase, dopamine transporter, MAO B and tyrosine hydroxylase genes in both investigated mouse strains. Thus, GDNF produced long-term genotype-dependent effect on behavior and the brain dopamine system. GDNF pretreatment (1) reduced D1 and D2 receptors functional responses and D2 receptor gene expression in s. nigra of CBA mice; (2) increased D1 and D2 receptor genes expression in n. accumbens of ASC mice and (3) improved spatial learning in ASC mice. GDNF enhanced depressive-like behavior both in CBA and ASC mice. The data suggest that genetically defined variance in the cross-talk between GDNF and brain dopamine system contributes to the variability of GDNF-induced responses and might be responsible for controversial GDNF effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Brain Hemispheric Differences in the Neurochemical Effects of Lead, Prenatal Stress, and the Combination and Their Amelioration by Behavioral Experience

    PubMed Central

    Cory-Slechta, Deborah A.

    2013-01-01

    Brain lateralization, critical to mediation of cognitive functions and to “multitasking,” is disrupted in conditions such as attention deficit disorder and schizophrenia. Both low-level lead (Pb) exposure and prenatal stress (PS) have been associated with mesocorticolimbic system–mediated executive-function cognitive and attention deficits. Mesocorticolimbic systems demonstrate significant laterality. Thus, altered brain lateralization could play a role in this behavioral toxicity. This study examined laterality of mesocorticolimbic monoamines (frontal cortex, nucleus accumbens, striatum, midbrain) and amino acids (frontal cortex) in male and female rats subjected to lifetime Pb exposure (0 or 50 ppm in drinking water), PS (restraint stress on gestational days 16–17), or the combination with and without repeated learning behavioral experience. Control males exhibited prominent laterality, particularly in midbrain and also in frontal cortex and striatum; females exhibited less laterality, and this was primarily striatal. Lateralized Pb ± PS induced neurotransmitter changes were assessed only in males because of limited sample sizes of Pb + PS females. In males, Pb ± PS changes occurred in left hemisphere of frontal cortex and right hemisphere of midbrain. Behavioral experience modified the laterality of Pb ± PS–induced neurotransmitter changes in a region-dependent manner. Notably, behavioral experience eliminated Pb ± PS neurotransmitter changes in males. These findings underscore the critical need to evaluate both sexes and brain hemispheres for the mechanistic understanding of sex-dependent differences in neuro- and behavioral toxicity. Furthermore, assessment of central nervous system mechanisms in the absence of behavioral experience, shown here for males, may constitute less relevant models of human health effects. PMID:23358193

  16. Genetic Effects on Human Behavior: Recent Family Studies.

    ERIC Educational Resources Information Center

    Scarr, Sandra

    Although there continues to be controversy about the magnitude of genetic and environmental effects on human behavior, it is generally agreed by various scientific fields that individual differences in brain function and behavior must follow the same laws of variability as other human characteristics. Whether or not racial and ethnic group…

  17. A Distributed Network for Social Cognition Enriched for Oxytocin Receptors

    PubMed Central

    Mitre, Mariela; Marlin, Bianca J.; Schiavo, Jennifer K.; Morina, Egzona; Norden, Samantha E.; Hackett, Troy A.; Aoki, Chiye J.

    2016-01-01

    Oxytocin is a neuropeptide important for social behaviors such as maternal care and parent–infant bonding. It is believed that oxytocin receptor signaling in the brain is critical for these behaviors, but it is unknown precisely when and where oxytocin receptors are expressed or which neural circuits are directly sensitive to oxytocin. To overcome this challenge, we generated specific antibodies to the mouse oxytocin receptor and examined receptor expression throughout the brain. We identified a distributed network of female mouse brain regions for maternal behaviors that are especially enriched for oxytocin receptors, including the piriform cortex, the left auditory cortex, and CA2 of the hippocampus. Electron microscopic analysis of the cerebral cortex revealed that oxytocin receptors were mainly expressed at synapses, as well as on axons and glial processes. Functionally, oxytocin transiently reduced synaptic inhibition in multiple brain regions and enabled long-term synaptic plasticity in the auditory cortex. Thus modulation of inhibition may be a general mechanism by which oxytocin can act throughout the brain to regulate parental behaviors and social cognition. SIGNIFICANCE STATEMENT Oxytocin is an important peptide hormone involved in maternal behavior and social cognition, but it has been unclear what elements of neural circuits express oxytocin receptors due to the paucity of suitable antibodies. Here, we developed new antibodies to the mouse oxytocin receptor. Oxytocin receptors were found in discrete brain regions and at cortical synapses for modulating excitatory-inhibitory balance and plasticity. These antibodies should be useful for future studies of oxytocin and social behavior. PMID:26911697

  18. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    PubMed

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Ad cerebrum per scientia: Ira Hirsh, psychoacoustics, and new approaches to understanding the human brain

    NASA Astrophysics Data System (ADS)

    Lauter, Judith

    2002-05-01

    As Research Director of CID, Ira emphasized the importance of combining information from biology with rigorous studies of behavior, such as psychophysics, to better understand how the brain and body accomplish the goals of everyday life. In line with this philosophy, my doctoral dissertation sought to explain brain functional asymmetries (studied with dichotic listening) in terms of the physical dimensions of a library of test sounds designed to represent a speech-music continuum. Results highlighted individual differences plus similarities in terms of patterns of relative ear advantages, suggesting an organizational basis for brain asymmetries depending on physical dimensions of stimulus and gesture with analogs in auditory, visual, somatosensory, and motor systems. My subsequent work has employed a number of noninvasive methods (OAEs, EPs, qEEG, PET, MRI) to explore the neurobiological bases of individual differences in general and functional asymmetries in particular. This research has led to (1) the AXS test battery for assessing the neurobiology of human sensory-motor function; (2) the handshaking model of brain function, describing dynamic relations along all three body/brain axes; (3) the four-domain EPIC model of functional asymmetries; and (4) the trimodal brain, a new model of individual differences based on psychoimmunoneuroendocrinology.

  20. Nutrients affecting brain composition and behavior

    NASA Technical Reports Server (NTRS)

    Wurtman, R. J.

    1987-01-01

    This review examines the changes in brain composition and in various brain functions, including behavior, that can follow the ingestion of particular foods or nutrients. It details those that are best understood: the increases in serotonin, catecholamine, or acetylcholine synthesis that can occur subsequent to food-induced increases in brain levels of tryptophan, tyrosine, or choline; it also discusses the various processes that must intervene between the mouth and the synapse, so to speak, in order for a nutrient to affect neurotransmission, and it speculates as to additional brain chemicals that may ultimately be found to be affected by changes in the availability of their nutrient precursors. Because the brain chemicals best known to be nutrient dependent overlap with those thought to underlie the actions of most of the drugs used to treat psychiatric diseases, knowledge of this dependence may help the psychiatrist to understand some of the pathologic processes occurring in his/her patients, particularly those with appetitive symptoms. At the very least, such knowledge should provide the psychiatrist with objective criteria for judging when to take seriously assertions that particular foods or nutrients do indeed affect behavior (e.g., in hyperactive children). If the food can be shown to alter neurotransmitter release, it may be behaviorally-active; however, if it lacks a discernible neurochemical effect, the likelihood that it really alters behavior is small.

  1. Persistency and flexibility of complex brain networks underlie dual-task interference.

    PubMed

    Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten

    2015-09-01

    Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.

  2. Assessment of Cognitive Function in the Water Maze Task: Maximizing Data Collection and Analysis in Animal Models of Brain Injury.

    PubMed

    Whiting, Mark D; Kokiko-Cochran, Olga N

    2016-01-01

    Animal models play a critical role in understanding the biomechanical, pathophysiological, and behavioral consequences of traumatic brain injury (TBI). In preclinical studies, cognitive impairment induced by TBI is often assessed using the Morris water maze (MWM). Frequently described as a hippocampally dependent spatial navigation task, the MWM is a highly integrative behavioral task that requires intact functioning in numerous brain regions and involves an interdependent set of mnemonic and non-mnemonic processes. In this chapter, we review the special considerations involved in using the MWM in animal models of TBI, with an emphasis on maximizing the degree of information extracted from performance data. We include a theoretical framework for examining deficits in discrete stages of cognitive function and offer suggestions for how to make inferences regarding the specific nature of TBI-induced cognitive impairment. The ultimate goal is more precise modeling of the animal equivalents of the cognitive deficits seen in human TBI.

  3. Social re-orientation and brain development: An expanded and updated view.

    PubMed

    Nelson, Eric E; Jarcho, Johanna M; Guyer, Amanda E

    2016-02-01

    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior. Published by Elsevier Ltd.

  4. Altered metabolic activity in the developing brain of rats predisposed to high versus low depression-like behavior

    PubMed Central

    Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.

    2016-01-01

    Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051

  5. Brain Stimulation Studies of Social Norm Compliance: Implications for Personality Disorders?

    PubMed

    Ruff, Christian C

    2018-01-01

    Several personality disorders involve pathological behaviors that violate social norms, commonly held expectations about what ought to be done in specific situations. These symptoms usually emerge early in development, are persistent and hard to treat, and are often ego-syntonic. Here I present some recent brain stimulation studies suggesting that pathological changes in different aspects of norm-compliant behavior reflect dysfunctions of brain circuits involving distinct prefrontal brain areas. One set of studies shows that transcranial direct current stimulation of the right lateral prefrontal cortex changes the behavioral sensitivity to social incentives for norm-compliant behavior. Crucially, social norm compliance in response to such incentives could even be increased during excitatory stimulation, demonstrating that the affected neural process is a biological prerequisite for appropriate reaction to social signals that trigger norm compliance. In another set of studies, we show that stimulation of a different (more dorsal) part of the right prefrontal cortex enhances honesty in a realistic setting where participants had the opportunity to cheat for real monetary gains. Interestingly, these stimulation-induced increases in both socially cued or purely voluntary norm compliance were not linked to changes in other aspects of decision- making (such as risk or impatience), and they did not reflect changes in beliefs about what is appropriate behavior. These results suggest that disorders of distinct brain circuits may causally underlie egosyntotic changes in norm-compliant behavior. This raises the tantalizing possibility that pathologies of norm-compliant behavior may be ameliorated by interventions targeting the function of these brain circuits. © 2018 S. Karger AG, Basel.

  6. Fluoxetine prevents the development of depressive-like behavior in a mouse model of cancer related fatigue.

    PubMed

    Norden, Diana M; Devine, Raymond; Bicer, Sabahattin; Jing, Runfeng; Reiser, Peter J; Wold, Loren E; Godbout, Jonathan P; McCarthy, Donna O

    2015-03-01

    Cancer patients frequently suffer from fatigue, a complex syndrome associated with tiredness and depressed mood. Cancer-related fatigue (CRF) can be present at the time of diagnosis, escalates during treatment, and can persist for years after treatment. CRF negatively influences quality of life, limits functional independence, and is associated with decreased survival in patients with incurable disease. We have previously shown that increased pro-inflammatory cytokine expression in the brain contributes to depressive- and fatigue-like behaviors in a mouse model of CRF. Inflammatory cytokines increase the activity of indoleamine 2,3-dioxygenase (IDO) and kynurenine 3-monooxygenase (KMO), which competitively reduce serotonin synthesis. Reduced serotonin availability in the brain and increased production of alternative neuroactive metabolites of tryptophan are thought to contribute to the development of depression and fatigue. The purpose of this study was to determine the effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on brain cytokines and behavioral measures of fatigue and depression in tumor-bearing mice. Here we show that tumor growth increased brain expression of pro-inflammatory cytokines and KMO. Treatment with fluoxetine had no effect on tumor growth, muscle wasting, fatigue behavior, or cytokine expression in the brain. Fluoxetine, however, reduced depressive-like behaviors in tumor bearing mice. In conclusion, our data confirm that increased brain expression of pro-inflammatory cytokines is associated with tumor-induced fatigue- and depressive-like behaviors. However, it is possible to separate the effects of tumor growth on mood and fatigue-like behaviors using SSRIs such as fluoxetine. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Postconditioning with repeated mild hypoxia protects neonatal hypoxia-ischemic rats against brain damage and promotes rehabilitation of brain function.

    PubMed

    Deng, Qingqing; Chang, Yanqun; Cheng, Xiaomao; Luo, Xingang; Zhang, Jing; Tang, Xiaoyuan

    2018-05-01

    Mild hypoxia conditioning induced by repeated episodes of transient ischemia is a clinically applicable method for protecting the brain against injury after hypoxia-ischemic brain damage. To assess the effect of repeated mild hypoxia postconditioning on brain damage and long-term neural functional recovery after hypoxia-ischemic brain damage. Rats received different protocols of repeated mild hypoxia postconditioning. Seven-day-old rats with hypoxia ischemic brain damage (HIBD) from the left carotid ligation procedure plus 2 h hypoxic stress (8% O 2 at 37 °C) were further receiving repeated mild hypoxia intermittently. The gross anatomy, functional analyses, hypoxia inducible factor 1 alpha (HIF-1a) expression, and neuronal apoptosis of the rat brains were subsequently examined. Compared to the HIBD group, rats postconditioned with mild hypoxia had elevated HIF-1a expression, more Nissl-stain positive cells in their brain tissue and their brains functioned better in behavioral analyses. The recovery of the brain function may be directly linked to the inhibitory effect of HIF-1α on neuronal apoptosis. Furthermore, there were significantly less neuronal apoptosis in the hippocampal CA1 region of the rats postconditioned with mild hypoxia, which might also be related to the higher HIF-1a expression and better brain performance. Overall, these results suggested that postconditioning of neonatal rats after HIBD with mild hypoxia increased HIF-1a expression, exerted a neuroprotective effect and promoted neural functional recovery. Repeated mild hypoxia postconditioning protects neonatal rats with HIBD against brain damage and improves neural functional recovery. Our results may have clinical implications for treating infants with HIBD. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Logical Interactions in AN Expanded Space

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    Understanding the emergent behavior in many complex systems in the physical world and society requires a detailed study of dynamical phenomena occurring and mutually coupled at different scales. The brain processes underlying the social conduct of each, and the emergent social behavior of interacting individuals on a larger scale, represent striking examples of the multiscale complexity. Studies of the human brain, a paradigm of a complex functional system, are enabled by a wealth of brain imaging data that provide clues of how we comprehend space, time, languages, numbers, and differentiate normal from diseased individuals, for example. The social brain, a neural basis for social cognition, represents a dynamically organized part of the brain which is involved in the inference of thoughts, feelings, and intentions going on in the brains of others. Research in this currently unexplored area opens a new perspective on the genesis of the societal organization at different levels and the associated social values...

  9. Parametric fMRI of paced motor responses uncovers novel whole-brain imaging biomarkers in spinocerebellar ataxia type 3.

    PubMed

    Duarte, João Valente; Faustino, Ricardo; Lobo, Mercês; Cunha, Gil; Nunes, César; Ferreira, Carlos; Januário, Cristina; Castelo-Branco, Miguel

    2016-10-01

    Machado-Joseph Disease, inherited type 3 spinocerebellar ataxia (SCA3), is the most common form worldwide. Neuroimaging and neuropathology have consistently demonstrated cerebellar alterations. Here we aimed to discover whole-brain functional biomarkers, based on parametric performance-level-dependent signals. We assessed 13 patients with early SCA3 and 14 healthy participants. We used a combined parametric behavioral/functional neuroimaging design to investigate disease fingerprints, as a function of performance levels, coupled with structural MRI and voxel-based morphometry. Functional magnetic resonance imaging (fMRI) was designed to parametrically analyze behavior and neural responses to audio-paced bilateral thumb movements at temporal frequencies of 1, 3, and 5 Hz. Our performance-level-based design probing neuronal correlates of motor coordination enabled the discovery that neural activation and behavior show critical loss of parametric modulation specifically in SCA3, associated with frequency-dependent cortico/subcortical activation/deactivation patterns. Cerebellar/cortical rate-dependent dissociation patterns could clearly differentiate between groups irrespective of grey matter loss. Our findings suggest functional reorganization of the motor network and indicate a possible role of fMRI as a tool to monitor disease progression in SCA3. Accordingly, fMRI patterns proved to be potential biomarkers in early SCA3, as tested by receiver operating characteristic analysis of both behavior and neural activation at different frequencies. Discrimination analysis based on BOLD signal in response to the applied parametric finger-tapping task significantly often reached >80% sensitivity and specificity in single regions-of-interest.Functional fingerprints based on cerebellar and cortical BOLD performance dependent signal modulation can thus be combined as diagnostic and/or therapeutic targets in hereditary ataxia. Hum Brain Mapp 37:3656-3668, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  11. The coordination dynamics of social neuromarkers.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2015-01-01

    Social behavior is a complex integrative function that entails many aspects of the brain's sensory, cognitive, emotional and movement capacities. Its neural processes are seldom simultaneous but occur according to precise spatiotemporal choreographies, manifested by the coordination of their oscillations within and between brains. Methods with good temporal resolution can help to identify so-called "neuromarkers" of social function and aid in disentangling the dynamical architecture of social brains. In our ongoing research, we have used dual-electroencephalography (EEG) to study neuromarker dynamics during synchronic interactions in which pairs of subjects coordinate behavior spontaneously and intentionally (social coordination) and during diachronic transactions that require subjects to perceive or behave in turn (action observation, delayed imitation). In this paper, after outlining our dynamical approach to the neurophysiological basis of social behavior, we examine commonalities and differences in the neuromarkers that are recruited for both kinds of tasks. We find the neuromarker landscape to be task-specific: synchronic paradigms of social coordination reveal medial mu, alpha and the phi complex as contributing neuromarkers. Diachronic tasks recruit alpha as well, in addition to lateral mu rhythms and the newly discovered nu and kappa rhythms whose functional significance is still unclear. Social coordination, observation, and delayed imitation share commonality of context: in each of our experiments, subjects exchanged information through visual perception and moved in similar ways. Nonetheless, there was little overlap between their neuromarkers, a result that hints strongly of task-specific neural mechanisms for social behavior. The only neuromarker that transcended both synchronic and diachronic social behaviors was the ubiquitous alpha rhythm, which appears to be a key signature of visually-mediated social behaviors. The present paper is both an entry point and a challenge: much work remains to determine the nature and scope of recruitment of other neuromarkers, and to create theoretical models of their within- and between-brain dynamics during social interaction.

  12. The role of polyhalogenated aromatic hydrocarbons on thyroid hormone disruption and cognitive function: a review.

    PubMed

    Builee, T L; Hatherill, J R

    2004-11-01

    Thyroid hormones (TH) are essential to normal brain development, influencing behavior and cognitive function in both adult and children. It is suggested that conditions found in TH abnormalities such as hypothyroidism, hyperthyroidism and generalized resistance to thyroid hormone (GRTH) share symptomatic behavioral impulses found in cases of attention deficit hyperactivity disorder (ADHD) and other cognitive disorders. Disrupters of TH are various and prevalent in the environment. This paper reviews the mechanisms of TH disruption caused by the general class of polyhalogenated aromatic hydrocarbons (PHAH)'s acting as thyroid disrupters (TD). PHAHs influence the hypothalamus-pituitary-thyroid (HPT) axis, as mimicry agents affecting synthesis and secretion of TH. Exposure to PHAH induces liver microsomal enzymes UDP-glucuronosyltransferase (UGT) resulting in accelerated clearance of TH. PHAHs can compromise function of transport and receptor binding proteins such as transthyretin and aryl hydrocarbon receptors (Ahr). Glucose metabolism and catecholamine synthesis are disrupted in the brain by the presence of PHAH. Further, PHAH can alter brain growth and development by perturbing cytoskeletal formation, thereby affecting neuronal migration, elongation and branching. The complex relationships between PHAH and cognitive function are examined in regard to the disruption of T4 regulation in the hypothalamus-pituitary-thyroid axis, blood, brain, neurons, liver and pre and postnatal development.

  13. Brain connectivity aberrations in anabolic-androgenic steroid users.

    PubMed

    Westlye, Lars T; Kaufmann, Tobias; Alnæs, Dag; Hullstein, Ingunn R; Bjørnebekk, Astrid

    2017-01-01

    Sustained anabolic-androgenic steroid (AAS) use has adverse behavioral consequences, including aggression, violence and impulsivity. Candidate mechanisms include disruptions of brain networks with high concentrations of androgen receptors and critically involved in emotional and cognitive regulation. Here, we tested the effects of AAS on resting-state functional brain connectivity in the largest sample of AAS-users to date. We collected resting-state functional magnetic resonance imaging (fMRI) data from 151 males engaged in heavy resistance strength training. 50 users tested positive for AAS based on the testosterone to epitestosterone (T/E) ratio and doping substances in urine. 16 previous users and 59 controls tested negative. We estimated brain network nodes and their time-series using ICA and dual regression and defined connectivity matrices as the between-node partial correlations. In line with the emotional and behavioral consequences of AAS, current users exhibited reduced functional connectivity between key nodes involved in emotional and cognitive regulation, in particular reduced connectivity between the amygdala and default-mode network (DMN) and between the dorsal attention network (DAN) and a frontal node encompassing the superior and inferior frontal gyri (SFG/IFG) and the anterior cingulate cortex (ACC), with further reductions as a function of dependency, lifetime exposure, and cycle state (on/off).

  14. Quantitative prediction of perceptual decisions during near-threshold fear detection

    NASA Astrophysics Data System (ADS)

    Pessoa, Luiz; Padmala, Srikanth

    2005-04-01

    A fundamental goal of cognitive neuroscience is to explain how mental decisions originate from basic neural mechanisms. The goal of the present study was to investigate the neural correlates of perceptual decisions in the context of emotional perception. To probe this question, we investigated how fluctuations in functional MRI (fMRI) signals were correlated with behavioral choice during a near-threshold fear detection task. fMRI signals predicted behavioral choice independently of stimulus properties and task accuracy in a network of brain regions linked to emotional processing: posterior cingulate cortex, medial prefrontal cortex, right inferior frontal gyrus, and left insula. We quantified the link between fMRI signals and behavioral choice in a whole-brain analysis by determining choice probabilities by means of signal-detection theory methods. Our results demonstrate that voxel-wise fMRI signals can reliably predict behavioral choice in a quantitative fashion (choice probabilities ranged from 0.63 to 0.78) at levels comparable to neuronal data. We suggest that the conscious decision that a fearful face has been seen is represented across a network of interconnected brain regions that prepare the organism to appropriately handle emotionally challenging stimuli and that regulate the associated emotional response. decision making | emotion | functional MRI

  15. Age-related differences in the neural bases of phonological and semantic processes

    PubMed Central

    Diaz, Michele T.; Johnson, Micah A.; Burke, Deborah M.; Madden, David J.

    2014-01-01

    Changes in language functions during normal aging are greater for phonological compared to semantic processes. To investigate the behavioral and neural basis for these age-related differences, we used functional magnetic resonance imaging (fMRI) to examine younger and older adults who made semantic and phonological decisions about pictures. The behavioral performance of older adults was less accurate and less efficient than younger adults’ in the phonological task, but did not differ in the semantic task. In the fMRI analyses, the semantic task activated left-hemisphere language regions, while the phonological task activated bilateral cingulate and ventral precuneus. Age-related effects were widespread throughout the brain, and most often expressed as greater activation for older adults. Activation was greater for younger compared to older adults in ventral brain regions involved in visual and object processing. Although there was not a significant Age x Condition interaction in the whole-brain fMRI results, correlations examining the relationship between behavior and fMRI activation were stronger for younger compared to older adults. Our results suggest that the relationship between behavior and neural activation declines with age and this may underlie some of the observed declines in performance. PMID:24893737

  16. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome.

    PubMed

    Aziz, Nadine M; Guedj, Faycal; Pennings, Jeroen L A; Olmos-Serrano, Jose Luis; Siegel, Ashley; Haydar, Tarik F; Bianchi, Diana W

    2018-06-12

    Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  17. Non-verbal emotion communication training induces specific changes in brain function and structure

    PubMed Central

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure. PMID:24146641

  18. Non-verbal emotion communication training induces specific changes in brain function and structure.

    PubMed

    Kreifelts, Benjamin; Jacob, Heike; Brück, Carolin; Erb, Michael; Ethofer, Thomas; Wildgruber, Dirk

    2013-01-01

    The perception of emotional cues from voice and face is essential for social interaction. However, this process is altered in various psychiatric conditions along with impaired social functioning. Emotion communication trainings have been demonstrated to improve social interaction in healthy individuals and to reduce emotional communication deficits in psychiatric patients. Here, we investigated the impact of a non-verbal emotion communication training (NECT) on cerebral activation and brain structure in a controlled and combined functional magnetic resonance imaging (fMRI) and voxel-based morphometry study. NECT-specific reductions in brain activity occurred in a distributed set of brain regions including face and voice processing regions as well as emotion processing- and motor-related regions presumably reflecting training-induced familiarization with the evaluation of face/voice stimuli. Training-induced changes in non-verbal emotion sensitivity at the behavioral level and the respective cerebral activation patterns were correlated in the face-selective cortical areas in the posterior superior temporal sulcus and fusiform gyrus for valence ratings and in the temporal pole, lateral prefrontal cortex and midbrain/thalamus for the response times. A NECT-induced increase in gray matter (GM) volume was observed in the fusiform face area. Thus, NECT induces both functional and structural plasticity in the face processing system as well as functional plasticity in the emotion perception and evaluation system. We propose that functional alterations are presumably related to changes in sensory tuning in the decoding of emotional expressions. Taken together, these findings highlight that the present experimental design may serve as a valuable tool to investigate the altered behavioral and neuronal processing of emotional cues in psychiatric disorders as well as the impact of therapeutic interventions on brain function and structure.

  19. Reducing proactive aggression through non-invasive brain stimulation.

    PubMed

    Dambacher, Franziska; Schuhmann, Teresa; Lobbestael, Jill; Arntz, Arnoud; Brugman, Suzanne; Sack, Alexander T

    2015-10-01

    Aggressive behavior poses a threat to human collaboration and social safety. It is of utmost importance to identify the functional mechanisms underlying aggression and to develop potential interventions capable of reducing dysfunctional aggressive behavior already at a brain level. We here experimentally shifted fronto-cortical asymmetry to manipulate the underlying motivational emotional states in both male and female participants while assessing the behavioral effects on proactive and reactive aggression. Thirty-two healthy volunteers received either anodal transcranial direct current stimulation to increase neural activity within right dorsolateral prefrontal cortex, or sham stimulation. Aggressive behavior was measured with the Taylor Aggression Paradigm. We revealed a general gender effect, showing that men displayed more behavioral aggression than women. After the induction of right fronto-hemispheric dominance, proactive aggression was reduced in men. This study demonstrates that non-invasive brain stimulation can reduce aggression in men. This is a relevant and promising step to better understand how cortical brain states connect to impulsive actions and to examine the causal role of the prefrontal cortex in aggression. Ultimately, such findings could help to examine whether the brain can be a direct target for potential supportive interventions in clinical settings dealing with overly aggressive patients and/or violent offenders. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. The Relationship of Docosahexaenoic Acid (DHA) with Learning and Behavior in Healthy Children: A Review

    PubMed Central

    Kuratko, Connye N.; Barrett, Erin Cernkovich; Nelson, Edward B.; Norman, Salem

    2013-01-01

    Childhood is a period of brain growth and maturation. The long chain omega-3 fatty acid, docosahexaenoic acid (DHA), is a major lipid in the brain recognized as essential for normal brain function. In animals, low brain DHA results in impaired learning and behavior. In infants, DHA is important for optimal visual and cognitive development. The usual intake of DHA among toddlers and children is low and some studies show improvements in cognition and behavior as the result of supplementation with polyunsaturated fatty acids including DHA. The purpose of this review was to identify and evaluate current knowledge regarding the relationship of DHA with measures of learning and behavior in healthy school-age children. A systematic search of the literature identified 15 relevant publications for review. The search found studies which were diverse in purpose and design and without consistent conclusions regarding the treatment effect of DHA intake or biomarker status on specific cognitive tests. However, studies of brain activity reported benefits of DHA supplementation and over half of the studies reported a favorable role for DHA or long chain omega-3 fatty acids in at least one area of cognition or behavior. Studies also suggested an important role for DHA in school performance. PMID:23877090

  1. The anabolic steroid nandrolone alters cannabinoid self-administration and brain CB1 receptor density and function.

    PubMed

    Struik, Dicky; Fadda, Paola; Zara, Tamara; Zamberletti, Erica; Rubino, Tiziana; Parolaro, Daniela; Fratta, Walter; Fattore, Liana

    2017-01-01

    Clinical and pre-clinical observations indicate that anabolic-androgenic steroids can induce neurobiological changes that alter the rewarding effects of drugs of abuse. In this study, we investigated the effect of the anabolic steroid nandrolone on the rewarding properties of the cannabinoid CB 1 receptor agonist WIN55,212-2 (WIN) in rats. Lister Hooded male rats were treated intramuscularly with nandrolone (15mg/kg) or vehicle for 14 consecutive days, and then allowed to self-administer WIN (12.5μg/kg/infusion) intravenously. After reaching stable drug intake, self-administration behavior was extinguished to examine drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Other behavioral parameters presumed to influence drug-taking and drug-seeking behaviors were examined to gain more insight into the behavioral specificity of nandrolone treatment. Finally, animals were sacrificed for analysis of CB 1 receptor density and function in selected brain areas. We found that nandrolone-treated rats self-administered up to 2 times more cannabinoid than vehicle-treated rats, but behaved similarly to control rats when tested for drug- and cue-induced reinstatement of cannabinoid-seeking behavior. Enhanced cannabinoid intake by nandrolone-treated rats was not accompanied by changes in locomotor activity, sensorimotor gating, or memory function. However, our molecular data show that after chronic WIN self-administration nandrolone-treated rats display altered CB 1 receptor density and function in selected brain areas. We hypothesize that increased cannabinoid self-administration in nandrolone-treated rats results from a nandrolone-induced decrease in reward function, which rats seem to compensate by voluntarily increasing their cannabinoid intake. Altogether, our findings corroborate the hypothesis that chronic exposure to anabolic-androgenic steroids induces dysfunction of the reward pathway in rats and might represent a potential risk factor for abuse of cannabis and other drugs in humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Breastfeeding, Brain Activation to Own Infant Cry, and Maternal Sensitivity

    ERIC Educational Resources Information Center

    Kim, Pilyoung; Feldman, Ruth; Mayes, Linda C.; Eicher, Virginia; Thompson, Nancy; Leckman, James F.; Swain, James E.

    2011-01-01

    Background: Research points to the importance of breastfeeding for promoting close mother-infant contact and social-emotional development. Recent functional magnetic resonance imaging (fMRI) studies have identified brain regions related to maternal behaviors. However, little research has addressed the neurobiological mechanisms underlying the…

  3. Human Cerebral Function at High Altitude.

    DTIC Science & Technology

    1985-03-01

    increasing altitude. At the highest altitudes the % mountaineers’ behavior may be similar to an individual with a known acute organic brain syndrome (10...expedition. Only the male climbers ascended over 5,500 m. Of these, half experienced symptoms similar to an acute organic brain syndrome ; "for

  4. Brain activity during driving with distraction: an immersive fMRI study

    PubMed Central

    Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.

    2013-01-01

    Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757

  5. Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior

    PubMed Central

    Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.

    2014-01-01

    The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877

  6. Impulsivity, frontal lobes and risk for addiction.

    PubMed

    Crews, Fulton Timm; Boettiger, Charlotte Ann

    2009-09-01

    Alcohol and substance abuse disorders involve continued use of substances despite negative consequences, i.e. loss of behavioral control of drug use. The frontal-cortical areas of the brain oversee behavioral control through executive functions. Executive functions include abstract thinking, motivation, planning, attention to tasks and inhibition of impulsive responses. Impulsiveness generally refers to premature, unduly risky, poorly conceived actions. Dysfunctional impulsivity includes deficits in attention, lack of reflection and/or insensitivity to consequences, all of which occur in addiction [Evenden JL. Varieties of impulsivity. Psychopharmacology (Berl) 1999;146:348-361.; de Wit H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict Biol 2009;14:22-31]. Binge drinking models indicate chronic alcohol damages in the corticolimbic brain regions [Crews FT, Braun CJ, Hoplight B, Switzer III RC, Knapp DJ. Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcohol Clin Exp Res 2000;24:1712-1723] causing reversal learning deficits indicative of loss of executive function [Obernier JA, White AM, Swartzwelder HS, Crews FT. Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 2002b;72:521-532]. Genetics and adolescent age are risk factors for alcoholism that coincide with sensitivity to alcohol-induced neurotoxicity. Cortical degeneration from alcohol abuse may increase impulsivity contributing to the development, persistence and severity of alcohol use disorders. Interestingly, abstinence results in bursts of neurogenesis and brain regrowth [Crews FT, Nixon K. Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 2009;44:115-127]. Treatments for alcoholism, including naltrexone pharmacotherapy and psychotherapy may work through improving executive functions. This review will examine the relationships between impulsivity and executive function behaviors to changes in cortical structure during alcohol dependence and recovery.

  7. Changes in functional connectivity dynamics associated with vigilance network in taxi drivers.

    PubMed

    Shen, Hui; Li, Zhenfeng; Qin, Jian; Liu, Qiang; Wang, Lubin; Zeng, Ling-Li; Li, Hong; Hu, Dewen

    2016-01-01

    An increasing number of neuroimaging studies have suggested that the fluctuations of low-frequency resting-state functional connectivity (FC) are not noise but are instead linked to the shift between distinct cognitive states. However, there is very limited knowledge about whether and how the fluctuations of FC at rest are influenced by long-term training and experience. Here, we investigated how the dynamics of resting-state FC are linked to driving behavior by comparing 20 licensed taxi drivers with 20 healthy non-drivers using a sliding window approach. We found that the driving experience could be effectively decoded with 90% (p<0.001) accuracy by the amplitude of low-frequency fluctuations in some specific connections, based on a multivariate pattern analysis technique. Interestingly, the majority of these connections fell within a set of distributed regions named "the vigilance network". Moreover, the decreased amplitude of the FC fluctuations within the vigilance network in the drivers was negatively correlated with the number of years that they had driven a taxi. Furthermore, temporally quasi-stable functional connectivity segmentation revealed significant differences between the drivers and non-drivers in the dwell time of specific vigilance-related transient brain states, although the brain's repertoire of functional states was preserved. Overall, these results suggested a significant link between the changes in the time-dependent aspects of resting-state FC within the vigilance network and long-term driving experiences. The results not only improve our understanding of how the brain supports driving behavior but also shed new light on the relationship between the dynamics of functional brain networks and individual behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Emotional processing and brain activity in youth at high risk for alcoholism.

    PubMed

    Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-07-01

    Even in the absence of heavy alcohol use, youth with familial alcoholism (family history positive [FHP]) exhibit atypical brain functioning and behavior. Although emotional and cognitive systems are affected in alcohol use disorders (AUDs), little attention has focused on whether brain and behavior phenotypes related to the interplay between affective and executive functioning may be a premorbid risk factor for the development of AUDs in FHP youth. Twenty-four FHP and 22 family history negative (FHN) 12- to 16-year-old adolescents completed study procedures. After exclusion of participants with clinically significant depressive symptoms and those who did not meet performance criteria during an Emotional Go-NoGo task, 19 FHP and 17 FHN youth were included in functional magnetic resonance imaging (fMRI) analyses. Resting state functional connectivity MRI, using amygdalar seed regions, was analyzed in 16 FHP and 18 FHN youth, after exclusion of participants with excessive head movement. fMRI showed that brain activity in FHP youth, compared with FHN peers, was reduced during emotional processing in the superior temporal cortex, as well as during cognitive control within emotional contexts in frontal and striatal regions. Group differences in resting state amygdalar connectivity were seen bilaterally between FHP and FHN youth. In FHP youth, reduced resting state synchrony between the left amygdala and left superior frontal gyrus was related to poorer response inhibition, as measured during the fMRI task. To our knowledge, this is the first study to examine emotion-cognition interactions and resting state functional connectivity in FHP youth. Findings from this research provide insight into neural and behavioral phenotypes associated with emotional processing in familial alcoholism, which may relate to increased risk of developing AUDs. Copyright © 2014 by the Research Society on Alcoholism.

  9. Brain-machine interfaces can accelerate clarification of the principal mysteries and real plasticity of the brain.

    PubMed

    Sakurai, Yoshio

    2014-01-01

    This perspective emphasizes that the brain-machine interface (BMI) research has the potential to clarify major mysteries of the brain and that such clarification of the mysteries by neuroscience is needed to develop BMIs. I enumerate five principal mysteries. The first is "how is information encoded in the brain?" This is the fundamental question for understanding what our minds are and is related to the verification of Hebb's cell assembly theory. The second is "how is information distributed in the brain?" This is also a reconsideration of the functional localization of the brain. The third is "what is the function of the ongoing activity of the brain?" This is the problem of how the brain is active during no-task periods and what meaning such spontaneous activity has. The fourth is "how does the bodily behavior affect the brain function?" This is the problem of brain-body interaction, and obtaining a new "body" by a BMI leads to a possibility of changes in the owner's brain. The last is "to what extent can the brain induce plasticity?" Most BMIs require changes in the brain's neuronal activity to realize higher performance, and the neuronal operant conditioning inherent in the BMIs further enhances changes in the activity.

  10. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    NASA Astrophysics Data System (ADS)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  11. Research progress on Drosophila visual cognition in China.

    PubMed

    Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang

    2010-03-01

    Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.

  12. Neural correlates for the suppression of habitual behavior: a functional MRI study.

    PubMed

    Matsubara, Miwa; Yamaguchi, Shuhei; Xu, Jiang; Kobayashi, Shotai

    2004-01-01

    It has been suggested that inhibitory executive control of behavior is directed by the frontal lobes. We used functional magnetic resonance imaging to explore the brain regions that are involved in the inhibition of habitual manual responses. Fifteen right-handed subjects performed the rock-scissors-paper game against computer-simulated pictures of hands during the scanning procedure. The subjects were required to win, lose, or draw against the presented picture in a separate block. We considered that the situation in which subjects intentionally lost the game required the suppression of habitual behavior, because it is natural behavior for people to attempt to win the game. Compared with the WIN and DRAW conditions, the left premotor and sensorimotor areas were activated for both hand sessions with a positive correlation with error rates. Importantly, the LOSE condition in the case of the right hand yielded brain activation exclusively in the anterior part of the left inferior frontal gyrus, the activity which showed a negative correlation with error rates. Overall brain activations were predominant in the left hemisphere, irrespective of the hand used for the response. The results suggest that the anterior part of the left inferior frontal gyrus plays a critical role in the inhibition of habitual manual behavior, and that the left hemisphere is dominant for the selection of well-learned manual behavior.

  13. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.

    PubMed

    Moran, Richard; Smith, Joshua H; García, José J

    2014-11-28

    The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Transfer of Learning Relates to Intrinsic Connectivity between Hippocampus, Ventromedial Prefrontal Cortex, and Large-Scale Networks

    PubMed Central

    Gerraty, Raphael T.; Davidow, Juliet Y.; Wimmer, G. Elliott; Kahn, Itamar

    2014-01-01

    An important aspect of adaptive learning is the ability to flexibly use past experiences to guide new decisions. When facing a new decision, some people automatically leverage previously learned associations, while others do not. This variability in transfer of learning across individuals has been demonstrated repeatedly and has important implications for understanding adaptive behavior, yet the source of these individual differences remains poorly understood. In particular, it is unknown why such variability in transfer emerges even among homogeneous groups of young healthy participants who do not vary on other learning-related measures. Here we hypothesized that individual differences in the transfer of learning could be related to relatively stable differences in intrinsic brain connectivity, which could constrain how individuals learn. To test this, we obtained a behavioral measure of memory-based transfer outside of the scanner and on a separate day acquired resting-state functional MRI images in 42 participants. We then analyzed connectivity across independent component analysis-derived brain networks during rest, and tested whether intrinsic connectivity in learning-related networks was associated with transfer. We found that individual differences in transfer were related to intrinsic connectivity between the hippocampus and the ventromedial prefrontal cortex, and between these regions and large-scale functional brain networks. Together, the findings demonstrate a novel role for intrinsic brain dynamics in flexible learning-guided behavior, both within a set of functionally specific regions known to be important for learning, as well as between these regions and the default and frontoparietal networks, which are thought to serve more general cognitive functions. PMID:25143610

  15. EEG functional connectivity, axon delays and white matter disease.

    PubMed

    Nunez, Paul L; Srinivasan, Ramesh; Fields, R Douglas

    2015-01-01

    Both structural and functional brain connectivities are closely linked to white matter disease. We discuss several such links of potential interest to neurologists, neurosurgeons, radiologists, and non-clinical neuroscientists. Treatment of brains as genuine complex systems suggests major emphasis on the multi-scale nature of brain connectivity and dynamic behavior. Cross-scale interactions of local, regional, and global networks are apparently responsible for much of EEG's oscillatory behaviors. Finite axon propagation speed, often assumed to be infinite in local network models, is central to our conceptual framework. Myelin controls axon speed, and the synchrony of impulse traffic between distant cortical regions appears to be critical for optimal mental performance and learning. Several experiments suggest that axon conduction speed is plastic, thereby altering the regional and global white matter connections that facilitate binding of remote local networks. Combined EEG and high resolution EEG can provide distinct multi-scale estimates of functional connectivity in both healthy and diseased brains with measures like frequency and phase spectra, covariance, and coherence. White matter disease may profoundly disrupt normal EEG coherence patterns, but currently these kinds of studies are rare in scientific labs and essentially missing from clinical environments. Copyright © 2014 International Federation of Clinical Neurophysiology. All rights reserved.

  16. Linking Resting-State Networks in the Prefrontal Cortex to Executive Function: A Functional Near Infrared Spectroscopy Study.

    PubMed

    Zhao, Jia; Liu, Jiangang; Jiang, Xin; Zhou, Guifei; Chen, Guowei; Ding, Xiao P; Fu, Genyue; Lee, Kang

    2016-01-01

    Executive function (EF) plays vital roles in our everyday adaptation to the ever-changing environment. However, limited existing studies have linked EF to the resting-state brain activity. The functional connectivity in the resting state between the sub-regions of the brain can reveal the intrinsic neural mechanisms involved in cognitive processing of EF without disturbance from external stimuli. The present study investigated the relations between the behavioral executive function (EF) scores and the resting-state functional network topological properties in the Prefrontal Cortex (PFC). We constructed complex brain functional networks in the PFC from 90 healthy young adults using functional near infrared spectroscopy (fNIRS). We calculated the correlations between the typical network topological properties (regional topological properties and global topological properties) and the scores of both the Total EF and components of EF measured by computer-based Cambridge Neuropsychological Test Automated Battery (CANTAB). We found that the Total EF scores were positively correlated with regional properties in the right dorsal superior frontal gyrus (SFG), whereas the opposite pattern was found in the right triangular inferior frontal gyrus (IFG). Different EF components were related to different regional properties in various PFC areas, such as planning in the right middle frontal gyrus (MFG), working memory mainly in the right MFG and triangular IFG, short-term memory in the left dorsal SFG, and task switch in the right MFG. In contrast, there were no significant findings for global topological properties. Our findings suggested that the PFC plays an important role in individuals' behavioral performance in the executive function tasks. Further, the resting-state functional network can reveal the intrinsic neural mechanisms involved in behavioral EF abilities.

  17. A gut (microbiome) feeling about the brain.

    PubMed

    Sherwin, Eoin; Rea, Kieran; Dinan, Timothy G; Cryan, John F

    2016-03-01

    There is an increasing realization that the microorganisms which reside within our gut form part of a complex multidirectional communication network with the brain known as the microbiome-gut-brain axis. In this review, we focus on recent findings which support a role for this axis in modulating neurodevelopment and behavior. A growing body of research is uncovering that under homeostatic conditions and in response to internal and external stressors, the bacterial commensals of our gut can signal to the brain through a variety of mechanisms to influence processes such neurotransmission, neurogenesis, microglia activation, and modulate behavior. Moreover, the mechanisms underlying the ability of stress to modulate the microbiota and also for microbiota to change the set point for stress sensitivity are being unraveled. Dysregulation of the gut microbiota composition has been identified in a number of psychiatric disorders, including depression. This has led to the concept of bacteria that have a beneficial effect upon behavior and mood (psychobiotics) being proposed for potential therapeutic interventions. Understanding the mechanisms by which the bacterial commensals of our gut are involved in brain function may lead to the development of novel microbiome-based therapies for these mood and behavioral disorders.

  18. Health-related quality of life and emotional problems in children surviving brain tumor treatment: A descriptive study of 2 cohorts.

    PubMed

    Dessens, Arianne B; van Herwerden, Michael C; Aarsen, Femke K; Birnie, Erwin; Catsman-Berrevoets, Coriene E

    2016-08-01

    The survival of childhood brain tumors has improved in the past 30 years, but acquired brain injury due to damage caused by tumor invasion and side effects of different treatment modalities frequently occurs. This study focused on residual impairments, health-related quality of life (HRQoL), and emotional and behavioral problems in 2 cohorts of survivors diagnosed and treated for various types of brain tumors. Survivors in the 2004 cohort visited the Erasmus Medical Centre for standardized follow-up between 2003 and 2004, and in the 2014 cohort, between 2012 and 2014. Data of neurologically impairments of all children were extracted from medical records. Parents and survivors filled out questionnaires on quality of life and emotional and behavioral problems. In both cohorts, approximately 55% of the survivors displayed neurologic impairments. In comparison with the healthy reference group, a reduced parent-reported quality of life was found on the Motor, Cognition, and Autonomy (Cohort 2004) scales. Comparison between the cohorts showed that parents in the 2004 cohort reported a higher HRQoL on the Motor and Cognitive functioning scales. In the 2014 cohort, children reported less negative emotions than healthy children. No increase in emotional or behavioral problems were reported by children in both cohorts, whereas parents reported problems in social functioning and isolation related to a delay in emotional development. Children surviving brain tumor treatment have a reduced quality of life. The authors therefore recommend regular screening of HRQoL and emotional and behavioral problems and referral to specific aftercare.

  19. Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis.

    PubMed

    Zavaglia, Melissa; Hilgetag, Claus C

    2016-06-01

    Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.

  20. Neurocognitive Basis of Racial Ingroup Bias in Empathy.

    PubMed

    Han, Shihui

    2018-05-01

    Racial discrimination in social behavior, although disapproved of by many contemporary cultures, has been widely reported. Because empathy plays a key functional role in social behavior, brain imaging researchers have extensively investigated the neurocognitive underpinnings of racial ingroup bias in empathy. This research has revealed consistent evidence for increased neural responses to the perceived pain of same-race compared with other-race individuals in multiple brain regions and across multiple time-windows. Researchers have also examined neurocognitive, sociocultural, and environmental influences on racial ingroup bias in empathic neural responses, as well as explored possible interventions to reduce racial ingroup bias in empathic brain activity. These findings have important implications for understanding racial ingroup favoritism in social behavior and for improving interracial communication. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Personality and emotion: test of Gray's personality theory by means of an fMRI study.

    PubMed

    Reuter, M; Stark, R; Hennig, J; Walter, B; Kirsch, P; Schienle, A; Vaitl, D

    2004-06-01

    Although it is known that there are fundamental personality differences in the behavioral responses to emotional stimuli, traits have scarcely been investigated in this context by means of functional imaging studies. To maximize the variance with respect to personality, the authors tested 12 control subjects and 12 subjects who had sadomasochistic experiences with respect to the relationship between J. A. Gray's (1970) personality dimensions, the behavioral approach system (BAS) and the behavioral inhibition system (BIS), and brain activity in regions of interest. The BIS was associated with activity in numerous brain areas in response to fear, disgust, and erotic visual stimuli, whereas few associations could he detected between the BAS and brain activity in response to disgust and erotic stimuli. ((c) 2004 APA, all rights reserved)

  2. Development of Visual Motion Perception for Prospective Control: Brain and Behavioral Studies in Infants

    PubMed Central

    Agyei, Seth B.; van der Weel, F. R. (Ruud); van der Meer, Audrey L. H.

    2016-01-01

    During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioral and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioral data when studying the neural correlates of prospective control. PMID:26903908

  3. A Neurobiological Model for the Effects of Early Brainstem Functioning on the Development of Behavior and Emotion Regulation in Infants: Implications for Prenatal and Perinatal Risk

    ERIC Educational Resources Information Center

    Geva, Ronny; Feldman, Ruth

    2008-01-01

    Neurobiological models propose an evolutionary, vertical-integrative perspective on emotion and behavior regulation, which postulates that regulatory functions are processed along three core brain systems: the brainstem, limbic, and cortical systems. To date, few developmental studies applied these models to research on prenatal and perinatal…

  4. Executive Function Skills of 6-8 Year Olds: Brain and Behavioral Evidence and Implications for School Achievement

    ERIC Educational Resources Information Center

    Molfese, Victoria J.; Molfese, Peter J.; Molfese, Dennis L.; Rudasill, Kathleen Moritz; Armstrong, Natalie; Starkey, Gillian

    2010-01-01

    Academic and social success in school has been linked to children's self-regulation. This study investigated the assessment of the executive function (EF) component of self-regulation using a low-cost, easily administered measure to determine whether scores obtained from the behavioral task would agree with those obtained using a laboratory-based…

  5. Malondialdehyde Suppresses Cerebral Function by Breaking Homeostasis between Excitation and Inhibition in Turtle Trachemys scripta

    PubMed Central

    Li, Fangxu; Yang, Zhilai; Lu, Yang; Wei, Yan; Wang, Jinhui; Yin, Dazhong; He, Rongqiao

    2010-01-01

    The levels of malondialdehyde (MDA) are high in the brain during carbonyl stress, such as following daily activities and sleep deprivation. To examine our hypothesis that MDA is one of the major substances in the brain leading to fatigue, the influences of MDA on brain functions and neuronal encodings in red-eared turtle (Trachemys scripta) were studied. The intrathecal injections of MDA brought about sleep-like EEG and fatigue-like behaviors in a dose-dependent manner. These changes were found associated with the deterioration of encoding action potentials in cortical neurons. In addition, MDA increased the ratio of γ-aminobutyric acid to glutamate in turtle's brain, as well as the sensitivity of GABAergic neurons to inputs compared to excitatory neurons. Therefore, MDA, as a metabolic product in the brain, may weaken cerebral function during carbonyl stress through breaking the homeostasis between excitatory and inhibitory neurons. PMID:21203547

  6. [The Influence of the Functioning of Brain Regulatory Systems onto the Voluntary Regulation of Cognitive Performance in Children. Report 2. Neuropsychological and Electrophysiological Assessment of Brain Regulatory Functions in Children Aged 10-12 with Learning Difficulties].

    PubMed

    Semenova, O A; Machinskaya, R I

    2015-01-01

    A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.

  7. Culture Wires the Brain: A Cognitive Neuroscience Perspective

    PubMed Central

    Park, Denise C.; Huang, Chih-Mao

    2012-01-01

    There is clear evidence that sustained experiences may affect both brain structure and function. Thus, it is quite reasonable to posit that sustained exposure to a set of cultural experiences and behavioral practices will affect neural structure and function. The burgeoning field of cultural psychology has often demonstrated the subtle differences in the way individuals process information—differences that appear to be a product of cultural experiences. We review evidence that the collectivistic and individualistic biases of East Asian and Western cultures, respectively, affect neural structure and function. We conclude that there is limited evidence that cultural experiences affect brain structure and considerably more evidence that neural function is affected by culture, particularly activations in ventral visual cortex—areas associated with perceptual processing. PMID:22866061

  8. The elusive concept of brain network. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry

    2014-09-01

    As the poet John Donne said of man - "No man is an island entire of itself; every man is a piece of the continent, a part of the main." - so the neuroscience research community now says of brain areas. This is the topic that Luiz Pessoa expands upon in his thorough review of the paradigm shift that has occurred in much of brain research, especially in cognitive neuroscience [1]. His key point is made explicitly in the Abstract: "I argue that a network perspective should supplement the common strategy of understanding the brain in terms of individual regions." In his review, Pessoa covers a large range of topics, including how the network perspective changes the way in which one views the structure-function relationship between brain and behavior, the importance of context in ascertaining how a brain region functions, and the notion of emergent properties as a network feature. Also discussed is graph theory, one of the important mathematical methods used to analyze and describe network structure and function.

  9. On the Application of Quantitative EEG for Characterizing Autistic Brain: A Systematic Review

    PubMed Central

    Billeci, Lucia; Sicca, Federico; Maharatna, Koushik; Apicella, Fabio; Narzisi, Antonio; Campatelli, Giulia; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo

    2013-01-01

    Autism-Spectrum Disorders (ASD) are thought to be associated with abnormalities in neural connectivity at both the global and local levels. Quantitative electroencephalography (QEEG) is a non-invasive technique that allows a highly precise measurement of brain function and connectivity. This review encompasses the key findings of QEEG application in subjects with ASD, in order to assess the relevance of this approach in characterizing brain function and clustering phenotypes. QEEG studies evaluating both the spontaneous brain activity and brain signals under controlled experimental stimuli were examined. Despite conflicting results, literature analysis suggests that QEEG features are sensitive to modification in neuronal regulation dysfunction which characterize autistic brain. QEEG may therefore help in detecting regions of altered brain function and connectivity abnormalities, in linking behavior with brain activity, and subgrouping affected individuals within the wide heterogeneity of ASD. The use of advanced techniques for the increase of the specificity and of spatial localization could allow finding distinctive patterns of QEEG abnormalities in ASD subjects, paving the way for the development of tailored intervention strategies. PMID:23935579

  10. Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation.

    PubMed

    Gratton, Caterina; Laumann, Timothy O; Nielsen, Ashley N; Greene, Deanna J; Gordon, Evan M; Gilmore, Adrian W; Nelson, Steven M; Coalson, Rebecca S; Snyder, Abraham Z; Schlaggar, Bradley L; Dosenbach, Nico U F; Petersen, Steven E

    2018-04-18

    The organization of human brain networks can be measured by capturing correlated brain activity with fMRI. There is considerable interest in understanding how brain networks vary across individuals or neuropsychiatric populations or are altered during the performance of specific behaviors. However, the plausibility and validity of such measurements is dependent on the extent to which functional networks are stable over time or are state dependent. We analyzed data from nine high-quality, highly sampled individuals to parse the magnitude and anatomical distribution of network variability across subjects, sessions, and tasks. Critically, we find that functional networks are dominated by common organizational principles and stable individual features, with substantially more modest contributions from task-state and day-to-day variability. Sources of variation were differentially distributed across the brain and differentially linked to intrinsic and task-evoked sources. We conclude that functional networks are suited to measuring stable individual characteristics, suggesting utility in personalized medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Identification of autism spectrum disorder using deep learning and the ABIDE dataset.

    PubMed

    Heinsfeld, Anibal Sólon; Franco, Alexandre Rosa; Craddock, R Cameron; Buchweitz, Augusto; Meneguzzi, Felipe

    2018-01-01

    The goal of the present study was to apply deep learning algorithms to identify autism spectrum disorder (ASD) patients from large brain imaging dataset, based solely on the patients brain activation patterns. We investigated ASD patients brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). ASD is a brain-based disorder characterized by social deficits and repetitive behaviors. According to recent Centers for Disease Control data, ASD affects one in 68 children in the United States. We investigated patterns of functional connectivity that objectively identify ASD participants from functional brain imaging data, and attempted to unveil the neural patterns that emerged from the classification. The results improved the state-of-the-art by achieving 70% accuracy in identification of ASD versus control patients in the dataset. The patterns that emerged from the classification show an anticorrelation of brain function between anterior and posterior areas of the brain; the anticorrelation corroborates current empirical evidence of anterior-posterior disruption in brain connectivity in ASD. We present the results and identify the areas of the brain that contributed most to differentiating ASD from typically developing controls as per our deep learning model.

  12. Intranasal oxytocin modulates neural functional connectivity during human social interaction.

    PubMed

    Rilling, James K; Chen, Xiangchuan; Chen, Xu; Haroon, Ebrahim

    2018-02-10

    Oxytocin (OT) modulates social behavior in primates and many other vertebrate species. Studies in non-primate animals have demonstrated that, in addition to influencing activity within individual brain areas, OT influences functional connectivity across networks of areas involved in social behavior. Previously, we used fMRI to image brain function in human subjects during a dyadic social interaction task following administration of either intranasal oxytocin (INOT) or placebo, and analyzed the data with a standard general linear model. Here, we conduct an extensive re-analysis of these data to explore how OT modulates functional connectivity across a neural network that animal studies implicate in social behavior. OT induced widespread increases in functional connectivity in response to positive social interactions among men and widespread decreases in functional connectivity in response to negative social interactions among women. Nucleus basalis of Meynert, an important regulator of selective attention and motivation with a particularly high density of OT receptors, had the largest number of OT-modulated connections. Regions known to receive mesolimbic dopamine projections such as the nucleus accumbens and lateral septum were also hubs for OT effects on functional connectivity. Our results suggest that the neural mechanism by which OT influences primate social cognition may include changes in patterns of activity across neural networks that regulate social behavior in other animals. © 2018 Wiley Periodicals, Inc.

  13. Emotion Potentiated Startle in Fragile X Syndrome

    ERIC Educational Resources Information Center

    Ballinger, Elizabeth C.; Cordeiro, Lisa; Chavez, Alyssa D.; Hagerman, Randi J.; Hessl, David

    2014-01-01

    Social avoidance and anxiety are prevalent in fragile X syndrome (FXS) and are potentially mediated by the amygdala, a brain region critical for social behavior. Unfortunately, functional brain resonance imaging investigation of the amygdala in FXS is limited by the difficulties experienced by intellectually impaired and anxious participants. We…

  14. Brain-Behavior Relationships in Reading Acquisition Are Modulated by Socioeconomic Factors

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Wolmetz, Michael E.; Ochs, Lisa G.; Farah, Martha J.; McCandliss, Bruce D.

    2006-01-01

    Functional neuroimaging may provide insights into the achievement gap in reading skill commonly observed across socioeconomic status (SES). Brain activation during reading tasks is known to be associated with individual differences in children's phonological language skills. By selecting children of equivalent phonological skill, yet diverse…

  15. The Characterization of Brain Behavior Relationships via Cognitive Neuroinformatic Approaches

    ERIC Educational Resources Information Center

    Kalar, Donald James, II

    2009-01-01

    The scope, breadth, and volume of data characterizing our current understanding of how the brain functions is growing at an increasingly rapid pace. What is more, theories are becoming increasing complex and nuanced, integrating knowledge from multiple previously independent sources of scientific inquiry. The research described within this…

  16. Fetal Alcohol Syndrome and the Developing Socio-Emotional Brain

    ERIC Educational Resources Information Center

    Niccols, Alison

    2007-01-01

    Fetal alcohol syndrome (FAS) is currently recognized as the most common known cause of mental retardation, affecting from 1 to 7 per 1000 live-born infants. Individuals with FAS suffer from changes in brain structure, cognitive impairments, and behavior problems. Researchers investigating neuropsychological functioning have identified deficits in…

  17. On Teaching Brains To Think: A Conversation with Robert Sylwester.

    ERIC Educational Resources Information Center

    Brandt, Ron

    2000-01-01

    Sylwester says education must begin relying more on biology than social and behavioral science. All brain systems move from a slow, awkward functional level to a fast, efficient level. Contributions of metacognition, self-regulation, emotions, reflective and reflexive responses, comparison, and classification to cognitive development are…

  18. Overnight Therapy? The Role of Sleep in Emotional Brain Processing

    ERIC Educational Resources Information Center

    Walker, Matthew P.; van Der Helm, Els

    2009-01-01

    Cognitive neuroscience continues to build meaningful connections between affective behavior and human brain function. Within the biological sciences, a similar renaissance has taken place, focusing on the role of sleep in various neurocognitive processes and, most recently, on the interaction between sleep and emotional regulation. This review…

  19. Postnatal brain development: Structural imaging of dynamic neurodevelopmental processes

    PubMed Central

    Jernigan, Terry L.; Baaré, William F. C.; Stiles, Joan; Madsen, Kathrine Skak

    2013-01-01

    After birth, there is striking biological and functional development of the brain’s fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain–behavior associations in children, including genetic variation, behavioral interventions, and hormonal variation associated with puberty. At present longitudinal studies are few, and we do not yet know how variability in individual trajectories of biological development in specific neural systems map onto similar variability in behavioral trajectories. PMID:21489384

  20. The effects of probiotics on mood and emotion.

    PubMed

    Kane, Lindsey; Kinzel, Julie

    2018-05-01

    Preliminary research in humans and rodents demonstrates that various probiotic formulations of Lactobacillus and Bifidobacterium have a clinical and neurochemical anxiolytic effect on the central nervous system (CNS). Further research is warranted to more extensively examine the theorized connection between the gastrointestinal tract and the CNS; however, initial evidence suggests probiotics affect various mechanisms of the gut-brain connection that modulate anxiety-like behaviors. This article describes the wider-reaching effects of probiotics, specifically related to behavior and brain function.

  1. Forced and voluntary exercises equally improve spatial learning and memory and hippocampal BDNF levels.

    PubMed

    Alomari, Mahmoud A; Khabour, Omar F; Alzoubi, Karem H; Alzubi, Mohammad A

    2013-06-15

    Multiple evidence suggest the importance of exercise for cognitive and brain functions. Few studies however, compared the behavioral and neural adaptations to force versus voluntary exercise training. Therefore, spatial learning and memory formation and brain-derived neurotrophic factor (BDNF) were examined in Wister male rats after 6 weeks of either daily forced swimming, voluntary running exercises, or sedentary. Learning capabilities and short, 5-hour, and long term memories improved (p<0.05) similarly in the exercise groups, without changes (p>0.05) in the sedentary. Likewise, both exercises resulted in increased (p<0.05) hippocampal BDNF level. The results suggest that forced and voluntary exercises can similarly enhance cognitive- and brain-related tasks, seemingly vie the BDNF pathway. These data further confirm the health benefits of exercise and advocate both exercise modalities to enhance behavioral and neural functions. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Mindfulness Meditation Training and Self-Referential Processing in Social Anxiety Disorder: Behavioral and Neural Effects

    PubMed Central

    Goldin, Philippe; Ramel, Wiveka; Gross, James

    2014-01-01

    This study examined the effects of mindfulness-based stress reduction (MBSR) on the brain-behavior mechanisms of self-referential processing in patients with social anxiety disorder (SAD). Sixteen patients underwent functional magnetic resonance imaging while encoding self-referential, valence, and orthographic features of social trait adjectives. Post-MBSR, 14 patients completed neuroimaging. Compared to baseline, MBSR completers showed (a) increased self-esteem and decreased anxiety, (b) increased positive and decreased negative self-endorsement, (c) increased activity in a brain network related to attention regulation, and (d) reduced activity in brain systems implicated in conceptual-linguistic self-view. MBSR-related changes in maladaptive or distorted social self-view in adults diagnosed with SAD may be related to modulation of conceptual self-processing and attention regulation. Self-referential processing may serve as a functional biobehavioral target to measure the effects of mindfulness training. PMID:25568592

  3. Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers

    PubMed Central

    Neville, Helen J.; Stevens, Courtney; Pakulak, Eric; Bell, Theodore A.; Fanning, Jessica; Klein, Scott; Isbell, Elif

    2013-01-01

    Using information from research on the neuroplasticity of selective attention and on the central role of successful parenting in child development, we developed and rigorously assessed a family-based training program designed to improve brain systems for selective attention in preschool children. One hundred forty-one lower socioeconomic status preschoolers enrolled in a Head Start program were randomly assigned to the training program, Head Start alone, or an active control group. Electrophysiological measures of children’s brain functions supporting selective attention, standardized measures of cognition, and parent-reported child behaviors all favored children in the treatment program relative to both control groups. Positive changes were also observed in the parents themselves. Effect sizes ranged from one-quarter to half of a standard deviation. These results lend impetus to the further development and broader implementation of evidence-based education programs that target at-risk families. PMID:23818591

  4. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2)

    PubMed Central

    Korczyn, Amos D.; Schachter, Steven C.; Brodie, Martin J.; Dalal, Sarang S.; Engel, Jerome; Guekht, Alla; Hecimovic, Hrvoje; Jerbi, Karim; Kanner, Andres M.; Landmark, Cecilie Johannessen; Mares, Pavel; Marusic, Petr; Meletti, Stefano; Mula, Marco; Patsalos, Philip N.; Reuber, Markus; Ryvlin, Philippe; Štillová, Klára; Tuchman, Roberto; Rektor, Ivan

    2016-01-01

    Epilepsy is, of course, not one disease but rather a huge number of disorders that can present with seizures. In common, they all reflect brain dysfunction. Moreover, they can affect the mind and, of course, behavior. While animals too may suffer from epilepsy, as far as we know, the electrical discharges are less likely to affect the mind and behavior, which is not surprising. While the epileptic seizures themselves are episodic, the mental and behavioral changes continue, in many cases, interictally. The episodic mental and behavioral manifestations are more dramatic, while the interictal ones are easier to study with anatomical and functional studies. The following extended summaries complement those presented in Part 1. PMID:23764496

  5. Functional connectivity alterations in brain networks relevant to self-awareness in chronic cannabis users.

    PubMed

    Pujol, Jesus; Blanco-Hinojo, Laura; Batalla, Albert; López-Solà, Marina; Harrison, Ben J; Soriano-Mas, Carles; Crippa, Jose A; Fagundo, Ana B; Deus, Joan; de la Torre, Rafael; Nogué, Santiago; Farré, Magí; Torrens, Marta; Martín-Santos, Rocío

    2014-04-01

    Recreational drugs are generally used to intentionally alter conscious experience. Long-lasting cannabis users frequently seek this effect as a means to relieve negative affect states. As with conventional anxiolytic drugs, however, changes in subjective feelings may be associated with memory impairment. We have tested whether the use of cannabis, as a psychoactive compound, is associated with alterations in spontaneous activity in brain networks relevant to self-awareness, and whether such potential changes are related to perceived anxiety and memory performance. Functional connectivity was assessed in the Default and Insula networks during resting state using fMRI in 28 heavy cannabis users and 29 control subjects. Imaging assessments were conducted during cannabis use in the unintoxicated state and repeated after one month of controlled abstinence. Cannabis users showed increased functional connectivity in the core of the Default and Insula networks and selective enhancement of functional anticorrelation between both. Reduced functional connectivity was observed in areas overlapping with other brain networks. Observed alterations were associated with behavioral measurements in a direction suggesting anxiety score reduction and interference with memory performance. Alterations were also related to the amount of cannabis used and partially persisted after one month of abstinence. Chronic cannabis use was associated with significant effects on the tuning and coupling of brain networks relevant to self-awareness, which in turn are integrated into brain systems supporting the storage of personal experience and motivated behavior. The results suggest potential mechanisms for recreational drugs to interfere with higher-order network interactions generating conscious experience. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    PubMed

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  7. REVIEWS OF TOPICAL PROBLEMS: Nonlinear dynamics of the brain: emotion and cognition

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Muezzinoglu, M. K.

    2010-07-01

    Experimental investigations of neural system functioning and brain activity are standardly based on the assumption that perceptions, emotions, and cognitive functions can be understood by analyzing steady-state neural processes and static tomographic snapshots. The new approaches discussed in this review are based on the analysis of transient processes and metastable states. Transient dynamics is characterized by two basic properties, structural stability and information sensitivity. The ideas and methods that we discuss provide an explanation for the occurrence of and successive transitions between metastable states observed in experiments, and offer new approaches to behavior analysis. Models of the emotional and cognitive functions of the brain are suggested. The mathematical object that represents the observed transient brain processes in the phase space of the model is a structurally stable heteroclinic channel. The possibility of using the suggested models to construct a quantitative theory of some emotional and cognitive functions is illustrated.

  8. The Neuroprotective Aspects of Sleep.

    PubMed

    Eugene, Andy R; Masiak, Jolanta

    2015-03-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle.

  9. The Neuroprotective Aspects of Sleep

    PubMed Central

    Eugene, Andy R.; Masiak, Jolanta

    2015-01-01

    Sleep is an important component of human life, yet many people do not understand the relationship between the brain and the process of sleeping. Sleep has been proven to improve memory recall, regulate metabolism, and reduce mental fatigue. A minimum of 7 hours of daily sleep seems to be necessary for proper cognitive and behavioral function. The emotional and mental handicaps associated with chronic sleep loss as well as the highly hazardous situations which can be contributed to the lack of sleep is a serious concern that people need to be aware of. When one sleeps, the brain reorganizes and recharges itself, and removes toxic waste byproducts which have accumulated throughout the day. This evidence demonstrates that sleeping can clear the brain and help maintain its normal functioning. Multiple studies have been done to determine the effects of total sleep deprivation; more recently some have been conducted to show the effects of sleep restriction, which is a much more common occurrence, have the same effects as total sleep deprivation. Each phase of the sleep cycle restores and rejuvenates the brain for optimal function. When sleep is deprived, the active process of the glymphatic system does not have time to perform that function, so toxins can build up, and the effects will become apparent in cognitive abilities, behavior, and judgment. As a background for this paper we have reviewed literature and research of sleep phases, effects of sleep deprivation, and the glymphatic system of the brain and its restorative effect during the sleep cycle. PMID:26594659

  10. Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI☆

    PubMed Central

    Koush, Yury; Rosa, Maria Joao; Robineau, Fabien; Heinen, Klaartje; W. Rieger, Sebastian; Weiskopf, Nikolaus; Vuilleumier, Patrik; Van De Ville, Dimitri; Scharnowski, Frank

    2013-01-01

    Neurofeedback based on real-time fMRI is an emerging technique that can be used to train voluntary control of brain activity. Such brain training has been shown to lead to behavioral effects that are specific to the functional role of the targeted brain area. However, real-time fMRI-based neurofeedback so far was limited to mainly training localized brain activity within a region of interest. Here, we overcome this limitation by presenting near real-time dynamic causal modeling in order to provide feedback information based on connectivity between brain areas rather than activity within a single brain area. Using a visual–spatial attention paradigm, we show that participants can voluntarily control a feedback signal that is based on the Bayesian model comparison between two predefined model alternatives, i.e. the connectivity between left visual cortex and left parietal cortex vs. the connectivity between right visual cortex and right parietal cortex. Our new approach thus allows for training voluntary control over specific functional brain networks. Because most mental functions and most neurological disorders are associated with network activity rather than with activity in a single brain region, this novel approach is an important methodological innovation in order to more directly target functionally relevant brain networks. PMID:23668967

  11. Brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex.

    PubMed

    Croll, S D; Suri, C; Compton, D L; Simmons, M V; Yancopoulos, G D; Lindsay, R M; Wiegand, S J; Rudge, J S; Scharfman, H E

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the beta-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a significant passive avoidance deficit. This deficit was dependent on continued overexpression, and resolved with age as brain-derived neurotrophic factor transcripts decreased. In addition, the brain-derived neurotrophic factor transgenic mice showed increased seizure severity in response to kainic acid. Hippocampal slices from brain-derived neurotrophic factor transgenic mice showed hyperexcitability in area CA3 and entorhinal cortex, but not in dentate gyrus. Finally, area CA1 long-term potentiation was disrupted, indicating abnormal plasticity. Our data suggest that overexpression of brain-derived neurotrophic factor in the brain can interfere with normal brain function by causing learning impairments and increased excitability. The results also support the hypothesis that excess brain-derived neurotrophic factor could be pro-convulsant in the limbic system.

  12. Cross Talk Between Brain Innate Immunity and Serotonin Signaling Underlies Depressive-Like Behavior Induced by Alzheimer's Amyloid-β Oligomers in Mice.

    PubMed

    Ledo, Jose Henrique; Azevedo, Estefania P; Beckman, Danielle; Ribeiro, Felipe C; Santos, Luis E; Razolli, Daniela S; Kincheski, Grasielle C; Melo, Helen M; Bellio, Maria; Teixeira, Antonio L; Velloso, Licio A; Foguel, Debora; De Felice, Fernanda G; Ferreira, Sergio T

    2016-11-30

    Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aβ oligomers (AβOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AβO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AβOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AβOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AβOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-β oligomers (AβOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AβO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function. Copyright © 2016 the authors 0270-6474/16/3612106-11$15.00/0.

  13. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit.

    PubMed

    Foulon, Chris; Cerliani, Leonardo; Kinkingnéhun, Serge; Levy, Richard; Rosso, Charlotte; Urbanski, Marika; Volle, Emmanuelle; Thiebaut de Schotten, Michel

    2018-03-01

    Patients with brain lesions provide a unique opportunity to understand the functioning of the human mind. However, even when focal, brain lesions have local and remote effects that impact functionally and structurally connected circuits. Similarly, function emerges from the interaction between brain areas rather than their sole activity. For instance, category fluency requires the associations between executive, semantic, and language production functions. Here, we provide, for the first time, a set of complementary solutions for measuring the impact of a given lesion on the neuronal circuits. Our methods, which were applied to 37 patients with a focal frontal brain lesions, revealed a large set of directly and indirectly disconnected brain regions that had significantly impacted category fluency performance. The directly disconnected regions corresponded to areas that are classically considered as functionally engaged in verbal fluency and categorization tasks. These regions were also organized into larger directly and indirectly disconnected functional networks, including the left ventral fronto-parietal network, whose cortical thickness correlated with performance on category fluency. The combination of structural and functional connectivity together with cortical thickness estimates reveal the remote effects of brain lesions, provide for the identification of the affected networks, and strengthen our understanding of their relationship with cognitive and behavioral measures. The methods presented are available and freely accessible in the BCBtoolkit as supplementary software [1].

  14. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  15. A novel fiber-free technique for brain activity imaging in multiple freely behaving mice

    NASA Astrophysics Data System (ADS)

    Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu

    2018-02-01

    Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.

  16. Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury.

    PubMed

    Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R

    2018-02-01

    Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice.

    PubMed

    Khairinisa, Miski Aghnia; Takatsuru, Yusuke; Amano, Izuki; Kokubo, Michifumi; Haijima, Asahi; Miyazaki, Wataru; Koibuchi, Noriyuki

    2018-01-01

    Thyroid hormones (THs) play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU) treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm) in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21). First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups). As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  18. Artistic creativity and dementia.

    PubMed

    Miller, Zachary A; Miller, Bruce L

    2013-01-01

    Artistic ability and creativity are defining characteristics of human behavior. Behavioral neurology, as a specialty, believes that even the most complex behaviors can be modeled and understood as the summation of smaller cognitive functions. Literature from individuals with specific brain lesions has helped to map out these smaller regions of cognitive abilities. More recently, models based on neurodegenerative conditions, especially from the frontotemporal dementias, have allowed for greater nuanced investigations into the various functional anatomies necessary for artistic behavior and possibly the underlying networks that promote creativity. © 2013 Elsevier B.V. All rights reserved.

  19. Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives.

    PubMed

    Mascetti, Gian Gastone

    2016-01-01

    Sleep is a behavior characterized by a typical body posture, both eyes' closure, raised sensory threshold, distinctive electrographic signs, and a marked decrease of motor activity. In addition, sleep is a periodically necessary behavior and therefore, in the majority of animals, it involves the whole brain and body. However, certain marine mammals and species of birds show a different sleep behavior, in which one cerebral hemisphere sleeps while the other is awake. In dolphins, eared seals, and manatees, unihemispheric sleep allows them to have the benefits of sleep, breathing, thermoregulation, and vigilance. In birds, antipredation vigilance is the main function of unihemispheric sleep, but in domestic chicks, it is also associated with brain lateralization or dominance in the control of behavior. Compared to bihemispheric sleep, unihemispheric sleep would mean a reduction of the time spent sleeping and of the associated recovery processes. However, the behavior and health of aquatic mammals and birds does not seem at all impaired by the reduction of sleep. The neural mechanisms of unihemispheric sleep are unknown, but assuming that the neural structures involved in sleep in cetaceans, seals, and birds are similar to those of terrestrial mammals, it is suggested that they involve the interaction of structures of the hypothalamus, basal forebrain, and brain stem. The neural mechanisms promoting wakefulness dominate one side of the brain, while those promoting sleep predominates the other side. For cetaceans, unihemispheric sleep is the only way to sleep, while in seals and birds, unihemispheric sleep events are intermingled with bihemispheric and rapid eye movement sleep events. Electroencephalogram hemispheric asymmetries are also reported during bihemispheric sleep, at awakening, and at sleep onset, as well as being associated with a use-dependent process (local sleep).

  20. Intrinsic Brain Activity in Altered States of Consciousness

    PubMed Central

    Boly, M.; Phillips, C.; Tshibanda, L.; Vanhaudenhuyse, A.; Schabus, M.; Dang-Vu, T.T.; Moonen, G.; Hustinx, R.; Maquet, P.; Laureys, S.

    2010-01-01

    Spontaneous brain activity has recently received increasing interest in the neuroimaging community. However, the value of resting-state studies to a better understanding of brain–behavior relationships has been challenged. That altered states of consciousness are a privileged way to study the relationships between spontaneous brain activity and behavior is proposed, and common resting-state brain activity features observed in various states of altered consciousness are reviewed. Early positron emission tomography studies showed that states of extremely low or high brain activity are often associated with unconsciousness. However, this relationship is not absolute, and the precise link between global brain metabolism and awareness remains yet difficult to assert. In contrast, voxel-based analyses identified a systematic impairment of associative frontoparieto–cingulate areas in altered states of consciousness, such as sleep, anesthesia, coma, vegetative state, epileptic loss of consciousness, and somnambulism. In parallel, recent functional magnetic resonance imaging studies have identified structured patterns of slow neuronal oscillations in the resting human brain. Similar coherent blood oxygen level–dependent (BOLD) systemwide patterns can also be found, in particular in the default-mode network, in several states of unconsciousness, such as coma, anesthesia, and slow-wave sleep. The latter results suggest that slow coherent spontaneous BOLD fluctuations cannot be exclusively a reflection of conscious mental activity, but may reflect default brain connectivity shaping brain areas of most likely interactions in a way that transcends levels of consciousness, and whose functional significance remains largely in the dark. PMID:18591474

Top