Science.gov

Sample records for brain functional networks

  1. Aging and functional brain networks

    SciTech Connect

    Tomasi D.; Tomasi, D.; Volkow, N.D.

    2011-07-11

    Aging is associated with changes in human brain anatomy and function and cognitive decline. Recent studies suggest the aging decline of major functional connectivity hubs in the 'default-mode' network (DMN). Aging effects on other networks, however, are largely unknown. We hypothesized that aging would be associated with a decline of short- and long-range functional connectivity density (FCD) hubs in the DMN. To test this hypothesis, we evaluated resting-state data sets corresponding to 913 healthy subjects from a public magnetic resonance imaging database using functional connectivity density mapping (FCDM), a voxelwise and data-driven approach, together with parallel computing. Aging was associated with pronounced long-range FCD decreases in DMN and dorsal attention network (DAN) and with increases in somatosensory and subcortical networks. Aging effects in these networks were stronger for long-range than for short-range FCD and were also detected at the level of the main functional hubs. Females had higher short- and long-range FCD in DMN and lower FCD in the somatosensory network than males, but the gender by age interaction effects were not significant for any of the networks or hubs. These findings suggest that long-range connections may be more vulnerable to aging effects than short-range connections and that, in addition to the DMN, the DAN is also sensitive to aging effects, which could underlie the deterioration of attention processes that occurs with aging.

  2. Structure and function of complex brain networks.

    PubMed

    Sporns, Olaf

    2013-09-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a "rich club," centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed.

  3. Scale-Free Brain Functional Networks

    NASA Astrophysics Data System (ADS)

    Eguíluz, Victor M.; Chialvo, Dante R.; Cecchi, Guillermo A.; Baliki, Marwan; Apkarian, A. Vania

    2005-01-01

    Functional magnetic resonance imaging is used to extract functional networks connecting correlated human brain sites. Analysis of the resulting networks in different tasks shows that (a)the distribution of functional connections, and the probability of finding a link versus distance are both scale-free, (b)the characteristic path length is small and comparable with those of equivalent random networks, and (c)the clustering coefficient is orders of magnitude larger than those of equivalent random networks. All these properties, typical of scale-free small-world networks, reflect important functional information about brain states.

  4. Simple models of human brain functional networks.

    PubMed

    Vértes, Petra E; Alexander-Bloch, Aaron F; Gogtay, Nitin; Giedd, Jay N; Rapoport, Judith L; Bullmore, Edward T

    2012-04-10

    Human brain functional networks are embedded in anatomical space and have topological properties--small-worldness, modularity, fat-tailed degree distributions--that are comparable to many other complex networks. Although a sophisticated set of measures is available to describe the topology of brain networks, the selection pressures that drive their formation remain largely unknown. Here we consider generative models for the probability of a functional connection (an edge) between two cortical regions (nodes) separated by some Euclidean distance in anatomical space. In particular, we propose a model in which the embedded topology of brain networks emerges from two competing factors: a distance penalty based on the cost of maintaining long-range connections; and a topological term that favors links between regions sharing similar input. We show that, together, these two biologically plausible factors are sufficient to capture an impressive range of topological properties of functional brain networks. Model parameters estimated in one set of functional MRI (fMRI) data on normal volunteers provided a good fit to networks estimated in a second independent sample of fMRI data. Furthermore, slightly detuned model parameters also generated a reasonable simulation of the abnormal properties of brain functional networks in people with schizophrenia. We therefore anticipate that many aspects of brain network organization, in health and disease, may be parsimoniously explained by an economical clustering rule for the probability of functional connectivity between different brain areas.

  5. Describing functional diversity of brain regions and brain networks

    PubMed Central

    Anderson, Michael L.; Kinnison, Josh; Pessoa, Luiz

    2013-01-01

    Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way to characterize the degree of functional specialization. To do so, brain activations were classified in terms of task domains, such as vision, attention, and language, which determined a region’s functional fingerprint. We found that the degree of diversity varied considerably across the brain. We also quantified novel properties of regions and of networks that inform our understanding of several task-positive and task-negative networks described in the literature, including defining functional fingerprints for entire networks and measuring their functional assortativity, namely the degree to which they are composed of regions with similar functional fingerprints. Our results demonstrate that some brain networks exhibit strong assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than characterizing the contributions of individual brain regions using task-based functional attributions, we instead quantified their dispositional tendencies, and related those to each region’s affiliative properties in both task-positive and task-negative contexts. PMID:23396162

  6. Individual diversity of functional brain network economy.

    PubMed

    Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert

    2015-04-01

    On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders.

  7. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo.

  8. Homological scaffolds of brain functional networks

    PubMed Central

    Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.

    2014-01-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  9. Homological scaffolds of brain functional networks.

    PubMed

    Petri, G; Expert, P; Turkheimer, F; Carhart-Harris, R; Nutt, D; Hellyer, P J; Vaccarino, F

    2014-12-01

    Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186-198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects-homological cycles-associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle,we apply these tools to compare resting state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin-the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177

  10. Functional Brain Networks in Schizophrenia: A Review

    PubMed Central

    Calhoun, Vince D.; Eichele, Tom; Pearlson, Godfrey

    2009-01-01

    Functional magnetic resonance imaging (fMRI) has become a major technique for studying cognitive function and its disruption in mental illness, including schizophrenia. The major proportion of imaging studies focused primarily upon identifying regions which hemodynamic response amplitudes covary with particular stimuli and differentiate between patient and control groups. In addition to such amplitude based comparisons, one can estimate temporal correlations and compute maps of functional connectivity between regions which include the variance associated with event-related responses as well as intrinsic fluctuations of hemodynamic activity. Functional connectivity maps can be computed by correlating all voxels with a seed region when a spatial prior is available. An alternative are multivariate decompositions such as independent component analysis (ICA) which extract multiple components, each of which is a spatially distinct map of voxels with a common time course. Recent work has shown that these networks are pervasive in relaxed resting and during task performance and hence provide robust measures of intact and disturbed brain activity. This in turn bears the prospect of yielding biomarkers for schizophrenia, which can be described both in terms of disrupted local processing as well as altered global connectivity between large-scale networks. In this review we will summarize functional connectivity measures with a focus upon work with ICA and discuss the meaning of intrinsic fluctuations. In addition, examples of how brain networks have been used for classification of disease will be shown. We present work with functional network connectivity, an approach that enables the evaluation of the interplay between multiple networks and how they are affected in disease. We conclude by discussing new variants of ICA for extracting maximally group discriminative networks from data. In summary, it is clear that identification of brain networks and their inter

  11. An Adaptive Complex Network Model for Brain Functional Networks

    PubMed Central

    Gomez Portillo, Ignacio J.; Gleiser, Pablo M.

    2009-01-01

    Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902

  12. Functional brain networks involved in reality monitoring.

    PubMed

    Metzak, Paul D; Lavigne, Katie M; Woodward, Todd S

    2015-08-01

    Source monitoring refers to the recollection of variables that specify the context and conditions in which a memory episode was encoded. This process involves using the qualitative and quantitative features of a memory trace to distinguish its source. One specific class of source monitoring is reality monitoring, which involves distinguishing internally generated from externally generated information, that is, memories of imagined events from real events. The purpose of the present study was to identify functional brain networks that underlie reality monitoring, using an alternative type of source monitoring as a control condition. On the basis of previous studies on self-referential thinking, it was expected that a medial prefrontal cortex (mPFC) based network would be more active during reality monitoring than the control condition, due to the requirement to focus on a comparison of internal (self) and external (other) source information. Two functional brain networks emerged from this analysis, one reflecting increasing task-related activity, and one reflecting decreasing task-related activity. The second network was mPFC based, and was characterized by task-related deactivations in areas resembling the default-mode network; namely, the mPFC, middle temporal gyri, lateral parietal regions, and the precuneus, and these deactivations were diminished during reality monitoring relative to source monitoring, resulting in higher activity during reality monitoring. This result supports previous research suggesting that self-referential thinking involves the mPFC, but extends this to a network-level interpretation of reality monitoring.

  13. Estimating functional brain networks by incorporating a modularity prior.

    PubMed

    Qiao, Lishan; Zhang, Han; Kim, Minjeong; Teng, Shenghua; Zhang, Limei; Shen, Dinggang

    2016-11-01

    Functional brain network analysis has become one principled way of revealing informative organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct "ideal" brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) time series associated with different brain regions. Although many methods have been developed, it is currently still an open field to estimate biologically meaningful and statistically robust brain networks due to our limited understanding of the human brain as well as complex noises in the observed data. Motivated by the fact that the brain is organized with modular structures, in this paper, we propose a novel functional brain network modeling scheme by encoding a modularity prior under a matrix-regularized network learning framework, and further formulate it as a sparse low-rank graph learning problem, which can be solved by an efficient optimization algorithm. Then, we apply the learned brain networks to identify patients with mild cognitive impairment (MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple feature selection and classification pipeline, which significantly outperforms the conventional brain network construction methods. Moreover, we further explore brain network features that contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis.

  14. Estimating functional brain networks by incorporating a modularity prior.

    PubMed

    Qiao, Lishan; Zhang, Han; Kim, Minjeong; Teng, Shenghua; Zhang, Limei; Shen, Dinggang

    2016-11-01

    Functional brain network analysis has become one principled way of revealing informative organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct "ideal" brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) time series associated with different brain regions. Although many methods have been developed, it is currently still an open field to estimate biologically meaningful and statistically robust brain networks due to our limited understanding of the human brain as well as complex noises in the observed data. Motivated by the fact that the brain is organized with modular structures, in this paper, we propose a novel functional brain network modeling scheme by encoding a modularity prior under a matrix-regularized network learning framework, and further formulate it as a sparse low-rank graph learning problem, which can be solved by an efficient optimization algorithm. Then, we apply the learned brain networks to identify patients with mild cognitive impairment (MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple feature selection and classification pipeline, which significantly outperforms the conventional brain network construction methods. Moreover, we further explore brain network features that contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis. PMID:27485752

  15. Emotion-Induced Topological Changes in Functional Brain Networks.

    PubMed

    Park, Chang-Hyun; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk

    2016-01-01

    In facial expression perception, a distributed network is activated according to stimulus context. We proposed that an interaction between brain activation and stimulus context in response to facial expressions could signify a pattern of interactivity across the whole brain network beyond the face processing network. Functional magnetic resonance imaging data were acquired for 19 young healthy subjects who were exposed to either emotionally neutral or negative facial expressions. We constructed group-wise functional brain networks for 12 face processing areas [bilateral inferior occipital gyri (IOG), fusiform gyri (FG), superior temporal sulci (STS), amygdalae (AMG), inferior frontal gyri (IFG), and orbitofrontal cortices (OFC)] and for 73 whole brain areas, based on partial correlation of mean activation across subjects. We compared the topological properties of the networks with respect to functional distance-based measures, global and local efficiency, between the two types of face stimulus. In both face processing and whole brain networks, global efficiency was lower and local efficiency was higher for negative faces relative to neutral faces, indicating that network topology differed according to stimulus context. Particularly in the face processing network, emotion-induced changes in network topology were attributable to interactions between core (bilateral IOG, FG, and STS) and extended (bilateral AMG, IFG, and OFC) systems. These results suggest that changes in brain activation patterns in response to emotional face stimuli could be revealed as changes in the topological properties of functional brain networks for the whole brain as well as for face processing areas.

  16. Analyzing complex functional brain networks: Fusing statistics and network science to understand the brain*†

    PubMed Central

    Simpson, Sean L.; Bowman, F. DuBois; Laurienti, Paul J.

    2014-01-01

    Complex functional brain network analyses have exploded over the last decade, gaining traction due to their profound clinical implications. The application of network science (an interdisciplinary offshoot of graph theory) has facilitated these analyses and enabled examining the brain as an integrated system that produces complex behaviors. While the field of statistics has been integral in advancing activation analyses and some connectivity analyses in functional neuroimaging research, it has yet to play a commensurate role in complex network analyses. Fusing novel statistical methods with network-based functional neuroimage analysis will engender powerful analytical tools that will aid in our understanding of normal brain function as well as alterations due to various brain disorders. Here we survey widely used statistical and network science tools for analyzing fMRI network data and discuss the challenges faced in filling some of the remaining methodological gaps. When applied and interpreted correctly, the fusion of network scientific and statistical methods has a chance to revolutionize the understanding of brain function. PMID:25309643

  17. Structural and functional clusters of complex brain networks

    NASA Astrophysics Data System (ADS)

    Zemanová, Lucia; Zhou, Changsong; Kurths, Jürgen

    2006-12-01

    Recent research using the complex network approach has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. It is of importance to understand the implications of such complex network structures in the functional organization of the brain activities. Here we study this problem from the viewpoint of dynamical complex networks. We investigate synchronization dynamics on the corticocortical network of the cat by modeling each node (cortical area) of the network with a sub-network of interacting excitable neurons. We find that the network displays clustered synchronization behavior, and the dynamical clusters coincide with the topological community structures observed in the anatomical network. Our results provide insights into the relationship between the global organization and the functional specialization of the brain cortex.

  18. Hierarchical organization of brain functional networks during visual tasks

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Fu, Zhong-Qian; Zhang, Jie

    2011-09-01

    The functional network of the brain is known to demonstrate modular structure over different hierarchical scales. In this paper, we systematically investigated the hierarchical modular organizations of the brain functional networks that are derived from the extent of phase synchronization among high-resolution EEG time series during a visual task. In particular, we compare the modular structure of the functional network from EEG channels with that of the anatomical parcellation of the brain cortex. Our results show that the modular architectures of brain functional networks correspond well to those from the anatomical structures over different levels of hierarchy. Most importantly, we find that the consistency between the modular structures of the functional network and the anatomical network becomes more pronounced in terms of vision, sensory, vision-temporal, motor cortices during the visual task, which implies that the strong modularity in these areas forms the functional basis for the visual task. The structure-function relationship further reveals that the phase synchronization of EEG time series in the same anatomical group is much stronger than that of EEG time series from different anatomical groups during the task and that the hierarchical organization of functional brain network may be a consequence of functional segmentation of the brain cortex.

  19. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  20. Hyper-connectivity of functional networks for brain disease diagnosis.

    PubMed

    Jie, Biao; Wee, Chong-Yaw; Shen, Dinggang; Zhang, Daoqiang

    2016-08-01

    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer's disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help

  1. EEG-based research on brain functional networks in cognition.

    PubMed

    Wang, Niannian; Zhang, Li; Liu, Guozhong

    2015-01-01

    Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders. PMID:26405867

  2. Hierarchical Organization Unveiled by Functional Connectivity in Complex Brain Networks

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Zemanová, Lucia; Zamora, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

    2006-12-01

    How do diverse dynamical patterns arise from the topology of complex networks? We study synchronization dynamics in the cortical brain network of the cat, which displays a hierarchically clustered organization, by modeling each node (cortical area) with a subnetwork of interacting excitable neurons. We find that in the biologically plausible regime the dynamics exhibits a hierarchical modular organization, in particular, revealing functional clusters coinciding with the anatomical communities at different scales. Our results provide insights into the relationship between network topology and functional organization of complex brain networks.

  3. Complex Networks - A Key to Understanding Brain Function

    ScienceCinema

    Olaf Sporns

    2016-07-12

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  4. Complex Networks - A Key to Understanding Brain Function

    SciTech Connect

    Olaf Sporns

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life.  How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood.  In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  5. Complex Networks - A Key to Understanding Brain Function

    SciTech Connect

    Sporns, Olaf

    2008-01-23

    The brain is a complex network of neurons, engaging in spontaneous and evoked activity that is thought to be the main substrate of mental life. How this complex system works together to process information and generate coherent cognitive states, even consciousness, is not yet well understood. In my talk I will review recent studies that have revealed characteristic structural and functional attributes of brain networks, and discuss efforts to build computational models of the brain that are informed by our growing knowledge of brain anatomy and physiology.

  6. Wearable sensor network to study laterality of brain functions.

    PubMed

    Postolache, Gabriela B; Girao, Pedro S; Postolache, Octavian A

    2015-08-01

    In the last decade researches on laterality of brain functions have been reinvigorated. New models of lateralization of brain functions were proposed and new methods for understanding mechanisms of asymmetry between right and left brain functions were described. We design a system to study laterality of motor and autonomic nervous system based on wearable sensors network. A mobile application was developed for analysis of upper and lower limbs movements, cardiac and respiratory function. The functionalities and experience gained with deployment of the system are described.

  7. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  8. Human brain networks function in connectome-specific harmonic waves

    PubMed Central

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-01

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call ‘connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory–inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation–inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness. PMID:26792267

  9. Functional brain networks associated with eating behaviors in obesity

    PubMed Central

    Park, Bo-yong; Seo, Jongbum; Park, Hyunjin

    2016-01-01

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores. PMID:27030024

  10. Functional brain networks associated with eating behaviors in obesity.

    PubMed

    Park, Bo-Yong; Seo, Jongbum; Park, Hyunjin

    2016-03-31

    Obesity causes critical health problems including diabetes and hypertension that affect billions of people worldwide. Obesity and eating behaviors are believed to be closely linked but their relationship through brain networks has not been fully explored. We identified functional brain networks associated with obesity and examined how the networks were related to eating behaviors. Resting state functional magnetic resonance imaging (MRI) scans were obtained for 82 participants. Data were from an equal number of people of healthy weight (HW) and non-healthy weight (non-HW). Connectivity matrices were computed with spatial maps derived using a group independent component analysis approach. Brain networks and associated connectivity parameters with significant group-wise differences were identified and correlated with scores on a three-factor eating questionnaire (TFEQ) describing restraint, disinhibition, and hunger eating behaviors. Frontoparietal and cerebellum networks showed group-wise differences between HW and non-HW groups. Frontoparietal network showed a high correlation with TFEQ disinhibition scores. Both frontoparietal and cerebellum networks showed a high correlation with body mass index (BMI) scores. Brain networks with significant group-wise differences between HW and non-HW groups were identified. Parts of the identified networks showed a high correlation with eating behavior scores.

  11. Does sleep restore the topology of functional brain networks?

    PubMed

    Koenis, Maria M G; Romeijn, Nico; Piantoni, Giovanni; Verweij, Ilse; Van der Werf, Ysbrand D; Van Someren, Eus J W; Stam, Cornelis J

    2013-02-01

    Previous studies have shown that healthy anatomical as well as functional brain networks have small-world properties and become less optimal with brain disease. During sleep, the functional brain network becomes more small-world-like. Here we test the hypothesis that the functional brain network during wakefulness becomes less optimal after sleep deprivation (SD). Electroencephalography (EEG) was recorded five times a day after a night of SD and after a night of normal sleep in eight young healthy subjects, both during eyes-closed and eyes-open resting state. Overall synchronization was determined with the synchronization likelihood (SL) and the phase lag index (PLI). From these coupling strength matrices the normalized clustering coefficient C (a measurement of local clustering) and path length L (a measurement of global integration) were computed. Both measures were normalized by dividing them by their corresponding C-s and L-s values of random control networks. SD reduced alpha band C/C-s and L/L-s and theta band C/C-s during eyes-closed resting state. In contrast, SD increased gamma-band C/C-s and L/L-s during eyes-open resting state. Functional relevance of these changes in network properties was suggested by their association with sleep deprivation-induced performance deficits on a sustained attention simple reaction time task. The findings indicate that SD results in a more random network of alpha-coupling and a more ordered network of gamma-coupling. The present study shows that SD induces frequency-specific changes in the functional network topology of the brain, supporting the idea that sleep plays a role in the maintenance of an optimal functional network.

  12. Mapping Multiplex Hubs in Human Functional Brain Networks.

    PubMed

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  13. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  14. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  15. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input.

  16. Functional Reorganizations of Brain Network in Prelingually Deaf Adolescents

    PubMed Central

    Li, Wenjing; Li, Jianhong; Wang, Jieqiong; Zhou, Peng; Wang, Zhenchang; Xian, Junfang; He, Huiguang

    2016-01-01

    Previous neuroimaging studies suggested structural or functional brain reorganizations occurred in prelingually deaf subjects. However, little is known about the reorganizations of brain network architectures in prelingually deaf adolescents. The present study aims to investigate alterations of whole-brain functional network using resting-state fMRI and graph theory analysis. We recruited 16 prelingually deaf adolescents (10~18 years) and 16 normal controls matched in age and gender. Brain networks were constructed from mean time courses of 90 regions. Widely distributed network was observed in deaf subjects, with increased connectivity between the limbic system and regions involved in visual and language processing, suggesting reinforcement of the processing for the visual and verbal information in deaf adolescents. Decreased connectivity was detected between the visual regions and language regions possibly due to inferior reading or speaking skills in deaf subjects. Using graph theory analysis, we demonstrated small-worldness property did not change in prelingually deaf adolescents relative to normal controls. However, compared with healthy adolescents, eight regions involved in visual, language, and auditory processing were identified as hubs only present in prelingually deaf adolescents. These findings revealed reorganization of brain functional networks occurred in prelingually deaf adolescents to adapt to deficient auditory input. PMID:26819781

  17. Efficiency and cost of economical brain functional networks.

    PubMed

    Achard, Sophie; Bullmore, Ed

    2007-02-01

    Brain anatomical networks are sparse, complex, and have economical small-world properties. We investigated the efficiency and cost of human brain functional networks measured using functional magnetic resonance imaging (fMRI) in a factorial design: two groups of healthy old (N = 11; mean age = 66.5 years) and healthy young (N = 15; mean age = 24.7 years) volunteers were each scanned twice in a no-task or "resting" state following placebo or a single dose of a dopamine receptor antagonist (sulpiride 400 mg). Functional connectivity between 90 cortical and subcortical regions was estimated by wavelet correlation analysis, in the frequency interval 0.06-0.11 Hz, and thresholded to construct undirected graphs. These brain functional networks were small-world and economical in the sense of providing high global and local efficiency of parallel information processing for low connection cost. Efficiency was reduced disproportionately to cost in older people, and the detrimental effects of age on efficiency were localised to frontal and temporal cortical and subcortical regions. Dopamine antagonism also impaired global and local efficiency of the network, but this effect was differentially localised and did not interact with the effect of age. Brain functional networks have economical small-world properties-supporting efficient parallel information transfer at relatively low cost-which are differently impaired by normal aging and pharmacological blockade of dopamine transmission.

  18. Functional Connectivity Hubs and Networks in the Awake Marmoset Brain

    PubMed Central

    Belcher, Annabelle M.; Yen, Cecil Chern-Chyi; Notardonato, Lucia; Ross, Thomas J.; Volkow, Nora D.; Yang, Yihong; Stein, Elliot A.; Silva, Afonso C.; Tomasi, Dardo

    2016-01-01

    In combination with advances in analytical methods, resting-state fMRI is allowing unprecedented access to a better understanding of the network organization of the brain. Increasing evidence suggests that this architecture may incorporate highly functionally connected nodes, or “hubs”, and we have recently proposed local functional connectivity density (lFCD) mapping to identify highly-connected nodes in the human brain. Here, we imaged awake nonhuman primates to test whether, like the human brain, the marmoset brain contains FC hubs. Ten adult common marmosets (Callithrix jacchus) were acclimated to mild, comfortable restraint using individualized helmets. Following restraint training, resting BOLD data were acquired during eight consecutive 10 min scans for each subject. lFCD revealed prominent cortical and subcortical hubs of connectivity across the marmoset brain; specifically, in primary and secondary visual cortices (V1/V2), higher-order visual association areas (A19M/V6[DM]), posterior parietal and posterior cingulate areas (PGM and A23b/A31), thalamus, dorsal and ventral striatal areas (caudate, putamen, lateral septal nucleus, and anterior cingulate cortex (A24a). lFCD hubs were highly connected to widespread areas of the brain, and further revealed significant network-network interactions. These data provide a baseline platform for future investigations in a nonhuman primate model of the brain’s network topology. PMID:26973476

  19. Brain tumour cells interconnect to a functional and resistant network.

    PubMed

    Osswald, Matthias; Jung, Erik; Sahm, Felix; Solecki, Gergely; Venkataramani, Varun; Blaes, Jonas; Weil, Sophie; Horstmann, Heinz; Wiestler, Benedikt; Syed, Mustafa; Huang, Lulu; Ratliff, Miriam; Karimian Jazi, Kianush; Kurz, Felix T; Schmenger, Torsten; Lemke, Dieter; Gömmel, Miriam; Pauli, Martin; Liao, Yunxiang; Häring, Peter; Pusch, Stefan; Herl, Verena; Steinhäuser, Christian; Krunic, Damir; Jarahian, Mostafa; Miletic, Hrvoje; Berghoff, Anna S; Griesbeck, Oliver; Kalamakis, Georgios; Garaschuk, Olga; Preusser, Matthias; Weiss, Samuel; Liu, Haikun; Heiland, Sabine; Platten, Michael; Huber, Peter E; Kuner, Thomas; von Deimling, Andreas; Wick, Wolfgang; Winkler, Frank

    2015-12-01

    Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.

  20. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  1. Dynamic reorganization of brain functional networks during cognition.

    PubMed

    Bola, Michał; Sabel, Bernhard A

    2015-07-01

    How does cognition emerge from neural dynamics? The dominant hypothesis states that interactions among distributed brain regions through phase synchronization give basis for cognitive processing. Such phase-synchronized networks are transient and dynamic, established on the timescale of milliseconds in order to perform specific cognitive operations. But unlike resting-state networks, the complex organization of transient cognitive networks is typically not characterized within the graph theory framework. Thus, it is not known whether cognitive processing merely changes the strength of functional connections or, conversely, requires qualitatively new topological arrangements of functional networks. To address this question, we recorded high-density EEG while subjects performed a visual discrimination task. We conducted an event-related network analysis (ERNA) where source-space weighted functional networks were characterized with graph measures. ERNA revealed rapid, transient, and frequency-specific reorganization of the network's topology during cognition. Specifically, cognitive networks were characterized by strong clustering, low modularity, and strong interactions between hub-nodes. Our findings suggest that dense and clustered connectivity between the hub nodes belonging to different modules is the "network fingerprint" of cognition. Such reorganization patterns might facilitate global integration of information and provide a substrate for a "global workspace" necessary for cognition and consciousness to occur. Thus, characterizing topology of the event-related networks opens new vistas to interpret cognitive dynamics in the broader conceptual framework of graph theory.

  2. Changes in brain functional network connectivity after stroke.

    PubMed

    Li, Wei; Li, Yapeng; Zhu, Wenzhen; Chen, Xi

    2014-01-01

    Studies have shown that functional network connection models can be used to study brain network changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlated to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke. PMID:25206743

  3. Reconciling abnormalities of brain network structure and function in schizophrenia.

    PubMed

    Fornito, Alex; Bullmore, Edward T

    2015-02-01

    Schizophrenia is widely regarded as a disorder of abnormal brain connectivity. Magnetic resonance imaging (MRI) suggests that patients show robust reductions of structural connectivity. However, corresponding changes in functional connectivity do not always follow, with increased functional connectivity being reported in many cases. Here, we consider different methodological and mechanistic accounts that might reconcile these apparently contradictory findings and argue that increased functional connectivity in schizophrenia likely represents a pathophysiological dysregulation of brain activity arising from abnormal neurodevelopmental wiring of structural connections linking putative hub regions of association cortex to other brain areas. Elucidating the pathophysiological significance of connectivity abnormalities in schizophrenia will be contingent on better understanding how network structure shapes and constrains function.

  4. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    PubMed

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity.

  5. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  6. Large-Scale Functional Brain Network Reorganization During Taoist Meditation.

    PubMed

    Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T

    2016-02-01

    Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.

  7. Dynamic functional brain networks involved in simple visual discrimination learning.

    PubMed

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. PMID:24937013

  8. Functional Brain Network Classification With Compact Representation of SICE Matrices.

    PubMed

    Zhang, Jianjia; Zhou, Luping; Wang, Lei; Li, Wanqing

    2015-06-01

    Recently, a sparse inverse covariance estimation (SICE) technique has been employed to model functional brain connectivity. The inverse covariance matrix (SICE matrix in short) estimated for each subject is used as a representation of brain connectivity to discriminate Alzheimers disease from normal controls. However, we observed that direct use of the SICE matrix does not necessarily give satisfying discrimination, due to its high dimensionality and the scarcity of training subjects. Looking into this problem, we argue that the intrinsic dimensionality of these SICE matrices shall be much lower, considering 1) an SICE matrix resides on a Riemannian manifold of symmetric positive definiteness matrices, and 2) human brains share common patterns of connectivity across subjects. Therefore, we propose to employ manifold-based similarity measures and kernel-based PCA to extract principal connectivity components as a compact representation of brain network. Moreover, to cater for the requirement of both discrimination and interpretation in neuroimage analysis, we develop a novel preimage estimation algorithm to make the obtained connectivity components anatomically interpretable. To verify the efficacy of our method and gain insights into SICE-based brain networks, we conduct extensive experimental study on synthetic data and real rs-fMRI data from the ADNI dataset. Our method outperforms the comparable methods and improves the classification accuracy significantly.

  9. The function of neurocognitive networks. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Bressler, Steven L.

    2014-09-01

    Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.

  10. Global features of functional brain networks change with contextual disorder

    PubMed Central

    Andric, Michael; Hasson, Uri

    2015-01-01

    It is known that features of stimuli in the environment affect the strength of functional connectivity in the human brain. However, investigations to date have not converged in determining whether these also impact functional networks' global features, such as modularity strength, number of modules, partition structure, or degree distributions. We hypothesized that one environmental attribute that may strongly impact global features is the temporal regularity of the environment, as prior work indicates that differences in regularity impact regions involved in sensory, attentional and memory processes. We examined this with an fMRI study, in which participants passively listened to tonal series that had identical physical features and differed only in their regularity, as defined by the strength of transition structure between tones. We found that series-regularity induced systematic changes to global features of functional networks, including modularity strength, number of modules, partition structure, and degree distributions. In tandem, we used a novel node-level analysis to determine the extent to which brain regions maintained their within-module connectivity across experimental conditions. This analysis showed that primary sensory regions and those associated with default-mode processes are most likely to maintain their within-module connectivity across conditions, whereas prefrontal regions are least likely to do so. Our work documents a significant capacity for global-level brain network reorganization as a function of context. These findings suggest that modularity and other core, global features, while likely constrained by white-matter structural brain connections, are not completely determined by them. PMID:25988223

  11. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces.

    PubMed

    Mandonnet, Emmanuel; Duffau, Hugues

    2014-01-01

    Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved.

  12. Beyond localized and distributed accounts of brain functions. Comment on “Understanding brain networks and brain organization” by Pessoa

    NASA Astrophysics Data System (ADS)

    Cauda, Franco; Costa, Tommaso; Tamietto, Marco

    2014-09-01

    Recent evidence in cognitive neuroscience lends support to the idea that network models of brain architecture provide a privileged access to the understanding of the relation between brain organization and cognitive processes [1]. The core perspective holds that cognitive processes depend on the interactions among distributed neuronal populations and brain structures, and that the impact of a given region on behavior largely depends on its pattern of anatomical and functional connectivity [2,3].

  13. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. PMID:23501053

  14. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine.

  15. Speech networks at rest and in action: interactions between functional brain networks controlling speech production.

    PubMed

    Simonyan, Kristina; Fuertinger, Stefan

    2015-04-01

    Speech production is one of the most complex human behaviors. Although brain activation during speaking has been well investigated, our understanding of interactions between the brain regions and neural networks remains scarce. We combined seed-based interregional correlation analysis with graph theoretical analysis of functional MRI data during the resting state and sentence production in healthy subjects to investigate the interface and topology of functional networks originating from the key brain regions controlling speech, i.e., the laryngeal/orofacial motor cortex, inferior frontal and superior temporal gyri, supplementary motor area, cingulate cortex, putamen, and thalamus. During both resting and speaking, the interactions between these networks were bilaterally distributed and centered on the sensorimotor brain regions. However, speech production preferentially recruited the inferior parietal lobule (IPL) and cerebellum into the large-scale network, suggesting the importance of these regions in facilitation of the transition from the resting state to speaking. Furthermore, the cerebellum (lobule VI) was the most prominent region showing functional influences on speech-network integration and segregation. Although networks were bilaterally distributed, interregional connectivity during speaking was stronger in the left vs. right hemisphere, which may have underlined a more homogeneous overlap between the examined networks in the left hemisphere. Among these, the laryngeal motor cortex (LMC) established a core network that fully overlapped with all other speech-related networks, determining the extent of network interactions. Our data demonstrate complex interactions of large-scale brain networks controlling speech production and point to the critical role of the LMC, IPL, and cerebellum in the formation of speech production network.

  16. Functional brain network changes associated with maintenance of cognitive function in multiple sclerosis.

    PubMed

    Helekar, Santosh A; Shin, Jae C; Mattson, Brandi J; Bartley, Krystle; Stosic, Milena; Saldana-King, Toni; Montague, P Read; Hutton, George J

    2010-01-01

    In multiple sclerosis (MS) functional changes in connectivity due to cortical reorganization could lead to cognitive impairment (CI), or reflect a re-adjustment to reduce the clinical effects of widespread tissue damage. Such alterations in connectivity could result in changes in neural activation as assayed by executive function tasks. We examined cognitive function in MS patients with mild to moderate CI and age-matched controls. We evaluated brain activity using functional magnetic resonance imaging (fMRI) during the successful performance of the Wisconsin card sorting (WCS) task by MS patients, showing compensatory maintenance of normal function, as measured by response latency and error rate. To assess changes in functional connectivity throughout the brain, we performed a global functional brain network analysis by computing voxel-by-voxel correlations on the fMRI time series data and carrying out a hierarchical cluster analysis. We found that during the WCS task there is a significant reduction in the number of smaller size brain functional networks, and a change in the brain areas representing the nodes of these networks in MS patients compared to age-matched controls. There is also a concomitant increase in the strength of functional connections between brain loci separated at intermediate-scale distances in these patients. These functional alterations might reflect compensatory neuroplastic reorganization underlying maintenance of relatively normal cognitive function in the face of white matter lesions and cortical atrophy produced by MS.

  17. Altered balance of functional brain networks in Schizophrenia.

    PubMed

    Woodward, Todd S; Leong, KaWai; Sanford, Nicole; Tipper, Christine M; Lavigne, Katie M

    2016-02-28

    Activity in dorsal attention (DAN) and frontoparietal (FPN) functional brain networks is linked to allocation of attention to external stimuli, and activity in the default-mode network (DMN) is linked to allocation of attention to internal representations. Tasks requiring attention to external stimuli shift activity to the DAN/FPN and away from the DMN, and optimal task performance depends on balancing DAN/FPN against DMN activity. The current functional magnetic resonance imaging (fMRI) study assessed the balance of DAN/FPN and DMN activity in 13 schizophrenia patients and 13 healthy controls while they were engaged in a task switching Stroop paradigm which demanded internally directed attention to task instructions. The typical pattern of reciprocity between the DAN/FPN and DMN was observed for healthy controls but not for patients, suggesting a reduction in the internally focussed thought important for maintenance of instructions and strategies in schizophrenia. The observed alteration in the balance between DAN/FPN and DMN in patients may reflect a general mechanism underlying multiple forms of cognitive impairment in schizophrenia, including global processing deficits such as cognitive inefficiency and impaired context processing.

  18. Altered balance of functional brain networks in Schizophrenia.

    PubMed

    Woodward, Todd S; Leong, KaWai; Sanford, Nicole; Tipper, Christine M; Lavigne, Katie M

    2016-02-28

    Activity in dorsal attention (DAN) and frontoparietal (FPN) functional brain networks is linked to allocation of attention to external stimuli, and activity in the default-mode network (DMN) is linked to allocation of attention to internal representations. Tasks requiring attention to external stimuli shift activity to the DAN/FPN and away from the DMN, and optimal task performance depends on balancing DAN/FPN against DMN activity. The current functional magnetic resonance imaging (fMRI) study assessed the balance of DAN/FPN and DMN activity in 13 schizophrenia patients and 13 healthy controls while they were engaged in a task switching Stroop paradigm which demanded internally directed attention to task instructions. The typical pattern of reciprocity between the DAN/FPN and DMN was observed for healthy controls but not for patients, suggesting a reduction in the internally focussed thought important for maintenance of instructions and strategies in schizophrenia. The observed alteration in the balance between DAN/FPN and DMN in patients may reflect a general mechanism underlying multiple forms of cognitive impairment in schizophrenia, including global processing deficits such as cognitive inefficiency and impaired context processing. PMID:26786152

  19. Understanding entangled cerebral networks: a prerequisite for restoring brain function with brain-computer interfaces

    PubMed Central

    Mandonnet, Emmanuel; Duffau, Hugues

    2014-01-01

    Historically, cerebral processing has been conceptualized as a framework based on statically localized functions. However, a growing amount of evidence supports a hodotopical (delocalized) and flexible organization. A number of studies have reported absence of a permanent neurological deficit after massive surgical resections of eloquent brain tissue. These results highlight the tremendous plastic potential of the brain. Understanding anatomo-functional correlates underlying this cerebral reorganization is a prerequisite to restore brain functions through brain-computer interfaces (BCIs) in patients with cerebral diseases, or even to potentiate brain functions in healthy individuals. Here, we review current knowledge of neural networks that could be utilized in the BCIs that enable movements and language. To this end, intraoperative electrical stimulation in awake patients provides valuable information on the cerebral functional maps, their connectomics and plasticity. Overall, these studies indicate that the complex cerebral circuitry that underpins interactions between action, cognition and behavior should be throughly investigated before progress in BCI approaches can be achieved. PMID:24834030

  20. Memory Networks in Tinnitus: A Functional Brain Image Study

    PubMed Central

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

  1. The Human Functional Brain Network Demonstrates Structural and Dynamical Resilience to Targeted Attack

    PubMed Central

    Joyce, Karen E.; Hayasaka, Satoru; Laurienti, Paul J.

    2013-01-01

    In recent years, the field of network science has enabled researchers to represent the highly complex interactions in the brain in an approachable yet quantitative manner. One exciting finding since the advent of brain network research was that the brain network can withstand extensive damage, even to highly connected regions. However, these highly connected nodes may not be the most critical regions of the brain network, and it is unclear how the network dynamics are impacted by removal of these key nodes. This work seeks to further investigate the resilience of the human functional brain network. Network attack experiments were conducted on voxel-wise functional brain networks and region-of-interest (ROI) networks of 5 healthy volunteers. Networks were attacked at key nodes using several criteria for assessing node importance, and the impact on network structure and dynamics was evaluated. The findings presented here echo previous findings that the functional human brain network is highly resilient to targeted attacks, both in terms of network structure and dynamics. PMID:23358557

  2. Functional brain network changes associated with clinical and biochemical measures of the severity of hepatic encephalopathy.

    PubMed

    Jao, Tun; Schröter, Manuel; Chen, Chao-Long; Cheng, Yu-Fan; Lo, Chun-Yi Zac; Chou, Kun-Hsien; Patel, Ameera X; Lin, Wei-Che; Lin, Ching-Po; Bullmore, Edward T

    2015-11-15

    Functional properties of the brain may be associated with changes in complex brain networks. However, little is known about how properties of large-scale functional brain networks may be altered stepwise in patients with disturbance of consciousness, e.g., an encephalopathy. We used resting-state fMRI data on patients suffering from various degrees of hepatic encephalopathy (HE) to explore how topological and spatial network properties of functional brain networks changed at different cognitive and consciousness states. Severity of HE was measured clinically and by neuropsychological tests. Fifty-eight non-alcoholic liver cirrhosis patients and 62 normal controls were studied. Patients were subdivided into liver cirrhosis with no outstanding HE (NoHE, n=23), minimal HE with cognitive impairment only detectable by neuropsychological tests (MHE, n=28), and clinically overt HE (OHE, n=7). From the earliest stage, the NoHE, functional brain networks were progressively more random, less clustered, and less modular. Since the intermediate stage (MHE), increased ammonia level was accompanied by concomitant exponential decay of mean connectivity strength, especially in the primary cortical areas and midline brain structures. Finally, at the OHE stage, there were radical reorganization of the topological centrality-i.e., the relative importance-of the hubs and reorientation of functional connections between nodes. In summary, this study illustrated progressively greater abnormalities in functional brain network organization in patients with clinical and biochemical evidence of more severe hepatic encephalopathy. The early-than-expected brain network dysfunction in cirrhotic patients suggests that brain functional connectivity and network analysis may provide useful and complementary biomarkers for more aggressive and earlier intervention of hepatic encephalopathy. Moreover, the stepwise deterioration of functional brain networks in HE patients may suggest that hierarchical

  3. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective.

    PubMed

    Stam, C J

    2010-09-01

    A central question in modern neuroscience is how anatomical and functional connections between brain areas are organized to allow optimal information processing. In particular, both segregation and integration of information have to be dealt with in a single architecture of brain networks. There is strong evidence that synchronization of neural activity, both locally and between distant regions is a crucial code for functional interactions. However, a powerful theoretical framework to describe the structural and functional topology of system-wide brain networks has only become available with the discovery of 'small-world' and 'scale-free' networks in 1998 and 1999. There is now strong evidence that brain networks, ranging from simple nets of interconnected neurons up to macroscopic networks of brain areas display the typical features of complex systems: high clustering, short path lengths (both typical of 'small-world' networks), skewed degree distributions, presence of hubs, assortative mixing and the presence of modules. This has been demonstrated for anatomical and functional networks using neuroanatomical techniques, EEG, MEG and structural and functional MRI, in organisms ranging from C. elegans to man. In addition, network topology has been shown to be highly heritable, and very predictive of cognitive functioning. A short path length, which implies that from any area in the brain any other area can be reached in a small number of steps, is strongly correlated with IQ. Computational models are now beginning to reveal how the complex structure of adult brain networks could arise during development.

  4. Graph analysis of functional brain networks: practical issues in translational neuroscience.

    PubMed

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-10-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.

  5. Graph analysis of functional brain networks: practical issues in translational neuroscience

    PubMed Central

    De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie

    2014-01-01

    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301

  6. The effects of music on brain functional networks: a network analysis.

    PubMed

    Wu, J; Zhang, J; Ding, X; Li, R; Zhou, C

    2013-10-10

    The human brain can dynamically adapt to the changing surroundings. To explore this issue, we adopted graph theoretical tools to examine changes in electroencephalography (EEG) functional networks while listening to music. Three different excerpts of Chinese Guqin music were played to 16 non-musician subjects. For the main frequency intervals, synchronizations between all pair-wise combinations of EEG electrodes were evaluated with phase lag index (PLI). Then, weighted connectivity networks were created and their organizations were characterized in terms of an average clustering coefficient and characteristic path length. We found an enhanced synchronization level in the alpha2 band during music listening. Music perception showed a decrease of both normalized clustering coefficient and path length in the alpha2 band. Moreover, differences in network measures were not observed between musical excerpts. These experimental results demonstrate an increase of functional connectivity as well as a more random network structure in the alpha2 band during music perception. The present study offers support for the effects of music on human brain functional networks with a trend toward a more efficient but less economical architecture.

  7. Changes in Intrinsic Functional Brain Networks Following Blast-Induced Mild Traumatic Brain Injury

    PubMed Central

    Vakhtin, Andrei A.; Calhoun, Vince D.; Jung, Rex E.; Prestopnik, Jill L.; Taylor, Paul A.; Ford, Corey C.

    2016-01-01

    The incidence of blast-induced mild traumatic brain injury (mTBI) has been rising in US veterans due to the widespread use of improvised explosive devices. Blast-injured veterans report cognitive impairments, collectively termed post-concussive syndrome, similar to ones that follow more severe forms of TBI. These are due to diffuse axonal injury, which disrupts the neuronal cytoskeleton and commonly goes undetected by computed tomography and conventional magnetic resonance imaging (MRI). We looked for cortical function abnormalities in a group of blast mTBI subjects using independent component analysis of resting state functional MRI data, which may be more sensitive to small differences. Resting state networks of 13 mTBI veterans with moderate post-concussive syndrome and 50 control subjects were compared across 3 fMRI domains: blood oxygenation level-dependent spatial maps, time course spectra, and functional connectivity. The mTBI group exhibited hyperactivity in the temporo-parietal junctions and hypoactivity in the left inferior temporal gyrus. Abnormal frequencies in default-mode (DMN), sensorimotor, attentional, and frontal networks were detected. Functional connectivity was disrupted in 6 network pairs: DMN-basal ganglia, attention-sensorimotor, frontal-DMN, attention-sensorimotor, attention-frontal, and sensorimotor-sensorimotor. The results suggest white matter disruption across certain attentional networks and that the temporo-parietal junctions may be compensating for damage in other cortical regions. PMID:24020442

  8. Functional networks underlying latent inhibition learning in the mouse brain.

    PubMed

    Puga, Frank; Barrett, Douglas W; Bastida, Christel C; Gonzalez-Lima, F

    2007-10-15

    The present study reports the first comprehensive map of brain networks underlying latent inhibition learning and the first application of structural equation modeling to cytochrome oxidase data. In latent inhibition, repeated exposure to a stimulus results in a latent form of learning that inhibits subsequent associations with that stimulus. As neuronal energy demands to form learned associations changes, so does the induction of the respiratory enzyme cytochrome oxidase. Therefore, cytochrome oxidase can be used as an endpoint metabolic marker of the effects of experience on regional brain metabolic capacity. Quantitative cytochrome oxidase histochemistry was used to map brain regions in mice trained on a tone-footshock fear conditioning paradigm with either tone preexposure (latent inhibition), conditioning only (acquisition), conditioning followed by tone alone (extinction), or no handling or conditioning (naive). The ventral cochlear nucleus, medial geniculate, CA1 hippocampus, and perirhinal cortex showed modified metabolic capacity due to latent inhibition. Structural equation modeling was used to determine the causal influences in an anatomical network of these regions and others thought to mediate latent inhibition, including the accumbens and entorhinal cortex. An uncoupling of ascending influences between auditory regions was observed in latent inhibition. There was also a reduced influence on the accumbens from the perirhinal cortex in both latent inhibition and extinction. The results suggest a specific network with a neural mechanism of latent inhibition that appears to involve sensory gating, as evidenced by modifications in metabolic capacity and effective connectivity between auditory regions and reduced perirhinal cortex influence on the accumbens.

  9. Spatial variability of functional brain networks in early-blind and sighted subjects.

    PubMed

    Boldt, Robert; Seppä, Mika; Malinen, Sanna; Tikka, Pia; Hari, Riitta; Carlson, Synnöve

    2014-07-15

    To further the understanding how the human brain adapts to early-onset blindness, we searched in early-blind and normally-sighted subjects for functional brain networks showing the most and least spatial variabilities across subjects. We hypothesized that the functional networks compensating for early-onset blindness undergo cortical reorganization. To determine whether reorganization of functional networks affects spatial variability, we used functional magnetic resonance imaging to compare brain networks, derived by independent component analysis, of 7 early-blind and 7 sighted subjects while they rested or listened to an audio drama. In both conditions, the blind compared with sighted subjects showed more spatial variability in a bilateral parietal network (comprising the inferior parietal and angular gyri and precuneus) and in a bilateral auditory network (comprising the superior temporal gyri). In contrast, a vision-related left-hemisphere-lateralized occipital network (comprising the superior, middle and inferior occipital gyri, fusiform and lingual gyri, and the calcarine sulcus) was less variable in blind than sighted subjects. Another visual network and a tactile network were spatially more variable in the blind than sighted subjects in one condition. We contemplate whether our results on inter-subject spatial variability of brain networks are related to experience-dependent brain plasticity, and we suggest that auditory and parietal networks undergo a stronger experience-dependent reorganization in the early-blind than sighted subjects while the opposite is true for the vision-related occipital network. PMID:24680867

  10. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    PubMed

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading.

  11. Dynamic brain architectures in local brain activity and functional network efficiency associate with efficient reading in bilinguals.

    PubMed

    Feng, Gangyi; Chen, Hsuan-Chih; Zhu, Zude; He, Yong; Wang, Suiping

    2015-10-01

    The human brain is organized as a dynamic network, in which both regional brain activity and inter-regional connectivity support high-level cognitive processes, such as reading. However, it is still largely unknown how the functional brain network organizes to enable fast and effortless reading processing in the native language (L1) but not in a non-proficient second language (L2), and whether the mechanisms underlying local activity are associated with connectivity dynamics in large-scale brain networks. In the present study, we combined activation-based and multivariate graph-theory analysis with functional magnetic resonance imaging data to address these questions. Chinese-English unbalanced bilinguals read narratives for comprehension in Chinese (L1) and in English (L2). Compared with L2, reading in L1 evoked greater brain activation and recruited a more globally efficient but less clustered network organization. Regions with both increased network efficiency and enhanced brain activation in L1 reading were mostly located in the fronto-temporal reading-related network (RN), whereas regions with decreased global network efficiency, increased clustering, and more deactivation in L2 reading were identified in the default mode network (DMN). Moreover, functional network efficiency was closely associated with local brain activation, and such associations were also modulated by reading efficiency in the two languages. Our results demonstrate that an economical and integrative brain network topology is associated with efficient reading, and further reveal a dynamic association between network efficiency and local activation for both RN and DMN. These findings underscore the importance of considering interregional connectivity when interpreting local BOLD signal changes in bilingual reading. PMID:26095088

  12. Hubs of brain functional networks are radically reorganized in comatose patients

    PubMed Central

    Achard, Sophie; Delon-Martin, Chantal; Vértes, Petra E.; Renard, Félix; Schenck, Maleka; Schneider, Francis; Heinrich, Christian; Kremer, Stéphane; Bullmore, Edward T.

    2012-01-01

    Human brain networks have topological properties in common with many other complex systems, prompting the following question: what aspects of brain network organization are critical for distinctive functional properties of the brain, such as consciousness? To address this question, we used graph theoretical methods to explore brain network topology in resting state functional MRI data acquired from 17 patients with severely impaired consciousness and 20 healthy volunteers. We found that many global network properties were conserved in comatose patients. Specifically, there was no significant abnormality of global efficiency, clustering, small-worldness, modularity, or degree distribution in the patient group. However, in every patient, we found evidence for a radical reorganization of high degree or highly efficient “hub” nodes. Cortical regions that were hubs of healthy brain networks had typically become nonhubs of comatose brain networks and vice versa. These results indicate that global topological properties of complex brain networks may be homeostatically conserved under extremely different clinical conditions and that consciousness likely depends on the anatomical location of hub nodes in human brain networks. PMID:23185007

  13. Default mode network functional and structural connectivity after traumatic brain injury.

    PubMed

    Sharp, David J; Beckmann, Christian F; Greenwood, Richard; Kinnunen, Kirsi M; Bonnelle, Valerie; De Boissezon, Xavier; Powell, Jane H; Counsell, Serena J; Patel, Maneesh C; Leech, Robert

    2011-08-01

    Traumatic brain injury often results in cognitive impairments that limit recovery. The underlying pathophysiology of these impairments is uncertain, which restricts clinical assessment and management. Here, we use magnetic resonance imaging to test the hypotheses that: (i) traumatic brain injury results in abnormalities of functional connectivity within key cognitive networks; (ii) these changes are correlated with cognitive performance; and (iii) functional connectivity within these networks is influenced by underlying changes in structural connectivity produced by diffuse axonal injury. We studied 20 patients in the chronic phase after traumatic brain injury compared with age-matched controls. Network function was investigated in detail using functional magnetic resonance imaging to analyse both regional brain activation, and the interaction of brain regions within a network (functional connectivity). We studied patients during performance of a simple choice-reaction task and at 'rest'. Since functional connectivity reflects underlying structural connectivity, diffusion tensor imaging was used to quantify axonal injury, and test whether structural damage correlated with functional change. The patient group showed typical impairments in information processing and attention, when compared with age-matched controls. Patients were able to perform the task accurately, but showed slow and variable responses. Brain regions activated by the task were similar between the groups, but patients showed greater deactivation within the default mode network, in keeping with an increased cognitive load. A multivariate analysis of 'resting' state functional magnetic resonance imaging was then used to investigate whether changes in network function were present in the absence of explicit task performance. Overall, default mode network functional connectivity was increased in the patient group. Patients with the highest functional connectivity had the least cognitive impairment. In

  14. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing

  15. Functional brain networks formed using cross-sample entropy are scale free.

    PubMed

    Pritchard, Walter S; Laurienti, Paul J; Burdette, Jonathan H; Hayasaka, Satoru

    2014-08-01

    Over the previous decade, there has been an explosion of interest in network science, in general, and its application to the human brain, in particular. Most brain network investigations to date have used linear correlations (LinCorr) between brain areas to construct and then interpret brain networks. In this study, we applied an entropy-based method to establish functional connectivity between brain areas. This method is sensitive to both nonlinear and linear associations. The LinCorr-based and entropy-based techniques were applied to resting-state functional magnetic resonance imaging data from 10 subjects, and the resulting networks were compared. The networks derived from the entropy-based method exhibited power-law degree distributions. Moreover, the entropy-based networks had a higher clustering coefficient and a shorter path length compared with that of the LinCorr-based networks. While the LinCorr-based networks were assortative, with nodes with similar degrees preferentially connected, the entropy-based networks were disassortative, with high-degree hubs directly connected to low-degree nodes. It is likely that the differences in clustering and assortativity are due to "mega-hubs" in the entropy-based networks. These mega-hubs connect to a large majority of the nodes in the network. This is the first work clearly demonstrating differences between functional brain networks using linear and nonlinear techniques. The key finding is that the nonlinear technique produced networks with scale-free degree distributions. There remains debate among the neuroscience community as to whether human brains are scale free. These data support the argument that at least some aspects of the human brain are perhaps scale free.

  16. Functional Brain Networks Formed Using Cross-Sample Entropy Are Scale Free

    PubMed Central

    Pritchard, Walter S.; Burdette, Jonathan H.; Hayasaka, Satoru

    2014-01-01

    Abstract Over the previous decade, there has been an explosion of interest in network science, in general, and its application to the human brain, in particular. Most brain network investigations to date have used linear correlations (LinCorr) between brain areas to construct and then interpret brain networks. In this study, we applied an entropy-based method to establish functional connectivity between brain areas. This method is sensitive to both nonlinear and linear associations. The LinCorr-based and entropy-based techniques were applied to resting-state functional magnetic resonance imaging data from 10 subjects, and the resulting networks were compared. The networks derived from the entropy-based method exhibited power-law degree distributions. Moreover, the entropy-based networks had a higher clustering coefficient and a shorter path length compared with that of the LinCorr-based networks. While the LinCorr-based networks were assortative, with nodes with similar degrees preferentially connected, the entropy-based networks were disassortative, with high-degree hubs directly connected to low-degree nodes. It is likely that the differences in clustering and assortativity are due to “mega-hubs” in the entropy-based networks. These mega-hubs connect to a large majority of the nodes in the network. This is the first work clearly demonstrating differences between functional brain networks using linear and nonlinear techniques. The key finding is that the nonlinear technique produced networks with scale-free degree distributions. There remains debate among the neuroscience community as to whether human brains are scale free. These data support the argument that at least some aspects of the human brain are perhaps scale free. PMID:24946057

  17. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states. PMID:27401999

  18. A novel pattern mining approach for identifying cognitive activity in EEG based functional brain networks.

    PubMed

    Thilaga, M; Vijayalakshmi, R; Nadarajan, R; Nandagopal, D

    2016-06-01

    The complex nature of neuronal interactions of the human brain has posed many challenges to the research community. To explore the underlying mechanisms of neuronal activity of cohesive brain regions during different cognitive activities, many innovative mathematical and computational models are required. This paper presents a novel Common Functional Pattern Mining approach to demonstrate the similar patterns of interactions due to common behavior of certain brain regions. The electrode sites of EEG-based functional brain network are modeled as a set of transactions and node-based complex network measures as itemsets. These itemsets are transformed into a graph data structure called Functional Pattern Graph. By mining this Functional Pattern Graph, the common functional patterns due to specific brain functioning can be identified. The empirical analyses show the efficiency of the proposed approach in identifying the extent to which the electrode sites (transactions) are similar during various cognitive load states.

  19. Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia

    PubMed Central

    Zhu, Jiajia; Zhuo, Chuanjun; Liu, Feng; Qin, Wen; Xu, Lixue; Yu, Chunshui

    2016-01-01

    Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions. PMID:27032817

  20. Distinct disruptions of resting-state functional brain networks in familial and sporadic schizophrenia.

    PubMed

    Zhu, Jiajia; Zhuo, Chuanjun; Liu, Feng; Qin, Wen; Xu, Lixue; Yu, Chunshui

    2016-01-01

    Clinical and brain structural differences have been reported between patients with familial and sporadic schizophrenia; however, little is known about the brain functional differences between the two subtypes of schizophrenia. Twenty-six patients with familial schizophrenia (PFS), 26 patients with sporadic schizophrenia (PSS) and 26 healthy controls (HC) underwent a resting-state functional magnetic resonance imaging. The whole-brain functional network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared among the three groups. We found that PFS, PSS and HC exhibited common small-world architecture of the functional brain networks. However, at a global level, only PFS showed significantly lower normalized clustering coefficient, small-worldness, and local efficiency, indicating a randomization shift of their brain networks. At a regional level, PFS and PSS disrupted different neural circuits, consisting of abnormal nodes (increased or decreased nodal centrality) and edges (decreased functional connectivity strength), which were widely distributed throughout the entire brain. Furthermore, some of these altered network measures were significantly correlated with severity of psychotic symptoms. These results suggest that familial and sporadic schizophrenia had segregated disruptions in the topological organization of the intrinsic functional brain network, which may be due to different etiological contributions. PMID:27032817

  1. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging.

    PubMed

    Voss, Michelle W; Weng, Timothy B; Burzynska, Agnieszka Z; Wong, Chelsea N; Cooke, Gillian E; Clark, Rachel; Fanning, Jason; Awick, Elizabeth; Gothe, Neha P; Olson, Erin A; McAuley, Edward; Kramer, Arthur F

    2016-05-01

    Greater physical activity and cardiorespiratory fitness are associated with reduced age-related cognitive decline and lower risk for dementia. However, significant gaps remain in the understanding of how physical activity and fitness protect the brain from adverse effects of brain aging. The primary goal of the current study was to empirically evaluate the independent relationships between physical activity and fitness with functional brain health among healthy older adults, as measured by the functional connectivity of cognitively and clinically relevant resting state networks. To build context for fitness and physical activity associations in older adults, we first demonstrate that young adults have greater within-network functional connectivity across a broad range of cortical association networks. Based on these results and previous research, we predicted that individual differences in fitness and physical activity would be most strongly associated with functional integrity of the networks most sensitive to aging. Consistent with this prediction, and extending on previous research, we showed that cardiorespiratory fitness has a positive relationship with functional connectivity of several cortical networks associated with age-related decline, and effects were strongest in the default mode network (DMN). Furthermore, our results suggest that the positive association of fitness with brain function can occur independent of habitual physical activity. Overall, our findings provide further support that cardiorespiratory fitness is an important factor in moderating the adverse effects of aging on cognitively and clinically relevant functional brain networks.

  2. Modular Brain Networks

    PubMed Central

    Sporns, Olaf; Betzel, Richard F.

    2016-01-01

    The development of new technologies for mapping structural and functional brain connectivity has led to the creation of comprehensive network maps of neuronal circuits and systems. The architecture of these brain networks can be examined and analyzed with a large variety of graph theory tools. Methods for detecting modules, or network communities, are of particular interest because they uncover major building blocks or subnetworks that are particularly densely connected, often corresponding to specialized functional components. A large number of methods for community detection have become available and are now widely applied in network neuroscience. This article first surveys a number of these methods, with an emphasis on their advantages and shortcomings; then it summarizes major findings on the existence of modules in both structural and functional brain networks and briefly considers their potential functional roles in brain evolution, wiring minimization, and the emergence of functional specialization and complex dynamics. PMID:26393868

  3. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  4. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients.

    PubMed

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  5. White Matter Damage Disorganizes Brain Functional Networks in Amnestic Mild Cognitive Impairment

    PubMed Central

    Garcés, Pilar; López, María Eugenia; Aurtenetxe, Sara; Cuesta, Pablo; Marcos, Alberto; Montejo, Pedro; Yus, Miguel; Hernández-Tamames, Juan Antonio; del Pozo, Francisco; Becker, James T.; Maestú, Fernando

    2014-01-01

    Abstract Although progressive functional brain network disruption has been one of the hallmarks of Alzheimer's Disease, little is known about the origin of this functional impairment that underlies cognitive symptoms. We investigated how the loss of white matter (WM) integrity disrupts the organization of the functional networks at different frequency bands. The analyses were performed in a sample of healthy elders and mild cognitive impairment (MCI) subjects. Spontaneous brain magnetic activity (measured with magnetoencephalography) was characterized with phase synchronization analysis, and graph theory was applied to the functional networks. We identified WM areas (using diffusion weighted magnetic resonance imaging) that showed a statistical dependence between the fractional anisotropy and the graph metrics. These regions are part of an episodic memory network and were also related to cognitive functions. Our data support the hypothesis that disruption of the anatomical networks influences the organization at the functional level resulting in the prodromal dementia syndrome of MCI. PMID:24617580

  6. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  7. Small-World Brain Network and Dynamic Functional Distribution in Patients with Subcortical Vascular Cognitive Impairment

    PubMed Central

    Yu, Yongqiang; Zhou, Xia; Wang, Haibao; Hu, Xiaopeng; Zhu, Xiaoqun; Xu, Liyan; Zhang, Chao; Sun, Zhongwu

    2015-01-01

    To investigate the topological properties of the functional connectivity and their relationships with cognition impairment in subcortical vascular cognitive impairment (SVCI) patients, resting-state fMRI and graph theory approaches were employed in 23 SVCI patients and 20 healthy controls. Functional connectivity between 90 brain regions was estimated using bivariate correlation analysis and thresholded to construct a set of undirected graphs. Moreover, all of them were subjected to a battery of cognitive assessment, and the correlations between graph metrics and cognitive performance were further analyzed. Our results are as follows: functional brain networks of both SVCI patients and controls showed small-world attributes over a range of thresholds(0.15≤sparsity≤0.40). However, global topological organization of the functional brain networks in SVCI was significantly disrupted, as indicated by reduced global and local efficiency, clustering coefficients and increased characteristic path lengths relative to normal subjects. The decreased activity areas in SVCI predominantly targeted in the frontal-temporal lobes, while subcortical regions showed increased topological properties, which are suspected to compensate for the inefficiency of the functional network. We also demonstrated that altered brain network properties in SVCI are closely correlated with general cognitive and praxis dysfunction. The disruption of whole-brain topological organization of the functional connectome provides insight into the functional changes in the human brain in SVCI. PMID:26132397

  8. Motifs in brain networks.

    PubMed

    Sporns, Olaf; Kötter, Rolf

    2004-11-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information.

  9. Motifs in Brain Networks

    PubMed Central

    2004-01-01

    Complex brains have evolved a highly efficient network architecture whose structural connectivity is capable of generating a large repertoire of functional states. We detect characteristic network building blocks (structural and functional motifs) in neuroanatomical data sets and identify a small set of structural motifs that occur in significantly increased numbers. Our analysis suggests the hypothesis that brain networks maximize both the number and the diversity of functional motifs, while the repertoire of structural motifs remains small. Using functional motif number as a cost function in an optimization algorithm, we obtain network topologies that resemble real brain networks across a broad spectrum of structural measures, including small-world attributes. These results are consistent with the hypothesis that highly evolved neural architectures are organized to maximize functional repertoires and to support highly efficient integration of information. PMID:15510229

  10. Aberrant topologies and reconfiguration pattern of functional brain network in children with second language reading impairment.

    PubMed

    Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng

    2016-07-01

    Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption also occurs at a large-scale brain network level. Using fMRI and graph theoretical analysis, we explored the topology of the whole-brain functional network during a phonological rhyming task and network reconfigurations across task and short resting phases in Chinese children with English reading impairment versus age-matched typically developing (TD) children. We found that, when completing the phonological task, the RI group exhibited higher local network efficiency and network modularity compared with the TD group. When switching between the phonological task and the short resting phase, the RI group showed difficulty with network reconfiguration, as reflected in fewer changes in the local efficiency and modularity properties and less rearrangement of the modular communities. These findings were reproducible after controlling for the effects of in-scanner accuracy, participant gender, and L1 reading performance. The results from the whole-brain network analyses were largely replicated in the task-activated network. These findings provide preliminary evidence supporting that RI in L2 is associated with not only abnormal functional network organization but also poor flexibility of the neural system in responding to changing cognitive demands. PMID:27321248

  11. Intrinsic intranasal chemosensory brain networks shown by resting-state functional MRI.

    PubMed

    Tobia, Michael J; Yang, Qing X; Karunanayaka, Prasanna

    2016-05-01

    The human brain is organized into functional networks for sensory-motor and cognitive processing. Intrinsic networks are detectable in the absence of stimulation or task demands, whereas extrinsic networks are detectable when stimulated by sensory or cognitive demands. Intranasal chemosensory processing relies on two dissociable networks for processing incoming trigeminal and olfactory stimulation, but it is not known whether these networks are intrinsically organized. The aim of this study was to identify whether brain networks for intranasal chemosensory processing are detectable in functional connectivity resting-state functional MRI (fMRI). Sixteen healthy adults participated in a 5-min resting-state fMRI study. Functional connectivity seeds were defined from coordinates that anchor olfactory (i.e. bilateral piriform and orbitofrontal cortex) and trigeminal (bilateral anterior insula and cingulate cortex) networks in published task activation studies, and the resulting networks were thresholded at P less than 0.001. The olfactory network showed extended functional connectivity to the thalamus, medial prefrontal cortex, caudate, nucleus accumbens, parahippocampal gyrus, and hippocampus. The trigeminal network showed extended functional connectivity to the precuneus, thalamus, caudate, brainstem, and cerebellum. Both networks overlapped in the thalamus, caudate, medial prefrontal cortex, and insula. These results show that brain networks for intranasal chemosensory processing are intrinsically organized, not just extrinsically instantiated in response to task demands, and resemble networks for processing olfactory and trigeminal stimulation. As such, it may be possible to study the functional organization and dynamics of the olfactory network in resting-state fMRI as well as its implications for aging and disease.

  12. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks.

    PubMed

    Guye, Maxime; Bettus, Gaelle; Bartolomei, Fabrice; Cozzone, Patrick J

    2010-12-01

    Graph theoretical analysis of structural and functional connectivity MRI data (ie. diffusion tractography or cortical volume correlation and resting-state or task-related (effective) fMRI, respectively) has provided new measures of human brain organization in vivo. The most striking discovery is that the whole-brain network exhibits "small-world" properties shared with many other complex systems (social, technological, information, biological). This topology allows a high efficiency at different spatial and temporal scale with a very low wiring and energy cost. Its modular organization also allows for a high level of adaptation. In addition, degree distribution of brain networks demonstrates highly connected hubs that are crucial for the whole-network functioning. Many of these hubs have been identified in regions previously defined as belonging to the default-mode network (potentially explaining the high basal metabolism of this network) and the attentional networks. This could explain the crucial role of these hub regions in physiology (task-related fMRI data) as well as in pathophysiology. Indeed, such topological definition provides a reliable framework for predicting behavioral consequences of focal or multifocal lesions such as stroke, tumors or multiple sclerosis. It also brings new insights into a better understanding of pathophysiology of many neurological or psychiatric diseases affecting specific local or global brain networks such as epilepsy, Alzheimer's disease or schizophrenia. Graph theoretical analysis of connectivity MRI data provides an outstanding framework to merge anatomical and functional data in order to better understand brain pathologies. PMID:20349109

  13. Large scale brain functional networks support sentence comprehension: evidence from both explicit and implicit language tasks.

    PubMed

    Zhu, Zude; Fan, Yuanyuan; Feng, Gangyi; Huang, Ruiwang; Wang, Suiping

    2013-01-01

    Previous studies have indicated that sentences are comprehended via widespread brain regions in the fronto-temporo-parietal network in explicit language tasks (e.g., semantic congruency judgment tasks), and through restricted temporal or frontal regions in implicit language tasks (e.g., font size judgment tasks). This discrepancy has raised questions regarding a common network for sentence comprehension that acts regardless of task effect and whether different tasks modulate network properties. To this end, we constructed brain functional networks based on 27 subjects' fMRI data that was collected while performing explicit and implicit language tasks. We found that network properties and network hubs corresponding to the implicit language task were similar to those associated with the explicit language task. We also found common hubs in occipital, temporal and frontal regions in both tasks. Compared with the implicit language task, the explicit language task resulted in greater global efficiency and increased integrated betweenness centrality of the left inferior frontal gyrus, which is a key region related to sentence comprehension. These results suggest that brain functional networks support both explicit and implicit sentence comprehension; in addition, these two types of language tasks may modulate the properties of brain functional networks.

  14. Electro-acupuncture at different acupoints modulating the relative specific brain functional network

    NASA Astrophysics Data System (ADS)

    Fang, Jiliang; Wang, Xiaoling; Wang, Yin; Liu, Hesheng; Hong, Yang; Liu, Jun; Zhou, Kehua; Wang, Lei; Xue, Chao; Song, Ming; Liu, Baoyan; Zhu, Bing

    2010-11-01

    Objective: The specific brain effects of acupoint are important scientific concern in acupuncture. However, previous acupuncture fMRI studies focused on acupoints in muscle layer on the limb. Therefore, researches on acupoints within connective tissue at trunk are warranted. Material and Methods: Brain effects of acupuncture on abdomen at acupoints Guanyuan (CV4) and Zhongwan (CV12) were tested using fMRI on 21 healthy volunteers. The data acquisition was performed at resting state, during needle retention, electroacupuncture (EA) and post-EA resting state. Needling sensations were rated after every electroacupuncture (EA) procedure. The needling sensations and the brain functional activity and connectivity were compared between CV4 and CV12 using SPSS, SPM2 and the local and remote connectivity maps. Results and conclusion: EA at CV4 and CV12 induced apparent deactivation effects in the limbic-paralimbic-neocortical network. The default mode of the brain was modified by needle retention and EA, respectively. The functional brain network was significantly changed post EA. However, the minor differences existed between these two acupoints. The results demonstrated similarity between functional brain network mode of acupuncture modulation and functional circuits of emotional and cognitive regulation. Acupuncture may produce analgesia, anti-anxiety and anti-depression via the limbic-paralimbic-neocortical network (LPNN).

  15. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    NASA Astrophysics Data System (ADS)

    Jalili, Mahdi

    2016-07-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.

  16. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    PubMed Central

    Jalili, Mahdi

    2016-01-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals. PMID:27417262

  17. Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?

    PubMed

    Jalili, Mahdi

    2016-01-01

    The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer's Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals. PMID:27417262

  18. Altered brain rhythms and functional network disruptions involved in patients with generalized fixation-off epilepsy.

    PubMed

    Solana, Ana Beatriz; Martínez, Kenia; Hernández-Tamames, Juan Antonio; San Antonio-Arce, Victoria; Toledano, Rafael; García-Morales, Irene; Alvárez-Linera, Juan; Gil-Nágel, Antonio; Del Pozo, Francisco

    2016-06-01

    Generalized Fixation-off Sensitivity (CGE-FoS) patients present abnormal EEG patterns when losing fixation. In the present work, we studied two CGE-FoS epileptic patients with simultaneous EEG-fMRI. We aim to identify brain areas that are specifically related to the pathology by identifying the brain networks that are related to the EEG brain altered rhythms. Three main analyses were performed: EEG standalone, where the voltage fluctuations in delta, alpha, and beta EEG bands were obtained; fMRI standalone, where resting-state fMRI ICA analyses for opened and closed eyes conditions were computed per subject; and, EEG-informed fMRI, where EEG delta, alpha and beta oscillations were used to analyze fMRI. Patient 1 showed EEG abnormalities for lower beta band EEG brain rhythm. Fluctuations of this rhythm were correlated with a brain network mainly composed by temporo-frontal areas only found in the closed eyes condition. Patient 2 presented alterations in all the EEG brain rhythms (delta, alpha, beta) under study when closing eyes. Several biologically relevant brain networks highly correlated (r > 0.7) to each other in the closed eyes condition were found. EEG-informed fMRI results in patient 2 showed hypersynchronized patterns in the fMRI correlation spatial maps. The obtained findings allow a differential diagnosis for each patient and different profiles with respect to healthy volunteers. The results suggest a different disruption in the functional brain networks of these patients that depends on their altered brain rhythms. This knowledge could be used to treat these patients by novel brain stimulation approaches targeting specific altered brain networks in each patient.

  19. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy.

    PubMed

    Zhang, Zhiqiang; Liao, Wei; Chen, Huafu; Mantini, Dante; Ding, Ju-Rong; Xu, Qiang; Wang, Zhengge; Yuan, Cuiping; Chen, Guanghui; Jiao, Qing; Lu, Guangming

    2011-10-01

    The human brain is a large-scale integrated network in the functional and structural domain. Graph theoretical analysis provides a novel framework for analysing such complex networks. While previous neuroimaging studies have uncovered abnormalities in several specific brain networks in patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures, little is known about changes in whole-brain functional and structural connectivity networks. Regarding functional and structural connectivity, networks are intimately related and share common small-world topological features. We predict that patients with idiopathic generalized epilepsy would exhibit a decoupling between functional and structural networks. In this study, 26 patients with idiopathic generalized epilepsy characterized by tonic-clonic seizures and 26 age- and sex-matched healthy controls were recruited. Resting-state functional magnetic resonance imaging signal correlations and diffusion tensor image tractography were used to generate functional and structural connectivity networks. Graph theoretical analysis revealed that the patients lost optimal topological organization in both functional and structural connectivity networks. Moreover, the patients showed significant increases in nodal topological characteristics in several cortical and subcortical regions, including mesial frontal cortex, putamen, thalamus and amygdala relative to controls, supporting the hypothesis that regions playing important roles in the pathogenesis of epilepsy may display abnormal hub properties in network analysis. Relative to controls, patients showed further decreases in nodal topological characteristics in areas of the default mode network, such as the posterior cingulate gyrus and inferior temporal gyrus. Most importantly, the degree of coupling between functional and structural connectivity networks was decreased, and exhibited a negative correlation with epilepsy duration in patients. Our findings

  20. Aberrant Functional Whole-Brain Network Architecture in Patients With Schizophrenia: A Meta-analysis.

    PubMed

    Kambeitz, Joseph; Kambeitz-Ilankovic, Lana; Cabral, Carlos; Dwyer, Dominic B; Calhoun, Vince D; van den Heuvel, Martijn P; Falkai, Peter; Koutsouleris, Nikolaos; Malchow, Berend

    2016-07-01

    Findings from multiple lines of research provide evidence of aberrant functional brain connectivity in schizophrenia. By using graph-analytical measures, recent studies indicate that patients with schizophrenia exhibit changes in the organizational principles of whole-brain networks and that these changes relate to cognitive symptoms. However, there has not been a systematic investigation of functional brain network changes in schizophrenia to test the consistency of these changes across multiple studies. A comprehensive literature search was conducted to identify all available functional graph-analytical studies in patients with schizophrenia. Effect size measures were derived from each study and entered in a random-effects meta-analytical model. All models were tested for effects of potential moderator variables as well as for the presence of publication bias. The results of a total of n = 13 functional neuroimaging studies indicated that brain networks in patients with schizophrenia exhibit significant decreases in measures of local organization (g = -0.56, P = .02) and significant decreases in small-worldness (g = -0.65, P = .01) whereas global short communication paths seemed to be preserved (g = 0.26, P = .32). There was no evidence for a publication bias or moderator effects. The present meta- analysis demonstrates significant changes in whole brain network architecture associated with schizophrenia across studies. PMID:27460615

  1. Aberrant Functional Whole-Brain Network Architecture in Patients With Schizophrenia: A Meta-analysis.

    PubMed

    Kambeitz, Joseph; Kambeitz-Ilankovic, Lana; Cabral, Carlos; Dwyer, Dominic B; Calhoun, Vince D; van den Heuvel, Martijn P; Falkai, Peter; Koutsouleris, Nikolaos; Malchow, Berend

    2016-07-01

    Findings from multiple lines of research provide evidence of aberrant functional brain connectivity in schizophrenia. By using graph-analytical measures, recent studies indicate that patients with schizophrenia exhibit changes in the organizational principles of whole-brain networks and that these changes relate to cognitive symptoms. However, there has not been a systematic investigation of functional brain network changes in schizophrenia to test the consistency of these changes across multiple studies. A comprehensive literature search was conducted to identify all available functional graph-analytical studies in patients with schizophrenia. Effect size measures were derived from each study and entered in a random-effects meta-analytical model. All models were tested for effects of potential moderator variables as well as for the presence of publication bias. The results of a total of n = 13 functional neuroimaging studies indicated that brain networks in patients with schizophrenia exhibit significant decreases in measures of local organization (g = -0.56, P = .02) and significant decreases in small-worldness (g = -0.65, P = .01) whereas global short communication paths seemed to be preserved (g = 0.26, P = .32). There was no evidence for a publication bias or moderator effects. The present meta- analysis demonstrates significant changes in whole brain network architecture associated with schizophrenia across studies.

  2. Acute functional reactivation of the language network during awake intraoperative brain mapping.

    PubMed

    Spena, Giannantonio; Costi, Emanuele; Panciani, Pier Paolo; Roca, Elena; Migliorati, Karol; Fontanella, Marco Maria

    2015-01-01

    Acute brain plasticity during resection of central lesions has been recently described. In the cases reported, perilesional latent networks, useful to preserve the neurological functions, were detected in asymptomatic patients. In this paper, we presented a case of acute functional reactivation (AFR) of the language network in a symptomatic patient. Tumor resection allowed to acutely restore the neurological deficit. Intraoperative direct cortical stimulation (DCS) and functional neuroimaging showed new epicentres of activation of the language network after tumor excision. DCS in awake surgery is mandatory to reveal AFR needful to improve the extent of resection preserving the quality of life.

  3. Topology of whole-brain functional MRI networks: Improving the truncated scale-free model

    NASA Astrophysics Data System (ADS)

    Ruiz Vargas, E.; Mitchell, D. G. V.; Greening, S. G.; Wahl, L. M.

    2014-07-01

    Networks of connections within the human brain have been the subject of intense recent research, yet their topology is still only partially understood. We analyze weighted networks calculated from functional magnetic resonance imaging (fMRI) data acquired during task performance. Expanding previous work in the area, our analysis retains all of the connections between all of the voxels in the full brain fMRI data, computing correlations between approximately 200,000 voxels per subject for 10 subjects. We evaluate the extent to which this rich dataset can be described by existing models of scale-free or exponentially truncated scale-free topology, comparing results across a large number of more complex topological models as well. Our results suggest that the novel “log quadratic” model presented in this paper offers a significantly better fit to networks of functional connections at the voxel level in the human brain.

  4. Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence.

    PubMed

    Vakhtin, Andrei A; Ryman, Sephira G; Flores, Ranee A; Jung, Rex E

    2014-12-01

    The refinement of localization of intelligence in the human brain is converging onto a distributed network that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high) were compared between the RPM and rest conditions. The regions involved in the networks that were found to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions, right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that functional brain networks are more stable than previously thought, and maintain their general features across resting state and engagement in a complex cognitive task. The described spatial and functional connectivity alterations that such components undergo during fluid reasoning provide a network-wise framework of the P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings of intelligence.

  5. Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence.

    PubMed

    Vakhtin, Andrei A; Ryman, Sephira G; Flores, Ranee A; Jung, Rex E

    2014-12-01

    The refinement of localization of intelligence in the human brain is converging onto a distributed network that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high) were compared between the RPM and rest conditions. The regions involved in the networks that were found to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions, right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that functional brain networks are more stable than previously thought, and maintain their general features across resting state and engagement in a complex cognitive task. The described spatial and functional connectivity alterations that such components undergo during fluid reasoning provide a network-wise framework of the P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings of intelligence. PMID:25284305

  6. Age-related changes in modular organization of human brain functional networks.

    PubMed

    Meunier, David; Achard, Sophie; Morcom, Alexa; Bullmore, Ed

    2009-02-01

    Graph theory allows us to quantify any complex system, e.g., in social sciences, biology or technology, that can be abstractly described as a set of nodes and links. Here we derived human brain functional networks from fMRI measurements of endogenous, low frequency, correlated oscillations in 90 cortical and subcortical regions for two groups of healthy (young and older) participants. We investigated the modular structure of these networks and tested the hypothesis that normal brain aging might be associated with changes in modularity of sparse networks. Newman's modularity metric was maximised and topological roles were assigned to brain regions depending on their specific contributions to intra- and inter-modular connectivity. Both young and older brain networks demonstrated significantly non-random modularity. The young brain network was decomposed into 3 major modules: central and posterior modules, which comprised mainly nodes with few inter-modular connections, and a dorsal fronto-cingulo-parietal module, which comprised mainly nodes with extensive inter-modular connections. The mean network in the older group also included posterior, superior central and dorsal fronto-striato-thalamic modules but the number of intermodular connections to frontal modular regions was significantly reduced, whereas the number of connector nodes in posterior and central modules was increased.

  7. A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity

    PubMed Central

    Xue, Wenqiong; Bowman, F. DuBois; Pileggi, Anthony V.; Mayer, Andrew R.

    2015-01-01

    Recent innovations in neuroimaging technology have provided opportunities for researchers to investigate connectivity in the human brain by examining the anatomical circuitry as well as functional relationships between brain regions. Existing statistical approaches for connectivity generally examine resting-state or task-related functional connectivity (FC) between brain regions or separately examine structural linkages. As a means to determine brain networks, we present a unified Bayesian framework for analyzing FC utilizing the knowledge of associated structural connections, which extends an approach by Patel et al. (2006a) that considers only functional data. We introduce an FC measure that rests upon assessments of functional coherence between regional brain activity identified from functional magnetic resonance imaging (fMRI) data. Our structural connectivity (SC) information is drawn from diffusion tensor imaging (DTI) data, which is used to quantify probabilities of SC between brain regions. We formulate a prior distribution for FC that depends upon the probability of SC between brain regions, with this dependence adhering to structural-functional links revealed by our fMRI and DTI data. We further characterize the functional hierarchy of functionally connected brain regions by defining an ascendancy measure that compares the marginal probabilities of elevated activity between regions. In addition, we describe topological properties of the network, which is composed of connected region pairs, by performing graph theoretic analyses. We demonstrate the use of our Bayesian model using fMRI and DTI data from a study of auditory processing. We further illustrate the advantages of our method by comparisons to methods that only incorporate functional information. PMID:25750621

  8. Lateralized Resting-State Functional Brain Network Organization Changes in Heart Failure

    PubMed Central

    Park, Bumhee; Roy, Bhaswati; Woo, Mary A.; Palomares, Jose A.; Fonarow, Gregg C.; Harper, Ronald M.; Kumar, Rajesh

    2016-01-01

    Heart failure (HF) patients show brain injury in autonomic, affective, and cognitive sites, which can change resting-state functional connectivity (FC), potentially altering overall functional brain network organization. However, the status of such connectivity or functional organization is unknown in HF. Determination of that status was the aim here, and we examined region-to-region FC and brain network topological properties across the whole-brain in 27 HF patients compared to 53 controls with resting-state functional MRI procedures. Decreased FC in HF appeared between the caudate and cerebellar regions, olfactory and cerebellar sites, vermis and medial frontal regions, and precentral gyri and cerebellar areas. However, increased FC emerged between the middle frontal gyrus and sensorimotor areas, superior parietal gyrus and orbito/medial frontal regions, inferior temporal gyrus and lingual gyrus/cerebellar lobe/pallidum, fusiform gyrus and superior orbitofrontal gyrus and cerebellar sites, and within vermis and cerebellar areas; these connections were largely in the right hemisphere (p<0.005; 10,000 permutations). The topology of functional integration and specialized characteristics in HF are significantly changed in regions showing altered FC, an outcome which would interfere with brain network organization (p<0.05; 10,000 permutations). Brain dysfunction in HF extends to resting conditions, and autonomic, cognitive, and affective deficits may stem from altered FC and brain network organization that may contribute to higher morbidity and mortality in the condition. Our findings likely result from the prominent axonal and nuclear structural changes reported earlier in HF; protecting neural tissue may improve FC integrity, and thus, increase quality of life and reduce morbidity and mortality. PMID:27203600

  9. Functional brain networks: great expectations, hard times and the big leap forward

    PubMed Central

    Papo, David; Zanin, Massimiliano; Pineda-Pardo, José Angel; Boccaletti, Stefano; Buldú, Javier M.

    2014-01-01

    Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode. PMID:25180303

  10. Functional brain networks: great expectations, hard times and the big leap forward.

    PubMed

    Papo, David; Zanin, Massimiliano; Pineda-Pardo, José Angel; Boccaletti, Stefano; Buldú, Javier M

    2014-10-01

    Many physical and biological systems can be studied using complex network theory, a new statistical physics understanding of graph theory. The recent application of complex network theory to the study of functional brain networks has generated great enthusiasm as it allows addressing hitherto non-standard issues in the field, such as efficiency of brain functioning or vulnerability to damage. However, in spite of its high degree of generality, the theory was originally designed to describe systems profoundly different from the brain. We discuss some important caveats in the wholesale application of existing tools and concepts to a field they were not originally designed to describe. At the same time, we argue that complex network theory has not yet been taken full advantage of, as many of its important aspects are yet to make their appearance in the neuroscience literature. Finally, we propose that, rather than simply borrowing from an existing theory, functional neural networks can inspire a fundamental reformulation of complex network theory, to account for its exquisitely complex functioning mode.

  11. Human brain functional network changes associated with enhanced and impaired attentional task performance.

    PubMed

    Giessing, Carsten; Thiel, Christiane M; Alexander-Bloch, Aaron F; Patel, Ameera X; Bullmore, Edward T

    2013-04-01

    How is the cognitive performance of the human brain related to its topological and spatial organization as a complex network embedded in anatomical space? To address this question, we used nicotine replacement and duration of attentionally demanding task performance (time-on-task), as experimental factors expected, respectively, to enhance and impair cognitive function. We measured resting-state fMRI data, performance and brain activation on a go/no-go task demanding sustained attention, and subjective fatigue in n = 18 healthy, briefly abstinent, cigarette smokers scanned repeatedly in a placebo-controlled, crossover design. We tested the main effects of drug (placebo vs Nicorette gum) and time-on-task on behavioral performance and brain functional network metrics measured in binary graphs of 477 regional nodes (efficiency, measure of integrative topology; clustering, a measure of segregated topology; and the Euclidean physical distance between connected nodes, a proxy marker of wiring cost). Nicotine enhanced attentional task performance behaviorally and increased efficiency, decreased clustering, and increased connection distance of brain networks. Greater behavioral benefits of nicotine were correlated with stronger drug effects on integrative and distributed network configuration and with greater frequency of cigarette smoking. Greater time-on-task had opposite effects: it impaired attentional accuracy, decreased efficiency, increased clustering, and decreased connection distance of networks. These results are consistent with hypothetical predictions that superior cognitive performance should be supported by more efficient, integrated (high capacity) brain network topology at greater connection distance (high cost). They also demonstrate that brain network analysis can provide novel and theoretically principled pharmacodynamic biomarkers of pro-cognitive drug effects in humans. PMID:23554472

  12. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  13. Test-retest reliability of graph metrics of resting state MRI functional brain networks: A review.

    PubMed

    Andellini, Martina; Cannatà, Vittorio; Gazzellini, Simone; Bernardi, Bruno; Napolitano, Antonio

    2015-09-30

    The employment of graph theory to analyze spontaneous fluctuations in resting state BOLD fMRI data has become a dominant theme in brain imaging studies and neuroscience. Analysis of resting state functional brain networks based on graph theory has proven to be a powerful tool to quantitatively characterize functional architecture of the brain and it has provided a new platform to explore the overall structure of local and global functional connectivity in the brain. Due to its increased use and possible expansion to clinical use, it is essential that the reliability of such a technique is very strongly assessed. In this review, we explore the outcome of recent studies in network reliability which apply graph theory to analyze connectome resting state networks. Therefore, we investigate which preprocessing steps may affect reproducibility the most. In order to investigate network reliability, we compared the test-retest (TRT) reliability of functional data of published neuroimaging studies with different preprocessing steps. In particular we tested influence of global signal regression, correlation metric choice, binary versus weighted link definition, frequency band selection and length of time-series. Statistical analysis shows that only frequency band selection and length of time-series seem to affect TRT reliability. Our results highlight the importance of the choice of the preprocessing steps to achieve more reproducible measurements. PMID:26072249

  14. A Novel Brain Network Construction Method for Exploring Age-Related Functional Reorganization

    PubMed Central

    Li, Wei; Wang, Miao; Li, Yapeng; Huang, Yue; Chen, Xi

    2016-01-01

    The human brain undergoes complex reorganization and changes during aging. Using graph theory, scientists can find differences in topological properties of functional brain networks between young and elderly adults. However, these differences are sometimes significant and sometimes not. Several studies have even identified disparate differences in topological properties during normal aging or in age-related diseases. One possible reason for this issue is that existing brain network construction methods cannot fully extract the “intrinsic edges” to prevent useful signals from being buried into noises. This paper proposes a new subnetwork voting (SNV) method with sliding window to construct functional brain networks for young and elderly adults. Differences in the topological properties of brain networks constructed from the classic and SNV methods were consistent. Statistical analysis showed that the SNV method can identify much more statistically significant differences between groups than the classic method. Moreover, support vector machine was utilized to classify young and elderly adults; its accuracy, based on the SNV method, reached 89.3%, significantly higher than that with classic method. Therefore, the SNV method can improve consistency within a group and highlight differences between groups, which can be valuable for the exploration and auxiliary diagnosis of aging and age-related diseases. PMID:27057155

  15. Structure function relationship in complex brain networks expressed by hierarchical synchronization

    NASA Astrophysics Data System (ADS)

    Zhou, Changsong; Zemanová, Lucia; Zamora-López, Gorka; Hilgetag, Claus C.; Kurths, Jürgen

    2007-06-01

    The brain is one of the most complex systems in nature, with a structured complex connectivity. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex network analysis. Understanding the relationship between structural and functional connectivity is of crucial importance in neuroscience. Here we try to illuminate this relationship by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the nodes (cortical areas) by a neural mass model (population model) or by a subnetwork of interacting excitable neurons (multilevel model). We show that if the dynamics is characterized by well-defined oscillations (neural mass model and subnetworks with strong couplings), the synchronization patterns are mainly determined by the node intensity (total input strengths of a node) and the detailed network topology is rather irrelevant. On the other hand, the multilevel model with weak couplings displays more irregular, biologically plausible dynamics, and the synchronization patterns reveal a hierarchical cluster organization in the network structure. The relationship between structural and functional connectivity at different levels of synchronization is explored. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.

  16. Understanding structural-functional relationships in the human brain: a large-scale network perspective.

    PubMed

    Wang, Zhijiang; Dai, Zhengjia; Gong, Gaolang; Zhou, Changsong; He, Yong

    2015-06-01

    Relating the brain's structural connectivity (SC) to its functional connectivity (FC) is a fundamental goal in neuroscience because it is capable of aiding our understanding of how the relatively fixed SC architecture underlies human cognition and diverse behaviors. With the aid of current noninvasive imaging technologies (e.g., structural MRI, diffusion MRI, and functional MRI) and graph theory methods, researchers have modeled the human brain as a complex network of interacting neuronal elements and characterized the underlying structural and functional connectivity patterns that support diverse cognitive functions. Specifically, research has demonstrated a tight SC-FC coupling, not only in interregional connectivity strength but also in network topologic organizations, such as community, rich-club, and motifs. Moreover, this SC-FC coupling exhibits significant changes in normal development and neuropsychiatric disorders, such as schizophrenia and epilepsy. This review summarizes recent progress regarding the SC-FC relationship of the human brain and emphasizes the important role of large-scale brain networks in the understanding of structural-functional associations. Future research directions related to this topic are also proposed.

  17. Multiscale topological properties of functional brain networks during motor imagery after stroke.

    PubMed

    De Vico Fallani, Fabrizio; Pichiorri, Floriana; Morone, Giovanni; Molinari, Marco; Babiloni, Fabio; Cincotti, Febo; Mattia, Donatella

    2013-12-01

    In recent years, network analyses have been used to evaluate brain reorganization following stroke. However, many studies have often focused on single topological scales, leading to an incomplete model of how focal brain lesions affect multiple network properties simultaneously and how changes on smaller scales influence those on larger scales. In an EEG-based experiment on the performance of hand motor imagery (MI) in 20 patients with unilateral stroke, we observed that the anatomic lesion affects the functional brain network on multiple levels. In the beta (13-30 Hz) frequency band, the MI of the affected hand (Ahand) elicited a significantly lower smallworldness and local efficiency (Eloc) versus the unaffected hand (Uhand). Notably, the abnormal reduction in Eloc significantly depended on the increase in interhemispheric connectivity, which was in turn determined primarily by the rise of regional connectivity in the parieto-occipital sites of the affected hemisphere. Further, in contrast to the Uhand MI, in which significantly high connectivity was observed for the contralateral sensorimotor regions of the unaffected hemisphere, the regions with increased connectivity during the Ahand MI lay in the frontal and parietal regions of the contralaterally affected hemisphere. Finally, the overall sensorimotor function of our patients, as measured by Fugl-Meyer Assessment (FMA) index, was significantly predicted by the connectivity of their affected hemisphere. These results improve on our understanding of stroke-induced alterations in functional brain networks.

  18. Hierarchical Spectral Consensus Clustering for Group Analysis of Functional Brain Networks.

    PubMed

    Ozdemir, Alp; Bolaños, Marcos; Bernat, Edward; Aviyente, Selin

    2015-09-01

    A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent years, graph theoretical methods have been used to characterize the structure of the brain functional connectivity. In order to understand the organization of functional connectivity networks, it is important to determine the community structure underlying these complex networks. Moreover, the study of brain functional networks is confounded by the fact that most neurophysiological studies consists of data collected from multiple subjects; thus, it is important to identify communities representative of all subjects. Typically, this problem is addressed by averaging the data across subjects which omits the variability across subjects or using voting methods, which requires a priori knowledge of cluster labels. In this paper, we propose a hierarchical consensus spectral clustering approach to address these problems. Furthermore, new information-theoretic criteria are introduced for selecting the optimal community structure. The proposed framework is applied to electroencephalogram data collected during a study of error-related negativity to better understand the community structure of functional networks involved in the cognitive control.

  19. Resting-brain functional connectivity predicted by analytic measures of network communication

    PubMed Central

    Goñi, Joaquín; van den Heuvel, Martijn P.; Avena-Koenigsberger, Andrea; Velez de Mendizabal, Nieves; Betzel, Richard F.; Griffa, Alessandra; Hagmann, Patric; Corominas-Murtra, Bernat; Thiran, Jean-Philippe; Sporns, Olaf

    2014-01-01

    The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures—search information and path transitivity—which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways. PMID:24379387

  20. Second language experience modulates functional brain network for the native language production in bimodal bilinguals.

    PubMed

    Zou, Lijuan; Abutalebi, Jubin; Zinszer, Benjamin; Yan, Xin; Shu, Hua; Peng, Danling; Ding, Guosheng

    2012-09-01

    The functional brain network of a bilingual's first language (L1) plays a crucial role in shaping that of his or her second language (L2). However, it is less clear how L2 acquisition changes the functional network of L1 processing in bilinguals. In this study, we demonstrate that in bimodal (Chinese spoken-sign) bilinguals, the functional network supporting L1 production (spoken language) has been reorganized to accommodate the network underlying L2 production (sign language). Using functional magnetic resonance imaging (fMRI) and a picture naming task, we find greater recruitment of the right supramarginal gyrus (RSMG), the right temporal gyrus (RSTG), and the right superior occipital gyrus (RSOG) for bilingual speakers versus monolingual speakers during L1 production. In addition, our second experiment reveals that these regions reflect either automatic activation of L2 (RSOG) or extra cognitive coordination (RSMG and RSTG) between both languages during L1 production. The functional connectivity between these regions, as well as between other regions that are L1- or L2-specific, is enhanced during L1 production in bimodal bilinguals as compared to their monolingual peers. These findings suggest that L1 production in bimodal bilinguals involves an interaction between L1 and L2, supporting the claim that learning a second language does, in fact, change the functional brain network of the first language. PMID:22658973

  1. Second language experience modulates functional brain network for the native language production in bimodal bilinguals.

    PubMed

    Zou, Lijuan; Abutalebi, Jubin; Zinszer, Benjamin; Yan, Xin; Shu, Hua; Peng, Danling; Ding, Guosheng

    2012-09-01

    The functional brain network of a bilingual's first language (L1) plays a crucial role in shaping that of his or her second language (L2). However, it is less clear how L2 acquisition changes the functional network of L1 processing in bilinguals. In this study, we demonstrate that in bimodal (Chinese spoken-sign) bilinguals, the functional network supporting L1 production (spoken language) has been reorganized to accommodate the network underlying L2 production (sign language). Using functional magnetic resonance imaging (fMRI) and a picture naming task, we find greater recruitment of the right supramarginal gyrus (RSMG), the right temporal gyrus (RSTG), and the right superior occipital gyrus (RSOG) for bilingual speakers versus monolingual speakers during L1 production. In addition, our second experiment reveals that these regions reflect either automatic activation of L2 (RSOG) or extra cognitive coordination (RSMG and RSTG) between both languages during L1 production. The functional connectivity between these regions, as well as between other regions that are L1- or L2-specific, is enhanced during L1 production in bimodal bilinguals as compared to their monolingual peers. These findings suggest that L1 production in bimodal bilinguals involves an interaction between L1 and L2, supporting the claim that learning a second language does, in fact, change the functional brain network of the first language.

  2. Structural architecture supports functional organization in the human aging brain at a regionwise and network level.

    PubMed

    Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R

    2016-07-01

    Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. PMID:27041212

  3. Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia.

    PubMed

    Lo, Chun-Yi Zac; Su, Tsung-Wei; Huang, Chu-Chung; Hung, Chia-Chun; Chen, Wei-Ling; Lan, Tsuo-Hung; Lin, Ching-Po; Bullmore, Edward T

    2015-07-21

    Schizophrenia is increasingly conceived as a disorder of brain network organization or dysconnectivity syndrome. Functional MRI (fMRI) networks in schizophrenia have been characterized by abnormally random topology. We tested the hypothesis that network randomization is an endophenotype of schizophrenia and therefore evident also in nonpsychotic relatives of patients. Head movement-corrected, resting-state fMRI data were acquired from 25 patients with schizophrenia, 25 first-degree relatives of patients, and 29 healthy volunteers. Graphs were used to model functional connectivity as a set of edges between regional nodes. We estimated the topological efficiency, clustering, degree distribution, resilience, and connection distance (in millimeters) of each functional network. The schizophrenic group demonstrated significant randomization of global network metrics (reduced clustering, greater efficiency), a shift in the degree distribution to a more homogeneous form (fewer hubs), a shift in the distance distribution (proportionally more long-distance edges), and greater resilience to targeted attack on network hubs. The networks of the relatives also demonstrated abnormal randomization and resilience compared with healthy volunteers, but they were typically less topologically abnormal than the patients' networks and did not have abnormal connection distances. We conclude that schizophrenia is associated with replicable and convergent evidence for functional network randomization, and a similar topological profile was evident also in nonpsychotic relatives, suggesting that this is a systems-level endophenotype or marker of familial risk. We speculate that the greater resilience of brain networks may confer some fitness advantages on nonpsychotic relatives that could explain persistence of this endophenotype in the population. PMID:26150519

  4. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.

    PubMed

    Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L

    2016-05-01

    Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the

  5. Graph Theory Analysis of Functional Brain Networks and Mobility Disability in Older Adults

    PubMed Central

    Burdette, Jonathan H.; Morgan, Ashley R.; Williamson, Jeff D.; Kritchevsky, Stephen B.; Laurienti, Paul J.

    2014-01-01

    Background. The brain’s structural integrity is associated with mobility function in older adults. Changes in function may be evident earlier than changes in structure and may be more directly related to mobility. Therefore, we assessed whether functional brain networks varied with mobility function in older adults. Methods. Short Physical Performance Battery (SPPB) and resting state functional magnetic resonance imaging were collected on 24 young (mean age = 26.4±5.1) and 48 older (mean age = 72.04±5.1) participants. Older participants were divided into three groups by SPPB score: Low SPPB (score = 7–9), Mid SPPB (score = 10), High SPPB (score = 11–12).Graph theory–based methods were used to characterize and compare brain network organization. Results. Connectivity in the somatomotor cortex distinguished between groups based on SPPB score. The community structure of the somatomotor cortex was significantly less consistent in the Low SPPB group (mean = 0.097±0.05) compared with Young (mean = 0.163±0.09, p = .03) SPPB group. Striking differences were evident in second-order connections between somatomotor cortex and superior temporal gyrus and insula that reached statistical significance. The Low SPPB group (mean = 140.87±109.30) had a significantly higher number of connections than Young (mean = 45.05±33.79, p = .0003) or High (mean = 49.61±35.31, p = .002) SPPB group. Conclusions. Older adults with poorer mobility function exhibited reduced consistency of somatomotor community structure and a greater number of secondary connections with vestibular and multisensory regions of the brain. Further study is needed to fully interpret these effects, but analysis of functional brain networks adds new insights to the contribution of the brain to mobility. PMID:24717331

  6. A study on small-world brain functional networks altered by postherpetic neuralgia.

    PubMed

    Zhang, Yue; Liu, Jing; Li, Longchuan; Du, Minyi; Fang, Wenxue; Wang, Dongxin; Jiang, Xuexiang; Hu, Xiaoping; Zhang, Jue; Wang, Xiaoying; Fang, Jing

    2014-05-01

    Understanding the effect of postherpetic neuralgia (PHN) pain on brain activity is important for clinical strategies. This is the first study, to our knowledge, to relate PHN pain to small-world properties of brain functional networks. Functional magnetic resonance imaging (fMRI) was used to construct functional brain networks of the subjects during the resting state. Sixteen patients with PHN pain and 16 (8 males, 8 females for both groups) age-matched controls were studied. The PHN patients exhibited decreased local efficiency along with non-significant changes of global efficiency in comparison with the healthy controls. Moreover, regional nodal efficiency was found to be significantly affected by PHN pain in the areas related to sense (postcentral gyrus, inferior parietal gyrus and thalamus), memory/affective processes (parahippocampal gyrus) and emotional activities (putamen). Significant correlation (p<0.05) was also found between the nodal efficiency of putamen and pain intensity in PHN patients. Our results suggest that PHN modulates the local efficiency, and the small-world properties of brain networks may have potentials to objectively evaluate pain information in clinic.

  7. Divergent brain functional network alterations in dementia with Lewy bodies and Alzheimer's disease

    PubMed Central

    Peraza, Luis R.; Taylor, John-Paul; Kaiser, Marcus

    2015-01-01

    The clinical phenotype of dementia with Lewy bodies (DLB) is different from Alzheimer's disease (AD), suggesting a divergence between these diseases in terms of brain network organization. To fully understand this, we studied functional networks from resting-state functional magnetic resonance imaging in cognitively matched DLB and AD patients. The DLB group demonstrated a generalized lower synchronization compared with the AD and healthy controls, and this was more severe for edges connecting distant brain regions. Global network measures were significantly different between DLB and AD. For instance, AD showed lower small-worldness than healthy controls, while DLB showed higher small-worldness (AD < controls < DLB), and this was also the case for global efficiency (DLB > controls > AD) and clustering coefficient (DLB < controls < AD). Differences were also found for nodal measures at brain regions associated with each disease. Finally, we found significant associations between network performance measures and global cognitive impairment and severity of cognitive fluctuations in DLB. These results show network divergences between DLB and AD which appear to reflect their neuropathological differences. PMID:26115566

  8. Comparison of statistical tests for group differences in brain functional networks.

    PubMed

    Kim, Junghi; Wozniak, Jeffrey R; Mueller, Bryon A; Shen, Xiaotong; Pan, Wei

    2014-11-01

    Brain functional connectivity has been studied by analyzing time series correlations in regional brain activities based on resting-state fMRI data. Brain functional connectivity can be depicted as a network or graph defined as a set of nodes linked by edges. Nodes represent brain regions and an edge measures the strength of functional correlation between two regions. Most of existing work focuses on estimation of such a network. A key but inadequately addressed question is how to test for possible differences of the networks between two subject groups, say between healthy controls and patients. Here we illustrate and compare the performance of several state-of-the-art statistical tests drawn from the neuroimaging, genetics, ecology and high-dimensional data literatures. Both real and simulated data were used to evaluate the methods. We found that Network Based Statistic (NBS) performed well in many but not all situations, and its performance critically depends on the choice of its threshold parameter, which is unknown and difficult to choose in practice. Importantly, two adaptive statistical tests called adaptive sum of powered score (aSPU) and its weighted version (aSPUw) are easy to use and complementary to NBS, being higher powered than NBS in some situations. The aSPU and aSPUw tests can also be applied to adjust for covariates. Between the aSPU and aSPUw tests, they often, but not always, performed similarly with neither one as a uniform winner. On the other hand, Multivariate Matrix Distance Regression (MDMR) has been applied to detect group differences for brain connectivity; with the usual choice of the Euclidean distance, MDMR is a special case of the aSPU test. Consequently NBS, aSPU and aSPUw tests are recommended to test for group differences in functional connectivity. PMID:25086298

  9. Understanding brain networks and brain organization

    PubMed Central

    Pessoa, Luiz

    2014-01-01

    What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. As others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks. PMID:24819881

  10. Creativity and the default network: A functional connectivity analysis of the creative brain at rest☆

    PubMed Central

    Beaty, Roger E.; Benedek, Mathias; Wilkins, Robin W.; Jauk, Emanuel; Fink, Andreas; Silvia, Paul J.; Hodges, Donald A.; Koschutnig, Karl; Neubauer, Aljoscha C.

    2014-01-01

    The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes. PMID:25245940

  11. Modulation of the brain's functional network architecture in the transition from wake to sleep.

    PubMed

    Larson-Prior, Linda J; Power, Jonathan D; Vincent, Justin L; Nolan, Tracy S; Coalson, Rebecca S; Zempel, John; Snyder, Abraham Z; Schlaggar, Bradley L; Raichle, Marcus E; Petersen, Steven E

    2011-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes.

  12. Altered functional brain network connectivity and glutamate system function in transgenic mice expressing truncated Disrupted-in-Schizophrenia 1

    PubMed Central

    Dawson, N; Kurihara, M; Thomson, D M; Winchester, C L; McVie, A; Hedde, J R; Randall, A D; Shen, S; Seymour, P A; Hughes, Z A; Dunlop, J; Brown, J T; Brandon, N J; Morris, B J; Pratt, J A

    2015-01-01

    Considerable evidence implicates DISC1 as a susceptibility gene for multiple psychiatric diseases. DISC1 has been intensively studied at the molecular, cellular and behavioral level, but its role in regulating brain connectivity and brain network function remains unknown. Here, we utilize a set of complementary approaches to assess the functional brain network abnormalities present in mice expressing a truncated Disc1 gene (Disc1tr Hemi mice). Disc1tr Hemi mice exhibited hypometabolism in the prefrontal cortex (PFC) and reticular thalamus along with a reorganization of functional brain network connectivity that included compromised hippocampal–PFC connectivity. Altered hippocampal–PFC connectivity in Disc1tr Hemi mice was confirmed by electrophysiological analysis, with Disc1tr Hemi mice showing a reduced probability of presynaptic neurotransmitter release in the monosynaptic glutamatergic hippocampal CA1–PFC projection. Glutamate system dysfunction in Disc1tr Hemi mice was further supported by the attenuated cerebral metabolic response to the NMDA receptor (NMDAR) antagonist ketamine and decreased hippocampal expression of NMDAR subunits 2A and 2B in these animals. These data show that the Disc1 truncation in Disc1tr Hemi mice induces a range of translationally relevant endophenotypes underpinned by glutamate system dysfunction and altered brain connectivity. PMID:25989143

  13. Functional Brain Networks Develop from a “Local to Distributed” Organization

    PubMed Central

    Power, Jonathan D.; Dosenbach, Nico U. F.; Church, Jessica A.; Miezin, Francis M.; Schlaggar, Bradley L.; Petersen, Steven E.

    2009-01-01

    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and

  14. [Functional connectivity analysis of the brain network using resting-state FMRI].

    PubMed

    Hayashi, Toshihiro

    2011-12-01

    Spatial patterns of spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signals reflect the underlying neural architecture. The study of the brain network based on these self-organized patterns is termed resting-state functional MRI (fMRI). This review article aims at briefly reviewing a basic concept of this technology and discussing its implications for neuropsychological studies. First, the technical aspects of resting-state fMRI, including signal sources, physiological artifacts, image acquisition, and analytical methods such as seed-based correlation analysis and independent component analysis, are explained, followed by a discussion on the major resting-state networks, including the default mode network. In addition, the structure-function correlation studied using diffuse tensor imaging and resting-state fMRI is briefly discussed. Second, I have discussed the reservations and potential pitfalls of 2 major imaging methods: voxel-based lesion-symptom mapping and task fMRI. Problems encountered with voxel-based lesion-symptom mapping can be overcome by using resting-state fMRI and evaluating undamaged brain networks in patients. Regarding task fMRI in patients, I have also emphasized the importance of evaluating the baseline brain activity because the amplitude of activation in BOLD fMRI is hard to interpret as the same baseline cannot be assumed for both patient and normal groups. PMID:22147450

  15. Delayed convergence between brain network structure and function in rolandic epilepsy

    PubMed Central

    Besseling, René M. H.; Jansen, Jacobus F. A.; Overvliet, Geke M.; van der Kruijs, Sylvie J. M.; Ebus, Saskia C. M.; de Louw, Anton J. A.; Hofman, Paul A. M.; Aldenkamp, Albert P.; Backes, Walter H.

    2014-01-01

    Introduction: Rolandic epilepsy (RE) manifests during a critical phase of brain development, and has been associated with language impairments. Concordant abnormalities in structural and functional connectivity (SC and FC) have been described before. As SC and FC are under mutual influence, the current study investigates abnormalities in the SC-FC synergy in RE. Methods: Twenty-two children with RE (age, mean ± SD: 11.3 ± 2.0 y) and 22 healthy controls (age 10.5 ± 1.6 y) underwent structural, diffusion weighted, and resting-state functional magnetic resonance imaging (MRI) at 3T. The probabilistic anatomical landmarks atlas was used to parcellate the (sub)cortical gray matter. Constrained spherical deconvolution tractography and correlation of time series were used to assess SC and FC, respectively. The SC-FC correlation was assessed as a function of age for the non-zero structural connections over a range of sparsity values (0.01–0.75). A modularity analysis was performed on the mean SC network of the controls to localize potential global effects to subnetworks. SC and FC were also assessed separately using graph analysis. Results: The SC-FC correlation was significantly reduced in children with RE compared to healthy controls, especially for the youngest participants. This effect was most pronounced in a left and a right centro-temporal network, as well as in a medial parietal network. Graph analysis revealed no prominent abnormalities in SC or FC network organization. Conclusion: Since SC and FC converge during normal maturation, our finding of reduced SC-FC correlation illustrates impaired synergy between brain structure and function. More specifically, since this effect was most pronounced in the youngest participants, RE may represent a developmental disorder of delayed brain network maturation. The observed effects seem especially attributable to medial parietal connections, which forms an intermediate between bilateral centro-temporal modules of

  16. Changes in functional brain networks following sports-related concussion in adolescents.

    PubMed

    Virji-Babul, Naznin; Hilderman, Courtney G E; Makan, Nadia; Liu, Aiping; Smith-Forrester, Jenna; Franks, Chris; Wang, Z J

    2014-12-01

    Sports-related concussion is a major public health issue; however, little is known about the underlying changes in functional brain networks in adolescents following injury. Our aim was to use the tools from graph theory to evaluate the changes in brain network properties following concussion in adolescent athletes. We recorded resting state electroencephalography (EEG) in 33 healthy adolescent athletes and 9 adolescent athletes with a clinical diagnosis of subacute concussion. Graph theory analysis was applied to these data to evaluate changes in brain networks. Global and local metrics of the structural properties of the graph were calculated for each group and correlated with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores. Brain networks of both groups showed small-world topology with no statistically significant differences in the global metrics; however, significant differences were found in the local metrics. Specifically, in the concussed group, we noted: 1) increased values of betweenness and degree in frontal electrode sites corresponding to the (R) dorsolateral prefrontal cortex and the (R) inferior frontal gyrus and 2) decreased values of degree in the region corresponding to the (R) frontopolar prefrontal cortex. In addition, there was significant negative correlation between degree and hub value, with total symptom score at the electrode site corresponding to the (R) prefrontal cortex. This preliminary report in adolescent athletes shows for the first time that resting-state EEG combined with graph theoretical analysis may provide an objective method of evaluating changes in brain networks following concussion. This approach may be useful in identifying individuals at risk for future injury.

  17. Complex function in the dynamic brain. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Anderson, Michael L.

    2014-09-01

    There is much to commend in this excellent overview of the progress we've made toward-and the challenges that remain for-developing an empirical framework for neuroscience that is adequate to the dynamic complexity of the brain [17]. Here I will limit myself first to highlighting the concept of dynamic affiliation, which I take to be the central feature of the functional architecture of the brain, and second to clarifying Pessoa's brief discussion of the ontology of cognition, to be sure readers appreciate this crucial issue.

  18. Reorganization of brain networks in aging: a review of functional connectivity studies

    PubMed Central

    Sala-Llonch, Roser; Bartrés-Faz, David; Junqué, Carme

    2015-01-01

    Healthy aging (HA) is associated with certain declines in cognitive functions, even in individuals that are free of any process of degenerative illness. Functional magnetic resonance imaging (fMRI) has been widely used in order to link this age-related cognitive decline with patterns of altered brain function. A consistent finding in the fMRI literature is that healthy old adults present higher activity levels in some brain regions during the performance of cognitive tasks. This finding is usually interpreted as a compensatory mechanism. More recent approaches have focused on the study of functional connectivity, mainly derived from resting state fMRI, and have concluded that the higher levels of activity coexist with disrupted connectivity. In this review, we aim to provide a state-of-the-art description of the usefulness and the interpretations of functional brain connectivity in the context of HA. We first give a background that includes some basic aspects and methodological issues regarding functional connectivity. We summarize the main findings and the cognitive models that have been derived from task-activity studies, and we then review the findings provided by resting-state functional connectivity in HA. Finally, we suggest some future directions in this field of research. A common finding of the studies included is that older subjects present reduced functional connectivity compared to young adults. This reduced connectivity affects the main brain networks and explains age-related cognitive alterations. Remarkably, the default mode network appears as a highly compromised system in HA. Overall, the scenario given by both activity and connectivity studies also suggests that the trajectory of changes during task may differ from those observed during resting-state. We propose that the use of complex modeling approaches studying effective connectivity may help to understand context-dependent functional reorganizations in the aging process. PMID:26052298

  19. Flexible establishment of functional brain networks supports attentional modulation of unconscious cognition.

    PubMed

    Ulrich, Martin; Adams, Sarah C; Kiefer, Markus

    2014-11-01

    In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. PMID:24954512

  20. Changes in whole-brain functional networks and memory performance in aging.

    PubMed

    Sala-Llonch, Roser; Junqué, Carme; Arenaza-Urquijo, Eider M; Vidal-Piñeiro, Dídac; Valls-Pedret, Cinta; Palacios, Eva M; Domènech, Sara; Salvà, Antoni; Bargalló, Nuria; Bartrés-Faz, David

    2014-10-01

    We used resting-functional magnetic resonance imaging data from 98 healthy older adults to analyze how local and global measures of functional brain connectivity are affected by age, and whether they are related to differences in memory performance. Whole-brain networks were created individually by parcellating the brain into 90 cerebral regions and obtaining pairwise connectivity. First, we studied age-associations in interregional connectivity and their relationship with the length of the connections. Aging was associated with less connectivity in the long-range connections of fronto-parietal and fronto-occipital systems and with higher connectivity of the short-range connections within frontal, parietal, and occipital lobes. We also used the graph theory to measure functional integration and segregation. The pattern of the overall age-related correlations presented positive correlations of average minimum path length (r = 0.380, p = 0.008) and of global clustering coefficients (r = 0.454, p < 0.001), leading to less integrated and more segregated global networks. Main correlations in clustering coefficients were located in the frontal and parietal lobes. Higher clustering coefficients of some areas were related to lower performance in verbal and visual memory functions. In conclusion, we found that older participants showed lower connectivity of long-range connections together with higher functional segregation of these same connections, which appeared to indicate a more local clustering of information processing. Higher local clustering in older participants was negatively related to memory performance.

  1. Resolving Anatomical and Functional Structure in Human Brain Organization: Identifying Mesoscale Organization in Weighted Network Representations

    PubMed Central

    Lohse, Christian; Bassett, Danielle S.; Lim, Kelvin O.; Carlson, Jean M.

    2014-01-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease. PMID:25275860

  2. [Macroscopic Functional Networks of the Human Brain when Viewing and Recalling Short Videos].

    PubMed

    Verkhlyutov, V M; Sokolov, P A; Ushakov, V L; Velichkovsky, B M

    2015-01-01

    Macroscopic functional network of the human brain were identified by use of the independent component analysis (ICA) of fMRI while viewing and imaging/recalling stories. The networks were relatively stable in structure, but had a specific dynamics in different experimental conditions. When comparing detected networks with previously detected resting state networks it was found that they coincide on localization. We. discovered also the specificity of activating the peripheral and central parts of retinotopic projections in the visual cortex. The peripheral areas were activated during subject viewing and imaging/recalling. On the contrary, the central departments strengthened their activation when viewing and reduced activity during the imaging/recalling. PMID:26281231

  3. Exploring Patterns of Alteration in Alzheimer's Disease Brain Networks: A Combined Structural and Functional Connectomics Analysis.

    PubMed

    Palesi, Fulvia; Castellazzi, Gloria; Casiraghi, Letizia; Sinforiani, Elena; Vitali, Paolo; Gandini Wheeler-Kingshott, Claudia A M; D'Angelo, Egidio

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the "disconnection syndrome" hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a "disconnection

  4. Exploring Patterns of Alteration in Alzheimer's Disease Brain Networks: A Combined Structural and Functional Connectomics Analysis

    PubMed Central

    Palesi, Fulvia; Castellazzi, Gloria; Casiraghi, Letizia; Sinforiani, Elena; Vitali, Paolo; Gandini Wheeler-Kingshott, Claudia A. M.; D'Angelo, Egidio

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the “disconnection syndrome” hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a

  5. Exploring Patterns of Alteration in Alzheimer's Disease Brain Networks: A Combined Structural and Functional Connectomics Analysis

    PubMed Central

    Palesi, Fulvia; Castellazzi, Gloria; Casiraghi, Letizia; Sinforiani, Elena; Vitali, Paolo; Gandini Wheeler-Kingshott, Claudia A. M.; D'Angelo, Egidio

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the “disconnection syndrome” hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a

  6. Exploring Patterns of Alteration in Alzheimer's Disease Brain Networks: A Combined Structural and Functional Connectomics Analysis.

    PubMed

    Palesi, Fulvia; Castellazzi, Gloria; Casiraghi, Letizia; Sinforiani, Elena; Vitali, Paolo; Gandini Wheeler-Kingshott, Claudia A M; D'Angelo, Egidio

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the "disconnection syndrome" hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks (RSNs) in patients affected by AD and mild cognitive impairment (MCI). However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC). In the default mode network (DMN), that was the most affected, axonal loss, and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN), disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN), neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI) but also with subcortical alterations (revealed by diffusion MRI) that extend beyond the areas primarily damaged by neurodegeneration, toward the support of an emerging concept of AD as a "disconnection

  7. Functional connectivity in BOLD and CBF data: similarity and reliability of resting brain networks.

    PubMed

    Jann, Kay; Gee, Dylan G; Kilroy, Emily; Schwab, Simon; Smith, Robert X; Cannon, Tyrone D; Wang, Danny J J

    2015-02-01

    Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing approach to mapping the brain's intrinsic functional organization. Blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI approaches to assess alterations in brain networks associated with individual differences, behavior and psychopathology. While the BOLD signal is stronger with a higher temporal resolution, ASL provides quantitative, direct measures of the physiology and metabolism of specific networks. This study systematically investigated the similarity and reliability of resting brain networks (RBNs) in BOLD and ASL. A 2 × 2 × 2 factorial design was employed where each subject underwent repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners respectively. Both independent and joint FC analyses revealed common RBNs in ASL and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice Similarity Coefficients. Test-retest analyses indicated more reliable spatial network patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905 ± 0.033 between-sessions; 0.885 ± 0.052 between-scanners) than ASL (0.545 ± 0.048; 0.575 ± 0.059). Nevertheless, ASL provided highly reproducible (0.955 ± 0.021; 0.970 ± 0.011) network-specific CBF measurements. Moreover, we observed positive correlations between regional CBF and FC in core areas of all RBNs indicating a relationship between network connectivity and its baseline metabolism. Taken together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for characterizing the spatiotemporal and quantitative properties of RBNs. These findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical populations that are carried out across time and scanners.

  8. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  9. Autism-Associated Promoter Variant in MET Impacts Functional and Structural Brain Networks

    PubMed Central

    Rudie, J. D.; Hernandez, L. M.; Brown, J. A.; Beck-Pancer, D.; Colich, N. L.; Gorrindo, P.; Thompson, P. M.; Geschwind, D. H.; Bookheimer, S. Y.; Levitt, P.; Dapretto, M.

    2012-01-01

    SUMMARY As genes that confer increased risk for autism spectrum disorder (ASD) are identified, a crucial next step is to determine how these risk factors impact brain structure and function and contribute to disorder heterogeneity. With three converging lines of evidence, we show that a common, functional ASD risk variant in the Met Receptor Tyrosine Kinase (MET) gene is a potent modulator of key social brain circuitry in children and adolescents with and without ASD. MET risk genotype predicted atypical fMRI activation and deactivation patterns to social stimuli (i.e., emotional faces), as well as reduced functional and structural connectivity in temporo-parietal regions known to have high MET expression, particularly within the default mode network. Notably, these effects were more pronounced in individuals with ASD. These findings highlight how genetic stratification may reduce heterogeneity and help elucidate the biological basis of complex neuropsychiatric disorders such as ASD. PMID:22958829

  10. Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach

    PubMed Central

    Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin

    2013-01-01

    Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282

  11. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    PubMed

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  12. Network science and the effects of music preference on functional brain connectivity: from Beethoven to Eminem.

    PubMed

    Wilkins, R W; Hodges, D A; Laurienti, P J; Steen, M; Burdette, J H

    2014-08-28

    Most people choose to listen to music that they prefer or 'like' such as classical, country or rock. Previous research has focused on how different characteristics of music (i.e., classical versus country) affect the brain. Yet, when listening to preferred music--regardless of the type--people report they often experience personal thoughts and memories. To date, understanding how this occurs in the brain has remained elusive. Using network science methods, we evaluated differences in functional brain connectivity when individuals listened to complete songs. We show that a circuit important for internally-focused thoughts, known as the default mode network, was most connected when listening to preferred music. We also show that listening to a favorite song alters the connectivity between auditory brain areas and the hippocampus, a region responsible for memory and social emotion consolidation. Given that musical preferences are uniquely individualized phenomena and that music can vary in acoustic complexity and the presence or absence of lyrics, the consistency of our results was unexpected. These findings may explain why comparable emotional and mental states can be experienced by people listening to music that differs as widely as Beethoven and Eminem. The neurobiological and neurorehabilitation implications of these results are discussed.

  13. Network science and the effects of music preference on functional brain connectivity: from Beethoven to Eminem.

    PubMed

    Wilkins, R W; Hodges, D A; Laurienti, P J; Steen, M; Burdette, J H

    2014-01-01

    Most people choose to listen to music that they prefer or 'like' such as classical, country or rock. Previous research has focused on how different characteristics of music (i.e., classical versus country) affect the brain. Yet, when listening to preferred music--regardless of the type--people report they often experience personal thoughts and memories. To date, understanding how this occurs in the brain has remained elusive. Using network science methods, we evaluated differences in functional brain connectivity when individuals listened to complete songs. We show that a circuit important for internally-focused thoughts, known as the default mode network, was most connected when listening to preferred music. We also show that listening to a favorite song alters the connectivity between auditory brain areas and the hippocampus, a region responsible for memory and social emotion consolidation. Given that musical preferences are uniquely individualized phenomena and that music can vary in acoustic complexity and the presence or absence of lyrics, the consistency of our results was unexpected. These findings may explain why comparable emotional and mental states can be experienced by people listening to music that differs as widely as Beethoven and Eminem. The neurobiological and neurorehabilitation implications of these results are discussed. PMID:25167363

  14. Study of amyloid-β peptide functional brain networks in AD, MCI and HC.

    PubMed

    Jiang, Jiehui; Duan, Huoqiang; Huang, Zheming; Yu, Zhihua

    2015-01-01

    One medical challenge in studying the amyloid-β (Aβ) peptide mechanism for Alzheimer's disease (AD) is exploring the law of beta toxic oligomers' diffusion in human brains in vivo. One beneficial means of solving this problem is brain network analysis based on graph theory. In this study, the characteristics of Aβ functional brain networks of Healthy Control (HC), Mild Cognitive Impairment (MCI), and AD groups were compared by applying graph theoretical analyses to Carbon 11-labeled Pittsburgh compound B positron emission tomography (11C PiB-PET) data. 120 groups of PiB-PET images from the ADNI database were analyzed. The results showed that the small-world property of MCI and AD were lost as compared to HC. Furthermore, the local clustering of networks was higher in both MCI and AD as compared to HC, whereas the path length was similar among the three groups. The results also showed that there could be four potential Aβ toxic oligomer seeds: Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and Parietal_Inf_R. These four seeds are corresponding to Regions of Interests referred by physicians to clinically diagnose AD.

  15. Study of amyloid-β peptide functional brain networks in AD, MCI and HC.

    PubMed

    Jiang, Jiehui; Duan, Huoqiang; Huang, Zheming; Yu, Zhihua

    2015-01-01

    One medical challenge in studying the amyloid-β (Aβ) peptide mechanism for Alzheimer's disease (AD) is exploring the law of beta toxic oligomers' diffusion in human brains in vivo. One beneficial means of solving this problem is brain network analysis based on graph theory. In this study, the characteristics of Aβ functional brain networks of Healthy Control (HC), Mild Cognitive Impairment (MCI), and AD groups were compared by applying graph theoretical analyses to Carbon 11-labeled Pittsburgh compound B positron emission tomography (11C PiB-PET) data. 120 groups of PiB-PET images from the ADNI database were analyzed. The results showed that the small-world property of MCI and AD were lost as compared to HC. Furthermore, the local clustering of networks was higher in both MCI and AD as compared to HC, whereas the path length was similar among the three groups. The results also showed that there could be four potential Aβ toxic oligomer seeds: Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and Parietal_Inf_R. These four seeds are corresponding to Regions of Interests referred by physicians to clinically diagnose AD. PMID:26405999

  16. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc.

  17. Spatial memory extinction differentially affects dorsal and ventral hippocampal metabolic activity and associated functional brain networks.

    PubMed

    Méndez-Couz, Marta; González-Pardo, Héctor; Vallejo, Guillermo; Arias, Jorge L; Conejo, Nélida M

    2016-10-01

    Previous studies showed the involvement of brain regions associated with both spatial learning and associative learning in spatial memory extinction, although the specific role of the dorsal and ventral hippocampus and the extended hippocampal system including the mammillary body in the process is still controversial. The present study aimed to identify the involvement of the dorsal and ventral hippocampus, together with cortical regions, the amygdaloid nuclei, and the mammillary bodies in the extinction of a spatial memory task. To address these issues, quantitative cytochrome c oxidase histochemistry was applied as a metabolic brain mapping method. Rats were trained in a reference memory task using the Morris water maze, followed by an extinction procedure of the previously acquired memory task. Results show that rats learned successfully the spatial memory task as shown by the progressive decrease in measured latencies to reach the escape platform and the results obtained in the probe test. Spatial memory was subsequently extinguished as shown by the descending preference for the previously reinforced location. A control naïve group was added to ensure that brain metabolic changes were specifically related with performance in the spatial memory extinction task. Extinction of the original spatial learning task significantly modified the metabolic activity in the dorsal and ventral hippocampus, the amygdala and the mammillary bodies. Moreover, the ventral hippocampus, the lateral mammillary body and the retrosplenial cortex were differentially recruited in the spatial memory extinction task, as shown by group differences in brain metabolic networks. These findings provide new insights on the brain regions and functional brain networks underlying spatial memory, and specifically spatial memory extinction. © 2016 Wiley Periodicals, Inc. PMID:27102086

  18. Quantifying Individual Brain Connectivity with Functional Principal Component Analysis for Networks.

    PubMed

    Petersen, Alexander; Zhao, Jianyang; Carmichael, Owen; Müller, Hans-Georg

    2016-09-01

    In typical functional connectivity studies, connections between voxels or regions in the brain are represented as edges in a network. Networks for different subjects are constructed at a given graph density and are summarized by some network measure such as path length. Examining these summary measures for many density values yields samples of connectivity curves, one for each individual. This has led to the adoption of basic tools of functional data analysis, most commonly to compare control and disease groups through the average curves in each group. Such group differences, however, neglect the variability in the sample of connectivity curves. In this article, the use of functional principal component analysis (FPCA) is demonstrated to enrich functional connectivity studies by providing increased power and flexibility for statistical inference. Specifically, individual connectivity curves are related to individual characteristics such as age and measures of cognitive function, thus providing a tool to relate brain connectivity with these variables at the individual level. This individual level analysis opens a new perspective that goes beyond previous group level comparisons. Using a large data set of resting-state functional magnetic resonance imaging scans, relationships between connectivity and two measures of cognitive function-episodic memory and executive function-were investigated. The group-based approach was implemented by dichotomizing the continuous cognitive variable and testing for group differences, resulting in no statistically significant findings. To demonstrate the new approach, FPCA was implemented, followed by linear regression models with cognitive scores as responses, identifying significant associations of connectivity in the right middle temporal region with both cognitive scores. PMID:27267074

  19. Controllability of structural brain networks

    PubMed Central

    Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.

    2015-01-01

    Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function. PMID:26423222

  20. Brain Functional Effects of Psychopharmacological Treatments in Schizophrenia: A Network-based Functional Perspective Beyond Neurotransmitter Systems.

    PubMed

    De Rossi, Pietro; Chiapponi, Chiara; Spalletta, Gianfranco

    2015-01-01

    Psychopharmacological treatments for schizophrenia have always been a matter of debate and a very important issue in public health given the chronic, relapsing and disabling nature of the disorder. A thorough understanding of the pros and cons of currently available pharmacological treatments for schizophrenia is critical to better capture the features of treatment-refractory clinical pictures and plan the developing of new treatment strategies. This review focuses on brain functional changes induced by antipsychotic drugs as assessed by modern functional neuroimaging techniques (i.e. fMRI, PET, SPECT, MRI spectroscopy). The most important papers on this topic are reviewed in order to draw an ideal map of the main functional changes occurring in the brain during antipsychotic treatment. This supports the hypothesis that a network-based perspective and a functional connectivity approach are needed to fill the currently existing gap of knowledge in the field of psychotropic drugs and their mechanisms of action beyond neurotransmitter systems. PMID:26412063

  1. Altered brain functional networks in people with Internet gaming disorder: Evidence from resting-state fMRI.

    PubMed

    Wang, Lingxiao; Wu, Lingdan; Lin, Xiao; Zhang, Yifen; Zhou, Hongli; Du, Xiaoxia; Dong, Guangheng

    2016-08-30

    Although numerous neuroimaging studies have detected structural and functional abnormality in specific brain regions and connections in subjects with Internet gaming disorder (IGD), the topological organization of the whole-brain network in IGD remain unclear. In this study, we applied graph theoretical analysis to explore the intrinsic topological properties of brain networks in Internet gaming disorder (IGD). 37 IGD subjects and 35 matched healthy control (HC) subjects underwent a resting-state functional magnetic resonance imaging scan. The functional networks were constructed by thresholding partial correlation matrices of 90 brain regions. Then we applied graph-based approaches to analysis their topological attributes, including small-worldness, nodal metrics, and efficiency. Both IGD and HC subjects show efficient and economic brain network, and small-world topology. Although there was no significant group difference in global topology metrics, the IGD subjects showed reduced regional centralities in the prefrontal cortex, left posterior cingulate cortex, right amygdala, and bilateral lingual gyrus, and increased functional connectivity in sensory-motor-related brain networks compared to the HC subjects. These results imply that people with IGD may be associated with functional network dysfunction, including impaired executive control and emotional management, but enhanced coordination among visual, sensorimotor, auditory and visuospatial systems. PMID:27447451

  2. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    NASA Astrophysics Data System (ADS)

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-08-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.

  3. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.

    PubMed

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-01-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges. PMID:27534708

  4. Hierarchical organization of functional connectivity in the mouse brain: a complex network approach

    PubMed Central

    Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano

    2016-01-01

    This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges. PMID:27534708

  5. The Brain Matures with Stronger Functional Connectivity and Decreased Randomness of Its Network

    PubMed Central

    Smit, Dirk J. A.; Boersma, Maria; Schnack, Hugo G.; Micheloyannis, Sifis; Boomsma, Dorret I.; Hulshoff Pol, Hilleke E.; Stam, Cornelis J.; de Geus, Eco J. C.

    2012-01-01

    We investigated the development of the brain's functional connectivity throughout the life span (ages 5 through 71 years) by measuring EEG activity in a large population-based sample. Connectivity was established with Synchronization Likelihood. Relative randomness of the connectivity patterns was established with Watts and Strogatz' (1998) graph parameters C (local clustering) and L (global path length) for alpha (∼10 Hz), beta (∼20 Hz), and theta (∼4 Hz) oscillation networks. From childhood to adolescence large increases in connectivity in alpha, theta and beta frequency bands were found that continued at a slower pace into adulthood (peaking at ∼50 yrs). Connectivity changes were accompanied by increases in L and C reflecting decreases in network randomness or increased order (peak levels reached at ∼18 yrs). Older age (55+) was associated with weakened connectivity. Semi-automatically segmented T1 weighted MRI images of 104 young adults revealed that connectivity was significantly correlated to cerebral white matter volume (alpha oscillations: r = 33, p<01; theta: r = 22, p<05), while path length was related to both white matter (alpha: max. r = 38, p<001) and gray matter (alpha: max. r = 36, p<001; theta: max. r = 36, p<001) volumes. In conclusion, EEG connectivity and graph theoretical network analysis may be used to trace structural and functional development of the brain. PMID:22615837

  6. Functional brain networks related to individual differences in human intelligence at rest.

    PubMed

    Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca

    2016-01-01

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736

  7. Functional brain networks related to individual differences in human intelligence at rest

    PubMed Central

    Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca

    2016-01-01

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736

  8. Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability.

    PubMed

    Langs, Georg; Wang, Danhong; Golland, Polina; Mueller, Sophia; Pan, Ruiqi; Sabuncu, Mert R; Sun, Wei; Li, Kuncheng; Liu, Hesheng

    2016-10-01

    The connectivity architecture of the human brain varies across individuals. Mapping functional anatomy at the individual level is challenging, but critical for basic neuroscience research and clinical intervention. Using resting-state functional connectivity, we parcellated functional systems in an "embedding space" based on functional characteristics common across the population, while simultaneously accounting for individual variability in the cortical distribution of functional units. The functional connectivity patterns observed in resting-state data were mapped in the embedding space and the maps were aligned across individuals. A clustering algorithm was performed on the aligned embedding maps and the resulting clusters were transformed back to the unique anatomical space of each individual. This novel approach identified functional systems that were reproducible within subjects, but were distributed across different anatomical locations in different subjects. Using this approach for intersubject alignment improved the predictability of individual differences in language laterality when compared with anatomical alignment alone. Our results further revealed that the strength of association between function and macroanatomy varied across the cortex, which was strong in unimodal sensorimotor networks, but weak in association networks.

  9. Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability.

    PubMed

    Langs, Georg; Wang, Danhong; Golland, Polina; Mueller, Sophia; Pan, Ruiqi; Sabuncu, Mert R; Sun, Wei; Li, Kuncheng; Liu, Hesheng

    2016-10-01

    The connectivity architecture of the human brain varies across individuals. Mapping functional anatomy at the individual level is challenging, but critical for basic neuroscience research and clinical intervention. Using resting-state functional connectivity, we parcellated functional systems in an "embedding space" based on functional characteristics common across the population, while simultaneously accounting for individual variability in the cortical distribution of functional units. The functional connectivity patterns observed in resting-state data were mapped in the embedding space and the maps were aligned across individuals. A clustering algorithm was performed on the aligned embedding maps and the resulting clusters were transformed back to the unique anatomical space of each individual. This novel approach identified functional systems that were reproducible within subjects, but were distributed across different anatomical locations in different subjects. Using this approach for intersubject alignment improved the predictability of individual differences in language laterality when compared with anatomical alignment alone. Our results further revealed that the strength of association between function and macroanatomy varied across the cortex, which was strong in unimodal sensorimotor networks, but weak in association networks. PMID:26334050

  10. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness

    PubMed Central

    Kim, Minkyung; Mashour, George A.; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G.; Lee, Uncheol

    2016-01-01

    Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states. PMID:26834616

  11. Functional and Topological Conditions for Explosive Synchronization Develop in Human Brain Networks with the Onset of Anesthetic-Induced Unconsciousness.

    PubMed

    Kim, Minkyung; Mashour, George A; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G; Lee, Uncheol

    2016-01-01

    Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states.

  12. Changes of Cerebral Perfusion and Functional Brain Network Organization in Patients with Mild Cognitive Impairment.

    PubMed

    Lou, Wutao; Shi, Lin; Wong, Adrian; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng

    2016-08-10

    Disruptions of the functional brain network and cerebral blood flow (CBF) have been revealed in patients with mild cognitive impairment (MCI). However, the neurophysiological mechanism of hypoperfusion as well as the reorganization of the intrinsic whole brain network due to the neuropathology of MCI are still unclear. In this study, we aimed to investigate the changes of CBF and the whole brain network organization in MCI by using a multimodal MRI approach. Resting state ASL MRI and BOLD MRI were used to evaluate disruptions of CBF and underlying functional connectivity in 27 patients with MCI and 35 cognitive normal controls (NC). The eigenvector centrality mapping (ECM) was used to assess the whole brain network reorganization in MCI, and a seed-based ECM approach was proposed to reveal the contributions of the whole brain network on the ECM alterations. Significantly decreased perfusion in the posterior parietal cortex as well as its connectivity within the default mode network and occipital cortex were found in the MCI group compared to the NC group. The ECM analysis revealed decreased EC in the middle cingulate cortex, parahippocampal gyrus, medial frontal gyrus, and increased EC in the right calcarine sulcus, superior temporal gyrus, and supplementary motor area in the MCI group. The results of this study indicate that there are deficits in cerebral blood flow and functional connectivity in the default mode network, and that sensory-processing networks might play a compensatory role to make up for the decreased connections in MCI.

  13. Changes of Cerebral Perfusion and Functional Brain Network Organization in Patients with Mild Cognitive Impairment.

    PubMed

    Lou, Wutao; Shi, Lin; Wong, Adrian; Chu, Winnie C W; Mok, Vincent C T; Wang, Defeng

    2016-08-10

    Disruptions of the functional brain network and cerebral blood flow (CBF) have been revealed in patients with mild cognitive impairment (MCI). However, the neurophysiological mechanism of hypoperfusion as well as the reorganization of the intrinsic whole brain network due to the neuropathology of MCI are still unclear. In this study, we aimed to investigate the changes of CBF and the whole brain network organization in MCI by using a multimodal MRI approach. Resting state ASL MRI and BOLD MRI were used to evaluate disruptions of CBF and underlying functional connectivity in 27 patients with MCI and 35 cognitive normal controls (NC). The eigenvector centrality mapping (ECM) was used to assess the whole brain network reorganization in MCI, and a seed-based ECM approach was proposed to reveal the contributions of the whole brain network on the ECM alterations. Significantly decreased perfusion in the posterior parietal cortex as well as its connectivity within the default mode network and occipital cortex were found in the MCI group compared to the NC group. The ECM analysis revealed decreased EC in the middle cingulate cortex, parahippocampal gyrus, medial frontal gyrus, and increased EC in the right calcarine sulcus, superior temporal gyrus, and supplementary motor area in the MCI group. The results of this study indicate that there are deficits in cerebral blood flow and functional connectivity in the default mode network, and that sensory-processing networks might play a compensatory role to make up for the decreased connections in MCI. PMID:27567823

  14. Small-World Brain Functional Networks in Children With Attention-Deficit/Hyperactivity Disorder Revealed by EEG Synchrony.

    PubMed

    Liu, Tian; Chen, Yanni; Lin, Pan; Wang, Jue

    2015-07-01

    We investigated the topologic properties of human brain attention-related functional networks associated with Multi-Source Interference Task (MSIT) performance using electroencephalography (EEG). Data were obtained from 13 children diagnosed with attention-deficit/hyperactivity disorder (ADHD) and 13 normal control children. Functional connectivity between all pairwise combinations of EEG channels was established by calculating synchronization likelihood (SL). The cluster coefficients and path lengths were computed as a function of degree K. The results showed that brain attention functional networks of normal control subjects had efficient small-world topologic properties, whereas these topologic properties were altered in ADHD. In particular, increased local characteristics combined with decreased global characteristics in ADHD led to a disorder-related shift of the network topologic structure toward ordered networks. These findings are consistent with a hypothesis of dysfunctional segregation and integration of the brain in ADHD, and enhance our understanding of the underlying pathophysiologic mechanism of this illness.

  15. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process.

  16. Brain functional network changes following Prelimbic area inactivation in a spatial memory extinction task.

    PubMed

    Méndez-Couz, Marta; Conejo, Nélida M; Vallejo, Guillermo; Arias, Jorge L

    2015-01-01

    Several studies suggest a prefrontal cortex involvement during the acquisition and consolidation of spatial memory, suggesting an active modulating role at late stages of acquisition processes. Recently, we have reported that the prelimbic and infralimbic areas of the prefrontal cortex, among other structures, are also specifically involved in the late phases of spatial memory extinction. This study aimed to evaluate whether the inactivation of the prelimbic area of the prefrontal cortex impaired spatial memory extinction. For this purpose, male Wistar rats were implanted bilaterally with cannulae into the prelimbic region of the prefrontal cortex. Animals were trained during 5 consecutive days in a hidden platform task and tested for reference spatial memory immediately after the last training session. One day after completing the training task, bilateral infusion of the GABAA receptor agonist Muscimol was performed before the extinction protocol was carried out. Additionally, cytochrome c oxidase histochemistry was applied to map the metabolic brain activity related to the spatial memory extinction under prelimbic cortex inactivation. Results show that animals acquired the reference memory task in the water maze, and the extinction task was successfully completed without significant impairment. However, analysis of the functional brain networks involved by cytochrome oxidase activity interregional correlations showed changes in brain networks between the group treated with Muscimol as compared to the saline-treated group, supporting the involvement of the mammillary bodies at a the late stage in the memory extinction process. PMID:25813749

  17. Extrasynaptic Neurotransmission in the Modulation of Brain Function. Focus on the Striatal Neuronal–Glial Networks

    PubMed Central

    Fuxe, Kjell; Borroto-Escuela, Dasiel O.; Romero-Fernandez, Wilber; Diaz-Cabiale, Zaida; Rivera, Alicia; Ferraro, Luca; Tanganelli, Sergio; Tarakanov, Alexander O.; Garriga, Pere; Narváez, José Angel; Ciruela, Francisco; Guescini, Michele; Agnati, Luigi F.

    2012-01-01

    Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks

  18. Semi-metric analysis of the functional brain network: Relationship with familial risk for psychotic disorder

    PubMed Central

    Peeters, Sanne; Simas, Tiago; Suckling, John; Gronenschild, Ed; Patel, Ameera; Habets, Petra; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Background Dysconnectivity in schizophrenia can be understood in terms of dysfunctional integration of a distributed network of brain regions. Here we propose a new methodology to analyze complex networks based on semi-metric behavior, whereby higher levels of semi-metricity may represent a higher level of redundancy and dispersed communication. It was hypothesized that individuals with (increased risk for) psychotic disorder would have more semi-metric paths compared to controls and that this would be associated with symptoms. Methods Resting-state functional MRI scans were obtained from 73 patients with psychotic disorder, 83 unaffected siblings and 72 controls. Semi-metric percentages (SMP) at the whole brain, hemispheric and lobar level were the dependent variables in a multilevel random regression analysis to investigate group differences. SMP was further examined in relation to symptomatology (i.e., psychotic/cognitive symptoms). Results At the whole brain and hemispheric level, patients had a significantly higher SMP compared to siblings and controls, with no difference between the latter. In the combined sibling and control group, individuals with high schizotypy had intermediate SMP values in the left hemisphere with respect to patients and individuals with low schizotypy. Exploratory analyses in patients revealed higher SMP in 12 out of 42 lobar divisions compared to controls, of which some were associated with worse PANSS symptomatology (i.e., positive symptoms, excitement and emotional distress) and worse cognitive performance on attention and emotion processing tasks. In the combined group of patients and controls, working memory, attention and social cognition were associated with higher SMP. Discussion The results are suggestive of more dispersed network communication in patients with psychotic disorder, with some evidence for trait-based network alterations in high-schizotypy individuals. Dispersed communication may contribute to the clinical

  19. The brain network reflecting bodily self-consciousness: a functional connectivity study

    PubMed Central

    Ionta, Silvio; Martuzzi, Roberto; Salomon, Roy

    2014-01-01

    Several brain regions are important for processing self-location and first-person perspective, two important aspects of bodily self-consciousness. However, the interplay between these regions has not been clarified. In addition, while self-location and first-person perspective in healthy subjects are associated with bilateral activity in temporoparietal junction (TPJ), disturbed self-location and first-person perspective result from damage of only the right TPJ. Identifying the involved brain network and understanding the role of hemispheric specializations in encoding self-location and first-person perspective, will provide important information on system-level interactions neurally mediating bodily self-consciousness. Here, we used functional connectivity and showed that right and left TPJ are bilaterally connected to supplementary motor area, ventral premotor cortex, insula, intraparietal sulcus and occipitotemporal cortex. Furthermore, the functional connectivity between right TPJ and right insula had the highest selectivity for changes in self-location and first-person perspective. Finally, functional connectivity revealed hemispheric differences showing that self-location and first-person perspective modulated the connectivity between right TPJ, right posterior insula, and right supplementary motor area, and between left TPJ and right anterior insula. The present data extend previous evidence on healthy populations and clinical observations in neurological deficits, supporting a bilateral, but right-hemispheric dominant, network for bodily self-consciousness. PMID:24396007

  20. Evidence of a Christmas spirit network in the brain: functional MRI study

    PubMed Central

    Hougaard, Anders; Lindberg, Ulrich; Arngrim, Nanna; Larsson, Henrik B W; Olesen, Jes; Amin, Faisal Mohammad; Ashina, Messoud

    2015-01-01

    Objective To detect and localise the Christmas spirit in the human brain. Design Single blinded, cross cultural group study with functional magnetic resonance imaging (fMRI). Setting Functional imaging unit and department of clinical physiology, nuclear medicine and PET in Denmark. Participants 10 healthy people from the Copenhagen area who routinely celebrate Christmas and 10 healthy people living in the same area who have no Christmas traditions. Main outcome measures Brain activation unique to the group with Christmas traditions during visual stimulation with images with a Christmas theme. Methods Functional brain scans optimised for detection of the blood oxygen level dependent (BOLD) response were performed while participants viewed a series of images with Christmas themes interleaved with neutral images having similar characteristics but containing nothing that symbolises Christmas. After scanning, participants answered a questionnaire about their Christmas traditions and the associations they have with Christmas. Brain activation maps from scanning were analysed for Christmas related activation in the “Christmas” and “non-Christmas” groups individually. Subsequently, differences between the two groups were calculated to determine Christmas specific brain activation. Results Significant clusters of increased BOLD activation in the sensory motor cortex, the premotor and primary motor cortex, and the parietal lobule (inferior and superior) were found in scans of people who celebrate Christmas with positive associations compared with scans in a group having no Christmas traditions and neutral associations. These cerebral areas have been associated with spirituality, somatic senses, and recognition of facial emotion among many other functions. Conclusions There is a “Christmas spirit network” in the human brain comprising several cortical areas. This network had a significantly higher activation in a people who celebrate Christmas with

  1. Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification.

    PubMed

    Zerbi, Valerio; Grandjean, Joanes; Rudin, Markus; Wenderoth, Nicole

    2015-12-01

    The use of resting state fMRI (rs-fMRI) in translational research is a powerful tool to assess brain connectivity and investigate neuropathology in mouse models. However, despite encouraging initial results, the characterization of consistent and robust resting state networks in mice remains a methodological challenge. One key reason is that the quality of the measured MR signal is degraded by the presence of structural noise from non-neural sources. Notably, in the current pipeline of the Human Connectome Project, a novel approach has been introduced to clean rs-fMRI data, which involves automatic artifact component classification and data cleaning (FIX). FIX does not require any external recordings of physiology or the segmentation of CSF and white matter. In this study, we evaluated the performance of FIX for analyzing mouse rs-fMRI data. Our results showed that FIX can be easily applied to mouse datasets and detects true signals with 100% accuracy and true noise components with very high accuracy (>98%), thus reducing both within- and between-subject variability of rs-fMRI connectivity measurements. Using this improved pre-processing pipeline, maps of 23 resting state circuits in mice were identified including two networks that displayed default mode network-like topography. Hierarchical clustering grouped these neural networks into meaningful larger functional circuits. These mouse resting state networks, which are publicly available, might serve as a reference for future work using mouse models of neurological disorders.

  2. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1-6 s versus 4-8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain

  3. The effect of epoch length on estimated EEG functional connectivity and brain network organisation

    NASA Astrophysics Data System (ADS)

    Fraschini, Matteo; Demuru, Matteo; Crobe, Alessandra; Marrosu, Francesco; Stam, Cornelis J.; Hillebrand, Arjan

    2016-06-01

    Objective. Graph theory and network science tools have revealed fundamental mechanisms of functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly understood how several methodological aspects may bias the topology of the reconstructed functional networks. In this context, the literature shows inconsistency in the chosen length of the selected epochs, impeding a meaningful comparison between results from different studies. Approach. The aim of this study was to provide a network approach insensitive to the effects that epoch length has on functional connectivity and network reconstruction. Two different measures, the phase lag index (PLI) and the amplitude envelope correlation (AEC) were applied to EEG resting-state recordings for a group of 18 healthy volunteers using non-overlapping epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 s). Weighted clustering coefficient (CCw), weighted characteristic path length (L w) and minimum spanning tree (MST) parameters were computed to evaluate the network topology. The analysis was performed on both scalp and source-space data. Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with an increase in epoch length, with a tendency to stabilize at a length of 12 s for PLI and 6 s for AEC. Moreover, CCw and L w show very similar behaviour, with metrics based on AEC more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, particularly for MSTs based on PLI (1–6 s versus 4–8 s for AEC). At the source-level the results were even more reliable, with stability already at 1 s duration for PLI-based MSTs. Significance. The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of

  4. Epigenetics, Stress, and Their Potential Impact on Brain Network Function: A Focus on the Schizophrenia Diatheses

    PubMed Central

    Diwadkar, Vaibhav A.; Bustamante, Angela; Rai, Harinder; Uddin, Monica

    2014-01-01

    The recent sociodevelopmental cognitive model of schizophrenia/psychosis is a highly influential and compelling compendium of research findings. Here, we present logical extensions to this model incorporating ideas drawn from epigenetic mediation of psychiatric disease, and the plausible effects of epigenetics on the emergence of brain network function and dysfunction in adolescence. We discuss how gene–environment interactions, effected by epigenetic mechanisms, might in particular mediate the stress response (itself heavily implicated in the emergence of schizophrenia). Next, we discuss the plausible relevance of this framework for adolescent genetic risk populations, a risk group characterized by vexing and difficult-to-explain heterogeneity. We then discuss how exploring relationships between epigenetics and brain network dysfunction (a strongly validated finding in risk populations) can enhance understanding of the relationship between stress, epigenetics, and functional neurobiology, and the relevance of this relationship for the eventual emergence of schizophrenia/psychosis. We suggest that these considerations can expand the impact of models such as the sociodevelopmental cognitive model, increasing their explanatory reach. Ultimately, integration of these lines of research may enhance efforts of early identification, intervention, and treatment in adolescents at-risk for schizophrenia. PMID:25002852

  5. Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy

    PubMed Central

    Zhang, Jiang; Lin, Xiaohong; Fu, Genyu; Sai, Liyang; Chen, Huafu; Yang, Jianbo; Wang, Mingwen; Liu, Qi; Yang, Gang; Zhang, Junran; Yuan, Zhen

    2016-01-01

    Deception is not a rare occurrence among human behaviors; however, the present brain mapping techniques are insufficient to reveal the neural mechanism of deception under spontaneous or controlled conditions. Interestingly, functional near-infrared spectroscopy (fNIRS) has emerged as a highly promising neuroimaging technique that enables continuous and noninvasive monitoring of changes in blood oxygenation and blood volume in the human brain. In this study, fNIRS was used in combination with complex network theory to extract the attribute features of the functional brain networks underling deception in subjects exhibiting spontaneous or controlled behaviors. Our findings revealed that the small-world networks of the subjects engaged in spontaneous behaviors exhibited greater clustering coefficients, shorter average path lengths, greater average node degrees, and stronger randomness compared with those of subjects engaged in control behaviors. Consequently, we suggest that small-world network topology is capable of distinguishing well between spontaneous and controlled deceptions. PMID:27126145

  6. Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy.

    PubMed

    Zhang, Jiang; Lin, Xiaohong; Fu, Genyu; Sai, Liyang; Chen, Huafu; Yang, Jianbo; Wang, Mingwen; Liu, Qi; Yang, Gang; Zhang, Junran; Yuan, Zhen

    2016-01-01

    Deception is not a rare occurrence among human behaviors; however, the present brain mapping techniques are insufficient to reveal the neural mechanism of deception under spontaneous or controlled conditions. Interestingly, functional near-infrared spectroscopy (fNIRS) has emerged as a highly promising neuroimaging technique that enables continuous and noninvasive monitoring of changes in blood oxygenation and blood volume in the human brain. In this study, fNIRS was used in combination with complex network theory to extract the attribute features of the functional brain networks underling deception in subjects exhibiting spontaneous or controlled behaviors. Our findings revealed that the small-world networks of the subjects engaged in spontaneous behaviors exhibited greater clustering coefficients, shorter average path lengths, greater average node degrees, and stronger randomness compared with those of subjects engaged in control behaviors. Consequently, we suggest that small-world network topology is capable of distinguishing well between spontaneous and controlled deceptions.

  7. Functional genomics of the brain: uncovering networks in the CNS using a systems approach.

    PubMed

    Konopka, Genevieve

    2011-01-01

    The central nervous system (CNS) is undoubtedly the most complex human organ system in terms of its diverse functions, cellular composition, and connections. Attempts to capture this diversity experimentally were the foundation on which the field of neurobiology was built. Until now though, techniques were either painstakingly slow or insufficient in capturing this heterogeneity. In addition, the combination of multiple layers of information needed for a complete picture of neuronal diversity from the epigenome to the proteome requires an even more complex compilation of data. In this era of high-throughput genomics though, the ability to isolate and profile neurons and brain tissue has increased tremendously and now requires less effort. Both microarrays and next-generation sequencing have identified neuronal transcriptomes and signaling networks involved in normal brain development, as well as in disease. However, the expertise needed to organize and prioritize the resultant data remains substantial. A combination of supervised organization and unsupervised analyses are needed to fully appreciate the underlying structure in these datasets. When utilized effectively, these analyses have yielded striking insights into a number of fundamental questions in neuroscience on topics ranging from the evolution of the human brain to neuropsychiatric and neurodegenerative disorders. Future studies will incorporate these analyses with behavioral and physiological data from patients to more efficiently move toward personalized therapeutics.

  8. Obesity is marked by distinct functional connectivity in brain networks involved in food reward and salience.

    PubMed

    Wijngaarden, M A; Veer, I M; Rombouts, S A R B; van Buchem, M A; Willems van Dijk, K; Pijl, H; van der Grond, J

    2015-01-01

    We hypothesized that brain circuits involved in reward and salience respond differently to fasting in obese versus lean individuals. We compared functional connectivity networks related to food reward and saliency after an overnight fast (baseline) and after a prolonged fast of 48 h in lean versus obese subjects. We included 13 obese (2 males, 11 females, BMI 35.4 ± 1.2 kg/m(2), age 31 ± 3 years) and 11 lean subjects (2 males, 9 females, BMI 23.2 ± 0.5 kg/m(2), age 28 ± 3 years). Resting-state functional magnetic resonance imaging scans were made after an overnight fast (baseline) and after a prolonged 48 h fast. Functional connectivity of the amygdala, hypothalamus and posterior cingulate cortex (default-mode) networks was assessed using seed-based correlations. At baseline, we found a stronger connectivity between hypothalamus and left insula in the obese subjects. This effect diminished upon the prolonged fast. After prolonged fasting, connectivity of the hypothalamus with the dorsal anterior cingulate cortex (dACC) increased in lean subjects and decreased in obese subjects. Amygdala connectivity with the ventromedial prefrontal cortex was stronger in lean subjects at baseline, which did not change upon the prolonged fast. No differences in posterior cingulate cortex connectivity were observed. In conclusion, obesity is marked by alterations in functional connectivity networks involved in food reward and salience. Prolonged fasting differentially affected hypothalamic connections with the dACC and the insula between obese and lean subjects. Our data support the idea that food reward and nutrient deprivation are differently perceived and/or processed in obesity.

  9. Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation

    PubMed Central

    Bajaj, Sahil; Butler, Andrew J.; Drake, Daniel; Dhamala, Mukesh

    2015-01-01

    Multiple cortical areas of the human brain motor system interact coherently in the low frequency range (<0.1 Hz), even in the absence of explicit tasks. Following stroke, cortical interactions are functionally disturbed. How these interactions are affected and how the functional organization is regained from rehabilitative treatments as people begin to recover motor behaviors has not been systematically studied. We recorded the intrinsic functional magnetic resonance imaging (fMRI) signals from 30 participants: 17 young healthy controls and 13 aged stroke survivors. Stroke participants underwent mental practice (MP) or both mental practice and physical therapy (MP+PT) within 14–51 days following stroke. We investigated the network activity of five core areas in the motor-execution network, consisting of the left primary motor area (LM1), the right primary motor area (RM1), the left pre-motor cortex (LPMC), the right pre-motor cortex (RPMC) and the supplementary motor area (SMA). We discovered that (i) the network activity dominated in the frequency range 0.06–0.08 Hz for all the regions, and for both able-bodied and stroke participants (ii) the causal information flow between the regions: LM1 and SMA, RPMC and SMA, RPMC and LM1, SMA and RM1, SMA and LPMC, was reduced significantly for stroke survivors (iii) the flow did not increase significantly after MP alone and (iv) the flow among the regions during MP+PT increased significantly. We also found that sensation and motor scores were significantly higher and correlated with directed functional connectivity measures when the stroke-survivors underwent MP+PT but not MP alone. The findings provide evidence that a combination of mental practice and physical therapy can be an effective means of treatment for stroke survivors to recover or regain the strength of motor behaviors, and that the spectra of causal information flow can be used as a reliable biomarker for evaluating rehabilitation in stroke survivors. PMID

  10. The effects of cognitive-behavioral therapy on intrinsic functional brain networks in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Wang, Xiaoli; Cao, Qingjiu; Wang, Jinhui; Wu, Zhaomin; Wang, Peng; Sun, Li; Cai, Taisheng; Wang, Yufeng

    2016-01-01

    Cognitive-behavioral therapy (CBT) is an efficacious psychological treatment for adults with attention-deficit/hyperactivity disorder (ADHD), but the neural processes underlying the benefits of CBT are not well understood. This study aims to unravel psychosocial mechanisms for treatment ADHD by exploring the effects of CBT on functional brain networks. Ten adults with ADHD were enrolled and resting-state functional magnetic resonance imaging scans were acquired before and after a 12-session CBT. Twelve age- and gender-matched healthy controls were also scanned. We constructed whole-brain functional connectivity networks using graph-theory approaches and further computed the changes of regional functional connectivity strength (rFCS) between pre- and post-CBT in ADHD for measuring the effects of CBT. The results showed that rFCS was increased in the fronto-parietal network and cerebellum, the brain regions that were most often affected by medication, in adults with ADHD following CBT. Furthermore, the enhanced functional coupling between bilateral superior parietal gyrus was positively correlated with the improvement of ADHD symptoms following CBT. Together, these findings provide evidence that CBT can selectively modulate the intrinsic network connectivity in the fronto-parietal network and cerebellum and suggest that the CBT may share common brain mechanism with the pharmacology in adults with ADHD.

  11. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities. PMID:26512872

  12. Low frequency steady-state brain responses modulate large scale functional networks in a frequency-specific means.

    PubMed

    Wang, Yi-Feng; Long, Zhiliang; Cui, Qian; Liu, Feng; Jing, Xiu-Juan; Chen, Heng; Guo, Xiao-Nan; Yan, Jin H; Chen, Hua-Fu

    2016-01-01

    Neural oscillations are essential for brain functions. Research has suggested that the frequency of neural oscillations is lower for more integrative and remote communications. In this vein, some resting-state studies have suggested that large scale networks function in the very low frequency range (<1 Hz). However, it is difficult to determine the frequency characteristics of brain networks because both resting-state studies and conventional frequency tagging approaches cannot simultaneously capture multiple large scale networks in controllable cognitive activities. In this preliminary study, we aimed to examine whether large scale networks can be modulated by task-induced low frequency steady-state brain responses (lfSSBRs) in a frequency-specific pattern. In a revised attention network test, the lfSSBRs were evoked in the triple network system and sensory-motor system, indicating that large scale networks can be modulated in a frequency tagging way. Furthermore, the inter- and intranetwork synchronizations as well as coherence were increased at the fundamental frequency and the first harmonic rather than at other frequency bands, indicating a frequency-specific modulation of information communication. However, there was no difference among attention conditions, indicating that lfSSBRs modulate the general attention state much stronger than distinguishing attention conditions. This study provides insights into the advantage and mechanism of lfSSBRs. More importantly, it paves a new way to investigate frequency-specific large scale brain activities.

  13. Phase transitions in small-world systems: application to functional brain networks

    NASA Astrophysics Data System (ADS)

    Gadjiev, B. R.; Progulova, T. B.

    2015-04-01

    In the present paper the problem of symmetry breaking in the systems with a small- world property is considered. The obtained results are applied to the description of the functional brain networks. Origin of the entropy of fractal and multifractal small-world systems is discussed. Applying the maximum entropy principle the topology of these networks has been determined. The symmetry of the regular subgroup of a small-world system is described by a discrete subgroup of the Galilean group. The algorithm of determination of this group and transformation properties of the order parameter have been proposed. The integer basis of the irreducible representation is constructed and a free energy functional is introduced. It has been shown that accounting the presence of random connections leads to an integro- differential equation for the order parameter. For q-exponential distributions an equation of motion for the order parameter takes the form of a fractional differential equation. We consider the system that is described by a two-component order parameter and discuss the features of the spatial distribution of solutions.

  14. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain.

    PubMed

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo

    2014-11-10

    Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.

  15. State-Dependent Changes of Connectivity Patterns and Functional Brain Network Topology in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Barttfeld, Pablo; Wicker, Bruno; Cukier, Sebastian; Navarta, Silvana; Lew, Sergio; Leiguarda, Ramon; Sigman, Mariano

    2012-01-01

    Anatomical and functional brain studies have converged to the hypothesis that autism spectrum disorders (ASD) are associated with atypical connectivity. Using a modified resting-state paradigm to drive subjects' attention, we provide evidence of a very marked interaction between ASD brain functional connectivity and cognitive state. We show that…

  16. Functional brain networks underlying latent inhibition of conditioned disgust in rats.

    PubMed

    Gasalla, Patricia; Begega, Azucena; Soto, Alberto; Dwyer, Dominic Michael; López, Matías

    2016-12-15

    The present experiment examined the neuronal networks involved in the latent inhibition of conditioned disgust by measuring brain oxidative metabolism. Rats were given nonreinforced intraoral (IO) exposure to saccharin (exposed groups) or water (non-exposed groups) followed by a conditioning trial in which the animals received an infusion of saccharin paired (or unpaired) with LiCl. On testing, taste reactivity responses displayed by the rats during the infusion of the saccharin were examined. Behavioral data showed that preexposure to saccharin attenuated the development of LiCl-induced conditioned disgust reactions, indicating that the effects of taste aversion on hedonic taste reactivity had been reduced. With respect to cumulative oxidative metabolic activity across the whole study period, the parabrachial nucleus was the only single region examined which showed differential activity between groups which received saccharin-LiCl pairings with and without prior non-reinforced saccharin exposure, suggesting a key role in the effects of latent inhibition of taste aversion learning. In addition, many functional connections between brain regions were revealed through correlational analysis of metabolic activity, in particular an accumbens-amygdala interaction that may be involved in both positive and negative hedonic responses.

  17. Functional brain networks underlying latent inhibition of conditioned disgust in rats.

    PubMed

    Gasalla, Patricia; Begega, Azucena; Soto, Alberto; Dwyer, Dominic Michael; López, Matías

    2016-12-15

    The present experiment examined the neuronal networks involved in the latent inhibition of conditioned disgust by measuring brain oxidative metabolism. Rats were given nonreinforced intraoral (IO) exposure to saccharin (exposed groups) or water (non-exposed groups) followed by a conditioning trial in which the animals received an infusion of saccharin paired (or unpaired) with LiCl. On testing, taste reactivity responses displayed by the rats during the infusion of the saccharin were examined. Behavioral data showed that preexposure to saccharin attenuated the development of LiCl-induced conditioned disgust reactions, indicating that the effects of taste aversion on hedonic taste reactivity had been reduced. With respect to cumulative oxidative metabolic activity across the whole study period, the parabrachial nucleus was the only single region examined which showed differential activity between groups which received saccharin-LiCl pairings with and without prior non-reinforced saccharin exposure, suggesting a key role in the effects of latent inhibition of taste aversion learning. In addition, many functional connections between brain regions were revealed through correlational analysis of metabolic activity, in particular an accumbens-amygdala interaction that may be involved in both positive and negative hedonic responses. PMID:27491591

  18. Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory.

    PubMed

    Zhang, Gaoyan; Yao, Li; Shen, Jiahui; Yang, Yihong; Zhao, Xiaojie

    2015-05-01

    Working memory (WM) is essential for individuals' cognitive functions. Neuroimaging studies indicated that WM fundamentally relied on a frontoparietal working memory network (WMN) and a cinguloparietal default mode network (DMN). Behavioral training studies demonstrated that the two networks can be modulated by WM training. Different from the behavioral training, our recent study used a real-time functional MRI (rtfMRI)-based neurofeedback method to conduct WM training, demonstrating that WM performance can be significantly improved after successfully upregulating the activity of the target region of interest (ROI) in the left dorsolateral prefrontal cortex (Zhang et al., [2013]: PloS One 8:e73735); however, the neural substrate of rtfMRI-based WM training remains unclear. In this work, we assessed the intranetwork and internetwork connectivity changes of WMN and DMN during the training, and their correlations with the change of brain activity in the target ROI as well as with the improvement of post-training behavior. Our analysis revealed an "ROI-network-behavior" correlation relationship underlying the rtfMRI training. Further mediation analysis indicated that the reorganization of functional brain networks mediated the effect of self-regulation of the target brain activity on the improvement of cognitive performance following the neurofeedback training. The results of this study enhance our understanding of the neural basis of real-time neurofeedback and suggest a new direction to improve WM performance by regulating the functional connectivity in the WM related networks.

  19. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    PubMed Central

    Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new

  20. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    PubMed

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  1. The changing landscape of functional brain networks for face processing in typical development.

    PubMed

    Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S

    2012-11-15

    Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories.

  2. The age-related posterior-anterior shift as revealed by voxelwise analysis of functional brain networks

    PubMed Central

    McCarthy, Paul; Benuskova, Lubica; Franz, Elizabeth A.

    2014-01-01

    The posterior-anterior shift in aging (PASA) is a commonly observed phenomenon in functional neuroimaging studies of aging, characterized by age-related reductions in occipital activity alongside increases in frontal activity. In this work we have investigated the hypothesis as to whether the PASA is also manifested in functional brain network measures such as degree, clustering coefficient, path length and local efficiency. We have performed statistical analysis upon functional networks derived from a fMRI dataset containing data from healthy young, healthy aged, and aged individuals with very mild to mild Alzheimer's disease (AD). Analysis of both task based and resting state functional network properties has indicated that the PASA can also be characterized in terms of modulation of functional network properties, and that the onset of AD appears to accentuate this modulation. We also explore the effect of spatial normalization upon the results of our analysis. PMID:25426065

  3. Deconstructing the brain's moral network: dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex.

    PubMed

    Feldmanhall, Oriel; Mobbs, Dean; Dalgleish, Tim

    2014-03-01

    Research has illustrated that the brain regions implicated in moral cognition comprise a robust and broadly distributed network. However, understanding how these brain regions interact and give rise to the complex interplay of cognitive processes underpinning human moral cognition is still in its infancy. We used functional magnetic resonance imaging to examine patterns of activation for 'difficult' and 'easy' moral decisions relative to matched non-moral comparators. This revealed an activation pattern consistent with a relative functional double dissociation between the temporoparietal junction (TPJ) and ventro-medial prefrontal cortex (vmPFC). Difficult moral decisions activated bilateral TPJ and deactivated the vmPFC and OFC. In contrast, easy moral decisions revealed patterns of activation in the vmPFC and deactivation in bilateral TPJ and dorsolateral PFC. Together these results suggest that moral cognition is a dynamic process implemented by a distributed network that involves interacting, yet functionally dissociable networks.

  4. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  5. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation

    PubMed Central

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant

  6. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI.

    PubMed

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed.

  7. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI

    PubMed Central

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed. PMID:26745803

  8. Functionally Brain Network Connected to the Retrosplenial Cortex of Rats Revealed by 7T fMRI.

    PubMed

    Wang, Jingjuan; Nie, Binbin; Duan, Shaofeng; Zhu, Haitao; Liu, Hua; Shan, Baoci

    2016-01-01

    Functional networks are regarded as important mechanisms for increasing our understanding of brain function in healthy and diseased states, and increased interest has been focused on extending the study of functional networks to animal models because such models provide a functional understanding of disease progression, therapy and repair. In rodents, the retrosplenial cortex (RSC) is an important cortical region because it has a large size and presents transitional patterns of lamination between the neocortex and archicortex. In addition, a number of invasive studies have highlighted the importance of the RSC for many functions. However, the network based on the RSC in rodents remains unclear. Based on the critical importance of the RSC, we defined the bilateral RSCs as two regions of interest and estimated the network based on the RSC. The results showed that the related regions include the parietal association cortex, hippocampus, thalamus nucleus, midbrain structures, and hypothalamic mammillary bodies. Our findings indicate two possible major networks: a sensory-cognitive network that has a hub in the RSCs and processes sensory information, spatial learning, and episodic memory; and a second network that is involved in the regulation of visceral functions and arousal. In addition, functional asymmetry between the bilateral RSCs was observed. PMID:26745803

  9. Modulating Brain Oscillations to Drive Brain Function

    PubMed Central

    Thut, Gregor

    2014-01-01

    Do neuronal oscillations play a causal role in brain function? In a study in this issue of PLOS Biology, Helfrich and colleagues address this long-standing question by attempting to drive brain oscillations using transcranial electrical current stimulation. Remarkably, they were able to manipulate visual perception by forcing brain oscillations of the left and right visual hemispheres into synchrony using oscillatory currents over both hemispheres. Under this condition, human observers more often perceived an inherently ambiguous visual stimulus in one of its perceptual instantiations. These findings shed light on the mechanisms underlying neuronal computation. They show that it is the neuronal oscillations that drive the visual experience, not the experience driving the oscillations. And they indicate that synchronized oscillatory activity groups brain areas into functional networks. This points to new ways for controlled experimental and possibly also clinical interventions for the study and modulation of brain oscillations and associated functions. PMID:25549340

  10. Writing affects the brain network of reading in Chinese: a functional magnetic resonance imaging study.

    PubMed

    Cao, Fan; Vu, Marianne; Chan, Derek Ho Lung; Lawrence, Jason M; Harris, Lindsay N; Guan, Qun; Xu, Yi; Perfetti, Charles A

    2013-07-01

    We examined the hypothesis that learning to write Chinese characters influences the brain's reading network for characters. Students from a college Chinese class learned 30 characters in a character-writing condition and 30 characters in a pinyin-writing condition. After learning, functional magnetic resonance imaging collected during passive viewing showed different networks for reading Chinese characters and English words, suggesting accommodation to the demands of the new writing system through short-term learning. Beyond these expected differences, we found specific effects of character writing in greater activation (relative to pinyin writing) in bilateral superior parietal lobules and bilateral lingual gyri in both a lexical decision and an implicit writing task. These findings suggest that character writing establishes a higher quality representation of the visual-spatial structure of the character and its orthography. We found a greater involvement of bilateral sensori-motor cortex (SMC) for character-writing trained characters than pinyin-writing trained characters in the lexical decision task, suggesting that learning by doing invokes greater interaction with sensori-motor information during character recognition. Furthermore, we found a correlation of recognition accuracy with activation in right superior parietal lobule, right lingual gyrus, and left SMC, suggesting that these areas support the facilitative effect character writing has on reading. Finally, consistent with previous behavioral studies, we found character-writing training facilitates connections with semantics by producing greater activation in bilateral middle temporal gyri, whereas pinyin-writing training facilitates connections with phonology by producing greater activation in right inferior frontal gyrus.

  11. A probabilistic approach for pediatric epilepsy diagnosis using brain functional connectivity networks

    PubMed Central

    2015-01-01

    Background The lives of half a million children in the United States are severely affected due to the alterations in their functional and mental abilities which epilepsy causes. This study aims to introduce a novel decision support system for the diagnosis of pediatric epilepsy based on scalp EEG data in a clinical environment. Methods A new time varying approach for constructing functional connectivity networks (FCNs) of 18 subjects (7 subjects from pediatric control (PC) group and 11 subjects from pediatric epilepsy (PE) group) is implemented by moving a window with overlap to split the EEG signals into a total of 445 multi-channel EEG segments (91 for PC and 354 for PE) and finding the hypothetical functional connectivity strengths among EEG channels. FCNs are then mapped into the form of undirected graphs and subjected to extraction of graph theory based features. An unsupervised labeling technique based on Gaussian mixtures model (GMM) is then used to delineate the pediatric epilepsy group from the control group. Results The study results show the existence of a statistically significant difference (p < 0.0001) between the mean FCNs of PC and PE groups. The system was able to diagnose pediatric epilepsy subjects with the accuracy of 88.8% with 81.8% sensitivity and 100% specificity purely based on exploration of associations among brain cortical regions and without a priori knowledge of diagnosis. Conclusions The current study created the potential of diagnosing epilepsy without need for long EEG recording session and time-consuming visual inspection as conventionally employed. PMID:25953124

  12. Functional Brain Networks Associated with Cognitive Control, Cocaine Dependence and Treatment Outcome

    PubMed Central

    Worhunsky, Patrick D.; Stevens, Michael C.; Carroll, Kathleen M.; Rounsaville, Bruce J.; Calhoun, Vince D.; Pearlson, Godfrey D.; Potenza, Marc N.

    2013-01-01

    Individuals with cocaine dependence often evidence poor cognitive control. The purpose of this exploratory study was to investigate networks of functional connectivity underlying cognitive control in cocaine dependence and examine the relationship of the networks to the disorder and its treatment. Independent component analysis (ICA) was applied to fMRI data to investigate if regional activations underlying cognitive control processes operate in functional networks, and whether these networks relate to performance and treatment outcome measures in cocaine dependence. Twenty patients completed a Stroop task during fMRI prior to entering outpatient treatment and were compared to 20 control participants. ICA identified five distinct functional networks related to cognitive control interference events. Cocaine-dependent patients displayed differences in performance-related recruitment of three networks. Reduced involvement of a “top-down” fronto-cingular network contributing to conflict monitoring correlated with better treatment retention. Greater engagement of two “bottom-up” subcortical and ventral prefrontal networks related to cue-elicited motivational processing correlated with abstinence during treatment. The identification of subcortical networks linked to cocaine abstinence and cortical networks to treatment retention suggests that specific circuits may represent important, complementary targets in treatment development for cocaine dependence. PMID:22775772

  13. Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG study.

    PubMed

    Tewarie, Prejaas; Schoonheim, Menno M; Schouten, Daphne I; Polman, Chris H; Balk, Lisanne J; Uitdehaag, Bernard M J; Geurts, Jeroen J G; Hillebrand, Arjan; Barkhof, Frederik; Stam, Cornelis J

    2015-02-01

    Thalamic atrophy is known to be one of the most important predictors for clinical dysfunction in multiple sclerosis (MS). As the thalamus is highly connected to many cortical areas, this suggests that thalamic atrophy is associated with disruption of cortical functional networks. We investigated this thalamo-cortical system to explain the presence of physical and cognitive problems in MS. Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) were performed in 86 MS patients and 21 healthy subjects. We computed cortical functional networks for fMRI and MEG by respectively the Pearson's correlation coefficient and the phase lag index using the same automated anatomical labeling atlas for both modalities. Thalamo-cortical functional connectivity was only estimated using fMRI. We computed conventional network metrics such as clustering coefficient and path length and analyzed the minimum spanning tree (MST), a subnetwork and backbone of the original network. MS patients showed reduced thalamic volumes and increased thalamo-cortical connectivity. MEG cortical functional networks showed a lower level of integration in MS in terms of the MST, whereas fMRI cortical networks did not differ between groups. Lower integration of MEG cortical functional networks was both related to thalamic atrophy as well as to increased thalamo-cortical functional connectivity in fMRI and to worse cognitive and clinical status. This study demonstrated for the first time that thalamic atrophy is associated with global disruption of cortical functional networks in MS and this global disruption of network activity was related to worse cognitive and clinical function in MS. Hum Brain Mapp 36:603-618, 2015. © 2014 Wiley Periodicals, Inc.

  14. Brain network science needs to become predictive. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Hilgetag, Claus C.; von Luxburg, Ulrike

    2014-09-01

    In his thought-provoking review of current concepts in neuroscience, Pessoa [1] addresses the ongoing paradigm shift of the field, in which the perspective has moved from individual nodes to distributed networks in order to account for distributed brain function. Within this perspective, Pessoa describes diverse aspects and topological features of brain networks that are potentially relevant for brain function. As he notes, however, the shift to networks does not solve all problems of linking brain function to structure.

  15. Choosing Wavelet Methods, Filters, and Lengths for Functional Brain Network Construction

    PubMed Central

    Zhang, Zitong; Telesford, Qawi K.; Giusti, Chad; Lim, Kelvin O.; Bassett, Danielle S.

    2016-01-01

    Wavelet methods are widely used to decompose fMRI, EEG, or MEG signals into time series representing neurophysiological activity in fixed frequency bands. Using these time series, one can estimate frequency-band specific functional connectivity between sensors or regions of interest, and thereby construct functional brain networks that can be examined from a graph theoretic perspective. Despite their common use, however, practical guidelines for the choice of wavelet method, filter, and length have remained largely undelineated. Here, we explicitly explore the effects of wavelet method (MODWT vs. DWT), wavelet filter (Daubechies Extremal Phase, Daubechies Least Asymmetric, and Coiflet families), and wavelet length (2 to 24)—each essential parameters in wavelet-based methods—on the estimated values of graph metrics and in their sensitivity to alterations in psychiatric disease. We observe that the MODWT method produces less variable estimates than the DWT method. We also observe that the length of the wavelet filter chosen has a greater impact on the estimated values of graph metrics than the type of wavelet chosen. Furthermore, wavelet length impacts the sensitivity of the method to detect differences between health and disease and tunes classification accuracy. Collectively, our results suggest that the choice of wavelet method and length significantly alters the reliability and sensitivity of these methods in estimating values of metrics drawn from graph theory. They furthermore demonstrate the importance of reporting the choices utilized in neuroimaging studies and support the utility of exploring wavelet parameters to maximize classification accuracy in the development of biomarkers of psychiatric disease and neurological disorders. PMID:27355202

  16. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  17. Functional Connectivity in Frontal-Striatal Brain Networks and Cocaine Self-Administration in Female Rhesus Monkeys

    PubMed Central

    Murnane, K.S.; Gopinath, K.S.; Maltbie, E.; Daunais, J.B.; Telesford, Q.K.; Howell, L.L.

    2014-01-01

    Rationale Cocaine addiction is characterized by alternating cycles of abstinence and relapse and loss of control of drug use despite severe negative life consequences associated with its abuse. Objective The objective of the present study was to elucidate critical neural circuits involved in individual vulnerabilities to resumption of cocaine self-administration following prolonged abstinence. Methods The subjects were three female rhesus monkeys in prolonged abstinence following a long history of cocaine self-administration. Initial experiments examined the effects of acute cocaine administration (0.3mg/kg, IV) on functional brain connectivity across the whole brain and in specific brain networks related to behavioral control using functional magnetic resonance imaging in fully conscious subjects. Subsequently, these subjects were allowed to resume cocaine self-administration to determine whether loss of basal connectivity within specific brain networks predicted the magnitude of resumption of cocaine intake following prolonged abstinence. Results Acute cocaine administration robustly decreased global functional connectivity and selectively impaired top-down prefrontal circuits that control behavior, while sparing connectivity of striatal areas within limbic circuits. Importantly, impaired connectivity between prefrontal and striatal areas during abstinence predicted cocaine intake when these subjects were provided renewed access to cocaine. Conclusions Based on these findings, loss of prefrontal to striatal functional connectivity may be a critical mechanism underlying the negative downward spiral of cycles of abstinence and relapse that characterizes cocaine addiction. PMID:25138647

  18. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    PubMed

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  19. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    PubMed

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed

  20. The brain's code and its canonical computational motifs. From sensory cortex to the default mode network: A multi-scale model of brain function in health and disease.

    PubMed

    Turkheimer, Federico E; Leech, Robert; Expert, Paul; Lord, Louis-David; Vernon, Anthony C

    2015-08-01

    A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs. In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. Here, we briefly review the biological bases of canonical brain circuits and the role of inhibitory interneurons in these computational elements. We then elucidate how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We point to the similarities between the patterns of activation observed in primary sensory cortices by use of electrophysiology and those observed in large scale networks measured with fMRI. We then employ the canonical model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework. We hypothesise that such a framework may also be extended to cover multiple brain disorders which are grounded in dysfunction of GABA interneurons and/or these computational motifs.

  1. Neurological Soft Signs Are Not “Soft” in Brain Structure and Functional Networks: Evidence From ALE Meta-Analysis

    PubMed Central

    Chan, Raymond C. K.

    2014-01-01

    Background: Neurological soft signs (NSS) are associated with schizophrenia and related psychotic disorders. NSS have been conventionally considered as clinical neurological signs without localized brain regions. However, recent brain imaging studies suggest that NSS are partly localizable and may be associated with deficits in specific brain areas. Method: We conducted an activation likelihood estimation meta-analysis to quantitatively review structural and functional imaging studies that evaluated the brain correlates of NSS in patients with schizophrenia and other psychotic disorders. Six structural magnetic resonance imaging (sMRI) and 15 functional magnetic resonance imaging (fMRI) studies were included. Results: The results from meta-analysis of the sMRI studies indicated that NSS were associated with atrophy of the precentral gyrus, the cerebellum, the inferior frontal gyrus, and the thalamus. The results from meta-analysis of the fMRI studies demonstrated that the NSS-related task was significantly associated with altered brain activation in the inferior frontal gyrus, bilateral putamen, the cerebellum, and the superior temporal gyrus. Conclusions: Our findings from both sMRI and fMRI meta-analyses further support the conceptualization of NSS as a manifestation of the “cerebello-thalamo-prefrontal” brain network model of schizophrenia and related psychotic disorders. PMID:23671197

  2. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively.

  3. Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study.

    PubMed

    Kunze, Tim; Hunold, Alexander; Haueisen, Jens; Jirsa, Viktor; Spiegler, Andreas

    2016-10-15

    Transcranial direct current stimulation (tDCS) is a noninvasive technique for affecting brain dynamics with promising application in the clinical therapy of neurological and psychiatric disorders such as Parkinson's disease, Alzheimer's disease, depression, and schizophrenia. Resting state dynamics increasingly play a role in the assessment of connectivity-based pathologies such as Alzheimer's and schizophrenia. We systematically applied tDCS in a large-scale network model of 74 cerebral areas, investigating the spatiotemporal changes in dynamic states as a function of structural connectivity changes. Structural connectivity was defined by the human connectome. The main findings of this study are fourfold: Firstly, we found a tDCS-induced increase in functional connectivity among cerebral areas and among EEG sensors, where the latter reproduced empirical findings of other researchers. Secondly, the analysis of the network dynamics suggested synchronization to be the main mechanism of the observed effects. Thirdly, we found that tDCS sharpens and shifts the frequency distribution of scalp EEG sensors slightly towards higher frequencies. Fourthly, new dynamic states emerged through interacting areas in the network compared to the dynamics of an isolated area. The findings propose synchronization as a key mechanism underlying the changes in the spatiotemporal pattern formation due to tDCS. Our work supports the notion that noninvasive brain stimulation is able to bias brain dynamics by affecting the competitive interplay of functional subnetworks.

  4. Functional cliques in the amygdala and related brain networks driven by fear assessment acquired during movie viewing.

    PubMed

    Kinreich, Sivan; Intrator, Nathan; Hendler, Talma

    2011-01-01

    One of the greatest challenges involved in studying the brain mechanisms of fear is capturing the individual's unique instantaneous experience. Brain imaging studies to date commonly sacrifice valuable information regarding the individual real-time conscious experience, especially when focusing on elucidating the amygdala's activity. Here, we assumed that by using a minimally intrusive cue along with applying a robust clustering approach to probe the amygdala, it would be possible to rate fear in real time and to derive the related network of activation. During functional magnetic resonance imaging scanning, healthy volunteers viewed two excerpts from horror movies and were periodically auditory cued to rate their instantaneous experience of "I'm scared." Using graph theory and community mathematical concepts, data-driven clustering of the fear-related functional cliques in the amygdala was performed guided by the individually marked periods of heightened fear. Individually tailored functions derived from these amygdala activation cliques were subsequently applied as general linear model predictors to a whole-brain analysis to reveal the correlated networks. Our results suggest that by using a localized robust clustering approach, it is possible to probe activation in the right dorsal amygdala that is directly related to individual real-time emotional experience. Moreover, this fear-evoked amygdala revealed two opposing networks of co-activation and co-deactivation, which correspond to vigilance and rest-related circuits, respectively. PMID:22432905

  5. Is Traumatic Brain Injury Associated with Reduced Inter-Hemispheric Functional Connectivity? A Study of Large-Scale Resting State Networks following Traumatic Brain Injury.

    PubMed

    Rigon, Arianna; Duff, Melissa C; McAuley, Edward; Kramer, Arthur F; Voss, Michelle W

    2016-06-01

    Traumatic brain injury (TBI) often has long-term debilitating sequelae in cognitive and behavioral domains. Understanding how TBI impacts functional integrity of brain networks that underlie these domains is key to guiding future approaches to TBI rehabilitation. In the current study, we investigated the differences in inter-hemispheric functional connectivity (FC) of resting state networks (RSNs) between chronic mild-to-severe TBI patients and normal comparisons (NC), focusing on two externally oriented networks (i.e., the fronto-parietal network [FPN] and the executive control network [ECN]), one internally oriented network (i.e., the default mode network [DMN]), and one somato-motor network (SMN). Seed voxel correlation analysis revealed that TBI patients displayed significantly less FC between lateralized seeds and both homologous and non-homologous regions in the opposite hemisphere for externally oriented networks but not for DMN or SMN; conversely, TBI patients showed increased FC within regions of the DMN, especially precuneus and parahippocampal gyrus. Region of interest correlation analyses confirmed the presence of significantly higher inter-hemispheric FC in NC for the FPN (p < 0.01), and ECN (p < 0.05), but not for the DMN (p > 0.05) or SMN (p > 0.05). Further analysis revealed that performance on a neuropsychological test measuring organizational skills and visuo-spatial abilities administered to the TBI group, the Rey-Osterrieth Complex Figure Test, positively correlated with FC between the right FPN and homologous regions. Our findings suggest that distinct RSNs display specific patterns of aberrant FC following TBI; this represents a step forward in the search for biomarkers useful for early diagnosis and treatment of TBI-related cognitive impairment.

  6. Aberrant Topologies and Reconfiguration Pattern of Functional Brain Network in Children with Second Language Reading Impairment

    ERIC Educational Resources Information Center

    Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng

    2016-01-01

    Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption…

  7. Disrupted topological organization in the whole-brain functional network of trauma-exposed firefighters: A preliminary study.

    PubMed

    Jung, Wi Hoon; Chang, Ki Jung; Kim, Nam Hee

    2016-04-30

    Given that partial posttraumatic stress disorder (pPTSD) may be a specific risk factor for the development of posttraumatic stress disorder (PTSD), it is important to understand the neurobiology of pPTSD. However, there are few extant studies in this domain. Using resting-state functional magnetic resonance imaging (rs-fMRI) and a graph theoretical approach, we compared the topological organization of the whole-brain functional network in trauma-exposed firefighters with pPTSD (pPTSD group, n=9) with those without pPTSD (PC group, n=8) and non-traumatized healthy controls (HC group, n=11). We also examined changes in the network topology of five individuals with pPTSD before and after eye movement desensitization and reprocessing (EMDR) therapy. Individuals with pPTSD exhibited altered global properties, including a reduction in values of a normalized clustering coefficient, normalized local efficiency, and small-worldness. We also observed altered local properties, particularly in the association cortex, including the temporal and parietal cortices, across groups. These disruptive global and local network properties presented in pPTSD before treatment were ameliorated after treatment. Our preliminary results suggest that subthreshold manifestation of PTSD may be due to a disruption in the optimal balance in the functional brain networks and that this disruption can be ameliorated by psychotherapy. PMID:27107156

  8. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer's disease correspond to dissociable functional brain networks.

    PubMed

    Grothe, Michel J; Teipel, Stefan J

    2016-01-01

    Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology.

  9. Human intelligence and brain networks.

    PubMed

    Colom, Roberto; Karama, Sherif; Jung, Rex E; Haier, Richard J

    2010-01-01

    Intelligence can be defined as a general mental ability for reasoning, problem solving, and learning. Because of its general nature, intelligence integrates cognitive functions such as perception, attention, memory, language, or planning. On the basis of this definition, intelligence can be reliably measured by standardized tests with obtained scores predicting several broad social outcomes such as educational achievement, job performance, health, and longevity. A detailed understanding of the brain mechanisms underlying this general mental ability could provide significant individual and societal benefits. Structural and functional neuroimaging studies have generally supported a frontoparietal network relevant for intelligence. This same network has also been found to underlie cognitive functions related to perception, short-term memory storage, and language. The distributed nature of this network and its involvement in a wide range of cognitive functions fits well with the integrative nature of intelligence. A new key phase of research is beginning to investigate how functional networks relate to structural networks, with emphasis on how distributed brain areas communicate with each other.

  10. Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis.

    PubMed

    Zavaglia, Melissa; Hilgetag, Claus C

    2016-06-01

    Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the

  11. Brain functional networks in syndromic and non-syndromic autism: a graph theoretical study of EEG connectivity

    PubMed Central

    2013-01-01

    Background Graph theory has been recently introduced to characterize complex brain networks, making it highly suitable to investigate altered connectivity in neurologic disorders. A current model proposes autism spectrum disorder (ASD) as a developmental disconnection syndrome, supported by converging evidence in both non-syndromic and syndromic ASD. However, the effects of abnormal connectivity on network properties have not been well studied, particularly in syndromic ASD. To close this gap, brain functional networks of electroencephalographic (EEG) connectivity were studied through graph measures in patients with Tuberous Sclerosis Complex (TSC), a disorder with a high prevalence of ASD, as well as in patients with non-syndromic ASD. Methods EEG data were collected from TSC patients with ASD (n = 14) and without ASD (n = 29), from patients with non-syndromic ASD (n = 16), and from controls (n = 46). First, EEG connectivity was characterized by the mean coherence, the ratio of inter- over intra-hemispheric coherence and the ratio of long- over short-range coherence. Next, graph measures of the functional networks were computed and a resilience analysis was conducted. To distinguish effects related to ASD from those related to TSC, a two-way analysis of covariance (ANCOVA) was applied, using age as a covariate. Results Analysis of network properties revealed differences specific to TSC and ASD, and these differences were very consistent across subgroups. In TSC, both with and without a concurrent diagnosis of ASD, mean coherence, global efficiency, and clustering coefficient were decreased and the average path length was increased. These findings indicate an altered network topology. In ASD, both with and without a concurrent diagnosis of TSC, decreased long- over short-range coherence and markedly increased network resilience were found. Conclusions The altered network topology in TSC represents a functional correlate of structural abnormalities and may play a

  12. Complex networks in brain electrical activity

    NASA Astrophysics Data System (ADS)

    Ray, C.; Ruffini, G.; Marco-Pallarés, J.; Fuentemilla, L.; Grau, C.

    2007-08-01

    This letter reports a method to extract a functional network of the human brain from electroencephalogram measurements. A network analysis was performed on the resultant network and the statistics of the cluster coefficient, node degree, path length, and physical distance of the links, were studied. Even given the low electrode count of the experimental data the method was able to extract networks with network parameters that clearly depend on the type of stimulus presented to the subject. This type of analysis opens a door to studying the cerebral networks underlying brain electrical activity, and links the fields of complex networks and cognitive neuroscience.

  13. Large-Scale Brain Networks of the Human Left Temporal Pole: A Functional Connectivity MRI Study

    PubMed Central

    Pascual, Belen; Masdeu, Joseph C.; Hollenbeck, Mark; Makris, Nikos; Insausti, Ricardo; Ding, Song-Lin; Dickerson, Bradford C.

    2015-01-01

    The most rostral portion of the human temporal cortex, the temporal pole (TP), has been described as “enigmatic” because its functional neuroanatomy remains unclear. Comparative anatomy studies are only partially helpful, because the human TP is larger and cytoarchitectonically more complex than in nonhuman primates. Considered by Brodmann as a single area (BA 38), the human TP has been recently parceled into an array of cytoarchitectonic subfields. In order to clarify the functional connectivity of subregions of the TP, we undertook a study of 172 healthy adults using resting-state functional connectivity MRI. Remarkably, a hierarchical cluster analysis performed to group the seeds into distinct subsystems according to their large-scale functional connectivity grouped 87.5% of the seeds according to the recently described cytoarchitectonic subregions of the TP. Based on large-scale functional connectivity, there appear to be 4 major subregions of the TP: 1) dorsal, with predominant connectivity to auditory/somatosensory and language networks; 2) ventromedial, predominantly connected to visual networks; 3) medial, connected to paralimbic structures; and 4) anterolateral, connected to the default-semantic network. The functional connectivity of the human TP, far more complex than its known anatomic connectivity in monkey, is concordant with its hypothesized role as a cortical convergence zone. PMID:24068551

  14. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    NASA Technical Reports Server (NTRS)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  15. Simulating the Evolution of Functional Brain Networks in Alzheimer’s Disease: Exploring Disease Dynamics from the Perspective of Global Activity

    PubMed Central

    Li, Wei; Wang, Miao; Zhu, Wenzhen; Qin, Yuanyuan; Huang, Yue; Chen, Xi

    2016-01-01

    Functional brain connectivity is altered during the pathological processes of Alzheimer’s disease (AD), but the specific evolutional rules are insufficiently understood. Resting-state functional magnetic resonance imaging indicates that the functional brain networks of individuals with AD tend to be disrupted in hub-like nodes, shifting from a small world architecture to a random profile. Here, we proposed a novel evolution model based on computational experiments to simulate the transition of functional brain networks from normal to AD. Specifically, we simulated the rearrangement of edges in a pathological process by a high probability of disconnecting edges between hub-like nodes, and by generating edges between random pair of nodes. Subsequently, four topological properties and a nodal distribution were used to evaluate our model. Compared with random evolution as a null model, our model captured well the topological alteration of functional brain networks during the pathological process. Moreover, we implemented two kinds of network attack to imitate the damage incurred by the brain in AD. Topological changes were better explained by ‘hub attacks’ than by ‘random attacks’, indicating the fragility of hubs in individuals with AD. This model clarifies the disruption of functional brain networks in AD, providing a new perspective on topological alterations. PMID:27677360

  16. Visual analytics of brain networks.

    PubMed

    Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming

    2012-05-15

    Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging.

  17. Visual Analytics of Brain Networks

    PubMed Central

    Li, Kaiming; Guo, Lei; Faraco, Carlos; Zhu, Dajiang; Chen, Hanbo; Yuan, Yixuan; Lv, Jinglei; Deng, Fan; Jiang, Xi; Zhang, Tuo; Hu, Xintao; Zhang, Degang; Miller, L Stephen; Liu, Tianming

    2014-01-01

    Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. PMID:22414991

  18. Changes in functional connectivity within the fronto-temporal brain network induced by regular and irregular Russian verb production.

    PubMed

    Kireev, Maxim; Slioussar, Natalia; Korotkov, Alexander D; Chernigovskaya, Tatiana V; Medvedev, Svyatoslav V

    2015-01-01

    Functional connectivity between brain areas involved in the processing of complex language forms remains largely unexplored. Contributing to the debate about neural mechanisms underlying regular and irregular inflectional morphology processing in the mental lexicon, we conducted an fMRI experiment in which participants generated forms from different types of Russian verbs and nouns as well as from nonce stimuli. The data were subjected to a whole brain voxel-wise analysis of context dependent changes in functional connectivity [the so-called psychophysiological interaction (PPI) analysis]. Unlike previously reported subtractive results that reveal functional segregation between brain areas, PPI provides complementary information showing how these areas are functionally integrated in a particular task. To date, PPI evidence on inflectional morphology has been scarce and only available for inflectionally impoverished English verbs in a same-different judgment task. Using PPI here in conjunction with a production task in an inflectionally rich language, we found that functional connectivity between the left inferior frontal gyrus (LIFG) and bilateral superior temporal gyri (STG) was significantly greater for regular real verbs than for irregular ones. Furthermore, we observed a significant positive covariance between the number of mistakes in irregular real verb trials and the increase in functional connectivity between the LIFG and the right anterior cingulate cortex in these trails, as compared to regular ones. Our results therefore allow for dissociation between regularity and processing difficulty effects. These results, on the one hand, shed new light on the functional interplay within the LIFG-bilateral STG language-related network and, on the other hand, call for partial reconsideration of some of the previous findings while stressing the role of functional temporo-frontal connectivity in complex morphological processes. PMID:25741262

  19. Deficit in switching between functional brain networks underlies the impact of multitasking on working memory in older adults.

    PubMed

    Clapp, Wesley C; Rubens, Michael T; Sabharwal, Jasdeep; Gazzaley, Adam

    2011-04-26

    Multitasking negatively influences the retention of information over brief periods of time. This impact of interference on working memory is exacerbated with normal aging. We used functional MRI to investigate the neural basis by which an interruption is more disruptive to working memory performance in older individuals. Younger and older adults engaged in delayed recognition tasks both with and without interruption by a secondary task. Behavioral analysis revealed that working memory performance was more impaired by interruptions in older compared with younger adults. Functional connectivity analyses showed that when interrupted, older adults disengaged from a memory maintenance network and reallocated attentional resources toward the interrupting stimulus in a manner consistent with younger adults. However, unlike younger individuals, older adults failed to both disengage from the interruption and reestablish functional connections associated with the disrupted memory network. These results suggest that multitasking leads to more significant working memory disruption in older adults because of an interruption recovery failure, manifest as a deficient ability to dynamically switch between functional brain networks.

  20. Training brain networks and states.

    PubMed

    Tang, Yi-Yuan; Posner, Michael I

    2014-07-01

    Brain training refers to practices that alter the brain in a way that improves cognition, and performance in domains beyond those involved in the training. We argue that brain training includes network training through repetitive practice that exercises specific brain networks and state training, which changes the brain state in a way that influences many networks. This opinion article considers two widely used methods - working memory training (WMT) and meditation training (MT) - to demonstrate the similarities and differences between network and state training. These two forms of training involve different areas of the brain and different forms of generalization. We propose a distinction between network and state training methods to improve understanding of the most effective brain training.

  1. Functional Brain Imaging

    PubMed Central

    2006-01-01

    Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers. General inclusion criteria were applied to all conditions. Those criteria included the following: Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS’), and retrospective studies. Sample sizes of at least 20 patients (≥ 10 with condition being reviewed). English-language studies. Human studies. Any age. Studying at least one of the following: fMRI, PET, MRS, or MEG. Functional brain imaging modality must be compared with a clearly defined reference standard. Must report at least one of the following outcomes: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost. Summary of Findings There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients. The addition of MRS or O-(2-18F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results. The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of

  2. Avalanche dynamics of idealized neuron function in the brain on an uncorrelated random scale-free network

    NASA Astrophysics Data System (ADS)

    Lee, K. E.; Lee, J. W.

    2006-03-01

    We study a simple model for a neuron function in a collective brain system. The neural network is composed of an uncorrelated configuration model (UCM) for eliminating the degree correlation of dynamical processes. The interaction of neurons is assumed to be isotropic and idealized. These neuron dynamics are similar to biological evolution in extremal dynamics with locally isotropic interaction but has a different time scale. The functioning of neurons takes place as punctuated patterns based on avalanche dynamics. In our model, the avalanche dynamics of neurons exhibit self-organized criticality which shows power-law behavior of the avalanche sizes. For a given network, the avalanche dynamic behavior is not changed with different degree exponents of networks, γ≥2.4 and various refractory periods referred to the memory effect, Tr. Furthermore, the avalanche size distributions exhibit power-law behavior in a single scaling region in contrast to other networks. However, return time distributions displaying spatiotemporal complexity have three characteristic time scaling regimes Thus, we find that UCM may be inefficient for holding a memory.

  3. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    PubMed

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games. PMID:26855192

  4. Violence-related content in video game may lead to functional connectivity changes in brain networks as revealed by fMRI-ICA in young men.

    PubMed

    Zvyagintsev, M; Klasen, M; Weber, R; Sarkheil, P; Esposito, F; Mathiak, K A; Schwenzer, M; Mathiak, K

    2016-04-21

    In violent video games, players engage in virtual aggressive behaviors. Exposure to virtual aggressive behavior induces short-term changes in players' behavior. In a previous study, a violence-related version of the racing game "Carmageddon TDR2000" increased aggressive affects, cognitions, and behaviors compared to its non-violence-related version. This study investigates the differences in neural network activity during the playing of both versions of the video game. Functional magnetic resonance imaging (fMRI) recorded ongoing brain activity of 18 young men playing the violence-related and the non-violence-related version of the video game Carmageddon. Image time series were decomposed into functional connectivity (FC) patterns using independent component analysis (ICA) and template-matching yielded a mapping to established functional brain networks. The FC patterns revealed a decrease in connectivity within 6 brain networks during the violence-related compared to the non-violence-related condition: three sensory-motor networks, the reward network, the default mode network (DMN), and the right-lateralized frontoparietal network. Playing violent racing games may change functional brain connectivity, in particular and even after controlling for event frequency, in the reward network and the DMN. These changes may underlie the short-term increase of aggressive affects, cognitions, and behaviors as observed after playing violent video games.

  5. Network-based characterization of brain functional connectivity in Zen practitioners.

    PubMed

    Kemmer, Phebe B; Guo, Ying; Wang, Yikai; Pagnoni, Giuseppe

    2015-01-01

    In the last decade, a number of neuroimaging studies have investigated the neurophysiological effects associated with contemplative practices. Meditation-related changes in resting state functional connectivity (rsFC) have been previously reported, particularly in the default mode network, frontoparietal attentional circuits, saliency-related regions, and primary sensory cortices. We collected functional magnetic resonance imaging data from a sample of 12 experienced Zen meditators and 12 meditation-naïve matched controls during a basic attention-to-breathing protocol, together with behavioral performance outside the scanner on a set of computerized neuropsychological tests. We adopted a network system of 209 nodes, classified into nine functional modules, and a multi-stage approach to identify rsFC differences in meditators and controls. Between-group comparisons of modulewise FC, summarized by the first principal component of the relevant set of edges, revealed important connections of frontoparietal circuits with early visual and executive control areas. We also identified several group differences in positive and negative edgewise FC, often involving the visual, or frontoparietal regions. Multivariate pattern analysis of modulewise FC, using support vector machine (SVM), classified meditators, and controls with 79% accuracy and selected 10 modulewise connections that were jointly prominent in distinguishing meditators and controls; a similar SVM procedure based on the subjects' scores on the neuropsychological battery yielded a slightly weaker accuracy (75%). Finally, we observed a good correlation between the across-subject variation in strength of modulewise connections among frontoparietal, executive, and visual circuits, on the one hand, and in the performance on a rapid visual information processing test of sustained attention, on the other. Taken together, these findings highlight the usefulness of employing network analysis techniques in investigating

  6. Schizophrenia and abnormal brain network hubs

    PubMed Central

    Rubinov, Mikail; Bullmore, Ed.

    2013-01-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905

  7. Schizophrenia and abnormal brain network hubs.

    PubMed

    Rubinov, Mikail; Bullmore, Ed

    2013-09-01

    Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.

  8. Large Scale Functional Brain Networks Underlying Temporal Integration of Audio-Visual Speech Perception: An EEG Study

    PubMed Central

    Kumar, G. Vinodh; Halder, Tamesh; Jaiswal, Amit K.; Mukherjee, Abhishek; Roy, Dipanjan; Banerjee, Arpan

    2016-01-01

    Observable lip movements of the speaker influence perception of auditory speech. A classical example of this influence is reported by listeners who perceive an illusory (cross-modal) speech sound (McGurk-effect) when presented with incongruent audio-visual (AV) speech stimuli. Recent neuroimaging studies of AV speech perception accentuate the role of frontal, parietal, and the integrative brain sites in the vicinity of the superior temporal sulcus (STS) for multisensory speech perception. However, if and how does the network across the whole brain participates during multisensory perception processing remains an open question. We posit that a large-scale functional connectivity among the neural population situated in distributed brain sites may provide valuable insights involved in processing and fusing of AV speech. Varying the psychophysical parameters in tandem with electroencephalogram (EEG) recordings, we exploited the trial-by-trial perceptual variability of incongruent audio-visual (AV) speech stimuli to identify the characteristics of the large-scale cortical network that facilitates multisensory perception during synchronous and asynchronous AV speech. We evaluated the spectral landscape of EEG signals during multisensory speech perception at varying AV lags. Functional connectivity dynamics for all sensor pairs was computed using the time-frequency global coherence, the vector sum of pairwise coherence changes over time. During synchronous AV speech, we observed enhanced global gamma-band coherence and decreased alpha and beta-band coherence underlying cross-modal (illusory) perception compared to unisensory perception around a temporal window of 300–600 ms following onset of stimuli. During asynchronous speech stimuli, a global broadband coherence was observed during cross-modal perception at earlier times along with pre-stimulus decreases of lower frequency power, e.g., alpha rhythms for positive AV lags and theta rhythms for negative AV lags. Thus

  9. The Effect of Souvenaid on Functional Brain Network Organisation in Patients with Mild Alzheimer’s Disease: A Randomised Controlled Study

    PubMed Central

    de Waal, Hanneke; Stam, Cornelis J.; Lansbergen, Marieke M.; Wieggers, Rico L.; Kamphuis, Patrick J. G. H.; Scheltens, Philip; Maestú, Fernando; van Straaten, Elisabeth C. W.

    2014-01-01

    Background Synaptic loss is a major hallmark of Alzheimer’s disease (AD). Disturbed organisation of large-scale functional brain networks in AD might reflect synaptic loss and disrupted neuronal communication. The medical food Souvenaid, containing the specific nutrient combination Fortasyn Connect, is designed to enhance synapse formation and function and has been shown to improve memory performance in patients with mild AD in two randomised controlled trials. Objective To explore the effect of Souvenaid compared to control product on brain activity-based networks, as a derivative of underlying synaptic function, in patients with mild AD. Design A 24-week randomised, controlled, double-blind, parallel-group, multi-country study. Participants 179 drug-naïve mild AD patients who participated in the Souvenir II study. Intervention Patients were randomised 1∶1 to receive Souvenaid or an iso-caloric control product once daily for 24 weeks. Outcome In a secondary analysis of the Souvenir II study, electroencephalography (EEG) brain networks were constructed and graph theory was used to quantify complex brain structure. Local brain network connectivity (normalised clustering coefficient gamma) and global network integration (normalised characteristic path length lambda) were compared between study groups, and related to memory performance. Results The network measures in the beta band were significantly different between groups: they decreased in the control group, but remained relatively unchanged in the active group. No consistent relationship was found between these network measures and memory performance. Conclusions The current results suggest that Souvenaid preserves the organisation of brain networks in patients with mild AD within 24 weeks, hypothetically counteracting the progressive network disruption over time in AD. The results strengthen the hypothesis that Souvenaid affects synaptic integrity and function. Secondly, we conclude that advanced EEG

  10. The brain functional networks associated to human and animal suffering differ among omnivores, vegetarians and vegans.

    PubMed

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A

    2010-05-26

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs.

  11. The Brain Functional Networks Associated to Human and Animal Suffering Differ among Omnivores, Vegetarians and Vegans

    PubMed Central

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs. PMID:20520767

  12. Identification of Focal Epileptogenic Networks in Generalized Epilepsy Using Brain Functional Connectivity Analysis of Bilateral Intracranial EEG Signals.

    PubMed

    Chen, Po-Ching; Castillo, Eduardo M; Baumgartner, James; Seo, Joo Hee; Korostenskaja, Milena; Lee, Ki Hyeong

    2016-09-01

    Simultaneous bilateral onset and bi-synchrony epileptiform discharges in electroencephalogram (EEG) remain hallmarks for generalized seizures. However, the possibility of an epileptogenic focus triggering rapidly generalized epileptiform discharges has been documented in several studies. Previously, a new multi-stage surgical procedure using bilateral intracranial EEG (iEEG) prior to and post complete corpus callosotomy (CC) was developed to uncover seizure focus in non-lateralizing focal epilepsy. Five patients with drug-resistant generalized epilepsy who underwent this procedure were included in the study. Their bilateral iEEG findings prior to complete CC showed generalized epileptiform discharges with no clear lateralization. Nonetheless, the bilateral ictal iEEG findings post complete CC indicated lateralized or localized seizure onset. This study hypothesized that brain functional connectivity analysis, applied to the pre CC bilateral iEEG recordings, could help identify focal epileptogenic networks in generalized epilepsy. The results indicated that despite diffuse epileptiform discharges, focal features can still be observed in apparent generalized seizures through brain connectivity analysis. The seizure onset localization/lateralization from connectivity analysis demonstrated a good agreement with the bilateral iEEG findings post complete CC and final surgical outcomes. Our study supports the role of focal epileptic networks in generalized seizures. PMID:27142358

  13. Alteration of Brain Functional Networks in Early-Stage Parkinson’s Disease: A Resting-State fMRI Study

    PubMed Central

    Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Wang, Jian; Qiu, Mingguo

    2015-01-01

    Although alterations of topological organization have previously been reported in the brain functional network of Parkinson’s disease (PD) patients, the topological properties of the brain network in early-stage PD patients who received antiparkinson treatment are largely unknown. This study sought to determine the topological characteristics of the large-scale functional network in early-stage PD patients. First, 26early-stage PD patients (Hoehn and Yahr stage:1-2) and 30 age-matched normal controls were scanned using resting-state functional MRI. Subsequently, graph theoretical analysis was employed to investigate the abnormal topological configuration of the brain network in early-stage PD patients. We found that both the PD patient and control groups showed small-world properties in their functional brain networks. However, compared with the controls, the early-stage PD patients exhibited abnormal global properties, characterized by lower global efficiency. Moreover, the modular structure and the hub distribution were markedly altered in early-stage PD patients. Furthermore, PD patients exhibited increased nodal centrality, primarily in the bilateral pallidum, the inferior parietal lobule, and the medial superior frontal gyrus, and decreased nodal centrality in the caudate nucleus, the supplementary motor areas, the precentral gyrus, and the middle frontal gyrus. There were significant negative correlations between the Unified Parkinson Disease Rating Scale motor scores and nodal centralities of superior parietal gyrus. These results suggest that the topological organization of the brain functional network was altered in early-stage PD patients who received antiparkinson treatment, and we speculated that the antiparkinson treatment may affect the efficiency of the brain network to effectively relieve clinical symptoms of PD. PMID:26517128

  14. Functional MRI of the vocalization-processing network in the macaque brain

    PubMed Central

    Ortiz-Rios, Michael; Kuśmierek, Paweł; DeWitt, Iain; Archakov, Denis; Azevedo, Frederico A. C.; Sams, Mikko; Jääskeläinen, Iiro P.; Keliris, Georgios A.; Rauschecker, Josef P.

    2015-01-01

    Using functional magnetic resonance imaging in awake behaving monkeys we investigated how species-specific vocalizations are represented in auditory and auditory-related regions of the macaque brain. We found clusters of active voxels along the ascending auditory pathway that responded to various types of complex sounds: inferior colliculus (IC), medial geniculate nucleus (MGN), auditory core, belt, and parabelt cortex, and other parts of the superior temporal gyrus (STG) and sulcus (STS). Regions sensitive to monkey calls were most prevalent in the anterior STG, but some clusters were also found in frontal and parietal cortex on the basis of comparisons between responses to calls and environmental sounds. Surprisingly, we found that spectrotemporal control sounds derived from the monkey calls (“scrambled calls”) also activated the parietal and frontal regions. Taken together, our results demonstrate that species-specific vocalizations in rhesus monkeys activate preferentially the auditory ventral stream, and in particular areas of the antero-lateral belt and parabelt. PMID:25883546

  15. DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests

    PubMed Central

    López-Gil, Xavier; Amat-Roldan, Iván; Tudela, Raúl; Castañé, Anna; Prats-Galino, Alberto; Planas, Anna M.; Farr, Tracy D.; Soria, Guadalupe

    2014-01-01

    The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm3 isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent. PMID:25100993

  16. Differential effects of L-tryptophan and L-leucine administration on brain resting state functional networks and plasma hormone levels

    PubMed Central

    Zanchi, Davide; Meyer-Gerspach, Anne Christin; Suenderhauf, Claudia; Janach, Katharina; le Roux, Carel W.; Haller, Sven; Drewe, Jürgen; Beglinger, Christoph; Wölnerhanssen, Bettina K.; Borgwardt, Stefan

    2016-01-01

    Depending on their protein content, single meals can rapidly influence the uptake of amino acids into the brain and thereby modify brain functions. The current study investigates the effects of two different amino acids on the human gut-brain system, using a multimodal approach, integrating physiological and neuroimaging data. In a randomized, placebo-controlled trial, L-tryptophan, L-leucine, glucose and water were administered directly into the gut of 20 healthy subjects. Functional MRI (fMRI) in a resting state paradigm (RS), combined with the assessment of insulin and glucose blood concentration, was performed before and after treatment. Independent component analysis with dual regression technique was applied to RS-fMRI data. Results were corrected for multiple comparisons. In comparison to glucose and water, L-tryptophan consistently modifies the connectivity of the cingulate cortex in the default mode network, of the insula in the saliency network and of the sensory cortex in the somatosensory network. L-leucine has lesser effects on these functional networks. L-tryptophan and L-leucine also modified plasma insulin concentration. Finally, significant correlations were found between brain modifications after L-tryptophan administration and insulin plasma levels. This study shows that acute L-tryptophan and L-leucine intake directly influence the brain networks underpinning the food-reward system and appetite regulation. PMID:27760995

  17. Brain anatomical network and intelligence.

    PubMed

    Li, Yonghui; Liu, Yong; Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-05-01

    Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086

  18. Temporal entrainment of cognitive functions: musical mnemonics induce brain plasticity and oscillatory synchrony in neural networks underlying memory.

    PubMed

    Thaut, Michael H; Peterson, David A; McIntosh, Gerald C

    2005-12-01

    In a series of experiments, we have begun to investigate the effect of music as a mnemonic device on learning and memory and the underlying plasticity of oscillatory neural networks. We used verbal learning and memory tests (standardized word lists, AVLT) in conjunction with electroencephalographic analysis to determine differences between verbal learning in either a spoken or musical (verbal materials as song lyrics) modality. In healthy adults, learning in both the spoken and music condition was associated with significant increases in oscillatory synchrony across all frequency bands. A significant difference between the spoken and music condition emerged in the cortical topography of the learning-related synchronization. When using EEG measures as predictors during learning for subsequent successful memory recall, significantly increased coherence (phase-locked synchronization) within and between oscillatory brain networks emerged for music in alpha and gamma bands. In a similar study with multiple sclerosis patients, superior learning and memory was shown in the music condition when controlled for word order recall, and subjects were instructed to sing back the word lists. Also, the music condition was associated with a significant power increase in the low-alpha band in bilateral frontal networks, indicating increased neuronal synchronization. Musical learning may access compensatory pathways for memory functions during compromised PFC functions associated with learning and recall. Music learning may also confer a neurophysiological advantage through the stronger synchronization of the neuronal cell assemblies underlying verbal learning and memory. Collectively our data provide evidence that melodic-rhythmic templates as temporal structures in music may drive internal rhythm formation in recurrent cortical networks involved in learning and memory.

  19. Lutein and Brain Function

    PubMed Central

    Erdman, John W.; Smith, Joshua W.; Kuchan, Matthew J.; Mohn, Emily S.; Johnson, Elizabeth J.; Rubakhin, Stanislav S.; Wang, Lin; Sweedler, Jonathan V.; Neuringer, Martha

    2015-01-01

    Lutein is one of the most prevalent carotenoids in nature and in the human diet. Together with zeaxanthin, it is highly concentrated as macular pigment in the foveal retina of primates, attenuating blue light exposure, providing protection from photo-oxidation and enhancing visual performance. Recently, interest in lutein has expanded beyond the retina to its possible contributions to brain development and function. Only primates accumulate lutein within the brain, but little is known about its distribution or physiological role. Our team has begun to utilize the rhesus macaque (Macaca mulatta) model to study the uptake and bio-localization of lutein in the brain. Our overall goal has been to assess the association of lutein localization with brain function. In this review, we will first cover the evolution of the non-human primate model for lutein and brain studies, discuss prior association studies of lutein with retina and brain function, and review approaches that can be used to localize brain lutein. We also describe our approach to the biosynthesis of 13C-lutein, which will allow investigation of lutein flux, localization, metabolism and pharmacokinetics. Lastly, we describe potential future research opportunities. PMID:26566524

  20. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  1. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  2. Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory.

    PubMed

    Hadley, Jennifer Ann; Kraguljac, Nina Vanessa; White, David Matthew; Ver Hoef, Lawrence; Tabora, Janell; Lahti, Adrienne Carol

    2016-01-01

    A number of neuroimaging studies have provided evidence in support of the hypothesis that faulty interactions between spatially disparate brain regions underlie the pathophysiology of schizophrenia, but it remains unclear to what degree antipsychotic medications affect these. We hypothesized that the balance between functional integration and segregation of brain networks is impaired in unmedicated patients with schizophrenia, but that it can be partially restored by antipsychotic medications. We included 32 unmedicated patients with schizophrenia (SZ) and 32 matched healthy controls (HC) in this study. We obtained resting-state scans while unmedicated, and again after 6 weeks of treatment with risperidone to assess functional integration and functional segregation of brain networks using graph theoretical measures. Compared with HC, unmedicated SZ showed reduced global efficiency and increased clustering coefficients. This pattern of aberrant functional network integration and segregation was modulated with antipsychotic medications, but only in those who responded to treatment. Our work lends support to the concept of schizophrenia as a dysconnectivity syndrome, and suggests that faulty brain network topology in schizophrenia is modulated by antipsychotic medication as a function of treatment response. PMID:27336056

  3. Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory

    PubMed Central

    Hadley, Jennifer Ann; Kraguljac, Nina Vanessa; White, David Matthew; Ver Hoef, Lawrence; Tabora, Janell; Lahti, Adrienne Carol

    2016-01-01

    A number of neuroimaging studies have provided evidence in support of the hypothesis that faulty interactions between spatially disparate brain regions underlie the pathophysiology of schizophrenia, but it remains unclear to what degree antipsychotic medications affect these. We hypothesized that the balance between functional integration and segregation of brain networks is impaired in unmedicated patients with schizophrenia, but that it can be partially restored by antipsychotic medications. We included 32 unmedicated patients with schizophrenia (SZ) and 32 matched healthy controls (HC) in this study. We obtained resting-state scans while unmedicated, and again after 6 weeks of treatment with risperidone to assess functional integration and functional segregation of brain networks using graph theoretical measures. Compared with HC, unmedicated SZ showed reduced global efficiency and increased clustering coefficients. This pattern of aberrant functional network integration and segregation was modulated with antipsychotic medications, but only in those who responded to treatment. Our work lends support to the concept of schizophrenia as a dysconnectivity syndrome, and suggests that faulty brain network topology in schizophrenia is modulated by antipsychotic medication as a function of treatment response. PMID:27336056

  4. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements

    PubMed Central

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  5. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements.

    PubMed

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  6. Benefit of interleaved practice of motor skills is associated with changes in functional brain network topology that differ between younger and older adults.

    PubMed

    Lin, Chien-Ho Janice; Knowlton, Barbara J; Wu, Allan D; Iacoboni, Marco; Yang, Ho-Ching; Ye, Yu-Ling; Liu, Kuan-Hong; Chiang, Ming-Chang

    2016-06-01

    Practicing tasks arranged in an interleaved manner generally leads to superior retention compared with practicing tasks repetitively, a phenomenon known as the contextual interference (CI) effect. We investigated the brain network of motor learning under CI, that is, the CI network, and how it was affected by aging. Sixteen younger and 16 older adults practiced motor sequences arranged in a repetitive or an interleaved order over 2 days, followed by a retention test on day 5 to evaluate learning. Network analysis was applied to functional MRI data on retention to define the CI network by identifying brain regions with greater between-region connectivity after interleaved compared with repetitive practice. CI effects were present in both groups but stronger in younger adults. Moreover, CI networks in younger adults exhibited efficient small-world topology, with a significant association between higher network centrality and better learning after interleaved practice. Older adults did not show such favorable network properties. Our findings suggest that aging affects the efficiency of brain networks underlying enhanced motor learning after CI practice.

  7. Temporal evolution of brain reorganization under cross-modal training: insights into the functional architecture of encoding and retrieval networks

    NASA Astrophysics Data System (ADS)

    Likova, Lora T.

    2015-03-01

    This study is based on the recent discovery of massive and well-structured cross-modal memory activation generated in the primary visual cortex (V1) of totally blind people as a result of novel training in drawing without any vision (Likova, 2012). This unexpected functional reorganization of primary visual cortex was obtained after undergoing only a week of training by the novel Cognitive-Kinesthetic Method, and was consistent across pilot groups of different categories of visual deprivation: congenitally blind, late-onset blind and blindfolded (Likova, 2014). These findings led us to implicate V1 as the implementation of the theoretical visuo-spatial 'sketchpad' for working memory in the human brain. Since neither the source nor the subsequent 'recipient' of this non-visual memory information in V1 is known, these results raise a number of important questions about the underlying functional organization of the respective encoding and retrieval networks in the brain. To address these questions, an individual totally blind from birth was given a week of Cognitive-Kinesthetic training, accompanied by functional magnetic resonance imaging (fMRI) both before and just after training, and again after a two-month consolidation period. The results revealed a remarkable temporal sequence of training-based response reorganization in both the hippocampal complex and the temporal-lobe object processing hierarchy over the prolonged consolidation period. In particular, a pattern of profound learning-based transformations in the hippocampus was strongly reflected in V1, with the retrieval function showing massive growth as result of the Cognitive-Kinesthetic memory training and consolidation, while the initially strong hippocampal response during tactile exploration and encoding became non-existent. Furthermore, after training, an alternating patch structure in the form of a cascade of discrete ventral regions underwent radical transformations to reach complete functional

  8. Task-Based Cohesive Evolution of Dynamic Brain Networks

    NASA Astrophysics Data System (ADS)

    Davison, Elizabeth

    2014-03-01

    Applications of graph theory to neuroscience have resulted in significant progress towards a mechanistic understanding of the brain. Functional network representation of the brain has linked efficient network structure to psychometric intelligence and altered configurations with disease. Dynamic graphs provide us with tools to further study integral properties of the brain; specifically, the mathematical convention of hyperedges has allowed us to study the brain's cross-linked structure. Hyperedges capture the changes in network structure by identifying groups of brain regions with correlation patterns that change cohesively through time. We performed a hyperedge analysis on functional MRI data from 86 subjects and explored the cohesive evolution properties of their functional brain networks as they performed a series of tasks. Our results establish the hypergraph as a useful measure in understanding functional brain dynamics over tasks and reveal characteristic differences in the co-evolution structure of task-specific networks.

  9. Functional Magnetic Resonance Imaging of Chronic Dysarthric Speech after Childhood Brain Injury: Reliance on a Left-Hemisphere Compensatory Network

    ERIC Educational Resources Information Center

    Morgan, Angela T.; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liegeois, Frederique J.

    2013-01-01

    Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize…

  10. Patterns of Cortical Oscillations Organize Neural Activity into Whole-Brain Functional Networks Evident in the fMRI BOLD Signal

    PubMed Central

    Whitman, Jennifer C.; Ward, Lawrence M.; Woodward, Todd S.

    2013-01-01

    Recent findings from electrophysiology and multimodal neuroimaging have elucidated the relationship between patterns of cortical oscillations evident in EEG/MEG and the functional brain networks evident in the BOLD signal. Much of the existing literature emphasized how high-frequency cortical oscillations are thought to coordinate neural activity locally, while low-frequency oscillations play a role in coordinating activity between more distant brain regions. However, the assignment of different frequencies to different spatial scales is an oversimplification. A more informative approach is to explore the arrangements by which these low- and high-frequency oscillations work in concert, coordinating neural activity into whole-brain functional networks. When relating such networks to the BOLD signal, we must consider how the patterns of cortical oscillations change at the same speed as cognitive states, which often last less than a second. Consequently, the slower BOLD signal may often reflect the summed neural activity of several transient network configurations. This temporal mismatch can be circumvented if we use spatial maps to assess correspondence between oscillatory networks and BOLD networks. PMID:23504590

  11. Consciousness, cognition and brain networks: New perspectives.

    PubMed

    Aldana, E M; Valverde, J L; Fábregas, N

    2016-10-01

    A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks.

  12. Consciousness, cognition and brain networks: New perspectives.

    PubMed

    Aldana, E M; Valverde, J L; Fábregas, N

    2016-10-01

    A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. PMID:26143337

  13. The effects of antidepressant treatment on resting-state functional brain networks in patients with major depressive disorder.

    PubMed

    Wang, Li; Xia, Mingrui; Li, Ke; Zeng, Yawei; Su, Yunai; Dai, Wenji; Zhang, Qinge; Jin, Zhen; Mitchell, Philip B; Yu, Xin; He, Yong; Si, Tianmei

    2015-02-01

    Although most knowledge regarding antidepressant effects is at the receptor level, the neurophysiological correlates of these neurochemical changes remain poorly understood. Such an understanding could benefit from elucidation of antidepressant effects at the level of neural circuits, which would be crucial in identifying biomarkers for monitoring treatment efficacy of antidepressants. In this study, we recruited 20 first-episode drug-naive major depressive disorder (MDD) patients and performed resting-state functional magnetic resonance imaging (MRI) scans before and after 8 weeks of treatment with a selective serotonin reuptake inhibitor-escitalopram. Twenty healthy controls (HCs) were also scanned twice with an 8-week interval. Whole-brain connectivity was analyzed using a graph-theory approach-functional connectivity strength (FCS). The analysis of covariance of FCS was used to determine treatment-related changes. We observed significant group-by-time interaction on FCS in the bilateral dorsomedial prefrontal cortex and bilateral hippocampi. Post hoc analyses revealed that the FCS values in the bilateral dorsomedial prefrontal cortex were significantly higher in the MDD patients compared to HCs at baseline and were significantly reduced after treatment; conversely, the FCS values in the bilateral hippocampi were significantly lower in the patients at baseline and were significantly increased after treatment. Importantly, FCS reduction in the dorsomedial prefrontal cortex was significantly correlated with symptomatic improvement. Together, these findings provided evidence that this commonly used antidepressant can selectively modulate the intrinsic network connectivity associated with the medial prefrontal-limbic system, thus significantly adding to our understanding of antidepressant effects at a circuit level and suggesting potential imaging-based biomarkers for treatment evaluation in MDD. PMID:25332057

  14. The hierarchical brain network for face recognition.

    PubMed

    Zhen, Zonglei; Fang, Huizhen; Liu, Jia

    2013-01-01

    Numerous functional magnetic resonance imaging (fMRI) studies have identified multiple cortical regions that are involved in face processing in the human brain. However, few studies have characterized the face-processing network as a functioning whole. In this study, we used fMRI to identify face-selective regions in the entire brain and then explore the hierarchical structure of the face-processing network by analyzing functional connectivity among these regions. We identified twenty-five regions mainly in the occipital, temporal and frontal cortex that showed a reliable response selective to faces (versus objects) across participants and across scan sessions. Furthermore, these regions were clustered into three relatively independent sub-networks in a face-recognition task on the basis of the strength of functional connectivity among them. The functionality of the sub-networks likely corresponds to the recognition of individual identity, retrieval of semantic knowledge and representation of emotional information. Interestingly, when the task was switched to object recognition from face recognition, the functional connectivity between the inferior occipital gyrus and the rest of the face-selective regions were significantly reduced, suggesting that this region may serve as an entry node in the face-processing network. In sum, our study provides empirical evidence for cognitive and neural models of face recognition and helps elucidate the neural mechanisms underlying face recognition at the network level.

  15. Spectral properties of the temporal evolution of brain network structure.

    PubMed

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  16. Spectral properties of the temporal evolution of brain network structure.

    PubMed

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems. PMID:26723151

  17. Spectral properties of the temporal evolution of brain network structure

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  18. Brain networks shaping religious belief.

    PubMed

    Kapogiannis, Dimitrios; Deshpande, Gopikrishna; Krueger, Frank; Thornburg, Matthew P; Grafman, Jordan Henry

    2014-02-01

    We previously demonstrated with functional magnetic resonance imaging (fMRI) that religious belief depends upon three cognitive dimensions, which can be mapped to specific brain regions. In the present study, we considered these co-activated regions as nodes of three networks each one corresponding to a particular dimension, corresponding to each dimension and examined the causal flow within and between these networks to address two important hypotheses that remained untested in our previous work. First, we hypothesized that regions involved in theory of mind (ToM) are located upstream the causal flow and drive non-ToM regions, in line with theories attributing religion to the evolution of ToM. Second, we hypothesized that differences in directional connectivity are associated with differences in religiosity. To test these hypotheses, we performed a multivariate Granger causality-based directional connectivity analysis of fMRI data to demonstrate the causal flow within religious belief-related networks. Our results supported both hypotheses. Religious subjects preferentially activated a pathway from inferolateral to dorsomedial frontal cortex to monitor the intent and involvement of supernatural agents (SAs; intent-related ToM). Perception of SAs engaged pathways involved in fear regulation and affective ToM. Religious beliefs are founded both on propositional statements for doctrine, but also on episodic memory and imagery. Beliefs based on doctrine engaged a pathway from Broca's to Wernicke's language areas. Beliefs related to everyday life experiences engaged pathways involved in imagery. Beliefs implying less involved SAs and evoking imagery activated a pathway from right lateral temporal to occipital regions. This pathway was more active in non-religious compared to religious subjects, suggesting greater difficulty and procedural demands for imagining and processing the intent of SAs. Insights gained by Granger connectivity analysis inform us about the causal

  19. Nonlinear functional connectivity network recovery in the human brain with mutual connectivity analysis (MCA): convergent cross-mapping and non-metric clustering

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Abidin, Anas Z.; D'Souza, Adora M.; Wang, Xixi; Hobbs, Susan K.; Leistritz, Lutz; Nagarajan, Mahesh B.

    2015-03-01

    We explore a computational framework for functional connectivity analysis in resting-state functional MRI (fMRI) data acquired from the human brain for recovering the underlying network structure and understanding causality between network components. Termed mutual connectivity analysis (MCA), this framework involves two steps, the first of which is to evaluate the pair-wise cross-prediction performance between fMRI pixel time series within the brain. In a second step, the underlying network structure is subsequently recovered from the affinity matrix using non-metric network clustering approaches, such as the so-called Louvain method. Finally, we use convergent cross-mapping (CCM) to study causality between different network components. We demonstrate our MCA framework in the problem of recovering the motor cortex network associated with hand movement from resting state fMRI data. Results are compared with a ground truth of active motor cortex regions as identified by a task-based fMRI sequence involving a finger-tapping stimulation experiment. Our results regarding causation between regions of the motor cortex revealed a significant directional variability and were not readily interpretable in a consistent manner across subjects. However, our results on whole-slice fMRI analysis demonstrate that MCA-based model-free recovery of regions associated with the primary motor cortex and supplementary motor area are in close agreement with localization of similar regions achieved with a task-based fMRI acquisition. Thus, we conclude that our MCA methodology can extract and visualize valuable information concerning the underlying network structure between different regions of the brain in resting state fMRI.

  20. Early Brain Response to Low-Dose Radiation Exposure Involves Molecular Networks and Pathways Associated with Cognitive Functions, Advanced Aging and Alzheimer's Disease

    SciTech Connect

    Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J.

    2008-06-06

    Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy, environmental nuclear contamination, as well as earth orbit and space missions. Analyses of transcriptome profiles of murine brain tissue after whole-body radiation showed that low-dose exposures (10 cGy) induced genes not affected by high dose (2 Gy), and low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues, and pathways that were brain tissue specific. Low-dose genes clustered into a saturated network (p < 10{sup -53}) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified 9 neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose radiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down regulated in normal human aging and Alzheimer's disease.

  1. The brain timewise: how timing shapes and supports brain function

    PubMed Central

    Hari, Riitta; Parkkonen, Lauri

    2015-01-01

    We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function. PMID:25823867

  2. The brain timewise: how timing shapes and supports brain function.

    PubMed

    Hari, Riitta; Parkkonen, Lauri

    2015-05-19

    We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.

  3. Altered functional connectivity in the brain default-mode network of earthquake survivors persists after 2 years despite recovery from anxiety symptoms.

    PubMed

    Du, Ming-Ying; Liao, Wei; Lui, Su; Huang, Xiao-Qi; Li, Fei; Kuang, Wei-Hong; Li, Jing; Chen, Hua-Fu; Kendrick, Keith Maurice; Gong, Qi-Yong

    2015-11-01

    Although acute impact of traumatic experiences on brain function in disaster survivors is similar to that observed in post-traumatic stress disorders (PTSD), little is known about the long-term impact of this experience. We have used structural and functional magnetic resonance imaging to investigate resting-state functional connectivity and gray and white matter (WM) changes occurring in the brains of healthy Wenchuan earthquake survivors both 3 weeks and 2 years after the disaster. Results show that while functional connectivity changes 3 weeks after the disaster involved both frontal-limbic-striatal and default-mode networks (DMN), at the 2-year follow-up only changes in the latter persisted, despite complete recovery from high initial levels of anxiety. No gray or WM volume changes were found at either time point. Taken together, our findings provide important new evidence that while altered functional connectivity in the frontal-limbic-striatal network may underlie the post-trauma anxiety experienced by survivors, parallel changes in the DMN persist despite the apparent absence of anxiety symptoms. This suggests that long-term changes occur in neural networks involved in core aspects of self-processing, cognitive and emotional functioning in disaster survivors which are independent of anxiety symptoms and which may also confer increased risk of subsequent development of PTSD. PMID:25862672

  4. Altered functional connectivity in the brain default-mode network of earthquake survivors persists after 2 years despite recovery from anxiety symptoms

    PubMed Central

    Du, Ming-Ying; Liao, Wei; Huang, Xiao-Qi; Li, Fei; Kuang, Wei-Hong; Li, Jing; Chen, Hua-Fu; Kendrick, Keith Maurice; Gong, Qi-Yong

    2015-01-01

    Although acute impact of traumatic experiences on brain function in disaster survivors is similar to that observed in post-traumatic stress disorders (PTSD), little is known about the long-term impact of this experience. We have used structural and functional magnetic resonance imaging to investigate resting-state functional connectivity and gray and white matter (WM) changes occurring in the brains of healthy Wenchuan earthquake survivors both 3 weeks and 2 years after the disaster. Results show that while functional connectivity changes 3 weeks after the disaster involved both frontal–limbic–striatal and default-mode networks (DMN), at the 2-year follow-up only changes in the latter persisted, despite complete recovery from high initial levels of anxiety. No gray or WM volume changes were found at either time point. Taken together, our findings provide important new evidence that while altered functional connectivity in the frontal–limbic–striatal network may underlie the post-trauma anxiety experienced by survivors, parallel changes in the DMN persist despite the apparent absence of anxiety symptoms. This suggests that long-term changes occur in neural networks involved in core aspects of self-processing, cognitive and emotional functioning in disaster survivors which are independent of anxiety symptoms and which may also confer increased risk of subsequent development of PTSD. PMID:25862672

  5. How Should Educational Neuroscience Conceptualise the Relation between Cognition and Brain Function? Mathematical Reasoning as a Network Process

    ERIC Educational Resources Information Center

    Varma, Sashank; Schwartz, Daniel L.

    2008-01-01

    Background: There is increasing interest in applying neuroscience findings to topics in education. Purpose: This application requires a proper conceptualization of the relation between cognition and brain function. This paper considers two such conceptualizations. The area focus understands each cognitive competency as the product of one (and only…

  6. Acupuncture Induces Time-Dependent Remodelling Brain Network on the Stable Somatosensory First-Ever Stroke Patients: Combining Diffusion Tensor and Functional MR Imaging.

    PubMed

    Bai, Lijun; Tao, Yin; Wang, Dan; Wang, Jing; Sun, Chuanzhu; Hao, Nongxiao; Chen, Shangjie; Lao, Lixing

    2014-01-01

    Different treatment interventions induce distinct remodelling of network architecture of entire motor system. Acupuncture has been proved to be of a promising efficacy in motor recovery. However, it is still unclear whether the reorganization of motor-related brain network underlying acupuncture is related with time since stroke and severity of deficit at baseline. The aim of study was to characterize the relation between motor-related brain organization following acupuncture and white matter microstructural changes at an interval of two weeks. We demonstrated that acupuncture induced differential reorganization of motor-related network for stroke patients as time-lapse since stroke. At the baseline, acupuncture can induce the increased functional connectivity between the left primary motor cortex (M1) and the right M1, premotor cortex, supplementary motor area (SMA), thalamus, and cerebellum. After two-week recovery, the increased functional connectivity of the left M1 was more widely distributed and primarily located in the insula, cerebellum, basal ganglia, and SMA. Furthermore, a significant negative relation existed between the FA value in the left M1 at the baseline scanning and node centrality of this region following acupuncture for both baseline and two-week recovery. Our findings may shed a new insight on understanding the reorganization of motor-related theory underlying motor impairments after brain lesions in stroke patients.

  7. High-order interactions observed in multi-task intrinsic networks are dominant indicators of aberrant brain function in schizophrenia

    PubMed Central

    Plis, Sergey M; Sui, Jing; Lane, Terran; Roy, Sushmita; Clark, Vincent P; Potluru, Vamsi K; Huster, Rene J; Michael, Andrew; Sponheim, Scott R; Weisend, Michael P; Calhoun, Vince D

    2013-01-01

    Identifying the complex activity relationships present in rich, modern neuroimaging data sets remains a key challenge for neuroscience. The problem is hard because (a) the underlying spatial and temporal networks may be nonlinear and multivariate and (b) the observed data may be driven by numerous latent factors. Further, modern experiments often produce data sets containing multiple stimulus contexts or tasks processed by the same subjects. Fusing such multi-session data sets may reveal additional structure, but raises further statistical challenges. We present a novel analysis method for extracting complex activity networks from such multifaceted imaging data sets. Compared to previous methods, we choose a new point in the trade-off space, sacrificing detailed generative probability models and explicit latent variable inference in order to achieve robust estimation of multivariate, nonlinear group factors (“network clusters”). We apply our method to identify relationships of task-specific intrinsic networks in schizophrenia patients and control subjects from a large fMRI study. After identifying network-clusters characterized by within- and between-task interactions, we find significant differences between patient and control groups in interaction strength among networks. Our results are consistent with known findings of brain regions exhibiting deviations in schizophrenic patients. However, we also find high-order, nonlinear interactions that discriminate groups but that are not detected by linear, pair-wise methods. We additionally identify high-order relationships that provide new insights into schizophrenia but that have not been found by traditional univariate or second-order methods. Overall, our approach can identify key relationships that are missed by existing analysis methods, without losing the ability to find relationships that are known to be important. PMID:23876245

  8. Flexible brain network reconfiguration supporting inhibitory control

    PubMed Central

    Spielberg, Jeffrey M.; Miller, Gregory A.; Heller, Wendy; Banich, Marie T.

    2015-01-01

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties. PMID:26216985

  9. Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings.

    PubMed

    Bathelt, Joe; O'Reilly, Helen; Clayden, Jonathan D; Cross, J Helen; de Haan, Michelle

    2013-11-15

    There is increasing interest in applying connectivity analysis to brain measures (Rubinov and Sporns, 2010), but most studies have relied on fMRI, which substantially limits the participant groups and numbers that can be studied. High-density EEG recordings offer a comparatively inexpensive easy-to-use alternative, but require channel-level connectivity analysis which currently lacks a common analytic framework and is very limited in spatial resolution. To address this problem, we have developed a new technique for studies of network development that overcomes the spatial constraint and obtains functional networks of cortical areas by using EEG source reconstruction with age-matched average MRI templates (He et al., 1999). In contrast to previously reported channel-level analysis, this approach provides information about the cortical areas most likely to be involved in the network as well as their functional relationship (Babiloni et al., 2005; De Vico Fallani et al., 2007). In this study, we applied source reconstruction with age-matched templates to task-free high-density EEG recordings in typically-developing children between 2 and 6 years of age (O'Reilly, 2012). Graph theory was then applied to the association strengths of 68 cortical regions of interest based on the Desikan-Killiany atlas. We found linear increases of mean node degree, mean clustering coefficient and maximum betweenness centrality between 2 years and 6 years of age. Characteristic path length was negatively correlated with age. The correlation of the network measures with age indicates network development towards more closely integrated networks similar to reports from other imaging modalities (Fair et al., 2008; Power et al., 2010). We also applied eigenvalue decomposition to obtain functional modules (Clayden et al., 2013). Connection strength within these modules did not change with age, and the modules resembled hub networks previously described for MRI (Hagmann et al., 2010; Power et al

  10. Structural covariance networks in the mouse brain.

    PubMed

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks.

  11. Genomic connectivity networks based on the BrainSpan atlas of the developing human brain

    NASA Astrophysics Data System (ADS)

    Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.

    2014-03-01

    The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.

  12. Network effects of deep brain stimulation

    PubMed Central

    Alhourani, Ahmad; McDowell, Michael M.; Randazzo, Michael J.; Wozny, Thomas A.; Kondylis, Efstathios D.; Lipski, Witold J.; Beck, Sarah; Karp, Jordan F.; Ghuman, Avniel S.

    2015-01-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies. PMID:26269552

  13. Network effects of deep brain stimulation.

    PubMed

    Alhourani, Ahmad; McDowell, Michael M; Randazzo, Michael J; Wozny, Thomas A; Kondylis, Efstathios D; Lipski, Witold J; Beck, Sarah; Karp, Jordan F; Ghuman, Avniel S; Richardson, R Mark

    2015-10-01

    The ability to differentially alter specific brain functions via deep brain stimulation (DBS) represents a monumental advance in clinical neuroscience, as well as within medicine as a whole. Despite the efficacy of DBS in the treatment of movement disorders, for which it is often the gold-standard therapy when medical management becomes inadequate, the mechanisms through which DBS in various brain targets produces therapeutic effects is still not well understood. This limited knowledge is a barrier to improving efficacy and reducing side effects in clinical brain stimulation. A field of study related to assessing the network effects of DBS is gradually emerging that promises to reveal aspects of the underlying pathophysiology of various brain disorders and their response to DBS that will be critical to advancing the field. This review summarizes the nascent literature related to network effects of DBS measured by cerebral blood flow and metabolic imaging, functional imaging, and electrophysiology (scalp and intracranial electroencephalography and magnetoencephalography) in order to establish a framework for future studies.

  14. Clustering-led complex brain networks approach.

    PubMed

    Liu, Dazhong; Zhong, Ning

    2014-01-01

    This paper reviewed the meaning of the statistic index and the properties of the complex network models and their physiological explanation. By analyzing existing problems and construction strategies, this paper attempted to construct complex brain networks from a different point of view: that of clustering first and constructing the brain network second. A clustering-guided (or led) construction strategy towards complex brain networks was proposed. The research focused on the discussion of the task-induced brain network. To discover different networks in a single run, a combined-clusters method was applied. Afterwards, a complex local brain network was formed with a complex network method on voxels. In a real test dataset, it was found that the network had small-world characteristics and had no significant scale-free properties. Meanwhile, some key bridge nodes and their characteristics were identified in the local network by calculating the betweenness centrality.

  15. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis

    PubMed Central

    Zhang, Yang; Lu, Shan; Liu, Chunlei; Zhang, Huimei; Zhou, Xuanhe; Ni, Changlin; Qin, Wen; Zhang, Quan

    2016-01-01

    Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associations with cognitive and clinical variables. Twenty complication-free T2DM patients and 19 matched healthy controls (HCs) were enrolled, and fMRI data were acquired during a block-designed 1-back WM task. The WM metrics of the T2DM patients showed no differences compared with those of the HCs, except for a slightly lower accuracy rate in the T2DM patients. Compared with the HCs, the T2DM patients demonstrated increased activation within their WM fronto-parietal networks, and activation strength was significantly correlated with WM performance. The T2DM patients also showed decreased FC within and between their WM networks. Our results indicate that the functional integration of WM sub-networks was disrupted in the complication-free T2DM patients and that strengthened regional activity in fronto-parietal networks may compensate for the WM impairment caused by T2DM. PMID:27021340

  16. Modeling fluctuations in default-mode brain network using a spiking neural network.

    PubMed

    Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko

    2012-08-01

    Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range. PMID:22830966

  17. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network.

    PubMed

    Toppi, J; De Vico Fallani, F; Vecchiato, G; Maglione, A G; Cincotti, F; Mattia, D; Salinari, S; Babiloni, F; Astolfi, L

    2012-01-01

    The application of Graph Theory to the brain connectivity patterns obtained from the analysis of neuroelectrical signals has provided an important step to the interpretation and statistical analysis of such functional networks. The properties of a network are derived from the adjacency matrix describing a connectivity pattern obtained by one of the available functional connectivity methods. However, no common procedure is currently applied for extracting the adjacency matrix from a connectivity pattern. To understand how the topographical properties of a network inferred by means of graph indices can be affected by this procedure, we compared one of the methods extensively used in Neuroscience applications (i.e. fixing the edge density) with an approach based on the statistical validation of achieved connectivity patterns. The comparison was performed on the basis of simulated data and of signals acquired on a polystyrene head used as a phantom. The results showed (i) the importance of the assessing process in discarding the occurrence of spurious links and in the definition of the real topographical properties of the network, and (ii) a dependence of the small world properties obtained for the phantom networks from the spatial correlation of the neighboring electrodes.

  18. The elusive concept of brain network. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry

    2014-09-01

    As the poet John Donne said of man - "No man is an island entire of itself; every man is a piece of the continent, a part of the main." - so the neuroscience research community now says of brain areas. This is the topic that Luiz Pessoa expands upon in his thorough review of the paradigm shift that has occurred in much of brain research, especially in cognitive neuroscience [1]. His key point is made explicitly in the Abstract: "I argue that a network perspective should supplement the common strategy of understanding the brain in terms of individual regions." In his review, Pessoa covers a large range of topics, including how the network perspective changes the way in which one views the structure-function relationship between brain and behavior, the importance of context in ascertaining how a brain region functions, and the notion of emergent properties as a network feature. Also discussed is graph theory, one of the important mathematical methods used to analyze and describe network structure and function.

  19. Broadband Criticality of Human Brain Network Synchronization

    PubMed Central

    Kitzbichler, Manfred G.; Smith, Marie L.; Christensen, Søren R.; Bullmore, Ed

    2009-01-01

    Self-organized criticality is an attractive model for human brain dynamics, but there has been little direct evidence for its existence in large-scale systems measured by neuroimaging. In general, critical systems are associated with fractal or power law scaling, long-range correlations in space and time, and rapid reconfiguration in response to external inputs. Here, we consider two measures of phase synchronization: the phase-lock interval, or duration of coupling between a pair of (neurophysiological) processes, and the lability of global synchronization of a (brain functional) network. Using computational simulations of two mechanistically distinct systems displaying complex dynamics, the Ising model and the Kuramoto model, we show that both synchronization metrics have power law probability distributions specifically when these systems are in a critical state. We then demonstrate power law scaling of both pairwise and global synchronization metrics in functional MRI and magnetoencephalographic data recorded from normal volunteers under resting conditions. These results strongly suggest that human brain functional systems exist in an endogenous state of dynamical criticality, characterized by a greater than random probability of both prolonged periods of phase-locking and occurrence of large rapid changes in the state of global synchronization, analogous to the neuronal “avalanches” previously described in cellular systems. Moreover, evidence for critical dynamics was identified consistently in neurophysiological systems operating at frequency intervals ranging from 0.05–0.11 to 62.5–125 Hz, confirming that criticality is a property of human brain functional network organization at all frequency intervals in the brain's physiological bandwidth. PMID:19300473

  20. Complex brain networks: From topological communities to clustered dynamics

    NASA Astrophysics Data System (ADS)

    Zemanova, Lucia; Zamora-Lopez, Gorka; Zhou, Changsong; Kurths, Jurgen

    2008-06-01

    Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. A challenging task is to understand the implications of such network structures on the functional organisation of the brain activities. We investigate synchronisation dynamics on the corticocortical network of the cat by modelling each node of the network (cortical area) with a subnetwork of interacting excitable neurons. We find that this network of networks displays clustered synchronisation behaviour and the dynamical clusters closely coincide with the topological community structures observed in the anatomical network. The correlation between the firing rate of the areas and the areal intensity is additionally examined. Our results provide insights into the relationship between the global organisation and the functional specialisation of the brain cortex.

  1. Strengthening connections: functional connectivity and brain plasticity.

    PubMed

    Kelly, Clare; Castellanos, F Xavier

    2014-03-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist's toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypotheses for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology.

  2. Strengthening connections: functional connectivity and brain plasticity

    PubMed Central

    Kelly, Clare; Castellanos, F. Xavier

    2014-01-01

    The ascendancy of functional neuroimaging has facilitated the addition of network-based approaches to the neuropsychologist’s toolbox for evaluating the sequelae of brain insult. In particular, intrinsic functional connectivity (iFC) mapping of resting state fMRI (R-fMRI) data constitutes an ideal approach to measuring macro-scale networks in the human brain. Beyond the value of iFC mapping for charting how the functional topography of the brain is altered by insult and injury, iFC analyses can provide insights into effects of experience-dependent plasticity at the macro level of large-scale functional networks. Such insights are foundational to the design of training and remediation interventions that will best facilitate recovery of function. In this review, we consider what is currently known about the origin and function of iFC in the brain, and how this knowledge is informative in neuropsychological settings. We then summarize studies that have examined experience-driven plasticity of iFC in healthy control participants, and frame these findings in terms of a schema that may aid in the interpretation of results and the generation of hypothesis for rehabilitative studies. Finally, we outline some caveats to the R-fMRI approach, as well as some current developments that are likely to bolster the utility of the iFC paradigm for neuropsychology. PMID:24496903

  3. Resting state brain networks and their implications in neurodegenerative disease

    NASA Astrophysics Data System (ADS)

    Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong

    2012-10-01

    Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.

  4. Brain networks: The next steps. Comment on: “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Calhoun, Vince D.

    2014-09-01

    The study of brain function from the perspective of whole brain networks has been a focus within the brain imaging community for many years, but has not yet overtaken the traditional approach of focusing on a specific region or set of regions. Pessoa [1] provides a very nice summary of the many reasons why network-based approaches should be used more commonly while also outlining the open questions and challenges, many of which also exist for the predominant region-based approach. One important point to frame the problem well, however, is to define carefully what is meant by the term network, which can be used in many different ways. Pessoa's definition is consistent with that used in the network science field, that is, a graph theoretical perspective based on nodes and edges, though other (useful) definitions are also quite widely used in the brain imaging community and should not be discounted [2]. The concept of networks is a very powerful tool for studying the brain, and also for potentially pointing us to regions that are at high-risk or potentially especially important to protect (or the oft undervalued weak but wide-spread connections as Pessoa points out).

  5. Episodic memory in aspects of large-scale brain networks

    PubMed Central

    Jeong, Woorim; Chung, Chun Kee; Kim, June Sic

    2015-01-01

    Understanding human episodic memory in aspects of large-scale brain networks has become one of the central themes in neuroscience over the last decade. Traditionally, episodic memory was regarded as mostly relying on medial temporal lobe (MTL) structures. However, recent studies have suggested involvement of more widely distributed cortical network and the importance of its interactive roles in the memory process. Both direct and indirect neuro-modulations of the memory network have been tried in experimental treatments of memory disorders. In this review, we focus on the functional organization of the MTL and other neocortical areas in episodic memory. Task-related neuroimaging studies together with lesion studies suggested that specific sub-regions of the MTL are responsible for specific components of memory. However, recent studies have emphasized that connectivity within MTL structures and even their network dynamics with other cortical areas are essential in the memory process. Resting-state functional network studies also have revealed that memory function is subserved by not only the MTL system but also a distributed network, particularly the default-mode network (DMN). Furthermore, researchers have begun to investigate memory networks throughout the entire brain not restricted to the specific resting-state network (RSN). Altered patterns of functional connectivity (FC) among distributed brain regions were observed in patients with memory impairments. Recently, studies have shown that brain stimulation may impact memory through modulating functional networks, carrying future implications of a novel interventional therapy for memory impairment. PMID:26321939

  6. Alterations in the functional connectivity of a verbal working memory-related brain network in patients with left temporal lobe epilepsy.

    PubMed

    Huang, Wenli; Huang, Donghong; Chen, Zirong; Ye, Wei; Lv, Zongxia; Diao, Limei; Zheng, Jinou

    2015-08-18

    The aim of this study was to investigate the alterations in a verbal working memory (VWM)-related network in left temporal lobe epilepsy (lTLE) at rest. We evaluated 14 patients with lTLE and 14 control subjects by resting-state functional connectivity (RSFC). The region of interest was defined by the voxel with the highest Z-score during a VWM task according to functional magnetic resonance imaging in 16 healthy volunteers. Our study revealed that the network of RSFC was similar to the task-induced network in the healthy volunteers. Moreover, the patients with lTLE exhibited significantly decreased RSFC in the bilateral middle frontal gyrus, the inferior frontal gyrus and the inferior parietal lobule at rest compared to the control subjects. We found no significant correlation between the mean reaction time of the accurate responses in a 2-back task and the mean z-values within the regions that exhibited significant differences in RSFC at the individual level. The alterations in FCs of VWM-related network in lTLE suggested that epileptiform discharges can damage the brain regions, both local focus and remote areas and that the alterations were not associated with VWM performance. PMID:26101832

  7. Functional interrelationship of brain aging and delirium.

    PubMed

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium. PMID:25998952

  8. Functional interrelationship of brain aging and delirium.

    PubMed

    Rapazzini, Piero

    2016-02-01

    Theories on the development of delirium are complementary rather than competing and they may relate to each other. Here, we highlight that similar alterations in functional brain connectivity underlie both the observed age-related deficits and episodes of delirium. The default mode network (DMN) is a group of brain regions showing a greater level of activity at rest than during attention-based tasks. These regions include the posteromedial-anteromedial cortices and temporoparietal junctions. Evidence suggests that awareness is subserved through higher order neurons associated with the DMN. By using functional MRI disruption of DMN, connectivity and weaker task-induced deactivations of these regions are observed both in age-related cognitive impairment and during episodes of delirium. We can assume that an acute up-regulation of inhibitory tone within the brain acts to further disrupt network connectivity in vulnerable patients, who are predisposed by a reduced baseline connectivity, and triggers the delirium.

  9. Scaling in topological properties of brain networks

    PubMed Central

    Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T.; Lewis, John D.; Evans, Alan C.; Ishrat, Romana; Sharma, B. Indrajit; Singh, R. K. Brojen

    2016-01-01

    The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks. PMID:27112129

  10. Scaling in topological properties of brain networks.

    PubMed

    Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T; Lewis, John D; Evans, Alan C; Ishrat, Romana; Sharma, B Indrajit; Singh, R K Brojen

    2016-01-01

    The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks. PMID:27112129

  11. Scaling in topological properties of brain networks.

    PubMed

    Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T; Lewis, John D; Evans, Alan C; Ishrat, Romana; Sharma, B Indrajit; Singh, R K Brojen

    2016-04-26

    The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks.

  12. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments. PMID:23707901

  13. Brain activity mapping in Mecp2 mutant mice reveals functional deficits in forebrain circuits, including key nodes in the default mode network, that are reversed with ketamine treatment.

    PubMed

    Kron, Miriam; Howell, C James; Adams, Ian T; Ransbottom, Michael; Christian, Diana; Ogier, Michael; Katz, David M

    2012-10-01

    Excitatory-inhibitory imbalance has been identified within specific brain microcircuits in models of Rett syndrome (RTT) and other autism spectrum disorders (ASDs). However, macrocircuit dysfunction across the RTT brain as a whole has not been defined. To approach this issue, we mapped expression of the activity-dependent, immediate-early gene product Fos in the brains of wild-type (Wt) and methyl-CpG-binding protein 2 (Mecp2)-null (Null) mice, a model of RTT, before and after the appearance of overt symptoms (3 and 6 weeks of age, respectively). At 6 weeks, Null mice exhibit significantly less Fos labeling than Wt in limbic cortices and subcortical structures, including key nodes in the default mode network. In contrast, Null mice exhibit significantly more Fos labeling than Wt in the hindbrain, most notably in cardiorespiratory regions of the nucleus tractus solitarius (nTS). Using nTS as a model, whole-cell recordings demonstrated that increased Fos expression in Nulls at 6 weeks of age is associated with synaptic hyperexcitability, including increased frequency of spontaneous and miniature EPSCs and increased amplitude of evoked EPSCs in Nulls. No such effect of genotype on Fos or synaptic function was seen at 3 weeks. In the mutant forebrain, reduced Fos expression, as well as abnormal sensorimotor function, were reversed by the NMDA receptor antagonist ketamine. In light of recent findings that the default mode network is hypoactive in autism, our data raise the possibility that hypofunction within this meta-circuit is a shared feature of RTT and other ASDs and is reversible. PMID:23035095

  14. Complex modular structure of large-scale brain networks

    NASA Astrophysics Data System (ADS)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  15. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions.

  16. The modular and integrative functional architecture of the human brain.

    PubMed

    Bertolero, Maxwell A; Yeo, B T Thomas; D'Esposito, Mark

    2015-12-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules' processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author-topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network's modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules' functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain's modular yet integrated implementation of cognitive functions. PMID:26598686

  17. Brain Network Interactions in Auditory, Visual and Linguistic Processing

    ERIC Educational Resources Information Center

    Horwitz, Barry; Braun, Allen R.

    2004-01-01

    In the paper, we discuss the importance of network interactions between brain regions in mediating performance of sensorimotor and cognitive tasks, including those associated with language processing. Functional neuroimaging, especially PET and fMRI, provide data that are obtained essentially simultaneously from much of the brain, and thus are…

  18. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  19. Estimating brain's functional graph from the structural graph's Laplacian

    NASA Astrophysics Data System (ADS)

    Abdelnour, F.; Dayan, M.; Devinsky, O.; Thesen, T.; Raj, A.

    2015-09-01

    The interplay between the brain's function and structure has been of immense interest to the neuroscience and connectomics communities. In this work we develop a simple linear model relating the structural network and the functional network. We propose that the two networks are related by the structural network's Laplacian up to a shift. The model is simple to implement and gives accurate prediction of function's eigenvalues at the subject level and its eigenvectors at group level.

  20. Mutated Genes in Schizophrenia Map to Brain Networks

    MedlinePlus

    ... 2013 Mutated Genes in Schizophrenia Map to Brain Networks Schizophrenia networks in the prefrontal cortex area of the brain. ... of spontaneous mutations in genes that form a network in the front region of the brain. The ...

  1. Lead poisoning and brain cell function

    SciTech Connect

    Goldstein, G.W. Kennedy Institute, Baltimore, MD )

    1990-11-01

    Exposure to excessive amounts of inorganic lead during the toddler years may produce lasting adverse effects upon brain function. Maximal ingestion of lead occurs at an age when major changes are occurring in the density of brain synaptic connections. The developmental reorganization of synapses is, in part, mediated by protein kinases, and these enzymes are particularly sensitive to stimulation by lead. By inappropriately activating specific protein kinases, lead poisoning may disrupt the development of neural networks without producing overt pathological alterations. The blood-brain barrier is another potential vulnerable site for the neurotoxic action of lead. protein kinases appear to regulate the development of brain capillaries and the expression of the blood-brain barrier properties. Stimulation of protein kinase by lead may disrupt barrier development and alter the precise regulation of the neuronal environment that is required for normal brain function. Together, these findings suggest that the sensitivity of protein kinases to lead may in part underlie the brain dysfunction observed in children poisoned by this toxicant.

  2. The Virtual Brain: a simulator of primate brain network dynamics.

    PubMed

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.

  3. The Virtual Brain: a simulator of primate brain network dynamics

    PubMed Central

    Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198

  4. The Virtual Brain: a simulator of primate brain network dynamics.

    PubMed

    Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2013-01-01

    We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198

  5. Functional Molecular Ecological Networks

    PubMed Central

    Zhou, Jizhong; Deng, Ye; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-01-01

    Biodiversity and its responses to environmental changes are central issues in ecology and for society. Almost all microbial biodiversity research focuses on “species” richness and abundance but not on their interactions. Although a network approach is powerful in describing ecological interactions among species, defining the network structure in a microbial community is a great challenge. Also, although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity are well established, its influences on belowground microbial communities, especially microbial interactions, are poorly understood. Here, a random matrix theory (RMT)-based conceptual framework for identifying functional molecular ecological networks was developed with the high-throughput functional gene array hybridization data of soil microbial communities in a long-term grassland FACE (free air, CO2 enrichment) experiment. Our results indicate that RMT is powerful in identifying functional molecular ecological networks in microbial communities. Both functional molecular ecological networks under eCO2 and ambient CO2 (aCO2) possessed the general characteristics of complex systems such as scale free, small world, modular, and hierarchical. However, the topological structures of the functional molecular ecological networks are distinctly different between eCO2 and aCO2, at the levels of the entire communities, individual functional gene categories/groups, and functional genes/sequences, suggesting that eCO2 dramatically altered the network interactions among different microbial functional genes/populations. Such a shift in network structure is also significantly correlated with soil geochemical variables. In short, elucidating network interactions in microbial communities and their responses to environmental changes is fundamentally important for research in microbial ecology, systems microbiology, and global change. PMID:20941329

  6. The integration of large-scale neural network modeling and functional brain imaging in speech motor control

    PubMed Central

    Golfinopoulos, E.; Tourville, J.A.; Guenther, F.H.

    2009-01-01

    Speech production demands a number of integrated processing stages. The system must encode the speech motor programs that command movement trajectories of the articulators and monitor transient spatiotemporal variations in auditory and somatosensory feedback. Early models of this system proposed that independent neural regions perform specialized speech processes. As technology advanced, neuroimaging data revealed that the dynamic sensorimotor processes of speech require a distributed set of interacting neural regions. The DIVA (Directions into Velocities of Articulators) neurocomputational model elaborates on early theories, integrating existing data and contemporary ideologies, to provide a mechanistic account of acoustic, kinematic, and functional magnetic resonance imaging (fMRI) data on speech acquisition and production. This large-scale neural network model is composed of several interconnected components whose cell activities and synaptic weight strengths are governed by differential equations. Cells in the model are associated with neuroanatomical substrates and have been mapped to locations in Montreal Neurological Institute stereotactic space, providing a means to compare simulated and empirical fMRI data. The DIVA model also provides a computational and neurophysiological framework within which to interpret and organize research on speech acquisition and production in fluent and dysfluent child and adult speakers. The purpose of this review article is to demonstrate how the DIVA model is used to motivate and guide functional imaging studies. We describe how model predictions are evaluated using voxel-based, region-of-interest-based parametric analyses and inter-regional effective connectivity modeling of fMRI data. PMID:19837177

  7. The integration of large-scale neural network modeling and functional brain imaging in speech motor control.

    PubMed

    Golfinopoulos, E; Tourville, J A; Guenther, F H

    2010-09-01

    Speech production demands a number of integrated processing stages. The system must encode the speech motor programs that command movement trajectories of the articulators and monitor transient spatiotemporal variations in auditory and somatosensory feedback. Early models of this system proposed that independent neural regions perform specialized speech processes. As technology advanced, neuroimaging data revealed that the dynamic sensorimotor processes of speech require a distributed set of interacting neural regions. The DIVA (Directions into Velocities of Articulators) neurocomputational model elaborates on early theories, integrating existing data and contemporary ideologies, to provide a mechanistic account of acoustic, kinematic, and functional magnetic resonance imaging (fMRI) data on speech acquisition and production. This large-scale neural network model is composed of several interconnected components whose cell activities and synaptic weight strengths are governed by differential equations. Cells in the model are associated with neuroanatomical substrates and have been mapped to locations in Montreal Neurological Institute stereotactic space, providing a means to compare simulated and empirical fMRI data. The DIVA model also provides a computational and neurophysiological framework within which to interpret and organize research on speech acquisition and production in fluent and dysfluent child and adult speakers. The purpose of this review article is to demonstrate how the DIVA model is used to motivate and guide functional imaging studies. We describe how model predictions are evaluated using voxel-based, region-of-interest-based parametric analyses and inter-regional effective connectivity modeling of fMRI data.

  8. Small-World Propensity and Weighted Brain Networks

    NASA Astrophysics Data System (ADS)

    Muldoon, Sarah Feldt; Bridgeford, Eric W.; Bassett, Danielle S.

    2016-02-01

    Quantitative descriptions of network structure can provide fundamental insights into the function of interconnected complex systems. Small-world structure, diagnosed by high local clustering yet short average path length between any two nodes, promotes information flow in coupled systems, a key function that can differ across conditions or between groups. However, current techniques to quantify small-worldness are density dependent and neglect important features such as the strength of network connections, limiting their application in real-world systems. Here, we address both limitations with a novel metric called the Small-World Propensity (SWP). In its binary instantiation, the SWP provides an unbiased assessment of small-world structure in networks of varying densities. We extend this concept to the case of weighted brain networks by developing (i) a standardized procedure for generating weighted small-world networks, (ii) a weighted extension of the SWP, and (iii) a method for mapping observed brain network data onto the theoretical model. In applying these techniques to compare real-world brain networks, we uncover the surprising fact that the canonical biological small-world network, the C. elegans neuronal network, has strikingly low SWP. These metrics, models, and maps form a coherent toolbox for the assessment and comparison of architectural properties in brain networks.

  9. Small-World Propensity and Weighted Brain Networks

    PubMed Central

    Muldoon, Sarah Feldt; Bridgeford, Eric W.; Bassett, Danielle S.

    2016-01-01

    Quantitative descriptions of network structure can provide fundamental insights into the function of interconnected complex systems. Small-world structure, diagnosed by high local clustering yet short average path length between any two nodes, promotes information flow in coupled systems, a key function that can differ across conditions or between groups. However, current techniques to quantify small-worldness are density dependent and neglect important features such as the strength of network connections, limiting their application in real-world systems. Here, we address both limitations with a novel metric called the Small-World Propensity (SWP). In its binary instantiation, the SWP provides an unbiased assessment of small-world structure in networks of varying densities. We extend this concept to the case of weighted brain networks by developing (i) a standardized procedure for generating weighted small-world networks, (ii) a weighted extension of the SWP, and (iii) a method for mapping observed brain network data onto the theoretical model. In applying these techniques to compare real-world brain networks, we uncover the surprising fact that the canonical biological small-world network, the C. elegans neuronal network, has strikingly low SWP. These metrics, models, and maps form a coherent toolbox for the assessment and comparison of architectural properties in brain networks. PMID:26912196

  10. Small-World Propensity and Weighted Brain Networks.

    PubMed

    Muldoon, Sarah Feldt; Bridgeford, Eric W; Bassett, Danielle S

    2016-02-25

    Quantitative descriptions of network structure can provide fundamental insights into the function of interconnected complex systems. Small-world structure, diagnosed by high local clustering yet short average path length between any two nodes, promotes information flow in coupled systems, a key function that can differ across conditions or between groups. However, current techniques to quantify small-worldness are density dependent and neglect important features such as the strength of network connections, limiting their application in real-world systems. Here, we address both limitations with a novel metric called the Small-World Propensity (SWP). In its binary instantiation, the SWP provides an unbiased assessment of small-world structure in networks of varying densities. We extend this concept to the case of weighted brain networks by developing (i) a standardized procedure for generating weighted small-world networks, (ii) a weighted extension of the SWP, and (iii) a method for mapping observed brain network data onto the theoretical model. In applying these techniques to compare real-world brain networks, we uncover the surprising fact that the canonical biological small-world network, the C. elegans neuronal network, has strikingly low SWP. These metrics, models, and maps form a coherent toolbox for the assessment and comparison of architectural properties in brain networks.

  11. Dynamics of brain networks in the aesthetic appreciation.

    PubMed

    Cela-Conde, Camilo J; García-Prieto, Juan; Ramasco, José J; Mirasso, Claudio R; Bajo, Ricardo; Munar, Enric; Flexas, Albert; del-Pozo, Francisco; Maestú, Fernando

    2013-06-18

    Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction.

  12. Dynamics of brain networks in the aesthetic appreciation

    PubMed Central

    Cela-Conde, Camilo J.; García-Prieto, Juan; Ramasco, José J.; Mirasso, Claudio R.; Bajo, Ricardo; Munar, Enric; Flexas, Albert; del-Pozo, Francisco; Maestú, Fernando

    2013-01-01

    Neuroimage experiments have been essential for identifying active brain networks. During cognitive tasks as in, e.g., aesthetic appreciation, such networks include regions that belong to the default mode network (DMN). Theoretically, DMN activity should be interrupted during cognitive tasks demanding attention, as is the case for aesthetic appreciation. Analyzing the functional connectivity dynamics along three temporal windows and two conditions, beautiful and not beautiful stimuli, here we report experimental support for the hypothesis that aesthetic appreciation relies on the activation of two different networks, an initial aesthetic network and a delayed aesthetic network, engaged within distinct time frames. Activation of the DMN might correspond mainly to the delayed aesthetic network. We discuss adaptive and evolutionary explanations for the relationships existing between the DMN and aesthetic networks and offer unique inputs to debates on the mind/brain interaction. PMID:23754437

  13. Structural and functional connectivity in traumatic brain injury

    PubMed Central

    Xiao, Hui; Yang, Yang; Xi, Ji-hui; Chen, Zi-qian

    2015-01-01

    Traumatic brain injury survivors often experience cognitive deficits and neuropsychiatric symptoms. However, the neurobiological mechanisms underlying specific impairments are not fully understood. Advances in neuroimaging techniques (such as diffusion tensor imaging and functional MRI) have given us new insights on structural and functional connectivity patterns of the human brain in both health and disease. The connectome derived from connectivity maps reflects the entire constellation of distributed brain networks. Using these powerful neuroimaging approaches, changes at the microstructural level can be detected through regional and global properties of neuronal networks. Here we will review recent developments in the study of brain network abnormalities in traumatic brain injury, mainly focusing on structural and functional connectivity. Some connectomic studies have provided interesting insights into the neurological dysfunction that occurs following traumatic brain injury. These techniques could eventually be helpful in developing imaging biomarkers of cognitive and neurobehavioral sequelae, as well as predicting outcome and prognosis. PMID:26889200

  14. Role of physical and mental training in brain network configuration.

    PubMed

    Foster, Philip P

    2015-01-01

    It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of "energy cost-driven small-world network disorder" with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brainbrain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be

  15. Role of physical and mental training in brain network configuration.

    PubMed

    Foster, Philip P

    2015-01-01

    It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of "energy cost-driven small-world network disorder" with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brainbrain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be

  16. Role of physical and mental training in brain network configuration

    PubMed Central

    Foster, Philip P.

    2015-01-01

    It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of “energy cost-driven small-world network disorder” with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brainbrain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be

  17. Functional brain mapping of psychopathology

    PubMed Central

    Honey, G; Fletcher, P; Bullmore, E

    2002-01-01

    In this paper, we consider the impact that the novel functional neuroimaging techniques may have upon psychiatric illness. Functional neuroimaging has rapidly developed as a powerful tool in cognitive neuroscience and, in recent years, has seen widespread application in psychiatry. Although such studies have produced evidence for abnormal patterns of brain response in association with some pathological conditions, the core pathophysiologies remain unresolved. Although imaging techniques provide an unprecedented opportunity for investigation of physiological function of the living human brain, there are fundamental questions and assumptions which remain to be addressed. In this review we examine these conceptual issues under three broad sections: (1) characterising the clinical population of interest, (2) defining appropriate levels of description of normal brain function, and (3) relating these models to pathophysiological conditions. Parallel advances in each of these questions will be required before imaging techniques can impact on clinical decisions in psychiatry. PMID:11909899

  18. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study.

    PubMed

    Abbas, Kausar; Shenk, Trey E; Poole, Victoria N; Breedlove, Evan L; Leverenz, Larry J; Nauman, Eric A; Talavage, Thomas M; Robinson, Meghan E

    2015-03-01

    Long-term neurological damage as a result of head trauma while playing sports is a major concern for football athletes today. Repetitive concussions have been linked to many neurological disorders. Recently, it has been reported that repetitive subconcussive events can be a significant source of accrued damage. Since football athletes can experience hundreds of subconcussive hits during a single season, it is of utmost importance to understand their effect on brain health in the short and long term. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was used to study changes in the default mode network (DMN) after repetitive subconcussive mild traumatic brain injury. Twenty-two high school American football athletes, clinically asymptomatic, were scanned using the rs-fMRI for a single season. Baseline scans were acquired before the start of the season, and follow-up scans were obtained during and after the season to track the potential changes in the DMN as a result of experienced trauma. Ten noncollision-sport athletes were scanned over two sessions as controls. Overall, football athletes had significantly different functional connectivity measures than controls for most of the year. The presence of this deviation of football athletes from their healthy peers even before the start of the season suggests a neurological change that has accumulated over the years of playing the sport. Football athletes also demonstrate short-term changes relative to their own baseline at the start of the season. Football athletes exhibited hyperconnectivity in the DMN compared to controls for most of the sessions, which indicates that, despite the absence of symptoms typically associated with concussion, the repetitive trauma accrued produced long-term brain changes compared to their healthy peers.

  19. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life.

  20. Brain network activity in monolingual and bilingual older adults.

    PubMed

    Grady, Cheryl L; Luk, Gigi; Craik, Fergus I M; Bialystok, Ellen

    2015-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  1. Brain Network Activity in Monolingual and Bilingual Older Adults

    PubMed Central

    Grady, Cheryl L.; Luk, Gigi; Craik, Fergus I.M.; Bialystok, Ellen

    2016-01-01

    Bilingual older adults typically have better performance on tasks of executive control (EC) than do their monolingual peers, but differences in brain activity due to language experience are not well understood. Based on studies showing a relation between the dynamic range of brain network activity and performance on EC tasks, we hypothesized that life-long bilingual older adults would show increased functional connectivity relative to monolinguals in networks related to EC. We assessed intrinsic functional connectivity and modulation of activity in task vs. fixation periods in two brain networks that are active when EC is engaged, the frontoparietal control network (FPC) and the salience network (SLN). We also examined the default mode network (DMN), which influences behavior through reduced activity during tasks. We found stronger intrinsic functional connectivity in the FPC and DMN in bilinguals than in monolinguals. Although there were no group differences in the modulation of activity across tasks and fixation, bilinguals showed stronger correlations than monolinguals between intrinsic connectivity in the FPC and task-related increases of activity in prefrontal and parietal regions. This bilingual difference in network connectivity suggests that language experience begun in childhood and continued throughout adulthood influences brain networks in ways that may provide benefits in later life. PMID:25445783

  2. Pain: A Distributed Brain Information Network?

    PubMed Central

    Mano, Hiroaki; Seymour, Ben

    2015-01-01

    Understanding how pain is processed in the brain has been an enduring puzzle, because there doesn't appear to be a single “pain cortex” that directly codes the subjective perception of pain. An emerging concept is that, instead, pain might emerge from the coordinated activity of an integrated brain network. In support of this view, Woo and colleagues present evidence that distinct brain networks support the subjective changes in pain that result from nociceptive input and self-directed cognitive modulation. This evidence for the sensitivity of distinct neural subsystems to different aspects of pain opens up the way to more formal computational network theories of pain. PMID:25562782

  3. Noninvasive brain stimulation: from physiology to network dynamics and back

    PubMed Central

    Dayan, Eran; Censor, Nitzan; Buch, Ethan R; Sandrini, Marco; Cohen, Leonardo G

    2016-01-01

    Noninvasive brain stimulation techniques have been widely used for studying the physiology of the CNS, identifying the functional role of specific brain structures and, more recently, exploring large-scale network dynamics. Here we review key findings that contribute to our understanding of the mechanisms underlying the physiological and behavioral effects of these techniques. We highlight recent innovations using noninvasive stimulation to investigate global brain network dynamics and organization. New combinations of these techniques, in conjunction with neuroimaging, will further advance the utility of their application. PMID:23799477

  4. The modular and integrative functional architecture of the human brain

    PubMed Central

    Bertolero, Maxwell A.; Yeo, B. T. Thomas; D’Esposito, Mark

    2015-01-01

    Network-based analyses of brain imaging data consistently reveal distinct modules and connector nodes with diverse global connectivity across the modules. How discrete the functions of modules are, how dependent the computational load of each module is to the other modules’ processing, and what the precise role of connector nodes is for between-module communication remains underspecified. Here, we use a network model of the brain derived from resting-state functional MRI (rs-fMRI) data and investigate the modular functional architecture of the human brain by analyzing activity at different types of nodes in the network across 9,208 experiments of 77 cognitive tasks in the BrainMap database. Using an author–topic model of cognitive functions, we find a strong spatial correspondence between the cognitive functions and the network’s modules, suggesting that each module performs a discrete cognitive function. Crucially, activity at local nodes within the modules does not increase in tasks that require more cognitive functions, demonstrating the autonomy of modules’ functions. However, connector nodes do exhibit increased activity when more cognitive functions are engaged in a task. Moreover, connector nodes are located where brain activity is associated with many different cognitive functions. Connector nodes potentially play a role in between-module communication that maintains the modular function of the brain. Together, these findings provide a network account of the brain’s modular yet integrated implementation of cognitive functions. PMID:26598686

  5. Sparse brain network using penalized linear regression

    NASA Astrophysics Data System (ADS)

    Lee, Hyekyoung; Lee, Dong Soo; Kang, Hyejin; Kim, Boong-Nyun; Chung, Moo K.

    2011-03-01

    Sparse partial correlation is a useful connectivity measure for brain networks when it is difficult to compute the exact partial correlation in the small-n large-p setting. In this paper, we formulate the problem of estimating partial correlation as a sparse linear regression with a l1-norm penalty. The method is applied to brain network consisting of parcellated regions of interest (ROIs), which are obtained from FDG-PET images of the autism spectrum disorder (ASD) children and the pediatric control (PedCon) subjects. To validate the results, we check their reproducibilities of the obtained brain networks by the leave-one-out cross validation and compare the clustered structures derived from the brain networks of ASD and PedCon.

  6. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  7. Symbolic function network.

    PubMed

    Eskander, George S; Atiya, Amir F

    2009-05-01

    In this paper a model called symbolic function network (SFN) is introduced; that is based on using elementary functions (for example powers, the exponential function, and the logarithm) as building blocks. The proposed method uses these building blocks to synthesize a function that best fits the training data in a regression framework. The resulting network is of the form of a tree, where adding nodes horizontally means having a summation of elementary functions and adding nodes vertically means concatenating elementary functions. Several new algorithms were proposed to construct the tree based on the concepts of forward greedy search and backward greedy search, together with applying the steepest descent concept. The method is tested on a number of examples and it is shown to exhibit good performance.

  8. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  9. Development of human brain structural networks through infancy and childhood.

    PubMed

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers.

  10. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. |

    1993-06-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  11. Adaptive Transfer Function Networks

    SciTech Connect

    Goulding, J.R. Portland State Univ., OR . Dept. of Electrical Engineering)

    1993-01-01

    Real-time pattern classification and time-series forecasting applications continue to drive artificial neural network (ANN) technology. As ANNs increase in complexity, the throughput of digital computer simulations decreases. A novel ANN, the Adaptive Transfer Function Network (ATF-Net), directly addresses the issue of throughput. ATF-Nets are global mapping equations generated by the superposition of ensembles of neurodes having arbitrary continuous functions receiving encoded input data. ATF-Nets may be implemented on parallel digital computers. An example is presented which illustrates a four-fold increase in computational throughput.

  12. Fast transient networks in spontaneous human brain activity

    PubMed Central

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-01-01

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100–200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001 PMID:24668169

  13. Fast transient networks in spontaneous human brain activity.

    PubMed

    Baker, Adam P; Brookes, Matthew J; Rezek, Iead A; Smith, Stephen M; Behrens, Timothy; Probert Smith, Penny J; Woolrich, Mark

    2014-03-25

    To provide an effective substrate for cognitive processes, functional brain networks should be able to reorganize and coordinate on a sub-second temporal scale. We used magnetoencephalography recordings of spontaneous activity to characterize whole-brain functional connectivity dynamics at high temporal resolution. Using a novel approach that identifies the points in time at which unique patterns of activity recur, we reveal transient (100-200 ms) brain states with spatial topographies similar to those of well-known resting state networks. By assessing temporal changes in the occurrence of these states, we demonstrate that within-network functional connectivity is underpinned by coordinated neuronal dynamics that fluctuate much more rapidly than has previously been shown. We further evaluate cross-network interactions, and show that anticorrelation between the default mode network and parietal regions of the dorsal attention network is consistent with an inability of the system to transition directly between two transient brain states. DOI: http://dx.doi.org/10.7554/eLife.01867.001.

  14. Why network neuroscience? Compelling evidence and current frontiers. Comment on “Understanding brain networks and brain organization” by Luiz Pessoa

    NASA Astrophysics Data System (ADS)

    Muldoon, Sarah Feldt; Bassett, Danielle S.

    2014-09-01

    The recent application of network theory to neuroscience has brought new insights into understanding the relationship between brain structure and function [1]. As Pessoa describes in his extensive review [2], the organization of the brain can be viewed as a complex system of connected components that interact at many scales [3], both in the underlying structural architecture and through temporal functional relationships. Importantly, he emphasizes that we must shed the view that a specific brain region can be tied to a specific function and instead view the brain as a dynamic and evolving network in which overlapping sub-networks of brain regions work together to produce different functions. In fact, the complexity of these evolving interactions is now driving the future of network science [4], as efforts focus on developing novel metrics to capture the dynamic essence of these interconnected networks.

  15. Mapping Functional Brain Development: Building a Social Brain through Interactive Specialization

    ERIC Educational Resources Information Center

    Johnson, Mark H.; Grossmann, Tobias; Kadosh, Kathrin Cohen

    2009-01-01

    The authors review a viewpoint on human functional brain development, interactive specialization (IS), and its application to the emerging network of cortical regions referred to as the "social brain." They advance the IS view in 2 new ways. First, they extend IS into a domain to which it has not previously been applied--the emergence of social…

  16. Mapping Individual Brain Networks Using Statistical Similarity in Regional Morphology from MRI

    PubMed Central

    Kong, Xiang-zhen; Liu, Zhaoguo; Huang, Lijie; Wang, Xu; Yang, Zetian; Zhou, Guangfu; Zhen, Zonglei; Liu, Jia

    2015-01-01

    Representing brain morphology as a network has the advantage that the regional morphology of ‘isolated’ structures can be described statistically based on graph theory. However, very few studies have investigated brain morphology from the holistic perspective of complex networks, particularly in individual brains. We proposed a new network framework for individual brain morphology. Technically, in the new network, nodes are defined as regions based on a brain atlas, and edges are estimated using our newly-developed inter-regional relation measure based on regional morphological distributions. This implementation allows nodes in the brain network to be functionally/anatomically homogeneous but different with respect to shape and size. We first demonstrated the new network framework in a healthy sample. Thereafter, we studied the graph-theoretical properties of the networks obtained and compared the results with previous morphological, anatomical, and functional networks. The robustness of the method was assessed via measurement of the reliability of the network metrics using a test-retest dataset. Finally, to illustrate potential applications, the networks were used to measure age-related changes in commonly used network metrics. Results suggest that the proposed method could provide a concise description of brain organization at a network level and be used to investigate interindividual variability in brain morphology from the perspective of complex networks. Furthermore, the method could open a new window into modeling the complexly distributed brain and facilitate the emerging field of human connectomics. PMID:26536598

  17. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  18. Electroencephalographic imaging of higher brain function.

    PubMed Central

    Gevins, A; Smith, M E; McEvoy, L K; Leong, H; Le, J

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities. PMID:10466140

  19. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path

    PubMed Central

    Cheng, Bastian; Messé, Arnaud; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-01-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  20. Modeling of Large-Scale Functional Brain Networks Based on Structural Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks and Evaluation of Alternative Methods along the Modeling Path.

    PubMed

    Finger, Holger; Bönstrup, Marlene; Cheng, Bastian; Messé, Arnaud; Hilgetag, Claus; Thomalla, Götz; Gerloff, Christian; König, Peter

    2016-08-01

    In this study, we investigate if phase-locking of fast oscillatory activity relies on the anatomical skeleton and if simple computational models informed by structural connectivity can help further to explain missing links in the structure-function relationship. We use diffusion tensor imaging data and alpha band-limited EEG signal recorded in a group of healthy individuals. Our results show that about 23.4% of the variance in empirical networks of resting-state functional connectivity is explained by the underlying white matter architecture. Simulating functional connectivity using a simple computational model based on the structural connectivity can increase the match to 45.4%. In a second step, we use our modeling framework to explore several technical alternatives along the modeling path. First, we find that an augmentation of homotopic connections in the structural connectivity matrix improves the link to functional connectivity while a correction for fiber distance slightly decreases the performance of the model. Second, a more complex computational model based on Kuramoto oscillators leads to a slight improvement of the model fit. Third, we show that the comparison of modeled and empirical functional connectivity at source level is much more specific for the underlying structural connectivity. However, different source reconstruction algorithms gave comparable results. Of note, as the fourth finding, the model fit was much better if zero-phase lag components were preserved in the empirical functional connectome, indicating a considerable amount of functionally relevant synchrony taking place with near zero or zero-phase lag. The combination of the best performing alternatives at each stage in the pipeline results in a model that explains 54.4% of the variance in the empirical EEG functional connectivity. Our study shows that large-scale brain circuits of fast neural network synchrony strongly rely upon the structural connectome and simple computational

  1. Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention

    NASA Astrophysics Data System (ADS)

    Li, Ling; Jin, Zhen-Lan

    2011-04-01

    The human brain is thought of as one of the most complex dynamical systems in the universe. The network view of the dynamical system has emerged since the discovery of scale-free networks. Brain functional networks, which represent functional associations among brain regions, are extracted by measuring the temporal correlations from electroencephalogram data. We measure the topological properties of the brain functional network, including degree distribution, average degree, clustering coefficient and the shortest path length, to compare the networks of multi-channel event-related potential activity between visual spatial attention and unattention conditions. It is found that the degree distribution of the brain functional networks under both the conditions is a power law distribution, which reflects a scale-free property. Moreover, the scaling exponent of the attention condition is significantly smaller than that of the unattention condition. However, the degree distribution of equivalent random networks does not follow the power law distribution. In addition, the clustering coefficient of these random networks is smaller than those of brain networks, and the shortest path length of these random networks is large and comparable with those of brain networks. Our results, typical of scale-free networks, indicate that the scaling exponent of brain activity could reflect different cognitive processes.

  2. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics

    PubMed Central

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/). PMID:23861951

  3. Big Words, Halved Brains and Small Worlds: Complex Brain Networks of Figurative Language Comprehension

    PubMed Central

    Arzouan, Yossi; Solomon, Sorin; Faust, Miriam; Goldstein, Abraham

    2011-01-01

    Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity. PMID:21556324

  4. Hyper-Brain Networks Support Romantic Kissing in Humans

    PubMed Central

    Müller, Viktor; Lindenberger, Ulman

    2014-01-01

    Coordinated social interaction is associated with, and presumably dependent on, oscillatory couplings within and between brains, which, in turn, consist of an interplay across different frequencies. Here, we introduce a method of network construction based on the cross-frequency coupling (CFC) and examine whether coordinated social interaction is associated with CFC within and between brains. Specifically, we compare the electroencephalograms (EEG) of 15 heterosexual couples during romantic kissing to kissing one’s own hand, and to kissing one another while performing silent arithmetic. Using graph-theory methods, we identify theta–alpha hyper-brain networks, with alpha serving a cleaving or pacemaker function. Network strengths were higher and characteristic path lengths shorter when individuals were kissing each other than when they were kissing their own hand. In both partner-oriented kissing conditions, greater strength and shorter path length for 5-Hz oscillation nodes correlated reliably with greater partner-oriented kissing satisfaction. This correlation was especially strong for inter-brain connections in both partner-oriented kissing conditions but not during kissing one’s own hand. Kissing quality assessed after the kissing with silent arithmetic correlated reliably with intra-brain strength of 10-Hz oscillation nodes during both romantic kissing and kissing with silent arithmetic. We conclude that hyper-brain networks based on CFC may capture neural mechanisms that support interpersonally coordinated voluntary action and bonding behavior. PMID:25375132

  5. Creative Cognition and Brain Network Dynamics.

    PubMed

    Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L

    2016-02-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought.

  6. Analysing Local Sparseness in the Macaque Brain Network.

    PubMed

    Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A

    2015-01-01

    Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain's function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as "relays" for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways.

  7. Dynamic Functional Brain Connectivity for Face Perception

    PubMed Central

    Yang, Yuan; Qiu, Yihong; Schouten, Alfred C.

    2015-01-01

    Face perception is mediated by a distributed brain network comprised of the core system at occipito-temporal areas and the extended system at other relevant brain areas involving bilateral hemispheres. In this study we explored how the brain connectivity changes over the time for face-sensitive processing. We investigated the dynamic functional connectivity in face perception by analyzing time-dependent EEG phase synchronization in four different frequency bands: theta (4–7 Hz), alpha (8–14 Hz), beta (15–24 Hz), and gamma (25–45 Hz) bands in the early stages of face processing from 30 to 300 ms. High-density EEG were recorded from subjects who were passively viewing faces, buildings, and chairs. The dynamic connectivity within the core system and between the extended system were investigated. Significant differences between faces and non-faces mainly appear in theta band connectivity: (1) at the time segment of 90–120 ms between parietal area and occipito-temporal area in the right hemisphere, and (2) at the time segment of 150–180 ms between bilateral occipito-temporal areas. These results indicate (1) the importance of theta-band connectivity in the face-sensitive processing, and (2) that different parts of network are involved for the initial stage of face categorization and the stage of face structural encoding. PMID:26696870

  8. Neurotransmitter precursors and brain function.

    PubMed

    Conlay, L A; Zeisel, S H

    1982-04-01

    Brain function can be affected by the availability of dietary precursors of neurotransmitters. This occurs because the rate-limiting synthetic enzymes are not "saturated" with substrate under normal circumstances. Tyrosine affects catecholaminergic neurons that fire rapidly, whether in the brain stem to decrease blood pressure in hypertension or in the adrenal gland to increase blood pressure in hypotension, and has been used in the treatment of Parkinson's disease and depression. Choline forms acetylcholine and has been used successfully in the treatment of tardive dyskinesia and memory disorders. Tryptophan, which forms serotonin, has been used for chronic pain therapy, sleep disorders, depression, and appetite control. Although these substances may lack the potency of traditionally used agonists, they offer an increase in specificity because the enzymes necessary to convert them to neurotransmitters are found only in neurons. Precursors are also "physiological"; they are consumed as foods and, therefore, should be relatively safe therapeutic agents. PMID:6124895

  9. Eloquent Brain, Ethical Challenges: Functional Brain Mapping in Neurosurgery.

    PubMed

    Klein, Eran

    2015-06-01

    Functional brain mapping is an increasingly relied upon tool in presurgical planning and intraoperative decision making. Mapping allows personalization of structure-function relationships when surgical or other treatment of pathology puts eloquent functioning like language or vision at risk. As an innovative technology, functional brain mapping holds great promise but also raises important ethical questions. In this article, recent work in neuroethics on functional imaging and functional neurosurgery is explored and applied to functional brain mapping. Specific topics discussed in this article are incidental findings, responsible innovation, and informed consent.

  10. Neural Substrate Expansion for the Restoration of Brain Function.

    PubMed

    Chen, H Isaac; Jgamadze, Dennis; Serruya, Mijail D; Cullen, D Kacy; Wolf, John A; Smith, Douglas H

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  11. Neural Substrate Expansion for the Restoration of Brain Function

    PubMed Central

    Chen, H. Isaac; Jgamadze, Dennis; Serruya, Mijail D.; Cullen, D. Kacy; Wolf, John A.; Smith, Douglas H.

    2016-01-01

    Restoring neurological and cognitive function in individuals who have suffered brain damage is one of the principal objectives of modern translational neuroscience. Electrical stimulation approaches, such as deep-brain stimulation, have achieved the most clinical success, but they ultimately may be limited by the computational capacity of the residual cerebral circuitry. An alternative strategy is brain substrate expansion, in which the computational capacity of the brain is augmented through the addition of new processing units and the reconstitution of network connectivity. This latter approach has been explored to some degree using both biological and electronic means but thus far has not demonstrated the ability to reestablish the function of large-scale neuronal networks. In this review, we contend that fulfilling the potential of brain substrate expansion will require a significant shift from current methods that emphasize direct manipulations of the brain (e.g., injections of cellular suspensions and the implantation of multi-electrode arrays) to the generation of more sophisticated neural tissues and neural-electric hybrids in vitro that are subsequently transplanted into the brain. Drawing from neural tissue engineering, stem cell biology, and neural interface technologies, this strategy makes greater use of the manifold techniques available in the laboratory to create biocompatible constructs that recapitulate brain architecture and thus are more easily recognized and utilized by brain networks. PMID:26834579

  12. Supervised dictionary learning for inferring concurrent brain networks.

    PubMed

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  13. White matter damage and brain network alterations in concussed patients: a review of recent diffusion tensor imaging and resting-state functional connectivity data.

    PubMed

    Chong, Catherine D; Schwedt, Todd J

    2015-05-01

    Over 2 million people are diagnosed with concussion each year in the USA, resulting in substantial individual and societal burdens. Although 'routine' clinical neuroimaging is useful for the diagnosis of more severe forms of traumatic brain injury, it is insensitive for detecting pathology associated with concussion. Diffusion tensor imaging (DTI) and blood-oxygenation-level-dependent (BOLD) resting-state functional connectivity magnetic resonance imaging (rs-fMRI) are techniques that allow for investigation of brain structural and functional connectivity patterns. DTI and rs-fMRI may be more sensitive than routine neuroimaging for detecting brain sequelae of concussion. This review summarizes recent DTI and rs-fMRI findings of altered structural and functional connectivity patterns in concussed patients.

  14. Parcellating Cortical Functional Networks in Individuals

    PubMed Central

    Wang, Danhong; Buckner, Randy L.; Fox, Michael D.; Holt, Daphne J.; Holmes, Avram J.; Stoecklein, Sophia; Langs, Georg; Pan, Ruiqi; Qian, Tianyi; Li, Kuncheng; Baker, Justin T.; Stufflebeam, Steven M.; Wang, Kai; Wang, Xiaomin; Hong, Bo; Liu, Hesheng

    2015-01-01

    The capacity to identify the unique functional architecture of an individual’s brain is a critical step towards personalized medicine and understanding the neural basis of variations in human cognition and behavior. Here, we developed a novel cortical parcellation approach to accurately map functional organization at the individual level using resting-state fMRI. A population-based functional atlas and a map of inter-individual variability were employed to guide the iterative search for functional networks in individual subjects. Functional networks mapped by this approach were highly reproducible within subjects and effectively captured the variability across subjects, including individual differences in brain lateralization. The algorithm performed well across different subject populations and data types including task fMRI data. The approach was then validated by invasive cortical stimulation mapping in surgical patients, suggesting great potential for use in clinical applications. PMID:26551545

  15. Dynamic imaging of brain function

    PubMed Central

    Hyder, Fahmeed

    2013-01-01

    In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neuronal activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used as a model to reveal activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with specified spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Because the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques. PMID:18839085

  16. Default network connectivity decodes brain states with simulated microgravity.

    PubMed

    Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen

    2016-04-01

    With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.

  17. Default network connectivity decodes brain states with simulated microgravity.

    PubMed

    Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen

    2016-04-01

    With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity. PMID:27066149

  18. Insulin action in brain regulates systemic metabolism and brain function.

    PubMed

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.

  19. The Big Five default brain: functional evidence.

    PubMed

    Sampaio, Adriana; Soares, José Miguel; Coutinho, Joana; Sousa, Nuno; Gonçalves, Óscar F

    2014-11-01

    Recent neuroimaging studies have provided evidence that different dimensions of human personality may be associated with specific structural neuroanatomic correlates. Identifying brain correlates of a situation-independent personality structure would require evidence of a stable default mode of brain functioning. In this study, we investigated the correlates of the Big Five personality dimensions (Extraversion, Neuroticism, Openness/Intellect, Agreeableness, and Conscientiousness) and the default mode network (DMN). Forty-nine healthy adults completed the NEO-Five Factor. The results showed that the Extraversion (E) and Agreeableness (A) were positively correlated with activity in the midline core of the DMN, whereas Neuroticism (N), Openness (O), and Conscientiousness (C) were correlated with the parietal cortex system. Activity of the anterior cingulate cortex was positively associated with A and negatively with C. Regions of the parietal lobe were differentially associated with each personality dimension. The present study not only confirms previous functional correlates regarding the Big Five personality dimensions, but it also expands our knowledge showing the association between different personality dimensions and specific patterns of brain activation at rest.

  20. Analysing Local Sparseness in the Macaque Brain Network

    PubMed Central

    Singh, Raghavendra; Nagar, Seema; Nanavati, Amit A.

    2015-01-01

    Understanding the network structure of long distance pathways in the brain is a necessary step towards developing an insight into the brain’s function, organization and evolution. Dense global subnetworks of these pathways have often been studied, primarily due to their functional implications. Instead we study sparse local subnetworks of the pathways to establish the role of a brain area in enabling shortest path communication between its non-adjacent topological neighbours. We propose a novel metric to measure the topological communication load on a vertex due to its immediate neighbourhood, and show that in terms of distribution of this local communication load, a network of Macaque long distance pathways is substantially different from other real world networks and random graph models. Macaque network contains the entire range of local subnetworks, from star-like networks to clique-like networks, while other networks tend to contain a relatively small range of subnetworks. Further, sparse local subnetworks in the Macaque network are not only found across topographical super-areas, e.g., lobes, but also within a super-area, arguing that there is conservation of even relatively short-distance pathways. To establish the communication role of a vertex we borrow the concept of brokerage from social science, and present the different types of brokerage roles that brain areas play, highlighting that not only the thalamus, but also cingulate gyrus and insula often act as “relays” for areas in the neocortex. These and other analysis of communication load and roles of the sparse subnetworks of the Macaque brain provide new insights into the organisation of its pathways. PMID:26437077

  1. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses.

    PubMed

    Stephen, Emily P; Lepage, Kyle Q; Eden, Uri T; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S; Guenther, Frank H; Kramer, Mark A

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty-both in the functional network edges and the corresponding aggregate measures of network topology-are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here-appropriate for static and dynamic network inference and different statistical measures of coupling-permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295

  2. Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses

    PubMed Central

    Stephen, Emily P.; Lepage, Kyle Q.; Eden, Uri T.; Brunner, Peter; Schalk, Gerwin; Brumberg, Jonathan S.; Guenther, Frank H.; Kramer, Mark A.

    2014-01-01

    The brain is a complex network of interconnected elements, whose interactions evolve dynamically in time to cooperatively perform specific functions. A common technique to probe these interactions involves multi-sensor recordings of brain activity during a repeated task. Many techniques exist to characterize the resulting task-related activity, including establishing functional networks, which represent the statistical associations between brain areas. Although functional network inference is commonly employed to analyze neural time series data, techniques to assess the uncertainty—both in the functional network edges and the corresponding aggregate measures of network topology—are lacking. To address this, we describe a statistically principled approach for computing uncertainty in functional networks and aggregate network measures in task-related data. The approach is based on a resampling procedure that utilizes the trial structure common in experimental recordings. We show in simulations that this approach successfully identifies functional networks and associated measures of confidence emergent during a task in a variety of scenarios, including dynamically evolving networks. In addition, we describe a principled technique for establishing functional networks based on predetermined regions of interest using canonical correlation. Doing so provides additional robustness to the functional network inference. Finally, we illustrate the use of these methods on example invasive brain voltage recordings collected during an overt speech task. The general strategy described here—appropriate for static and dynamic network inference and different statistical measures of coupling—permits the evaluation of confidence in network measures in a variety of settings common to neuroscience. PMID:24678295

  3. Network localization of neurological symptoms from focal brain lesions.

    PubMed

    Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D

    2015-10-01

    A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had

  4. Plasticity of brain wave network interactions and evolution across physiologic states.

    PubMed

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  5. Plasticity of brain wave network interactions and evolution across physiologic states.

    PubMed

    Liu, Kang K L; Bartsch, Ronny P; Lin, Aijing; Mantegna, Rosario N; Ivanov, Plamen Ch

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  6. Plasticity of brain wave network interactions and evolution across physiologic states

    PubMed Central

    Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.

    2015-01-01

    Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of

  7. Reorganization of Functional Connectivity as a Correlate of Cognitive Recovery in Acquired Brain Injury

    ERIC Educational Resources Information Center

    Castellanos, Nazareth P.; Paul, Nuria; Ordonez, Victoria E.; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomas; del-Pozo, Francisco; Maestu, Fernando

    2010-01-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on…

  8. Dietary amino acids and brain function.

    PubMed

    Fernstrom, J D

    1994-01-01

    Two groups of amino acids--the aromatic and the acidic amino acids--are reputed to influence brain function when their ingestion in food changes the levels of these amino acids in the brain. The aromatic amino acids (tryptophan, tyrosine, phenylalanine) are the biosynthetic precursors for the neurotransmitters serotonin, dopamine, and norepinephrine. Single meals, depending on their protein content, can rapidly influence uptake of aromatic amino acid into the brain and, as a result, directly modify their conversion to neurotransmitters. Such alterations in the production of transmitters can directly modify their release from neurons and, thus, influence brain function. The acidic amino acids glutamate and aspartate are themselves brain neurotransmitters. However, they do not have ready access to the brain from the circulation or the diet. As a result, the ingestion of proteins, which are naturally rich in aspartate and glutamate, has no effect on the level of acidic amino acid in the brain (or, thus, on brain function by this mechanism). Nevertheless, the food additives monosodium glutamate and aspartame (which contains aspartate) have been reputed to raise the level of acidic amino acid in the brain (when ingested in enormous amounts), to modify brain function, and even to cause neuronal damage. Despite such claims, a substantial body of published evidence clearly indicates that the brain is not affected by ingestion of aspartame and is affected by glutamate only when the amino acid is administered alone in extremely large doses. Therefore, when consumed in the diet neither compound presents a risk to normal brain function.

  9. Measuring Asymmetric Interactions in Resting State Brain Networks*

    PubMed Central

    Joshi, Anand A.; Salloum, Ronald; Bhushan, Chitresh; Leahy, Richard M.

    2015-01-01

    Directed graph representations of brain networks are increasingly being used in brain image analysis to indicate the direction and level of influence among brain regions. Most of the existing techniques for directed graph representations are based on time series analysis and the concept of causality, and use time lag information in the brain signals. These time lag-based techniques can be inadequate for functional magnetic resonance imaging (fMRI) signal analysis due to the limited time resolution of fMRI as well as the low frequency hemodynamic response. The aim of this paper is to present a novel measure of necessity that uses asymmetry in the joint distribution of brain activations to infer the direction and level of interaction among brain regions. We present a mathematical formula for computing necessity and extend this measure to partial necessity, which can potentially distinguish between direct and indirect interactions. These measures do not depend on time lag for directed modeling of brain interactions and therefore are more suitable for fMRI signal analysis. The necessity measures were used to analyze resting state fMRI data to determine the presence of hierarchy and asymmetry of brain interactions during resting state. We performed ROI-wise analysis using the proposed necessity measures to study the default mode network. The empirical joint distribution of the fMRI signals was determined using kernel density estimation, and was used for computation of the necessity and partial necessity measures. The significance of these measures was determined using a one-sided Wilcoxon rank-sum test. Our results are consistent with the hypothesis that the posterior cingulate cortex plays a central role in the default mode network. PMID:26221690

  10. Aberrant functional brain connectome in people with antisocial personality disorder.

    PubMed

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016-0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD.

  11. Aberrant functional brain connectome in people with antisocial personality disorder

    PubMed Central

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016–0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  12. Aberrant functional brain connectome in people with antisocial personality disorder.

    PubMed

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016-0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  13. Influencing brain networks: implications for education.

    PubMed

    Posner, Michael I; Rothbart, Mary K

    2005-03-01

    In our view, a central issue in relating brain development to education is whether classroom interventions can alter neural networks related to cognition in ways that generalize beyond the specific domain of instruction. This issue depends upon understanding how neural networks develop under the influence of genes and experience. Imaging studies have revealed common networks underlying many important tasks undertaken at school, such as reading and number skills, and we are beginning to learn how genes and experience work together to shape the development of these networks. The results obtained appear sufficient to propose research-based interventions that could prove useful in improving the ability of children to adjust to the school setting and to acquire skills like literacy and numeracy.

  14. Rounding of abrupt phase transitions in brain networks

    NASA Astrophysics Data System (ADS)

    Villa Martín, Paula; Moretti, Paolo; Muñoz, Miguel A.

    2015-01-01

    The observation of critical-like behavior in cortical networks represents a major step forward in elucidating how the brain manages information. Understanding the origin and functionality of critical-like dynamics, as well as its robustness, is a major challenge in contemporary neuroscience. Here, we present an extensive numerical study of a family of simple dynamical models, which describe activity propagation in brain networks through the integration of different neighboring spiking potentials, mimicking basic neural interactions. The requirement of signal integration may lead to discontinuous phase transitions in networks that are well described by the mean-field approximation, thus preventing the emergence of critical points in such systems. Brain networks, however, are finite dimensional and exhibit a heterogeneous hierarchical structure that cannot be encoded in mean-field models. Here we propose that, as a consequence of the presence of such a heterogeneous substrate with its concomitant structural disorder, critical-like features may emerge even in the presence of integration. These conclusions may prove significant in explaining the observation of traits of critical behavior in large-scale measurements of brain activity.

  15. A Brain-Wide Study of Age-Related Changes in Functional Connectivity.

    PubMed

    Geerligs, Linda; Renken, Remco J; Saliasi, Emi; Maurits, Natasha M; Lorist, Monicque M

    2015-07-01

    Aging affects functional connectivity between brain areas, however, a complete picture of how aging affects integration of information within and between functional networks is missing. We used complex network measures, derived from a brain-wide graph, to provide a comprehensive overview of age-related changes in functional connectivity. Functional connectivity in young and older participants was assessed during resting-state fMRI. The results show that aging has a large impact, not only on connectivity within functional networks but also on connectivity between the different functional networks in the brain. Brain networks in the elderly showed decreased modularity (less distinct functional networks) and decreased local efficiency. Connectivity decreased with age within networks supporting higher level cognitive functions, that is, within the default mode, cingulo-opercular and fronto-parietal control networks. Conversely, no changes in connectivity within the somatomotor and visual networks, networks implicated in primary information processing, were observed. Connectivity between these networks even increased with age. A brain-wide analysis approach of functional connectivity in the aging brain thus seems fundamental in understanding how age affects integration of information.

  16. An exploration of graph metric reproducibility in complex brain networks

    PubMed Central

    Telesford, Qawi K.; Burdette, Jonathan H.; Laurienti, Paul J.

    2013-01-01

    The application of graph theory to brain networks has become increasingly popular in the neuroimaging community. These investigations and analyses have led to a greater understanding of the brain's complex organization. More importantly, it has become a useful tool for studying the brain under various states and conditions. With the ever expanding popularity of network science in the neuroimaging community, there is increasing interest to validate the measurements and calculations derived from brain networks. Underpinning these studies is the desire to use brain networks in longitudinal studies or as clinical biomarkers to understand changes in the brain. A highly reproducible tool for brain imaging could potentially prove useful as a clinical tool. In this review, we examine recent studies in network reproducibility and their implications for analysis of brain networks. PMID:23717257

  17. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc.

  18. The Functional Connectivity Landscape of the Human Brain

    PubMed Central

    Fatima, Zainab; Jonides, John; McIntosh, Anthony R.

    2014-01-01

    Functional brain networks emerge and dissipate over a primarily static anatomical foundation. The dynamic basis of these networks is inter-regional communication involving local and distal regions. It is assumed that inter-regional distances play a pivotal role in modulating network dynamics. Using three different neuroimaging modalities, 6 datasets were evaluated to determine whether experimental manipulations asymmetrically affect functional relationships based on the distance between brain regions in human participants. Contrary to previous assumptions, here we show that short- and long-range connections are equally likely to strengthen or weaken in response to task demands. Additionally, connections between homotopic areas are the most stable and less likely to change compared to any other type of connection. Our results point to a functional connectivity landscape characterized by fluid transitions between local specialization and global integration. This ability to mediate functional properties irrespective of spatial distance may engender a diverse repertoire of cognitive processes when faced with a dynamic environment. PMID:25350370

  19. Persistent brain network homology from the perspective of dendrogram.

    PubMed

    Lee, Hyekyoung; Kang, Hyejin; Chung, Moo K; Kim, Bung-Nyun; Lee, Dong Soo

    2012-12-01

    The brain network is usually constructed by estimating the connectivity matrix and thresholding it at an arbitrary level. The problem with this standard method is that we do not have any generally accepted criteria for determining a proper threshold. Thus, we propose a novel multiscale framework that models all brain networks generated over every possible threshold. Our approach is based on persistent homology and its various representations such as the Rips filtration, barcodes, and dendrograms. This new persistent homological framework enables us to quantify various persistent topological features at different scales in a coherent manner. The barcode is used to quantify and visualize the evolutionary changes of topological features such as the Betti numbers over different scales. By incorporating additional geometric information to the barcode, we obtain a single linkage dendrogram that shows the overall evolution of the network. The difference between the two networks is then measured by the Gromov-Hausdorff distance over the dendrograms. As an illustration, we modeled and differentiated the FDG-PET based functional brain networks of 24 attention-deficit hyperactivity disorder children, 26 autism spectrum disorder children, and 11 pediatric control subjects. PMID:23008247

  20. Promoting motor function by exercising the brain.

    PubMed

    Perrey, Stephane

    2013-01-01

    Exercise represents a behavioral intervention that enhances brain health and motor function. The increase in cerebral blood volume in response to physical activity may be responsible for improving brain function. Among the various neuroimaging techniques used to monitor brain hemodynamic response during exercise, functional near-infrared spectroscopy could facilitate the measurement of task-related cortical responses noninvasively and is relatively robust with regard to the subjects' motion. Although the components of optimal exercise interventions have not been determined, evidence from animal and human studies suggests that aerobic exercise with sufficiently high intensity has neuroprotective properties and promotes motor function. This review provides an insight into the effect of physical activity (based on endurance and resistance exercises) on brain function for producing movement. Since most progress in the study of brain function has come from patients with neurological disorders (e.g., stroke and Parkinson's patients), this review presents some findings emphasizing training paradigms for restoring motor function. PMID:24961309

  1. Real-time fMRI brain computer interfaces: self-regulation of single brain regions to networks.

    PubMed

    Ruiz, Sergio; Buyukturkoglu, Korhan; Rana, Mohit; Birbaumer, Niels; Sitaram, Ranganatha

    2014-01-01

    With the advent of brain computer interfaces based on real-time fMRI (rtfMRI-BCI), the possibility of performing neurofeedback based on brain hemodynamics has become a reality. In the early stage of the development of this field, studies have focused on the volitional control of activity in circumscribed brain regions. However, based on the understanding that the brain functions by coordinated activity of spatially distributed regions, there have recently been further developments to incorporate real-time feedback of functional connectivity and spatio-temporal patterns of brain activity. The present article reviews the principles of rtfMRI neurofeedback, its applications, benefits and limitations. A special emphasis is given to the discussion of novel developments that have enabled the use of this methodology to achieve self-regulation of the functional connectivity between different brain areas and of distributed brain networks, anticipating new and exciting applications for cognitive neuroscience and for the potential alleviation of neuropsychiatric disorders.

  2. Investigating a Novel Measure of Brain Networking Following Sports Concussion.

    PubMed

    Broglio, S P; Rettmann, A; Greer, J; Brimacombe, S; Moore, B; Narisetty, N; He, X; Eckner, J

    2016-08-01

    Clinicians managing sports-related concussions are left to their clinical judgment in making diagnoses and return-to-play decisions. This study was designed to evaluate the utility of a novel measure of functional brain networking for concussion management. 24 athletes with acutely diagnosed concussion and 21 control participants were evaluated in a research laboratory. At each of the 4 post-injury time points, participants completed the Axon assessment of neurocognitive function, a self-report symptom inventory, and the auditory oddball and go/no-go tasks while electroencephalogram (EEG) readings were recorded. Brain Network Activation (BNA) scores were calculated from EEG data related to the auditory oddball and go/no-go tasks. BNA scores were unable to differentiate between the concussed and control groups or by self-report symptom severity. These findings conflict with previous work implementing electrophysiological assessments in concussed athletes, suggesting that BNA requires additional investigation and refinement before clinical implementation. PMID:27286176

  3. Brain networks underlying bistable perception.

    PubMed

    Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan

    2015-10-01

    Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time.

  4. Brain networks underlying bistable perception.

    PubMed

    Baker, Daniel H; Karapanagiotidis, Theodoros; Coggan, David D; Wailes-Newson, Kirstie; Smallwood, Jonathan

    2015-10-01

    Bistable stimuli, such as the Necker Cube, demonstrate that experience can change in the absence of changes in the environment. Such phenomena can be used to assess stimulus-independent aspects of conscious experience. The current study used resting state functional magnetic resonance imaging (rs-fMRI) to index stimulus-independent changes in neural activity to understand the neural architecture that determines dominance durations during bistable perception (using binocular rivalry and Necker cube stimuli). Anterior regions of the Superior Parietal Lobule (SPL) exhibited robust connectivity with regions of primary sensorimotor cortex. The strength of this region's connectivity with the striatum predicted shorter dominance durations during binocular rivalry, whereas its connectivity to pre-motor cortex predicted longer dominance durations for the Necker Cube. Posterior regions of the SPL, on the other hand, were coupled to associative cortex in the temporal and frontal lobes. The posterior SPL's connectivity to the temporal lobe predicted longer dominance during binocular rivalry. In conjunction with prior work, these data suggest that the anterior SPL contributes to perceptual rivalry through the inhibition of incongruent bottom up information, whereas the posterior SPL influences rivalry by supporting the current interpretation of a bistable stimulus. Our data suggests that the functional connectivity of the SPL with regions of sensory, motor, and associative cortex allows it to regulate the interpretation of the environment that forms the focus of conscious attention at a specific moment in time. PMID:26123379

  5. Functional Localization of Genetic Network Programming

    NASA Astrophysics Data System (ADS)

    Eto, Shinji; Hirasawa, Kotaro; Hu, Jinglu

    According to the knowledge of brain science, it is suggested that there exists cerebral functional localization, which means that a specific part of the cerebrum is activated depending on various kinds of information human receives. The aim of this paper is to build an artificial model to realize functional localization based on Genetic Network Programming (GNP), a new evolutionary computation method recently developed. GNP has a directed graph structure suitable for realizing functional localization. We studied the basic characteristics of the proposed system by making GNP work in a functionally localized way.

  6. Connectivity and functional profiling of abnormal brain structures in pedophilia

    PubMed Central

    Poeppl, Timm B.; Eickhoff, Simon B.; Fox, Peter T.; Laird, Angela R.; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-01-01

    Despite its 0.5–1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multi-modal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. PMID:25733379

  7. Measuring Asymmetric Interactions in Resting State Brain Networks.

    PubMed

    Joshi, Anand A; Salloum, Ronald; Bhushan, Chitresh; Leahy, Richard M

    2015-01-01

    Directed graph representations of brain networks are increasingly being used to indicate the direction and level of influence among brain regions. Most of the existing techniques for directed graph representations are based on time series analysis and the concept of causality, and use time lag information in the brain signals. These time lag-based techniques can be inadequate for functional magnetic resonance imaging (fMRI) signal analysis due to the limited time resolution of fMRI as well as the low frequency hemodynamic response. The aim of this paper is to present a novel measure of necessity that uses asymmetry in the joint distribution of brain activations to infer the direction and level of interaction among brain regions. We present a mathematical formula for computing necessity and extend this measure to partial necessity, which can potentially distinguish between direct and indirect interactions. These measures do not depend on time lag for directed modeling of brain interactions and therefore are more suitable for fMRI signal analysis. The necessity measures were used to analyze resting state fMRI data to determine the presence of hierarchy and asymmetry of brain interactions during resting state. We performed ROI-wise analysis using the proposed necessity measures to study the default mode network. The empirical joint distribution of the fMRI signals was determined using kernel density estimation, and was used for computation of the necessity and partial necessity measures. The significance of these measures was determined using a one-sided Wilcoxon rank-sum test. Our results are consistent with the hypothesis that the posterior cingulate cortex plays a central role in the default mode network. PMID:26221690

  8. Network Coding for Function Computation

    ERIC Educational Resources Information Center

    Appuswamy, Rathinakumar

    2011-01-01

    In this dissertation, the following "network computing problem" is considered. Source nodes in a directed acyclic network generate independent messages and a single receiver node computes a target function f of the messages. The objective is to maximize the average number of times f can be computed per network usage, i.e., the "computing…

  9. Brain networks modulated by subthalamic nucleus deep brain stimulation.

    PubMed

    Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A

    2016-09-01

    Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour.

  10. Structural and Functional Plasticity in the Maternal Brain Circuitry

    ERIC Educational Resources Information Center

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  11. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders.

    PubMed

    Faingold, Carl L; Blumenfeld, Hal

    2015-10-01

    Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons.

  12. Modularity and Self-Organized Functional Architectures in the Brain

    NASA Astrophysics Data System (ADS)

    Iyer, Laxmi; Minai, Ali A.; Doboli, Simona; Brown, Vincent R.

    It is generally believed that cognition involves the self-organization of coherent dy- namic functional networks across several brain regions in response to incoming stimulus and internal modulation. These context-dependent networks arise continually from the spatiotemporally multi-scale structural substrate of the brain configured by evolution, development and previous experience, persisting for 100-200 ms and generating re- sponses such as imagery, recall and motor action. In the current paper, we show that a system of interacting modular attractor networks can use a selective mechanism for assembling functional networks from the modular substrate. We use the approach to develop a model of idea-generation in the brain. Ideas are modeled as combinations of concepts organized in a recurrent network that reflects previous associations between them. The dynamics of this network, resulting in the transient co-activation of concept groups, is seen as a search through the space of ideas, and attractor dynamics is used to "shape" this search. The process is required to encompass both rapid retrieval of old ideas in familiar contexts and efficient search for novel ones in unfamiliar situations (or during brainstorming). The inclusion of an adaptive modulatory mechanism allows the network to balance the competing requirements of exploiting previous learning and exploring new possibilities as needed in different contexts.

  13. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    PubMed

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period

  14. Disrupted functional brain connectome in unilateral sudden sensorineural hearing loss.

    PubMed

    Xu, Haibo; Fan, Wenliang; Zhao, Xueyan; Li, Jing; Zhang, Wenjuan; Lei, Ping; Liu, Yuan; Wang, Haha; Cheng, Huamao; Shi, Hong

    2016-05-01

    Sudden sensorineural hearing loss (SSNHL) is generally defined as sensorineural hearing loss of 30 dB or greater over at least three contiguous audiometric frequencies and within a three-day period. This hearing loss is usually unilateral and can be associated with tinnitus and vertigo. The pathogenesis of unilateral sudden sensorineural hearing loss is still unknown, and the alterations in the functional connectivity are suspected to involve one possible pathogenesis. Despite scarce findings with respect to alterations in brain functional networks in unilateral sudden sensorineural hearing loss, the alterations of the whole brain functional connectome and whether these alterations were already in existence in the acute period remains unknown. The aim of this study was to investigate the alterations of brain functional connectome in two large samples of unilateral sudden sensorineural hearing loss patients and to investigate the correlation between unilateral sudden sensorineural hearing loss characteristics and changes in the functional network properties. Pure tone audiometry was performed to assess hearing ability. Abnormal changes in the peripheral auditory system were examined using conventional magnetic resonance imaging. The graph theoretical network analysis method was used to detect brain connectome alterations in unilateral sudden sensorineural hearing loss. Compared with the control groups, both groups of unilateral SSNHL patients exhibited a significantly increased clustering coefficient, global efficiency, and local efficiency but a significantly decreased characteristic path length. In addition, the primary increased nodal strength (e.g., nodal betweenness, hubs) was observed in several regions primarily, including the limbic and paralimbic systems, and in the auditory network brain areas. These findings suggest that the alteration of network organization already exists in unilateral sudden sensorineural hearing loss patients within the acute period

  15. Gender differences in brain networks supporting empathy.

    PubMed

    Schulte-Rüther, Martin; Markowitsch, Hans J; Shah, N Jon; Fink, Gereon R; Piefke, Martina

    2008-08-01

    Females frequently score higher on standard tests of empathy, social sensitivity, and emotion recognition than do males. It remains to be clarified, however, whether these gender differences are associated with gender specific neural mechanisms of emotional social cognition. We investigated gender differences in an emotion attribution task using functional magnetic resonance imaging. Subjects either focused on their own emotional response to emotion expressing faces (SELF-task) or evaluated the emotional state expressed by the faces (OTHER-task). Behaviorally, females rated SELF-related emotions significantly stronger than males. Across the sexes, SELF- and OTHER-related processing of facial expressions activated a network of medial and lateral prefrontal, temporal, and parietal brain regions involved in emotional perspective taking. During SELF-related processing, females recruited the right inferior frontal cortex and superior temporal sulcus stronger than males. In contrast, there was increased neural activity in the left temporoparietal junction in males (relative to females). When performing the OTHER-task, females showed increased activation of the right inferior frontal cortex while there were no differential activations in males. The data suggest that females recruit areas containing mirror neurons to a higher degree than males during both SELF- and OTHER-related processing in empathic face-to-face interactions. This may underlie facilitated emotional "contagion" in females. Together with the observation that males differentially rely on the left temporoparietal junction (an area mediating the distinction between the SELF and OTHERS) the data suggest that females and males rely on different strategies when assessing their own emotions in response to other people.

  16. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    PubMed Central

    Kleinridders, André; Ferris, Heather A.; Cai, Weikang

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. PMID:24931034

  17. Brain foods: the effects of nutrients on brain function

    PubMed Central

    Gómez-Pinilla, Fernando

    2009-01-01

    It has long been suspected that the relative abundance of specific nutrients can affect cognitive processes and emotions. Newly described influences of dietary factors on neuronal function and synaptic plasticity have revealed some of the vital mechanisms that are responsible for the action of diet on brain health and mental function. Several gut hormones that can enter the brain, or that are produced in the brain itself, influence cognitive ability. In addition, well-established regulators of synaptic plasticity, such as brain-derived neurotrophic factor, can function as metabolic modulators, responding to peripheral signals such as food intake. Understanding the molecular basis of the effects of food on cognition will help us to determine how best to manipulate diet in order to increase the resistance of neurons to insults and promote mental fitness. PMID:18568016

  18. Metabolic resting-state brain networks in health and disease.

    PubMed

    Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C; Nazem, Amir; Sako, Wataru; Peng, Shichun; Ma, Yilong; Dhawan, Vijay; Eidelberg, David

    2015-02-24

    The delineation of resting state networks (RSNs) in the human brain relies on the analysis of temporal fluctuations in functional MRI signal, representing a small fraction of total neuronal activity. Here, we used metabolic PET, which maps nonfluctuating signals related to total activity, to identify and validate reproducible RSN topographies in healthy and disease populations. In healthy subjects, the dominant (first component) metabolic RSN was topographically similar to the default mode network (DMN). In contrast, in Parkinson's disease (PD), this RSN was subordinated to an independent disease-related pattern. Network functionality was assessed by quantifying metabolic RSN expression in cerebral blood flow PET scans acquired at rest and during task performance. Consistent task-related deactivation of the "DMN-like" dominant metabolic RSN was observed in healthy subjects and early PD patients; in contrast, the subordinate RSNs were activated during task performance. Network deactivation was reduced in advanced PD; this abnormality was partially corrected by dopaminergic therapy. Time-course comparisons of DMN loss in longitudinal resting metabolic scans from PD and Alzheimer's disease subjects illustrated that significant reductions appeared later for PD, in parallel with the development of cognitive dysfunction. In contrast, in Alzheimer's disease significant reductions in network expression were already present at diagnosis, progressing over time. Metabolic imaging can directly provide useful information regarding the resting organization of the brain in health and disease.

  19. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    PubMed Central

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D.; O'Neil, Brian J.; Haacke, E. Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances. PMID:26819765

  20. Mapping human brain networks with cortico-cortical evoked potentials

    PubMed Central

    Keller, Corey J.; Honey, Christopher J.;