Apelin targets gut contraction to control glucose metabolism via the brain
Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude
2017-01-01
Objective The gut–brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. Design We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. Results In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Conclusions Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. PMID:26565000
Apelin targets gut contraction to control glucose metabolism via the brain.
Fournel, Audren; Drougard, Anne; Duparc, Thibaut; Marlin, Alysson; Brierley, Stuart M; Castro, Joel; Le-Gonidec, Sophie; Masri, Bernard; Colom, André; Lucas, Alexandre; Rousset, Perrine; Cenac, Nicolas; Vergnolle, Nathalie; Valet, Philippe; Cani, Patrice D; Knauf, Claude
2017-02-01
The gut-brain axis is considered as a major regulatory checkpoint in the control of glucose homeostasis. The detection of nutrients and/or hormones in the duodenum informs the hypothalamus of the host's nutritional state. This process may occur via hypothalamic neurons modulating central release of nitric oxide (NO), which in turn controls glucose entry into tissues. The enteric nervous system (ENS) modulates intestinal contractions in response to various stimuli, but the importance of this interaction in the control of glucose homeostasis via the brain is unknown. We studied whether apelin, a bioactive peptide present in the gut, regulates ENS-evoked contractions, thereby identifying a new physiological partner in the control of glucose utilisation via the hypothalamus. We measured the effect of apelin on electrical and mechanical duodenal responses via telemetry probes and isotonic sensors in normal and obese/diabetic mice. Changes in hypothalamic NO release, in response to duodenal contraction modulated by apelin, were evaluated in real time with specific amperometric probes. Glucose utilisation in tissues was measured with orally administrated radiolabeled glucose. In normal and obese/diabetic mice, glucose utilisation is improved by the decrease of ENS/contraction activities in response to apelin, which generates an increase in hypothalamic NO release. As a consequence, glucose entry is significantly increased in the muscle. Here, we identify a novel mode of communication between the intestine and the hypothalamus that controls glucose utilisation. Moreover, our data identified oral apelin administration as a novel potential target to treat metabolic disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Carbohydrates as a cerebral metabolic fuel.
Evans, M; Amiel, S A
1998-03-01
The human brain is an extremely active metabolic organ with little endogenous stores of energy. It is thus dependent on circulating glucose to fuel metabolism and support cognitive functioning. However there is growing evidence that the human brain is able to utilise other non-glucose fuels during times of glucose lack. We review the evidence for the potential of the human brain to use the alternate fuels lactate and beta-hydroxybutyrate, and some recent studies examining the ability of regions of brain to use non-glucose lipid fuels. The human brain does not seem to have the ability to use the gluconeogenic precursor alanine to any significant degree. Regionality within the brain can be examined in vivo by the use of positron emission tomography, which offers the exciting prospect of studying human brain metabolism in vivo using a simple and non-interventional technique. Increased understanding of the brain's metabolism, the way in which hypoglycaemia is recognised and the manner in which this can be altered in the syndrome of hypoglycaemia unawareness and deficient counterregulation will help develop further strategies to prevent the clinical problems associated with hypoglycaemia in insulin-dependent diabetic adults and children.
Perneczky, R; Drzezga, A; Diehl-Schmid, J; Schmid, G; Wohlschläger, A; Kars, S; Grimmer, T; Wagenpfeil, S; Monsch, A; Kurz, A
2006-09-01
Functional imaging studies report that higher education is associated with more severe pathology in patients with Alzheimer's disease, controlling for disease severity. Therefore, schooling seems to provide brain reserve against neurodegeneration. To provide further evidence for brain reserve in a large sample, using a sensitive technique for the indirect assessment of brain abnormality (18F-fluoro-deoxy-glucose-positron emission tomography (FDG-PET)), a comprehensive measure of global cognitive impairment to control for disease severity (total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery) and an approach unbiased by predefined regions of interest for the statistical analysis (statistical parametric mapping (SPM)). 93 patients with mild Alzheimer's disease and 16 healthy controls underwent 18F-FDG-PET imaging of the brain. A linear regression analysis with education as independent and glucose utilisation as dependent variables, adjusted for global cognitive status and demographic variables, was conducted in SPM2. The regression analysis showed a marked inverse association between years of schooling and glucose metabolism in the posterior temporo-occipital association cortex and the precuneus in the left hemisphere. In line with previous reports, the findings suggest that education is associated with brain reserve and that people with higher education can cope with brain damage for a longer time.
Courchesne-Loyer, Alexandre; Croteau, Etienne; Castellano, Christian-Alexandre; St-Pierre, Valérie; Hennebelle, Marie; Cunnane, Stephen C
2017-07-01
Ketones (principally β-hydroxybutyrate and acetoacetate (AcAc)) are an important alternative fuel to glucose for the human brain, but their utilisation by the brain remains poorly understood. Our objective was to use positron emission tomography (PET) to assess the impact of diet-induced moderate ketosis on cerebral metabolic rate of acetoacetate (CMRa) and glucose (CMRglc) in healthy adults. Ten participants (35 ± 15 y) received a very high fat ketogenic diet (KD) (4.5:1; lipid:protein plus carbohydrates) for four days. CMRa and CMRglc were quantified by PET before and after the KD with the tracers, 11 C-AcAc and 18 F-fluorodeoxyglucose ( 18 F-FDG), respectively. During the KD, plasma ketones increased 8-fold ( p = 0.005) while plasma glucose decreased by 24% ( p = 0.005). CMRa increased 6-fold ( p = 0.005), whereas CMRglc decreased by 20% ( p = 0.014) on the KD. Plasma ketones were positively correlated with CMRa (r = 0.93; p < 0.0001). After four days on the KD, CMRa represented 17% of whole brain energy requirements in healthy adults with a 2-fold difference across brain regions (12-24%). The CMR of ketones (AcAc and β-hydroxybutyrate combined) while on the KD was estimated to represent about 33% of brain energy requirements or approximately double the CMRa. Whether increased ketone availability raises CMR of ketones to the same extent in older people as observed here or in conditions in which chronic brain glucose hypometabolism is present remains to be determined.
Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease
Poisnel, Géraldine; Hérard, Anne-Sophie; El Tannir El Tayara, Nadine; Bourrin, Emmanuel; Volk, Andreas; Kober, Frank; Delatour, Benoit; Delzescaux, Thierry; Debeir, Thomas; Rooney, Thomas; Benavides, Jésus; Hantraye, Philippe; Dhenain, Marc
2013-01-01
Alzheimer’s disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-Fluoro-2-deoxy-D-Glucose-Positron Emission Tomography ([18F]-FDG-PET) is largely used to follow-up in vivo cerebral glucose utilisation (CGU) and brain metabolism modifications associated to the AD pathology. Here, [18F]-FDG-PET was used to study age-related changes of CGU under resting conditions in 3, 6 and 12-month-old APPSweLon/PS1M146L, a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared to age-matched control mice. We then developed a method of 3D-microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganisation of glucose uptake in relation to cerebral amyloidosis. PMID:22079157
Covarrubias-Pinto, Adriana; Moll, Pablo; Solís-Maldonado, Macarena; Acuña, Aníbal I.; Riveros, Andrea; Miró, María Paz; Papic, Eduardo; Beltrán, Felipe A.; Cepeda, Carlos; Concha, Ilona I.; Brauchi, Sebastián; Castro, Maite A.
2016-01-01
Failure in energy metabolism and oxidative damage are associated with Huntington’s disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity. PMID:26456058
Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
Lucas, Sarah J; Michel, Christophe B; Marra, Vincenzo; Smalley, Joshua L; Hennig, Matthias H; Graham, Bruce P; Forsythe, Ian D
2018-05-01
Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Cerebral glucose utilisation in hepatitis C virus infection-associated encephalopathy.
Heeren, Meike; Weissenborn, Karin; Arvanitis, Dimitrios; Bokemeyer, Martin; Goldbecker, Annemarie; Tountopoulou, Argyro; Peschel, Thomas; Grosskreutz, Julian; Hecker, Hartmut; Buchert, Ralph; Berding, Georg
2011-11-01
Patients with hepatitis C virus (HCV) infection frequently show neuropsychiatric symptoms. This study aims to help clarify the neurochemical mechanisms behind these symptoms and to add further proof to the hypothesis that HCV may affect brain function. Therefore, 15 patients who reported increasing chronic fatigue, mood alterations, and/or cognitive decline since their HCV infection underwent neurologic and neuropsychological examination, magnetic resonance imaging, (18)F-fluoro-deoxy-glucose positron emission tomography of the brain, and single photon emission tomography of striatal dopamine and midbrain serotonin transporter (SERT) availability. None of the patients had liver cirrhosis. Patients' data were compared with data of age-matched controls. In addition, regression analysis was performed between cognitive deficits, and mood and fatigue scores as dependent variables, and cerebral glucose metabolism, dopamine, or SERT availability as predictors. Patients showed significant cognitive deficits, significantly decreased striatal dopamine and midbrain SERT availability, and significantly reduced glucose metabolism in the limbic association cortex, and in the frontal, parietal, and superior temporal cortices, all of which correlated with dopamine transporter availability and psychometric results. Thus, the study provides further evidence of central nervous system affection in HCV-afflicted patients with neuropsychiatric symptoms. Data indicate alteration of dopaminergic neurotransmission as a possible mechanism of cognitive decline.
2014-01-01
Background Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-recombinant way to increase yeast tolerance to hydrolysates is by encapsulation of the yeast. This can be explained by concentration gradients occuring in the cell pellet inside the capsule. In the current study, we hypothesised that encapsulation might also lead to improved simultaneous utilisation of hexoses and pentoses because of such sugar concentration gradients. Results In silico simulations of encapsulated yeast showed that the presence of concentration gradients of inhibitors can explain the improved inhibitor tolerance of encapsulated yeast. Simulations also showed pronounced concentration gradients of sugars, which resulted in simultaneous xylose and glucose consumption and a steady state xylose consumption rate up to 220-fold higher than that found in suspension culture. To validate the results experimentally, a xylose-utilising S. cerevisiae strain, CEN.PK XXX, was constructed and encapsulated in semi-permeable alginate-chitosan liquid core gel capsules. In defined media, encapsulation not only increased the tolerance of the yeast to inhibitors, but also promoted simultaneous utilisation of glucose and xylose. Encapsulation of the yeast resulted in consumption of at least 50% more xylose compared with suspended cells over 96-hour fermentations in medium containing both sugars. The higher consumption of xylose led to final ethanol titres that were approximately 15% higher. In an inhibitory dilute acid spruce hydrolysate, freely suspended yeast cells consumed the sugars in a sequential manner after a long lag phase, whereas no lag phase was observed for the encapsulated yeast, and glucose, mannose, galactose and xylose were utilised in parallel from the beginning of the cultivation. Conclusions Encapsulation of xylose-fermenting S. cerevisiae leads to improved simultaneous and efficient utilisation of several sugars, which are utilised sequentially by suspended cells. The greatest improvement is obtained in inhibitory media. These findings show that encapsulation is a promising option for production of second-generation bioethanol. PMID:25050138
Brunmair, B; Staniek, K; Dörig, J; Szöcs, Z; Stadlbauer, K; Marian, V; Gras, F; Anderwald, C; Nohl, H; Waldhäusl, W; Fürnsinn, C
2006-11-01
GW501516, an agonist of peroxisome proliferator-activated receptor-delta (PPAR-delta), increases lipid combustion and exerts antidiabetic action in animals, effects which are attributed mainly to direct effects on skeletal muscle. We explored such actions further in isolated rat skeletal muscle. Specimens of rat skeletal muscle were pretreated with GW501516 (0.01-30 mumol/l) for 0.5, 4 or 24 h and rates of fuel metabolism were then measured. In addition, effects on mitochondrial function were determined in isolated rat liver mitochondria. At concentrations between 0.01 and 1 mumol/l, GW501516 dose-dependently increased fatty acid oxidation but reduced glucose utilisation in isolated muscle. Thus after 24 h of preincubation with 1 mumol/l GW501516, palmitate oxidation increased by +46+/-10%, and the following decreased as specified: glucose oxidation -46+/-8%, glycogen synthesis -42+/-6%, lactate release -20+/-2%, glucose transport -15+/-6% (all p<0.05). Reduction of glucose utilisation persisted independently of insulin stimulation or muscle fibre type, but depended on fatty acid availability (the effect on glucose transport in the absence of fatty acids was an increase of 30+/-9%, p<0.01), suggesting a role for the glucose-fatty acid cycle. At higher concentrations, GW501516 uncoupled oxidative phosphorylation by direct action on isolated mitochondria. GW501516-induced activation of PPAR-delta reduces glucose utilisation by skeletal muscle through a switch in mitochondrial substrate preference from carbohydrate to lipid. High concentrations of GW501516 induce mitochondrial uncoupling independently of PPAR-delta.
Cerebral Glucose Metabolism and Sedation in Brain-injured Patients: A Microdialysis Study.
Hertle, Daniel N; Santos, Edgar; Hagenston, Anna M; Jungk, Christine; Haux, Daniel; Unterberg, Andreas W; Sakowitz, Oliver W
2015-07-01
Disturbed brain metabolism is a signature of primary damage and/or precipitates secondary injury processes after severe brain injury. Sedatives and analgesics target electrophysiological functioning and are as such well-known modulators of brain energy metabolism. Still unclear, however, is how sedatives impact glucose metabolism and whether they differentially influence brain metabolism in normally active, healthy brain and critically impaired, injured brain. We therefore examined and compared the effects of anesthetic drugs under both critical (<1 mmol/L) and noncritical (>1 mmol/L) extracellular brain glucose levels. We performed an explorative, retrospective analysis of anesthetic drug administration and brain glucose concentrations, obtained by bedside microdialysis, in 19 brain-injured patients. Our investigations revealed an inverse linear correlation between brain glucose and both the concentration of extracellular glutamate (Pearson r=-0.58, P=0.01) and the lactate/glucose ratio (Pearson r=-0.55, P=0.01). For noncritical brain glucose levels, we observed a positive linear correlation between midazolam dose and brain glucose (P<0.05). For critical brain glucose levels, extracellular brain glucose was unaffected by any type of sedative. These findings suggest that the use of anesthetic drugs may be of limited value in attempts to influence brain glucose metabolism in injured brain tissue.
13C-labelled microdialysis studies of cerebral metabolism in TBI patients☆
Carpenter, Keri L.H.; Jalloh, Ibrahim; Gallagher, Clare N.; Grice, Peter; Howe, Duncan J.; Mason, Andrew; Timofeev, Ivan; Helmy, Adel; Murphy, Michael P.; Menon, David K.; Kirkpatrick, Peter J.; Carpenter, T. Adrian; Sutherland, Garnette R.; Pickard, John D.; Hutchinson, Peter J.
2014-01-01
Human brain chemistry is incompletely understood and better methodologies are needed. Traumatic brain injury (TBI) causes metabolic perturbations, one result of which includes increased brain lactate levels. Attention has largely focussed on glycolysis, whereby glucose is converted to pyruvate and lactate, and is proposed to act as an energy source by feeding into neurons’ tricarboxylic acid (TCA) cycle, generating ATP. Also reportedly upregulated by TBI is the pentose phosphate pathway (PPP) that does not generate ATP but produces various molecules that are putatively neuroprotective, antioxidant and reparative, in addition to lactate among the end products. We have developed a novel combination of 13C-labelled cerebral microdialysis both to deliver 13C-labelled substrates into brains of TBI patients and recover the 13C-labelled metabolites, with high-resolution 13C NMR analysis of the microdialysates. This methodology has enabled us to achieve the first direct demonstration in humans that the brain can utilise lactate via the TCA cycle. We are currently using this methodology to make the first direct comparison of glycolysis and the PPP in human brain. In this article, we consider the application of 13C-labelled cerebral microdialysis for studying brain energy metabolism in patients. We set this methodology within the context of metabolic pathways in the brain, and 13C research modalities addressing them. PMID:24361470
The Role of Glucose Transporters in Brain Disease: Diabetes and Alzheimer’s Disease
Shah, Kaushik; DeSilva, Shanal; Abbruscato, Thomas
2012-01-01
The occurrence of altered brain glucose metabolism has long been suggested in both diabetes and Alzheimer’s diseases. However, the preceding mechanism to altered glucose metabolism has not been well understood. Glucose enters the brain via glucose transporters primarily present at the blood-brain barrier. Any changes in glucose transporter function and expression dramatically affects brain glucose homeostasis and function. In the brains of both diabetic and Alzheimer’s disease patients, changes in glucose transporter function and expression have been observed, but a possible link between the altered glucose transporter function and disease progress is missing. Future recognition of the role of new glucose transporter isoforms in the brain may provide a better understanding of brain glucose metabolism in normal and disease states. Elucidation of clinical pathological mechanisms related to glucose transport and metabolism may provide common links to the etiology of these two diseases. Considering these facts, in this review we provide a current understanding of the vital roles of a variety of glucose transporters in the normal, diabetic and Alzheimer’s disease brain. PMID:23202918
Evidence for brain glucose dysregulation in Alzheimer's disease.
An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav
2018-03-01
It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.
Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia
NASA Astrophysics Data System (ADS)
Gjedde, Albert; Crone, Christian
1981-10-01
Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.
Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance
Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo
2011-01-01
OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256
Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo
2013-08-01
Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.
van Huyssteen, Mea; Milne, Pieter J; Campbell, Eileen E; van de Venter, Maryna
2011-01-01
Diabetes mellitus is a growing problem in South Africa and of concern to traditional African health practitioners in the Nelson Mandela Metropole, because they experience a high incidence of diabetic cases in their practices. A collaborative research project with these practitioners focused on the screening of Bulbine frutescens, Ornithogalum longibracteatum, Ruta graveolens, Tarchonanthus camphoratus and Tulbaghia violacea for antidiabetic and cytotoxic potential. In vitro glucose utilisation assays with Chang liver cells and C2C12 muscle cells, and growth inhibition assays with Chang liver cells were conducted. The aqueous extracts of Bulbine frutescens (143.5%), Ornithogalum longibracteatum (131.9%) and Tarchonanthus camphoratus (131.5%) showed significant increased glucose utilisation activity in Chang liver cells. The ethanol extracts of Ruta graveolens (136.9%) and Tulbaghia violacea (140.5%) produced the highest increase in glucose utilisation in C2C12 muscle cells. The ethanol extract of Bulbine frutescens produced the most pronounced growth inhibition (33.3%) on Chang liver cells. These findings highlight the potential for the use of traditional remedies in the future for the management of diabetes and it is recommended that combinations of these plants be tested in future.
Kurtz, Pedro; Claassen, Jan; Schmidt, J Michael; Helbok, Raimund; Hanafy, Khalid A; Presciutti, Mary; Lantigua, Hector; Connolly, E Sander; Lee, Kiwon; Badjatia, Neeraj; Mayer, Stephan A
2013-12-01
The brain is dependent on glucose to meet its energy demands. We sought to evaluate the potential importance of impaired glucose transport by assessing the relationship between brain/serum glucose ratios, cerebral metabolic distress, and mortality after severe brain injury. We studied 46 consecutive comatose patients with subarachnoid or intracerebral hemorrhage, traumatic brain injury, or cardiac arrest who underwent cerebral microdialysis and intracranial pressure monitoring. Continuous insulin infusion was used to maintain target serum glucose levels of 80-120 mg/dL (4.4-6.7 mmol/L). General linear models of logistic function utilizing generalized estimating equations were used to relate predictors of cerebral metabolic distress (defined as a lactate/pyruvate ratio [LPR] ≥ 40) and mortality. A total of 5,187 neuromonitoring hours over 300 days were analyzed. Mean serum glucose was 133 mg/dL (7.4 mmol/L). The median brain/serum glucose ratio, calculated hourly, was substantially lower (0.12) than the expected normal ratio of 0.40 (brain 2.0 and serum 5.0 mmol/L). In addition to low cerebral perfusion pressure (P = 0.05) and baseline Glasgow Coma Scale score (P < 0.0001), brain/serum glucose ratios below the median of 0.12 were independently associated with an increased risk of metabolic distress (adjusted OR = 1.4 [1.2-1.7], P < 0.001). Low brain/serum glucose ratios were also independently associated with in-hospital mortality (adjusted OR = 6.7 [1.2-38.9], P < 0.03) in addition to Glasgow Coma Scale scores (P = 0.029). Reduced brain/serum glucose ratios, consistent with impaired glucose transport across the blood brain barrier, are associated with cerebral metabolic distress and increased mortality after severe brain injury.
Simultaneous measurement of glucose transport and utilization in the human brain
Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.
2011-01-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622
Patching, Simon G
2017-03-01
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Bola, R. Aaron; Kiyatkin, Eugene A.
2016-01-01
Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008
Béland-Millar, Alexandria; Larcher, Jeremy; Courtemanche, Justine; Yuan, Tina; Messier, Claude
2017-01-01
Classic neuroenergetic research has emphasized the role of glucose, its transport and its metabolism in sustaining normal neural function leading to the textbook statement that it is the necessary and sole metabolic fuel of the mammalian brain. New evidence, including the Astrocyte-to-Neuron Lactate Shuttle hypothesis, suggests that the brain can use other metabolic substrates. To further study that possibility, we examined the effect of intraperitoneally administered metabolic fuels (glucose, fructose, lactate, pyruvate, ß-hydroxybutyrate, and galactose), and insulin, on blood, and extracellular brain levels of glucose and lactate in the adult male CD1 mouse. Primary motor cortex extracellular levels of glucose and lactate were monitored in freely moving mice with the use of electrochemical electrodes. Blood concentration of these same metabolites were obtained by tail vein sampling and measured with glucose and lactate meters. Blood and extracellular fluctuations of glucose and lactate were monitored for a 2-h period. We found that the systemic injections of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate increased blood lactate levels. Apart for a small transitory rise in brain extracellular lactate levels, the main effect of the systemic injection of glucose, fructose, lactate, pyruvate, and ß-hydroxybutyrate was an increase in brain extracellular glucose levels. Systemic galactose injections produced a small rise in blood glucose and lactate but almost no change in brain extracellular lactate and glucose. Systemic insulin injections led to a decrease in blood glucose and a small rise in blood lactate; however brain extracellular glucose and lactate monotonically decreased at the same rate. Our results support the concept that the brain is able to use alternative fuels and the current experiments suggest some of the mechanisms involved. PMID:28154523
Sugar for the brain: the role of glucose in physiological and pathological brain function
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A.; Meisel, Andreas
2013-01-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We aim at synthesizing these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation which lead to disease. PMID:23968694
Allocation of systemic glucose output to cerebral utilization as a function of fetal canine growth.
Huang, M M; Kliegman, R M; Trindade, C; Kall, D; Voelker, K
1988-05-01
To determine whether the neonatal canine brain consumes a major proportion of the systemic glucose production, we investigated the cerebral glucose requirement and hepatic glucose production in beagle pups. Sixteen pups received D-[6-3H]-glucose to determine systemic glucose production. Cerebral blood flow was measured by [N-methyl-14C]antipyrine, and the brain uptake index (BUI) of glucose was determined using 2-[14C]deoxy-D-glucose. Glucose production was 49.6 +/- 11.0 mumol.kg-1.min-1. Cerebral blood flow was 0.83 ml.g-1.min-1; cerebral uptake of glucose was 0.60 +/- 0.15 mumol.g-1.min-1. Of the total glucose production 36.6 +/- 7.9% was accounted for by the cerebral uptake of glucose. Brain-to-body weight and brain-to-liver weight ratios were the greatest in the smallest pups, suggesting brain sparing. The effect of growth status on cerebral substrate availability could not be correlated with cerebral uptake of glucose or oxygen or with systemic glucose production. However, the percentage of systemic glucose production allotted to the cerebral cortex increased with increasing body weight (r = 0.50, P less than 0.05). Cerebral glucose entry measured by BUI was demonstrated to be 0.108 +/- 0.014; BUI inversely correlated with canine birth weight (r = -0.832, P less than 0.001). We conclude that the percentage of glucose production utilized by the neonatal canine brain is not proportionately larger in the smaller pups despite a proportionately larger brain. Because the absolute cerebral glucose utilization may be static, we speculate that BUI (glucose entry) may be less of a rate-limiting factor for cerebral glucose entry in the smallest pups.
Simultaneous measurement of glucose transport and utilization in the human brain.
Shestov, Alexander A; Emir, Uzay E; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R; Öz, Gülin
2011-11-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state (1)H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMR(glc), this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain.
Sanguinetti, Elena; Liistro, Tiziana; Mainardi, Marco; Pardini, Silvia; Salvadori, Piero A; Vannucci, Alessandro; Burchielli, Silvia; Iozzo, Patricia
2016-04-01
Maternal obesity negatively affects fetal development. Abnormalities in brain glucose metabolism are predictive of metabolic-cognitive disorders. We studied the offspring (aged 0, 1, 6, 12 months) of minipigs fed a normal vs high-fat diet (HFD), by positron emission tomography (PET) to measure brain glucose metabolism, and ex vivo assessments of brain insulin receptors (IRβ) and GLUT4. At birth, brain glucose metabolism and IRβ were twice as high in the offspring of HFD-fed than control mothers. During infancy and youth, brain glucose uptake, GLUT4 and IRβ increased in the offspring of control mothers and decreased in those of HFD-fed mothers, leading to a 40-85% difference (p < 0.05), and severe glycogen depletion, lasting until adulthood. Maternal high-fat feeding leads to brain glucose overexposure during fetal development, followed by long-lasting depression in brain glucose metabolism in minipigs. These features may predispose the offspring to develop metabolic-neurodegenerative diseases.
Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V
2015-01-01
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing.
BRAIN FUEL METABOLISM, AGING AND ALZHEIMER’S DISEASE
Cunnane, SC; Nugent, S; Roy, M; Courchesne-Loyer, A; Croteau, E; Tremblay, S; Castellano, A; Pifferi, F; Bocti, C; Paquet, N; Begdouri, H; Bentourkia, M; Turcotte, E; Allard, M; Barberger-Gateau, P; Fulop, T; Rapoport, S
2012-01-01
Lower brain glucose metabolism is present before the onset of clinically-measurable cognitive decline in two groups of people at risk of Alzheimer’s disease (AD) - carriers of apoE4, and in those with a maternal family history of AD. Supported by emerging evidence from in vitro and animal studies, these reports suggest that brain hypometabolism may precede and contribute to the neuropathological cascade leading cognitive decline in AD. The reason for brain hypometabolism is unclear but may include defects in glucose transport at the blood-brain barrier, glycolysis, and/or mitochondrial function. Methodological issues presently preclude knowing with certainty whether or not aging in the absence of cognitive impairment is necessarily associated with lower brain glucose metabolism. Nevertheless, aging appears to increase the risk of deteriorating systemic control of glucose utilization which, in turn, may increase the risk of declining brain glucose uptake, at least in some regions. A contributing role of deteriorating glucose availability to or metabolism by the brain in AD does not exclude the opposite effect, i.e. that neurodegenerative processes in AD further decrease brain glucose metabolism because of reduced synaptic functionality and, hence, reduced energy needs, thereby completing a vicious cycle. Strategies to reduce the risk of AD by breaking this cycle should aim to – (i) improve insulin sensitivity by improving systemic glucose utilization, or (ii) bypass deteriorating brain glucose metabolism using approaches that safely induce mild, sustainable ketonemia. PMID:21035308
Sugar for the brain: the role of glucose in physiological and pathological brain function.
Mergenthaler, Philipp; Lindauer, Ute; Dienel, Gerald A; Meisel, Andreas
2013-10-01
The mammalian brain depends upon glucose as its main source of energy, and tight regulation of glucose metabolism is critical for brain physiology. Consistent with its critical role for physiological brain function, disruption of normal glucose metabolism as well as its interdependence with cell death pathways forms the pathophysiological basis for many brain disorders. Here, we review recent advances in understanding how glucose metabolism sustains basic brain physiology. We synthesize these findings to form a comprehensive picture of the cooperation required between different systems and cell types, and the specific breakdowns in this cooperation that lead to disease. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A
2016-06-01
Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents
Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A.; Santoro, Nicola; Savoye, Mary; Duran, Elvira J.; Pierpont, Bridget; Cline, Gary; Constable, R. Todd; Sherwin, Robert S.
2016-01-01
Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. PMID:27207544
Marín-Juez, Rubén; Rovira, Mireia; Crespo, Diego; van der Vaart, Michiel; Spaink, Herman P; Planas, Josep V
2015-01-01
Glucose transporter 2 (GLUT2; gene name SLC2A2) has a key role in the regulation of glucose dynamics in organs central to metabolism. Although GLUT2 has been studied in the context of its participation in peripheral and central glucose sensing, its role in the brain is not well understood. To decipher the role of GLUT2 in brain development, we knocked down slc2a2 (glut2), the functional ortholog of human GLUT2, in zebrafish. Abrogation of glut2 led to defective brain organogenesis, reduced glucose uptake and increased programmed cell death in the brain. Coinciding with the observed localization of glut2 expression in the zebrafish hindbrain, glut2 deficiency affected the development of neural progenitor cells expressing the proneural genes atoh1b and ptf1a but not those expressing neurod. Specificity of the morphant phenotype was demonstrated by the restoration of brain organogenesis, whole-embryo glucose uptake, brain apoptosis, and expression of proneural markers in rescue experiments. These results indicate that glut2 has an essential role during brain development by facilitating the uptake and availability of glucose and support the involvement of glut2 in brain glucose sensing. PMID:25294126
Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S
2002-03-01
Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.
Glucose metabolism in the developing brain.
Vannucci, R C; Vannucci, S J
2000-04-01
As in adults, glucose is the predominant cerebral energy fuel for the fetus and newborn. Studies in experimental animals and humans indicate that cerebral glucose utilization initially is low and increases with maturation with increasing regional heterogeneity. The increases in cerebral glucose utilization with advancing age occurs as a consequence of increasing functional activity and cerebral energy demands. The levels of expression of the 2 primary facilitative glucose transporter proteins in brain, GLUT1 (blood-brain barrier and glia) and GLUT3 (neuronal), display a similar maturational pattern. Alternate cerebral energy fuels, specifically the ketone bodies and lactate, can substitute for glucose, especially during hypoglycemia, thereby protecting the immature brain from potential untoward effects of hypoglycemia. Unlike adults, glucose supplementation during hypoxia-ischemia is protective in the immature brain, whereas hypoglycemia is deleterious. Accordingly, glucose plays a critical role in the developing brain, not only as the primary substrate for energy production but also to allow for normal biosynthetic processes to proceed.
Brain Glucose Transporter (Glut3) Haploinsufficiency Does Not Impair Mouse Brain Glucose Uptake
Stuart, Charles A.; Ross, Ian R.; Howell, Mary E. A.; McCurry, Melanie P.; Wood, Thomas G.; Ceci, Jeffrey D.; Kennel, Stephen J.; Wall, Jonathan
2011-01-01
Mouse brain expresses three principle glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3−/− genotype is intrauterine lethal by seven days post-coitis, but the heterozygous (Glut3+/−) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberrations. At twelve weeks of age, brain uptake of tail vein-injected 3H-2-deoxy glucose in Glut3+/− mice was not different from Glut3+/+ littermates, despite 50% less Glut3 protein expression in the brain. The brain uptake of injected 18F-2-fluoro-2-deoxy glucose was similarly not different from Glut3+/− littermates in the total amount, time course, or brain imaging in the Glut3+/− mice. Glut1 and Glut6 protein expressions evaluated by immunoblots were not affected by the diminished Glut3 expression in the Glut3+/− mice. We conclude that a 50% decrease in Glut3 is not limiting for the uptake of glucose into the mouse brain, since Glut3 haploinsufficiency does not impair brain glucose uptake or utilization. PMID:21316350
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.
Roh, Eun; Song, Do Kyeong; Kim, Min-Seon
2016-03-11
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism
Roh, Eun; Song, Do Kyeong; Kim, Min-Seon
2016-01-01
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism. PMID:26964832
Brain glucose sensing, glucokinase and neural control of metabolism and islet function.
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-09-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. © 2014 John Wiley & Sons Ltd.
Brain glucose sensing, glucokinase and neural control of metabolism and islet function
Ogunnowo-Bada, E O; Heeley, N; Brochard, L; Evans, M L
2014-01-01
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel – emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases. PMID:25200293
Hypertonic Lactate to Improve Cerebral Perfusion and Glucose Availability After Acute Brain Injury.
Carteron, Laurent; Solari, Daria; Patet, Camille; Quintard, Hervé; Miroz, John-Paul; Bloch, Jocelyne; Daniel, Roy T; Hirt, Lorenz; Eckert, Philippe; Magistretti, Pierre J; Oddo, Mauro
2018-06-19
Lactate promotes cerebral blood flow and is an efficient substrate for the brain, particularly at times of glucose shortage. Hypertonic lactate is neuroprotective after experimental brain injury; however, human data are limited. Prospective study (clinicaltrials.gov NCT01573507). Academic ICU. Twenty-three brain-injured subjects (13 traumatic brain injury/10 subarachnoid hemorrhage; median age, 59 yr [41-65 yr]; median Glasgow Coma Scale, 6 [3-7]). Three-hour IV infusion of hypertonic lactate (sodium lactate, 1,000 mmol/L; concentration, 30 µmol/kg/min) administered 39 hours (26-49 hr) from injury. We examined the effect of hypertonic lactate on cerebral perfusion (using transcranial Doppler) and brain energy metabolism (using cerebral microdialysis). The majority of subjects (13/23 = 57%) had reduced brain glucose availability (baseline pretreatment cerebral microdialysis glucose, < 1 mmol/L) despite normal baseline intracranial pressure (10 [7-15] mm Hg). Hypertonic lactate was associated with increased cerebral microdialysis lactate (+55% [31-80%]) that was paralleled by an increase in middle cerebral artery mean cerebral blood flow velocities (+36% [21-66%]) and a decrease in pulsatility index (-21% [13-26%]; all p < 0.001). Cerebral microdialysis glucose increased above normal range during hypertonic lactate (+42% [30-78%]; p < 0.05); reduced brain glucose availability correlated with a greater improvement of cerebral microdialysis glucose (Spearman r = -0.53; p = 0.009). No significant changes in cerebral perfusion pressure, mean arterial pressure, systemic carbon dioxide, and blood glucose were observed during hypertonic lactate (all p > 0.1). This is the first clinical demonstration that hypertonic lactate resuscitation improves both cerebral perfusion and brain glucose availability after brain injury. These cerebral vascular and metabolic effects appeared related to brain lactate supplementation rather than to systemic effects.
Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.
2017-01-01
GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912
Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne
2015-01-01
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. PMID:26063461
Brain glucose content in fetuses of ethanol-fed rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pullen, G.; Singh, S.P.; Snyder, A.K.
1986-03-01
The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4more » and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.« less
Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.
Kiyatkin, Eugene A; Wakabayashi, Ken T
2015-01-21
Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redies, C.; Hoffer, L.J.; Beil, C.
In prolonged fasting, the brain derives a large portion of its oxidative energy from the ketone bodies, beta-hydroxybutyrate and acetoacetate, thereby reducing whole body glucose consumption. Energy substrate utilization differs regionally in the brain of fasting rat, but comparable information has hitherto been unavailable in humans. We used positron emission tomography (PET) to study regional brain glucose and oxygen metabolism, blood flow, and blood volume in four obese subjects before and after a 3-wk total fast. Whole brain glucose utilization fell to 54% of control (postabsorptive) values (P less than 0.002). The whole brain rate constant for glucose tracer phosphorylationmore » fell to 51% of control values (P less than 0.002). Both parameters decreased uniformly throughout the brain. The 2-fluoro-2-deoxy-D-glucose lumped constant decreased from a control value of 0.57 to 0.43 (P less than 0.01). Regional blood-brain barrier transfer coefficients for glucose tracer, regional oxygen utilization, blood flow, and blood volume were unchanged.« less
Regional differences in brain glucose metabolism determined by imaging mass spectrometry.
Kleinridders, André; Ferris, Heather A; Reyzer, Michelle L; Rath, Michaela; Soto, Marion; Manier, M Lisa; Spraggins, Jeffrey; Yang, Zhihong; Stanton, Robert C; Caprioli, Richard M; Kahn, C Ronald
2018-06-01
Glucose is the major energy substrate of the brain and crucial for normal brain function. In diabetes, the brain is subject to episodes of hypo- and hyperglycemia resulting in acute outcomes ranging from confusion to seizures, while chronic metabolic dysregulation puts patients at increased risk for depression and Alzheimer's disease. In the present study, we aimed to determine how glucose is metabolized in different regions of the brain using imaging mass spectrometry (IMS). To examine the relative abundance of glucose and other metabolites in the brain, mouse brain sections were subjected to imaging mass spectrometry at a resolution of 100 μm. This was correlated with immunohistochemistry, qPCR, western blotting and enzyme assays of dissected brain regions to determine the relative contributions of the glycolytic and pentose phosphate pathways to regional glucose metabolism. In brain, there are significant regional differences in glucose metabolism, with low levels of hexose bisphosphate (a glycolytic intermediate) and high levels of the pentose phosphate pathway (PPP) enzyme glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolite hexose phosphate in thalamus compared to cortex. The ratio of ATP to ADP is significantly higher in white matter tracts, such as corpus callosum, compared to less myelinated areas. While the brain is able to maintain normal ratios of hexose phosphate, hexose bisphosphate, ATP, and ADP during fasting, fasting causes a large increase in cortical and hippocampal lactate. These data demonstrate the importance of direct measurement of metabolic intermediates to determine regional differences in brain glucose metabolism and illustrate the strength of imaging mass spectrometry for investigating the impact of changing metabolic states on brain function at a regional level with high resolution. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.
Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia
2016-07-01
Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Hypoglycemia-Induced Changes in the Electroencephalogram
Blaabjerg, Lykke; Juhl, Claus B.
2016-01-01
Hypoglycemia is defined by an abnormally low blood glucose level. The condition develops when rates of glucose entry into the systematic circulation are reduced relative to the glucose uptake by the tissues. A cardinal manifestation of hypoglycemia arises from inadequate supply of glucose to the brain, where glucose is the primary metabolic fuel. The brain is one of the first organs to be affected by hypoglycemia. Shortage of glucose in the brain, or neuroglycopenia, results in a gradual loss of cognitive functions causing slower reaction time, blurred speech, loss of consciousness, seizures, and ultimately death, as the hypoglycemia progresses. The electrical activity in the brain represents the metabolic state of the brain cells and can be measured by electroencephalography (EEG). An association between hypoglycemia and changes in the EEG has been demonstrated, although blood glucose levels alone do not seem to predict neuroglycopenia. This review provides an overview of the current literature regarding changes in the EEG during episodes of low blood glucose. PMID:27464753
Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia
Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian
2013-01-01
Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547
Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo
NASA Astrophysics Data System (ADS)
Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.
2013-03-01
To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.
Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei
2012-01-01
Cerebral glucose consumption and glucose transport across the blood–brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMRglc) and glucose transport constants (KT: half-saturation constant; Tmax: maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMRglc, KT, and Tmax via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo 1H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMRglc, Tmax, and KT were determined to be 0.44±0.17 μmol/g per minute, 1.35±0.47 μmol/g per minute, and 13.4±6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMRglc and Tmax are more reliable than that of KT. The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application. PMID:22714049
Du, Fei; Zhang, Yi; Zhu, Xiao-Hong; Chen, Wei
2012-09-01
Cerebral glucose consumption and glucose transport across the blood-brain barrier are crucial to brain function since glucose is the major energy fuel for supporting intense electrophysiological activity associated with neuronal firing and signaling. Therefore, the development of noninvasive methods to measure the cerebral metabolic rate of glucose (CMR(glc)) and glucose transport constants (K(T): half-saturation constant; T(max): maximum transport rate) are of importance for understanding glucose transport mechanism and neuroenergetics under various physiological and pathological conditions. In this study, a novel approach able to simultaneously measure CMR(glc), K(T), and T(max) via monitoring the dynamic glucose concentration changes in the brain tissue using in-vivo (1)H magnetic resonance spectroscopy (MRS) and in plasma after a brief glucose infusion was proposed and tested using an animal model. The values of CMR(glc), T(max), and K(T) were determined to be 0.44 ± 0.17 μmol/g per minute, 1.35 ± 0.47 μmol/g per minute, and 13.4 ± 6.8 mmol/L in the rat brain anesthetized with 2% isoflurane. The Monte-Carlo simulations suggest that the measurements of CMR(glc) and T(max) are more reliable than that of K(T). The overall results indicate that the new approach is robust and reliable for in-vivo measurements of both brain glucose metabolic rate and transport constants, and has potential for human application.
Volkenhoff, Anne; Hirrlinger, Johannes; Kappel, Johannes M; Klämbt, Christian; Schirmeier, Stefanie
2018-04-01
All complex nervous systems are metabolically separated from circulation by a blood-brain barrier (BBB) that prevents uncontrolled leakage of solutes into the brain. Thus, all metabolites needed to sustain energy homeostasis must be transported across this BBB. In invertebrates, such as Drosophila, the major carbohydrate in circulation is the disaccharide trehalose and specific trehalose transporters are expressed by the glial BBB. Here we analyzed whether glucose is able to contribute to energy homeostasis in Drosophila. To study glucose influx into the brain we utilized a genetically encoded, FRET-based glucose sensor expressed in a cell type specific manner. When confronted with glucose all brain cells take up glucose within two minutes. In order to characterize the glucose transporter involved, we studied Drosophila Glut1, the homologue of which is primarily expressed by the BBB-forming endothelial cells and astrocytes in the mammalian nervous system. In Drosophila, however, Glut1 is expressed in neurons and is not found at the BBB. Thus, Glut1 cannot contribute to initial glucose uptake from the hemolymph. To test whether gap junctional coupling between the BBB forming cells and other neural cells contributes to glucose distribution we assayed these junctions using RNAi experiments and only found a minor contribution of gap junctions to glucose metabolism. Our results provide the entry point to further dissect the mechanisms underlying glucose distribution and offer new opportunities to understand brain metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Short-term fasting, seizure control and brain amino acid metabolism.
Yudkoff, Marc; Daikhin, Yevgeny; Nissim, Ilana; Horyn, Oksana; Luhovyy, Bogdan; Lazarow, Adam; Nissim, Itzhak
2006-01-01
The ketogenic diet is an effective treatment for seizures, but the mechanism of action is unknown. It is uncertain whether the anti-epileptic effect presupposes ketosis, or whether the restriction of calories and/or carbohydrate might be sufficient. We found that a relatively brief (24 h) period of low glucose and low calorie intake significantly attenuated the severity of seizures in young Sprague-Dawley rats (50-70 gms) in whom convulsions were induced by administration of pentylenetetrazole (PTZ). The blood glucose concentration was lower in animals that received less dietary glucose, but the brain glucose level did not differ from control blood [3-OH-butyrate] tended to be higher in blood, but not in brain, of animals on a low-glucose intake. The concentration in brain of glutamine increased and that of alanine declined significantly with low-glucose intake. The blood alanine level fell more than that of brain alanine, resulting in a marked increase ( approximately 50%) in the brain:blood ratio for alanine. In contrast, the brain:blood ratio for leucine declined by about 35% in the low-glucose group. When animals received [1-(13)C]glucose, a metabolic precursor of alanine, the appearance of (13)C in alanine and glutamine increased significantly relative to control. The brain:blood ratio for [(13)C]alanine exceeded 1, indicating that the alanine must have been formed in brain and not transported from blood. The elevated brain(alanine):blood(alanine) could mean that a component of the anti-epileptic effect of low carbohydrate intake is release of alanine from brain-to-blood, in the process abetting the disposal of glutamate, excess levels of which in the synaptic cleft would contribute to the development of seizures.
Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J
2017-03-01
GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.
Zhou, Qi; Zheng, Hong; Chen, Jiuxia; Li, Chen; Du, Yao; Xia, Huanhuan; Gao, Hongchang
2018-06-26
Alzheimer's disease (AD) has been associated with the disturbance of brain glucose metabolism. The present study investigates brain glucose metabolism using 13 C NMR metabolomics in combination with intravenous [1- 13 C]-glucose infusion in APP/PS1 transgenic mouse model of amyloid pathology at 10 months of age. We found that brain glucose was significantly accumulated in APP/PS1 mice relative to wild-type (WT) mice. Reductions in 13 C fluxes into the specific carbon sites of tricarboxylic acid (TCA) intermediate (succinate) as well as neurotransmitters (glutamate, glutamine, γ-aminobutyric acid and aspartate) from [1- 13 C]-glucose were also detected in the brain of APP/PS1 mice. In addition, our results reveal that the 13 C-enrichments of the C3 of alanine were significantly lower and the C3 of lactate have a tendency to be lower in the brain of APP/PS1 mice than WT mice. Taken together, the development of amyloid pathology could cause a reduction in glucose utilization and further result in decreases in energy and neurotransmitter metabolism as well as the lactate-alanine shuttle in the brain.
Pifferi, Fabien; Dorieux, Olène; Castellano, Christian-Alexandre; Croteau, Etienne; Masson, Marie; Guillermier, Martine; Van Camp, Nadja; Guesnet, Philippe; Alessandri, Jean-Marc; Cunnane, Stephen; Dhenain, Marc; Aujard, Fabienne
2015-08-01
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months' supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze. Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
Parsing Glucose Entry into the Brain: Novel Findings Obtained with Enzyme-Based Glucose Biosensors
2015-01-01
Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between “active” and “passive” glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the “neuronal” hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism. PMID:25490002
Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf
2017-06-01
Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.
Brain Hyperglycemia Induced by Heroin: Association with Metabolic Neural Activation.
Solis, Ernesto; Bola, R Aaron; Fasulo, Bradley J; Kiyatkin, Eugene A
2017-02-15
Glucose enters the brain extracellular space from arterial blood, and its proper delivery is essential for metabolic activity of brain cells. By using enzyme-based biosensors coupled with high-speed amperometry in freely moving rats, we previously showed that glucose levels in the nucleus accumbens (NAc) display high variability, increasing rapidly following exposure to various arousing stimuli. In this study, the same technology was used to assess NAc glucose fluctuations induced by intravenous heroin. Heroin passively injected at a low dose optimal for maintaining self-administration behavior (100 μg/kg) induces a rapid but moderate glucose rise (∼150-200 μM or ∼15-25% over resting baseline). When the heroin dose was doubled and tripled, the increase became progressively larger in magnitude and longer in duration. Heroin-induced glucose increases also occurred in other brain structures (medial thalamus, lateral striatum, hippocampus), suggesting that brain hyperglycemia is a whole-brain phenomenon but changes were notably distinct in each structure. While local vasodilation appears to be the possible mechanism underlying the rapid rise in extracellular glucose levels, the driving factor for this vasodilation (central vs peripheral) remains to be clarified. The heroin-induced NAc glucose increases positively correlated with increases in intracerebral heat production determined in separate experiments using multisite temperature recordings (NAc, temporal muscle and skin). However, glucose levels rise very rapidly, preceding much slower increases in brain heat production, a measure of metabolic activation associated with glucose consumption.
Glucose transport in brain - effect of inflammation.
Jurcovicova, J
2014-01-01
Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma membrane to transport glucose into cells, and GLUT8 from cytosol to rough endoplasmic reticulum to recover redundant glucose to cytosol after protein glycosylation. In autoimmune diseases, the enhanced glucose uptake was found in inflamed peripheral tissue, mainly due to proliferating fibroblasts and activated macrophages. In our experimental model of rheumatoid arthritis (adjuvant arthritis), enhanced 2-deoxy-2[F-18]fluoro-D-glucose was found in the hippocampus and amygdala two days after the induction of the disease which, similarly as in the peripheral joints, can be ascribed to the activated macrophages. The knowledge on the glucose transport and the role of glucose transporters in the brain during systemic autoimmune inflammation is still incomplete and needs further investigations.
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Goldstein, Rita Z.; Klein, Nelly; Wong, Christopher; Swanson, James M.; Shumay, Elena
2013-01-01
Aging is associated with reductions in brain glucose metabolism in some cortical and subcortical regions, but the rate of decrease varies significantly between individuals, likely reflecting genetic and environmental factors and their interactions. Here we test the hypothesis that the variant of the dopamine receptor D4 (DRD4) gene (VNTR in exon 3), which has been associated with novelty seeking and sensitivity to environmental stimuli (negative and positive) including the beneficial effects of physical activity on longevity, influence the effects of aging on the human brain. We used positron emission tomography (PET) and [18F]fluoro-D-glucose (18FDG) to measure brain glucose metabolism (marker of brain function) under baseline conditions (no stimulation) in 82 healthy individuals (age range 22–55 years). We determined their DRD4 genotype and found an interaction with age: individuals who did not carry the 7-repeat allele (7R−, n = 53) had a significant (p<0.0001) negative association between age and relative glucose metabolism (normalized to whole brain glucose metabolism) in frontal (r = −0.52), temporal (r = −0.51) and striatal regions (r = −0.47, p<0.001); such that older individuals had lower metabolism than younger ones. In contrast, for carriers of the 7R allele (7R+ n = 29), these correlations with age were not significant and they only showed a positive association with cerebellar glucose metabolism (r = +0.55; p = 0.002). Regression slopes of regional brain glucose metabolism with age differed significantly between the 7R+ and 7R− groups in cerebellum, inferior temporal cortex and striatum. These results provide evidence that the DRD4 genotype might modulate the associations between regional brain glucose metabolism and age and that the carriers of the 7R allele appear to be less sensitive to the effects of age on brain glucose metabolism. PMID:23717434
Adams, Hugo Ja; de Klerk, John Mh; Fijnheer, Rob; Heggelman, Ben Gf; Dubois, Stefan V; Nievelstein, Rutger Aj; Kwee, Thomas C
2016-06-01
There is a lack of data on the effect of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy on brain glucose metabolism of diffuse large B-cell lymphoma (DLBCL) patients, as measured by 18F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). Moreover, the prognostic value of brain glucose metabolism measurements is currently unknown. To investigate the use of FDG-PET for measurement of brain glucose metabolism in R-CHOP-treated DLBCL patients, and to assess its prognostic value. This retrospective study included DLBCL patients who underwent FDG-PET including the brain. FDG-PET metabolic volume products (MVPs) of the entire brain, cerebral cortex, basal ganglia, and cerebellum were measured, before and after R-CHOP therapy. Whole-body total lesion glycolysis (TLG) was also measured. Thirty-eight patients were included, of whom 18 had an appropriate end-of-treatment FDG-PET scan. There were no significant differences (P > 0.199) between pre- and post-treatment brain glucose metabolism metrics. Low basal ganglia MVP was associated with a significantly worse progression-free survival (PFS) and overall survival (OS) (P = 0.020 and P = 0.032), and low cerebellar MVP was associated with a significantly worse OS (P = 0.034). There were non-significant very weak correlations between pretreatment brain glucose metabolism metrics and TLG. In the multivariate Cox regression, only the National Comprehensive Cancer Network International Prognostic Index (NCCN-IPI) remained an independent predictor of PFS (hazard ratio 3.787, P = 0.007) and OS (hazard ratio 2.903, P = 0.0345). Brain glucose metabolism was not affected by R-CHOP therapy. Low pretreatment brain glucose metabolism was associated with a worse outcome, but did not surpass the predictive value of the NCCN-IPI. © The Foundation Acta Radiologica 2015.
Gliotransmission and Brain Glucose Sensing
Lanfray, Damien; Arthaud, Sébastien; Ouellet, Johanne; Compère, Vincent; Do Rego, Jean-Luc; Leprince, Jérôme; Lefranc, Benjamin; Castel, Hélène; Bouchard, Cynthia; Monge-Roffarello, Boris; Richard, Denis; Pelletier, Georges; Vaudry, Hubert; Tonon, Marie-Christine; Morin, Fabrice
2013-01-01
Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders. PMID:23160530
Samaras, Katherine; Lutgers, Helen L; Kochan, Nicole A; Crawford, John D; Campbell, Lesley V; Wen, Wei; Slavin, Melissa J; Baune, Bernard T; Lipnicki, Darren M; Brodaty, Henry; Trollor, Julian N; Sachdev, Perminder S
2014-04-01
Type 2 diabetes predicts accelerated cognitive decline and brain atrophy. We hypothesized that impaired fasting glucose (IFG) and incident glucose disorders have detrimental effects on global cognition and brain volume. We further hypothesized that metabolic and inflammatory derangements accompanying hyperglycaemia contribute to change in brain structure and function. This was a longitudinal study of a community-dwelling elderly cohort with neuropsychological testing (n = 880) and brain volumes by magnetic resonance imaging (n = 312) measured at baseline and 2 years. Primary outcomes were global cognition and total brain volume. Secondary outcomes were cognitive domains (processing speed, memory, language, visuospatial and executive function) and brain volumes (hippocampal, parahippocampal, precuneus and frontal lobe). Participants were categorised as normal, impaired fasting glucose at both assessments (stable IFG), baseline diabetes or incident glucose disorders (incident diabetes or IFG at 2 years). Measures included inflammatory cytokines and oxidative metabolites. Covariates were age, sex, education, non-English speaking background, smoking, blood pressure, lipid-lowering or antihypertensive medications, mood score, apolipoprotein E genotype and baseline cognition or brain volume. Participants with incident glucose disorders had greater decline in global cognition and visuospatial function compared to normal, similar to that observed in baseline diabetes. Homocysteine was independently associated with the observed effect of diabetes on executive function. Apolipoprotein E genotype did not influence the observed effects of diabetes on cognition. Incident glucose disorders and diabetes were also associated with greater 2-year decline in total brain volume, compared to normal (40.0 ± 4.2 vs. 46.7 ± 5.7 mm(3) vs. 18.1 ± 6.2, respectively, p < 0.005). Stable IFG did not show greater decline in global cognition or brain volumes compared to normal. Incident glucose disorders, like diabetes, are associated with accelerated decline in global cognition and brain volumes in non-demented elderly, whereas stable IFG is not. Preventing deterioration in glucose metabolism in the elderly may help preserve brain structure and function.
Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.
Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C
2016-05-05
High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.
Metabolic costs and evolutionary implications of human brain development.
Kuzawa, Christopher W; Chugani, Harry T; Grossman, Lawrence I; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R; Wildman, Derek E; Sherwood, Chet C; Leonard, William R; Lange, Nicholas
2014-09-09
The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate.
Madani, Zohra; Malaisse, Willy J; Ait-Yahia, Dalila
2015-09-01
The present study explored the potential of fish proteins to counteract high glucose levels and oxidative stress induced by fructose in the brain. A total of 24 male Wistar rats consumed sardine protein or casein with or without high fructose (64%). After 2 months, brain tissue was used for analyses. The fructose rats exhibited an increase in body mass index (BMI), body weight, absolute and relative brain weights and brain glucose; however, there was a decrease in food and water intake. Fructose disrupts membrane homeostasis, as evidenced by an increase in the brain hydroperoxides and a decrease in catalase (CAT) and glutathione peroxidase (GSH-Px) compared to the control. The exposure to the sardine protein reduced BMI, food intake, glucose and hydroperoxides, and increased CAT and GSH-Px in the brain. In conclusion, the metabolic dysfunctions associated with the fructose treatment were ameliorated by the presence of sardine protein in the diet by decreasing BMI, brain glucose and lipid peroxidation, and increasing CAT and GSH-Px activities.
Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M
2015-12-01
Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P < 0.005). Both CEST and relaxation effects contribute to the signal change. DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.
Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.
2015-01-01
Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (p<0.005). Both CEST and relaxation effects contribute to the signal change. Conclusion DGE MRI is a feasible technique for studying brain tumor enhancement reflecting differences in tumor blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120
Montero, Sergio; Cuéllar, Ricardo; Lemus, Mónica; Avalos, Reyes; Ramírez, Gladys; de Álvarez-Buylla, Elena Roces
2012-01-01
Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.
Impaired brain energy gain upon a glucose load in obesity.
Wardzinski, Ewelina K; Kistenmacher, Alina; Melchert, Uwe H; Jauch-Chara, Kamila; Oltmanns, Kerstin M
2018-03-06
There is evidence that the brain's energy status is lowered in obesity despite of chronic hypercaloric nutrition. The underlying mechanisms are unknown. We hypothesized that the brain of obese people does not appropriately generate energy in response to a hypercaloric supply. Glucose was intravenously infused in 17 normal weights and 13 obese participants until blood glucose concentrations reached the postprandial levels of 7 mmol/L and 10 mmol/L. Changes in cerebral adenosine triphosphate (ATP) and phosphocreatine (PCr) content were measured by 31 phosphorus magnetic resonance spectroscopy and stress hormonal measures regulating glucose homeostasis were monitored. Because vitamin C is crucial for a proper neuronal energy synthesis we determined circulating concentrations during the experimental testing. Cerebral high-energy phosphates were increased at blood glucose levels of 7 mmol/L in normal weights, which was completely missing in the obese. Brain energy content moderately raised only at blood glucose levels of 10 mmol/L in obese participants. Vitamin C concentrations generally correlated with the brain energy content at blood glucose concentrations of 7 mmol/L. Our data demonstrate an inefficient cerebral energy gain upon a glucose load in obese men, which may result from a dysfunctional glucose transport across the blood-brain barrier or a downregulated energy synthesis in mitochondrial oxidation processes. Our finding offers an explanation for the chronic neuroenergetic deficiency and respectively missing satiety perception in obesity. Copyright © 2018. Published by Elsevier Inc.
Neuronal LRP1 Regulates Glucose Metabolism and Insulin Signaling in the Brain
Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L.; Kanekiyo, Takahisa
2015-01-01
Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. PMID:25855193
Dimopoulos, Nikolaos; Watson, Maria; Green, Charlotte; Hundal, Harinder S
2007-10-02
Peroxisome proliferator-activated receptor-delta (PPARdelta) activation enhances skeletal muscle fatty acid oxidation and improves whole body glucose homeostasis and insulin sensitivity. Recently, GW501516, a selective PPARdelta agonist, was reported to increase glucose uptake in human skeletal myotubes by an AMPK-dependent mechanism that may contribute to the improved glucose tolerance. Here, we demonstrate that whilst GW501516 increases expression of PGC-1alpha and CPT-1 and stimulates fatty-acid oxidation in L6 myotubes, it fails to enhance insulin sensitivity, AMPK activity or glucose uptake and storage. Our findings exclude sarcolemmal glucose transport as a potential target for the therapeutic action of PPARdelta agonists in skeletal muscle.
Tanegashima, Kosuke; Sato-Miyata, Yukiko; Funakoshi, Masabumi; Nishito, Yasumasa; Aigaki, Toshiro; Hara, Takahiko
2017-01-01
We carried out liquid chromatography-tandem mass spectrometry analysis of metabolites in mice. Those metabolome data showed that hepatic glucose content is reduced, but that brain glucose content is unaffected, during fasting, consistent with the priority given to brain glucose consumption during fasting. The molecular mechanisms for this preferential glucose supply to the brain are not fully understood. We also showed that the fasting-induced production of the ketone body β-hydroxybutyrate (β-OHB) enhances expression of the glucose transporter gene Slc2a1 (Glut1) via histone modification. Upon β-OHB treatment, Slc2a1 expression was up-regulated, with a concomitant increase in H3K9 acetylation at the critical cis-regulatory region of the Slc2a1 gene in brain microvascular endothelial cells and NB2a neuronal cells, shown by quantitative PCR analysis and chromatin immunoprecipitation assay. CRISPR/Cas9-mediated disruption of the Hdac2 gene increased Slc2a1 expression, suggesting that it is one of the responsible histone deacetylases (HDACs). These results confirm that β-OHB is a HDAC inhibitor and show that β-OHB plays an important role in fasting-induced epigenetic activation of a glucose transporter gene in the brain. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Ding, Fan; Yao, Jia; Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[(18)F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of alternative fuels in brain with a concomitant decline in brain glucose transport and metabolism. These findings also indicate that estrogen plays a critical role in sustaining brain bioenergetic capacity through preservation of glucose metabolism.
Metabolic costs and evolutionary implications of human brain development
Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas
2014-01-01
The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain’s glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain–body metabolic trade-offs using the ratios of brain glucose uptake to the body’s resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucosermr% and glucoseder%). We find that glucosermr% and glucoseder% do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucosermr% and glucoseder% are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. PMID:25157149
Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun
2014-04-15
The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.
Abdul Muneer, P M; Alikunju, Saleena; Szlachetka, Adam M; Haorah, James
2011-04-01
Evidence shows that alcohol intake causes oxidative neuronal injury and neurocognitive deficits that are distinct from the classical Wernicke-Korsakoff neuropathy. Our previous findings indicated that alcohol-elicited blood-brain barrier (BBB) damage leads to neuroinflammation and neuronal loss. The dynamic function of the BBB requires a constant supply and utilization of glucose. Here we examined whether interference of glucose uptake and transport at the endothelium by alcohol leads to BBB dysfunction and neuronal degeneration. We tested the hypothesis in cell culture of human brain endothelial cells, neurons and alcohol intake in animal by immunofluorescence, Western blotting and glucose uptake assay methods. We found that decrease in glucose uptake correlates the reduction of glucose transporter protein 1 (GLUT1) in cell culture after 50 mM ethanol exposure. Decrease in GLUT1 protein levels was regulated at the translation process. In animal, chronic alcohol intake suppresses the transport of glucose into the frontal and occipital regions of the brain. This finding is validated by a marked decrease in GLUT1 protein expression in brain microvessel (the BBB). In parallel, alcohol intake impairs the BBB tight junction proteins occludin, zonula occludens-1, and claudin-5 in the brain microvessel. Permeability of sodium fluorescein and Evans Blue confirms the leakiness of the BBB. Further, depletion of trans-endothelial electrical resistance of the cell monolayer supports the disruption of BBB integrity. Administration of acetyl-L: -carnitine (a neuroprotective agent) significantly prevents the adverse effects of alcohol on glucose uptake, BBB damage and neuronal degeneration. These findings suggest that alcohol-elicited inhibition of glucose transport at the blood-brain interface leads to BBB malfunction and neurological complications.
Pawlosky, Robert J; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L
2010-02-01
Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Rats were infused with solutions of sodium acetate, ethanol, or saline containing (13)C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs' cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of (13)C-glucose into the brain compared to controls and the concentration of brain (13)C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg(2+) in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, alpha-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD(+)]/[NADH] was lower, the free mitochondrial [NAD(+)]/[NADH] and [CoQ]/[CoQH(2)] were oxidized and the DeltaG' of ATP lowered by acetate infusion from -61.4 kJ to -59.9 kJ/mol. Animals with elevated levels of blood ethanol or acetate had decreased (13)C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in (13)C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in DeltaG' of ATP was similar to administration of uncoupling agents indicating that the metabolism of acetate in brain caused the mitochondrial voltage dependent pore to form.
Pawlosky, Robert J.; Kashiwaya, Yoshihiro; Srivastava, Shireesh; King, Michael T.; Crutchfield, Calvin; Volkow, Nora; Kunos, George; Li, Ting-Kai; Veech, Richard L.
2010-01-01
Background Previous studies in humans have shown that alcohol consumption decreased the rate of brain glucose utilization. We investigated whether the major metabolite of ethanol, acetate, could account for this observation by providing an alternate to glucose as an energy substrate for brain and the metabolic consequences of that shift. Methods Rats were infused with solutions of sodium acetate, ethanol, or saline containing 13C-2-glucose as a tracer elevating the blood ethanol (BEC) and blood acetate (BAcC) concentrations. After an hour, blood was sampled and the brains of animals were removed by freeze blowing. Tissue samples were analyzed for the intermediates of glucose metabolism, Krebs’ cycle, acyl-coenzyme A (CoA) compounds, and amino acids. Results Mean peak BEC and BAcC were approximately 25 and 0.8 mM, respectively, in ethanol-infused animals. Peak blood BAcC increased to 12 mM in acetate-infused animals. Both ethanol and acetate infused animals had a lower uptake of 13C-glucose into the brain compared to controls and the concentration of brain 13C-glucose-6-phosphate varied inversely with the BAcC. There were higher concentrations of brain malonyl-CoA and somewhat lower levels of free Mg2+ in ethanol-treated animals compared to saline controls. In acetate-infused animals the concentrations of brain lactate, α-ketoglutarate, and fumarate were higher. Moreover, the free cytosolic [NAD+]/[NADH] was lower, the free mitochondrial [NAD+]/[NADH] and [CoQ]/[CoQH2] were oxidized and the ΔG′ of ATP lowered by acetate infusion from −61.4 kJ to −59.9 kJ/mol. Conclusions Animals with elevated levels of blood ethanol or acetate had decreased 13C-glucose uptake into the brain. In acetate-infused animals elevated BAcC were associated with a decrease in 13C-glucose phosphorylation. The co-ordinate decrease in free cytosolic NAD, oxidation of mitochondrial NAD and Q couples and the decrease in ΔG′ of ATP was similar to administration of uncoupling agents indicating that the metabolism of acetate in brain caused the mitochondrial voltage dependent pore to form. PMID:19951290
Al-Ahmad, Abraham J
2017-10-01
Glucose constitutes a major source of energy of mammalian brains. Glucose uptake at the blood-brain barrier (BBB) occurs through a facilitated glucose transport, through glucose transporter 1 (GLUT1), although other isoforms have been described at the BBB. Mutations in GLUT1 are associated with the GLUT1 deficiency syndrome, yet none of the current in vitro models of the human BBB maybe suited for modeling such a disorder. In this study, we investigated the expression of glucose transporters and glucose diffusion across brain microvascular endothelial cells (BMECs) derived from healthy patient-derived induced pluripotent stem cells (iPSCs). We investigated the expression of different glucose transporters at the BBB using immunocytochemistry and flow cytometry and measured glucose uptake and diffusion across BMEC monolayers obtained from two iPSC lines and from hCMEC/D3 cells. BMEC monolayers showed expression of several glucose transporters, in particular GLUT1, GLUT3, and GLUT4. Diffusion of glucose across the monolayers was mediated via a saturable transcellular mechanism and partially inhibited by pharmacological inhibitors. Taken together, our study suggests the presence of several glucose transporters isoforms at the human BBB and demonstrates the feasibility of modeling glucose across the BBB using patient-derived stem cells. Copyright © 2017 the American Physiological Society.
Functional expression of SGLTs in rat brain.
Yu, Amy S; Hirayama, Bruce A; Timbol, Gerald; Liu, Jie; Basarah, Ernest; Kepe, Vladimir; Satyamurthy, Nagichettiar; Huang, Sung-Cheng; Wright, Ernest M; Barrio, Jorge R
2010-12-01
This work provides evidence of previously unrecognized uptake of glucose via sodium-coupled glucose transporters (SGLTs) in specific regions of the brain. The current understanding of functional glucose utilization in brain is largely based on studies using positron emission tomography (PET) with the glucose tracer 2-deoxy-2-[F-18]fluoro-D-glucose (2-FDG). However, 2-FDG is only a good substrate for facilitated-glucose transporters (GLUTs), not for SGLTs. Thus, glucose accumulation measured by 2-FDG omits the role of SGLTs. We designed and synthesized two high-affinity tracers: one, α-methyl-4-[F-18]fluoro-4-deoxy-D-glucopyranoside (Me-4FDG), is a highly specific SGLT substrate and not transported by GLUTs; the other one, 4-[F-18]fluoro-4-deoxy-D-glucose (4-FDG), is transported by both SGLTs and GLUTs and will pass through the blood brain barrier (BBB). In vitro Me-4FDG autoradiography was used to map the distribution of uptake by functional SGLTs in brain slices with a comparable result from in vitro 4-FDG autoradiography. Immunohistochemical assays showed that uptake was consistent with the distribution of SGLT protein. Ex vivo 4-FDG autoradiography showed that SGLTs in these areas are functionally active in the normal in vivo brain. The results establish that SGLTs are a normal part of the physiology of specific areas of the brain, including hippocampus, amygdala, hypothalamus, and cerebral cortices. 4-FDG PET imaging also established that this BBB-permeable SGLT tracer now offers a functional imaging approach in humans to assess regulation of SGLT activity in health and disease.
Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.
Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang
2015-02-01
The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.
Patet, Camille; Quintard, Hervé; Suys, Tamarah; Bloch, Jocelyne; Daniel, Roy T; Pellerin, Luc; Magistretti, Pierre J; Oddo, Mauro
2015-10-15
Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4 ± 2.3 to 5.4 ± 2.9 mmol/L), pyruvate (126.9 ± 65.1 to 172.3 ± 74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27 ± 6 to 35 ± 9; all, p < 0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r = 0.56; p < 0.0001), while an inverse correlation (r = -0.11; p = 0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r = 0.62 to r = 0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.
Effect of x-radiation to brain on cerebral glucose utilization in the rat.
D'Aquino, S; Cicciarello, R; D'Avella, D; Mesiti, M; Albiero, F; Princi, P; Gagliardi, M E; Russi, E; D'Aquino, A
1990-01-01
We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- cGy/day given 5 days a week) to a total dose of 4000 cGy. Metabolic experiments were made 2 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, brain areas with the highest basal metabolic rates showed the greatest percentage drop of glucose utilization. Post-irradiation metabolic alterations possibly provide an explanation for the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy.
Zhang, Weishan; Ning, Ning; Li, Xianjun; Niu, Gang; Bai, Lijun; Guo, Youmin; Yang, Jian
2016-01-01
The tumor-to-brain communication has been emphasized by recent converging evidences. This study aimed to compare the difference of brain glucose metabolism between patients with non-small cell lung cancer (NSCLC) and control subjects. NSCLC patients prior to oncotherapy and control subjects without malignancy confirmed by 6 months follow-up were collected and underwent the resting state 18F-fluoro-D-glucose (FDG) PET/CT. Normalized FDG metabolism was calculated by a signal intensity ratio of each brain region to whole brain. Brain glucose metabolism was compared between NSCLC patients and control group using two samples t-test and multivariate test by statistical parametric maps (SPM) software. Compared with the control subjects (n = 76), both brain glucose hyper- and hypometabolism regions with significant statistical differences (P<0.01) were found in the NSCLC patients (n = 83). The hypermetabolism regions (bilateral insula, putamen, pallidum, thalamus, hippocampus and amygdala, the right side of cerebellum, orbital part of right inferior frontal gyrus and vermis) were component parts of visceral to brain signal transduction pathways, and the hypometabolism regions (the left superior parietal lobule, bilateral inferior parietal lobule and left fusiform gyrus) lied in dorsal attention network and visuospatial function areas. The changes of brain glucose metabolism exist in NSCLC patients prior to oncotherapy, which might be attributed to lung-cancer related visceral sympathetic activation and decrease of dorsal attention network function.
Clonazepam increases in vivo striatal extracellular glucose in diabetic rats after glucose overload.
Gomez, Rosane; Barros, Helena M T
2003-12-01
Hyperglycemia modulates brain function, including neuronal excitability, neurotransmitter release and behavioral changes. There may be connections between the GABAergic system, glucose sensing neurons and glucose in the neuronal environment that shed light on the mechanism by which GABA(A) agents influence depressive behavior in diabetic rats submitted to the forced swimming test. We aimed to investigate whether clonazepam (CNZ), a GABA(A) receptor positive modulator, modifies in vivo striatal extracellular glucose levels in diabetic rats under fasting condition or after oral glucose overload. Streptozotocin diabetic and nondiabetic rats were submitted to in vivo striatal microdialysis. Perfusate samples were collected at baseline, during fasting and following administration of CNZ (0.25 mg/kg) and oral glucose overload. Blood glucose and striatal extracellular glucose were measured simultaneously at several time points. Fasting striatal glucose levels were higher in diabetic than in nondiabetic rats and the differences between these animals were maintained after glucose overload. The increases in extracellular striatal glucose after glucose overload were around 40% and blood to brain transference was decreased in diabetics. CNZ treatment paradoxically increased striatal glucose after glucose overload in diabetic rats, which may mark the dysfunction in brain glucose homeostasis.
Lu, Ming; Zhu, Xiao-Hong; Zhang, Yi; Mateescu, Gheorghe; Chen, Wei
2017-11-01
Quantitative assessment of cerebral glucose consumption rate (CMR glc ) and tricarboxylic acid cycle flux (V TCA ) is crucial for understanding neuroenergetics under physiopathological conditions. In this study, we report a novel in vivo Deuterium ( 2 H) MRS (DMRS) approach for simultaneously measuring and quantifying CMR glc and V TCA in rat brains at 16.4 Tesla. Following a brief infusion of deuterated glucose, dynamic changes of isotope-labeled glucose, glutamate/glutamine (Glx) and water contents in the brain can be robustly monitored from their well-resolved 2 H resonances. Dynamic DMRS glucose and Glx data were employed to determine CMR glc and V TCA concurrently. To test the sensitivity of this method in response to altered glucose metabolism, two brain conditions with different anesthetics were investigated. Increased CMR glc (0.46 vs. 0.28 µmol/g/min) and V TCA (0.96 vs. 0.6 µmol/g/min) were found in rats under morphine as compared to deeper anesthesia using 2% isoflurane. This study demonstrates the feasibility and new utility of the in vivo DMRS approach to assess cerebral glucose metabolic rates at high/ultrahigh field. It provides an alternative MRS tool for in vivo study of metabolic coupling relationship between aerobic and anaerobic glucose metabolisms in brain under physiopathological states.
Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra
2017-07-13
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
REVISITING GLYCOGEN CONTENT IN THE HUMAN BRAIN
Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R.
2015-01-01
Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3–4 µmol/g brain glycogen content using in vivo 13C magnetic resonance spectroscopy (MRS) in conjunction with [1-13C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3–5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state 13C labeling in glycogen, here we administered [1-13C]glucose to healthy volunteers for 80 hours. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-13C]glucose administration and 13C-glycogen levels in the occipital lobe were measured by 13C MRS approximately every 12 hours. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the 13C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain. PMID:26202425
Revisiting Glycogen Content in the Human Brain.
Öz, Gülin; DiNuzzo, Mauro; Kumar, Anjali; Moheet, Amir; Seaquist, Elizabeth R
2015-12-01
Glycogen provides an important glucose reservoir in the brain since the concentration of glucosyl units stored in glycogen is several fold higher than free glucose available in brain tissue. We have previously reported 3-4 µmol/g brain glycogen content using in vivo (13)C magnetic resonance spectroscopy (MRS) in conjunction with [1-(13)C]glucose administration in healthy humans, while higher levels were reported in the rodent brain. Due to the slow turnover of bulk brain glycogen in humans, complete turnover of the glycogen pool, estimated to take 3-5 days, was not observed in these prior studies. In an attempt to reach complete turnover and thereby steady state (13)C labeling in glycogen, here we administered [1-(13)C]glucose to healthy volunteers for 80 h. To eliminate any net glycogen synthesis during this period and thereby achieve an accurate estimate of glycogen concentration, volunteers were maintained at euglycemic blood glucose levels during [1-(13)C]glucose administration and (13)C-glycogen levels in the occipital lobe were measured by (13)C MRS approximately every 12 h. Finally, we fitted the data with a biophysical model that was recently developed to take into account the tiered structure of the glycogen molecule and additionally incorporated blood glucose levels and isotopic enrichments as input function in the model. We obtained excellent fits of the model to the (13)C-glycogen data, and glycogen content in the healthy human brain tissue was found to be 7.8 ± 0.3 µmol/g, a value substantially higher than previous estimates of glycogen content in the human brain.
Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.
Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun
2015-04-08
Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.
Brown, Angus M; Ransom, Bruce R
2015-02-01
Energy metabolism in the brain is a complex process that is incompletely understood. Although glucose is agreed as the main energy support of the brain, the role of glucose is not clear, which has led to controversies that can be summarized as follows: the fate of glucose, once it enters the brain is unclear. It is not known the form in which glucose enters the cells (neurons and glia) within the brain, nor the degree of metabolic shuttling of glucose derived metabolites between cells, with a key limitation in our knowledge being the extent of oxidative metabolism, and how increased tissue activity alters this. Glycogen is present within the brain and is derived from glucose. Glycogen is stored in astrocytes and acts to provide short-term delivery of substrates to neural elements, although it may also contribute an important component to astrocyte metabolism. The roles played by glycogen awaits further study, but to date its most important role is in supporting neural elements during increased firing activity, where signaling molecules, proposed to be elevated interstitial K(+), indicative of elevated neural firing rates, activate glycogen phosphorylase leading to increased production of glycogen derived substrate.
Contributions of glycogen to astrocytic energetics during brain activation.
Dienel, Gerald A; Cruz, Nancy F
2015-02-01
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K(+) level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Contributions of Glycogen to Astrocytic Energetics during Brain Activation
Dienel, Gerald A.; Cruz, Nancy F.
2014-01-01
Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10-12 mol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound. PMID:24515302
Wakabayashi, Ken T.; Kiyatkin, Eugene A.
2015-01-01
Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells. PMID:26190984
Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen
2015-08-01
Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P < 0.001). Similar significant associations were found for white matter. Thus, while higher glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.
Qin, Xinghu; You, Hong; Cao, Fang; Wu, Yue; Peng, Jianhua; Pang, Jinwei; Xu, Hong; Chen, Yue; Chen, Ligang; Vitek, Michael P; Li, Fengqiao; Sun, Xiaochuan; Jiang, Yong
2017-02-15
Traumatic brain injury (TBI) disrupts the blood-brain barrier (BBB) and reduces cerebral glucose uptake. Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI, and COG1410 has demonstrated neuroprotective activity in several models of TBI. However, the effects of COG1410 on VEGF and glucose metabolism following TBI are unknown. The current study aimed to investigate the expression of VEGF and glucose metabolism effects in C57BL/6J male mice subjected to experimental TBI. The results showed that controlled cortical impact (CCI)-induced vestibulomotor deficits were accompanied by increases in brain edema and the expression of VEGF, with a decrease in cerebral glucose uptake. COG1410 treatment significantly improved vestibulomotor deficits and glucose uptake and produced decreases in VEGF in the pericontusion and ipsilateral hemisphere of injury, as well as in brain edema and neuronal degeneration compared with the control group. These data support that COG1410 may have potential as an effective drug therapy for TBI.
Daniele, Giuseppe; Iozzo, Patricia; Molina-Carrion, Marjorie; Lancaster, Jack; Ciociaro, Demetrio; Cersosimo, Eugenio; Tripathy, Devjit; Triplitt, Curtis; Fox, Peter; Musi, Nicolas; DeFronzo, Ralph; Gastaldelli, Amalia
2015-10-01
Glucagon-like peptide 1 receptors (GLP-1Rs) have been found in the brain, but whether GLP-1R agonists (GLP-1RAs) influence brain glucose metabolism is currently unknown. The study aim was to evaluate the effects of a single injection of the GLP-1RA exenatide on cerebral and peripheral glucose metabolism in response to a glucose load. In 15 male subjects with HbA1c of 5.7 ± 0.1%, fasting glucose of 114 ± 3 mg/dL, and 2-h glucose of 177 ± 11 mg/dL, exenatide (5 μg) or placebo was injected in double-blind, randomized fashion subcutaneously 30 min before an oral glucose tolerance test (OGTT). The cerebral glucose metabolic rate (CMRglu) was measured by positron emission tomography after an injection of [(18)F]2-fluoro-2-deoxy-d-glucose before the OGTT, and the rate of glucose absorption (RaO) and disposal was assessed using stable isotope tracers. Exenatide reduced RaO0-60 min (4.6 ± 1.4 vs. 13.1 ± 1.7 μmol/min ⋅ kg) and decreased the rise in mean glucose0-60 min (107 ± 6 vs. 138 ± 8 mg/dL) and insulin0-60 min (17.3 ± 3.1 vs. 24.7 ± 3.8 mU/L). Exenatide increased CMRglu in areas of the brain related to glucose homeostasis, appetite, and food reward, despite lower plasma insulin concentrations, but reduced glucose uptake in the hypothalamus. Decreased RaO0-60 min after exenatide was inversely correlated to CMRglu. In conclusion, these results demonstrate, for the first time in man, a major effect of a GLP-1RA on regulation of brain glucose metabolism in the absorptive state. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
ERIC Educational Resources Information Center
Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan
2011-01-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…
Near-critical GLUT1 and Neurodegeneration.
Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin
2017-11-01
Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake.
Flavahan, William A; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E; Weil, Robert J; Nakano, Ichiro; Sarkaria, Jann N; Stringer, Brett W; Day, Bryan W; Li, Meizhang; Lathia, Justin D; Rich, Jeremy N; Hjelmeland, Anita B
2013-10-01
Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) owing to preferential BTIC survival and to adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3, and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, tumor initiating cells may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may maintain the tumor hierarchy and portend poor prognosis.
Brain Tumor Initiating Cells Adapt to Restricted Nutrition through Preferential Glucose Uptake
Flavahan, William A.; Wu, Qiulian; Hitomi, Masahiro; Rahim, Nasiha; Kim, Youngmi; Sloan, Andrew E.; Weil, Robert J.; Nakano, Ichiro; Sarkaria, Jann N.; Stringer, Brett W.; Day, Bryan W.; Li, Meizhang; Lathia, Justin D.; Rich, Jeremy N.; Hjelmeland, Anita B.
2013-01-01
Like all cancers, brain tumors require a continuous source of energy and molecular resources for new cell production. In normal brain, glucose is an essential neuronal fuel, but the blood-brain barrier limits its delivery. We now report that nutrient restriction contributes to tumor progression by enriching for brain tumor initiating cells (BTICs) due to preferential BTIC survival and adaptation of non-BTICs through acquisition of BTIC features. BTICs outcompete for glucose uptake by co-opting the high affinity neuronal glucose transporter, type 3 (Glut3, SLC2A3). BTICs preferentially express Glut3 and targeting Glut3 inhibits BTIC growth and tumorigenic potential. Glut3, but not Glut1, correlates with poor survival in brain tumors and other cancers; thus, TICs may extract nutrients with high affinity. As altered metabolism represents a cancer hallmark, metabolic reprogramming may instruct the tumor hierarchy and portend poor prognosis. PMID:23995067
Devarakonda, Kavya; Mobbs, Charles V
2016-12-15
The concept that hypothalamic glucose signaling plays an important role in regulating energy balance, e.g., as instantiated in the so-called "glucostat" hypothesis, is one of the oldest in the field of metabolism. However the mechanisms by which neurons in the hypothalamus sense glucose, and the function of glucose signaling in the brain, has been difficult to establish. Nevertheless recent studies probing mechanisms of glucose signaling have also strongly supported a role for glucose signaling in regulating energy balance, glucose homeostasis, and food-induced reward. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack
During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less
Volkow, Nora D.; Fowler, Joanna S.; Wang, Gene-Jack; ...
2015-02-18
During alcohol intoxication the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis we compared the effects of alcohol intoxication (0.75g/kg alcohol versus placebo) on brain glucose metabolism during video-stimulation (VS) versus when given with no-stimulation (NS), in 25 heavy drinkers (HD) and 23 healthy controls each of whom underwent four PET-¹⁸FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p=0.04); that alcohol (compared tomore » placebo) decreased metabolism more in HD (20±13%) than controls (9±11%, p=0.005) and in proportion to daily alcohol consumption (r=0.36, p=0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10±12%) compared to NS in both groups (15±13%, p=0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e. acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in heavy drinkers, which might make them vulnerable to energy deficits during withdrawal.« less
Loss of Brain Aerobic Glycolysis in Normal Human Aging.
Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E
2017-08-01
The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.
Maruoka, N; Murata, T; Omata, N; Fujibayashi, Y; Waki, A; Yoshimoto, M; Yano, R; Yonekura, Y; Wada, Y
2001-01-01
Seven-day-old rat brain slices were incubated at 36C in oxygenated Krebs-Ringer solution containing [(18)F]2-fluoro-2-deoxy-D-glucose ([(18)F]FDG), and serial two-dimensional time-resolved images of [(18)F]FDG uptake by the slices were obtained. The Gjedde-Patlak graphical method was applied to the image data, and the duration limit of hypoxia loading that allowed recovery of the fractional rate constant (k3*) of [(18)F]FDG (proportional to the cerebral glucose metabolic rate) after hypoxia loading to the unloaded control level was 50 min, and MK-801 as an N-methyl-D-aspartate antagonist had neuroprotective effects, but PBN as a free radical scavenger was ineffective. In our previous study in adult (7-week-old) rat brains [Murata et al., Exp Neurol 2000, 164:269-279], the limit of the hypoxia loading time was 20 min, and both MK-801 and PBN were effective. In the immature rat brains, the ratio of aerobic glucose metabolism to the total glucose metabolism was low compared with the adult rat brains, suggesting only a slight involvement of free radicals in hypoxic neurotoxicity. These data suggest that the higher resistance of immature brains to hypoxia compared to that of adult brains is attributable to a lower involvement of free radicals due to a lower aerobic glucose metabolic rate. Copyright 2002 S. Karger AG, Basel
Glucose metabolism and astrocyte-neuron interactions in the neonatal brain.
Brekke, Eva; Morken, Tora Sund; Sonnewald, Ursula
2015-03-01
Glucose is essentially the sole fuel for the adult brain and the mapping of its metabolism has been extensive in the adult but not in the neonatal brain, which is believed to rely mainly on ketone bodies for energy supply. However, glucose is absolutely indispensable for normal development and recent studies have shed light on glycolysis, the pentose phosphate pathway and metabolic interactions between astrocytes and neurons in the 7-day-old rat brain. Appropriately (13)C labeled glucose was used to distinguish between glycolysis and the pentose phosphate pathway during development. Experiments using (13)C labeled acetate provided insight into the GABA-glutamate-glutamine cycle between astrocytes and neurons. It could be shown that in the neonatal brain the part of this cycle that transfers glutamine from astrocytes to neurons is operating efficiently while, in contrast, little glutamate is shuttled from neurons to astrocytes. This lack of glutamate for glutamine synthesis is compensated for by anaplerosis via increased pyruvate carboxylation relative to that in the adult brain. Furthermore, compared to adults, relatively more glucose is prioritized to the pentose phosphate pathway than glycolysis and pyruvate dehydrogenase activity. The reported developmental differences in glucose metabolism and neurotransmitter synthesis may determine the ability of the brain at various ages to resist excitotoxic insults such as hypoxia-ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E
2016-02-01
Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.
Aerobic glycolysis in the human brain is associated with development and neotenous gene expression
Goyal, Manu S.; Hawrylycz, Michael; Miller, Jeremy A.; Snyder, Abraham Z.; Raichle, Marcus E.
2015-01-01
SUMMARY Aerobic glycolysis (AG), i.e., non-oxidative metabolism of glucose despite the presence of abundant oxygen, accounts for 10–12% of glucose used by the adult human brain. AG varies regionally in the resting state. Brain AG may support synaptic growth and remodeling; however, data supporting this hypothesis are sparse. Here, we report on investigations on the role of AG in the human brain. Meta-analysis of prior brain glucose and oxygen metabolism studies demonstrates that AG increases during childhood, precisely when synaptic growth rates are highest. In resting adult humans, AG correlates with persistence of gene expression typical of infancy (transcriptional neoteny). In brain regions with the highest AG, we find increased gene expression related to synapse formation and growth. In contrast, regions high in oxidative glucose metabolism express genes related to mitochondria and synaptic transmission. Our results suggest that brain AG supports developmental processes, particularly those required for synapse formation and growth. PMID:24411938
Cunnane, Stephen C.; Courchesne-Loyer, Alexandre; Vandenberghe, Camille; St-Pierre, Valérie; Fortier, Mélanie; Hennebelle, Marie; Croteau, Etienne; Bocti, Christian; Fulop, Tamas; Castellano, Christian-Alexandre
2016-01-01
We propose that brain energy deficit is an important pre-symptomatic feature of Alzheimer’s disease (AD) that requires closer attention in the development of AD therapeutics. Our rationale is fourfold: (i) Glucose uptake is lower in the frontal cortex of people >65 years-old despite cognitive scores that are normal for age. (ii) The regional deficit in brain glucose uptake is present in adults <40 years-old who have genetic or lifestyle risk factors for AD but in whom cognitive decline has not yet started. Examples include young adult carriers of presenilin-1 or apolipoprotein E4, and young adults with mild insulin resistance or with a maternal family history of AD. (iii) Regional brain glucose uptake is impaired in AD and mild cognitive impairment (MCI), but brain uptake of ketones (beta-hydroxybutyrate and acetoacetate), remains the same in AD and MCI as in cognitively healthy age-matched controls. These observations point to a brain fuel deficit which appears to be specific to glucose, precedes cognitive decline associated with AD, and becomes more severe as MCI progresses toward AD. Since glucose is the brain’s main fuel, we suggest that gradual brain glucose exhaustion is contributing significantly to the onset or progression of AD. (iv) Interventions that raise ketone availability to the brain improve cognitive outcomes in both MCI and AD as well as in acute experimental hypoglycemia. Ketones are the brain’s main alternative fuel to glucose and brain ketone uptake is still normal in MCI and in early AD, which would help explain why ketogenic interventions improve some cognitive outcomes in MCI and AD. We suggest that the brain energy deficit needs to be overcome in order to successfully develop more effective therapeutics for AD. At present, oral ketogenic supplements are the most promising means of achieving this goal. PMID:27458340
Miccheli, Alfredo; Puccetti, Caterina; Capuani, Giorgio; Di Cocco, Maria Enrica; Giardino, Luciana; Calzà, Laura; Battaglia, Angelo; Battistin, Leontino; Conti, Filippo
2003-03-14
Age-related changes in glucose utilization through the TCA cycle were studied using [1-13C]glucose and 13C, 1H NMR spectroscopy on rat brain extracts. Significant increases in lactate levels, as well as in creatine/phosphocreatine ratios (Cr/PCr), and a decrease in N-acetyl-aspartate (NAA) and aspartate levels were observed in aged rat brains as compared to adult animals following glucose administration. The total amount of 13C from [1-13C]glucose incorporated in glutamate, glutamine, aspartate and GABA was significantly decreased in control aged rat brains as compared to adult brains. The results showed a decrease in oxidative glucose utilization of control aged rat brains. The long-term nicergoline treatment increased NAA and glutamate levels, and decreased the lactate levels as well as the Cr/PCr ratios in aged rat brains as compared to adult rats. The total amount of 13C incorporated in glutamate, glutamine, aspartate, NAA and GABA was increased by nicergoline treatment, showing an improvement in oxidative glucose metabolism in aged brains. A significant increase in pyruvate carboxylase/pyruvate dehydrogenase activity (PC/PDH) in the synthesis of glutamate in nicergoline-treated aged rats is consistent with an increase in the transport of glutamine from glia to neurons for conversion into glutamate. In adult rat brains, no effect of nicergoline on glutamate PC/PDH activity was observed, although an increase in PC/PDH activity in glutamine was, suggesting that nicergoline affects the glutamate/glutamine cycle between neurons and glia in different ways depending on the age of animals. These results provide new insights into the effects of nicergoline on the CNS.
Jiang, Chunyang; Zhang, Shun; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Wang, Zhenglun; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Aiguo
2014-03-01
Fluorine, a toxic and reactive element, is widely prevalent throughout the environment and can induce toxicity when absorbed into the body. This study was to explore the possible mechanisms of developmental neurotoxicity in rats treated with different levels of sodium fluoride (NaF). The rats' intelligence, as well as changes in neuronal morphology, glucose absorption, and functional gene expression within the brain were determined using the Morris water maze test, transmission electron microscopy, small-animal magnetic resonance imaging and Positron emission tomography and computed tomography, and Western blotting techniques. We found that NaF treatment-impaired learning and memory in these rats. Furthermore, NaF caused neuronal degeneration, decreased brain glucose utilization, decreased the protein expression of glucose transporter 1 and glial fibrillary acidic protein, and increased levels of brain-derived neurotrophic factor in the rat brains. The developmental neurotoxicity of fluoride may be closely associated with low glucose utilization and neurodegenerative changes.
Kofler, Mario; Schiefecker, Alois J; Beer, Ronny; Gaasch, Maxime; Rhomberg, Paul; Stover, John; Pfausler, Bettina; Thomé, Claudius; Schmutzhard, Erich; Helbok, Raimund
2018-03-01
Low brain tissue glucose levels after acute brain injury are associated with poor outcome. Whether enteral nutrition (EN) reliably increases cerebral glucose levels remains unclear. In this retrospective analysis of prospectively collected observational data, we investigate the effect of EN on brain metabolism in 17 poor-grade subarachnoid hemorrhage (SAH) patients undergoing cerebral microdialysis (CMD) monitoring. CMD-values were obtained hourly. A nutritional intervention was defined as the clinical routine administration of EN without supplemental parenteral nutrition. Sixty-three interventions were analyzed. The mean amount of EN per intervention was 472.4 ± 10.7 kcal. CMD-glucose levels significantly increased from 1.59 ± 0.13 mmol/l at baseline to a maximum of 2.03 ± 0.2 mmol/l after 5 h (p < 0.001), independently of insulin-treatment, baseline serum glucose, baseline brain metabolic distress (CMD-lactate-to-pyruvate-ratio (LPR) > 40) and the microdialysis probe location. The increase in CMD-glucose was directly dependent on the magnitude of increase of serum glucose levels (p = 0.007). No change in CMD-lactate, CMD-pyruvate, CMD-LPR, or CMD-glutamate (p > 0.4) was observed. Routine EN also increased CMD-glucose even if baseline concentrations were critically low ( < 0.7 mmol/l, neuroglucopenia; p < 0.001). These results may have treatment implications regarding glucose management of poor-grade aneurysmal SAH patients.
Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo
Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.
2012-01-01
Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, M.A.; Miller, A.L.
1984-09-01
The effects of paraoxon and Soman on glucose utilization and of Soman on the levels of intermediary metabolites were investigated in rat brain. The rate of glucose utilization and the levels of intermediary metabolites were determined in six brain areas at varying time periods after administration of 0.5 or 0.8 of the paraoxon or Soman LD50. Behavioral changes were observed only with the 0.8 LD50 dose of both compounds and some of the animals exhibited convulsive activity with this dose of Soman. Brain glucose utilization tended to be decreased by 0.8 LD50 paraoxon and 0.5 LD50 Soman. Some alterations inmore » metabolite levels were observed but these were not consistent and could not be correlated with the rate of glucose utilization. In animals with Soman-induced convulsions, glucose utilization and lactate levels were elevated only in the cortex and thalamus/basal ganglia. ATP, creatine phosphate and glucose levels were decreased in the cortex but not in other brain areas, suggesting the possibility of uncoupling of oxidative phosphorylation. Pretreatment with atropine prevented the behavioral responses and the changes in glucose utilization previously observed with 0.8 Soman LD50. Our results in convulsing animals are similar to those which have been observed with the excitatorytoxins kainic acid and bicuculline.« less
SUPPLY AND DEMAND IN CEREBRAL ENERGY METABOLISM: THE ROLE OF NUTRIENT TRANSPORTERS
Simpson, Ian A.; Carruthers, Anthony; Vannucci, Susan J.
2007-01-01
Glucose is the obligate energetic fuel for the mammalian brain and most studies of cerebral energy metabolism assume that the vast majority of cerebral glucose utilization fuels neuronal activity via oxidative metabolism, both in the basal and activated state. Glucose transporter proteins (GLUTs) deliver glucose from the circulation to the brain: GLUT1 in the microvascular endothelial cells of the blood brain barrier (BBB) and glia; GLUT3 in neurons. Lactate, the glycolytic product of glucose metabolism, is transported into and out of neural cells by the monocarboxylate transporters: MCT1 in the BBB and astrocytes and MCT2 in neurons. The proposal of the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 1994) suggested that astrocytes play the primary role in cerebral glucose utilization and generate lactate for neuronal energetics, especially during activation. Since the identification of the GLUTs and MCTs in brain, much has been learned about their transport properties, i.e. capacity and affinity for substrate, which must be considered in any model of cerebral glucose uptake and utilization. Using concentrations and kinetic parameters of GLUT1 and GLUT3 in BBB endothelial cells, astrocytes and neurons, along with the corresponding kinetic properties of the monocarboxylate transporters, we have successfully modeled brain glucose and lactate levels as well as lactate transients in response to neuronal stimulation. Simulations based on these parameters suggest that glucose readily diffuses through the basal lamina and interstitium to neurons, which are primarily responsible for glucose uptake, metabolism, and the generation of the lactate transients observed upon neuronal activation. PMID:17579656
Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan
2011-04-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans
USDA-ARS?s Scientific Manuscript database
Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...
27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation
Mateos, Laura; Maioli, Silvia; Ali, Zeina; Gulyás, Balázs; Winblad, Bengt; Savitcheva, Irina
2017-01-01
Hypercholesterolemia is associated with cognitively deteriorated states. Here, we show that excess 27-hydroxycholesterol (27-OH), a cholesterol metabolite passing from the circulation into the brain, reduced in vivo brain glucose uptake, GLUT4 expression, and spatial memory. Furthermore, patients exhibiting higher 27-OH levels had reduced 18F-fluorodeoxyglucose uptake. This interplay between 27-OH and glucose uptake revealed the engagement of the insulin-regulated aminopeptidase (IRAP). 27-OH increased the levels and activity of IRAP, countered the IRAP antagonist angiotensin IV (AngIV)–mediated glucose uptake, and enhanced the levels of the AngIV-degrading enzyme aminopeptidase N (AP-N). These effects were mediated by liver X receptors. Our results reveal a molecular link between cholesterol, brain glucose, and the brain renin-angiotensin system, all of which are affected in some neurodegenerative diseases. Thus, reducing 27-OH levels or inhibiting AP-N maybe a useful strategy in the prevention of the altered glucose metabolism and memory decline in these disorders. PMID:28213512
Effects of fat adaptation on glucose kinetics and substrate oxidation during low-intensity exercise.
Pagan, J D; Geor, R J; Harris, P A; Hoekstra, K; Gardner, S; Hudson, C; Prince, A
2002-09-01
This study was designed to determine the effects of fat adaptation on carbohydrate and fat oxidation in conditioned horses during low-intensity exercise. Five mature Arabians were studied. The study was conducted as a crossover design with 2 dietary periods, each of 10 week's duration: a) a control (CON) diet, and b) a fat-supplemented (FAT) diet. The total amount of digestible energy (DE) supplied by the fat in the CON and FAT diets was 7% and 29%, respectively. During each period, the horses completed exercise tests at the beginning of the period (Week 0) and after 5 and 10 weeks on the diet. Tests consisted of 90 min of exercise at a speed calculated to elicit 35% VO2max on a treadmill inclined to 3 degrees. Oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured at 15-min intervals. For determination of glucose kinetics, a stable isotope ([6-6-d2] glucose) technique was used. Compared to the CON diet, FAT diet consumption for 5-10 weeks was associated with an altered metabolic response to low-intensity exercise, as evidenced by a more than 30% reduction in the production and utilisation of glucose; a decrease in RER; a decrease in the estimated rate of whole-body carbohydrate utilisation; and an increase in the whole-body rate of lipid oxidation during exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rumsey, J.M.; Duara, R.; Grady, C.
The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic ratesmore » (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.« less
GLUT-1 GLUCOSE TRANSPORTERS IN THE BLOOD-BRAIN BARRIER: DIFFERENTIAL PHOSPHORYLATION
Devraj, Kavi; Klinger, Marianne E.; Myers, Roland L.; Mokashi, Ashwini; Hawkins, Richard A.; Simpson, Ian A.
2013-01-01
Glucose is the primary metabolic fuel for the mammalian brain and a continuous supply is required to maintain normal CNS function. The transport of glucose across the blood-brain barrier (BBB) into the brain is mediated by the facilitative glucose transporter GLUT-1. Prior studies (Simpson et al. 2001) had revealed that the conformations of the GLUT-1 transporter were different in luminal (blood facing) and abluminal (brain facing) membranes of bovine cerebral endothelial cells, based on differential antibody recognition. In this study we have extended these observations and using a combination of 2D-PAGE/Western blotting and immunogold electron microscopy we determined that these different conformations are exhibited in vivo and arise from differential phosphorylation of GLUT-1 and not from alternative splicing or altered O- or N-linked glycosylation. PMID:21910135
Cooperation between brain and islet in glucose homeostasis and diabetes
Schwartz, Michael W.; Seeley, Randy J.; Tschöp, Matthias H.; Woods, Stephen C.; Morton, Gregory J.; Myers, Martin G.; D'Alessio, David
2014-01-01
Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not. PMID:24201279
Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming
2013-01-01
Background Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. Materials and Methods FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25∼45 years, mean age±SD: 40.9±3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Results Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. Conclusion This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients. PMID:24358312
Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming
2013-01-01
Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.
Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.
Chen, W; Novotny, E J; Zhu, X H; Rothman, D L; Shulman, R G
1993-01-01
Spatially localized 1H NMR spectroscopy has been applied to measure changes in brain glucose concentration during 8-Hz photic stimulation. NMR spectroscopic measurements were made in a 12-cm3 volume centered on the calcarine fissure and encompassing the primary visual cortex. The average maximum change in glucose levels was 0.34 mumol.g-1 (n = 5) at 15 min; glucose level had turned toward resting level at 25 min. The glucose change was used to calculate the increase of glucose cerebral metabolic rate in the visual cortex region for individual subjects by using the Michaelis-Menten model of glucose transport on the assumption of constant transport kinetics. The glucose cerebral metabolic rate was calculated to increase over the nonstimulated rate by 22% during the first 15 min of photic stimulation. A model in which the glucose metabolic rate gradually decreases during stimulation was proposed as a possible explanation for the recovery of brain glucose and previously measured lactate concentrations to prestimulus values after 15 min. Images Fig. 1 PMID:8234332
Influence of ketamine on regional brain glucose use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, D.W.; Mans, A.M.; Biebuyck, J.F.
1988-08-01
The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic,more » steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.« less
Insulin Regulates Astrocytic Glucose Handling Through Cooperation With IGF-I.
Fernandez, Ana M; Hernandez-Garzón, Edwin; Perez-Domper, Paloma; Perez-Alvarez, Alberto; Mederos, Sara; Matsui, Takashi; Santi, Andrea; Trueba-Saiz, Angel; García-Guerra, Lucía; Pose-Utrilla, Julia; Fielitz, Jens; Olson, Eric N; Fernandez de la Rosa, Ruben; Garcia Garcia, Luis; Pozo, Miguel Angel; Iglesias, Teresa; Araque, Alfonso; Soya, Hideaki; Perea, Gertrudis; Martin, Eduardo D; Torres Aleman, Ignacio
2017-01-01
Brain activity requires a flux of glucose to active regions to sustain increased metabolic demands. Insulin, the main regulator of glucose handling in the body, has been traditionally considered not to intervene in this process. However, we now report that insulin modulates brain glucose metabolism by acting on astrocytes in concert with IGF-I. The cooperation of insulin and IGF-I is needed to recover neuronal activity after hypoglycemia. Analysis of underlying mechanisms show that the combined action of IGF-I and insulin synergistically stimulates a mitogen-activated protein kinase/protein kinase D pathway resulting in translocation of GLUT1 to the cell membrane through multiple protein-protein interactions involving the scaffolding protein GAIP-interacting protein C terminus and the GTPase RAC1. Our observations identify insulin-like peptides as physiological modulators of brain glucose handling, providing further support to consider the brain as a target organ in diabetes. © 2017 by the American Diabetes Association.
Assimilation of organic and inorganic nutrients by Erica root fungi from the fynbos ecosystem.
Bizabani, Christine; Dames, Joanna Felicity
2016-03-01
Erica dominate the fynbos ecosystem, which is characterized by acidic soils that are rich in organic matter. The ericaceae associate with ericoid mycorrhizal (ERM) fungi for survival. In this study fungal biomass accumulation in vitro was used to determine nutrient utilisation of various inorganic and organic substrates. This is an initial step towards establishment of the ecological roles of typical ERM fungi and other root fungi associated with Erica plants, with regard to host nutrition. Meliniomyces sp., Acremonium implicatum, Leohumicola sp., Cryptosporiopsis erica, Oidiodendron maius and an unidentified Helotiales fungus were selected from fungi previously isolated and identified from Erica roots. Sole nitrogen sources ammonium, nitrate, arginine and Bovine Serum Albumin (BSA) were tested. Meliniomyces and Leohumicola species were able to utilise BSA effectively. Phosphorus nutrition was tested using orthophosphate, sodium inositol hexaphosphate and DNA. Most isolates preferred orthophosphate. Meliniomyces sp. and A. implicatum were able to accumulate significant biomass using DNA. Carbon utilisation was tested using glucose, cellobiose, carboxymethylcellulose, pectin and tannic acid substrates. All fungal isolates produced high biomass on glucose and cellobiose. The ability to utilize organic nutrient sources in culture, illustrates their potential role of these fungi in host nutrition in the fynbos ecosystem. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Glucose Counterregulatory Responses to Hypoglycemia
Sprague, Jennifer E.; Arbeláez, Ana María
2013-01-01
The brain relies almost exclusively on glucose for fuel. Therefore, adequate uptake of glucose from the plasma is key for normal brain function and survival. Despite wide variations in glucose flux (i.e. fed state, fasting state, etc), blood glucose is maintained in a very narrow range. This is accomplished by a series of hormonal and physiologic responses. As a result, hypoglycemia is a rare occurrence in normal individuals. However, glucose counterregulatory responses are altered in patients with diabetes treated with insulin especially after repeated hypoglycemia or antecedent exercise. PMID:22783644
Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore
2015-05-01
The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.
Gejl, Michael; Rungby, Jørgen; Brock, Birgitte; Gjedde, Albert
2014-08-01
Glucagon-like peptide-1 (GLP-1) is a potent insulinotropic incretin hormone with both pancreatic and extrapancreatic effects. Studies of GLP-1 reveal significant effects in regions of brain tissue that regulate appetite and satiety. GLP-1 mimetics are used for the treatment of type 2 diabetes mellitus. GLP-1 interacts with peripheral functions in which the autonomic nervous system plays an important role, and emerging pre-clinical findings indicate a potential neuroprotective role of the peptide, for example in models of stroke and in neurodegenerative disorders. A century ago, Leonor Michaelis and Maud Menten described the steady-state enzyme kinetics that still apply to the multiple receptors, transporters and enzymes that define the biochemical reactions of the brain, including the glucose-dependent impact of GLP-1 on blood-brain glucose transfer and metabolism. This MiniReview examines the potential of GLP-1 as a molecule of interest for the understanding of brain energy metabolism and with reference to the impact on brain metabolism related to appetite and satiety regulation, stroke and neurodegenerative disorders. These effects can be understood only by reference to the original formulation of the Michaelis-Menten equation as applied to a chain of kinetically controlled steps. Indeed, the effects of GLP-1 receptor activation on blood-brain glucose transfer and brain metabolism of glucose depend on the glucose concentration and relative affinities of the steps both in vitro and in vivo, as in the pancreas. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Fueling and imaging brain activation
Dienel, Gerald A
2012-01-01
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861
NASA Astrophysics Data System (ADS)
Tsao, Sinchai; Wilkins, Bryce; Page, Kathleen A.; Singh, Manbir
2012-03-01
A novel MRI protocol has been developed to investigate the differential effects of glucose or fructose consumption on whole-brain functional brain connectivity. A previous study has reported a decrease in the fMRI blood oxygen level dependent (BOLD) signal of the hypothalamus following glucose ingestion, but due to technical limitations, was restricted to a single slice covering the hypothalamus, and thus unable to detect whole-brain connectivity. In another previous study, a protocol was devised to acquire whole-brain fMRI data following food intake, but only after restricting image acquisition to an MR sampling or repetition time (TR) of 20s, making the protocol unsuitable to detect functional connectivity above 0.025Hz. We have successfully implemented a continuous 36-min, 40 contiguous slices, whole-brain BOLD acquisition protocol on a 3T scanner with TR=4.5s to ensure detection of up to 0.1Hz frequencies for whole-brain functional connectivity analysis. Human data were acquired first with ingestion of water only, followed by a glucose or fructose drink within the scanner, without interrupting the scanning. Whole-brain connectivity was analyzed using standard correlation methodology in the 0.01-0.1 Hz range. The correlation coefficient differences between fructose and glucose ingestion among targeted regions were converted to t-scores using the water-only correlation coefficients as a null condition. Results show a dramatic increase in the hypothalamic connectivity to the hippocampus, amygdala, insula, caudate and the nucleus accumben for fructose over glucose. As these regions are known to be key components of the feeding and reward brain circuits, these results suggest a preference for fructose ingestion.
Robinson, Matthew M; Lowe, Val J; Nair, K Sreekumaran
2018-01-01
Aerobic exercise training can increase brain volume and blood flow, but the impact on brain metabolism is less known. We determined whether high-intensity interval training (HIIT) increases brain metabolism by measuring brain glucose uptake in younger and older adults. Brain glucose uptake was measured before and after HIIT or a sedentary (SED) control period within a larger exercise study. Study procedures were performed at the Mayo Clinic in Rochester, MN. Participants were younger (18 to 30 years) or older (65 to 80 years) SED adults who were free of major medical conditions. Group sizes were 15 for HIIT (nine younger and six older) and 12 for SED (six younger and six older). Participants completed 12 weeks of HIIT or SED. HIIT was 3 days per week of 4 × 4 minute intervals at over 90% of peak aerobic capacity (VO2peak) with 2 days per week of treadmill walking at 70% VO2peak. Resting brain glucose uptake was measured using 18F-fluorodeoxyglucose positron emission tomography scans at baseline and at week 12. Scans were performed at 96 hours after exercise. VO2peak was measured by indirect calorimetry. Glucose uptake increased significantly in the parietal-temporal and caudate regions after HIIT compared with SED. The gains with HIIT were not observed in all brain regions. VO2peak was increased for all participants after HIIT and did not change with SED. We demonstrate that brain glucose metabolism increased after 12 weeks of HIIT in adults in regions where it is reduced in Alzheimer's disease. Copyright © 2017 Endocrine Society
Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing.
Knauf, Claude; Cani, Patrice D; Kim, Dong-Hoon; Iglesias, Miguel A; Chabo, Chantal; Waget, Aurélie; Colom, André; Rastrelli, Sophie; Delzenne, Nathalie M; Drucker, Daniel J; Seeley, Randy J; Burcelin, Remy
2008-10-01
Ingested glucose is detected by specialized sensors in the enteric/hepatoportal vein, which send neural signals to the brain, which in turn regulates key peripheral tissues. Hence, impairment in the control of enteric-neural glucose sensing could contribute to disordered glucose homeostasis. The aim of this study was to determine the cells in the brain targeted by the activation of the enteric glucose-sensing system. We selectively activated the axis in mice using a low-rate intragastric glucose infusion in wild-type and glucagon-like peptide-1 (GLP-1) receptor knockout mice, neuropeptide Y-and proopiomelanocortin-green fluorescent protein-expressing mice, and high-fat diet diabetic mice. We quantified the whole-body glucose utilization rate and the pattern of c-Fos positive in the brain. Enteric glucose increased muscle glycogen synthesis by 30% and regulates c-Fos expression in the brainstem and the hypothalamus. Moreover, the synthesis of muscle glycogen was diminished after central infusion of the GLP-1 receptor (GLP-1Rc) antagonist Exendin 9-39 and abolished in GLP-1Rc knockout mice. Gut-glucose-sensitive c-Fos-positive cells of the arcuate nucleus colocalized with neuropeptide Y-positive neurons but not with proopiomelanocortin-positive neurons. Furthermore, high-fat feeding prevented the enteric activation of c-Fos expression. We conclude that the gut-glucose sensor modulates peripheral glucose metabolism through a nutrient-sensitive mechanism, which requires brain GLP-1Rc signaling and is impaired during diabetes.
Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis.
Chen, Xiyue; Eslamfam, Shabnam; Fang, Luoyun; Qiao, Shiyan; Ma, Xi
2017-01-01
Gastrointestinal homeostasis is a dynamic balance under the interaction between the host, GI tract, nutrition and energy metabolism. Glucose is the main energy source in living cells. Thus, glucose metabolic disorders can impair normal cellular function and endanger organisms' health. Diseases that are associated with glucose metabolic disorders such as obesity, diabetes, hypertension, and other metabolic syndromes are in fact life threatening. Digestive system is responsible for food digestion and nutrient absorption. It is also involved in neuronal, immune, and endocrine pathways. In addition, the gut microbiota plays an essential role in initiating signal transduction, and communication between the enteric and central nervous system. Gut-brain axis is composed of enteric neural system, central neural system, and all the efferent and afferent neurons that are involved in signal transduction between the brain and gut-brain. Gut-brain axis is influenced by the gut-microbiota as well as numerous neurotransmitters. Properly regulated gut-brain axis ensures normal digestion, absorption, energy production, and subsequently maintenance of glucose homeostasis. Understanding the underlying regulatory mechanisms of gut-brain axis involved in gluose homeostasis would enable us develop more efficient means of prevention and management of metabolic disease such as diabetic, obesity, and hypertension. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Brain lactate metabolism: the discoveries and the controversies
Dienel, Gerald A
2012-01-01
Potential roles for lactate in the energetics of brain activation have changed radically during the past three decades, shifting from waste product to supplemental fuel and signaling molecule. Current models for lactate transport and metabolism involving cellular responses to excitatory neurotransmission are highly debated, owing, in part, to discordant results obtained in different experimental systems and conditions. Major conclusions drawn from tabular data summarizing results obtained in many laboratories are as follows: Glutamate-stimulated glycolysis is not an inherent property of all astrocyte cultures. Synaptosomes from the adult brain and many preparations of cultured neurons have high capacities to increase glucose transport, glycolysis, and glucose-supported respiration, and pathway rates are stimulated by glutamate and compounds that enhance metabolic demand. Lactate accumulation in activated tissue is a minor fraction of glucose metabolized and does not reflect pathway fluxes. Brain activation in subjects with low plasma lactate causes outward, brain-to-blood lactate gradients, and lactate is quickly released in substantial amounts. Lactate utilization by the adult brain increases during lactate infusions and strenuous exercise that markedly increase blood lactate levels. Lactate can be an ‘opportunistic', glucose-sparing substrate when present in high amounts, but most evidence supports glucose as the major fuel for normal, activated brain. PMID:22186669
Cremer, J E; Cunningham, V J; Seville, M P
1983-09-01
Studies were made on the relationships between the rate of glucose metabolism, the transport of glucose between plasma and brain, cerebral blood flow, and blood content. Conscious control rats were compared with rats with intense tremors induced with cismethrin. The influence of plasma glucose concentration was studied by fasting some animals overnight prior to the induction of tremors. Mean plasma glucose was 8.83 mM in controls, 12.57 mM in fed rats with tremors, and 4.94 mM in rats fasted overnight prior to induction of tremors. Of 12 brain regions studied, nine showed an increased rate of glucose utilization in both fed and fasted trembling rats. Cerebellum had the highest percentage increase (200%). Rates of unidirectional glucose influx in fed trembling rats were significantly greater than those in controls in eight regions. In fasted animals, rates were the same as in controls, except in cerebellum, where it was 1.6 times higher. These high rates of glucose influx at low plasma glucose concentrations were indicative of a change in kinetic parameters of glucose transport. Unidirectional glucose influx rates were transformed to estimates of maximal transport rates (Tmax), based on the Michaelis-Menten equation. Average plasma glucose concentrations in regional capillaries (c) were calculated and shown to be maintained at values close to arterial plasma glucose concentrations (Ca), in all brain regions of each group. In trembling rats, Tmax for each brain region was higher than that in controls. In fasted rats with tremors, Tmax was higher in several brain regions than in fed rats. Tmax in cerebellum was 3.37, 4.71, and 7.89 mumol g-1 min-1 in control, fed trembling, and fasted trembling rats, respectively. Blood flow increased significantly in all regions in rats with tremors and was higher in fasted than in fed animals. There was only a weak correlation between blood flow and Tmax. Blood content of several regions increased in rats with tremors, and there was a strong correlation between Tmax and tissue blood volume. Results are consistent with localized regulatory links between blood flow, capillary surface area, and glucose transport in response to metabolic demand and hypoglycaemia. These involve changes in the linear velocity of blood through capillaries and in the extent of capillary recruitment.
Fructose levels are markedly elevated in cerebrospinal fluid compared to plasma in pregnant women.
Hwang, Janice J; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S; Sherwin, Robert S
2015-01-01
Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.
Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif
2016-01-01
Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110
Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Jing; Gupta, Ramesh C.; Goad, John T.
2007-03-15
Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with nomore » significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation.« less
Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H
2018-05-24
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.
Roy Choudhury, Gourav; Winters, Ali; Rich, Ryan M.; Ryou, Myoung-Gwi; Gryczynski, Zygmunt; Yuan, Fang; Yang, Shao-Hua; Liu, Ran
2015-01-01
Astrocytes outnumber neurons and serve many metabolic and trophic functions in the mammalian brain. Preserving astrocytes is critical for normal brain function as well as for protecting the brain against various insults. Our previous studies have indicated that methylene blue (MB) functions as an alternative electron carrier and enhances brain metabolism. In addition, MB has been shown to be protective against neurodegeneration and brain injury. In the current study, we investigated the protective role of MB in astrocytes. Cell viability assays showed that MB treatment significantly protected primary astrocytes from oxygen-glucose deprivation (OGD) & reoxygenation induced cell death. We also studied the effect of MB on cellular oxygen and glucose metabolism in primary astrocytes following OGD-reoxygenation injury. MB treatment significantly increased cellular oxygen consumption, glucose uptake and ATP production in primary astrocytes. In conclusion our study demonstrated that MB protects astrocytes against OGD-reoxygenation injury by improving astrocyte cellular respiration. PMID:25848957
Keeney, Jeriel Thomas-Richard; Ibrahimi, Shaher; Zhao, Liqin
2015-01-01
Three major genetic isoforms of apolipoprotein E (ApoE), ApoE2, ApoE3, and ApoE4, exist in humans and lead to differences in susceptibility to Alzheimer's disease (AD). This study investigated the impact of human ApoE isoforms on brain metabolic pathways involved in glucose utilization and amyloid-β (Aβ) degradation, two major areas that are significantly perturbed in preclinical AD. Hippocampal RNA samples from middle-aged female mice with targeted human ApoE2, ApoE3, and ApoE4 gene replacement were comparatively analyzed with a qRT-PCR custom array for the expression of 85 genes involved in insulin/insulin-like growth factor (Igf) signaling. Consistent with its protective role against AD, ApoE2 brain exhibited the most metabolically robust profile among the three ApoE genotypes. When compared to ApoE2 brain, both ApoE3 and ApoE4 brains exhibited markedly reduced levels of Igf1, insulin receptor substrates (Irs), and facilitated glucose transporter 4 (Glut4), indicating reduced glucose uptake. Additionally, ApoE4 brain exhibited significantly decreased Pparg and insulin-degrading enzyme (Ide), indicating further compromised glucose metabolism and Aβ dysregulation associated with ApoE4. Protein analysis showed significantly decreased Igf1, Irs, and Glut4 in ApoE3 brain, and Igf1, Irs, Glut4, Pparg, and Ide in ApoE4 brain compared to ApoE2 brain. These data provide the first documented evidence that human ApoE isoforms differentially affect brain insulin/Igf signaling and downstream glucose and amyloid metabolic pathways, illustrating a potential mechanism for their differential risk in AD. A therapeutic strategy that enhances brain insulin/Igf1 signaling activity to a more robust ApoE2-like phenotype favoring both energy production and amyloid homeostasis holds promise for AD prevention and early intervention.
Immunocytochemical detection of the microsomal glucose-6-phosphatase in human brain astrocytes.
Bell, J E; Hume, R; Busuttil, A; Burchell, A
1993-10-01
Using an antibody raised against the catalytic subunit of glucose-6-phosphatase, this enzyme was immunolocalized in many astrocytes in 20 normal human brains. Double immunofluorescence studies showed co-localization of glial fibrillary acidic protein (GFAP) with glucose-6-phosphatase in astrocytes. However, not all GFAP-positive cells were also glucose-6-phosphatase positive, indicating that some astrocytes do not contain demonstrable expression of this enzyme. Reactive astrocytes in a variety of abnormal brains were strongly glucose-6-phosphatase positive, but neoplastic astrocytes were often only weakly positive. Expression of the enzyme could not be demonstrated in radial glia, neurons or oligodendroglia. Astrocytes normally contain glycogen and the demonstration that some astrocytes also contain glucose-6-phosphatase indicates that they are competent for both glycogenolysis and gluconeogenesis, which may be critical for neuronal welfare.
Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo
2012-01-01
Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541
Kim, Yong Wook; Kim, Hyoung Seop; An, Young-Sil; Im, Sang Hee
2010-10-01
Permanent vegetative state is defined as the impaired level of consciousness longer than 12 months after traumatic causes and 3 months after non-traumatic causes of brain injury. Although many studies assessed the cerebral metabolism in patients with acute and persistent vegetative state after brain injury, few studies investigated the cerebral metabolism in patients with permanent vegetative state. In this study, we performed the voxel-based analysis of cerebral glucose metabolism and investigated the relationship between regional cerebral glucose metabolism and the severity of impaired consciousness in patients with permanent vegetative state after acquired brain injury. We compared the regional cerebral glucose metabolism as demonstrated by F-18 fluorodeoxyglucose positron emission tomography from 12 patients with permanent vegetative state after acquired brain injury with those from 12 control subjects. Additionally, covariance analysis was performed to identify regions where decreased changes in regional cerebral glucose metabolism significantly correlated with a decrease of level of consciousness measured by JFK-coma recovery scale. Statistical analysis was performed using statistical parametric mapping. Compared with controls, patients with permanent vegetative state demonstrated decreased cerebral glucose metabolism in the left precuneus, both posterior cingulate cortices, the left superior parietal lobule (P(corrected) < 0.001), and increased cerebral glucose metabolism in the both cerebellum and the right supramarginal cortices (P(corrected) < 0.001). In the covariance analysis, a decrease in the level of consciousness was significantly correlated with decreased cerebral glucose metabolism in the both posterior cingulate cortices (P(uncorrected) < 0.005). Our findings suggest that the posteromedial parietal cortex, which are part of neural network for consciousness, may be relevant structure for pathophysiological mechanism in patients with permanent vegetative state after acquired brain injury.
Progress in utilisation of graphene for electrochemical biosensors.
Lawal, Abdulazeez T
2018-05-30
This review discusses recent graphene (GR) electrochemical biosensor for accurate detection of biomolecules, including glucose, hydrogen peroxide, dopamine, ascorbic acid, uric acid, nicotinamide adenine dinucleotide, DNA, metals and immunosensor through effective immobilization of enzymes, including glucose oxidase, horseradish peroxidase, and haemoglobin. GR-based biosensors exhibited remarkable performance with high sensitivities, wide linear detection ranges, low detection limits, and long-term stabilities. Future challenges for the field include miniaturising biosensors and simplifying mass production are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
A high sensitivity MEA probe for measuring real time rat brain glucose flux.
Wei, Wenjing; Song, Yilin; Shi, Wentao; Lin, Nansen; Jiang, Tingjun; Cai, Xinxia
2014-05-15
The mammalian central nervous system (CNS) relies on a constant supply of external glucose for its undisturbed operation. This article presents an implantable Multi-Electrode Array (MEA) probe for brain glucose measurement. The MEA was implemented on Silicon-On-Insulator (SOI) wafer using Micro-Electro-Mechanical-Systems (MEMS) methods. There were 16 platinum recording sites on the probe and enzyme glucose oxidase (GOx) was immobilized on them. The glucose sensitivity of the MEA probe was as high as 489 µA mM(-1) cm(-2). 1,3-Phenylenediamine (mPD) was electropolymerized onto the Pt recording surfaces to prevent larger molecules such as ascorbic acid (AA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and dopamine (DA) from reaching the recording sites surface. The MEA probe was implanted in the anesthetized rat striatum and responded to glucose levels which were altered by intraperitoneal injection of glucose and insulin. After the in vivo experiment, the MEA probe still kept sensitivity to glucose, these suggested that the MEA probe was reliable for glucose monitoring in brain extracellular fluid (ECF). © 2013 Published by Elsevier B.V.
Eaker, E Y; Angelastro, J M; Purich, D L; Sninsky, C A
1991-06-01
Previous studies suggest that brain microtubule protein exposed to high glucose levels or isolated from diabetic rats can become glucosylated and that this impairs GTP-induced microtubule polymerization. We set out to extend that investigation to define the mechanistic basis for inhibition of microtubule assembly during diabetes or on incubation at high glucose levels. Rat and bovine brain microtubule protein was purified by cycles of polymerization/depolymerization. When microtubules were incubated for 1 h in either buffer or buffer containing glucose (up to 165 mM), there was no difference in polymerization, a finding contrary to the earlier study. Other rats were injected with vehicle or streptozotocin (90 mg/kg) to induce diabetes as evidenced by serum glucose in excess of 300 mg%, and at 4 weeks, brain microtubule protein was isolated by the polymerization cycling method. Again, there was no difference in the amount or purity of isolated microtubule protein between control or diabetic rats. We also observed no increase in microtubule glucosylation, and GTP-induced polymerization in vitro was indistinguishable for protein derived from brains of normal rats and rats with diabetes as measured by turbidity or electron microscopy. Our results suggest that in vitro incubation with glucose or in vivo elevation of glucose during diabetes fails to impair microtubule polymerization, pointing to other mechanisms for the neuropathy associated with diabetes.
Comparison of (/sup 14/C)glucose and (/sup 14/C)deoxyglucose as tracers of brain glucose use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, R.A.; Mans, A.M.; Davis, D.W.
1988-03-01
Because glucose metabolism and functional activity in brain regions are normally coupled, knowledge of regional brain glucose use can yield insights into regional functional activity. The deoxyglucose (DG) method is widely used for this purpose in experimental animals and humans but questions have arisen regarding its limits and accuracy. Therefore an experiment was designed to compare the DG method on a structure-by-structure basis with another tracer of glucose use, (6-/sup 14/C)glucose, in normal rats. The cerebral metabolic rates obtained using the two tracers were similar in the telencephalon, but the results using DG were substantially lower in the midbrain andmore » hindbrain (diencephalon, 18%; mesencephalon, 20%; metencephalon, 29%; and myelencephalon, 35%). The primary DG metabolite, DG 6-phosphate (DG-6-P) was found to disappear in a non-uniform manner from the major brain structures: telencephalon less than diencephalon less than mesencephalon = metencephalon less than myelencephalon. Thus a correlation was found between the rate of DG-6-P loss and the extent to which the DG method gave lower values of glucose use. Thus this may explain, at least in part, the discrepancies between the two methods.« less
Influence of oxygen therapy on glucose-lactate metabolism after diffuse brain injury.
Reinert, Michael; Schaller, Benoit; Widmer, Hans Rudolf; Seiler, Rolf; Bullock, Ross
2004-08-01
Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.
Tudurí, E; Beiroa, D; Porteiro, B; López, M; Diéguez, C; Nogueiras, R
2015-08-01
To investigate the role of brain glucagon-like peptide-1 (GLP-1) in pancreatic β-cell function. To determine the role of brain GLP-1 receptor (GLP-1R) on β-cell function, we administered intracerebroventricular (i.c.v.) infusions of GLP-1 or the specific GLP-1 antagonist exendin-9 (Ex-9), in both an acute and a chronic setting. We observed that acute i.c.v. GLP-1 infusion potentiates glucose-stimulated insulin secretion (GSIS) and improves glucose tolerance, whereas central GLP-1R blockade with Ex-9 impaired glucose excursion after a glucose load. Sustained activation of central nervous system GLP-1R, however, did not produce any effect on either GSIS or glucose tolerance. Similarly, ex vivo GSIS performed in islets from mice chronically infused with i.c.v. GLP-1 resulted in no differences compared with controls. In addition, in mice fed a high-fat diet we observed that acute i.c.v. GLP-1 infusion improved glucose tolerance without changes in GSIS, while chronic GLP-1R activation had no effect on glucose homeostasis. Our results indicate that, under non-clamped conditions, brain GLP-1 plays a functional neuroendocrine role in the acute regulation of glucose homeostasis in both lean and obese rodents. © 2015 John Wiley & Sons Ltd.
Volkow, Nora D; Wang, Gene-Jack; Shokri Kojori, Ehsan; Fowler, Joanna S; Benveniste, Helene; Tomasi, Dardo
2015-02-18
During alcohol intoxication, the human brain increases metabolism of acetate and decreases metabolism of glucose as energy substrate. Here we hypothesized that chronic heavy drinking facilitates this energy substrate shift both for baseline and stimulation conditions. To test this hypothesis, we compared the effects of alcohol intoxication (0.75 g/kg alcohol vs placebo) on brain glucose metabolism during video stimulation (VS) versus when given with no stimulation (NS), in 25 heavy drinkers (HDs) and 23 healthy controls, each of whom underwent four PET-(18)FDG scans. We showed that resting whole-brain glucose metabolism (placebo-NS) was lower in HD than controls (13%, p = 0.04); that alcohol (compared with placebo) decreased metabolism more in HD (20 ± 13%) than controls (9 ± 11%, p = 0.005) and in proportion to daily alcohol consumption (r = 0.36, p = 0.01) but found that alcohol did not reduce the metabolic increases in visual cortex from VS in either group. Instead, VS reduced alcohol-induced decreases in whole-brain glucose metabolism (10 ± 12%) compared with NS in both groups (15 ± 13%, p = 0.04), consistent with stimulation-related glucose metabolism enhancement. These findings corroborate our hypothesis that heavy alcohol consumption facilitates use of alternative energy substrates (i.e., acetate) for resting activity during intoxication, which might persist through early sobriety, but indicate that glucose is still favored as energy substrate during brain stimulation. Our findings are consistent with reduced reliance on glucose as the main energy substrate for resting brain metabolism during intoxication (presumably shifting to acetate or other ketones) and a priming of this shift in HDs, which might make them vulnerable to energy deficits during withdrawal. Copyright © 2015 the authors 0270-6474/15/353248-08$15.00/0.
Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Dobrovinskaya, O; Melnikov, V; Lemus, M; de Álvarez-Buylla, E Roces
2015-01-01
Glutamate, released from central terminals of glossopharyngeal nerve, is a major excitatory neurotransmitter of commissural nucleus tractus solitarii (cNTS) afferent terminals, and brain derived neurotrophic factor (BDNF) has been shown to attenuate glutamatergic AMPA currents in NTS neurons. To test the hypothesis that AMPA contributes to glucose regulation in vivo modulating the hyperglycemic reflex with brain glucose retention (BGR), we microinjected AMPA and NBQX (AMPA antagonist) into the cNTS before carotid chemoreceptor stimulation in anesthetized normal Wistar rats, while hyperglycemic reflex an brain glucose retention (BGR) were analyzed. To investigate the underlying mechanisms, GluR2/3 receptor and c-Fos protein expressions in cNTS neurons were determined. We showed that AMPA in the cNTS before CChr stimulation inhibited BGR observed in aCSF group. In contrast, NBQX in similar conditions, did not modify the effects on glucose variables observed in aCSF control group. These experiments suggest that glutamatergic pathways, via AMPA receptors, in the cNTS may play a role in glucose homeostasis.
Luo, Shan; Monterosso, John R; Sarpelleh, Kayan; Page, Kathleen A
2015-05-19
Prior studies suggest that fructose compared with glucose may be a weaker suppressor of appetite, and neuroimaging research shows that food cues trigger greater brain reward responses in a fasted relative to a fed state. We sought to determine the effects of ingesting fructose versus glucose on brain, hormone, and appetitive responses to food cues and food-approach behavior. Twenty-four healthy volunteers underwent two functional magnetic resonance imaging (fMRI) sessions with ingestion of either fructose or glucose in a double-blinded, random-order cross-over design. fMRI was performed while participants viewed images of high-calorie foods and nonfood items using a block design. After each block, participants rated hunger and desire for food. Participants also performed a decision task in which they chose between immediate food rewards and delayed monetary bonuses. Hormones were measured at baseline and 30 and 60 min after drink ingestion. Ingestion of fructose relative to glucose resulted in smaller increases in plasma insulin levels and greater brain reactivity to food cues in the visual cortex (in whole-brain analysis) and left orbital frontal cortex (in region-of-interest analysis). Parallel to the neuroimaging findings, fructose versus glucose led to greater hunger and desire for food and a greater willingness to give up long-term monetary rewards to obtain immediate high-calorie foods. These findings suggest that ingestion of fructose relative to glucose results in greater activation of brain regions involved in attention and reward processing and may promote feeding behavior.
Luo, Shan; Monterosso, John R.; Sarpelleh, Kayan; Page, Kathleen A.
2015-01-01
Prior studies suggest that fructose compared with glucose may be a weaker suppressor of appetite, and neuroimaging research shows that food cues trigger greater brain reward responses in a fasted relative to a fed state. We sought to determine the effects of ingesting fructose versus glucose on brain, hormone, and appetitive responses to food cues and food-approach behavior. Twenty-four healthy volunteers underwent two functional magnetic resonance imaging (fMRI) sessions with ingestion of either fructose or glucose in a double-blinded, random-order cross-over design. fMRI was performed while participants viewed images of high-calorie foods and nonfood items using a block design. After each block, participants rated hunger and desire for food. Participants also performed a decision task in which they chose between immediate food rewards and delayed monetary bonuses. Hormones were measured at baseline and 30 and 60 min after drink ingestion. Ingestion of fructose relative to glucose resulted in smaller increases in plasma insulin levels and greater brain reactivity to food cues in the visual cortex (in whole-brain analysis) and left orbital frontal cortex (in region-of-interest analysis). Parallel to the neuroimaging findings, fructose versus glucose led to greater hunger and desire for food and a greater willingness to give up long-term monetary rewards to obtain immediate high-calorie foods. These findings suggest that ingestion of fructose relative to glucose results in greater activation of brain regions involved in attention and reward processing and may promote feeding behavior. PMID:25941364
Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism
Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John Douglas R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken
2015-01-01
Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using 2-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyze the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identifies the neuron as the principal locus of glucose uptake as visualized by functional brain imaging. PMID:25904018
Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism.
Lundgaard, Iben; Li, Baoman; Xie, Lulu; Kang, Hongyi; Sanggaard, Simon; Haswell, John D R; Sun, Wei; Goldman, Siri; Blekot, Solomiya; Nielsen, Michael; Takano, Takahiro; Deane, Rashid; Nedergaard, Maiken
2015-04-23
Metabolically, the brain is a highly active organ that relies almost exclusively on glucose as its energy source. According to the astrocyte-to-neuron lactate shuttle hypothesis, glucose is taken up by astrocytes and converted to lactate, which is then oxidized by neurons. Here we show, using two-photon imaging of a near-infrared 2-deoxyglucose analogue (2DG-IR), that glucose is taken up preferentially by neurons in awake behaving mice. Anaesthesia suppressed neuronal 2DG-IR uptake and sensory stimulation was associated with a sharp increase in neuronal, but not astrocytic, 2DG-IR uptake. Moreover, hexokinase, which catalyses the first enzymatic steps in glycolysis, was highly enriched in neurons compared with astrocytes, in mouse as well as in human cortex. These observations suggest that brain activity and neuronal glucose metabolism are directly linked, and identify the neuron as the principal locus of glucose uptake as visualized by functional brain imaging.
Effects of diabetes on brain metabolism--is brain glycogen a significant player?
Sickmann, Helle M; Waagepetersen, Helle S
2015-02-01
Brain glycogen, being an intracellular glucose reservoir, contributes to maintain energy and neurotransmitter homeostasis under physiological as well as pathological conditions. Under conditions with a disturbance in systemic glucose metabolism such as in diabetes, the supply of glucose to the brain may be affected and have important impacts on brain metabolism and neurotransmission. This also implies that brain glycogen may serve an essential role in the diabetic state to sustain appropriate brain function. There are two main types of diabetes; type 1 and type 2 diabetes and both types may be associated with brain impairments e.g. cognitive decline and dementia. It is however, not clear how these impairments on brain function are linked to alterations in brain energy and neurotransmitter metabolism. In this review, we will illuminate how rodent diabetes models have contributed to a better understanding of how brain energy and neurotransmitter metabolism is affected in diabetes. There will be a particular focus on the role of brain glycogen to support glycolytic and TCA cycle activity as well as glutamate-glutamine cycle in type 1 and type 2 diabetes.
Jensen, Vivi F H; Mølck, Anne-Marie; Chapman, Melissa; Alifrangis, Lene; Andersen, Lene; Lykkesfeldt, Jens; Bøgh, Ingrid B
2017-01-01
The brain is vulnerable to hypoglycaemia due to a continuous need of energy substrates to meet its high metabolic demands. Studies have shown that severe acute insulin-induced hypoglycaemia results in oxidative stress in the rat brain, when neuroglycopenia cannot be evaded despite increased levels of cerebral glucose transporters. Compensatory measures in the brain during chronic insulin-induced hypoglycaemia are less well understood. The present study investigated how the brain of nondiabetic rats copes with chronic insulin-induced hypoglycaemia for up to eight weeks. Brain level of different substrate transporters and redox homeostasis was evaluated. Hyperinsulinaemia for 8 weeks consistently lowered blood glucose levels by 30-50% (4-6 mM versus 7-9 mM in controls). The animals had increased food consumption, body weights, and hyperleptinaemia. During infusion, protein levels of the brain neuronal glucose transporter were decreased, whereas levels of lipid peroxidation products were unchanged. Discontinued infusion was followed by transient systemic hyperglycaemia and decreased food consumption and body weight. After 4 weeks, plasma levels of lipid peroxidation products were increased, possibly as a consequence of hyperglycaemia-induced oxidative stress. The present data suggests that chronic moderate hyperinsulinaemic hypoglycaemia causes increased body weight and hyperleptinaemia. This is accompanied by decreased neuronal glucose transporter levels, which may be leptin-induced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirikae, M.; Diksic, M.; Yamamoto, Y.L.
1989-02-01
We examined the rate of glucose utilization and the rate of valine incorporation into proteins using 2-(/sup 18/F)fluoro-2-deoxyglucose and L-(1-14C)-valine in a rat brain tumor model by quantitative double-tracer autoradiography. We found that in the implanted tumor the rate of valine incorporation into proteins was about 22 times and the rate of glucose utilization was about 1.5 times that in the contralateral cortex. (In the ipsilateral cortex, the tumor had a profound effect on glucose utilization but no effect on the rate of valine incorporation into proteins.) Our findings suggest that it is more useful to measure protein synthesis thanmore » glucose utilization to assess the effectiveness of antitumor agents and their toxicity to normal brain tissue. We compared two methods to estimate the rate of valine incorporation: kinetic (quantitation done using an operational equation and the average brain rate coefficients) and washed slices (unbound labeled valine removed by washing brain slices in 10% trichloroacetic acid). The results were the same using either method. It would seem that the kinetic method can thus be used for quantitative measurement of protein synthesis in brain tumors and normal brain tissue using (/sup 11/C)-valine with positron emission tomography.« less
Neuronal regulation of homeostasis by nutrient sensing.
Lam, Tony K T
2010-04-01
In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.
Fructose Levels Are Markedly Elevated in Cerebrospinal Fluid Compared to Plasma in Pregnant Women
Hwang, Janice J.; Johnson, Andrea; Cline, Gary; Belfort-DeAguiar, Renata; Snegovskikh, Denis; Khokhar, Babar; Han, Christina S.; Sherwin, Robert S.
2015-01-01
Background Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose→sorbitol→fructose) contributes to brain exposure to fructose. Methods In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. Results As expected, CSF glucose was ~60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. Conclusions These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption. PMID:26035307
Plasma Levels of Glucose and Insulin in Patients with Brain Tumors
ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA
2014-01-01
In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202
Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach
Tannock, Gerald W; Wilson, Charlotte M; Loach, Diane; Cook, Gregory M; Eason, Jocelyn; O'Toole, Paul W; Holtrop, Grietje; Lawley, Blair
2012-01-01
Phylogenetic analysis of gut communities of vertebrates is advanced, but the relationships, especially at the trophic level, between commensals that share gut habitats of monogastric animals have not been investigated to any extent. Lactobacillus reuteri strain 100–23 and Lactobacillus johnsonii strain 100–33 cohabit in the forestomach of mice. According to the niche exclusion principle, this should not be possible because both strains can utilise the two main fermentable carbohydrates present in the stomach digesta: glucose and maltose. We show, based on gene transcription analysis, in vitro physiological assays, and in vivo experiments that the two strains can co-exist in the forestomach habitat because 100–23 grows more rapidly using maltose, whereas 100–33 preferentially utilises glucose. Mutation of the maltose phosphorylase gene (malA) of strain 100–23 prevented its growth on maltose-containing culture medium, and resulted in the numerical dominance of 100–33 in the forestomach. The fundamental niche of L. reuteri 100–23 in the mouse forestomach can be defined in terms of ‘glucose and maltose trophism'. However, its realised niche when L. johnsonii 100–33 is present is ‘maltose trophism'. Hence, nutritional adaptations provide niche differentiation that assists cohabitation by the two strains through resource partitioning in the mouse forestomach. This real life, trophic phenomenon conforms to a mathematical model based on in vitro bacterial doubling times, in vitro transport rates, and concentrations of maltose and glucose in mouse stomach digesta. PMID:22094343
Glucose and amino acid metabolism in rat brain during sustained hypoglycemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.L.; Tyce, G.M.
1983-04-01
The metabolism of glucose in brains during sustained hypoglycemia was studied. (U-/sup 14/C)Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. Inmore » the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia.« less
Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats
Ruderman, Neil B.; Ross, Peter S.; Berger, Michael; Goodman, Michael N.
1974-01-01
1. The effects of starvation and diabetes on brain fuel metabolism were examined by measuring arteriovenous differences for glucose, lactate, acetoacetate and 3-hydroxybutyrate across the brains of anaesthetized fed, starved and diabetic rats. 2. In fed animals glucose represented the sole oxidative fuel of the brain. 3. After 48h of starvation, ketone-body concentrations were about 2mm and ketone-body uptake accounted for 25% of the calculated O2 consumption: the arteriovenous difference for glucose was not diminished, but lactate release was increased, suggesting inhibition of pyruvate oxidation. 4. In severe diabetic ketosis, induced by either streptozotocin or phlorrhizin (total blood ketone bodies >7mm), the uptake of ketone bodies was further increased and accounted for 45% of the brain's oxidative metabolism, and the arteriovenous difference for glucose was decreased by one-third. The arteriovenous difference for lactate was increased significantly in the phlorrhizin-treated rats. 5. Infusion of 3-hydroxybutyrate into starved rats caused marked increases in the arteriovenous differences for lactate and both ketone bodies. 6. To study the mechanisms of these changes, steady-state concentrations of intermediates and co-factors of the glycolytic pathway were determined in freeze-blown brain. 7. Starved rats had increased concentrations of acetyl-CoA. 8. Rats with diabetic ketosis had increased concentrations of fructose 6-phosphate and decreased concentrations of fructose 1,6-diphosphate, indicating an inhibition of phosphofructokinase. 9. The concentrations of acetyl-CoA, glycogen and citrate, a potent inhibitor of phosphofructokinase, were increased in the streptozotocin-treated rats. 10. The data suggest that cerebral glucose uptake is decreased in diabetic ketoacidosis owing to inhibition of phosphofructokinase as a result of the increase in brain citrate. 11. The inhibition of brain pyruvate oxidation in starvation and diabetes can be related to the accelerated rate of ketone-body metabolism; however, we found no correlation between the decrease in glucose uptake in the diabetic state and the arteriovenous difference for ketone bodies. 12. The data also suggest that the rates of acetoacetate and 3-hydroxybutyrate utilization by brain are governed by their concentrations in plasma. 13. The finding of very low concentrations of acetoacetate and 3-hydroxybutyrate in brain compared with plasma suggests that diffusion across the blood–brain barrier may be the rate-limiting step in their metabolism. PMID:4275704
Page, Kathleen A.; Chan, Owen; Arora, Jagriti; Belfort-DeAguiar, Renata; Dzuira, James; Roehmholdt, Brian; Cline, Gary W.; Naik, Sarita; Sinha, Rajita; Constable, R. Todd; Sherwin, Robert S.
2014-01-01
Importance Increases in fructose consumption have paralleled the increasing prevalence of obesity, and high-fructose diets are thought to promote weight gain and insulin resistance. Fructose ingestion produces smaller increases in circulating satiety hormones compared with glucose ingestion, and central administration of fructose provokes feeding in rodents, whereas centrally administered glucose promotes satiety. Objective To study neurophysiological factors that might underlie associations between fructose consumption and weight gain. Design, Setting, and Participants Twenty healthy adult volunteers underwent 2 magnetic resonance imaging sessions at Yale University in conjunction with fructose or glucose drink ingestion in a blinded, random-order, crossover design. Main Outcome Measures Relative changes in hypothalamic regional cerebral blood flow (CBF) after glucose or fructose ingestion. Secondary outcomes included whole-brain analyses to explore regional CBF changes, functional connectivity analysis to investigate correlations between the hypothalamus and other brain region responses, and hormone responses to fructose and glucose ingestion. Results There was a significantly greater reduction in hypothalamic CBF after glucose vs fructose ingestion (–5.45 vs 2.84 mL/g per minute, respectively; mean difference, 8.3 mL/g per minute [95% CI of mean difference, 1.87-14.70]; P=.01). Glucose ingestion (compared with baseline) increased functional connectivity between the hypothalamus and the thalamus and striatum. Fructose increased connectivity between the hypothalamus and thalamus but not the striatum. Regional CBF within the hypothalamus, thalamus, insula, anterior cingulate, and striatum (appetite and reward regions) was reduced after glucose ingestion compared with baseline (P<.05 significance threshold, family-wise error [FWE] whole-brain corrected). In contrast, fructose reduced regional CBF in the thalamus, hippocampus, posterior cingulate cortex, fusiform, and visual cortex (P<.05 significance threshold, FWE whole-brain corrected). In whole-brain voxel-level analyses, there were no significant differences between direct comparisons of fructose vs glucose sessions following correction for multiple comparisons. Fructose vs glucose ingestion resulted in lower peak levels of serum glucose (mean difference, 41.0 mg/dL [95% CI, 27.7-54.5]; P<.001), insulin (mean difference, 49.6 μU/mL [95% CI, 38.2-61.1]; P<.001), and glucagon-like polypep-tide 1 (mean difference, 2.1 pmol/L [95% CI, 0.9-3.2]; P=.01). Conclusion and Relevance In a series of exploratory analyses, consumption of fructose compared with glucose resulted in a distinct pattern of regional CBF and a smaller increase in systemic glucose, insulin, and glucagon-like polypeptide 1 levels. PMID:23280226
Brain Size and Cerebral Glucose Metabolic Rate in Nonspecific Retardation and Down Syndrome.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1995-01-01
Brain size and cerebral glucose metabolic rate were determined for 10 individuals with mild mental retardation (MR), 7 individuals with Down syndrome (DS), and 10 matched controls. MR and DS groups both had brain volumes of about 80% compared to controls, with variance greatest within the MR group. (SLD)
Xie, Fang; Peng, Fangyu
2017-01-01
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain.
Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre
2016-03-01
Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.
Effects of anesthetic protocol on normal canine brain uptake of 18F-FDG assessed by PET/CT.
Lee, Min Su; Ko, Jeff; Lee, Ah Ra; Lee, In Hye; Jung, Mi Ae; Austin, Brenda; Chung, Hyunwoo; Nahm, Sangsoep; Eom, Kidong
2010-01-01
The purpose of this study was to assess the effects of four anesthetic protocols on normal canine brain uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) using positron emission tomography/computed tomography (PET/CT). Five clinically normal beagle dogs were anesthetized with (1) propofol/isoflurane, (2) medetomidine/pentobarbital, (3) xylazine/ketamine, and (4) medetomidine/tiletamine-zolazepam in a randomized cross-over design. The standard uptake value (SUV) of FDG was obtained in the frontal, parietal, temporal and occipital lobes, cerebellum, brainstem and whole brain, and compared within and between anesthetic protocols using the Friedman test with significance set at P < 0.05. Significant differences in SUVs were observed in various part of the brain associated with each anesthetic protocol. The SUV for the frontal and occipital lobes was significantly higher than in the brainstem in all dogs. Dogs receiving medetomidine/tiletamine-zolazepam also had significantly higher whole brain SUVs than the propofol/isoflurane group. We concluded that each anesthetic protocol exerted a different regional brain glucose uptake pattern. As a result, when comparing brain glucose uptake using PET/CT, one should consider the effects of anesthetic protocols on different regions of the glucose uptake in the dog's brain.
Gu, Jianlan; Jin, Nana; Ma, Denglei; Chu, Dandan; Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei
2018-01-01
Impairment of cerebral glucose uptake/metabolism in individuals with Alzheimer's disease (AD) is believed to lead to downregulation of protein O-GlcNAcylation, which contributes to tau pathogenesis through tau hyperphosphorylation. Level of glucose transporter 3 (GLUT3), a neuronal specific glucose transporter, is decreased in AD brain, which may contribute to impaired brain glucose uptake/metabolism. However, what causes the reduction of GLUT3 in AD brain is not fully understood. Here, we report 1) that decrease of GLUT3 is associated with the reduction of protein O-GlcNAcylation in AD brain, 2) that GLUT3 level is negatively correlated with calpain I activation in human brain, 3) that calpain I proteolyzes GLUT3 at the N-terminus in vitro, and 4) that activation of calpain I is negatively correlated with protein O-GlcNAcylation in AD brain. Furthermore, we found that overexpression of GLUT3 enhances protein O-GlcNAcylation in N2a cells. Overexpression of calpain I suppresses protein O-GlcNAcylation in these cells. These findings suggest a novel mechanism by which calpain I overactivation leads to GLUT3 degradation and the consequent down-regulation of protein O-GlcNAcylation in AD brain.
D-(U-11C)glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutniak, M.; Blomqvist, G.; Widen, L.
1990-05-01
We used D-(U-11C)glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-(U-11C)-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia (arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects). Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartmentmore » model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects.« less
Ball, Kelly K; Cruz, Nancy F; Mrak, Robert E; Dienel, Gerald A
2010-01-01
Metabolic brain imaging is widely used to evaluate brain function and disease, and quantitative assays require local retention of compounds used to register changes in cellular activity. As labeled metabolites of [1- and 6-14C]glucose are rapidly released in large quantities during brain activation, this study evaluated release of metabolites and proteins through perivascular fluid flow, a pathway that carries solutes from brain to peripheral lymphatic drainage sites. Assays with [3,4-14C]glucose ruled out local oxidation of glucose-derived lactate as a major contributor of label loss. Brief infusion of [1-14C]glucose and -[14C]lactate into the inferior colliculus of conscious rats during acoustic stimulation labeled the meninges, consistent with perivascular clearance of [14C]metabolites from interstitial fluid. Microinfusion of Evans blue albumin and amyloid-β1−40 (Aβ) caused perivascular labeling in the inferior colliculus, labeled the surrounding meninges, and Aβ-labeled-specific blood vessels in the caudate and olfactory bulb and was deposited in cervical lymph nodes. Efflux of extracellular glucose, lactate, and Aβ into perivascular fluid pathways is a normal route for clearance of material from the inferior colliculus that contributes to underestimates of brain energetics. Convergence of ‘watershed' drainage to common pathways may facilitate perivascular amyloid plaque formation and pathway obstruction in Alzheimer's disease. PMID:19794399
Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.
2014-01-01
Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683
Autonomic regulation of hepatic glucose production.
Bisschop, Peter H; Fliers, Eric; Kalsbeek, Andries
2015-01-01
Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system to communicate with peripheral organs. Within the brain, the hypothalamus is the key region to integrate signals on energy status, including signals from lipid, glucose, and hormone sensing cells, with afferent neural signals from the internal and external milieu. In turn, the hypothalamus regulates metabolism in peripheral organs, including the liver, not only via the anterior pituitary gland but also via multiple neuropeptidergic pathways in the hypothalamus that have been identified as regulators of hepatic glucose metabolism. These pathways comprise preautonomic neurons projecting to nuclei in the brain stem and spinal cord, which relay signals from the hypothalamus to the liver via the autonomic nervous system. The neuroendocrine and neuronal outputs of the hypothalamus are not separate entities. They appear to act as a single integrated regulatory system, far more subtle, and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and neural influences. As a result, our endocrine-based understanding of diseases such as diabetes and obesity should be expanded by integration of neural inputs into our concept of the pathophysiological process. © 2014 American Physiological Society.
Prolonged fasting impairs neural reactivity to visual stimulation.
Kohn, N; Wassenberg, A; Toygar, T; Kellermann, T; Weidenfeld, C; Berthold-Losleben, M; Chechko, N; Orfanos, S; Vocke, S; Laoutidis, Z G; Schneider, F; Karges, W; Habel, U
2016-01-01
Previous literature has shown that hypoglycemia influences the intensity of the BOLD signal. A similar but smaller effect may also be elicited by low normal blood glucose levels in healthy individuals. This may not only confound the BOLD signal measured in fMRI, but also more generally interact with cognitive processing, and thus indirectly influence fMRI results. Here we show in a placebo-controlled, crossover, double-blind study on 40 healthy subjects, that overnight fasting and low normal levels of glucose contrasted to an activated, elevated glucose condition have an impact on brain activation during basal visual stimulation. Additionally, functional connectivity of the visual cortex shows a strengthened association with higher-order attention-related brain areas in an elevated blood glucose condition compared to the fasting condition. In a fasting state visual brain areas show stronger coupling to the inferior temporal gyrus. Results demonstrate that prolonged overnight fasting leads to a diminished BOLD signal in higher-order occipital processing areas when compared to an elevated blood glucose condition. Additionally, functional connectivity patterns underscore the modulatory influence of fasting on visual brain networks. Patterns of brain activation and functional connectivity associated with a broad range of attentional processes are affected by maturation and aging and associated with psychiatric disease and intoxication. Thus, we conclude that prolonged fasting may decrease fMRI design sensitivity in any task involving attentional processes when fasting status or blood glucose is not controlled.
Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula
2014-01-01
Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.
Herculano-Houzel, Suzana
2011-01-01
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution. PMID:21390261
Herculano-Houzel, Suzana
2011-03-01
It is usually considered that larger brains have larger neurons, which consume more energy individually, and are therefore accompanied by a larger number of glial cells per neuron. These notions, however, have never been tested. Based on glucose and oxygen metabolic rates in awake animals and their recently determined numbers of neurons, here I show that, contrary to the expected, the estimated glucose use per neuron is remarkably constant, varying only by 40% across the six species of rodents and primates (including humans). The estimated average glucose use per neuron does not correlate with neuronal density in any structure. This suggests that the energy budget of the whole brain per neuron is fixed across species and brain sizes, such that total glucose use by the brain as a whole, by the cerebral cortex and also by the cerebellum alone are linear functions of the number of neurons in the structures across the species (although the average glucose consumption per neuron is at least 10× higher in the cerebral cortex than in the cerebellum). These results indicate that the apparently remarkable use in humans of 20% of the whole body energy budget by a brain that represents only 2% of body mass is explained simply by its large number of neurons. Because synaptic activity is considered the major determinant of metabolic cost, a conserved energy budget per neuron has several profound implications for synaptic homeostasis and the regulation of firing rates, synaptic plasticity, brain imaging, pathologies, and for brain scaling in evolution.
Metabolic changes in rat striatum following convulsive seizures.
Darbin, Olivier; Risso, Jean Jacque; Carre, Emily; Lonjon, Michel; Naritoku, Dean K
2005-07-19
Generalized convulsive seizures increase glucose utilization within the brain but their impact on metabolism is not well known. The striatum receives excitatory input from widespread sources in the brain and could potentially reflect energy depletion in the brain resulting from generalized seizures. We utilized multiprobe microdialysis in freely moving rats subjected to maximal electroshock to simultaneously measure glucose, lactate, and pyruvate levels in the interstitial space within striatum and in peripheral subcutaneous tissue. A brief convulsive seizure was associated with marked changes in striatal and peripheral metabolism during the post-ictal state that lasted up to 1 h. There were significant central and peripheral elevations of glucose, pyruvate, and lactate, reflecting increased glucose metabolism. Interestingly, the lactate-to-pyruvate ratio increased significantly in the periphery but remained unchanged in the striatum. Thus, there appears to be brain mechanisms that maintain adequate energy sources and prevent anaerobic shift during the post-ictal state.
Effects of tetrahydrocannabinol on glucose uptake in the rat brain.
Miederer, I; Uebbing, K; Röhrich, J; Maus, S; Bausbacher, N; Krauter, K; Weyer-Elberich, V; Lutz, B; Schreckenberger, M; Urban, R
2017-05-01
Δ 9 -Tetrahydrocannabinol (THC) is the psychoactive component of the plant Cannabis sativa and acts as a partial agonist at cannabinoid type 1 and type 2 receptors in the brain. The goal of this study was to assess the effect of THC on the cerebral glucose uptake in the rat brain. 21 male Sprague Dawley rats (12-13 w) were examined and received five different doses of THC ranging from 0.01 to 1 mg/kg. For data acquisition a Focus 120 small animal PET scanner was used and 24.1-28.0 MBq of [ 18 F]-fluoro-2-deoxy-d-glucose were injected. The data were acquired for 70 min and arterial blood samples were collected throughout the scan. THC, THC-OH and THC-COOH were determined at 55 min p.i. Nine volumes of interest were defined, and the cerebral glucose uptake was calculated for each brain region. Low blood THC levels of < 1 ng/ml (injected dose: ≤ 0.01 mg/kg) corresponded to an increased glucose uptake (6-30 %), particularly in the hypothalamus (p = 0.007), while blood THC levels > 10 ng/ml (injected dose: ≥ 0.05 mg/kg) coincided with a decreased glucose uptake (-2 to -22 %), especially in the cerebellar cortex (p = 0.008). The effective concentration in this region was estimated 2.4 ng/ml. This glucose PET study showed that stimulation of CB1 receptors by THC affects the glucose uptake in the rat brain, whereby the effect of THC is regionally different and dependent on dose - an effect that may be of relevance in behavioural studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Martin, Neil A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Johnson, Matthew L.; Horning, Michael A.; Brooks, George A.
2015-01-01
Abstract We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-2H2]glucose, i.e., D2-glucose, and [3-13C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2–10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain. PMID:25279664
Glenn, Thomas C; Martin, Neil A; McArthur, David L; Hovda, David A; Vespa, Paul; Johnson, Matthew L; Horning, Michael A; Brooks, George A
2015-06-01
We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain.
Brain activity and connectivity changes in response to glucose ingestion.
van Opstal, A M; Hafkemeijer, A; van den Berg-Huysmans, A A; Hoeksma, M; Blonk, C; Pijl, H; Rombouts, S A R B; van der Grond, J
2018-05-27
The regulatory role of the brain in directing eating behavior becomes increasingly recognized. Although many areas in the brain have been found to respond to food cues, very little data is available after actual caloric intake. The aim of this study was to determine normal whole brain functional responses to ingestion of glucose after an overnight fast. Twenty-five normal weight, adult males underwent functional MRI on two separate visits. In a single-blind randomized study setup, participants received either glucose solution (50 g/300 ml of water) or plain water. We studied changes in Blood Oxygen Level Dependent (BOLD) signal, voxel-based connectivity by Eigenvector Centrality Mapping, and functional network connectivity. Ingestion of glucose led to increased centrality in the thalamus and to decreases in BOLD signal in various brain areas. Decreases in connectivity in the sensory-motor and dorsal visual stream networks were found. Ingestion of water resulted in increased centrality across the brain, and increases in connectivity in the medial and lateral visual cortex network. Increased BOLD intensity was found in the intracalcarine and cingulate cortex. Our data show that ingestion of glucose leads to decreased activity and connectivity in brain areas and networks linked to energy seeking and satiation. In contrast, drinking plain water leads to increased connectivity probably associated with continued food seeking and unfulfilled reward. Trail registration: This study combines data of two studies registered at clinicaltrails.gov under numbers NCT03202342 and NCT03247114.
Lubow, Jeffrey M; Piñón, Ivan G; Avogaro, Angelo; Cobelli, Claudio; Treeson, David M; Mandeville, Katherine A; Toffolo, Gianna; Boyle, Patrick J
2006-01-01
During hypoglycemia, substrates other than glucose have been suggested to serve as alternate neural fuels. We evaluated brain uptake of endogenously produced lactate, alanine, and leucine at euglycemia and during insulin-induced hypoglycemia in 17 normal subjects. Cross-brain arteriovenous differences for plasma glucose, lactate, alanine, leucine, and oxygen content were quantitated. Cerebral blood flow (CBF) was measured by Fick methodology using N(2)O as the dilution indicator gas. Substrate uptake was measured as the product of CBF and the arteriovenous concentration difference. As arterial glucose concentration fell, cerebral oxygen utilization and CBF remained unchanged. Brain glucose uptake (BGU) decreased from 36.3+/-2.6 to 26.6+/-2.1 micromol.100 g of brain(-1).min(-1) (P<0.001), equivalent to a drop in ATP of 291 micromol.100 g(-1).min(-1). Arterial lactate rose (P<0.001), whereas arterial alanine and leucine fell (P<0.009 and P<0.001, respectively). Brain lactate uptake (BLU) increased from a net release of -1.8+/- 0.6 to a net uptake of 2.5+/-1.2 micromol.100 g(-1).min(-1) (P<0.001), equivalent to an increase in ATP of 74 micromol.100 g(-1).min(-1). Brain leucine uptake decreased from 7.1+/-1.2 to 2.5 +/- 0.5 micromol.100 g(-1).min(-1) (P<0.001), and brain alanine uptake trended downward (P<0.08). We conclude that the ATP generated from the physiological increase in BLU during hypoglycemia accounts for no more than 25% of the brain glucose energy deficit.
Effect of whole brain radiation on local cerebral glucose utilization in the rat.
d'Avella, D; Cicciarello, R; Albiero, F; Mesiti, M; Gagliardi, M E; Russi, E; d'Aquino, A; Princi, P; d'Aquino, S
1991-04-01
We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- 4 cGy/day, 5 days/week; total dose, 4000 cGy). Metabolic experiments were made 2 to 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased after irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, the brain areas with the highest basal metabolic rates showed the greatest percentage of decrease in glucose utilization. The concept that radiation suppresses glucose utilization before any morphological change takes place in the cell structures was the basis of this study. Metabolic alterations after irradiation may explain the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy. These studies have applications to observations made with the [18F]-fluorodeoxyglucose method in conjunction with positron emission tomographic scans in patients receiving radiation therapy for intracranial malignancies. The data reported here also have potential clinical implications for the evaluation of a risk/benefit ratio for radiotherapy in patients with benign neurosurgical diseases or children undergoing prophylactic treatment of the central nervous system.
Glucosensing in the gastrointestinal tract: Impact on glucose metabolism.
Fournel, Audren; Marlin, Alysson; Abot, Anne; Pasquio, Charles; Cirillo, Carla; Cani, Patrice D; Knauf, Claude
2016-05-01
The gastrointestinal tract is an important interface of exchange between ingested food and the body. Glucose is one of the major dietary sources of energy. All along the gastrointestinal tube, e.g., the oral cavity, small intestine, pancreas, and portal vein, specialized cells referred to as glucosensors detect variations in glucose levels. In response to this glucose detection, these cells send hormonal and neuronal messages to tissues involved in glucose metabolism to regulate glycemia. The gastrointestinal tract continuously communicates with the brain, especially with the hypothalamus, via the gut-brain axis. It is now well established that the cross talk between the gut and the brain is of crucial importance in the control of glucose homeostasis. In addition to receiving glucosensing information from the gut, the hypothalamus may also directly sense glucose. Indeed, the hypothalamus contains glucose-sensitive cells that regulate glucose homeostasis by sending signals to peripheral tissues via the autonomous nervous system. This review summarizes the mechanisms by which glucosensors along the gastrointestinal tract detect glucose, as well as the results of such detection in the whole body, including the hypothalamus. We also highlight how disturbances in the glucosensing process may lead to metabolic disorders such as type 2 diabetes. A better understanding of the pathways regulating glucose homeostasis will further facilitate the development of novel therapeutic strategies for the treatment of metabolic diseases. Copyright © 2016 the American Physiological Society.
Glucosensing in the gastrointestinal tract: Impact on glucose metabolism
Fournel, Audren; Marlin, Alysson; Abot, Anne; Pasquio, Charles; Cirillo, Carla; Cani, Patrice D.
2016-01-01
The gastrointestinal tract is an important interface of exchange between ingested food and the body. Glucose is one of the major dietary sources of energy. All along the gastrointestinal tube, e.g., the oral cavity, small intestine, pancreas, and portal vein, specialized cells referred to as glucosensors detect variations in glucose levels. In response to this glucose detection, these cells send hormonal and neuronal messages to tissues involved in glucose metabolism to regulate glycemia. The gastrointestinal tract continuously communicates with the brain, especially with the hypothalamus, via the gut-brain axis. It is now well established that the cross talk between the gut and the brain is of crucial importance in the control of glucose homeostasis. In addition to receiving glucosensing information from the gut, the hypothalamus may also directly sense glucose. Indeed, the hypothalamus contains glucose-sensitive cells that regulate glucose homeostasis by sending signals to peripheral tissues via the autonomous nervous system. This review summarizes the mechanisms by which glucosensors along the gastrointestinal tract detect glucose, as well as the results of such detection in the whole body, including the hypothalamus. We also highlight how disturbances in the glucosensing process may lead to metabolic disorders such as type 2 diabetes. A better understanding of the pathways regulating glucose homeostasis will further facilitate the development of novel therapeutic strategies for the treatment of metabolic diseases. PMID:26939867
NASA Astrophysics Data System (ADS)
Wei, Wenjing; Song, Yilin; Fan, Xinyi; Zhang, Song; Wang, Li; Xu, Shengwei; Wang, Mixia; Cai, Xinxia
2016-03-01
Glucose is the main substrate for neurons in the central nervous system. In order to efficiently characterize the brain glucose mechanism, it is desirable to determine the extracellular glucose dynamics as well as the corresponding neuroelectrical activity in vivo. In the present study, we fabricated an implantable microelectrode array (MEA) probe composed of platinum electrochemical and electrophysiology microelectrodes by standard micro electromechanical system (MEMS) processes. The MEA probe was modified with nano-materials and implanted in a urethane-anesthetized rat for simultaneous recording of striatal extracellular glucose, local field potential (LFP) and spike on the same spatiotemporal scale when the rat was in normoglycemia, hypoglycemia and hyperglycemia. During these dual-mode recordings, we observed that increase of extracellular glucose enhanced the LFP power and spike firing rate, while decrease of glucose had an opposite effect. This dual mode MEA probe is capable of examining specific spatiotemporal relationships between electrical and chemical signaling in the brain, which will contribute significantly to improve our understanding of the neuron physiology.
Morea, Veronica; Bidollari, Eris; Colotti, Gianni; Fiorillo, Annarita; Rosati, Jessica; De Filippis, Lidia; Squitieri, Ferdinando; Ilari, Andrea
2017-07-01
Huntington's disease (HD) or Huntington's chorea is the most common inherited, dominantly transmitted, neurodegenerative disorder. It is caused by increased CAG repeats number in the gene coding for huntingtin (Htt) and characterized by motor, behaviour and psychiatric symptoms, ultimately leading to death. HD patients also exhibit alterations in glucose and energetic metabolism, which result in pronounced weight loss despite sustained calorie intake. Glucose metabolism decreases in the striatum of all the subjects with mutated Htt, but affects symptom presentation only when it drops below a specific threshold. Recent evidence points at defects in glucose uptake by the brain, and especially by neurons, as a relevant component of central glucose hypometabolism in HD patients. Here we review the main features of glucose metabolism and transport in the brain in physiological conditions and how these processes are impaired in HD, and discuss the potential ability of strategies aimed at increasing intracellular energy levels to counteract neurological and motor degeneration in HD patients.
Why does the brain (not) have glycogen?
DiNuzzo, Mauro; Maraviglia, Bruno; Giove, Federico
2011-05-01
In the present paper we formulate the hypothesis that brain glycogen is a critical determinant in the modulation of carbohydrate supply at the cellular level. Specifically, we propose that mobilization of astrocytic glycogen after an increase in AMP levels during enhanced neuronal activity controls the concentration of glucose phosphates in astrocytes. This would result in modulation of glucose phosphorylation by hexokinase and upstream cell glucose uptake. This mechanism would favor glucose channeling to activated neurons, supplementing the already rich neuron-astrocyte metabolic and functional partnership with important implications for the energy compounds used to sustain neuronal activity. The hypothesis is based on recent modeling evidence suggesting that rapid glycogen breakdown can profoundly alter the short-term kinetics of glucose delivery to neurons and astrocytes. It is also based on review of the literature relevant to glycogen metabolism during physiological brain activity, with an emphasis on the metabolic pathways identifying both the origin and the fate of this glucose reserve. Copyright © 2011 WILEY Periodicals, Inc.
Li, Wei; Maloney, Ronald E; Aw, Tak Yee
2015-08-01
We previously demonstrated that in normal glucose (5mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG-occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG-occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.
Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R
2013-12-01
Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.
Li, Wei; Maloney, Ronald E.; Aw, Tak Yee
2015-01-01
We previously demonstrated that in normal glucose (5 mM), methylglyoxal (MG, a model of carbonyl stress) induced brain microvascular endothelial cell (IHEC) dysfunction that was associated with occludin glycation and prevented by N-acetylcysteine (NAC). Herein, we investigated the impact of high glucose and low GSH, conditions that mimicked the diabetic state, on MG-induced IHEC dysfunction. MG-induced loss of transendothelial electrical resistance (TEER) was potentiated in IHECs cultured for 7 or 12 days in 25 mM glucose (hyperglycemia); moreover, barrier function remained disrupted 6 h after cell transfer to normal glucose media (acute glycemic fluctuation). Notably, basal occludin glycation was elevated under these glycemic states. TEER loss was exaggerated by inhibition of glutathione (GSH) synthesis and abrogated by NAC, which corresponded to GSH decreases and increases, respectively. Significantly, glyoxalase II activity was attenuated in hyperglycemic cells. Moreover, hyperglycemia and GSH inhibition increased MG accumulation, consistent with a compromised capacity for MG elimination. α-Oxoaldehydes (MG plus glyoxal) levels were elevated in streptozotocin-induced diabetic rat plasma. Immunohistochemistry revealed a prevalence of MG-positive, but fewer occludin-positive microvessels in the diabetic brain in vivo, and Western analysis confirmed an increase in MG–occludin adducts. These results provide the first evidence that hyperglycemia and acute glucose fluctuation promote MG–occludin formation and exacerbate brain microvascular endothelial dysfunction. Low occludin expression and high glycated-occludin contents in diabetic brain in vivo are factors that would contribute to the dysfunction of the cerebral microvasculature during diabetes. PMID:25867911
Ketogenic Medium Chain Triglycerides Increase Brain Energy Metabolism in Alzheimer's Disease.
Croteau, Etienne; Castellano, Christian-Alexandre; Richard, Marie Anne; Fortier, Mélanie; Nugent, Scott; Lepage, Martin; Duchesne, Simon; Whittingstall, Kevin; Turcotte, Éric E; Bocti, Christian; Fülöp, Tamàs; Cunnane, Stephen C
2018-06-09
In Alzheimer's disease (AD), it is unknown whether the brain can utilize additional ketones as fuel when they are derived from a medium chain triglyceride (MCT) supplement. To assess whether brain ketone uptake in AD increases in response to MCT as it would in young healthy adults. Mild-moderate AD patients sequentially consumed 30 g/d of two different MCT supplements, both for one month: a mixture of caprylic (55%) and capric acids (35%) (n = 11), followed by a wash-out and then tricaprylin (95%; n = 6). Brain ketone (11C-acetoacetate) and glucose (FDG) uptake were quantified by PET before and after each MCT intervention. Brain ketone consumption doubled on both types of MCT supplement. The slope of the relationship between plasma ketones and brain ketone uptake was the same as in healthy young adults. Both types of MCT increased total brain energy metabolism by increasing ketone supply without affecting brain glucose utilization. Ketones from MCT compensate for the brain glucose deficit in AD in direct proportion to the level of plasma ketones achieved.
Sensing of glucose in the brain.
Thorens, Bernard
2012-01-01
The brain, and in particular the hypothalamus and brainstem, have been recognized for decades as important centers for the homeostatic control of feeding, energy expenditure, and glucose homeostasis. These structures contain neurons and neuronal circuits that may be directly or indirectly activated or inhibited by glucose, lipids, or amino acids. The detection by neurons of these nutrient cues may become deregulated, and possibly cause metabolic diseases such as obesity and diabetes. Thus, there is a major interest in identifying these neurons, how they respond to nutrients, the neuronal circuits they form, and the physiological function they control. Here I will review some aspects of glucose sensing by the brain. The brain is responsive to both hyperglycemia and hypoglycemia, and the glucose sensing cells involved are distributed in several anatomical sites that are connected to each other. These eventually control the activity of the sympathetic or parasympathetic nervous system, which regulates the function of peripheral organs such as liver, white and brown fat, muscle, and pancreatic islets alpha and beta cells. There is now evidence for an extreme diversity in the sensing mechanisms used, and these will be reviewed.
Sheu, Wayne H-H; Chuang, Hsiu-Chun; Cheng, Shiu-Min; Lee, Maw-Rong; Chou, Chi-Chi; Cheng, Fu-Chou
2011-03-25
Rosiglitazone is a potent synthetic peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist which improves glucose control in the plasma and reduces ischemic brain injury. However, the pharmacokinetics of rosiglitazone in the brain is still unclear. In this study, a method using liquid chromatography-mass spectrometry coupled with microdialysis and an auto-blood sampling system was developed to determine rosiglitazone and glucose concentration in the brain and blood of gerbils subjected to treatment with rosiglitazone (3.0 mg kg(-1), i.p.). The results showed the limit of detection was 0.04 μg L(-1) and the correlation coefficient was 0.9997 for the determination of rosiglitazone in the brain. The mean parameters, maximum drug concentration (C(max)) and the area under the concentration-time curve from time zero to time infinity (AUC(inf)), following rosiglitazone administration were 1.06±0.28 μg L(-1) and 296.82±44.67 μg min L(-1), respectively. The time to peak concentration (C(max) or T(max)) of rosiglitazone occurred at 105±17.10 min, and the mean elimination half-life (t(1/2)) from brain was 190.81±85.18 min after administration of rosiglitazone. The brain glucose levels decreased to 71% of the basal levels in the rosiglitazone-treated group when compared with those in the control (p<0.01). Treatment with rosiglitazone decreased blood glucose levels to 80% at 1h after pretreatment of rosiglitazone (p<0.05). In addition, pretreatment with rosiglitazone significantly reduced the cerebral infarct volume compared with that of the control group. These findings suggest that this method may be useful for simultaneous and continuous determination of rosiglitazone and glucose concentrations in brain and plasma. Rosiglitazone was effective at penetrating the blood-brain barrier as evidenced by the rapid appearance of rosiglitazone in the brain, and rosiglitazone may contribute to a reduction in the extent of injuries related to cerebral ischemic stroke via its hypoglycemic effect. Copyright © 2010 Elsevier B.V. All rights reserved.
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.
Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko
2016-01-01
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity
Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko
2016-01-01
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929
Ullner, Paivi M; Di Nardo, Alessia; Goldman, James E; Schobel, Scott; Yang, Hong; Engelstad, Kristin; Wang, Dong; Sahin, Mustafa; De Vivo, Darryl C
2009-10-01
Glucose transporter type 1 (Glut-1) facilitates glucose flux across the blood-brain-barrier. In humans, Glut-1 deficiency causes acquired microcephaly, seizures and ataxia, which are recapitulated in our Glut-1 haploinsufficient mouse model. Postnatal brain weight deceleration and development of reactive astrogliosis were significant by P21 in Glut-1(+/-) mice. The brain weight differences remained constant after P21 whereas the reactive astrocytosis continued to increase and peaked at P90. Brain immunoblots showed increased phospho-mTOR and decreased phospho-GSK3-beta by P14. After fasting, the mature Glut-1(+/-) females showed a trend towards elevated phospho-GSK3-beta, a possible neuroprotective response. Lithium chloride treatment of human skin fibroblasts from control and Glut-1 DS patients produced a 45% increase in glucose uptake. Brain imaging of mature Glut-1(+/-) mice revealed a significantly decreased hippocampal volume. These subtle immunochemical changes reflect chronic nutrient deficiency during brain development and represent the experimental correlates to the human neurological phenotype associated with Glut-1 DS.
Pauliina Markkula, S; Lyons, David; Yueh, Chen-Yu; Riches, Christine; Hurst, Paul; Fielding, Barbara; Heisler, Lora K; Evans, Mark L
2016-12-01
Specialized metabolic sensors in the hypothalamus regulate blood glucose levels by influencing hepatic glucose output and hypoglycemic counterregulatory responses. Hypothalamic reactive oxygen species (ROS) may act as a metabolic signal-mediating responses to changes in glucose, other substrates and hormones. The role of ROS in the brain's control of glucose homeostasis remains unclear. We hypothesized that hydrogen peroxide (H 2 O 2 ), a relatively stable form of ROS, acts as a sensor of neuronal glucose consumption and availability and that lowering brain H 2 O 2 with the enzyme catalase would lead to systemic responses increasing blood glucose. During hyperinsulinemic euglycemic clamps in rats, intracerebroventricular catalase infusion resulted in increased hepatic glucose output, which was associated with reduced neuronal activity in the arcuate nucleus of the hypothalamus. Electrophysiological recordings revealed a subset of arcuate nucleus neurons expressing proopiomelanocortin that were inhibited by catalase and excited by H 2 O 2 . During hypoglycemic clamps, intracerebroventricular catalase increased glucagon and epinephrine responses to hypoglycemia, consistent with perceived lower glucose levels. Our data suggest that H 2 O 2 represents an important metabolic cue, which, through tuning the electrical activity of key neuronal populations such as proopiomelanocortin neurons, may have a role in the brain's influence of glucose homeostasis and energy balance.
Maccormack, Tyson James; Lewis, Johanne Mari; Almeida-Val, Vera Maria Fonseca; Val, Adalberto Luis; Driedzic, William Robert
2006-04-01
The armoured catfish, Liposarcus pardalis, tolerates severe hypoxia at high temperatures. Although this species can breathe air, it also has a strong anaerobic metabolism. We assessed tissue to plasma glucose ratios and glycogen and lactate in a number of tissues under "natural" pond hypoxia, and severe aquarium hypoxia without aerial respiration. Armour lactate content and adenosine in brain and heart were also investigated. During normoxia, tissue to plasma glucose ratios in gill, brain, and heart were close to one. Hypoxia increased plasma glucose and decreased tissue to plasma ratios to less than one, suggesting glucose phosphorylation is activated more than uptake. High normoxic white muscle glucose relative to plasma suggests gluconeogenesis or active glucose uptake. Excess muscle glucose may serve as a metabolic reserve since hypoxia decreased muscle to plasma glucose ratios. Mild pond hypoxia changed glucose management in the absence of lactate accumulation. Lactate was elevated in all tissues except armour following aquarium hypoxia; however, confinement in aquaria increased armour lactate, even under normoxia. A stress-associated acidosis may contribute to armour lactate sequestration. High plasma lactate levels were associated with brain adenosine accumulation. An increase in heart adenosine was triggered by confinement in aquaria, although not by hypoxia alone.
Brain glucose sensing and neural regulation of insulin and glucagon secretion.
Thorens, B
2011-10-01
Glucose homeostasis requires the tight regulation of glucose utilization by liver, muscle and white or brown fat, and glucose production and release in the blood by liver. The major goal of maintaining glycemia at ∼ 5 mM is to ensure a sufficient flux of glucose to the brain, which depends mostly on this nutrient as a source of metabolic energy. This homeostatic process is controlled by hormones, mainly glucagon and insulin, and by autonomic nervous activities that control the metabolic state of liver, muscle and fat tissue but also the secretory activity of the endocrine pancreas. Activation or inhibition of the sympathetic or parasympathetic branches of the autonomic nervous systems are controlled by glucose-excited or glucose-inhibited neurons located at different anatomical sites, mainly in the brainstem and the hypothalamus. Activation of these neurons by hyper- or hypoglycemia represents a critical aspect of the control of glucose homeostasis, and loss of glucose sensing by these cells as well as by pancreatic β-cells is a hallmark of type 2 diabetes. In this article, aspects of the brain-endocrine pancreas axis are reviewed, highlighting the importance of central glucose sensing in the control of counterregulation to hypoglycemia but also mentioning the role of the neural control in β-cell mass and function. Overall, the conclusions of these studies is that impaired glucose homeostasis, such as associated with type 2 diabetes, but also defective counterregulation to hypoglycemia, may be caused by initial defects in glucose sensing. © 2011 Blackwell Publishing Ltd.
Brain glucose and acetoacetate metabolism: a comparison of young and older adults.
Nugent, Scott; Tremblay, Sebastien; Chen, Kewei W; Ayutyanont, Napatkamon; Roontiva, Auttawut; Castellano, Christian-Alexandre; Fortier, Melanie; Roy, Maggie; Courchesne-Loyer, Alexandre; Bocti, Christian; Lepage, Martin; Turcotte, Eric; Fulop, Tamas; Reiman, Eric M; Cunnane, Stephen C
2014-06-01
The extent to which the age-related decline in regional brain glucose uptake also applies to other important brain fuels is presently unknown. Ketones are the brain's major alternative fuel to glucose, so we developed a dual tracer positron emission tomography protocol to quantify and compare regional cerebral metabolic rates for glucose and the ketone, acetoacetate. Twenty healthy young adults (mean age, 26 years) and 24 healthy older adults (mean age, 74 years) were studied. In comparison with younger adults, older adults had 8 ± 6% (mean ± SD) lower cerebral metabolic rates for glucose in gray matter as a whole (p = 0.035), specifically in several frontal, temporal, and subcortical regions, as well as in the cingulate and insula (p ≤ 0.01, false discovery rate correction). The effect of age on cerebral metabolic rates for acetoacetate in gray matter did not reach significance (p = 0.11). Rate constants (min(-1)) of glucose (Kg) and acetoacetate (Ka) were significantly lower (-11 ± 6%; [p = 0.005], and -19 ± 5%; [p = 0.006], respectively) in older adults compared with younger adults. There were differential effects of age on Kg and Ka as seen by significant interaction effects in the caudate (p = 0.030) and post-central gyrus (p = 0.023). The acetoacetate index, which expresses the scaled residuals of the voxel-wise linear regression of glucose on ketone uptake, identifies regions taking up higher or lower amounts of acetoacetate relative to glucose. The acetoacetate index was higher in the caudate of young adults when compared with older adults (p ≤ 0.05 false discovery rate correction). This study provides new information about glucose and ketone metabolism in the human brain and a comparison of the extent to which their regional use changes during normal aging. Copyright © 2014 Elsevier Inc. All rights reserved.
Du, Fei; Zhang, Yi; Iltis, Isabelle; Marjanska, Malgorzata; Zhu, Xiao-Hong; Henry, Pierre-Gilles; Chen, Wei
2009-12-01
To quantitatively investigate the effects of pentobarbital anesthesia on brain activity, brain metabolite concentrations and cerebral metabolic rate of glucose, in vivo proton MR spectra, and electroencephalography were measured in the rat brain with various doses of pentobarbital. The results show that (1) the resonances attributed to propylene glycol, a solvent in pentobarbital injection solution, can be robustly detected and quantified in the brain; (2) the concentration of most brain metabolites remained constant under the isoelectric state (silent electroencephalography) with a high dose of pentobarbital compared to mild isoflurane anesthesia condition, except for a reduction of 61% in the brain glucose level, which was associated with a 37% decrease in cerebral metabolic rate of glucose, suggesting a significant amount of "housekeeping" energy for maintaining brain cellular integrity under the isoelectric state; and (3) electroencephalography and cerebral metabolic activities were tightly coupled to the pentobarbital anesthesia depth and they can be indirectly quantified by the propylene glycol resonance signal at 1.13 ppm. This study indicates that in vivo proton MR spectroscopy can be used to measure changes in cerebral metabolite concentrations and cerebral metabolic rate of glucose under varied pentobarbital anesthesia states; moreover, the propylene glycol signal provides a sensitive biomarker for quantitatively monitoring these changes and anesthesia depth noninvasively. (c) 2009 Wiley-Liss, Inc.
The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury
Prins, Mayumi L.; Matsumoto, Joyce H.
2014-01-01
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741
Kamalam, Biju Sam; Medale, Françoise; Kaushik, Sadasivam; Polakof, Sergio; Skiba-Cassy, Sandrine; Panserat, Stephane
2012-08-01
Previous studies in two rainbow trout lines divergently selected for lean (L) or fat (F) muscle suggested that they differ in their ability to metabolise glucose. In this context, we investigated whether genetic selection for high muscle fat content led to a better capacity to metabolise dietary carbohydrates. Juvenile trout from the two lines were fed diets with or without gelatinised starch (17.1%) for 10 weeks, after which blood, liver, muscle and adipose tissues were sampled. Growth rate, feed efficiency and protein utilisation were lower in the F line than in the L line. In both lines, intake of carbohydrates was associated with a moderate post-prandial hyperglycaemia, a protein sparing effect, an enhancement of nutrient (TOR-S6) signalling cascade and a decrease of energy-sensing enzyme (AMPK). Gene expression of hepatic glycolytic enzymes was higher in the F line fed carbohydrates compared with the L line, but concurrently transcripts for the gluconeogenic enzymes was also higher in the F line, possibly impairing glucose homeostasis. However, the F line showed a higher gene expression of hepatic enzymes involved in lipogenesis and fatty acid bioconversion, in particular with an increased dietary carbohydrate intake. Enhanced lipogenic potential coupled with higher liver glycogen content in the F line suggests better glucose storage ability than the L line. Overall, the present study demonstrates the changes in hepatic intermediary metabolism resulting from genetic selection for high muscle fat content and dietary carbohydrate intake without, however, any interaction for an improved growth or glucose utilisation in the peripheral tissues.
Alf, Malte F; Duarte, João M N; Schibli, Roger; Gruetter, Rolf; Krämer, Stefanie D
2013-12-01
We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.
Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M
2013-01-01
It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752
Hyder, Fahmeed; Herman, Peter; Bailey, Christopher J; Møller, Arne; Globinsky, Ronen; Fulbright, Robert K; Rothman, Douglas L; Gjedde, Albert
2016-05-01
Regionally variable rates of aerobic glycolysis in brain networks identified by resting-state functional magnetic resonance imaging (R-fMRI) imply regionally variable adenosine triphosphate (ATP) regeneration. When regional glucose utilization is not matched to oxygen delivery, affected regions have correspondingly variable rates of ATP and lactate production. We tested the extent to which aerobic glycolysis and oxidative phosphorylation power R-fMRI networks by measuring quantitative differences between the oxygen to glucose index (OGI) and the oxygen extraction fraction (OEF) as measured by positron emission tomography (PET) in normal human brain (resting awake, eyes closed). Regionally uniform and correlated OEF and OGI estimates prevailed, with network values that matched the gray matter means, regardless of size, location, and origin. The spatial agreement between oxygen delivery (OEF≈0.4) and glucose oxidation (OGI ≈ 5.3) suggests that no specific regions have preferentially high aerobic glycolysis and low oxidative phosphorylation rates, with globally optimal maximum ATP turnover rates (VATP ≈ 9.4 µmol/g/min), in good agreement with (31)P and (13)C magnetic resonance spectroscopy measurements. These results imply that the intrinsic network activity in healthy human brain powers the entire gray matter with ubiquitously high rates of glucose oxidation. Reports of departures from normal brain-wide homogeny of oxygen extraction fraction and oxygen to glucose index may be due to normalization artefacts from relative PET measurements. © The Author(s) 2016.
Dynamic functional imaging of brain glucose utilization using fPET-FDG
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...
2014-06-14
We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less
Patrick, Ping; Price, Tulin O; Diogo, Ana L; Sheibani, Nader; Banks, William A; Shah, Gul N
Hyperglycemia in diabetes mellitus causes oxidative stress and pericyte depletion from the microvasculature of the brain thus leading to the Blood-Brain Barrier (BBB) disruption. The compromised BBB exposes the brain to circulating substances, resulting in neurotoxicity and neuronal cell death. The decline in pericyte numbers in diabetic mouse brain and pericyte apoptosis in high glucose cultures are caused by excess superoxide produced during enhanced respiration (mitochondrial oxidative metabolism of glucose). Superoxide is precursor to all Reactive Oxygen Species (ROS) which, in turn, cause oxidative stress. The rate of respiration and thus the ROS production is regulated by mitochondrial carbonic anhydrases (mCA) VA and VB, the two isoforms expressed in the mitochondria. Inhibition of both mCA: decreases the oxidative stress and restores the pericyte numbers in diabetic brain; and reduces high glucose-induced respiration, ROS, oxidative stress, and apoptosis in cultured brain pericytes. However, the individual role of the two isoforms has not been established. To investigate the contribution of mCA VA in ROS production and apoptosis, a mCA VA overexpressing brain pericyte cell line was engineered. These cells were exposed to high glucose and analyzed for the changes in ROS and apoptosis. Overexpression of mCA VA significantly increased pericyte ROS and apoptosis. Inhibition of mCA VA with topiramate prevented increases both in glucose-induced ROS and pericyte death. These results demonstrate, for the first time, that mCA VA regulates the rate of pericyte respiration. These findings identify mCA VA as a novel and specific therapeutic target to protect the cerebromicrovascular bed in diabetes.
Effects of cell phone radiofrequency signal exposure on brain glucose metabolism.
Volkow, Nora D; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-02-23
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ((18)F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ("on" condition) and once with both cell phones deactivated ("off" condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm(3)) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism (μmol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 μmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.
Mapping glucose-mediated gut-to-brain signalling pathways in humans.
Little, Tanya J; McKie, Shane; Jones, Richard B; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G; McLaughlin, John T
2014-08-01
Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. Copyright © 2014. Published by Elsevier Inc.
Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F
2017-01-01
2-Deoxy-D-[ 14 C]glucose ([ 14 C]DG) is commonly used to determine local glucose utilization rates (CMR glc ) in living brain and to estimate CMR glc in cultured brain cells as rates of [ 14 C]DG phosphorylation. Phosphorylation rates of [ 14 C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [ 14 C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMR glc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [ 14 C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [ 14 C]DG distribution space fell at the lowest glucose levels. Calculated CMR glc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [ 14 C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.
Ding, Fan; Yao, Jia; Rettberg, Jamaica R.; Chen, Shuhua; Brinton, Roberta Diaz
2013-01-01
We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential targets for preventing shifts to less efficient bioenergetic fuels and transition to the ketogenic phenotype of the Alzheimer's brain. PMID:24244584
Dai, Yun; Zhao, Yuanzi; Tomi, Masatoshi; Shin, Bo-Chul; Thamotharan, Shanthie; Mazarati, Andrey; Sankar, Raman; Wang, Elizabeth A; Cepeda, Carlos; Levine, Michael S; Zhang, Jingjing; Frew, Andrew; Alger, Jeffry R; Clark, Peter M; Sondhi, Monica; Kositamongkol, Sudatip; Leibovitch, Leah; Devaskar, Sherin U
2017-04-01
We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice. Copyright © 2017 Endocrine Society.
Dai, Yun; Zhao, Yuanzi; Tomi, Masatoshi; Shin, Bo-Chul; Thamotharan, Shanthie; Mazarati, Andrey; Sankar, Raman; Wang, Elizabeth A.; Cepeda, Carlos; Levine, Michael S.; Zhang, Jingjing; Frew, Andrew; Alger, Jeffry R.; Clark, Peter M.; Sondhi, Monica; Kositamongkol, Sudatip; Leibovitch, Leah
2017-01-01
We tested the hypothesis that exposure of glut3+/− mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma–cerebrospinal fluid (CSF)–brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/− male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/− males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/− males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/− mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/− male mice. PMID:28324109
Al-Zubaidi, Arkan; Heldmann, Marcus; Mertins, Alfred; Jauch-Chara, Kamila; Münte, Thomas F
2018-07-01
A major regulatory task of the organism is to keep brain functions relatively constant in spite of metabolic changes (e.g., hunger vs. satiety) or availability of energy (e.g., glucose administration). Resting-state functional magnetic resonance imaging (rs-fMRI) can reveal resulting changes in brain function but previous studies have focused mostly on the hypothalamus. Therefore, we took a whole-brain approach and examined 24 healthy normal-weight men once after 36 h of fasting and once in a satiated state (six meals over the course of 36 h). At the end of each treatment, rs-fMRI was recorded before and after the oral administration of 75 g of glucose. We calculated local connectivity (regional homogeneity [ReHo]), global connectivity (degree of centrality [DC]), and amplitude (fractional amplitude of low-frequency fluctuation [fALFF]) maps from the rs-fMRI data. We found that glucose administration reduced all measures selectively in the left supplementary motor area and increased ReHo and fALFF in the right middle and superior frontal gyri. For fALFF, we observed a significant interaction between metabolic states and glucose in the left thalamus. This interaction was driven by a fALFF increase after glucose treatment in the hunger relative to the satiety condition. Our results indicate that fALFF analysis is the most sensitive measure to detect effects of metabolic states on resting-state brain activity. Moreover, we show that multimethod rs-fMRI provides an unbiased approach to identify spontaneous brain activity associated with changes in homeostasis and caloric intake. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer
2017-06-01
Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Evans, Mark; Cogan, Karl E.
2016-01-01
Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911
Linking neuronal brain activity to the glucose metabolism.
Göbel, Britta; Oltmanns, Kerstin M; Chung, Matthias
2013-08-29
Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported.
Linking neuronal brain activity to the glucose metabolism
2013-01-01
Background Energy homeostasis ensures the functionality of the entire organism. The human brain as a missing link in the global regulation of the complex whole body energy metabolism is subject to recent investigation. The goal of this study is to gain insight into the influence of neuronal brain activity on cerebral and peripheral energy metabolism. In particular, the tight link between brain energy supply and metabolic responses of the organism is of interest. We aim to identifying regulatory elements of the human brain in the whole body energy homeostasis. Methods First, we introduce a general mathematical model describing the human whole body energy metabolism. It takes into account the two central roles of the brain in terms of energy metabolism. The brain is considered as energy consumer as well as regulatory instance. Secondly, we validate our mathematical model by experimental data. Cerebral high-energy phosphate content and peripheral glucose metabolism are measured in healthy men upon neuronal activation induced by transcranial direct current stimulation versus sham stimulation. By parameter estimation we identify model parameters that provide insight into underlying neurophysiological processes. Identified parameters reveal effects of neuronal activity on regulatory mechanisms of systemic glucose metabolism. Results Our examinations support the view that the brain increases its glucose supply upon neuronal activation. The results indicate that the brain supplies itself with energy according to its needs, and preeminence of cerebral energy supply is reflected. This mechanism ensures balanced cerebral energy homeostasis. Conclusions The hypothesis of the central role of the brain in whole body energy homeostasis as active controller is supported. PMID:23988084
Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.
Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R
2017-11-01
Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi
2016-10-18
Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.
Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang
2016-06-01
Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. © 2016 International Society for Neurochemistry.
Dukart, Juergen; Mueller, Karsten; Villringer, Arno; Kherif, Ferath; Draganski, Bogdan; Frackowiak, Richard; Schroeter, Matthias L.
2013-01-01
The early diagnostic value of glucose hypometabolism and atrophy as potential neuroimaging biomarkers of mild cognitive impairment (MCI) and Alzheimer's disease (AD) have been extensively explored using [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) and structural magnetic resonance imaging (MRI). The vast majority of previous imaging studies neglected the effects of single factors, such as age, symptom severity or time to conversion in MCI thus limiting generalisability of results across studies. Here, we investigated the impact of these factors on metabolic and structural differences. FDG-PET and MRI data from AD patients (n = 80), MCI converters (n = 65) and MCI non-converters (n = 64) were compared to data of healthy subjects (n = 79). All patient groups were split into subgroups by age, time to conversion (for MCI), or symptom severity and compared to the control group. AD patients showed a strongly age-dependent pattern, with younger patients showing significantly more extensive reductions in gray matter volume and glucose utilisation. In the MCI converter group, the amount of glucose utilisation reduction was linked to the time to conversion but not to atrophy. Our findings indicate that FDG-PET might be more closely linked to future cognitive decline whilst MRI being more closely related to the current cognitive state reflects potentially irreversible damage. PMID:24179852
Glucose metabolism in different regions of the rat brain under hypokinetic stress influence
NASA Technical Reports Server (NTRS)
Konitzer, K.; Voigt, S.
1980-01-01
Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.
Higher serum glucose levels are associated with cerebral hypometabolism in Alzheimer regions.
Burns, Christine M; Chen, Kewei; Kaszniak, Alfred W; Lee, Wendy; Alexander, Gene E; Bandy, Daniel; Fleisher, Adam S; Caselli, Richard J; Reiman, Eric M
2013-04-23
To investigate whether higher fasting serum glucose levels in cognitively normal, nondiabetic adults were associated with lower regional cerebral metabolic rate for glucose (rCMRgl) in brain regions preferentially affected by Alzheimer disease (AD). This is a cross-sectional study of 124 cognitively normal persons aged 64 ± 6 years with a first-degree family history of AD, including 61 APOEε4 noncarriers and 63 carriers. An automated brain mapping algorithm characterized and compared correlations between higher fasting serum glucose levels and lower [(18)F]-fluorodeoxyglucose-PET rCMRgl measurements. As predicted, higher fasting serum glucose levels were significantly correlated with lower rCMRgl and were confined to the vicinity of brain regions preferentially affected by AD. A similar pattern of regional correlations occurred in the APOEε4 noncarriers and carriers. Higher fasting serum glucose levels in cognitively normal, nondiabetic adults may be associated with AD pathophysiology. Findings suggest that the risk imparted by higher serum glucose levels may be independent of APOEε4 status. This study raises additional questions about the role of the metabolic process in the predisposition to AD and supports the possibility of targeting these processes in presymptomatic AD trials.
Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C; Ali, Almas; Tamarina, Natalia; Philipson, Louis H; Enquist, Lynn W; Myers, Martin G; Rhodes, Christopher J
2016-09-01
The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. © 2016 by the American Diabetes Association.
Martin, Neil A.; Horning, Michael A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Brooks, George A.
2015-01-01
Abstract We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-2H2]glucose, that is, D2-glucose, and [3-13C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7±2.2 (mean±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as 13CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-13C]lactate tracer and 13C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75–80% of 13CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for ∼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the injured brain. Undiminished cerebral lactate fractional extraction and uptake suggest that arterial lactate supplementation may be used to compensate for decreased CMRgluc following TBI. PMID:25594628
Detection of glucose in the human brain with 1 H MRS at 7 Tesla.
Kaiser, Lana G; Hirokazu, Kawaguchi; Fukunaga, Masaki; B Matson, Gerald
2016-12-01
A new method is proposed for noninvasive detection of glucose in vivo using proton MR spectroscopy at 7 Tesla. The proposed method utilizes J-difference editing to uncover the resonance of beta-glucose (β-glc) at 3.23 ppm, which is strongly overlapped with choline. Calculations using the density matrix formalism are used to maximize the signal-to-noise ratio of the β-glc resonance at 3.23 ppm. The calculations are verified using phantom and in vivo data collected at 7 Tesla. The proposed method allows observation of the glucose signal at 3.23 ppm in the human brain spectrum. Additional co-edited resonances of N-acetylaspartylglutamatate and glutathione are also detected in the same experiment. The proposed method does not require carbon ( 13 C)- labeled glucose injections and 13 C hardware; as such, it has a potential to provide valuable information on intrinsic glucose concentration in the human brain in vivo. Magn Reson Med 76:1653-1660, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
[Glucose homeostasis and gut-brain connection].
De Vadder, Filipe; Mithieux, Gilles
2015-02-01
Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.
Gut-Brain Glucose Signaling in Energy Homeostasis.
Soty, Maud; Gautier-Stein, Amandine; Rajas, Fabienne; Mithieux, Gilles
2017-06-06
Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection. Copyright © 2017 Elsevier Inc. All rights reserved.
Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén
2016-11-01
Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Tianqi; Shaw, Marnie E; Walsh, Erin I; Sachdev, Perminder S; Anstey, Kaarin J; Cherbuin, Nicolas
2018-06-07
Previous studies have demonstrated associations between higher blood glucose and brain atrophy and functional deficits, however, little is known about the association between blood glucose, striatal volume and striatal function despite sensori-motor deficits being reported in diabetes. This study investigated the relationship between blood glucose levels, striatal volume and fine motor skills in a longitudinal cohort of cognitively healthy individuals living in the community with normal or impaired fasting glucose or type 2 diabetes. Participants were 271 cognitively healthy individuals (mean age 63 years at inclusion) with normal fasting glucose levels (<5.6 mmol/L) (n=173), impaired fasting glucose (5.6-6.9 mmol/L) (n=57), or with type 2 diabetes (≥7.0 mmol/L) (n=41). Fasting glucose, Purdue Pegboard scores as measurement of fine motor skills, and brain scans were collected at wave 1, 2 and 4, over a total follow-up of twelve years. Striatal volumes were measured using FreeSurfer after controlling for age, sex and intracranial volume. Results showed that type 2 diabetes was associated with smaller right putamen volume and lower Purdue Pegboard scores after controlling for age, sex and intracranial volume. These findings add to the evidence suggesting that higher blood glucose levels, especially type 2 diabetes, may impair brain structure and function. Copyright © 2018. Published by Elsevier B.V.
Hypothalamic vitamin D improves glucose homeostasis and reduces weight
USDA-ARS?s Scientific Manuscript database
Despite clear associations between vitamin D deficiency and obesity and/or type 2 diabetes, a causal relationship is not established. Vitamin D receptors (VDRs) are found within multiple tissues, including the brain. Given the importance of the brain in controlling both glucose levels and body weigh...
Low doses of alcohol substantially decrease glucose metabolism in the human brain.
Volkow, Nora D; Wang, Gene-Jack; Franceschi, Dinko; Fowler, Joanna S; Thanos, Panayotis Peter K; Maynard, Laurence; Gatley, S John; Wong, Christopher; Veech, Richard L; Kunos, George; Kai Li, Ting
2006-01-01
Moderate doses of alcohol decrease glucose metabolism in the human brain, which has been interpreted to reflect alcohol-induced decreases in brain activity. Here, we measure the effects of two relatively low doses of alcohol (0.25 g/kg and 0.5 g/kg, or 5 to 10 mM in total body H2O) on glucose metabolism in the human brain. Twenty healthy control subjects were tested using positron emission tomography (PET) and FDG after placebo and after acute oral administration of either 0.25 g/kg, or 0.5 g/kg of alcohol, administered over 40 min. Both doses of alcohol significantly decreased whole-brain glucose metabolism (10% and 23% respectively). The responses differed between doses; whereas the 0.25 g/kg dose predominantly reduced metabolism in cortical regions, the 0.5 g/kg dose reduced metabolism in cortical as well as subcortical regions (i.e. cerebellum, mesencephalon, basal ganglia and thalamus). These doses of alcohol did not significantly change the scores in cognitive performance, which contrasts with our previous results showing that a 13% reduction in brain metabolism by lorazepam was associated with significant impairment in performance on the same battery of cognitive tests. This seemingly paradoxical finding raises the possibility that the large brain metabolic decrements during alcohol intoxication could reflect a shift in the substrate for energy utilization, particularly in light of new evidence that blood-borne acetate, which is markedly increased during intoxication, is a substrate for energy production by the brain.
Bouzier, A K; Thiaudiere, E; Biran, M; Rouland, R; Canioni, P; Merle, M
2000-08-01
Lactate metabolism in the adult rat brain was investigated in relation with the concept of lactate trafficking between astrocytes and neurons. Wistar rats were infused intravenously with a solution containing either [3-(13)C]lactate (534 mM) or both glucose (750 mM) and [3-(13)C]lactate (534 mM). The time courses of both the concentration and (13)C enrichment of blood glucose and lactate were determined. The data indicated the occurrence of [3-(13)C]lactate recycling through liver gluconeogenesis. The yield of glucose labeling was, however, reduced when using the glucose-containing infusate. After a 20-min or 1-h infusion, perchloric acid extracts of the brain tissue were prepared and subsequently analyzed by (13)C- and (1)H-observed/(13)C-edited NMR spectroscopy. The (13)C labeling of amino acids indicated that [3-(13)C]lactate was metabolized in the brain. Based on the alanine C3 enrichment, lactate contribution to brain metabolism amounted to 35% under the most favorable conditions used. By contrast with what happens with [1-(13)C]glucose metabolism, no difference in glutamine C2 and C3 labeling was evidenced, indicating that lactate was metabolized in a compartment deprived of pyruvate carboxylase activity. This result confirms, for the first time from an in vivo study, that lactate is more specifically a neuronal substrate.
Liu, Zhigang; Patil, Ishan; Sancheti, Harsh; Yin, Fei; Cadenas, Enrique
2017-07-14
High-fat diet (HFD)-induced obesity is accompanied by insulin resistance and compromised brain synaptic plasticity through the impairment of insulin-sensitive pathways regulating neuronal survival, learning, and memory. Lipoic acid is known to modulate the redox status of the cell and has insulin mimetic effects. This study was aimed at determining the effects of dietary administration of lipoic acid on a HFD-induced obesity model in terms of (a) insulin signaling, (b) brain glucose uptake and neuronal- and astrocytic metabolism, and (c) synaptic plasticity. 3-Month old C57BL/6J mice were divided into 4 groups exposed to their respective treatments for 9 weeks: (1) normal diet, (2) normal diet plus lipoic acid, (3) HFD, and (4) HFD plus lipoic acid. HFD resulted in higher body weight, development of insulin resistance, lower brain glucose uptake and glucose transporters, alterations in glycolytic and acetate metabolism in neurons and astrocytes, and ultimately synaptic plasticity loss evident by a decreased long-term potentiation (LTP). Lipoic acid treatment in mice on HFD prevented several HFD-induced metabolic changes and preserved synaptic plasticity. The metabolic and physiological changes in HFD-fed mice, including insulin resistance, brain glucose uptake and metabolism, and synaptic function, could be preserved by the insulin-like effect of lipoic acid.
Abu-Judeh, H H; Levine, S; Kumar, M; el-Zeftawy, H; Naddaf, S; Lou, J Q; Abdel-Dayem, H M
1998-11-01
Chronic fatigue syndrome is a clinically defined condition of uncertain aetiology. We compared 99Tcm-HMPAO single photon emission tomography (SPET) brain perfusion with dual-head 18F-FDG brain metabolism in patients with chronic fatigue syndrome. Eighteen patients (14 females, 4 males), who fulfilled the diagnostic criteria of the Centers for Disease Control for chronic fatigue syndrome, were investigated. Thirteen patients had abnormal SPET brain perfusion scans and five had normal scans. Fifteen patients had normal glucose brain metabolism scans and three had abnormal scans. We conclude that, in chronic fatigue syndrome patients, there is discordance between SPET brain perfusion and 18F-FDG brain uptake. It is possible to have brain perfusion abnormalities without corresponding changes in glucose uptake.
Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.
Betz, A L; Goldstein, G W
1981-03-01
1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.
Manning, Kathryn Y.; Rajakumar, Nagalingam; Gómez, Francisco A.; Soddu, Andrea; Borrie, Michael J.
2017-01-01
Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1–42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD. PMID:28582450
Kazemifar, Samaneh; Manning, Kathryn Y; Rajakumar, Nagalingam; Gómez, Francisco A; Soddu, Andrea; Borrie, Michael J; Menon, Ravi S; Bartha, Robert
2017-01-01
Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1-42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD.
Arbelaez, Ana Maria; Semenkovich, Katherine; Hershey, Tamara
2013-12-01
The adult brain accounts for a disproportionally large percentage of the body’s total energy consumption (1). However, during brain development,energy demand is even higher, reaching the adult rate by age 2 and increasing to nearly twice the adult rate by age 10, followed by gradual reduction toward adult levels in the next decade (1,2). The dramatic changes in brain metabolism occurring over the first two decades of life coincide with the initial proliferation and then pruning of synapses to adult levels.The brain derives its energy almost exclusively from glucose and is largely driven by neuronal signaling, biosynthesis, and neuroprotection (3–6).Glucose homeostasis in the body is tightly regulated by a series of hormones and physiologic responses. As a result, hypoglycemia and hyperglycemia are rare occurrences in normal individuals, but they occur commonly inpatients with type 1 diabetes mellitus (T1DM) due to a dysfunction of peripheral glucose-insulin-glucagon responses and non-physiologic doses of exogenous insulin, which imperfectly mimic normal physiology. These extremes can occur more frequently in children and adolescents with T1DM due to the inadequacies of insulin replacement therapy, events leading to the diagnosis [prolonged untreated hyperglycemia and diabetic ketoacidosis (DKA)], and to behavioral factors interfering with optimal treatment. When faced with fluctuations in glucose supply the metabolism of the body and brain change dramatically, largely to conserve resources and, at a cost to other organs, to preserve brain function (7). However,if the normal physiological mechanisms that prevent these severe glucose fluctuations and maintain homeostasis are impaired, neuronal function and potentially viability can be affected (8–11).
The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.
Prins, Mayumi L; Matsumoto, Joyce H
2014-12-01
The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Henry, Pierre-Gilles; Criego, Amy B.; Kumar, Anjali; Seaquist, Elizabeth R.
2009-01-01
The aim of the present study was to use 13C NMR to measure the cerebral oxidative metabolic rate of glucose (CMRglc(ox)) in patients with diabetes and to compare these measurements with those collected from matched controls. We elected to study a group with type 1 diabetes and hypoglycemia unawareness, since we had previously found such patients to have higher brain glucose concentrations than normal volunteers under steady state conditions. We sought to determine if this difference in steady-state brain concentrations could be explained by a difference in CMRglc(ox). Time courses of 13C label incorporation in brain amino acids were measured in occipital cortex during infusion of [1-13C]glucose. These time courses were fitted using a one-compartment metabolic model to determine CMRglc(ox). Our results show that the TCA cycle rate (VTCA, which is twice CMRglc(ox)) in subjects with type 1 diabetes was not significantly different from normal controls (0.84 ± 0.03 vs 0.79 ± 0.03 μmol/gm/min, n=5 in each group, mean ± SEM). We conclude that the changes in steady-state brain glucose concentrations that we observed in patients with type 1 diabetes in a previous study (1) cannot be explained by changes in oxidative glucose consumption PMID:19766263
Dienel, Gerald A; Cruz, Nancy F
2016-07-01
Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain activation. Aerobic glycolysis, the preferential up-regulation of glucose utilization (CMRglc ) compared with oxygen consumption (CMRO2 ) during brain activation, is blocked by propranolol. Epinephrine release from the adrenal gland stimulates vagus nerve signaling to the locus coeruleus, enhancing norepinephrine release in the brain, and regulation of astrocytic and neuronal metabolism to stimulate CMRglc more than CMRO2 . Propranolol suppresses CMRglc more than CMRO2 . © 2016 International Society for Neurochemistry.
Marin-Valencia, Isaac; Hooshyar, M Ali; Pichumani, Kumar; Sherry, A Dean; Malloy, Craig R
2015-01-01
The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate. © 2014 International Society for Neurochemistry.
Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.
Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława
2016-02-01
Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Brain glucose metabolism in an animal model of depression.
Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B
2015-06-04
An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to all experimental conditions, i.e., prenatal stress, acute stress, and glucose administration. Our data indicate that glycolysis is increased and the Krebs cycle is decreased in the brain of a prenatal stress animal model of depression. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis*
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L. Felipe; Inestrosa, Nibaldo C.
2016-01-01
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. PMID:27703002
Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis.
Cisternas, Pedro; Salazar, Paulina; Silva-Álvarez, Carmen; Barros, L Felipe; Inestrosa, Nibaldo C
2016-12-09
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Gagnon, Christine; Desjardins-Crépeau, Laurence; Tournier, Isabelle; Desjardins, Michèle; Lesage, Frédéric; Greenwood, Carol E; Bherer, Louis
2012-06-15
Glucose enhancing effects in older adults have mostly been observed for episodic memory, but have recently been found for attentional control performance. Yet, brain activation patterns underlying these effects are still unknown. The present study examined the acute effects of glucose ingestion on prefrontal brain activation during the execution of a divided attention task in fasting non-diabetic older adults. Twenty older adults (60 years and older) took part in the study that included two experimental sessions. After an overnight fast, participants received either a glucose drink (50 g) or a placebo (saccharin) drink, following which they completed a dual-task. During task execution, prefrontal activation was recorded with functional near-infrared spectroscopy (fNIRS). A repeated-measures design was used such that each participant served as his or her own control. The two experimental sessions were counterbalanced among participants and were performed two weeks apart. When participants were in the glucose condition, they showed similar dual-task costs for both tasks, whereas in the placebo condition they prioritized one task over the other, with a significantly larger dual-task cost for the non-prioritized task (p<0.01). Differential brain activation was also observed in right ventral-lateral prefrontal regions for oxygenated hemoglobin and deoxygenated hemoglobin, with more activation apparent in the glucose condition (p<0.05). Furthermore, behavioral and activation data were influenced by individual differences in glucose regulation. Glucose ingestion appears to momentarily enhance fasting seniors' capacity to coordinate more equally two concurrent tasks and this is reflected in brain activation patterns. Copyright © 2012 Elsevier B.V. All rights reserved.
Owen, Lauren; Scholey, Andrew B; Finnegan, Yvonne; Hu, Henglong; Sünram-Lea, Sandra I
2012-04-01
Previous research has identified a number of factors that appear to moderate the behavioural response to glucose administration. These include physiological state, dose, types of cognitive tasks used and level of cognitive demand. Another potential moderating factor is the length of the fasting interval prior to a glucose load. Therefore, we aimed to examine the effect of glucose dose and fasting interval on mood and cognitive function. The current study utilised a double-blind, placebo-controlled, balanced, six period crossover design to examine potential interactions between length of fasting interval (2 versus 12 hours) and optimal dose for cognition enhancement. Results demonstrated that the higher dose (60 g) increased working memory performance following an overnight fast, whereas the lower dose (25 g) enhanced working memory performance following a 2-h fast. The data suggest that optimal glucose dosage may differ under different conditions of depleted blood glucose resources. In addition, glucoregulation was observed to be a moderating factor. However, further research is needed to develop a model of the moderating and mediating factors under which glucose facilitation is best achieved.
Increased densities of monocarboxylate transporter MCT1 after chronic hyperglycemia in rat brain.
Canis, Martin; Maurer, Martin H; Kuschinsky, Wolfgang; Duembgen, Lutz; Duelli, Roman
2009-02-27
The brain is capable of taking up monocarboxylates as energy substrates. Under physiological conditions, plasma levels of monocarboxylates are very low and glucose is the primary energy substrate in brain metabolism. However, given conditions such as hyperglycemia and ketosis, levels of circulating monocarboxylates such as lactate and pyruvate are elevated. Previous studies reported an increased expression of monocarboxylate transporter MCT1 in brain following ketotic diet. The major aim of the present study was to answer the question whether chronic hyperglycemia is likewise sufficient to change local densities of MCT1 in the brain. Moreover, chronic hyperglycemia increases local cerebral glucose utilization (LCGU) in particular brain areas. Glucose hereby enters the brain parenchyma via glucose transporters and is partially metabolised by astrocytes, which then release lactate to meet the energetic demands of surrounding neurons. Streptozotocin was given intravenously to induce chronic hyperglycemia and local densities of MCT1 were measured by immunoautoradiographic methods in cryosections of rat brains. The density of monocarboxylate transporter MCT1 was significantly increased in 10 of 24 brain structures investigated (median increase 11.7+/-3.4 %). Immunocytochemical stainings of these substructures revealed an expression of MCT1 within endothelial cells and astrocytes. A comparison of MCT1 densities with LCGU measured in a previous study under normo- and hyperglycemic conditions revealed a partial correlation between both parameters and under both conditions. Four out of 10 brain areas, which showed a significant increase in MCT1 density due to hyperglycemia, also showed a significant increase in LCGU. In summary, our data show that chronic hyperglycemia induces a moderate increase of local and global density of MCT1 in several brain structures. However, in terms of brain topologies and substructures this phenomenon did only partially match with increased LCGU. It is concluded that MCT1 transporters were up-regulated during chronic hyperglycemia at the level of brain substructures and independently of LCGU.
Localization and mobility of glucose-coated gold nanoparticles within the brain.
Gromnicova, Radka; Yilmaz, Canan Ugur; Orhan, Nurcan; Kaya, Mehmet; Davies, Heather; Williams, Phil; Romero, Ignacio A; Sharrack, Basil; Male, David
2016-03-01
To identify the localization of glucose-coated gold nanoparticles within cells of the brain after intravascular infusion which may point to the mechanism by which they cross the blood-brain barrier. Tissue distribution of the nanoparticles was measured by inductively-coupled-mass spectrometry and localization within the brain by histochemistry and electron microscopy. Nanoparticles were identified within neurons and glial cells more than 10 μm from the nearest microvessel within 10 min of intracarotid infusion. Their distribution indicated movement across the endothelial cytosol, and direct transfer between cells of the brain. The rapid movement of this class of nanoparticle (<5 nm) into the brain demonstrates their potential to carry therapeutic biomolecules or imaging reagents.
Wakabayashi, Ken T; Myal, Stephanie E; Kiyatkin, Eugene A
2015-02-01
While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain's excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery because of neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
The selfish brain: competition for energy resources.
Fehm, H L; Kern, W; Peters, A
2006-01-01
Although the brain constitutes only 2% of the body mass, its metabolism accounts for 50% of total body glucose utilization. This delicate situation is aggravated by the fact that the brain depends on glucose as energy substrate. Thus, the contour of a major problem becomes evident: how can the brain maintain constant fluxes of large amounts of glucose to itself in the presence of powerful competitors as fat and muscle tissue. Activity of cortical neurons generates an "energy on demand" signal which eventually mediates the uptake of glucose from brain capillaries. Because energy stores in the circulation (equivalent to ca. 5 g glucose) are also limited, a second signal is required termed "energy on request"; this signal is responsible for the activation of allocation processes. The term "allocation" refers to the activation of the "behavior control column" by an input from the hippocampus-amygdala system. As far as eating behavior is concerned the behavior control column consists of the ventral medial hypothalamus (VMH) and periventricular nucleus (PVN). The PVN represents the central nucleus of the brain's stress systems, the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). Activation of the sympatico-adrenal system inhibits glucose uptake by peripheral tissues by inhibiting insulin release and inducing insulin resistance and increases hepatic glucose production. With an inadequate "energy on request" signal neuroglucopenia would be the consequence. A decrease in brain glucose can activate glucose-sensitive neurons in the lateral hypothalamus (LH) with the release of orexigenic peptides which stimulate food intake. If the energy supply of the brain depends on activation of the LH rather than on increased allocation to the brain, an increase in body weight is evitable. An increase in fat mass will generate feedback signals as leptin and insulin, which activate the arcuate nucleus. Activation of arcuate nucleus in turn will stimulate the activity of the PVN in a way similar to the activation by the hippocampus-amydala system. The activity of PVN is influenced by the hippocampal outflow which in turn is the consequence of a balance of low-affinity and high-affinity glucocorticoid receptors. This set-point can permanently be displaced by extreme stress situations, by starvation, exercise, hormones, drugs or by endocrine-disrupting chemicals. Disorders in the "energy on request" process will influence the allocation of energy and in so doing alter the body mass of the organism. In this "selfish brain theory" the neocortex and the limbic system play a central role in the pathogenesis of diseases, such as anorexia nervosa, obesity and diabetes mellitus type II. From these considerations it appears that the primary disturbance in obesity is a displacement of the hippocampal set-point of the system. The resulting permanent activation of the feedback system must result in a likewise permanent activation of the sympatico-adrenal system, which induces insulin resistance, hypertension and the other components of the metabolic syndrome. Available therapies for treatment of the metabolic syndrome (blockade of alpha- and beta-adrenergic receptors, insulin and insulin secretagogues) interfere with mechanisms, which must be considered compensatory. This explains why these therapies are disappointing in the long run. New therapeutic strategies based on the "selfish brain theory" will be discussed.
Burns, Christine M; Kaszniak, Alfred W; Chen, Kewei; Lee, Wendy; Bandy, Daniel J; Caselli, Richard J; Reiman, Eric M
2018-01-01
The association between longitudinal changes in serum glucose level and longitudinal changes in [18F] Fluorodeoxyglucose-PET (FDG PET) measurements of Alzheimer's disease (AD) risk are unknown. To investigate whether variation in serum glucose levels across time are associated with changes in FDG PET measurements of cerebral metabolic rate for glucose (rCMRgl) in brain regions preferentially affected by Alzheimer's disease (AD). Participants are a subset of a prospective cohort study investigating FDG PET, apolipoprotein E (APOE) ɛ4, and risk for AD which includes data from baseline, interim, and follow up visits over 4.4±1.0-years. An automated brain-mapping algorithm was utilized to characterize and compare associations between longitudinal changes in serum glucose levels and longitudinal changes in rCMRgl. This study included 80 adults aged 61.5±5 years, including 38 carriers and 42 non-carriers of the APOE ɛ4 allele. Longitudinal increases in serum glucose levels were associated with longitudinal CMRgl decline in the vicinity of parietotemporal, precuneus/posterior cingulate, and prefrontal brain regions preferentially affected by AD (p < 0.05, corrected for multiple comparisons). Findings remained significant when controlled for APOE ɛ4 status and baseline and advancing age. Additional studies are needed to clarify and confirm the relationship between longitudinal changes in peripheral glucose and FDG PET measurements of AD risk. Future findings will set the stage on the use of FDG PET in the evaluation of possible interventions that target risk factors for the development of AD.
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism
Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher
2011-01-01
Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). Conclusions In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance. PMID:21343580
Acute effect of glucose on cerebral blood flow, blood oxygenation, and oxidative metabolism.
Xu, Feng; Liu, Peiying; Pascual, Juan M; Xiao, Guanghua; Huang, Hao; Lu, Hanzhang
2015-02-01
While it is known that specific nuclei of the brain, for example hypothalamus, contain glucose-sensing neurons thus their activity is affected by blood glucose level, the effect of glucose modulation on whole-brain metabolism is not completely understood. Several recent reports have elucidated the long-term impact of caloric restriction on the brain, showing that animals under caloric restriction had enhanced rate of tricarboxylic acid cycle (TCA) cycle flux accompanied by extended life span. However, acute effect of postprandial blood glucose increase has not been addressed in detail, partly due to a scarcity and complexity of measurement techniques. In this study, using a recently developed noninvasive MR technique, we measured dynamic changes in global cerebral metabolic rate of O2 (CMRO2 ) following a 50 g glucose ingestion (N = 10). A time dependent decrease in CMRO2 was observed, which was accompanied by a reduction in oxygen extraction fraction (OEF) with unaltered cerebral blood flow (CBF). At 40 min post-ingestion, the amount of CMRO2 reduction was 7.8 ± 1.6%. A control study without glucose ingestion was performed (N = 10), which revealed no changes in CMRO2 , CBF, or OEF, suggesting that the observations in the glucose study was not due to subject drowsiness or fatigue after staying inside the scanner. These findings suggest that ingestion of glucose may alter the rate of cerebral metabolism of oxygen in an acute setting. © 2014 Wiley Periodicals, Inc.
Mapping glucose-mediated gut-to-brain signalling pathways in humans☆
Little, Tanya J.; McKie, Shane; Jones, Richard B.; D'Amato, Massimo; Smith, Craig; Kiss, Orsolya; Thompson, David G.; McLaughlin, John T.
2014-01-01
Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. PMID:24685436
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samson, F.; Nelson, S.
The research aim was to determine the effects of soman, related organophosphate toxins and potential antidotes on brain regional functions in rats: The (/sup 14/C)-2-deoxyglucose procedure (2-DG) was used for mapping brain regional glucose use. Quantitative autoradiography was used for muscarinic and nicotinic cholinergic receptors. The 2-DG procedure gives a quantitative measure of glucose utilization in brain regions and is in index of the 'functional activity' in brain regions and systems. Values were determined in controls, rats with soman induced seizures, seizures induced by convulsants (DFP, strychnine, picrotoxin, pentylenetetrazol, penicillin) and soman pretreated with TAB. Brain regional cholinergic receptor mapsmore » were prepared and some regional muscarinic and nicotinic receptor densities have been quantified. Soman (112 micrograms/kg i.m.) causes strong, continuous seizures and a dramatic (2-6 fold) increase in the rate of glucose use in 10 major brain regions. Most intense increases were in septum, substants nigra reticularis and outer layer of hippcampal dendata gyrus. The overt seizures of rats induced by convulsants DFP, strychnine, picrotoxin, pentylenetetrazol and penicillin (in hippocampus) were strikingly different from that of rats with soman seizures. High doses (2X LD50) of soman in rats protected with TAB caused a 50% depression of glucose use in most brain regions. The effects of repeated soman exposure on muscarinic and nicotinic receptors are under study.« less
Solis, Ernesto; Cameron-Burr, Keaton T; Shaham, Yavin; Kiyatkin, Eugene A
2017-01-01
Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100-200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO 2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity.
Deuchar, Graeme A; Brennan, David; Holmes, William M; Shaw, Martin; Macrae, I Mhairi; Santosh, Celestine
2018-01-01
The ability to identify metabolically active and potentially salvageable ischaemic penumbra is crucial for improving treatment decisions in acute stroke patients. Our solution involves two complementary novel MRI techniques (Glasgow Oxygen Level Dependant (GOLD) Metabolic Imaging), which when combined with a perfluorocarbon (PFC) based oxygen carrier and hyperoxia can identify penumbra due to dynamic changes related to continued metabolism within this tissue compartment. Our aims were (i) to investigate whether PFC offers similar enhancement of the second technique (Lactate Change) as previously demonstrated for the T2*OC technique (ii) to demonstrate both GOLD metabolic imaging techniques working concurrently to identify penumbra, following administration of Oxycyte® (O-PFC) with hyperoxia. Methods: An established rat stroke model was utilised. Part-1: Following either saline or PFC, magnetic resonance spectroscopy was applied to investigate the effect of hyperoxia on lactate change in presumed penumbra. Part-2; rats received O-PFC prior to T2*OC (technique 1) and MR spectroscopic imaging, which was used to identify regions of tissue lactate change (technique 2) in response to hyperoxia. In order to validate the techniques, imaging was followed by [14C]2-deoxyglucose autoradiography to correlate tissue metabolic status to areas identified as penumbra. Results: Part-1: PFC+hyperoxia resulted in an enhanced reduction of lactate in the penumbra when compared to saline+hyperoxia. Part-2: Regions of brain tissue identified as potential penumbra by both GOLD metabolic imaging techniques utilising O-PFC, demonstrated maintained glucose metabolism as compared to adjacent core tissue. Conclusion: For the first time in vivo, enhancement of both GOLD metabolic imaging techniques has been demonstrated following intravenous O-PFC+hyperoxia to identify ischaemic penumbra. We have also presented preliminary evidence of the potential therapeutic benefit offered by O-PFC. These unique theranostic applications would enable treatment based on metabolic status of the brain tissue, independent of time from stroke onset, leading to increased uptake and safer use of currently available treatment options. PMID:29556351
Glucose modulates food-related salience coding of midbrain neurons in humans.
Ulrich, Martin; Endres, Felix; Kölle, Markus; Adolph, Oliver; Widenhorn-Müller, Katharina; Grön, Georg
2016-12-01
Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Simões, R V; Delgado-Goñi, T; Lope-Piedrafita, S; Arús, C
2010-01-01
MR spectroscopic Imaging (MRSI), with PRESS localization, is used here to monitor the effects of acute hyperglycemia in the spectral pattern of 11 mice bearing GL261 gliomas at normothermia (36.5-37.5 degrees C) and at hypothermia (28.5-29.5 degrees C). These in vivo studies were complemented by ex vivo high resolution magic angle spinning (HR-MAS) analysis of GL261 tumor samples from 6 animals sacrificed by focused microwave irradiation, and blood glucose measurements in 12 control mice. Apparent glucose levels, monitored by in vivo MRSI in brain tumors during acute hyperglycemia, rose to an average of 1.6-fold during hypothermia (p < 0.05), while no significant changes were detected at normothermia, or in control experiments performed at euglycemia, or in normal/peritumoral brain regions. Ex vivo analysis of glioma-bearing mouse brains at hypothermia revealed higher glucose increases in distinct regions during the acute hyperglycemic challenge (up to 6.6-fold at the tumor center), in agreement with maximal in vivo blood glucose changes (5-fold). Phantom studies on taurine plus glucose containing solutions explained the differences between in vivo and ex vivo measurements. Our results also indicate brain tumor heterogeneity in the four animal tumors investigated in response to a defined metabolic challenge.
Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L
2014-04-16
We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.
Castellano, Christian-Alexandre; Baillargeon, Jean-Patrice; Nugent, Scott; Tremblay, Sébastien; Fortier, Mélanie; Imbeault, Hélène; Duval, Julie; Cunnane, Stephen C.
2015-01-01
Objective To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Materials and methods Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with insulin resistance assessed using the updated homeostasis model assessment (HOMA2-IR). A battery of cognitive tests was administered to evaluate working memory, attention and executive function. Results The PCOS group had 10% higher fasting glucose and 40% higher HOMA2-IR (p ≤ 0.035) compared to the Controls. The PCOS group had 9–14% lower CMRglu in specific regions of the frontal, parietal and temporal cortices (p ≤ 0.018). A significant negative relation was found between the CMRglu and HOMA2-IR mainly in the frontal, parietal and temporal cortices as well as in the hippocampus and the amygdala (p ≤ 0.05). Globally, cognitive performance was normal in both groups but scores on the PASAT test of working memory tended to be low in the PCOS group. Conclusions The PCOS group exhibited a pattern of low regional CMRglu that correlated inversely with HOMA2-IR in several brain regions and which resembled the pattern seen in aging and early Alzheimer’s disease. These results suggest that a direct association between mild insulin resistance and brain glucose hypometabolism independent of overweight or obesity can exist in young adults in their 20s. Further investigation of the influence of insulin resistance on brain glucose metabolism and cognition in younger and middle-aged adults is warranted. PMID:26650926
Castellano, Christian-Alexandre; Baillargeon, Jean-Patrice; Nugent, Scott; Tremblay, Sébastien; Fortier, Mélanie; Imbeault, Hélène; Duval, Julie; Cunnane, Stephen C
2015-01-01
To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with insulin resistance assessed using the updated homeostasis model assessment (HOMA2-IR). A battery of cognitive tests was administered to evaluate working memory, attention and executive function. The PCOS group had 10% higher fasting glucose and 40% higher HOMA2-IR (p ≤ 0.035) compared to the Controls. The PCOS group had 9-14% lower CMRglu in specific regions of the frontal, parietal and temporal cortices (p ≤ 0.018). A significant negative relation was found between the CMRglu and HOMA2-IR mainly in the frontal, parietal and temporal cortices as well as in the hippocampus and the amygdala (p ≤ 0.05). Globally, cognitive performance was normal in both groups but scores on the PASAT test of working memory tended to be low in the PCOS group. The PCOS group exhibited a pattern of low regional CMRglu that correlated inversely with HOMA2-IR in several brain regions and which resembled the pattern seen in aging and early Alzheimer's disease. These results suggest that a direct association between mild insulin resistance and brain glucose hypometabolism independent of overweight or obesity can exist in young adults in their 20s. Further investigation of the influence of insulin resistance on brain glucose metabolism and cognition in younger and middle-aged adults is warranted.
Oxidation of [U-13 C]glucose in the human brain at 7T under steady state conditions.
Cheshkov, Sergey; Dimitrov, Ivan E; Jakkamsetti, Vikram; Good, Levi; Kelly, Dorothy; Rajasekaran, Karthik; DeBerardinis, Ralph J; Pascual, Juan M; Sherry, A Dean; Malloy, Craig R
2017-12-01
Disorders of brain energy metabolism and neurotransmitter recycling have been implicated in multiple neurological conditions. 13 C magnetic resonance spectroscopy ( 13 C MRS) during intravenous administration of 13 C-labeled compounds has been used to measure turnover rates of brain metabolites. This approach, however, requires prolonged infusion inside the magnet. Proton decoupling is typically required but may be difficult to implement with standard equipment. We examined an alternative approach to monitor glucose metabolism in the human brain. 13 C-enriched glucose was infused in healthy subjects outside the magnet to a steady-state level of 13 C enrichment. Subsequently, the subjects were scanned at 7T for 60 min without 1 H decoupling. Metabolic modeling was used to calculate anaplerosis. Biomarkers of energy metabolism and anaplerosis were detected. The glutamate C5 doublet provided information about glucose-derived acetyl-coenzyme A flux into the tricarboxylic acid (TCA) cycle via pyruvate dehydrogenase, and the bicarbonate signal reflected overall TCA cycle activity. The glutamate C1/C5 ratio is sensitive to anaplerosis. Brain 13 C MRS at 7T provides information about glucose oxidation and anaplerosis without the need of prolonged 13 C infusions inside the scanner and without technical challenges of 1 H decoupling, making it a feasible approach for clinical research. Magn Reson Med 78:2065-2071, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Studies on the effects of aspartame on memory and oxidative stress in brain of mice.
Abdel-Salam, O M E; Salem, N A; El-Shamarka, M E S; Hussein, J S; Ahmed, N A S; El-Nagar, M E S
2012-12-01
The dipeptide aspartame (N-L-alpha-aspartyl-Lphenylalanine, 1-methyl ester; alpha-APM) is one of the most widely used artificial sweeteners. The present study aimed to investigate the effect of repeated administration of aspartame in the working memory version of Morris water maze test, on oxidative stress and brain monoamines in brain of mice. Aspartame (0.625, 1.875 or 5.625 mg/kg) was administered once daily subcutaneously for 2 weeks and mice were examined four times a week for their ability to locate a submerged plate. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide levels (the concentrations of nitrite/nitrate) and glucose were determined in brain. Only at the highest dose of 5.625 mg/kg, did aspartame significantly impaired water maze performance. The mean time taken to find the escape platform (latency) over 2 weeks was significantly delayed by aspartame 5.625 mg/kg, compared with the saline-treated control group. Significant differences occurred only on the first trial to find the escape platform. Significant increase in brain MDA by 16.5% and nitric oxide by 16.2% and a decrease in GSH by 25.1% and glucose by 22.5% occurred after treatment with aspartame at 1.875 mg/kg. Aspartame administered at 5.625 mg/kg significantly increased brain MDA by 43.8%, nitric oxide by 18.6% and decreased GSH by 32.7% and glucose by 25.8%. Aspartame caused dose-dependent inhibition of brain serotonin, noradrenaline and dopamine. These findings suggest impaired memory performance and increased brain oxidative stress by repeated aspartame administration. The impaired memory performance is likely to involve increased oxidative stress as well as decreased brain glucose availability.
GLUT3 gene expression is critical for embryonic growth, brain development and survival.
Carayannopoulos, Mary O; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U
2014-04-01
Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. Copyright © 2014 Elsevier Inc. All rights reserved.
GLUT3 Gene Expression is Critical for Embryonic Growth, Brain Development and Survival
Carayannopoulos, Mary O.; Xiong, Fuxia; Jensen, Penny; Rios-Galdamez, Yesenia; Huang, Haigen; Lin, Shuo; Devaskar, Sherin U.
2015-01-01
Glucose is the primary energy source for eukaryotic cells and the predominant substrate for the brain. GLUT3 is essential for trans-placental glucose transport and highly expressed in the mammalian brain. To further elucidate the role of GLUT3 in embryonic development, we utilized the vertebrate whole animal model system of Danio rerio as a tractable system for defining the cellular and molecular mechanisms altered by impaired glucose transport and metabolism related to perturbed expression of GLUT3. The comparable orthologue of human GLUT3 was identified and the expression of this gene abrogated during early embryonic development. In a dose-dependent manner embryonic brain development was disrupted resulting in a phenotype of aberrant brain organogenesis, associated with embryonic growth restriction and increased cellular apoptosis. Rescue of the morphant phenotype was achieved by providing exogenous GLUT3 mRNA. We conclude that GLUT3 is critically important for brain organogenesis and embryonic growth. Disruption of GLUT3 is responsible for the phenotypic spectrum of embryonic growth restriction to demise and neural apoptosis with microcephaly. PMID:24529979
Nguyen, Hieu M; Mejia, Edgard M; Chang, Wenguang; Wang, Ying; Watson, Emily; On, Ngoc; Miller, Donald W; Hatch, Grant M
2016-10-01
Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. Cardiolipin is a mitochondrial phospholipid required for function of the electron transport chain and ATP generation. We examined the role of cardiolipin in maintaining mitochondrial function necessary to support barrier properties of brain microvessel endothelial cells. Knockdown of the terminal enzyme of cardiolipin synthesis, cardiolipin synthase, in hCMEC/D3 cells resulted in decreased cellular cardiolipin levels compared to controls. The reduction in cardiolipin resulted in decreased mitochondrial spare respiratory capacity, increased pyruvate kinase activity, and increased 2-deoxy-[(3) H]glucose uptake and glucose transporter-1 expression and localization to membranes in hCMEC/D3 cells compared to controls. The mechanism for the increase in glucose uptake was an increase in adenosine-5'-monophosphate kinase and protein kinase B activity and decreased glycogen synthase kinase 3 beta activity. Knockdown of cardiolipin synthase did not affect permeability of fluorescent dextran across confluent hCMEC/D3 monolayers grown on Transwell(®) inserts. In contrast, knockdown of cardiolipin synthase resulted in an increase in 2-deoxy-[(3) H]glucose transport across these monolayers compared to controls. The data indicate that in hCMEC/D3 cells, spare respiratory capacity is dependent on cardiolipin. In addition, reduction in cardiolipin in these cells alters their cellular energy status and this results in increased glucose transport into and across hCMEC/D3 monolayers. Microvessel endothelial cells form part of the blood-brain barrier, a restrictively permeable interface that allows transport of only specific compounds into the brain. In human adult brain endothelial cell hCMEC/D3 monolayers cultured on Transwell(®) plates, knockdown of cardiolipin synthase results in decrease in mitochondrial cardiolipin and decreased mitochondrial spare respiratory capacity. The reduced cardiolipin results in an increased activity of adenosine monophosphate kinase (pAMPK) and protein kinase B (pAKT) and decreased activity of glycogen synthase kinase 3 beta (pGSK3β) which results in elevated glucose transporter-1 (GLUT-1) expression and association with membranes. This in turn increases 2-dexoyglucose uptake from the apical medium into the cells with a resultant 2-deoxyglucose movement into the basolateral medium. © 2016 International Society for Neurochemistry.
Glucokinase activity in the arcuate nucleus regulates glucose intake
Hussain, Syed; Richardson, Errol; Ma, Yue; Holton, Christopher; De Backer, Ivan; Buckley, Niki; Dhillo, Waljit; Bewick, Gavin; Zhang, Shuai; Carling, David; Bloom, Steve; Gardiner, James
2014-01-01
The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the “sweet tooth” and carbohydrate craving. PMID:25485685
Otero-Rodiño, Cristina; Librán-Pérez, Marta; Velasco, Cristina; Álvarez-Otero, Rosa; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L
2015-12-01
There is no evidence in fish brain demonstrating the existence of changes in lactate metabolism in response to alterations in glucose levels. We induced in rainbow trout through intraperitoneal (IP) treatments, hypoglycaemic or hyperglycaemic changes to assess the response of parameters involved in lactate metabolism in glucosensing areas like hypothalamus and hindbrain. To distinguish those effects from those induced by peripheral changes in the levels of metabolites or hormones, we also carried out intracerebroventricular (ICV) treatments with 2-deoxy-D-glucose (2-DG, a non-metabolizable glucose analogue thus inducing local glucopenia) or glucose. Finally, we also incubated hypothalamus and hindbrain in vitro in the presence of increased glucose concentrations. The changes in glucose availability were in general correlated to changes in the amount of lactate in both areas. However, when we assessed in these areas the response of parameters related to lactate metabolism, the results obtained were contradictory. The increase in glucose levels did not produce in general the expected changes in those pathways with only a minor increase in their capacity of lactate production. The decrease in glucose levels was, however, more clearly related to a decreased capacity of the pathways involved in the production and use of lactate, and this was especially evident after ICV treatment with 2-DG in both areas. In conclusion, the present results while addressing the existence of changes in lactate metabolism after inducing changes in glucose levels in brain glucosensing areas only partially support the possible existence of an astrocyte-neuron lactate shuttle in hypothalamus and hindbrain of rainbow trout relating glucose availability to lactate production and use.
T1ρ-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain.
Paech, Daniel; Schuenke, Patrick; Koehler, Christina; Windschuh, Johannes; Mundiyanapurath, Sibu; Bickelhaupt, Sebastian; Bonekamp, David; Bäumer, Philipp; Bachert, Peter; Ladd, Mark E; Bendszus, Martin; Wick, Wolfgang; Unterberg, Andreas; Schlemmer, Heinz-Peter; Zaiss, Moritz; Radbruch, Alexander
2017-12-01
Purpose To evaluate the ability to detect intracerebral regions of increased glucose concentration at T1ρ-weighted dynamic glucose-enhanced (DGE) magnetic resonance (MR) imaging at 7.0 T. Materials and Methods This prospective study was approved by the institutional review board. Nine patients with newly diagnosed glioblastoma and four healthy volunteers were included in this study from October 2015 to July 2016. Adiabatically prepared chemical exchange-sensitive spin-lock imaging was performed with a 7.0-T whole-body unit with a temporal resolution of approximately 7 seconds, yielding the time-resolved DGE contrast. T1ρ-weighted DGE MR imaging was performed with injection of 100 mL of 20% d-glucose via the cubital vein. Glucose enhancement, given by the relative signal intensity change at T1ρ-weighted MR imaging (DGEρ), was quantitatively investigated in brain gray matter versus white matter of healthy volunteers and in tumor tissue versus normal-appearing white matter of patients with glioblastoma. The median signal intensities of the assessed brain regions were compared by using the Wilcoxon rank-sum test. Results In healthy volunteers, the median signal intensity in basal ganglia gray matter (DGEρ = 4.59%) was significantly increased compared with that in white matter tissue (DGEρ = 0.65%) (P = .028). In patients, the median signal intensity in the glucose-enhanced tumor region as displayed on T1ρ-weighted DGE images (DGEρ = 2.02%) was significantly higher than that in contralateral normal-appearing white matter (DGEρ = 0.08%) (P < .0001). Conclusion T1ρ-weighted DGE MR imaging in healthy volunteers and patients with newly diagnosed, untreated glioblastoma enabled visualization of brain glucose physiology and pathophysiologically increased glucose uptake and may have the potential to provide information about glucose metabolism in tumor tissue. © RSNA, 2017 Online supplemental material is available for this article.
Fluoride Alteration of [3H]Glucose Uptake in Wistar Rat Brain and Peripheral Tissues.
Rogalska, Anna; Kuter, Katarzyna; Żelazko, Aleksandra; Głogowska-Gruszka, Anna; Świętochowska, Elżbieta; Nowak, Przemysław
2017-04-01
The present study was designed to investigate the role of postnatal fluoride intake on [3H]glucose uptake and transport in rat brain and peripheral tissues. Sodium fluoride (NaF) in a concentration of 10 or 50 ppm was added to the drinking water of adult Wistar rats. The control group received distilled water. After 4 weeks, respective plasma fluoride levels were 0.0541 ± 0.0135 μg/ml (control), 0.0596 ± 0.0202 μg/ml (10 ppm), and 0.0823 ± 0.0199 μg/ml (50 ppm). Although plasma glucose levels were not altered in any group, the plasma insulin level in the fluoride (50 ppm) group was elevated (0.72 ± 0.13 μg/ml) versus the control group (0.48 ± 0.24 μg/ml) and fluoride (10 ppm) group. In rats receiving fluoride for 4 weeks at 10 ppm in drinking water, [3H]glucose uptake was unaltered in all tested parts of the brain. However, in rats receiving fluoride at 50 ppm, [3H]glucose uptake in cerebral cortex, hippocampus, and thalamus with hypothalamus was elevated, versus the saline group. Fluoride intake had a negligible effect on [3H]glucose uptake by peripheral tissues (liver, pancreas, stomach, small intestine, atrium, aorta, kidney, visceral tissue, lung, skin, oral mucosa, tongue, salivary gland, incisor, molars, and jawbone). In neither fluoride group was glucose transporter proteins 1 (GLUT 1) or 3 (GLUT 3) altered in frontal cortex and striatum versus control. On the assumption that increased glucose uptake (by neural tissue) reasonably reflects neuronal activity, it appears that fluoride damage to the brain results in a compensatory increase in glucose uptake and utilization without changes in GLUT 1 and GLUT 3 expression.
Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.
Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing
2018-03-12
Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.
Production of gluconic acid using Micrococcus sp.: optimisation of carbon and nitrogen sources.
Joshi, V D; Sreekantiah, K R; Manjrekar, S P
1996-01-01
A process for production of gluconic acid from glucose by a Micrococcus sp. is described. More than 400 bacterial cultures isolated from local soil were tested for gluconic acid production. Three isolates, were selected on basis of their ability to produce gluconic acid and high titrable acidity. These were identified as Micrococcus sp. and were named M 27, M 54 and M 81. Nutritional and other parameters for maximum production of gluconic acid by the selected isolates were optimised. It was found that Micrococcus sp. isolate M 27 gave highest yield of 8.19 g gluconic acid from 9 g glucose utilised giving 91% conversion effeciency.
Vaquero, Jesús; Zurita, Mercedes; Bonilla, Celia; Fernández, Cecilia; Rubio, Juan J; Mucientes, Jorge; Rodriguez, Begoña; Blanco, Edelio; Donis, Luis
2017-01-01
Cell therapy in neurological disability after traumatic brain injury (TBI) is in its initial clinical stage. We describe our preliminary clinical experience with three patients with diffuse axonal injury (DAI) who were treated with intrathecal administration of autologous mesenchymal stromal cells (MSCs). Three patients with established neurological sequelae due to DAI received intrathecally autologous MSCs. The total number of MSCs administered was 60 × 10 6 (one patient), 100 × 10 6 (one patient) and 300 × 10 6 (one patient). All three patients showed improvement after cell therapy, and subsequent studies with 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) showed a diffuse and progressive increase in brain glucose metabolism. Our present results suggest benefit of intrathecal administration of MSCs in patients with DAI, as well as a relationship between this type of treatment and increase in brain glucose metabolism. These preliminary findings raise the question of convenience of assessing the potential benefit of intrathecal administration of MSCs for brain diseases in which a decrease in glucose metabolism represents a crucial pathophysiological finding, such as Alzheimer's disease (AD) and other dementias. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Rothman, Douglas L; Nordström, Carl-Henrik
2016-01-01
Cerebral microdialysis is a widely used clinical tool for monitoring extracellular concentrations of selected metabolites after brain injury and to guide neurocritical care. Extracellular glucose levels and lactate/pyruvate ratios have high diagnostic value because they can detect hypoglycemia and deficits in oxidative metabolism, respectively. In addition, patterns of metabolite concentrations can distinguish between ischemia and mitochondrial dysfunction, and are helpful to choose and evaluate therapy. Increased intracranial pressure can be life-threatening after brain injury, and hypertonic solutions are commonly used for pressure reduction. Recent reports have advocated use of hypertonic sodium lactate, based on claims that it is glucose sparing and provides an oxidative fuel for injured brain. However, changes in extracellular concentrations in microdialysate are not evidence that a rise in extracellular glucose level is beneficial or that lactate is metabolized and improves neuroenergetics. The increase in glucose concentration may reflect inhibition of glycolysis, glycogenolysis, and pentose phosphate shunt pathway fluxes by lactate flooding in patients with mitochondrial dysfunction. In such cases, lactate will not be metabolizable and lactate flooding may be harmful. More rigorous approaches are required to evaluate metabolic and physiological effects of administration of hypertonic sodium lactate to brain-injured patients. PMID:27604313
Czech-Damal, N U; Geiseler, S J; Hoff, M L M; Schliep, R; Ramirez, J-M; Folkow, L P; Burmester, T
2014-09-05
The brains of diving mammals are repeatedly exposed to hypoxic conditions during diving. Brain neurons of the hooded seal (Cystophora cristata) have been shown to be more hypoxia tolerant than those of mice, but the underlying mechanisms are not clear. Here we investigated the roles of different metabolic substrates for maintenance of neuronal activity and integrity, by comparing the in vitro spontaneous neuronal activity of brain slices from layer V of the visual cortex of hooded seals with those in mice (Mus musculus). Studies were conducted by manipulating the composition of the artificial cerebrospinal fluid (aCSF), containing either 10 mM glucose, or 20 mM lactate, or no external carbohydrate supply (aglycemia). Normoxic, hypoxic and ischemic conditions were applied. The lack of glucose or the application of lactate in the aCSF containing no glucose had little effect on the neuronal activity of seal neurons in either normoxia or hypoxia, while neurons from mice survived in hypoxia only few minutes regardless of the composition of the aCSF. We propose that seal neurons have higher intrinsic energy stores. Indeed, we found about three times higher glycogen stores in the seal brain (∼4.1 ng per μg total protein in the seal cerebrum) than in the mouse brain. Notably, in aCSF containing no glucose, seal neurons can tolerate 20 mM lactate while in mouse neuronal activity vanished after few minutes even in normoxia. This can be considered as an adaptation to long dives, during which lactate accumulates in the blood. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Li, Wei-Ling; Fu, Chang; Xuan, Ang; Shi, Da-Peng; Gao, Yong-Ju; Zhang, Jie; Xu, Jun-Ling
2015-02-05
Cerebral glucose metabolism changes are always observed in patients suffering from malignant tumors. This preliminary study aimed to investigate the brain glucose metabolism changes in patients with lung cancer of different histological types. One hundred and twenty patients with primary untreated lung cancer, who visited People's Hospital of Zhengzhou University from February 2012 to July 2013, were divided into three groups based on histological types confirmed by biopsy or surgical pathology, which included adenocarcinoma (52 cases), squamous cell carcinoma (43 cases), and small-cell carcinoma (25 cases). The whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) of these cases was retrospectively studied. The brain PET data of three groups were analyzed individually using statistical parametric maps (SPM) software, with 50 age-matched and gender-matched healthy controls for comparison. The brain resting glucose metabolism in all three lung cancer groups showed regional cerebral metabolic reduction. The hypo-metabolic cerebral regions were mainly distributed at the left superior and middle frontal, bilateral superior and middle temporal and inferior and middle temporal gyrus. Besides, the hypo-metabolic regions were also found in the right inferior parietal lobule and hippocampus in the small-cell carcinoma group. The area of the total hypo-metabolic cerebral regions in the small-cell carcinoma group (total voxel value 3255) was larger than those in the adenocarcinoma group (total voxel value 1217) and squamous cell carcinoma group (total voxel value 1292). The brain resting glucose metabolism in patients with lung cancer shows regional cerebral metabolic reduction and the brain hypo-metabolic changes are related to the histological types of lung cancer.
Astrocytes and energy metabolism.
Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko
2011-05-01
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.
Ochoa, Melissa; Malbert, Charles-Henri; Meurice, Paul; Val-Laillet, David
2016-01-01
Excessive sugar intake might increase the risk to develop eating disorders via an altered reward circuitry, but it remains unknown whether different sugar sources induce different neural effects and whether these effects are dependent from body weight. Therefore, we compared the effects of three high-fat and isocaloric diets varying only in their carbohydrate sources on brain activity of reward-related regions, and assessed whether brain activity is dependent on insulin sensitivity. Twenty-four minipigs underwent 18FDG PET brain imaging following 7-month intake of high-fat diets of which 20% in dry matter weight (36.3% of metabolisable energy) was provided by starch, glucose or fructose (n = 8 per diet). Animals were then subjected to a euglycemic hyperinsulinemic clamp to determine peripheral insulin sensitivity. After a 7-month diet treatment, all groups had substantial increases in body weight (from 36.02±0.85 to 63.33±0.81 kg; P<0.0001), regardless of the diet. All groups presented similar insulin sensitivity index (ISI = 1.39±0.10 mL·min-1·μUI·kg). Compared to starch, chronic exposure to fructose and glucose induced bilateral brain activations, i.e. increased basal cerebral glucose metabolism, in several reward-related brain regions including the anterior and dorsolateral prefrontal cortex, the orbitofrontal cortex, the anterior cingulate cortex, the caudate and putamen. The lack of differences in insulin sensitivity index and body weight suggests that the observed differences in basal brain glucose metabolism are not related to differences in peripheral insulin sensitivity and weight gain. The differences in basal brain metabolism in reward-related brain areas suggest the onset of cerebral functional alterations induced by chronic consumption of dietary sugars. Further studies should explore the underlying mechanisms, such as the availability of intestinal and brain sugar transporter, or the appearance of addictive-like behavioral correlates of these brain functional characteristics.
Brain glucose sensing in homeostatic and hedonic regulation.
Steinbusch, Laura; Labouèbe, Gwenaël; Thorens, Bernard
2015-09-01
Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Importance of the gut-brain axis in the control of glucose homeostasis.
Migrenne, Stéphanie; Marsollier, Nicolas; Cruciani-Guglielmacci, Céline; Magnan, Christophe
2006-12-01
Adult mammals finely match glucose production to glucose utilization, thus allowing glycaemia to be maintained in a physiological range of 0.8-1.2mg/dl whatever the energetic status of the mammal (i.e. fed or fasted, rested or exercised). To accomplish this, peripheral signals originating from the gut 'inform' the central nervous system, which in turn is able to monitor the status of both peripheral glucose stores and ongoing fuel availability. Indeed, both secretion and action of hormones regulating endogenous glucose production and utilization are regulated by the autonomic nervous system. These gut signals are either hormonal (e.g. glucagon-like peptide-1, ghrelin and cholecystokinine) or neuronal (e.g. afferent vagus nerve fibres). Recent data, combined with the development of incretin analogues for treatment of diabetes, highlight the importance of the gut-brain axis, especially glucagon-like peptide-1 and ghrelin, in the control of glucose homeostasis.
[Moderate hypoglycemia in the preterm infant: is it relevant?].
Wayenberg, J-L; Pardou, A
2008-02-01
Glucose monitoring and management of hypoglycaemia in preterm infants remain controversial. However, recent animal studies have shown that hypoglycaemia is associated to increased generation of reactive oxygen and nitrogen species, to inhibition of cellular maturation and to apoptosis in brain. Despite potential consequences of hypoglycaemia on brain development in preterm infants, only few studies are available on this topic. Available clinical studies on neurological development of hypoglycaemic preterm infants are not conclusive but suggest detrimental effect of repeated mild hypoglycaemia on brain development. Both experimental and clinical arguments are sufficient to mind to this problem with great awareness. Therefore, routine repeated measurements of blood glucose concentration are necessary and active intervention is proposed if glucose plasma level decreases below 2.5 mmol/l.
Jeon, J Y; Weiss, C B; Steadward, R D; Ryan, E; Burnham, R S; Bell, G; Chilibeck, P; Wheeler, G D
2002-03-01
Longitudinal training. The purpose was to determine the effect of electrical stimulation (ES)-assisted cycling (30 min/day, 3 days/week for 8 weeks) on glucose tolerance and insulin sensitivity in people with spinal cord injury (SCI). The Steadward Centre, Alberta, Canada. Seven participants with motor complete SCI (five males and two females aged 30 to 53 years, injured 3-40 years, C5-T10) underwent 2-h oral glucose tolerance tests (OGTT, n=7) and hyperglycaemic clamp tests (n=3) before and after 8 weeks of training with ES-assisted cycling. Results indicated that subjects' glucose level were significantly lower at 2 h OGTT following 8 weeks of training (122.4+/-10 vs 139.9+/-16, P=0.014). Two-hour hyperglycaemic clamps tests showed improvement in all three people for glucose utilisation and in two of three people for insulin sensitivity. These results suggested that exercise with ES-assisted cycling is beneficial for the prevention and treatment of Type 2 diabetes mellitus in people with SCI. Supported by Alberta Paraplegic Foundation, Therapeutic Alliance.
Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery.
Soop, Mattias; Nygren, Jonas; Thorell, Anders; Weidenhielm, Lars; Lundberg, Mari; Hammarqvist, Folke; Ljungqvist, Olle
2004-08-01
Postoperative metabolism is characterised by insulin resistance and a negative whole-body nitrogen balance. Preoperative carbohydrate treatment reduces insulin resistance in the first day after surgery. We hypothesised that preoperative oral carbohydrate treatment attenuates insulin resistance and improves whole-body nitrogen balance 3 days after surgery. Fourteen patients undergoing total hip replacement were double-blindly randomised to preoperative oral carbohydrate treatment (12.5%, 800 + 400 ml, n = 8) or placebo (n = 6). Glucose kinetics (6,6-D2-glucose), substrate utilisation (indirect calorimetry) and insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) were measured preoperatively and on the third day after surgery. Nitrogen losses were monitored for 3 days after surgery. Values are mean (SEM). Analysis of variance (ANOVA) statistics were used. Endogenous glucose release during insulin infusion increased after surgery in the placebo group. Preoperative carbohydrate treatment, as compared to placebo, significantly attenuated postoperative endogenous glucose release (0.69 (0.07) vs. 1.21 (0.13)mg kg(-1) x min(-1), P < 0.01), while whole-body glucose disposal and nitrogen balance were similar between groups. While insulin resistance in the first day after surgery has previously been characterised by reduced glucose disposal, enhanced endogenous glucose release was the main component of postoperative insulin resistance on the third postoperative day. Preoperative carbohydrate treatment attenuated endogenous glucose release on the third postoperative day. Copyright 2004 Elsevier Ltd.
vanKuyk, Patricia A; Benen, Jaques A E; Wösten, Han A B; Visser, Jaap; de Vries, Ronald P
2012-01-01
AmyR is commonly considered a regulator of starch degradation whose activity is induced by the presence of maltose, the disaccharide building block of starch. In this study, we demonstrate that the role of AmyR extends beyond starch degradation. Enzyme activity assays, genes expression analysis and growth profiling on D-glucose- and D-galactose-containing oligo- and polysaccharides showed that AmyR regulates the expression of some of the Aspergillus niger genes encoding α- and β-glucosidases, α- and β- galactosidases, as well as genes encoding α-amlyases and glucoamylases. In addition, we provide evidence that D-glucose or a metabolic product thereof may be the inducer of the AmyR system in A. niger and not maltose, as is commonly assumed.
Brekke, Eva M F; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula
2012-09-01
The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-(13)C]glucose or [3-(13)C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of (13)C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ~6% of glucose metabolism in cortical neurons and ~4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that (13)C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons.
Effects of treatment for tobacco dependence on resting cerebral glucose metabolism.
Costello, Matthew R; Mandelkern, Mark A; Shoptaw, Stephen; Shulenberger, Stephanie; Baker, Stephanie K; Abrams, Anna L; Xia, Catherine; London, Edythe D; Brody, Arthur L
2010-02-01
While bupropion HCl and practical group counseling (PGC) are commonly used treatments for tobacco dependence, the effects of these treatments on brain function are not well established. For this study, 54 tobacco-dependent cigarette smokers underwent resting (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning before and after 8 weeks of treatment with bupropion HCl, PGC, or pill placebo. Using Statistical Parametric Mapping (SPM 2), changes in cerebral glucose metabolism from before to after treatment were compared between treatment groups and correlations were determined between amount of daily cigarette usage and cerebral glucose metabolism. Compared with placebo, the two active treatments (bupropion HCl and PGC) had reductions in glucose metabolism in the posterior cingulate gyrus. Further analysis suggested that PGC had a greater effect than bupropion HCl on glucose metabolism in this region. We also found positive correlations between daily cigarette use and glucose metabolism in the left occipital gyrus and parietal-temporal junction. There were no significant negative correlations between daily cigarette use and glucose metabolism. Our findings suggest that bupropion HCl and PGC reduce neural activity much as the performance of a goal-oriented task does in the default mode network of the brain, including the posterior cingulate gyrus. Thus, this study supports the theory that active treatments for tobacco dependence move the brain into a more goal-oriented state.
Molecular weights and metabolism of rat brain proteins
Vrba, R.; Cannon, Wendy
1970-01-01
1. Rats were injected with [U-14C]glucose and after various intervals extracts of whole brain proteins (and in some cases proteins from liver, blood and heart) were prepared by high-speed centrifugation of homogenates in 0.9% sodium chloride or 0.5% sodium deoxycholate. 2. The extracts were subjected to gel filtration on columns of Sephadex G-200 equilibrated with 0.9% sodium chloride or 0.5% sodium deoxycholate. 3. Extracts prepared with both solvents displayed on gel filtration a continuous range of proteins of approximate molecular weights ranging from less than 2×104 to more than 8×105. 4. The relative amount of the large proteins (mol.wt.>8×105) was conspicuously higher in brain and liver than in blood. 5. At 15min after the injection of [U-14C]glucose the smaller protein molecules (mol.wt.<2×104) were significantly radioactive, whereas no 14C could be detected in the larger (mol.wt.>2×104) protein molecules. The labelling of all protein samples was similar within 4h after injection of [U-14C]glucose. Fractionation of brain proteins into distinctly different groups by the methods used in the present work yielded protein samples with a specific radioactivity comparable with that of total brain protein. 6. No evidence could be obtained by the methods used in the present and previous work to indicate the presence of a significant amount of `metabolically inert protein' in the brain. 7. It is concluded that: (a) most or all of the brain proteins are in a dynamic state of equilibrium between continuous catabolism and anabolism; (b) the continuous conversion of glucose into protein is an important part of the maintenance of this equilibrium and of the homoeostasis of brain proteins in vivo. PMID:5435499
Cameron-Burr, Keaton T.; Shaham, Yavin
2017-01-01
Heroin use and overdose have increased in recent years as people transition from abusing prescription opiates to using the cheaper street drug. Despite a long history of research, many physiological effects of heroin and their underlying mechanisms remain unknown. Here, we used high-speed amperometry to examine the effects of intravenous heroin on oxygen and glucose levels in the nucleus accumbens (NAc) in freely-moving rats. Heroin within the dose range of human drug use and rat self-administration (100–200 μg/kg) induced a rapid, strong, but transient drop in NAc oxygen that was followed by a slower and more prolonged rise in glucose. Using oxygen recordings in the subcutaneous space, a densely-vascularized site with no metabolic activity, we confirmed that heroin-induced brain hypoxia results from decreased blood oxygen, presumably due to drug-induced respiratory depression. Respiratory depression and the associated rise in CO2 levels appear to drive tonic increases in NAc glucose via local vasodilation. Heroin-induced changes in oxygen and glucose were rapid and preceded the slow and prolonged increase in brain temperature and were independent of enhanced intra-brain heat production, an index of metabolic activation. A very high heroin dose (3.2 mg/kg), corresponding to doses used by experienced drug users in overdose conditions, caused strong and prolonged brain hypoxia and hyperglycemia coupled with robust initial hypothermia that preceded an extended hyperthermic response. Our data suggest heroin-induced respiratory depression as a trigger for brain hypoxia, which leads to hyperglycemia, both of which appear independent of subsequent changes in brain temperature and metabolic neural activity. PMID:28593192
Roberts, Brandon L; Zhu, Mingyan; Zhao, Huan; Dillon, Crystal; Appleyard, Suzanne M
2017-09-01
Glucose is a crucial substrate essential for cell survival and function. Changes in glucose levels impact neuronal activity and glucose deprivation increases feeding. Several brain regions have been shown to respond to glucoprivation, including the nucleus of the solitary tract (NTS) in the brain stem. The NTS is the primary site in the brain that receives visceral afferent information from the gastrointestinal tract. The catecholaminergic (CA) subpopulation within the NTS modulates many homeostatic functions including cardiovascular reflexes, respiration, food intake, arousal, and stress. However, it is not known if they respond to changes in glucose. Here we determined whether NTS-CA neurons respond to changes in glucose concentration and the mechanism involved. We found that decreasing glucose concentrations from 5 mM to 2 mM to 1 mM, significantly decreased action potential firing in a cell-attached preparation, whereas increasing it back to 5 mM increased the firing rate. This effect was dependent on glutamate release from afferent terminals and required presynaptic 5-HT 3 Rs. Decreasing the glucose concentration also decreased both basal and 5-HT 3 R agonist-induced increase in the frequency of spontaneous glutamate inputs onto NTS-CA neurons. Low glucose also blunted 5-HT-induced inward currents in nodose ganglia neurons, which are the cell bodies of vagal afferents. The effect of low glucose in both nodose ganglia cells and in NTS slices was mimicked by the glucokinase inhibitor glucosamine. This study suggests that NTS-CA neurons are glucosensing through a presynaptic mechanism that is dependent on vagal glutamate release, 5-HT 3 R activity, and glucokinase. Copyright © 2017 the American Physiological Society.
Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism
NASA Astrophysics Data System (ADS)
Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano
2005-08-01
The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.
Martínez-Montes, Eduardo
2013-01-01
This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356
Komura, Akifumi; Kawasaki, Tomohiro; Yamada, Yuichi; Uzuyama, Shiho; Asano, Yoshitaka; Shinoda, Jun
2018-06-19
The aim of this study is to investigate glucose uptake on FDG-PET in patients with chronic mental and cognitive symptoms following a single blunt mild traumatic brain injury (TBI) and without visible brain lesions on CT/MRI. Eighty-nine consecutive patients (mean age 43.8±10.75) who had a single blunt mild TBI from a traffic accident and suffering from chronic mental and cognitive symptoms without visible brain lesions on CT/MRI were enrolled in the study. Patients underwent FDG-PET imaging, and the mean interval between the TBI and FDG-PET was 50.0 months. The Wechsler Adult Intelligence Scale version III testing was performed within one month of the FDG-PET. A control group consisting of 93 healthy adult volunteers (mean age 42.2±14.3 years) also underwent FDG-PET. The glucose uptake pattern from FDG-PET in the patient group was compared to that from normal controls using statistical parametric mapping. Glucose uptake was significantly decreased in the bilateral prefrontal area and significantly increased around the limbic system in the patient group compared to normal controls. This topographical pattern of glucose uptake is different from that reported previously in patients with diffuse axonal injury (DAI), but may be similar to that seen in patients with major depression disorder. These results suggest that the pathological mechanism causing chronic mental and cognitive symptoms in patients with a single blunt mild TBI and without visible brain lesions might be different from that due to primary axonopathy in patients with DAI.
Walls, Anne B; Sickmann, Helle M; Brown, Angus; Bouman, Stephan D; Ransom, Bruce; Schousboe, Arne; Waagepetersen, Helle S
2008-05-01
The pharmacological properties of 1,4-dideoxy-1,4-imino-d-arabinitol (DAB), a potent inhibitor of glycogen phosphorylase and synthase activity in liver preparations, were characterized in different brain tissue preparations as a prerequisite for using it as a tool to investigate brain glycogen metabolism. Its inhibitory effect on glycogen phosphorylase was studied in homogenates of brain tissue and astrocytes and IC50-values close to 400 nM were found. However, the concentration of DAB needed for inhibition of glycogen shunt activity, i.e. glucose metabolism via glycogen, in intact astrocytes was almost three orders of magnitude higher. Additionally, such complete inhibition required a pre-incubation period, a finding possibly reflecting a limited permeability of the astrocytic membrane. DAB did not affect the accumulation of 2-deoxyglucose-6-phosphate indicating that the transport of DAB is not mediated by the glucose transporter. DAB had no effect on enzymes involving glucose-6-phosphate, i.e. glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and hexokinase. Furthermore, DAB was evaluated in a functional preparation of the isolated mouse optic nerve, in which its presence severely reduced the ability to sustain evoked compound action potentials in the absence of glucose, a condition in which glycogen serves as an important energy substrate. Based on the experimental findings, DAB can be used to evaluate glycogen shunt activity and its functional importance in intact brain tissue and cells at a concentration of 300-1000 muM and a pre-incubation period of 1 h.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.
We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less
Song, Juhyun; Yoon, So Ra
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor-α), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases. PMID:28680530
Song, Juhyun; Yoon, So Ra; Kim, Oh Yoen
2017-01-01
Hyperglycemia-induced stress in the brain of patients with diabetes triggers the disruption of blood-brain barrier (BBB), leading to diverse neurological diseases including stroke and dementia. Recently, the role of microRNA becomes an interest in the research for deciphering the mechanism of brain endothelial cell damage under hyperglycemia. Therefore, we investigated whether mircoRNA Let7A (miR-Let7A) controls the damage of brain endothelial (bEnd.3) cells against high glucose condition. Cell viability, cell death marker expressions (p-53, Bax, and cleaved poly ADP-ribose polymerase), the loss of tight junction proteins (ZO-1 and claudin-5), proinflammatory response (interleukin-6, tumor necrosis factor- α ), inducible nitric oxide synthase, and nitrite production were confirmed using MTT, reverse transcription-PCR, quantitative-PCR, Western blotting, immunofluorescence, and Griess reagent assay. miR-Let7A overexpression significantly prevented cell death and loss of tight junction proteins and attenuated proinflammatory response and nitrite production in the bEnd.3 cells under high glucose condition. Taken together, we suggest that miR-Let7A may attenuate brain endothelial cell damage by controlling cell death signaling, loss of tight junction proteins, and proinflammatory response against high glucose stress. In the future, the manipulation of miR-Let7A may be a novel solution in controlling BBB disruption which leads to the central nervous system diseases.
Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Malloy, Craig R.; Patel, Mulchand S.; Pascual, Juan M.
2013-01-01
The pyruvate dehydrogenase complex (PDC), required for complete glucose oxidation, is essential for brain development. Although PDC deficiency is associated with a severe clinical syndrome, little is known about its effects on either substrate oxidation or synthesis of key metabolites such as glutamate and glutamine. Computational simulations of brain metabolism indicated that a 25% reduction in flux through PDC and a corresponding increase in flux from an alternative source of acetyl-CoA would substantially alter the 13C NMR spectrum obtained from brain tissue. Therefore, we evaluated metabolism of [1,6-13C2]glucose (oxidized by both neurons and glia) and [1,2-13C2]acetate (an energy source that bypasses PDC) in the cerebral cortex of adult mice mildly and selectively deficient in brain PDC activity, a viable model that recapitulates the human disorder. Intravenous infusions were performed in conscious mice and extracts of brain tissue were studied by 13C NMR. We hypothesized that mice deficient in PDC must increase the proportion of energy derived from acetate metabolism in the brain. Unexpectedly, the distribution of 13C in glutamate and glutamine, a measure of the relative flux of acetate and glucose into the citric acid cycle, was not altered. The 13C labeling pattern in glutamate differed significantly from glutamine, indicating preferential oxidation of [1,2-13C]acetate relative to [1,6-13C]glucose by a readily discernible metabolic domain of the brain of both normal and mutant mice, presumably glia. These findings illustrate that metabolic compartmentation is preserved in the PDC-deficient cerebral cortex, probably reflecting intact neuron-glia metabolic interactions, and that a reduction in brain PDC activity sufficient to induce cerebral dysgenesis during development does not appreciably disrupt energy metabolism in the mature brain. PMID:22884585
Rudolph, Abraham M
2016-08-01
Cerebral development may be impaired in fetuses with congenital cardiovascular malformations, particularly hypoplastic left heart syndrome (HLHS) and aortopulmonary transposition (APT). The decreased cerebral arterial pusatility index observed in some of these fetuses led to the belief that cerebral vascular resistance was reduced as a result of arterial hypoxemia and cerebral hypoxia is thought to be responsible for impaired cerebral growth. However, other hemodynamic factors could affect pulsatility index. I propose that cerebral blood flow is reduced in fetuses with HLHS and that reduced glucose, rather than oxygen, delivery interferes with cerebral development. This is based on the fact that most of these fetuses do not have lactate accumulation in the brain.In fetuses with APT, umbilical venous blood, containing oxygen and glucose derived across the placenta, is distributed to the lungs and lower body; venous blood, with low oxygen and glucose content, is delivered to the ascending aorta and brain. Oxygen and glucose delivery may further be reduced by decreased cerebral blood flow resulting from run-off of aortic blood through the ductus arteriosus to the pulmonary circulation during diastole. In APT fetuses, lack of lactate in the brain also supports my proposal that glucose deficiency interferes with cerebral development.
Recent Advances in the Cellular and Molecular Mechanisms of Hypothalamic Neuronal Glucose Detection.
Fioramonti, Xavier; Chrétien, Chloé; Leloup, Corinne; Pénicaud, Luc
2017-01-01
The hypothalamus have been recognized for decades as one of the major brain centers for the control of energy homeostasis. This area contains specialized neurons able to detect changes in nutrients level. Among them, glucose-sensing neurons use glucose as a signaling molecule in addition to its fueling role. In this review we will describe the different sub-populations of glucose-sensing neurons present in the hypothalamus and highlight their nature in terms of neurotransmitter/neuropeptide expression. This review will particularly discuss whether pro-opiomelanocortin (POMC) neurons from the arcuate nucleus are directly glucose-sensing. In addition, recent observations in glucose-sensing suggest a subtle system with different mechanisms involved in the detection of changes in glucose level and their involvement in specific physiological functions. Several data point out the critical role of reactive oxygen species (ROS) and mitochondria dynamics in the detection of increased glucose. This review will also highlight that ATP-dependent potassium (K ATP ) channels are not the only channels mediating glucose-sensing and discuss the new role of transient receptor potential canonical channels (TRPC). We will discuss the recent advances in the determination of glucose-sensing machinery and propose potential line of research needed to further understand the regulation of brain glucose detection.
Lenoir, Magalie
2012-01-01
Glucose, a primary energetic substrate for neural activity, is continuously influenced by two opposing forces that tend to either decrease its extracellular levels due to enhanced utilization in neural cells or increase its levels due to entry from peripheral circulation via enhanced cerebral blood flow. How this balance is maintained under physiological conditions and changed during neural activation remains unclear. To clarify this issue, enzyme-based glucose sensors coupled with high-speed amperometry were used in freely moving rats to evaluate fluctuations in extracellular glucose levels induced by brief audio stimulus, tail pinch (TP), social interaction with another rat (SI), and intravenous cocaine (1 mg/kg). Measurements were performed in nucleus accumbens (NAcc) and substantia nigra pars reticulata (SNr), which drastically differ in neuronal activity. In NAcc, where most cells are powerfully excited after salient stimulation, glucose levels rapidly (latency 2–6 s) increased (30–70 μM or 6–14% over baseline) by all stimuli; the increase differed in magnitude and duration for each stimulus. In SNr, where most cells are transiently inhibited by salient stimuli, TP, SI, and cocaine induced a biphasic glucose response, with the initial decrease (−20–40 μM or 5–10% below baseline) followed by a reboundlike increase. The critical role of neuronal activity in mediating the initial glucose response was confirmed by monitoring glucose currents after local microinjections of glutamate (GLU) or procaine (PRO). While intra-NAcc injection of GLU transiently increased glucose levels in this structure, intra-SNr PRO injection resulted in rapid, transient decreases in SNr glucose. Therefore, extracellular glucose levels in the brain change very rapidly after physiological and pharmacological stimulation, the response is structure specific, and the pattern of neuronal activity appears to be a critical factor determining direction and magnitude of physiological fluctuations in glucose levels. PMID:22723672
Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu
2014-02-01
Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.
2013-01-01
The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1–4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals. PMID:23448428
Matsuda, Erin; Brennan, Patricia
The review question is: Are metabolic outcomes improved in outpatient adolescents (aged 13 to 19 years) with type 1 diabetes on a Continuous Subcutaneous Insulin Infusion (CSII) when continuous glucose monitoring is used, compared to self-glucose monitoring alone? Type 1 diabetes is the most common childhood paediatric disease, characterised by impairment of insulin producing βeta-cells in the pancreas. Internationally, there is variation in the incidence of type 1 diabetes in paediatric patients. According to the Center for Disease Control and Prevention (CDC) and the SEARCH for Diabetes in Youth Study Group, the overall incidence rate of this autoimmune disease is 24.3/100,000 in those 19 years of age . Annually, more than 15,000 children and adolescents are diagnosed in the United States (US) . From 1990 to 1999, the World Health Organization (WHO) launched the Multinational Project for Childhood Diabetes (DIAMOND), which was tasked with assessing type 1 diabetes in those 14 years or younger worldwide . Finland was discovered to have the highest age-adjusted incidence at 40.9 cases per 100,000/year. The lowest age-adjusted incidence is in China and Venezuela at 0.1 cases per 100,000/year. Globally, the largest increase in incidence is in those aged 10 to 14 years . This systematic review will focus on adolescent patients with type 1 diabetes, aged 13 to 19 years who manage their diabetes with an insulin pump.Patients with type 1 diabetes mellitus typically present with a history of polydipsia, polyuria, polyphagia, and weight loss . Initial findings include hyperglycemia, glycosuria, and ketones in the blood or urine . In 2009, the International Expert Committee deemed a haemoglobin A1C (glycosylated haemoglobin) of 6.5% or higher to be the standard for diagnosis . The American Diabetes Association (ADA) as well as the International Diabetes Federation and the European Association Study of Diabetes (EASD) accept this measure as the diagnostic tool for diabetes. Haemoglobin A1C is the most commonly used measurement for patients with type 1 diabetes . It refers to the measurement of the amount of glucose bound to haemoglobin. It is an average of blood glucose levels for the last 120 days, which is consistent with the average life span of a red blood cell (RBC).Compensation for the lack of insulin-secreting βeta-cells is accomplished through administration of insulin. For adolescents, insulin dosing is based on pubescent status, age, weight, activity level, and amount of carbohydrates consumed . Insulin administration, carbohydrate counting, and correction of hyperglycemia are necessary for maintaining glycemic control. Insulin can be administered through multiple daily injections (MDI) of rapid, intermediate and long-acting insulin .Another form of insulin delivery is the Continuous Subcutaneous Insulin Infusion (CSII), also known as an insulin pump, which is designed to meet physiological requirements through programmable basal rates and bolus doses . CSII's utilise rapid-acting insulin and establish a basal rate, which replaces the need for long-acting insulin. Bolus dosing is accomplished through adjusting the pump and is utilised to account for nutritional intake as well as hyperglycemia correction. Adjustments are also made for physical activity and exercise, as this can affect glucose levels . All patients considered in this systematic review will be utilising insulin pumps.In 2006, the United States had more than 35,000 patients, under the age of 21 years, receiving insulin therapy through an insulin pump . In Europe, the percentage of people with type 1 diabetes utilising a CSII is lower, potentially due to variation in health care coverage . There are various forms of insulin pumps, all with similar capabilities including a dose calculator for high blood glucose correction and carbohydrate ratios, programming software, and several other features . Software and programming is specific to each manufacturer. Basal rate abilities vary in each model from 0.05 units/hour to 30 units/hour . Information from the pump can be uploaded to online registries allowing providers to review trends and usage. It is imperative the information is reviewed concurrently with glucose monitoring results in order to ensure appropriate dosing and treatment .The intervention considered in this systematic review is the use of continuous glucose monitoring (CGM) in conjunction with a CSII. CGM utilises a sensor placed in the interstitial subcutaneous tissue, which then measures glucose levels. This is accomplished with "electrochemical sensors that use glucose oxidase and measure an electric current generated when glucose reacts with oxygen. The sensors are coated with a specialised membrane to make them biocompatible" . The CGM has programmable high and low levels to alert the user when the limit is being reached. Information regarding continuous glucose levels can then be downloaded and reviewed. Based on the report, providers, patients, and caregivers may assess trends and consider changing basal rates or bolus doses .CGM sensors currently do not offer a closed-loop solution. The user must enter insulin dosing information into the pump, taking into account the present glucose level and duration of action of the insulin. Currently, CGMs are regarded as a supplemental method for assessing the effectiveness of glucose control. Existing studies are underway to improve accuracy and communication between the sensor and insulin pump with the goal to develop an artificial pancreas . Currently, CGM sensors must be calibrated with a glucometer, as specified by the manufacturer .The comparison for this review is the standard of care, self-glucose monitoring (SGM), in patients with insulin pumps . SGM is accomplished with a glucometer and blood sample typically obtained from a finger prick. The Diabetes Control and Complications Trial (DCCT) demonstrated frequency of monitoring improves glycemic control and decreases the risk of comorbidity . Data from this significant study continues to contribute to current diabetes management. According to the ADA, children and adolescents should monitor their blood glucose at least three or more times per day. Blood glucose data is utilised to calculate appropriate insulin doses. Similar to the CGM, information from the glucometers can be downloaded for assessment of results and trends. However, the result is dependent on the action of the patient to obtain the sample and only represents a specific moment in time whereas the CGM sensor continuously tracks the blood glucose level. Depending on the model, CGM can provide glucose levels every one to ten minutes. The sensor may last for up to 72 hours and results are available in real time .This systematic review will address two metabolic outcomes: a decrease in the number of hypoglycemic episodes and a haemoglobin A1C level <7.5%. These outcomes were chosen due to their significance as indicators in the management of type 1 diabetes. Glucose levels should be between 90 mg/dL and 130 mg/dL (5.0mmol/l and 7.2mmol/l) before meals and between 90 mg/dL and 150 mg/dL at night (5.0mmmol/l and 8.3mmol/l) . Optimal care of an adolescent with type 1 diabetes mellitus is to safely maintain glycemic control and avoid hypoglycemia.Haemoglobin A1C is an indicator of how well the disease is being managed and should be evaluated every three months. McCulloch recommends the haemoglobin A1C level should be compared to approximately 50 recent blood glucose readings to ensure the accuracy of patient SGM . The reliability and validity of this test is based on the evidence discovered by the DCCT demonstrating those with lower haemoglobin A1C levels have fewer complications . The target A1C for adolescents, aged 13 to 19 years of age, is <7.5% . This is consistent with the National Institute of Clinical Excellence (NICE) and diabetes management guidelines of the Australasian Paediatric Endocrine Group for the Department of Health and Ageing .An initial search for a systematic review regarding insulin pumps in adolescents with type 1 diabetes mellitus and concurrent use of CGM was conducted in the Joanna Briggs Institute Library of Systematic Reviews, Cochrane Database of Systematic Reviews, and PubMed. No systematic reviews were found.
Caffeine intake increases plasma ketones: an acute metabolic study in humans.
Vandenberghe, Camille; St-Pierre, Valérie; Courchesne-Loyer, Alexandre; Hennebelle, Marie; Castellano, Christian-Alexandre; Cunnane, Stephen C
2017-04-01
Brain glucose uptake declines during aging and is significantly impaired in Alzheimer's disease. Ketones are the main alternative brain fuel to glucose so they represent a potential approach to compensate for the brain glucose reduction. Caffeine is of interest as a potential ketogenic agent owing to its actions on lipolysis and lipid oxidation but whether it is ketogenic in humans is unknown. This study aimed to evaluate the acute ketogenic effect of 2 doses of caffeine (2.5; 5.0 mg/kg) in 10 healthy adults. Caffeine given at breakfast significantly stimulated ketone production in a dose-dependent manner (+88%; +116%) and also raised plasma free fatty acids. Whether caffeine has long-term ketogenic effects or could enhance the ketogenic effect of medium chain triglycerides remains to be determined.
Krishnan, Subramanian; Chang, Alexander C.; Stoltz, Brian M.; Prasadarao, Nemani V.
2016-01-01
Escherichia coli K1 meningitis continues to be a major threat to neonatal health. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with endothelial cell glycoprotein 96 (Ecgp96) in the blood-brain barrier to enter the central nervous system. Here we show that the interaction between OmpA and Ecgp96 downregulates peroxisome proliferator–activated receptor γ (PPAR-γ) and glucose transporter 1 (GLUT-1) levels in human brain microvascular endothelial cells, causing disruption of barrier integrity and inhibition of glucose uptake. The suppression of PPAR-γ and GLUT-1 by the bacteria in the brain microvessels of newborn mice causes extensive pathophysiology owing to interleukin 6 production. Pretreatment with partial or selective PPAR-γ agonists ameliorate the pathological outcomes of infection by suppressing interleukin 6 production in the brain. Thus, inhibition of PPAR-γ and GLUT-1 by E. coli K1 is a novel pathogenic mechanism in meningitis, and pharmacological upregulation of PPAR-γ and GLUT-1 levels may provide novel therapeutic avenues. PMID:27456707
Chan, Wing Cheuk; Jackson, Gary; Wright, Craig Shawe; Orr-Walker, Brandon; Drury, Paul L; Boswell, D Ross; Lee, Mildred Ai Wei; Papa, Dean; Jackson, Rod
2014-01-01
Objectives To determine the diabetes screening levels and known glycaemic status of all individuals by age, gender and ethnicity within a defined geographic location in a timely and consistent way to potentially facilitate systematic disease prevention and management. Design Retrospective observational study. Setting Auckland region of New Zealand. Participants 1 475 347 people who had utilised publicly funded health service in New Zealand and domicile in the Auckland region of New Zealand in 2010. The health service utilisation population was individually linked to a comprehensive regional laboratory repository dating back to 2004. Outcome measures The two outcomes measures were glycaemia-related blood testing coverage (glycated haemoglobin (HbA1c), fasting and random glucose and glucose tolerance tests), and the proportions and number of people with known dysglycaemia in 2010 using modified American Diabetes Association (ADA) and WHO criteria. Results Within the health service utilisation population, 792 560 people had had at least one glucose or HbA1c blood test in the previous 5.5 years. Overall, 81% of males (n=198 086) and 87% of females (n=128 982) in the recommended age groups for diabetes screening had a blood test to assess their glycaemic status. The estimated age-standardised prevalence of dysglycaemia was highest in people of Pacific Island ethnicity at 11.4% (95% CI 11.2% to 11.5%) for males and 11.6% (11.4% to 11.8%) for females, followed closely by people of Indian ethnicity at 10.8% (10.6% to 11.1%) and 9.3% (9.1% to 9.6%), respectively. Among the indigenous Maori population, the prevalence was 8.2% (7.9% to 8.4%) and 7% (6.8% to 7.2%), while for ‘Others’ (mainly Europeans) it was 3% (3% to 3.1%) and 2.2% (2.1% to 2.2%), respectively. Conclusions We have demonstrated that the data linkage between a laboratory repository and national administrative datasets has the potential to provide a systematic and consistent individual level clinical information that is relevant to medical auditing for a large geographically defined population. PMID:24776708
Chan, Wing Cheuk; Jackson, Gary; Wright, Craig Shawe; Orr-Walker, Brandon; Drury, Paul L; Boswell, D Ross; Lee, Mildred Ai Wei; Papa, Dean; Jackson, Rod
2014-04-28
To determine the diabetes screening levels and known glycaemic status of all individuals by age, gender and ethnicity within a defined geographic location in a timely and consistent way to potentially facilitate systematic disease prevention and management. Retrospective observational study. Auckland region of New Zealand. 1 475 347 people who had utilised publicly funded health service in New Zealand and domicile in the Auckland region of New Zealand in 2010. The health service utilisation population was individually linked to a comprehensive regional laboratory repository dating back to 2004. The two outcomes measures were glycaemia-related blood testing coverage (glycated haemoglobin (HbA1c), fasting and random glucose and glucose tolerance tests), and the proportions and number of people with known dysglycaemia in 2010 using modified American Diabetes Association (ADA) and WHO criteria. Within the health service utilisation population, 792 560 people had had at least one glucose or HbA1c blood test in the previous 5.5 years. Overall, 81% of males (n=198 086) and 87% of females (n=128 982) in the recommended age groups for diabetes screening had a blood test to assess their glycaemic status. The estimated age-standardised prevalence of dysglycaemia was highest in people of Pacific Island ethnicity at 11.4% (95% CI 11.2% to 11.5%) for males and 11.6% (11.4% to 11.8%) for females, followed closely by people of Indian ethnicity at 10.8% (10.6% to 11.1%) and 9.3% (9.1% to 9.6%), respectively. Among the indigenous Maori population, the prevalence was 8.2% (7.9% to 8.4%) and 7% (6.8% to 7.2%), while for 'Others' (mainly Europeans) it was 3% (3% to 3.1%) and 2.2% (2.1% to 2.2%), respectively. We have demonstrated that the data linkage between a laboratory repository and national administrative datasets has the potential to provide a systematic and consistent individual level clinical information that is relevant to medical auditing for a large geographically defined population.
Improved cerebral energetics and ketone body metabolism in db/db mice
Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D
2016-01-01
It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate for cerebral glucose hypometabolism and unravel the functionality of cerebral mitochondria in type 2 diabetes mellitus. Acutely isolated cerebral cortical and hippocampal slices of db/db mice were incubated in media containing [U-13C]glucose, [1,2-13C]acetate or [U-13C]β-hydroxybutyrate and tissue extracts were analysed by mass spectrometry. Oxygen consumption and ATP synthesis of brain mitochondria of db/db mice were assessed by Seahorse XFe96 and luciferin-luciferase assay, respectively. Glucose hypometabolism was observed for both cerebral cortical and hippocampal slices of db/db mice. Significant increased metabolism of [1,2-13C]acetate and [U-13C]β-hydroxybutyrate was observed for hippocampal slices of db/db mice. Furthermore, brain mitochondria of db/db mice exhibited elevated oxygen consumption and ATP synthesis rate. This study provides evidence of several changes in brain energy metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism. PMID:28058963
Yang, Junling; Kou, Jinghong; Lim, Jeong-Eun; Lalonde, Robert; Fukuchi, Ken-ichiro
2015-01-01
Interleukin-17A (IL-17A) is generally considered as one of the pathogenic factors involved in multiple sclerosis (MS). Indirect evidence for this is that IL-17A-producing T helper 17 (Th17) cells preferentially accumulate in lesions of MS and experimental autoimmune encephalomyelitis (EAE). However, a direct involvement of IL-17A in MS pathogenesis is still an open question. In this study, we overexpressed IL-17A in the brains of mice (IL-17A-in-Brain mice) via recombinant adeno-associated virus serotype 5 (rAAV5)-mediated gene delivery. In spite of high levels of IL-17A expression in the brain and blood, IL-17A-in-Brain mice exhibit no inflammatory responses and no abnormalities in motor coordination and spatial orientation. Unexpectedly, IL-17A-in-Brain mice show decreases in body weight and adipose tissue mass and an improvement in glucose tolerance and insulin sensitivity. IL-17A enhances glucose uptake in PC12 cells by activation of AKT. Our results provide direct evidence for the first time that IL-17A overexpression in the central nervous system does not cause physical and learning disabilities and neuroinflammation and suggest that IL-17A may regulate glucose metabolism through the AKT signaling pathway. PMID:26562537
Ma, Suhua; You, Shengzhong; Hao, Li; Zhang, Dongchuan; Quan, Li
2015-07-01
This study was designed to evaluate changes in brain glucose metabolism in rats following ligature strangulation. Thirteen male Wistar rats were used in the present study, divided into control (n=7) and asphyxia groups (n=6, ligature strangulation). Positron emission tomography (PET) with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) was used to evaluate brain glucose metabolism. Rats were scanned for PET-CT, and image data co-registered with a T2WI MRI template using SPM8 software. Image J was employed to draw regions of interest (ROIs) from the MRI template and acquire ROI activity information from the PET images. In the asphyxia group vs. controls, (18)F-FDG uptake (FU) was decreased in the substantia nigra (25.26%, p<0.001), rhombencephalon (pons/medulla oblongata, 13.92%, p<0.01), hypothalamus (22.06%, p<0.01), ventral tegmentum (10.12%, p<0.05) and amygdala (12.74%, p<0.05); however, FU was increased in motor (18.21%, p<0.05) and visual cortices (19.2%, p<0.05). The glucose metabolism distribution map in the asphyxiated rat brains were substantially changed versus controls. PET with (18)F-FDG can demonstrate excitement and inhibition of different brain areas even in cases of ligature strangulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Gromnicova, Radka; Davies, Heather A.; Sreekanthreddy, Peddagangannagari; Romero, Ignacio A.; Lund, Torben; Roitt, Ivan M.; Phillips, James B.; Male, David K.
2013-01-01
The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier. PMID:24339894
Brain glucose sensing, counterregulation, and energy homeostasis.
Marty, Nell; Dallaporta, Michel; Thorens, Bernard
2007-08-01
Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.
1-/sup 11/C-2-deoxy-D-glucose and process for the preparation thereof
MacGregor, R.R.; Wolf, A.P.; Shiue, C.Y.; Wan, C.N.
1980-02-08
The novel labelled compound 1-/sup 11/C-2-deoxy-D-glucose, and a process for its preparation from 2,3:4,5-di-O-isopropylidene-D-arabinitol derivatives of relatively high reactivity are disclosed. 1-/sup 11/C-2-deoxy-D-glucose is useful for measuring regional brain glucose metabolism in vivo.
Predictive models of glucose control: roles for glucose-sensing neurones.
Kosse, C; Gonzalez, A; Burdakov, D
2015-01-01
The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate (from liver, into muscle) are balanced. Estimating nutrient challenges from indirect sensory cues may become more difficult when the cues become complex and variable (e.g. like human foods today). Consequent errors of predictive glucose control may contribute to obesity and diabetes. © 2014 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.
Lobley, Gerald E; Johnstone, Alexandra M; Fyfe, Claire; Horgan, Graham W; Holtrop, Grietje; Bremner, David M; Broom, Iain; Schweiger, Lutz; Welch, Andy
2014-02-01
Previous work has shown that hunger and food intake are lower in individuals on high-protein (HP) diets when combined with low carbohydrate (LC) intakes rather than with moderate carbohydrate (MC) intakes and where a more ketogenic state occurs. The aim of the present study was to investigate whether the difference between HPLC and HPMC diets was associated with changes in glucose and ketone body metabolism, particularly within key areas of the brain involved in appetite control. A total of twelve men, mean BMI 34·9 kg/m², took part in a randomised cross-over trial, with two 4-week periods when isoenergetic fixed-intake diets (8·3 MJ/d) were given, with 30% of the energy being given as protein and either (1) a very LC (22 g/d; HPLC) or (2) a MC (182 g/d; HPMC) intake. An ¹⁸fluoro-deoxyglucose positron emission tomography scan of the brain was conducted at the end of each dietary intervention period, following an overnight fast (n 4) or 4 h after consumption of a test meal (n 8). On the next day, whole-body ketone and glucose metabolism was quantified using [1,2,3,4-¹³C]acetoacetate, [2,4-¹³C]3-hydroxybutyrate and [6,6-²H₂]glucose. The composite hunger score was 14% lower (P= 0·013) for the HPLC dietary intervention than for the HPMC diet. Whole-body ketone flux was approximately 4-fold greater for the HPLC dietary intervention than for the HPMC diet (P< 0·001). The 9-fold difference in carbohydrate intakes between the HPLC and HPMC dietary interventions led to a 5% lower supply of glucose to the brain. Despite this, the uptake of glucose by the fifty-four regions of the brain analysed remained similar for the two dietary interventions. In conclusion, differences in the composite hunger score observed for the two dietary interventions are not associated with the use of alternative fuels by the brain.
Köfalvi, Attila; Lemos, Cristina; Martín-Moreno, Ana M; Pinheiro, Bárbara S; García-García, Luis; Pozo, Miguel A; Valério-Fernandes, Ângela; Beleza, Rui O; Agostinho, Paula; Rodrigues, Ricardo J; Pasquaré, Susana J; Cunha, Rodrigo A; de Ceballos, María L
2016-11-01
Cannabinoid CB2 receptors (CB2Rs) are emerging as important therapeutic targets in brain disorders that typically involve neurometabolic alterations. We here addressed the possible role of CB2Rs in the regulation of glucose uptake in the mouse brain. To that aim, we have undertaken 1) measurement of (3)H-deoxyglucose uptake in cultured cortical astrocytes and neurons and in acute hippocampal slices; 2) real-time visualization of fluorescently labeled deoxyglucose uptake in superfused hippocampal slices; and 3) in vivo PET imaging of cerebral (18)F-fluorodeoxyglucose uptake. We now show that both selective (JWH133 and GP1a) as well as non-selective (WIN55212-2) CB2R agonists, but not the CB1R-selective agonist, ACEA, stimulate glucose uptake, in a manner that is sensitive to the CB2R-selective antagonist, AM630. Glucose uptake is stimulated in astrocytes and neurons in culture, in acute hippocampal slices, in different brain areas of young adult male C57Bl/6j and CD-1 mice, as well as in middle-aged C57Bl/6j mice. Among the endocannabinoid metabolizing enzymes, the selective inhibition of COX-2, rather than that of FAAH, MAGL or α,βDH6/12, also stimulates the uptake of glucose in hippocampal slices of middle-aged mice, an effect that was again prevented by AM630. However, we found the levels of the endocannabinoid, anandamide reduced in the hippocampus of TgAPP-2576 mice (a model of β-amyloidosis), and likely as a consequence, COX-2 inhibition failed to stimulate glucose uptake in these mice. Together, these results reveal a novel general glucoregulatory role for CB2Rs in the brain, raising therapeutic interest in CB2R agonists as nootropic agents. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gautier, Yentl; Luneau, Isabelle; Coquery, Nicolas; Meurice, Paul; Malbert, Charles-Henri; Guerin, Sylvie; Kemp, Bas; Bolhuis, J Elizabeth; Clouard, Caroline; Le Huërou-Luron, Isabelle; Blat, Sophie; Val-Laillet, David
2018-06-13
This study explores the long-term effects of exposure to a maternal Western diet (WD) vs. standard diet (SD) in the Yucatan minipig, on the adult progeny at lean status ( n = 32), and then overweight status. We investigated eating behavior, cognitive abilities, brain basal glucose metabolism, dopamine transporter availability, microbiota activity, blood lipids, and glucose tolerance. Although both groups demonstrated similar cognitive abilities in a holeboard test, WD pigs expressed a higher stress level than did SD pigs (immobility, P < 0.05) and lower performance in an alley maze ( P = 0.06). WD pigs demonstrated lower dopamine transporter binding potential in the hippocampus and parahippocampal cortex ( P < 0.05 for both), as well as a trend in putamen ( P = 0.07), associated with lower basal brain activity in the prefrontal cortex and nucleus accumbens ( P < 0.05) compared with lean SD pigs. Lean WD pigs demonstrated a lower glucose tolerance than did SD animals (higher glucose peak, P < 0.05) and a tendency to a higher incremental area under the curve of insulin from 0 to 30 minutes after intravenous glucose injection ( P < 0.1). Both groups developed glucose intolerance with overweight, but WD animals were less impacted than SD animals. These results demonstrate that maternal diet shaped the offspring's brain functions and cognitive responses long term, even after being fed a balanced diet from weaning, but behavioral effects were only revealed in WD pigs under anxiogenic situation; however, WD animals seemed to cope better with the obesogenic diet from a metabolic standpoint.-Gautier, Y., Luneau, I., Coquery, N., Meurice, P., Malbert, C.-H., Guerin, S., Kemp, B., Bolhuis, J. E., Clouard, C., Le Huërou-Luron, I., Blat, S., Val-Laillet, D. Maternal Western diet during gestation and lactation modifies adult offspring's cognitive and hedonic brain processes, behavior, and metabolism in Yucatan minipigs.
Recurrent antecedent hypoglycemia alters neuronal oxidative metabolism in vivo.
Jiang, Lihong; Herzog, Raimund I; Mason, Graeme F; de Graaf, Robin A; Rothman, Douglas L; Sherwin, Robert S; Behar, Kevin L
2009-06-01
The objective of this study was to characterize the changes in brain metabolism caused by antecedent recurrent hypoglycemia under euglycemic and hypoglycemic conditions in a rat model and to test the hypothesis that recurrent hypoglycemia changes the brain's capacity to utilize different energy substrates. Rats exposed to recurrent insulin-induced hypoglycemia for 3 days (3dRH rats) and untreated controls were subject to the following protocols: [2-(13)C]acetate infusion under euglycemic conditions (n = 8), [1-(13)C]glucose and unlabeled acetate coinfusion under euglycemic conditions (n = 8), and [2-(13)C]acetate infusion during a hyperinsulinemic-hypoglycemic clamp (n = 8). In vivo nuclear magnetic resonance spectroscopy was used to monitor the rise of(13)C-labeling in brain metabolites for the calculation of brain metabolic fluxes using a neuron-astrocyte model. At euglycemia, antecedent recurrent hypoglycemia increased whole-brain glucose metabolism by 43 +/- 4% (P < 0.01 vs. controls), largely due to higher glucose utilization in neurons. Although acetate metabolism remained the same, control and 3dRH animals showed a distinctly different response to acute hypoglycemia: controls decreased pyruvate dehydrogenase (PDH) flux in astrocytes by 64 +/- 20% (P = 0.01), whereas it increased by 37 +/- 3% in neurons (P = 0.01). The 3dRH animals decreased PDH flux in both compartments (-75 +/- 20% in astrocytes, P < 0.001, and -36 +/- 4% in neurons, P = 0.005). Thus, acute hypoglycemia reduced total brain tricarboxylic acid cycle activity in 3dRH animals (-37 +/- 4%, P = 0.001), but not in controls. Our findings suggest that after antecedent hypoglycemia, glucose utilization is increased at euglycemia and decreased after acute hypoglycemia, which was not the case in controls. These findings may help to identify better methods of preserving brain function and reducing injury during acute hypoglycemia.
Dienel, Gerald A
2017-11-01
Glutamate-stimulated aerobic glycolysis in astrocytes coupled with lactate shuttling to neurons where it can be oxidized was proposed as a mechanism to couple excitatory neuronal activity with glucose utilization (CMR glc ) during brain activation. From the outset, this model was not viable because it did not fulfill critical stoichiometric requirements: (i) Calculated glycolytic rates and measured lactate release rates were discordant in cultured astrocytes. (ii) Lactate oxidation requires oxygen consumption, but the oxygen-glucose index (OGI, calculated as CMR O2 /CMR glc ) fell during activation in human brain, and the small rise in CMR O2 could not fully support oxidation of lactate produced by disproportionate increases in CMR glc . (iii) Labeled products of glucose metabolism are not retained in activated rat brain, indicating rapid release of a highly labeled, diffusible metabolite identified as lactate, thereby explaining the CMR glc -CMR O2 mismatch. Additional independent lines of evidence against lactate shuttling include the following: astrocytic oxidation of glutamate after its uptake can help "pay" for its uptake without stimulating glycolysis; blockade of glutamate receptors during activation in vivo prevents upregulation of metabolism and lactate release without impairing glutamate uptake; blockade of β-adrenergic receptors prevents the fall in OGI in activated human and rat brain while allowing glutamate uptake; and neurons upregulate glucose utilization in vivo and in vitro under many stimulatory conditions. Studies in immature cultured cells are not appropriate models for lactate shuttling in adult brain because of their incomplete development of metabolic capability and astrocyte-neuron interactions. Astrocyte-neuron lactate shuttling does not make large, metabolically significant contributions to energetics of brain activation. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Regional analyses of CNS microdialysate glucose and lactate in seizure patients.
Cornford, Eain M; Shamsa, Kamran; Zeitzer, Jamie M; Enriquez, Cathleen M; Wilson, Charles L; Behnke, Eric J; Fried, Itzhak; Engel, Jerome
2002-11-01
To correlate glucose (and lactate) results obtained from microdialysate to recent studies suggesting that glucose transporter activity may be significantly altered in seizures. We used a fluorometric technique to quantify glucose and lactate levels in microdialysates collected from two to four depth electrodes implanted per patient in the temporal and frontal lobes of a series of four patients. Hour-by-hour and day-to-day changes in brain glucose and lactate levels at the same site were recorded. Additionally we compared regional variations in lactate/glucose ratios around the predicted epileptogenic region. Lactate/glucose ratios in the range of 1-2:1 were the most commonly seen. When the lactate/glucose ratio was <1:1, we typically observed a relative increase in local glucose concentration (rather than decreased lactate), suggesting increased transport, perhaps without increased glycolysis. In some sites, lactate/glucose ratios of 3:1-15:1 were seen, suggesting that a circumscribed zone of inhibition of tricarboxylic acid cycle activity may have been locally induced. In these dialysates, collected from probes closer to the epileptogenic region, the large increase in lactate/glucose ratios was a result of both increased lactate and reduced glucose levels. We conclude that regional variations in brain extracellular glucose concentrations may be of greater magnitude than previously believed and become even more accentuated in partial seizure patients. Data from concomitant assays of microdialysate lactate and glucose may aid in understanding cerebral metabolism.
Meek, Thomas H; Wisse, Brent E; Thaler, Joshua P; Guyenet, Stephan J; Matsen, Miles E; Fischer, Jonathan D; Taborsky, Gerald J; Schwartz, Michael W; Morton, Gregory J
2013-05-01
Recent evidence suggests that central leptin administration fully normalizes hyperglycemia in a rodent model of uncontrolled insulin-deficient diabetes by reducing hepatic glucose production (HGP) and by increasing glucose uptake. The current studies were undertaken to determine whether brain-derived neurotrophic factor (BDNF) action in the brain lowers blood glucose in uncontrolled insulin-deficient diabetes and to investigate the mechanisms mediating this effect. Adult male rats implanted with cannulas to either the lateral cerebral ventricle or the ventromedial hypothalamic nucleus (VMN) received either vehicle or streptozotocin to induce uncontrolled insulin-deficient diabetes. Three days later, animals received daily intracerebroventricular or intra-VMN injections of either BDNF or its vehicle. We found that repeated daily intracerebroventricular administration of BDNF attenuated diabetic hyperglycemia independent of changes in food intake. Instead, using tracer dilution techniques during a basal clamp, we found that BDNF lowered blood glucose levels by potently suppressing HGP, without affecting tissue glucose uptake, an effect associated with normalization of both plasma glucagon levels and hepatic expression of gluconeogenic genes. Moreover, BDNF microinjection directly into the VMN also lowered fasting blood glucose levels in uncontrolled insulin-deficient diabetes, but this effect was modest compared with intracerebroventricular administration. We conclude that central nervous system BDNF attenuates diabetic hyperglycemia via an insulin-independent mechanism. This action of BDNF likely involves the VMN and is associated with inhibition of glucagon secretion and a decrease in the rate of HGP.
Brekke, Eva M F; Walls, Anne B; Schousboe, Arne; Waagepetersen, Helle S; Sonnewald, Ursula
2012-01-01
The brain is highly susceptible to oxidative injury, and the pentose phosphate pathway (PPP) has been shown to be affected by pathological conditions, such as Alzheimer's disease and traumatic brain injury. While this pathway has been investigated in the intact brain and in astrocytes, little is known about the PPP in neurons. The activity of the PPP was quantified in cultured cerebral cortical and cerebellar neurons after incubation in the presence of [2-13C]glucose or [3-13C]glucose. The activity of the PPP was several fold lower than glycolysis in both types of neurons. While metabolism of 13C-labeled glucose via the PPP does not appear to contribute to the production of releasable lactate, it contributes to labeling of tricarboxylic acid (TCA) cycle intermediates and related amino acids. Based on glutamate isotopomers, it was calculated that PPP activity accounts for ∼6% of glucose metabolism in cortical neurons and ∼4% in cerebellar neurons. This is the first demonstration that pyruvate generated from glucose via the PPP contributes to the synthesis of acetyl CoA for oxidation in the TCA cycle. Moreover, the fact that 13C labeling from glucose is incorporated into glutamate proves that both the oxidative and the nonoxidative stages of the PPP are active in neurons. PMID:22714050
Özdemir, Mehmet Bülent; Akça, Hakan; Erdoğan, Çağdaş; Tokgün, Onur; Demiray, Aydın; Semin, Fenkçi; Becerir, Cem
2012-01-01
Astrocytes perform many functions in the brain and spinal cord. Glucose metabolism is important for astroglial cells and astrocytes are the only cells with insulin receptors in the brain. The common antibiotic penicillin is also a chemical agent that causes degenerative effect on neuronal cell. The aim of this study is to show the effect of insulin and glucose at different concentrations on the astrocyte death induced by penicillin on primer astroglial cell line. It is well known that intracranial penicillin treatment causes neuronal cell death and it is used for experimental epilepsy model commonly. Previous studies showed that insulin and glucose might protect neuronal cell in case of proper concentrations. But, the present study is about the effect of insulin and glucose against astrocyte death induced by penicillin. For this purpose, newborn rat brain was extracted and then mechanically dissociated to astroglial cell suspension and finally grown in culture medium. Clutters were maintained for 2 weeks prior to being used in these experiments. Different concentrations of insulin (0, 1, 3 nM) and glucose (0, 3, 30 mM) were used in media without penicillin and with 2 500 μM penicillin. Penicillin decreased the viability of astroglial cell seriously. The highest cell viability appeared in medium with 3 nM insulin and 3 mM glucose but without penicillin. However, in medium with penicillin, the best cell survival was in medium with 1 nM insulin but without glucose. We concluded that insulin and glucose show protective effects on the damage induced by penicillin to primer astroglial cell line. Interestingly, cell survival depends on concentrations of insulin and glucose strongly. The results of this study will help to explain cerebrovascular pathologies parallel to insulin and glucose conditions of patient after intracranial injuries. PMID:25624816
Bossi, E; Kohler, E; Herschkowitz, N
1989-11-01
In dissociated whole brain cell cultures from newborn mice, we have previously shown that during glucose deprivation under normoxia, D-beta-hydroxybutyrate and oleic acid are increasingly used for energy production. We now asked whether this glucose dependency of the utilization of D-beta-hydroxybutyrate and oleic acid as alternate energy fuels is also present after a hypoxic phase. 3-Hydroxy[3-14C]butyrate or [U-14C]oleic acid were added to 7- and 14-d-old cultures and 14CO2-production compared after hypoxia in normal and glucose-deprived conditions. After hypoxia, the ability of the cells 7 d in culture to increase D-beta-hydroxybutyrate consumption in response to glucose deprivation is diminished, 14-d-old cells lose this ability. In contrast, after hypoxia, both 7- and 14-d-old cultures maintain or even improve the ability to increase oleate consumption, when glucose is lacking.
Effects of glucose load on cognitive functions in elderly people.
van der Zwaluw, Nikita L; van de Rest, Ondine; Kessels, Roy P C; de Groot, Lisette C P G M
2015-02-01
Glucose is the main fuel for the brain, and manipulation of the glucose supply may consequently affect brain function. The present review was conducted to provide an overview of studies that investigated the acute effects of glucose load on memory and other cognitive functions in elderly people. The effects of sucrose on cognition and suggested mechanisms were also explored. A total of twenty studies met the inclusion criteria. In the majority of studies, episodic memory was investigated and a beneficial role for glucose in that specific cognitive domain was suggested. Other cognitive domains, i.e., working memory, semantic memory, visual memory, information-processing speed, attention, executive function, and visual/spatial function, have been studied less frequently and evidence for a beneficial effect of glucose was equivocal. Mechanisms are suggested to be mainly related to the human body's need for glucose as a metabolic substrate for physiological mechanisms in both central and peripheral processes. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki
2009-12-01
The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Seventy-eight healthy subjects (32 males, mean age 46.6+/-18.2 years; 46 females, mean age 40.6+/-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake.
Balmaceda-Aguilera, Carolina; Cortés-Campos, Christian; Cifuentes, Manuel; Peruzzo, Bruno; Mack, Lauren; Tapia, Juan Carlos; Oyarce, Karina; García, María Angeles; Nualart, Francisco
2012-01-01
Although previous studies showed that glucose is used to support the metabolic activity of the cartilaginous fish brain, the distribution and expression levels of glucose transporter (GLUT) isoforms remained undetermined. Optic/ultrastructural immunohistochemistry approaches were used to determine the expression of GLUT1 in the glial blood-brain barrier (gBBB). GLUT1 was observed solely in glial cells; it was primarily located in end-feet processes of the gBBB. Western blot analysis showed a protein with a molecular mass of 50 kDa, and partial sequencing confirmed GLUT1 identity. Similar approaches were used to demonstrate increased GLUT1 polarization to both apical and basolateral membranes in choroid plexus epithelial cells. To explore monocarboxylate transporter (MCT) involvement in shark brain metabolism, the expression of MCTs was analyzed. MCT1, 2 and 4 were expressed in endothelial cells; however, only MCT1 and MCT4 were present in glial cells. In neurons, MCT2 was localized at the cell membrane whereas MCT1 was detected within mitochondria. Previous studies demonstrated that hypoxia modified GLUT and MCT expression in mammalian brain cells, which was mediated by the transcription factor, hypoxia inducible factor-1. Similarly, we observed that hypoxia modified MCT1 cellular distribution and MCT4 expression in shark telencephalic area and brain stem, confirming the role of these transporters in hypoxia adaptation. Finally, using three-dimensional ultrastructural microscopy, the interaction between glial end-feet and leaky blood vessels of shark brain was assessed in the present study. These data suggested that the brains of shark may take up glucose from blood using a different mechanism than that used by mammalian brains, which may induce astrocyte-neuron lactate shuttling and metabolic coupling as observed in mammalian brain. Our data suggested that the structural conditions and expression patterns of GLUT1, MCT1, MCT2 and MCT4 in shark brain may establish the molecular foundation of metabolic coupling between glia and neurons. PMID:22389700
Regional brain glucose metabolism in patients with brain tumors before and after radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.J.; Volkow, N.D.; Lau, Y.H.
1994-05-01
This study was performed to measure regional glucose metabolism in nonaffected brain regions of patients with primary or metastatic brain tumors. Seven female and four male patients (mean age 51.5{plus_minus}14.0 years old) were compared with eleven age and sex matched normal subjects. None of the patients had hydrocephalus and/or increased intracranial pressure. Brain glucose metabolism was measured using FDG-PET scan. Five of the patients were reevaluated one week after receiving radiation treatment (RT) to the brain. Patients were on Decadron and/or Dilantin at the time of both scan. PET images were analyzed with a template of 115 nonoverlapping regions ofmore » interest and then grouped into eight gray matter regions on each hemisphere. Brain regions with tumors and edema shown in MR imaging were excluded. Z scores were used to compare individual patients` regional values with those of normal subjects. The number of regional values with Z scores of less than - 3.0 were considered abnormal and were quantified. The mean global glucose metabolic rate (mean of all regions) in nonaffected brain regions of patients was significantly lower than that of normal controls (32.1{plus_minus}9.0 versus 44.8{plus_minus}6.3 {mu}mol/100g/min, p<0.001). Analyses of individual subjects revealed that none of the controls and 8 of the 11 patients had at least one abnormal region. In these 8 patients the regions which were abnormal were most frequently localized in right (n=5) and left occipital (n=6) and right orbital frontal cortex (n=7) whereas the basal ganglia was not affected. Five of the patients who had repeated scans following RT showed decrements in tumor metabolism (41{plus_minus}20.5%) and a significant increase in whole brain metabolism (8.6{plus_minus}5.3%, p<0.001). The improvement in whole brain metabolism after RT suggests that the brain metabolic decrements in the patients were related to the presence of tumoral tissue and not just a medication effect.« less
Chiaravalloti, Agostino; Fiorentini, Alessandro; Ursini, Francesco; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Toniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio
2016-09-01
The aim of this study was to investigate the relationships between blood-brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(F) fluoro-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects.
Morgan, Paul S; Sherar, Lauren B; Kingsnorth, Andrew P; Magistro, Daniele; Esliger, Dale W
2017-01-01
Background The recent surge in commercially available wearable technology has allowed real-time self-monitoring of behavior (eg, physical activity) and physiology (eg, glucose levels). However, there is limited neuroimaging work (ie, functional magnetic resonance imaging [fMRI]) to identify how people’s brains respond to receiving this personalized health feedback and how this impacts subsequent behavior. Objective Identify regions of the brain activated and examine associations between activation and behavior. Methods This was a pilot study to assess physical activity, sedentary time, and glucose levels over 14 days in 33 adults (aged 30 to 60 years). Extracted accelerometry, inclinometry, and interstitial glucose data informed the construction of personalized feedback messages (eg, average number of steps per day). These messages were subsequently presented visually to participants during fMRI. Participant physical activity levels and sedentary time were assessed again for 8 days following exposure to this personalized feedback. Results Independent tests identified significant activations within the prefrontal cortex in response to glucose feedback compared with behavioral feedback (P<.001). Reductions in mean sedentary time (589.0 vs 560.0 minutes per day, P=.014) were observed. Activation in the subgyral area had a moderate correlation with minutes of moderate-to-vigorous physical activity (r=0.392, P=.043). Conclusion Presenting personalized glucose feedback resulted in significantly more brain activation when compared with behavior. Participants reduced time spent sedentary at follow-up. Research on deploying behavioral and physiological feedback warrants further investigation. PMID:29117928
2014-01-01
Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993
Carlsson, Robert; Özen, Ilknur; Barbariga, Marco; Gaceb, Abderahim; Roth, Michaela; Paul, Gesine
2018-01-01
Brain pericytes are important to maintain vascular integrity of the neurovascular unit under both physiological and ischemic conditions. Ischemic stroke is known to induce an inflammatory and hypoxic response due to the lack of oxygen and glucose in the brain tissue. How this early response to ischemia is molecularly regulated in pericytes is largely unknown and may be of importance for future therapeutic targets. Here we evaluate the transcriptional responses in in vitro cultured human brain pericytes after oxygen and/or glucose deprivation. Hypoxia has been widely known to stabilise the transcription factor hypoxia inducible factor 1-alpha (HIF1α) and mediate the induction of hypoxic transcriptional programs after ischemia. However, we find that the transcription factors Jun Proto-Oncogene (c-JUN), Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells (NFκB) and signal transducer and activator of transcription 3 (STAT3) bind genes regulated after 2hours (hs) of omitted glucose and oxygen before HIF1α. Potent HIF1α responses require 6hs of hypoxia to substantiate transcriptional regulation comparable to either c-JUN or STAT3. Phosphorylated STAT3 protein is at its highest after 5 min of oxygen and glucose (OGD) deprivation, whereas maximum HIF1α stabilisation requires 120 min. We show that STAT3 regulates angiogenic and metabolic pathways before HIF1α, suggesting that HIF1α is not the initiating trans-acting factor in the response of pericytes to ischemia.
Cerebral Metabolism and the Role of Glucose Control in Acute Traumatic Brain Injury.
Buitrago Blanco, Manuel M; Prashant, Giyarpuram N; Vespa, Paul M
2016-10-01
This article reviews key concepts of cerebral glucose metabolism, neurologic outcomes in clinical trials, the biology of the neurovascular unit and its involvement in secondary brain injury after traumatic brain insults, and current scientific and clinical data that demonstrate a better understanding of the biology of metabolic dysfunction in the brain, a concept now known as cerebral metabolic energy crisis. The use of neuromonitoring techniques to better understand the pathophysiology of the metabolic crisis is reviewed and a model that summarizes the triphasic view of cerebral metabolic disturbance supported by existing scientific data is outlined. The evidence is summarized and a template for future research provided. Copyright © 2016 Elsevier Inc. All rights reserved.
Bartnik-Olson, Brenda L; Oyoyo, Udochukwu; Hovda, David A; Sutton, Richard L
2010-12-01
Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo ¹³C NMR spectroscopy following an infusion of [1-¹³C] glucose and [1,2-¹³C₂] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the ¹³C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the ¹³C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The ¹³C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism.
Oyoyo, Udochukwu; Hovda, David A.; Sutton, Richard L.
2010-01-01
Abstract Despite various lines of evidence pointing to the compartmentation of metabolism within the brain, few studies have reported the effect of a traumatic brain injury (TBI) on neuronal and astrocyte compartments and/or metabolic trafficking between these cells. In this study we used ex vivo 13C NMR spectroscopy following an infusion of [1-13C] glucose and [1,2-13C2] acetate to study oxidative metabolism in neurons and astrocytes of sham-operated and fluid percussion brain injured (FPI) rats at 1, 5, and 14 days post-surgery. FPI resulted in a decrease in the 13C glucose enrichment of glutamate in neurons in the injured hemisphere at day 1. In contrast, enrichment of glutamine in astrocytes from acetate was not significantly decreased at day 1. At day 5 the 13C enrichment of glutamate and glutamine from glucose in the injured hemisphere of FPI rats did not differ from sham levels, but glutamine derived from acetate metabolism in astrocytes was significantly increased. The 13C glucose enrichment of the C3 position of glutamate (C3) in neurons was significantly decreased ipsilateral to FPI at day 14, whereas the enrichment of glutamine in astrocytes had returned to sham levels at this time point. These findings indicate that the oxidative metabolism of glucose is reduced to a greater extent in neurons compared to astrocytes following a FPI. The increased utilization of acetate to synthesize glutamine, and the acetate enrichment of glutamate via the glutamate-glutamine cycle, suggests an integral protective role for astrocytes in maintaining metabolic function following TBI-induced impairments in glucose metabolism. PMID:20939699
Physical activity, fitness, glucose homeostasis, and brain morphology in twins.
Rottensteiner, Mirva; Leskinen, Tuija; Niskanen, Eini; Aaltonen, Sari; Mutikainen, Sara; Wikgren, Jan; Heikkilä, Kauko; Kovanen, Vuokko; Kainulainen, Heikki; Kaprio, Jaakko; Tarkka, Ina M; Kujala, Urho M
2015-03-01
The main aim of the present study (FITFATTWIN) was to investigate how physical activity level is associated with body composition, glucose homeostasis, and brain morphology in young adult male monozygotic twin pairs discordant for physical activity. From a population-based twin cohort, we systematically selected 10 young adult male monozygotic twin pairs (age range, 32-36 yr) discordant for leisure time physical activity during the past 3 yr. On the basis of interviews, we calculated a mean sum index for leisure time and commuting activity during the past 3 yr (3-yr LTMET index expressed as MET-hours per day). We conducted extensive measurements on body composition (including fat percentage measured by dual-energy x-ray absorptiometry), glucose homeostasis including homeostatic model assessment index and insulin sensitivity index (Matsuda index, calculated from glucose and insulin values from an oral glucose tolerance test), and whole brain magnetic resonance imaging for regional volumetric analyses. According to pairwise analysis, the active twins had lower body fat percentage (P = 0.029) and homeostatic model assessment index (P = 0.031) and higher Matsuda index (P = 0.021) compared with their inactive co-twins. Striatal and prefrontal cortex (subgyral and inferior frontal gyrus) brain gray matter volumes were larger in the nondominant hemisphere in active twins compared with those in inactive co-twins, with a statistical threshold of P < 0.001. Among healthy adult male twins in their mid-30s, a greater level of physical activity is associated with improved glucose homeostasis and modulation of striatum and prefrontal cortex gray matter volume, independent of genetic background. The findings may contribute to later reduced risk of type 2 diabetes and mobility limitations.
Luo, Shan; Melrose, A James; Dorton, Hilary; Alves, Jasmin; Monterosso, John R; Page, Kathleen A
2017-09-01
Feeding behavior is regulated by a complex interaction of central nervous system responses to metabolic signals that reflect nutrient availability and to food cues that trigger appetitive responses. Prior work has shown that the hypothalamus is a key brain area that senses and responds to changes in metabolic signals, and exposure to food cues induces the activation of brain areas involved in reward processing. However, it is not known how the hypothalamic responses to changes in metabolic state are related to reward responses to food cues. This study aimed to understand whether changes in hypothalamic activity in response to glucose-induced metabolic signals are linked to food-cue reactivity within brain areas involved in reward processing. We combined two neuroimaging modalities (Arterial Spin Labeling and Blood Oxygen Level Dependent) to measure glucose-induced changes in hypothalamic cerebral blood flow (CBF) and food-cue task induced changes in brain activity within reward-related regions. Twenty-five participants underwent a MRI session following glucose ingestion and a subset of twenty individuals underwent an additional water session on a separate day as a control condition (drink order randomized). Hunger was assessed before and after drink consumption. We observed that individuals who had a greater reduction in hypothalamic CBF exhibited a greater reduction in left ventral striatum food cue reactivity (Spearman's rho = 0.46, P = 0.048) following glucose vs. water ingestion. These results are the first to use multimodal imaging to demonstrate a link between hypothalamic metabolic signaling and ventral striatal food cue reactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Asprosin, a fasting-induced glucogenic protein hormone
USDA-ARS?s Scientific Manuscript database
Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...
Duodenal mucosal protein kinase C-δ regulates glucose production in rats.
Kokorovic, Andrea; Cheung, Grace W C; Breen, Danna M; Chari, Madhu; Lam, Carol K L; Lam, Tony K T
2011-11-01
Activation of protein kinase C (PKC) enzymes in liver and brain alters hepatic glucose metabolism, but little is known about their role in glucose regulation in the gastrointestinal tract. We investigated whether activation of PKC-δ in the duodenum is sufficient and necessary for duodenal nutrient sensing and regulates hepatic glucose production through a neuronal network in rats. In rats, we inhibited duodenal PKC and evaluated whether nutrient-sensing mechanisms, activated by refeeding, have disruptions in glucose regulation. We then performed gain- and loss-of-function pharmacologic and molecular experiments to target duodenal PKC-δ; we evaluated the impact on glucose production regulation during the pancreatic clamping, while basal levels of insulin were maintained. PKC-δ was detected in the mucosal layer of the duodenum; intraduodenal infusion of PKC inhibitors disrupted glucose homeostasis during refeeding, indicating that duodenal activation of PKC-δ is necessary and sufficient to regulate glucose homeostasis. Intraduodenal infusion of the PKC activator 1-oleoyl-2-acetyl-sn-glycerol (OAG) specifically activated duodenal mucosal PKC-δ and a gut-brain-liver neuronal pathway to reduce glucose production. Molecular and pharmacologic inhibition of duodenal mucosal PKC-δ negated the ability of duodenal OAG and lipids to reduce glucose production. In the duodenal mucosa, PKC-δ regulates glucose homeostasis. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.
Tesfaye, Nolawit; Seaquist, Elizabeth R.; Öz, Gülin
2011-01-01
Glycogen is the reservoir for glucose in the brain. Beyond the general agreement that glycogen serves as an energy source in the central nervous system, its exact role in brain energy metabolism has yet to be elucidated. Experiments performed in cell and tissue culture and animals have shown that glycogen content is affected by several factors including glucose, insulin, neurotransmitters, and neuronal activation. The study of in vivo glycogen metabolism has been hindered by the inability to measure glycogen non-invasively, but in the past several years, the development of a non-invasive localized 13C nuclear magnetic resonance (NMR) spectroscopy method has enabled the study of glycogen metabolism in the conscious human. With this technique, 13C-glucose is administered intravenously and its incorporation into and wash-out from brain glycogen is tracked. One application of this method has been to the study of brain glycogen metabolism in humans during hypoglycemia: data have shown that mobilization of brain glycogen is augmented during hypoglycemia and, after a single episode of hypoglycemia, glycogen synthesis rate is increased, suggesting that glycogen stores rebound to levels greater than baseline. Such studies suggest glycogen may serve as a potential energy reservoir in hypoglycemia and may participate in the brain's adaptation to recurrent hypoglycemia and eventual development of hypoglycemia unawareness. Beyond this focused area of study, 13C NMR spectroscopy has a broad potential for application in the study of brain glycogen metabolism and carries the promise of a better understanding of the role of brain glycogen in diabetes and other conditions. PMID:21732401
Lehmann, Eldon D.; DeWolf, Dennis K.; Novotny, Christopher A.; Reed, Karen; Gotwals, Robert R.
2014-01-01
Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24 hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored “virtual diabetic patients” on the internet or create new “patients” with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online's functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required. PMID:24511312
Lehmann, Eldon D; Dewolf, Dennis K; Novotny, Christopher A; Reed, Karen; Gotwals, Robert R
2014-01-01
Background. AIDA is a widely available downloadable educational simulator of glucose-insulin interaction in diabetes. Methods. A web-based version of AIDA was developed that utilises a server-based architecture with HTML FORM commands to submit numerical data from a web-browser client to a remote web server. AIDA online, located on a remote server, passes the received data through Perl scripts which interactively produce 24 hr insulin and glucose simulations. Results. AIDA online allows users to modify the insulin regimen and diet of 40 different prestored "virtual diabetic patients" on the internet or create new "patients" with user-generated regimens. Multiple simulations can be run, with graphical results viewed via a standard web-browser window. To date, over 637,500 diabetes simulations have been run at AIDA online, from all over the world. Conclusions. AIDA online's functionality is similar to the downloadable AIDA program, but the mode of implementation and usage is different. An advantage to utilising a server-based application is the flexibility that can be offered. New modules can be added quickly to the online simulator. This has facilitated the development of refinements to AIDA online, which have instantaneously become available around the world, with no further local downloads or installations being required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, S.A.; Schapiro, M.B.; Grady, C.L.
Positron emission tomography (PET) was used with 18fluorodeoxyglucose to see if gender differences in resting cerebral glucose utilization could be detected. Thirty-two healthy subjects (15 women and 17 men; age range: 21-38 yr) were examined using a high-resolution PET scanner to determine the regional cerebral metabolic rate for glucose (CMRglc) in 65 gray matter regions of interest. Whole brain CMRglc did not differ significantly between the two genders, nor did any of the regional CMRglc values. Only 1 of 65 ratios of regional-to-whole brain CMRglc differed significantly between men and women, which is consistent with chance. These results indicate thatmore » there are no differences in resting regional cerebral glucose utilization between young men and women.« less
Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie
2016-10-01
Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.
Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.
2011-01-01
Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227
Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
Hii, Siew Ling; Tan, Joo Shun; Ling, Tau Chuan; Ariff, Arbakariya Bin
2012-01-01
The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α-amylase; saccharification, which results in further transformation of maltodextrins into glucose. During saccharification process, pullulanase has been used to increase the final glucose concentration with reduced amount of glucoamylase. Therefore, the reversion reaction that involves resynthesis of saccharides from glucose molecules is prevented. To date, five groups of pullulanase enzymes have been reported, that is, (i) pullulanase type I, (ii) amylopullulanase, (iii) neopullulanase, (iv) isopullulanase, and (v) pullulan hydrolase type III. The current paper extensively reviews each category of pullulanase, properties of pullulanase, merits of applying pullulanase during starch bioprocessing, current genetic engineering works related to pullulanase genes, and possible industrial applications of pullulanase. PMID:22991654
Cannabis-induced impairment of learning and memory: effect of different nootropic drugs.
Abdel-Salam, Omar M E; Salem, Neveen A; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A
2013-01-01
Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ(9)-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose availability as well as alterations in brain monoamine neurotransmitter levels. Piracetam is more effective in ameliorating the cognitive impairments than other nootropics by alleviating the alterations in glucose, nitric oxide and dopamine in brain.
Cannabis-induced impairment of learning and memory: effect of different nootropic drugs
Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.
2013-01-01
Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose availability as well as alterations in brain monoamine neurotransmitter levels. Piracetam is more effective in ameliorating the cognitive impairments than other nootropics by alleviating the alterations in glucose, nitric oxide and dopamine in brain. PMID:26417227
Pellegrini, Michael; Zoghi, Maryam; Jaberzadeh, Shapour
2018-01-12
Cluster analysis and other subgrouping techniques have risen in popularity in recent years in non-invasive brain stimulation research in the attempt to investigate the issue of inter-individual variability - the issue of why some individuals respond, as traditionally expected, to non-invasive brain stimulation protocols and others do not. Cluster analysis and subgrouping techniques have been used to categorise individuals, based on their response patterns, as responder or non-responders. There is, however, a lack of consensus and consistency on the most appropriate technique to use. This systematic review aimed to provide a systematic summary of the cluster analysis and subgrouping techniques used to date and suggest recommendations moving forward. Twenty studies were included that utilised subgrouping techniques, while seven of these additionally utilised cluster analysis techniques. The results of this systematic review appear to indicate that statistical cluster analysis techniques are effective in identifying subgroups of individuals based on response patterns to non-invasive brain stimulation. This systematic review also reports a lack of consensus amongst researchers on the most effective subgrouping technique and the criteria used to determine whether an individual is categorised as a responder or a non-responder. This systematic review provides a step-by-step guide to carrying out statistical cluster analyses and subgrouping techniques to provide a framework for analysis when developing further insights into the contributing factors of inter-individual variability in response to non-invasive brain stimulation.
(13)C MR spectroscopy study of lactate as substrate for rat brain.
Qu, H; Håberg, A; Haraldseth, O; Unsgård, G; Sonnewald, U
2000-01-01
In order to address the question whether lactate in blood can serve as a precursor for cerebral metabolites, fully awake rats were injected intravenously with [U-(13)C]lactate or [U-(13)C]glucose followed 15 min later by decapitation. Incorporation of label from [U-(13)C]glucose was seen mainly in glutamate, GABA, glutamine, aspartate, alanine and lactate. More label was found in glutamate than glutamine, underscoring the predominantly neuronal metabolism of pyruvate from [U-(13)C]glucose. It was estimated that the neuronal metabolism of acetyl CoA from glucose accounts for at least 66% and the glial for no more than 34% of the total glucose consumption. When [U-(13)C]lactate was the precursor, label incorporation was similar to that observed from [U-(13)C]glucose, but much reduced. Plasma analysis revealed the presence of approximately equal amounts of [1,2,3-(13)C]- and [1,2-(13)C]glucose, showing gluconeogenesis from [U-(13)C]lactate. It was thus possible that the labeling seen in the cerebral amino acids originated from labeled glucose, not [U-(13)C]lactate. However, the presence of significantly more label in [U-(13)C]- than in [2,3-(13)C]alanine demonstrated that [U-(13)C]lactate did indeed cross the blood-brain barrier, and was metabolized further in the brain. Furthermore, contributions from pyruvate carboxylase (glial enzyme) were detectable in glutamine, glutamate and GABA, and were comparatively more pronounced in the glucose group. This indicated that relatively more pyruvate from lactate than glucose was metabolized in neurons. Surprisingly, the same amount of lactate was synthesized via the tricarboxylic acid cycle in both groups, indicating transfer of neurotransmitters from the neuronal to the astrocytic compartment, as previous studies have shown that this lactate is synthesized primarily in astrocytes. Taking into consideration that astrocytes take up glutamate more avidly than GABA, it is conceivable that neuronal lactate metabolism was more prominent in glutamatergic neurons. Copyright 2000 S. Karger AG, Basel
Alsaadi, Hanin M; Van Vugt, Dean A
2015-11-01
This study examined the effect of insulin sensitivity on the responsiveness of appetite regulatory brain regions to visual food cues. Nineteen participants diagnosed with polycystic ovary syndrome (PCOS) were divided into insulin-sensitive (n=8) and insulin-resistant (n=11) groups based on the homeostatic model assessment of insulin resistance (HOMA2-IR). Subjects underwent functional magnetic resonance imaging (fMRI) while viewing food pictures following water or dextrose consumption. The corticolimbic blood oxygen level dependent (BOLD) responses to high-calorie (HC) or low-calorie (LC) food pictures were compared within and between groups. BOLD responses to food pictures were reduced during a glucose challenge in numerous corticolimbic brain regions in insulin-sensitive but not insulin-resistant subjects. Furthermore, the degree of insulin resistance positively correlated with the corticolimbic BOLD response in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), anterior cingulate and ventral tegmental area (VTA) in response to HC pictures, and in the dorsolateral prefrontal cortex (DLPFC), mPFC, anterior cingulate, and insula in response to LC pictures following a glucose challenge. BOLD signal in the OFC, midbrain, hippocampus, and amygdala following a glucose challenge correlated with HOMA2-IR in response to HC-LC pictures. We conclude that the normal inhibition of corticolimbic brain responses to food pictures during a glucose challenge is compromised in insulin-resistant subjects. The increase in brain responsiveness to food pictures during postprandial hyperinsulinemia may lead to greater non-homeostatic eating and perpetuate obesity in insulin-resistant subjects.
Metabolic effects of portal vein sensing.
Mithieux, G
2014-09-01
The extrinsic gastrointestinal nerves are crucial in the sensing of nutrients and hormones and its translation in terms of control of food intake. Major macronutrients like glucose and protein are sensed by the extrinsic nerves located in the portal vein walls, which signal to the brain and account for the satiety phenomenon they promote. Glucose is sensed in the portal vein by neurons expressing the glucose receptor SGLT3, which activate the main regions of the brain involved in the control of food intake. Proteins indirectly act on food intake by inducing intestinal gluconeogenesis and its sensing by the portal glucose sensor. The mechanism involves a prior antagonism by peptides of the μ-opioid receptors present in the portal vein nervous system and a reflex arc with the brain inducing intestinal gluconeogenesis. In a comparable manner, short-chain fatty acids produced from soluble fibre act via intestinal gluconeogenesis to exert anti-obesity and anti-diabetic effects. In the case of propionate, the mechanism involves a prior activation of the free fatty acid receptor FFAR3 present in the portal nerves and a reflex arc initiating intestinal gluconeogenesis. © 2014 John Wiley & Sons Ltd.
Jalloh, Ibrahim; Carpenter, Keri L H; Grice, Peter; Howe, Duncan J; Mason, Andrew; Gallagher, Clare N; Helmy, Adel; Murphy, Michael P; Menon, David K; Carpenter, T Adrian; Pickard, John D; Hutchinson, Peter J
2015-01-01
Increased ‘anaerobic' glucose metabolism is observed after traumatic brain injury (TBI) attributed to increased glycolysis. An alternative route is the pentose phosphate pathway (PPP), which generates putatively protective and reparative molecules. To compare pathways we employed microdialysis to perfuse 1,2-13C2 glucose into the brains of 15 TBI patients and macroscopically normal brain in six patients undergoing surgery for benign tumors, and to simultaneously collect products for nuclear magnetic resonance (NMR) analysis. 13C enrichment for glycolytic 2,3-13C2 lactate was the median 5.4% (interquartile range (IQR) 4.6–7.5%) in TBI brain and 4.2% (2.4–4.4%) in ‘normal' brain (P<0.01). The ratio of PPP-derived 3-13C lactate to glycolytic 2,3-13C2 lactate was median 4.9% (3.6–8.2%) in TBI brain and 6.7% (6.3–8.9%) in ‘normal' brain. An inverse relationship was seen for PPP-glycolytic lactate ratio versus PbtO2 (r=−0.5, P=0.04) in TBI brain. Thus, glycolytic lactate production was significantly greater in TBI than ‘normal' brain. Several TBI patients exhibited PPP–lactate elevation above the ‘normal' range. There was proportionally greater PPP-derived lactate production with decreasing PbtO2. The study raises questions about the roles of the PPP and glycolysis after TBI, and whether they can be manipulated to achieve a better outcome. This study is the first direct comparison of glycolysis and PPP in human brain. PMID:25335801
Methylphenidate increases glucose uptake in the brain of young and adult rats.
Réus, Gislaine Z; Scaini, Giselli; Titus, Stephanie E; Furlanetto, Camila B; Wessler, Leticia B; Ferreira, Gabriela K; Gonçalves, Cinara L; Jeremias, Gabriela C; Quevedo, João; Streck, Emilio L
2015-10-01
Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Brain interstitial fluid TNF-α after subarachnoid hemorrhage
Hanafy, Khalid A.; Grobelny, Bartosz; Fernandez, Luis; Kurtz, Pedro; Connolly, ES; Mayer, Stephan A.; Schindler, Christian; Badjatia, Neeraj
2010-01-01
Objective: TNF-α is an inflammatory cytokine that plays a central role in promoting the cascade of events leading to an inflammatory response. Recent studies have suggested that TNF-α may play a key role in the formation and rupture of cerebral aneurysms, and that the underlying cerebral inflammatory response is a major determinate of outcome following subrarachnoid hemorrhage (SAH). Methods: We studied 14 comatose SAH patients who underwent multimodality neuromonitoring with intracranial pressure (ICP) and cerebral microdialysis as part of their clinical care. Continuous physiological variables were time-locked every 8 hours and recorded at the same point that brain interstitial fluid TNF-α was measured in brain microdialysis samples. Significant associations were determined using generalized estimation equations. Results: Each patient had a mean of 9 brain tissue TNF-α measurements obtained over an average of 72 hours of monitoring. TNF-α levels rose progressively over time. Predictors of elevated brain interstitial TNF-α included higher brain interstitial fluid glucose levels (β=0.066, P<0.02), intraventricular hemorrhage (β=0.085, P<0.021), and aneurysm size >6 mm (β=0.14, p<0.001). There was no relationship between TNF-α levels and the burden of cisternal SAH; concurrent measurements of serum glucose, or lactate-pyruvate ratio. Interpretation: Brain interstitial TNF-α levels are elevated after SAH, and are associated with large aneurysm size, the burden of intraventricular blood, and elevation brain interstitial glucose levels. PMID:20110094
Maddock, Richard J; Buonocore, Michael H; Lavoie, Shawn P; Copeland, Linda E; Kile, Shawn J; Richards, Anne L; Ryan, John M
2006-11-22
Proton magnetic resonance spectroscopy ((1)H-MRS) studies showing increased lactate during neural activation support a broader role for lactate in brain energy metabolism than was traditionally recognized. Proton MRS measures of brain lactate responses have been used to study regional brain metabolism in clinical populations. This study examined whether variations in blood glucose influence the lactate response to visual stimulation in the visual cortex. Six subjects were scanned twice, receiving either saline or 21% glucose intravenously. Using (1)H-MRS at 1.5 Tesla with a long echo time (TE=288 ms), the lactate doublet was visible at 1.32 ppm in the visual cortex of all subjects. Lactate increased significantly from resting to visual stimulation. Hyperglycemia had no effect on this increase. The order of the slice-selective gradients for defining the spectroscopy voxel had a pronounced effect on the extent of contamination by signal originating outside the voxel. The results of this preliminary study demonstrate a method for observing a consistent activity-stimulated increase in brain lactate at 1.5 T and show that variations in blood glucose across the normal range have little effect on this response.
Jiang, Tianyi; Yin, Fei; Yao, Jia; Brinton, Roberta Díaz; Cadenas, Enrique
2013-01-01
Summary This study examines the progress of a hypometabolic state inherent in brain aging with an animal model consisting of Fischer 344 rats of young, middle, and old ages. Dynamic microPET scanning demonstrated a significant decline in brain glucose uptake at old ages, which was associated with a decrease in the expression of insulin-sensitive neuronal glucose transporters GLUT3/4 and of microvascular endothelium GLUT1. Brain aging was associated with an imbalance of the PI3K/Akt pathway of insulin signaling and JNK signaling and a downregulation of the PGC1α – mediated transcriptional pathway of mitochondrial biogenesis that impinged on multiple aspects of energy homeostasis. R-(+)-lipoic acid treatment increased glucose uptake, restored the balance of Akt/JNK signaling, and enhanced mitochondrial bioenergetics and the PGC1α-driven mitochondrial biogenesis. It may be surmised that impairment of a mitochondria-cytosol-nucleus communication is underlying the progression of the age-related hypometabolic state in brain; the effects of lipoic acid are not organelle-limited but reside on the functional and effective coordination of this communication that results in improved energy metabolism. PMID:23815272
Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N
2003-08-01
Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.
1981-01-01
Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylationmore » rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.« less
Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice,more » once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance.« less
Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides
McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin
2014-01-01
Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain. PMID:24169853
Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides.
McDonald, Tanya S; Tan, Kah Ni; Hodson, Mark P; Borges, Karin
2014-01-01
Medium chain triglycerides (MCTs) are used to treat neurologic disorders with metabolic impairments, including childhood epilepsy and early Alzheimer's disease. However, the metabolic effects of MCTs in the brain are still unclear. Here, we studied the effects of feeding even and uneven MCTs on brain glucose metabolism in the mouse. Adult mice were fed 35% (calories) of trioctanoin or triheptanoin (the triglycerides of octanoate or heptanoate, respectively) or a matching control diet for 3 weeks. Enzymatic assays and targeted metabolomics by liquid chromatography tandem mass spectrometry were used to quantify metabolites in extracts from the hippocampal formations (HFs). Both oils increased the levels of β-hydroxybutyrate, but no other significant metabolic alterations were observed after triheptanoin feeding. The levels of glucose 6-phosphate and fructose 6-phosphate were increased in the HF of mice fed trioctanoin, whereas levels of metabolites further downstream in the glycolytic pathway and the pentose phosphate pathway were reduced. This indicates that trioctanoin reduces glucose utilization because of a decrease in phosphofructokinase activity. Trioctanoin and triheptanoin showed similar anticonvulsant effects in the 6 Hz seizure model, but it remains unknown to what extent the anticonvulsant mechanism(s) are shared. In conclusion, triheptanoin unlike trioctanoin appears to not alter glucose metabolism in the healthy brain.
Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight
Arble, Deanna M.; Chambers, Adam P.; Gutierrez-Aguilar, Ruth; He, Yanlin; Xu, Yong; Gardner, David; Moore, David D.; Seeley, Randy J.; Sandoval, Darleen A.
2016-01-01
Despite clear associations between vitamin D deficiency and obesity and/or type 2 diabetes, a causal relationship is not established. Vitamin D receptors (VDRs) are found within multiple tissues, including the brain. Given the importance of the brain in controlling both glucose levels and body weight, we hypothesized that activation of central VDR links vitamin D to the regulation of glucose and energy homeostasis. Indeed, we found that small doses of active vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3) (calcitriol), into the third ventricle of the brain improved glucose tolerance and markedly increased hepatic insulin sensitivity, an effect that is dependent upon VDR within the paraventricular nucleus of the hypothalamus. In addition, chronic central administration of 1,25D3 dramatically decreased body weight by lowering food intake in obese rodents. Our data indicate that 1,25D3-mediated changes in food intake occur through action within the arcuate nucleus. We found that VDR colocalized with and activated key appetite-regulating neurons in the arcuate, namely proopiomelanocortin neurons. Together, these findings define a novel pathway for vitamin D regulation of metabolism with unique and divergent roles for central nervous system VDR signaling. Specifically, our data suggest that vitamin D regulates glucose homeostasis via the paraventricular nuclei and energy homeostasis via the arcuate nuclei. PMID:27217488
Clarke, Julia R; Lyra e Silva, Natalia M; Figueiredo, Claudia P; Frozza, Rudimar L; Ledo, Jose H; Beckman, Danielle; Katashima, Carlos K; Razolli, Daniela; Carvalho, Bruno M; Frazão, Renata; Silveira, Marina A; Ribeiro, Felipe C; Bomfim, Theresa R; Neves, Fernanda S; Klein, William L; Medeiros, Rodrigo; LaFerla, Frank M; Carvalheira, Jose B; Saad, Mario J; Munoz, Douglas P; Velloso, Licio A; Ferreira, Sergio T; De Felice, Fernanda G
2015-01-01
Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Aβ oligomers (AβOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AβOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AβOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2α phosphorylation (eIF2α-P). AβOs further induced eIF2α-P and activated pro-inflammatory IKKβ/NF-κB signaling in the hypothalamus of mice and macaques. AβOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-α (TNF-α) receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AβOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AβOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD. PMID:25617315
Ketosis proportionately spares glucose utilization in brain.
Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A
2013-08-01
The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[(18)F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde-Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis.
Converse, Alexander K.; Aubert, Yves; Farhoud, Mohammed; Weichert, Jamey P.; Rowland, Ian J.; Ingrisano, Nicole M.; Allers, Kelly A.; Sommer, Bernd; Abbott, David H.
2013-01-01
As part of a larger experiment investigating serotonergic regulation of female marmoset sexual behavior, this study was designed to (1) advance methods for PET imaging of common marmoset monkey brain, (2) measure normalized FDG uptake as an index of local cerebral metabolic rates for glucose, and (3) study changes induced in this index of cerebral glucose metabolism by chronic treatment of female marmosets with a serotonin 1A receptor (5-HT1A) agonist. We hypothesized that chronic treatment with the 5-HT1A agonist 8-OH-DPAT would alter the glucose metabolism index in dorsal raphe (DR), medial prefrontal cortex (mPFC), medial preoptic area of hypothalamus (mPOA), ventromedial nucleus of hypothalamus (VMH), and field CA1 of hippocampus. Eight adult ovariectomized female common marmosets (Callithrix jacchus) were studied with and without estradiol replacement. In a crossover design, each subject was treated daily with 8-OH-DPAT (0.1 mg/kg SC daily) or saline. After 42–49 days of treatment, the glucose metabolism radiotracer FDG was administered to each female immediately prior to 30 min of interaction with her male pairmate, after which the subject was anesthetized and imaged by PET. Whole brain normalized PET images were analyzed with anatomically defined regions of interest (ROI). Whole brain voxelwise mapping was also used to explore treatment effects and correlations between alterations in the glucose metabolism index and pairmate interactions. The rank order of normalized FDG uptake was VMH/mPOA>DR>mPFC/CA1 in both conditions. 8-OH-DPAT did not induce alterations in the glucose metabolism index in ROIs. Voxelwise mapping showed a significant reduction in normalized FDG uptake in response to 8-OH-DPAT in a cluster in medial occipital cortex as well as a significant correlation between increased rejection of mount attempts and reduced normalized FDG uptake in an overlapping cluster. In conclusion, PET imaging has been used to measure FDG uptake relative to whole brain in marmoset monkeys. Voxelwise mapping shows that 8-OH-DPAT reduces this index of glucose metabolism in medial occipital cortex, consistent with alterations in female sexual behavior. PMID:22233732
[Power metabolism from neurons and a glia to the whole brain: norm, pathology and correction].
Zil'berter, Iu I; Zil'berter, T M
2012-01-01
The review outlines current state of the thepretical, methodological and applies aspects of brain's energy homeostasis. Authors suggest reconsidering the exclusive role of glucose as an energy substrate (ES) at both neuronal and systemic levels discussing recent research data on qualitative composition of ES pool in the brain. The role of ES alternative to glucose, e.g., lactate and ketone bodies, is examined. The hypotheses of intracellular and astrocyte-neuron lactate shuttles are discussed along with the hypotheses of astrocyte-neuron shuttle of ketone bodies, the selfish brain theory and suppositions on homeostatic versus non-homeostatic ES supply chains. In conclusion, authors argue that exogenous native ES may be used for prevention and treatment of neurodegenerative diseases.
Liang, Meng-Ya; Chen, Guang-Xian; Tang, Zhi-Xian; Rong, Jian; Yao, Jian-ping; Wu, Zhong-Kai
2016-03-01
It remains controversial whether contemporary cerebral perfusion techniques, utilized during deep hypothermic circulatory arrest (DHCA), establish adequate perfusion to deep structures in the brain. This study aimed to investigate whether selective antegrade cerebral perfusion (SACP) or retrograde cerebral perfusion (RCP) can provide perfusion equally to various anatomical positions in the brain using metabolic evidence obtained from microdialysis. Eighteen piglets were randomly assigned to 40 min of circulatory arrest (CA) at 18°C without cerebral perfusion (DHCA group, n = 6) or with SACP (SACP group, n = 6) or RCP (RCP group, n = 6). Microdialysis parameters (glucose, lactate, pyruvate, and glutamate) were measured every 30 min in cortex and striatum. After 3 h of reperfusion, brain tissue was harvested for Western blot measurement of α-spectrin. After 40 min of CA, the DHCA group showed marked elevations of lactate and glycerol and a reduction in glucose in the microdialysis perfusate (all P < 0.05). The changes in glucose, lactate, and glycerol in the perfusate and α-spectrin expression in brain tissue were similar between cortex and striatum in the SACP group (all P > 0.05). In the RCP group, the cortex exhibited lower glucose, higher lactate, and higher glycerol in the perfusate and higher α-spectrin expression in brain tissue compared with the striatum (all P < 0.05). Glutamate showed no difference between cortex and striatum in all groups (all P > 0.05). In summary, SACP provided uniform and continuous cerebral perfusion to most anatomical sites in the brain, whereas RCP resulted in less sufficient perfusion to the cortex but better perfusion to the striatum. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Matsushima, Kazuhide; Peng, Monica; Velasco, Carlos; Schaefer, Eric; Diaz-Arrastia, Ramon; Frankel, Heidi
2012-04-01
Significant glycemic excursions (so-called glucose variability) affect the outcome of generic critically ill patients but has not been well studied in patients with traumatic brain injury (TBI). The purpose of this study was to evaluate the impact of glucose variability on long-term functional outcome of patients with TBI. A noncomputerized tight glucose control protocol was used in our intensivist model surgical intensive care unit. The relationship between the glucose variability and long-term (a median of 6 months after injury) functional outcome defined by extended Glasgow Outcome Scale (GOSE) was analyzed using ordinal logistic regression models. Glucose variability was defined by SD and percentage of excursion (POE) from the preset range glucose level. A total of 109 patients with TBI under tight glucose control had long-term GOSE evaluated. In univariable analysis, there was a significant association between lower GOSE score and higher mean glucose, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL but not POE 80 to 110. After adjusting for possible confounding variables in multivariable ordinal logistic regression models, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL were significantly associated with lower GOSE score. Glucose variability was significantly associated with poorer long-term functional outcome in patients with TBI as measured by the GOSE score. Well-designed protocols to minimize glucose variability may be key in improving long-term functional outcome. Copyright © 2012 Elsevier Inc. All rights reserved.
Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain
Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.; Fidler, Isaiah J.; Cantley, Lewis C.; Locasale, Jason W.; Weihua, Zhang
2014-01-01
Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the non-oxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBPs) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis, and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. PMID:25511375
Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain.
Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi R; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M; Fidler, Isaiah J; Cantley, Lewis C; Locasale, Jason W; Weihua, Zhang
2015-02-01
Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. ©2014 American Association for Cancer Research.
Michaelides, Michael; Miller, Michael L; DiNieri, Jennifer A; Gomez, Juan L; Schwartz, Elizabeth; Egervari, Gabor; Wang, Gene Jack; Mobbs, Charles V; Volkow, Nora D; Hurd, Yasmin L
2017-11-01
Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.
Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor.
Hu, Y; Wilson, G S
1997-04-01
A needle-type electrochemically based microsensor for glucose (110 microns o.d.) is described. This sensor, designed for monitoring transient glucose content changes in response to neural stimuli, has a response time of approximately 5 s and has been shown to be free of interference from endogenous electroactive species such as ascorbate, urate, and various neurotransmitters. It exhibits linear response to glucose up to 10 mM. The usefulness of the sensor has been demonstrated by examining the time-dependent interstitial glucose concentration in the rat hippocampus in response to KCl depolarization and by stimulation of glutamate neurons through a perforant pathway. Simultaneous monitoring of oxygen is also carried out and demonstrates that for both oxygen and glucose there is substantial local depletion of both species and that their pools are replenished by increased regional cerebral blood flow. The transient initial rapid (10-13 s) decrease up to 20-34%, observed on a time scale comparable to that for neurotransmitter release, may be involved in a recently suggested astrocytic uptake for glutamate-stimulated aerobic glycolysis possibly needed to meet energy homeostasis in brain. These studies demonstrate the importance of microsensors in monitoring transient events linked to neuronal stimulation.
Dephosphorylation of 2-deoxyglucose 6-phosphate and 2-deoxyglucose export from cultured astrocytes.
Forsyth, R J; Bartlett, K; Eyre, J
1996-03-01
Neurotransmitter-stimulated mobilization of astrocyte glycogen has been proposed as a basis for local energy homeostasis in brain. However, uncertainty remains over the fate of astrocyte glycogen. Upon transfer of cultured astrocytes pre-loaded with [2-3H]2-deoxyglucose 6-phosphate at non-tracer concentrations to a glucose-free, 2-deoxyglucose-free medium, rapid dephosphorylation of a proportion of the intracellular 2-deoxyglucose 6-phosphate pool and export of 2-deoxyglucose to the extracellular fluid occurs. Astrocytes show very low, basal rates of gluconeogenesis from pyruvate (approx. 1 nmol mg protein-1 h-1). Astrocytes in vivo may be capable of physiologically significant glucose export from glucose-6-phosphate. The low gluconeogenic activity in astrocytes suggests that the most likely source of glucose-6-phosphate may be glycogen. These findings support the hypothesis that export, as glucose, to adjacent neurons may be one of the possible fate(s) of astrocytic glycogen. Such export of glycogen as glucose occurring in response to increases in neuronal activity could contribute to energy homeostasis on a paracrine scale within brain.
REGULATION OF MEMORY – FROM THE ADRENAL MEDULLA TO LIVER TO ASTROCYTES TO NEURONS1
Gold, Paul E.
2014-01-01
Epinephrine, released into blood from the adrenal medulla in response to arousing experiences, is a potent enhancer of learning and memory processing. This review examines mechanisms by which epinephrine exerts its effects on these cognitive functions. Because epinephrine is largely blocked from moving from blood to brain, it is likely that the hormone's effects on memory are mediated by peripheral actions. A classic effect of epinephrine is to act at the liver to break down glycogen stores, resulting in increased blood glucose levels. The increase in blood glucose provides additional energy substrates to the brain to buttress the processes needed for an experience to be learned and remembered. In part, it appears that the increased glucose may act in the brain in a manner akin to that evident in the liver, engaging glycogenolysis in astrocytes to provide an energy substrate, in this case lactate, to augment neuronal functions. Together, the findings reveal a mechanism underlying modulation of memory that integrates the physiological functions of multiple organ systems to support brain processes. PMID:24406469
Control of hepatic glucose metabolism by islet and brain.
Rojas, J M; Schwartz, M W
2014-09-01
Dysregulation of hepatic glucose uptake (HGU) and inability of insulin to suppress hepatic glucose production (HGP) contribute to hyperglycaemia in patients with type 2 diabetes (T2D). Growing evidence suggests that insulin can inhibit HGP not only through a direct effect on the liver but also through a mechanism involving the brain. Yet, the notion that insulin action in the brain plays a physiological role in the control of HGP continues to be controversial. Although studies in dogs suggest that the direct hepatic effect of insulin is sufficient to explain day-to-day control of HGP, a surprising outcome has been revealed by recent studies in mice, investigating whether the direct hepatic action of insulin is necessary for normal HGP: when the hepatic insulin signalling pathway was genetically disrupted, HGP was maintained normally even in the absence of direct input from insulin. Here, we present evidence that points to a potentially important role of the brain in the physiological control of both HGU and HGP in response to input from insulin as well as other hormones and nutrients. © 2014 John Wiley & Sons Ltd.
Metabolism A higher power for insulin
NASA Astrophysics Data System (ADS)
Gribble, Fiona M.
2005-04-01
Glucose output from the liver is tightly regulated by insulin. But insulin holds sway over more than the liver - an unappreciated circuit in glucose control involves the opening of ion channels in the brain.
Is Low Blood Glucose (Hypoglycemia) Dangerous?
... for brain damage related to repeated severe hypoglycemia. Guidelines for managing hypoglycemia Recognize symptoms (physical, emotional, mental) ... not risen above the target levels defined above . Guidelines for safe driving Check blood glucose levels before ...
Effects of Taurine Supplementation on Neuronal Excitability and Glucose Homeostasis.
El Idrissi, Abdeslem; El Hilali, Fatiha; Rotondo, Salvatore; Sidime, Francoise
2017-01-01
In this study we examined the role of chronic taurine supplementation on plasma glucose homeostasis and brain excitability through activation of the insulin receptor. FVB/NJ male mice were supplemented with taurine in drinking water (0.05% w/v) for 4 weeks and subjected to a glucose tolerance test (7.5 mg/kg BW) after 12 h fasting. We found that taurine-fed mice were slightly hypoglycemic prior to glucose injection and showed significantly reduced plasma glucose at 30 and 60 min post-glucose injection when compared to control mice. Previously, we reported that taurine supplementation induces biochemical changes that target the GABAergic system. Those studies show that taurine-fed mice are hyperexcitable, have reduced GABA A receptors expression and increased GAD and somatostatin expression in the brain. In this study, we found that taurine-fed mice had a significant increase in insulin receptor (IR) immuno-reactivity in the pancreas and all brain regions examined. At the mRNA level, we found that the IR showed differential regional expression. Surprisingly, we found that neurons express the gene for insulin and that taurine had a significant role in regulating insulin gene expression. We propose that increased insulin production and secretion in taurine-fed mice cause an increase activation of the central IR and may be partially responsible for the increased neuronal excitability observed in taurine supplemented mice. Furthermore, the high levels of neuronal insulin expression and its regulation by taurine implicates taurine in the regulation of metabolic homeostasis.
Otsubo, H; Kondoh, T; Shibata, M; Torii, K; Ueta, Y
2011-11-24
l-glutamate, an umami taste substance, is a key molecule coupled to a food intake signaling pathway. Furthermore, recent studies have unveiled new roles for dietary glutamate on gut-brain axis communication via activation of gut glutamate receptors and subsequent vagus nerve. In the present study, we mapped activation sites of the rat forebrain after intragastric load of 60 mM monosodium l-glutamate (MSG) by measurement of Fos protein, a functional marker of neuronal activation. The same concentration of d-glucose (sweet) and NaCl (salty) was used as controls. MSG administration exclusively produced enhanced Fos expression in four hypothalamic regions (the medial preoptic area, lateral hypothalamic area, dorsomedial nucleus, and arcuate nucleus). On the other hand, glucose administration exclusively enhanced Fos induction in the nucleus accumbens. Both MSG and glucose enhanced Fos induction in three brain regions (the habenular nucleus, paraventricular nucleus, and central nucleus of the amygdala). However, MSG induced Fos inductions were more potent than those of glucose in the habenular nucleus and paraventricular nucleus. Importantly, the present study identified for the first time two brain areas (the paraventricular and arcuate hypothalamic nuclei) that are more potently activated by intragastric MSG loads compared with glucose and NaCl. Overall, our results suggest significant activation of a neural network comprising the habenular nucleus, amygdala, and the hypothalamic subnuclei following intragastric load with glutamate. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud; Patterson, Christa; Flak, Jonathan; Becker, Thomas C.; Ali, Almas; Tamarina, Natalia; Philipson, Louis H.; Enquist, Lynn W.; Myers, Martin G.
2016-01-01
The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia. PMID:27207534
Glucose Plus Fructose Ingestion for Post-Exercise Recovery-Greater than the Sum of Its Parts?
Gonzalez, Javier T; Fuchs, Cas J; Betts, James A; van Loon, Luc J C
2017-03-30
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose-fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose-fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose-fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose-fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass -1 ·h -1 can enhance glycogen repletion rates whilst also minimising gastrointestinal distress.
Vaitheesvaran, B; LeRoith, D; Kurland, I J
2010-10-01
Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin sensitivity.
Astrocyte-derived adenosine is central to the hypnogenic effect of glucose
Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle
2016-01-01
Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200
Hypothalamic neurones governing glucose homeostasis.
Coppari, R
2015-06-01
The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion. © 2015 British Society for Neuroendocrinology.
Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.
2012-01-01
SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223
Marcus, Hani J; Carpenter, Keri L H; Price, Stephen J; Hutchinson, Peter J
2010-03-01
Microdialysis enables measurement of the chemistry of the cerebral extracellular fluid. This study's objective was to utilise microdialysis to monitor levels of glucose, lactate, pyruvate, glutamate and glycerol in patients following surgery for intrinsic brain tumours, and to assess the concentration of growth factors, cytokines and other proteins involved in the pathogenesis of high-grade gliomas in vivo. Eight patients with suspected high-grade gliomas were studied. Seven of these underwent resection with one microdialysis catheter placed at the tumour resection margin and, in six of these seven cases, a second microdialysis catheter in macroscopically normal peritumour tissue. The remaining glioma patient had an image-guided biopsy with a single catheter inserted stereotactically at the tumour margin. Histology demonstrated WHO IV glioblastoma in five cases, WHO III anaplastic astrocytoma in two cases, and one cerebral lymphoma. In the high-grade gliomas (WHO IV and III), tumour margin microdialysates consistently showed significantly lower glucose, higher lactate/pyruvate (L/P) ratio, higher glutamate and higher glycerol, relative to peritumour microdialysates (P < 0.05). These results indicate that malignant glioma margin tissue is metabolically extremely active. There was great variability in the microdialysate concentrations of growth factors (TGFalpha, EGF, VEGF), cytokines (IL-1alpha, IL-1beta, IL-1ra, IL-6, IL-8), matrix metalloproteinases (MMP-2, MMP-9) and their endogenous inhibitors (TIMP-1, TIMP-2). Notably, microdialysates from the glioma resection margin demonstrated significantly higher IL-8 concentration and higher MMP-2/TIMP-1 ratio when compared to peritumour microdialysates (P < 0.05), suggesting an environment favouring invasion and angiogenesis at the tumour margin. Microdialysis is a promising technique to study in vivo glioma metabolism, and may assist in the development of new therapies.
Madison, Cindee; Baker, Suzanne; Rabinovici, Gil; Jagust, William
2016-01-01
Abstract See Hansson and Gouras (doi:10.1093/aww146) for a scientific commentary on this article. Although some brain regions such as precuneus and lateral temporo-parietal cortex have been shown to be more vulnerable to Alzheimer’s disease than other areas, a mechanism underlying the differential regional vulnerability to Alzheimer’s disease remains to be elucidated. Using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography imaging glucose metabolism and amyloid-β deposition, we tested whether and how life-long changes in glucose metabolism relate to amyloid-β deposition and Alzheimer’s disease-related hypometabolism. Nine healthy young adults (age range: 20–30), 96 cognitively normal older adults (age range: 61–96), and 20 patients with Alzheimer’s disease (age range: 50–90) were scanned using fluorodeoxyglucose and Pittsburgh compound B positron emission tomography. Among cognitively normal older subjects, 32 were further classified as amyloid-positive, with 64 as amyloid-negative. To assess the contribution of glucose metabolism to the regional vulnerability to amyloid-β deposition, we defined the highest and lowest metabolic regions in young adults and examined differences in amyloid deposition between these regions across groups. Two-way analyses of variance were conducted to assess regional differences in age and amyloid-β-related changes in glucose metabolism. Multiple regressions were applied to examine the association between amyloid-β deposition and regional glucose metabolism. Both region of interest and whole-brain voxelwise analyses were conducted to complement and confirm the results derived from the other approach. Regional differences in glucose metabolism between the highest and lowest metabolism regions defined in young adults (T = 12.85, P < 0.001) were maintained both in Pittsburgh compound B-negative cognitively normal older subjects (T = 6.66, P < 0.001) and Pittsburgh compound B-positive cognitively normal older subjects (T = 10.62, P < 0.001), but, only the Pittsburgh compound B-positive cognitively normal older subjects group showed significantly higher Pittsburgh compound B retention in the highest compared to the lowest glucose metabolism regions defined in young adults (T = 2.05, P < 0.05). Regional differences in age and amyloid-β-dependent changes in glucose metabolism were found such that frontal glucose metabolism was reduced with age, while glucose metabolism in the precuneus was maintained across the lifespan (right hemisphere: F = 7.69, P < 0.001; left hemisphere: F = 8.69, P < 0.001). Greater Alzheimer’s disease-related hypometabolism was observed in brain regions that showed both age-invariance and amyloid-β-related increases in glucose metabolism. Our results indicate that although early and life-long regional variation in glucose metabolism relates to the regional vulnerability to amyloid-β accumulation, Alzheimer’s disease-related hypometabolism is more specific to brain regions showing age-invariant glucose metabolism and amyloid-β-related hypermetabolism. PMID:27190008
Mapping phosphorylation rate of fluoro-deoxy-glucose in rat brain by 19F chemical shift imaging
Coman, Daniel; Sanganahalli, Basavaraju G.; Cheng, David; McCarthy, Timothy; Rothman, Douglas L.; Hyder, Fahmeed
2014-01-01
19F magnetic resonance spectroscopy (MRS) studies of 2-fluoro-2-deoxy-D-glucose (FDG) and 2-fluoro-2-deoxy-D-glucose-6-phosphate (FDG-6P) can be used for directly assessing total glucose metabolism in vivo. To date, 19F MRS measurements of FDG phosphorylation in the brain have either been achieved ex vivo from extracted tissue or in vivo by unusually long acquisition times. Electrophysiological and functional magnetic resonance imaging (fMRI) measurements indicate that FDG doses up to 500mg/kg can be tolerated with minimal side effects on cerebral physiology and evoked fMRI-BOLD responses to forepaw stimulation. In halothane-anesthetized rats, we report localized in vivo detection and separation of FDG and FDG-6P MRS signals with 19F 2D chemical shift imaging (CSI) at 11.7T. A metabolic model based on reversible transport between plasma and brain tissue, which included a non-saturable plasma to tissue component, was used to calculate spatial distribution of FDG and FDG-6P concentrations in rat brain. In addition, spatial distribution of rate constants and metabolic fluxes of FDG to FDG-6P conversion were estimated. Mapping the rate of FDG to FDG-6P conversion by 19F CSI provides an MR methodology that could impact other in vivo applications such as characterization of tumor pathophysiology. PMID:24581725
Li, Jing; Wang, Yixin; Fang, Fangfang; Chen, Donglong; Gao, Yue; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang
2016-04-01
Bisphenol A (BPA), one of the most prevalent chemicals for daily use, was recently reported to disturb the homeostasis of energy metabolism and insulin signaling pathways, which might contribute to the increasing prevalence rate of mild cognitive impairment (MCI). However, the underlying mechanisms are remained poorly understood. Here we studied the effects of low dose BPA on glucose transport and the IR/IRS/AKT/GSK3β axis in adult male mice to delineate the association between insulin signaling disruption and neurotoxicity mediated by BPA. Mice were treated with subcutaneous injection of 100μg/kg/d BPA or vehicle for 30 days, then the insulin signaling and glucose transporters in the hippocampus and prefrontal cortex were detected by western blot. Our results showed that mice treated with BPA displayed significant decrease of insulin sensitivity, and in glucose transporter 1, 3 (GLUT1, 3) protein levels in mouse brain. Meanwhile, hyperactivation of IR/IRS/AKT/GSK3β axis was detected in the brain of BPA treated mice. Noteworthily, significant increases of phosphorylated tau and β-APP were observed in BPA treated mice. These results strongly suggest that BPA exposure significantly disrupts brain insulin signaling and might be considered as a potential risk factor for neurodegenerative diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
A Cause of Permanent Ketosis: GLUT-1 Deficiency.
Chenouard, Alexis; Vuillaumier-Barrot, Sandrine; Seta, Nathalie; Kuster, Alice
2015-01-01
GLUT-1-deficiency syndrome (GLUT1-DS; OMIM 606777) is a treatable metabolic disorder caused by a mutation of SLC2A1 gene. The functional deficiency of the GLUT1 protein leads to an impaired glucose transport into the brain, resulting in neurologic disorders.We report on a 6-month-old boy with preprandial malaises who was treated monthly by a sorcerer because of a permanent acetonemic odor. He subsequently developed pharmaco-resistant seizures with microcephaly and motor abnormalities. Metabolic explorations were unremarkable except for a fasting glucose test which revealed an abnormal increase of blood ketone bodies. At the age of 35 months, GLUT1-DS was diagnosed based on hypoglycorrhachia with a decreased CSF to blood glucose ratio, and subsequent direct sequencing of the SLC2A1 gene revealed a de novo heterozygous mutation, c.349A>T (p.Lys117X) on exon 4. It was noteworthy that the patient adapted to the deficient cerebral glucose transport by permanent ketone body production since early life. Excessive ketone body production in this patient provided an alternative energy substrate for his brain. We suggest a cerebral metabolic adaptation with upregulation of monocarboxylic acid transporter proteins (MCT1) at the blood-brain barrier provoked by neuroglycopenia and allowing ketone body utilization by the brain. This case illustrates that GLUT1-DS should be considered in the differential diagnosis of permanent ketosis.
Wiers, Corinde E; Shokri-Kojori, Ehsan; Wong, Christopher T; Abi-Dargham, Anissa; Demiral, Şükrü B; Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D
2016-01-01
The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [18F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain. PMID:27156854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchesi, K.J.
1986-03-01
The effect of bilateral intracarotid infusion of histamine (HA) on capillary permeability-surface area products (PS) of two metabolically inert tracers was determined and compared to that of L(+)arabinose (ARAB) in rat brain. Ringer's solution alone, or with 1 mg/kg HA diphosphate or 1.6M ARAB added, was infused (0.9 ml over 0.5 min) into each external carotid artery (CA). Five minutes later, a bolus of /sup 14/C-sucrose and /sup 3/H-L-glucose was injected i.v. Estimates of PS for both tracers were computed by the method of Ohno et al after brain concentration was corrected for tracer within cerebral blood vessels. Brain bloodmore » volume, based on the /sup 14/C-dextran space, was the same (.016 ml/g) in discrete cortical and midbrain regions of all rats except those treated with ARAB. The latter yielded .033 ml/g, presumably due to dextran extravasation. Infusion of ARAB, HA and Ringer's increased the PS's of sucrose and L-glucose by 10x, 8x, and 3x in brain regions perfused by the internal CA's. The ratio, PS-sucrose/PS-L-glucose was unchanged by any treatment. Both ARAB and HA caused transient falls in arterial pressure, but only ARAB caused deaths (3 of 9 rats). While as effective as ARAB in opening the blood-brain barrier, HA may be safer than hyperosmotic shock to enhance delivery of chemotherapeutic agents to brain tumors.« less
Wakabayashi, Ken T.; Myal, Stephanie E.; Kiyatkin, Eugene A.
2015-01-01
While motivated behavior involves multiple neurochemical systems, few studies have focused on the role of glutamate, the brain’s excitatory neurotransmitter, and glucose, the energetic substrate of neural activity in reward-related neural processes. Here, we used high-speed amperometry with enzyme-based substrate-sensitive and control, enzyme-free biosensors to examine second-scale fluctuations in the extracellular levels of these substances in the nucleus accumbens shell during glucose-drinking behavior in trained rats. Glutamate rose rapidly after the presentation of a glucose-containing cup and before the initiation of drinking (reward seeking), decreased more slowly to levels below baseline during consumption (sensory reward), and returned to baseline when the ingested glucose reached the brain (metabolic reward). When water was substituted for glucose, glutamate rapidly increased with cup presentation and in contrast to glucose drinking, increased above baseline after rats tasted the water and refused to drink further. Therefore, extracellular glutamate show distinct changes associated with key events of motivated drinking behavior and opposite dynamics during sensory and metabolic components of reward. In contrast to glutamate, glucose increased at each stimulus and behavioral event, showing a sustained elevation during the entire behavior and a robust post-ingestion rise that correlated with the gradual return of glutamate levels to their baseline. By comparing active drinking with passive intra-gastric glucose delivery, we revealed that fluctuations in extracellular glucose are highly dynamic, reflecting a balance between rapid delivery due to neural activity, intense metabolism, and the influence of ingested glucose reaching the brain. PMID:25393775
Schönfeld, Peter; Reiser, Georg
2013-01-01
It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood–brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain. PMID:23921897
Choi, Yeong-Gon; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun
2016-01-01
Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.
Schönfeld, Peter; Reiser, Georg
2013-10-01
It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.
Hu, Y; Wilson, G S
1997-10-01
A successfully developed enzyme-based lactate microsensor with rapid response time allows the direct and continuous in vivo measurement of lactic acid concentration with high temporal resolution in brain extracellular fluid. The fluctuations coupled to neuronal activity in extracellular lactate concentration were explored in the dentate gyrus of the hippocampus of the rat brain after electrical stimulation of the perforant pathway. Extracellular glucose and oxygen levels were also detected simultaneously by coimplantation of a fast-response glucose sensor and an oxygen electrode, to provide novel information of trafficking of energy substances in real time related to local neuronal activity. The results first give a comprehensive picture of complementary energy supply and use of lactate and glucose in the intact brain tissue. In response to acute neuronal activation, the brain tissue shifts immediately to significant energy supply by lactate. A local temporary fuel "reservoir" is established behind the blood-brain barrier, evidenced by increased extracellular lactate concentration. The pool can be depleted rapidly, up to 28% in 10-12 s, by massive, acute neuronal use after stimulation and can be replenished in approximately 20 s. Glutamate-stimulated astrocytic glycolysis and the increase of regional blood flow may regulate the lactate concentration of the pool in different time scales to maintain local energy homeostasis.
Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C
2014-06-01
Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.
Multifunctional roles of enolase in Alzheimer's disease brain: beyond altered glucose metabolism.
Butterfield, D Allan; Lange, Miranda L Bader
2009-11-01
Enolase enzymes are abundantly expressed, cytosolic carbon-oxygen lyases known for their role in glucose metabolism. Recently, enolase has been shown to possess a variety of different regulatory functions, beyond glycolysis and gluconeogenesis, associated with hypoxia, ischemia, and Alzheimer's disease (AD). AD is an age-associated neurodegenerative disorder characterized pathologically by elevated oxidative stress and subsequent damage to proteins, lipids, and nucleic acids, appearance of neurofibrillary tangles and senile plaques, and loss of synapse and neuronal cells. It is unclear if development of a hypometabolic environment is a consequence of or contributes to AD pathology, as there is not only a significant decline in brain glucose levels in AD, but also there is an increase in proteomics identified oxidatively modified glycolytic enzymes that are rendered inactive, including enolase. Previously, our laboratory identified alpha-enolase as one the most frequently up-regulated and oxidatively modified proteins in amnestic mild cognitive impairment (MCI), early-onset AD, and AD. However, the glycolytic conversion of 2-phosphoglycerate to phosphoenolpyruvate catalyzed by enolase does not directly produce ATP or NADH; therefore it is surprising that, among all glycolytic enzymes, alpha-enolase was one of only two glycolytic enzymes consistently up-regulated from MCI to AD. These findings suggest enolase is involved with more than glucose metabolism in AD brain, but may possess other functions, normally necessary to preserve brain function. This review examines potential altered function(s) of brain enolase in MCI, early-onset AD, and AD, alterations that may contribute to the biochemical, pathological, clinical characteristics, and progression of this dementing disorder.
Duarte, A I; Santos, M S; Oliveira, C R; Moreira, P I
2018-02-20
Alzheimer's disease (AD) constitutes a major socioeconomic challenge due to its disabling features and the rise in prevalence (especially among (peri)menopausal women and type 2 diabetes patients). The precise etiopathogenesis of AD remains poorly understood. Importantly, its neurodegenerative perspective has been challenged towards a more "systemic" view. Amyloid-β (Aβ) and hyperphosphorylated Tau protein (P-Tau) (the main AD neuropathological features) affect and are affected by peripheral and brain insulin signalling dysfunction, leading to glucose dysmetabolism, synaptic loss and AD-related cognitive deficits. This may be anticipated and exacerbated by the progressive loss of estrogen (and interactions, e.g., with insulin) during females' aging, increasing their risk for AD, especially during menopause. Under this perspective, we aimed to discuss the recent findings (and controversies) behind the peripheral view of AD, and the role for insulin deficits and brain glucose dysmetabolism in such diseased brain. We also focused on the metabolic shift and the putative effects of gender (especially during midlife/perimenopause) herein. We finally discussed AD as the potential "type 3 diabetes", and the therapeutic potential of restoring brain insulin levels or glucose energy metabolism via administration of intranasal insulin and use of ketogenic diets. In sum, AD appears to lie on an intricate crosstalk between age-related metabolic, hormonal and specific genetic changes that challenge its traditional view. Hence, clarification of AD risk factors (besides aging and gender) and pathophysiological mechanisms will allow to establish accurate preventive strategies, biomarkers and more efficient drugs - all urgent medical needs in our increasingly aged societies. Copyright © 2018 Elsevier Ltd. All rights reserved.
The acute action of ammonia on rat brain metabolism in vivo.
Hawkins, R A; Miller, A L; Nielsen, R C; Veech, R L
1973-08-01
1. Acute NH(4) (+) toxicity was studied by using a new apparatus that removes and freezes the brains of conscious rats within 1s. 2. Brains were removed and frozen 5min after intraperitoneal injection of ammonium acetate (2-3min before the onset of convulsions). Arterial [NH(4) (+)] rose from less than 0.01 to 1.74mm at 4-5min. The concentrations of all glycolytic intermediates measured, except glucose 6-phosphate, were increased by the indicated percentage above the control value as follows: glucose (by 41%), fructose 1,6-diphosphate (by 133%), dihydroxyacetone phosphate (by 164%), alpha-glycerophosphate (by 45%), phosphoenolpyruvate (by 67%) and pyruvate (by 26%). 4. Citrate and alpha-oxoglutarate concentrations were unchanged and that of malate was increased (by 17%). 5. Adenine nucleotides and P(i) concentrations were unchanged but the concentration of creatine phosphate decreased slightly (by 6%). 6. Brain [NH(4) (+)] increased from 0.2 to 1.53mm. Net glutamine synthesis occurred at an average rate of 0.33mumol/min per g. 7. The rate of brain glucose utilization was measured in vivo as 0.62mumol/min per g in controls and 0.81mumol/min per g after NH(4) (+) injection. 8. The arteriovenous difference of glucose and O(2) increased by 35%. 9. No significant arteriovenous differences of glutamate or glutamine were detected. Thus, although much NH(4) (+) was incorporated into glutamine the latter was not rapidly released from the brain to the circulation. 10. Plasma [K(+)] increased from 3.3 to 5.4mm. 11. The results indicate that NH(4) (+) stimulates oxidative metabolism but does not interfere with brain energy balance. The increased rate of oxidative metabolism could not be accounted for only on the basis of glutamine synthesis. We suggest that increased extracellular [NH(4) (+)] and [K(+)] decreased the resting transmembrane potential and stimulated Na(+),K(+)-stimulated adenosine triphosphatase activity thus accounting for the increased metabolic rate.
Krishnan, Subramanian; Chang, Alexander C; Stoltz, Brian M; Prasadarao, Nemani V
2016-10-01
Escherichia coli K1 meningitis continues to be a major threat to neonatal health. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with endothelial cell glycoprotein 96 (Ecgp96) in the blood-brain barrier to enter the central nervous system. Here we show that the interaction between OmpA and Ecgp96 downregulates peroxisome proliferator-activated receptor γ (PPAR-γ) and glucose transporter 1 (GLUT-1) levels in human brain microvascular endothelial cells, causing disruption of barrier integrity and inhibition of glucose uptake. The suppression of PPAR-γ and GLUT-1 by the bacteria in the brain microvessels of newborn mice causes extensive pathophysiology owing to interleukin 6 production. Pretreatment with partial or selective PPAR-γ agonists ameliorate the pathological outcomes of infection by suppressing interleukin 6 production in the brain. Thus, inhibition of PPAR-γ and GLUT-1 by E. coli K1 is a novel pathogenic mechanism in meningitis, and pharmacological upregulation of PPAR-γ and GLUT-1 levels may provide novel therapeutic avenues. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Interpreting and Utilising Intersubject Variability in Brain Function.
Seghier, Mohamed L; Price, Cathy J
2018-06-01
We consider between-subject variance in brain function as data rather than noise. We describe variability as a natural output of a noisy plastic system (the brain) where each subject embodies a particular parameterisation of that system. In this context, variability becomes an opportunity to: (i) better characterise typical versus atypical brain functions; (ii) reveal the different cognitive strategies and processing networks that can sustain similar tasks; and (iii) predict recovery capacity after brain damage by taking into account both damaged and spared processing pathways. This has many ramifications for understanding individual learning preferences and explaining the wide differences in human abilities and disabilities. Understanding variability boosts the translational potential of neuroimaging findings, in particular in clinical and educational neuroscience. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
[Nutrient sensing by the gastro-intestinal nervous system and control of energy homeostasis].
Gilles, Mithieux
2015-01-01
The gastrointestinal nerves are crucial in the sensing of nutrients and hormones and its translation in terms of control of food intake. Major macronutrients like glucose and proteins are sensed by the extrinsic nerves located around the portal vein walls, which signal to the brain and account for the satiety phenomenon they promote. Glucose is sensed in the portal vein by neurons expressing the glucose receptor SGLT3, which activates the main regions of the brain involved in the control of food intake. Proteins indirectly act on food intake by inducing intestinal gluconeogenesis and its sensing by the portal glucose sensor. The mechanism involves a prior antagonism by peptides of the μ-opioid receptors present in the portal vein nervous system and a reflex arc with the brain inducing intestinal gluconeogenesis. In a comparable manner, short chain fatty acids produced from soluble fibers act via intestinal gluconeogenesis to exert anti-obesity and anti-diabetic effects. In the case of propionate, the mechanism involves a prior activation of the free fatty acid receptor FFAR3 present in the portal nerves and a reflex arc initiating intestinal gluconeogenesis. © Société de Biologie, 2016.
Lear, Christopher A; Davidson, Joanne O; Mackay, Georgia R; Drury, Paul P; Galinsky, Robert; Quaedackers, Josine S; Gunn, Alistair J; Bennet, Laura
2018-04-01
Antenatal glucocorticoid therapy significantly improves the short-term systemic outcomes of prematurely born infants, but there is limited information available on their impact on neurodevelopmental outcomes in at-risk preterm babies exposed to perinatal asphyxia. Preterm fetal sheep (0.7 of gestation) were exposed to a maternal injection of 12 mg dexamethasone or saline followed 4 h later by asphyxia induced by 25 min of complete umbilical cord occlusion. In a subsequent study, fetuses received titrated glucose infusions followed 4 h later by asphyxia to examine the hypothesis that hyperglycemia mediated the effects of dexamethasone. Post-mortems were performed 7 days after asphyxia for cerebral histology. Maternal dexamethasone before asphyxia was associated with severe, cystic brain injury compared to diffuse injury after saline injection, with increased numbers of seizures, worse recovery of brain activity, and increased arterial glucose levels before, during, and after asphyxia. Glucose infusions before asphyxia replicated these adverse outcomes, with a strong correlation between greater increases in glucose before asphyxia and greater neural injury. These findings strongly suggest that dexamethasone exposure and hyperglycemia can transform diffuse injury into cystic brain injury after asphyxia in preterm fetal sheep.
Naftalin, Richard J; Cunningham, Philip; Afzal-Ahmed, Iram
2004-01-01
Nootropic drugs increase glucose uptake into anaesthetised brain and into Alzheimer's diseased brain. Thyrotropin-releasing hormone, TRH, which has a chemical structure similar to nootropics increases cerebellar uptake of glucose in murine rolling ataxia. This paper shows that nootropic drugs like piracetam (2-oxo 1 pyrrolidine acetamide) and levetiracetam and neuropeptides like TRH antagonise the inhibition of glucose transport by barbiturates, diazepam, melatonin and endogenous neuropeptide galanin in human erythrocytes in vitro. The potencies of nootropic drugs in opposing scopolamine-induced memory loss correlate with their potencies in antagonising pentobarbital inhibition of erythrocyte glucose transport in vitro (P<0.01). Less potent nootropics, D-levetiracetam and D-pyroglutamate, have higher antagonist Ki's against pentobarbital inhibition of glucose transport than more potent L-stereoisomers (P<0.001). Piracetam and TRH have no direct effects on net glucose transport, but competitively antagonise hypnotic drug inhibition of glucose transport. Other nootropics, like aniracetam and levetiracetam, while antagonising pentobarbital action, also inhibit glucose transport. Analeptics like bemigride and methamphetamine are more potent inhibitors of glucose transport than antagonists of hypnotic action on glucose transport. There are similarities between amino-acid sequences in human glucose transport protein isoform 1 (GLUT1) and the benzodiazepine-binding domains of GABAA (gamma amino butyric acid) receptor subunits. Mapped on a 3D template of GLUT1, these homologies suggest that the site of diazepam and piracetam interaction is a pocket outside the central hydrophilic pore region. Nootropic pyrrolidone antagonism of hypnotic drug inhibition of glucose transport in vitro may be an analogue of TRH antagonism of galanin-induced narcosis. PMID:15148255
Ketosis proportionately spares glucose utilization in brain
Zhang, Yifan; Kuang, Youzhi; Xu, Kui; Harris, Donald; Lee, Zhenghong; LaManna, Joseph; Puchowicz, Michelle A
2013-01-01
The brain is dependent on glucose as a primary energy substrate, but is capable of utilizing ketones such as β-hydroxybutyrate and acetoacetate, as occurs with fasting, starvation, or chronic feeding of a ketogenic diet. The relationship between changes in cerebral metabolic rates of glucose (CMRglc) and degree or duration of ketosis remains uncertain. To investigate if CMRglc decreases with chronic ketosis, 2-[18F]fluoro-2-deoxy-D-glucose in combination with positron emission tomography, was applied in anesthetized young adult rats fed 3 weeks of either standard or ketogenic diets. Cerebral metabolic rates of glucose (μmol/min per 100 g) was determined in the cerebral cortex and cerebellum using Gjedde–Patlak analysis. The average CMRglc significantly decreased in the cerebral cortex (23.0±4.9 versus 32.9±4.7) and cerebellum (29.3±8.6 versus 41.2±6.4) with increased plasma ketone bodies in the ketotic rats compared with standard diet group. The reduction of CMRglc in both brain regions correlates linearly by ∼9% for each 1 mmol/L increase of total plasma ketone bodies (0.3 to 6.3 mmol/L). Together with our meta-analysis, these data revealed that the degree and duration of ketosis has a major role in determining the corresponding change in CMRglc with ketosis. PMID:23736643
Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight.
Sisley, Stephanie R; Arble, Deanna M; Chambers, Adam P; Gutierrez-Aguilar, Ruth; He, Yanlin; Xu, Yong; Gardner, David; Moore, David D; Seeley, Randy J; Sandoval, Darleen A
2016-09-01
Despite clear associations between vitamin D deficiency and obesity and/or type 2 diabetes, a causal relationship is not established. Vitamin D receptors (VDRs) are found within multiple tissues, including the brain. Given the importance of the brain in controlling both glucose levels and body weight, we hypothesized that activation of central VDR links vitamin D to the regulation of glucose and energy homeostasis. Indeed, we found that small doses of active vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3) (calcitriol), into the third ventricle of the brain improved glucose tolerance and markedly increased hepatic insulin sensitivity, an effect that is dependent upon VDR within the paraventricular nucleus of the hypothalamus. In addition, chronic central administration of 1,25D3 dramatically decreased body weight by lowering food intake in obese rodents. Our data indicate that 1,25D3-mediated changes in food intake occur through action within the arcuate nucleus. We found that VDR colocalized with and activated key appetite-regulating neurons in the arcuate, namely proopiomelanocortin neurons. Together, these findings define a novel pathway for vitamin D regulation of metabolism with unique and divergent roles for central nervous system VDR signaling. Specifically, our data suggest that vitamin D regulates glucose homeostasis via the paraventricular nuclei and energy homeostasis via the arcuate nuclei. © 2016 by the American Diabetes Association.
Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.
Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D
2017-12-01
It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.
... Glucose is used in the cells of the body and in the brain. Any unused glucose is stored in the liver and muscles as glycogen for use later. Complex carbohydrate foods provide vitamins, minerals, and fiber that are important to the ...
Kassaar, Omar; Pereira Morais, Marta; Xu, Suying; Adam, Emily L.; Chamberlain, Rosemary C.; Jenkins, Bryony; James, Tony; Francis, Paul T.; Ward, Stephen; Williams, Robert J.; van den Elsen, Jean
2017-01-01
Glucose and glucose metabolites are able to adversely modify proteins through a non-enzymatic reaction called glycation, which is associated with the pathology of Alzheimer’s Disease (AD) and is a characteristic of the hyperglycaemia induced by diabetes. However, the precise protein glycation profile that characterises AD is poorly defined and the molecular link between hyperglycaemia and AD is unknown. In this study, we define an early glycation profile of human brain using fluorescent phenylboronate gel electrophoresis and identify early glycation and oxidation of macrophage migration inhibitory factor (MIF) in AD brain. This modification inhibits MIF enzyme activity and ability to stimulate glial cells. MIF is involved in immune response and insulin regulation, hyperglycaemia, oxidative stress and glycation are all implicated in AD. Our study indicates that glucose modified and oxidised MIF could be a molecular link between hyperglycaemia and the dysregulation of the innate immune system in AD. PMID:28230058
Hypometabolism as a therapeutic target in Alzheimer's disease.
Costantini, Lauren C; Barr, Linda J; Vogel, Janet L; Henderson, Samuel T
2008-12-03
The pathology of Alzheimer's disease (AD) is characterized by cerebral atrophy in frontal, temporal, and parietal regions, with senile plaques, dystrophic neurites, and neurofibrillar tangles within defined areas of the brain. Another characteristic of AD is regional hypometabolism in the brain. This decline in cerebral glucose metabolism occurs before pathology and symptoms manifest, continues as symptoms progress, and is more severe than that of normal aging. Ketone bodies are an efficient alternative fuel for cells that are unable to metabolize glucose or are 'starved' of glucose. AC-1202 is designed to elevate serum ketone levels safely. We previously showed that treatment with AC-1202 in patients with mild-to-moderate AD improves memory and cognition. Treatment outcomes were influenced by apolipoprotein E genotype status. These data suggest that AC-1202 may be an effective treatment for cognitive dysfunction by providing an alternative substrate for use by glucose-compromised neurons.
Glucose metabolism transporters and epilepsy: only GLUT1 has an established role.
Hildebrand, Michael S; Damiano, John A; Mullen, Saul A; Bellows, Susannah T; Oliver, Karen L; Dahl, Hans-Henrik M; Scheffer, Ingrid E; Berkovic, Samuel F
2014-02-01
The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Khalil, Sammar; Alsanius, Beatrix W
2009-01-01
This study examined the metabolic activity of pure cultures of five root pathogens commonly found in closed hydroponic cultivation systems (Phytophthora cryptogea (PC), Phytophthora capsici (PCP), Pythium aphanidermatum (PA), Fusarium oxysporum f.sp. radicis-lycopersici (FORL) and Fusarium solani (FS)) using sole carbon source utilisation in order to develop effective biocontrol strategies against these pathogens. Aliquots of 150 µL of the mycelial suspension were inoculated in each well of GN2 microtitre plates. On the basis of average well colour development and number of positive wells, the pathogens were divided into two groups, (i) PA and FORL and (ii) PC, PCP and FS. Group (i) was characterised by a short lag-phase, a rapid exponential phase involving almost all carbon sources offered and a long stationary phase, while group (ii) had a more extended lag-phase and a slower utilisation rate of the carbon sources offered. The three isolates in group (ii) differed significantly during their exponential phase. The lowest utilisation rate of carbon sources and number of sources utilised was found for PCP. Of the major group of carbon sources, six carbohydrates, three carboxylic acids and four amino acids were rapidly used by all isolates tested at an early stage. The carbon sources gentibiose, α-D-glucose, maltose, sucrose, D-trehalose, L-aspartic acid, L-glutamic acid, L-proline persisted to the end of the exponential phase.Moreover, similarities between the metabolic profiles of the tested pathogen and the those of the resident microflora could also be found. These findings are of great importance as regards the role of the resident microflora in the biocontrol. PMID:19294012
Kim, Woong Hee; Lee, Jinho; Jung, Da-Woon; Williams, Darren R.
2012-01-01
Glucose homeostasis is a fundamental aspect of life and its dysregulation is associated with important diseases, such as cancer and diabetes. Traditionally, glucose radioisotopes have been used to monitor glucose utilization in biological systems. Fluorescent-tagged glucose analogues were initially developed in the 1980s, but it is only in the past decade that their use as a glucose sensor has increased significantly. These analogues were developed for monitoring glucose uptake in blood cells, but their recent applications include tracking glucose uptake by tumor cells and imaging brain cell metabolism. This review outlines the development of fluorescent-tagged glucose analogues, describes their recent structural modifications and discusses their increasingly diverse biological applications. PMID:22666073
Brain microvascular function during cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorensen, H.R.; Husum, B.; Waaben, J.
1987-11-01
Emboli in the brain microvasculature may inhibit brain activity during cardiopulmonary bypass. Such hypothetical blockade, if confirmed, may be responsible for the reduction of cerebral metabolic rate for glucose observed in animals subjected to cardiopulmonary bypass. In previous studies of cerebral blood flow during bypass, brain microcirculation was not evaluated. In the present study in animals (pigs), reduction of the number of perfused capillaries was estimated by measurements of the capillary diffusion capacity for hydrophilic tracers of low permeability. Capillary diffusion capacity, cerebral blood flow, and cerebral metabolic rate for glucose were measured simultaneously by the integral method, different tracersmore » being used with different circulation times. In eight animals subjected to normothermic cardiopulmonary bypass, and seven subjected to hypothermic bypass, cerebral blood flow, cerebral metabolic rate for glucose, and capillary diffusion capacity decreased significantly: cerebral blood flow from 63 to 43 ml/100 gm/min in normothermia and to 34 ml/100 gm/min in hypothermia and cerebral metabolic rate for glucose from 43.0 to 23.0 mumol/100 gm/min in normothermia and to 14.1 mumol/100 gm/min in hypothermia. The capillary diffusion capacity declined markedly from 0.15 to 0.03 ml/100 gm/min in normothermia but only to 0.08 ml/100 gm/min in hypothermia. We conclude that the decrease of cerebral metabolic rate for glucose during normothermic cardiopulmonary bypass is caused by interruption of blood flow through a part of the capillary bed, possibly by microemboli, and that cerebral blood flow is an inadequate indicator of capillary blood flow. Further studies must clarify why normal microvascular function appears to be preserved during hypothermic cardiopulmonary bypass.« less
Lai, Marta; Lanz, Bernard; Poitry-Yamate, Carole; Romero, Jackeline F; Berset, Corina M; Cudalbu, Cristina; Gruetter, Rolf
2017-01-01
In vivo 13 C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13 C-labeled glucose. Metabolic flux analysis of 13 C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13 C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6- 13 C 2 ]glucose for up to 5 h. 13 C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (V g = 0.16 ± 0.03 µmol/g/min) and neurons (V TCA n = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (V PC = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (V NT = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMR glc ) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18 F-fluorodeoxyglucose positron emission tomography ( 18 FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13 C direct detection with an unprecedented spatial resolution under [1,6- 13 C 2 ]glucose infusion.
Sonochemically Fabricated Microelectrode Arrays for Use as Sensing Platforms
Collyer, Stuart D.; Davis, Frank; Higson, Séamus P.J.
2010-01-01
The development, manufacture, modification and subsequent utilisation of sonochemically-formed microelectrode arrays is described for a range of applications. Initial fabrication of the sensing platform utilises ultrasonic ablation of electrochemically insulating polymers deposited upon conductive carbon substrates, forming an array of up to 70,000 microelectrode pores cm−2. Electrochemical and optical analyses using these arrays, their enhanced signal response and stir-independence area are all discussed. The growth of conducting polymeric “mushroom” protrusion arrays with entrapped biological entities, thereby forming biosensors is detailed. The simplicity and inexpensiveness of this approach, lending itself ideally to mass fabrication coupled with unrivalled sensitivity and stir independence makes commercial viability of this process a reality. Application of microelectrode arrays as functional components within sensors include devices for detection of chlorine, glucose, ethanol and pesticides. Immunosensors based on microelectrode arrays are described within this monograph for antigens associated with prostate cancer and transient ischemic attacks (strokes). PMID:22399926
Fonseca, Carla P; Jones, John G; Carvalho, Rui A; Jeffrey, F Mark H; Montezinho, Liliana P; Geraldes, Carlos F G C; Castro, M M C A
2005-11-01
Li+ effects on glucose metabolism and on the competitive metabolism of glucose and lactate were investigated in the human neuroblastoma SH-SY5Y cell line using 13C NMR spectroscopy. The metabolic model proposed for glucose and lactate metabolism in these cells, based on tcaCALC best fitting solutions, for both control and Li+ conditions, was consistent with: (i) a single pyruvate pool; (ii) anaplerotic flux from endogenous unlabelled substrates; (iii) no cycling between pyruvate and oxaloacetate. Li+ was shown to induce a 38 and 53% decrease, for 1 and 15 mM Li+, respectively, in the rate of glucose conversion into pyruvate, when [U-13C]glucose was present, while no effects on lactate production were observed. Pyruvate oxidation by the tricarboxylic acid cycle and citrate synthase flux were shown to be significantly reduced by 64 and 84% in the presence of 1 and 15 mM Li+, respectively, suggesting a direct inhibitory effect of Li+ on tricarboxylic acid cycle flux. This work also showed that when both glucose and lactate are present as energetic substrates, SH-SY5Y cells preferentially consumed exogenous lactate over glucose, as 62% of the acetyl-CoA was derived from [3-13C]lactate while only 26% was derived from [U-13C]glucose. Li+ did not significantly affect the relative utilisation of these two substrates by the cells or the residual contribution of unlabelled endogenous sources for the acetyl-CoA pool.
Choi, Ji Woong; Shin, Chan Young; Choi, Min Sik; Yoon, Seo Young; Ryu, Jong Hoon; Lee, Jae-Chul; Kim, Won-Ki; El Kouni, Mahmoud H; Ko, Kwang Ho
2008-06-01
We previously reported that uridine blocked glucose deprivation-induced death of immunostimulated astrocytes by preserving ATP levels. Uridine phosphorylase (UPase), an enzyme catalyzing the reversible phosphorylation of uridine, was involved in this effect. Here, we tried to expand our previous findings by investigating the uridine effect on the brain and neurons using in vivo and in vitro ischemic injury models. Orally administrated uridine (50-200 mg/kg) reduced middle cerebral artery occlusion (1.5 h)/reperfusion (22 h)-induced infarct in mouse brain. Additionally, in the rat brain subjected to the same ischemic condition, UPase mRNA and protein levels were up-regulated. Next, we employed glucose deprivation-induced hypoglycemia in mixed cortical cultures of neurons and astrocytes as an in vitro model. Cells were deprived of glucose and, two hours later, supplemented with 20 mM glucose. Under this condition, a significant ATP loss followed by death was observed in neurons but not in astrocytes, which were blocked by treatment with uridine in a concentration-dependent manner. Inhibition of cellular uptake of uridine by S-(4-nitrobenzyl)-6-thioinosine blocked the uridine effect. Similar to our in vivo data, UPase expression was up-regulated by glucose deprivation in mRNA as well as protein levels. Additionally, 5-(phenylthio)acyclouridine, a specific inhibitor of UPase, prevented the uridine effect. Finally, the uridine effect was shown only in the presence of astrocytes. Taken together, the present study provides the first evidence that uridine protects neurons against ischemic insult-induced neuronal death, possibly through the action of UPase.
Maejima, Yuko; Rita, Rauza Sukma; Santoso, Putra; Aoyama, Masato; Hiraoka, Yuichi; Nishimori, Katsuhiko; Gantulga, Darambazar; Shimomura, Kenju; Yada, Toshihiko
2015-01-01
Recent studies have considered oxytocin (Oxt) as a possible medicine to treat obesity and hyperphagia. To find the effective and safe route for Oxt treatment, we compared the effects of its nasal and intraperitoneal (IP) administration on food intake, locomotor activity, and glucose tolerance in mice. Nasal Oxt administration decreased food intake without altering locomotor activity and increased the number of c-Fos-immunoreactive (ir) neurons in the paraventricular nucleus (PVN) of the hypothalamus, the area postrema (AP), and the dorsal motor nucleus of vagus (DMNV) of the medulla. IP Oxt administration decreased food intake and locomotor activity and increased the number of c-Fos-ir neurons not only in the PVN, AP, and DMNV but also in the nucleus of solitary tract of the medulla and in the arcuate nucleus of the hypothalamus. In IP glucose tolerance tests, IP Oxt injection attenuated the rise of blood glucose, whereas neither nasal nor intracerebroventricular Oxt affected blood glucose. In isolated islets, Oxt administration potentiated glucose-induced insulin secretion. These results indicate that both nasal and IP Oxt injections reduce food intake to a similar extent and increase the number of c-Fos-ir neurons in common brain regions. IP Oxt administration, in addition, activates broader brain regions, reduces locomotor activity, and affects glucose tolerance possibly by promoting insulin secretion from pancreatic islets. In comparison with IP administration, the nasal route of Oxt administration could exert a similar anorexigenic effect with a lesser effect on peripheral organs. © 2015 S. Karger AG, Basel.
Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency.
Akman, Cigdem I; Engelstad, Kristin; Hinton, Veronica J; Ullner, Paivi; Koenigsberger, Dorcas; Leary, Linda; Wang, Dong; De Vivo, Darryl C
2010-01-01
Glucose transporter type 1 deficiency syndrome (Glut1-DS) is characterized clinically by acquired microcephaly, infantile-onset seizures, psychomotor retardation, choreoathetosis, dystonia, and ataxia. The laboratory signature is hypoglycorrhachia. The 5-hour oral glucose tolerance test (OGTT) was performed to assess cerebral function and systemic carbohydrate homeostasis during acute hyperglycemia, in the knowledge that GLUT1 is constitutively expressed ubiquitously and upregulated in the brain. Thirteen Glut1-DS patients completed a 5-hour OGTT. Six patients had prolonged electroencephalographic (EEG)/video monitoring, 10 patients had plasma glucose and serum insulin measurements, and 5 patients had repeated measures of attention, memory, fine motor coordination, and well-being. All patients had a full neuropsychological battery prior to OGTT. The glycemic profile and insulin response during the OGTT were normal. Following the glucose load, transient improvement of clinical seizures and EEG findings were observed, with the most significant improvement beginning within the first 30 minutes and continuing for 180 minutes. Thereafter, clinical seizures returned, and EEG findings worsened. Additionally, transient improvement in attention, fine motor coordination, and reported well-being were observed without any change in memory performance. This study documents transient neurological improvement in Glut1-DS patients following acute hyperglycemia, associated with improved fine motor coordination and attention. Also, systemic carbohydrate homeostasis was normal, despite GLUT1 haploinsufficiency, confirming the specific role of GLUT1 as the transporter of metabolic fuel across the blood-brain barrier. The transient improvement in brain function underscores the rate-limiting role of glucose transport and the critical minute-to-minute dependence of cerebral function on fuel availability for energy metabolism.
Novel neuroprotective and hepatoprotective effects of citric acid in acute malathion intoxication.
Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Yassen, Noha N; Khadrawy, Yasser A; El-Toukhy, Safinaz Ebrahim; Sleem, Amany A
2016-12-01
To study the effect of citric acid given alone or combined with atropine on brain oxidative stress, neuronal injury, liver damage, and DNA damage of peripheral blood lymphocytes induced in the rat by acute malathion exposure. Rats were received intraperitoneal (i.p.) injection of malathion 150 mg/kg along with citric acid (200 or 400 mg/kg, orally), atropine (1 mg/kg, i.p.) or citric acid 200 mg/kg + atropine 1 mg/kg and euthanized 4 h later. Malathion resulted in increased lipid peroxidation (malondialdehyde) and nitric oxide concentrations accompanied with a decrease in brain reduced glutathione, glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC) and glucose concentrations. Paraoxonase-1, acetylcholinesterase (AChE) and butyrylcholinesterase activities decreased in brain as well. Liver aspartate aminotransferase and alanine aminotransferase activities were raised. The comet assay showed increased DNA damage of peripheral blood lymphocytes. Histological damage and increased expression of inducible nitric oxide synthase (iNOS) were observed in brain and liver. Citric acid resulted in decreased brain lipid peroxidation and nitric oxide. Meanwhile, glutathione, GPx activity, TAC capacity and brain glucose level increased. Brain AChE increased but PON1 and butyrylcholinesterase activities decreased by citric acid. Liver enzymes, the percentage of damaged blood lymphocytes, histopathological alterations and iNOS expression in brain and liver was decreased by citric acid. Meanwhile, rats treated with atropine showed decreased brain MDA, nitrite but increased GPx activity, TAC, AChE and glucose. The drug also decreased DNA damage of peripheral blood lymphocytes, histopathological alterations and iNOS expression in brain and liver. The study demonstrates a beneficial effect for citric acid upon brain oxidative stress, neuronal injury, liver and DNA damage due to acute malathion exposure. Copyright © 2016 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Haier, Richard J.; White, Nathan S.; Alkire, Michael T.
2003-01-01
Administered Raven's Advanced Progressive Matrices to 22 adults and measured cerebral glucose activity as subjects viewed videos on 2 occasions. Data provide evidence that individual differences in intelligence correlate with brain function even when the brain is engaged in non-reasoning tasks. (SLD)
Vitamin B1 (thiamine) and dementia
Gibson, Gary E.; Hirsch, Joseph A.; Fonzetti, Pasquale; Jordon, Barry D.; Cirio, Rosanna T.; Elder, Jessica
2016-01-01
The earliest and perhaps best example of an interaction between nutrition and dementia is related to thiamine (vitamin B1). Throughout the last century, research showed that thiamine deficiency is associated with neurological problems, including cognitive deficits and encephalopathy. Multiple similarities exist between classical thiamine deficiency and Alzheimer’s disease (AD) in that both are associated with cognitive deficits and reductions in brain glucose metabolism. Thiamine-dependent enzymes are critical components of glucose metabolism that are reduced in the brains of AD patients and by thiamine deficiency, and their decline could account for the reduction in glucose metabolism. In preclinical models, reduced thiamine can drive AD-like abnormalities, including memory deficits, plaques, and hyperphosphorylation of tau. Furthermore, excess thiamine diminishes AD-like pathologies. In addition to dietary deficits, drugs, or other manipulations that interfere with thiamine absorption can cause thiamine deficiency. Elucidating the reasons why the brains of AD patients are functionally thiamine deficient and determining the effects of thiamine restoration may provide critical information to help treat patients with AD. PMID:26971083
ERIC Educational Resources Information Center
Koy, Anne; Assmann, Birgit; Klepper, Joerg; Mayatepek, Ertan
2011-01-01
Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is caused by a defect in glucose transport across the blood-brain barrier. The main symptoms are epilepsy, developmental delay, movement disorders, and deceleration of head circumference. A ketogenic diet has been shown to be effective in controlling epilepsy in GLUT1-DS. We report a female…
Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle
Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.
2016-01-01
Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion These data suggest that physiological fluctuations in circulating 17βE levels across the estrous cycle lead to changes in hypothalamic glucose sensing and the response to IIH. PMID:27666162
Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.
Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H
2016-12-01
17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological fluctuations in circulating 17βE levels across the estrous cycle lead to changes in hypothalamic glucose sensing and the response to IIH. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of overnight fasting on working memory-related brain network: an fMRI study.
Chechko, Natalia; Vocke, Sebastian; Habel, Ute; Toygar, Timur; Kuckartz, Lisa; Berthold-Losleben, Mark; Laoutidis, Zacharias G; Orfanos, Stelios; Wassenberg, Annette; Karges, Wölfram; Schneider, Frank; Kohn, Nils
2015-03-01
Glucose metabolism serves as the central source of energy for the human brain. Little is known about the effects of blood glucose level (BGL) on higher-order cognitive functions within a physiological range (e.g., after overnight fasting). In this randomized, placebo-controlled, double blind study, we assessed the impact of overnight fasting (14 h) on brain activation during a working memory task. We sought to mimic BGLs that occur naturally in healthy humans after overnight fasting. After standardized periods of food restriction, 40 (20 male) healthy participants were randomly assigned to receive either glucagon to balance the BGL or placebo (NaCl). A parametric fMRI paradigm, including 2-back and 0-back tasks, was used. Subclinically low BGL following overnight fasting was found to be linked to reduced involvement of the bilateral dorsal midline thalamus and the bilateral basal ganglia, suggesting high sensitivity of those regions to minimal changes in BGLs. Our results indicate that overnight fasting leads to physiologically low levels of glucose, impacting brain activation during working memory tasks even when there are no differences in cognitive performance. © 2014 Wiley Periodicals, Inc.
Heni, Martin; Kullmann, Stephanie; Ketterer, Caroline; Guthoff, Martina; Bayer, Margarete; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Preissl, Hubert; Veit, Ralf; Fritsche, Andreas
2014-03-01
Eating behavior is crucial in the development of obesity and Type 2 diabetes. To further investigate its regulation, we studied the effects of glucose versus water ingestion on the neural processing of visual high and low caloric food cues in 12 lean and 12 overweight subjects by functional magnetic resonance imaging. We found body weight to substantially impact the brain's response to visual food cues after glucose versus water ingestion. Specifically, there was a significant interaction between body weight, condition (water versus glucose), and caloric content of food cues. Although overweight subjects showed a generalized reduced response to food objects in the fusiform gyrus and precuneus, the lean group showed a differential pattern to high versus low caloric foods depending on glucose versus water ingestion. Furthermore, we observed plasma insulin and glucose associated effects. The hypothalamic response to high caloric food cues negatively correlated with changes in blood glucose 30 min after glucose ingestion, while especially brain regions in the prefrontal cortex showed a significant negative relationship with increases in plasma insulin 120 min after glucose ingestion. We conclude that the postprandial neural processing of food cues is highly influenced by body weight especially in visual areas, potentially altering visual attention to food. Furthermore, our results underline that insulin markedly influences prefrontal activity to high caloric food cues after a meal, indicating that postprandial hormones may be potential players in modulating executive control. Copyright © 2013 Wiley Periodicals, Inc.
Pitel, Anne-Lise; Aupée, Anne-Marie; Chételat, Gaël; Mézenge, Florence; Beaunieux, Hélène; de la Sayette, Vincent; Viader, Fausto; Baron, Jean-Claude; Eustache, Francis; Desgranges, Béatrice
2009-01-01
Background Gray matter volume studies have been limited to few brain regions of interest, and white matter and glucose metabolism have received limited research attention in Korsakoff's syndrome (KS). Because of the lack of brain biomarkers, KS was found to be underdiagnosed in postmortem studies. Methodology/Principal Findings Nine consecutively selected patients with KS and 22 matched controls underwent both structural magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography examinations. Using a whole-brain analysis, the between-group comparisons of gray matter and white matter density and relative glucose uptake between patients with KS and controls showed the involvement of both the frontocerebellar and the Papez circuits, including morphological abnormalities in their nodes and connection tracts and probably resulting hypometabolism. The direct comparison of the regional distribution and degree of gray matter hypodensity and hypometabolism within the KS group indicated very consistent gray matter distribution of both abnormalities, with a single area of significant difference in the middle cingulate cortex showing greater hypometabolism than hypodensity. Finally, the analysis of the variability in the individual patterns of brain abnormalities within our sample of KS patients revealed that the middle cingulate cortex was the only brain region showing significant GM hypodensity and hypometabolism in each of our 9 KS patients. Conclusions/Significance These results indicate widespread brain abnormalities in KS including both gray and white matter damage mainly involving two brain networks, namely, the fronto-cerebellar circuit and the Papez circuit. Furthermore, our findings suggest that the middle cingulate cortex may play a key role in the pathophysiology of KS and could be considered as a potential in vivo brain biomarker. PMID:19936229
Li, Xiu-Juan
2018-05-01
The role of long non-coding RNA in diabetic retinopathy, a serious complication of diabetes mellitus, has attracted increasing attention in recent years. The purpose of this study was to explore whether long non-coding RNA nuclear paraspeckle assembly transcript 1 was involved in the context of diabetic retinopathy and its underlying mechanisms. Our results revealed that nuclear paraspeckle assembly transcript 1 was significantly downregulated in the retina of diabetes mellitus rats. Meanwhile, miR-497 was significantly increased in diabetes mellitus rats' retina and high glucose-treated Müller cells, but brain-derived neurotrophic factor was increased. We also found that high glucose-induced apoptosis of Müller cells was accompanied by the significant downregulation of nuclear paraspeckle assembly transcript 1 in vitro. Further study demonstrated that high glucose-promoted Müller cells apoptosis through downregulating nuclear paraspeckle assembly transcript 1 and downregulated nuclear paraspeckle assembly transcript 1 mediated this effect via negative regulating miR-497. Moreover, brain-derived neurotrophic factor was negatively regulated by miR-497 and associated with the apoptosis of Müller cells under high glucose. Our results suggested that under diabetic conditions, downregulated nuclear paraspeckle assembly transcript 1 decreased the expression of brain-derived neurotrophic factor through elevating miR-497, thereby promoting Müller cells apoptosis and aggravating diabetic retinopathy.
Miao, Q; Zhang, S; Guan, Y H; Ye, H Y; Zhang, Z Y; Zhang, Q Y; Xue, R D; Zeng, M F; Zuo, C T; Li, Y M
2011-01-01
Patients with hyperthyroidism frequently present with regional cerebral metabolic changes, but the consequences of endocrine-induced brain changes after thyroid function normalization are unclear. We hypothesized that the changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroid, and some of these changes can be reversed with antithyroid therapy. Relative regional cerebral glucose metabolism was compared between 10 new-onset untreated patients with hyperthyroidism and 20 healthy control participants by using brain FDG-PET scans. Levels of emotional distress were evaluated by using the SAS and SDS. Patients were treated with methimazole. A follow-up PET scan was performed to assess metabolic changes of the brain when thyroid functions normalized. Compared with controls, patients exhibited lower activity in the limbic system, frontal lobes, and temporal lobes before antithyroid treatment. There were positive correlations between scores of depression and regional metabolism in the cingulate and paracentral lobule. The severity of depression and anxiety covaried negatively with pretreatment activity in the inferior temporal and inferior parietal gyri respectively. Compared with the hyperthyroid status, patients with normalized thyroid functions showed an increased metabolism in the left parahippocampal, fusiform, and right superior frontal gyri. The decrease in both FT3 and FT4 was associated with increased activity in the left parahippocampal and right superior frontal gyri. The changes of regional cerebral glucose metabolism are related to thyroid hormone levels in patients with hyperthyroidism, and some cerebral hypometabolism can be improved after antithyroid therapy.
Cuéllar, R; Montero, S; Luquín, S; García-Estrada, J; Melnikov, V; Virgen-Ortiz, A; Lemus, M; Pineda-Lemus, M; de Álvarez-Buylla, E
2017-07-01
The application of sodium cyanide (NaCN) to the carotid body receptors (CBR) (CBR stimulation) induces rapid blood hyperglycemia and an increase in brain glucose retention. The commissural nucleus tractus solitarius (cNTS) is an essential relay nucleus in this hyperglycemic reflex; it receives glutamatergic afferents (that also release brain derived neurotrophic factor, BDNF) from the nodose-petrosal ganglia that relays CBR information. Previous work showed that AMPA in NTS blocks hyperglycemia and brain glucose retention after CBR stimulation. In contrast, BDNF, which attenuates glutamatergic AMPA currents in NTS, enhances these glycemic responses. Here we investigated the combined effects of BDNF and AMPA (and their antagonists) in NTS on the glycemic responses to CBR stimulation. Microinjections of BDNF plus AMPA into the cNTS before CBR stimulation in anesthetized rats, induced blood hyperglycemia and an increase in brain arteriovenous (a-v) of blood glucose concentration difference, which we infer is due to increased brain glucose retention. By contrast, the microinjection of the TrkB antagonist K252a plus AMPA abolished the glycemic responses to CBR stimulation similar to what is observed after AMPA pretreatments. In BDNF plus AMPA microinjections preceding CBR stimulation, the number of c-fos immunoreactive cNTS neurons increased. In contrast, in the rats microinjected with K252a plus AMPA in NTS, before CBR stimulation, c-fos expression in cNTS decreased. The expression of AMPA receptors GluR2/3 did not change in any of the studied groups. These results indicate that BDNF in cNTS plays a key role in the modulation of the hyperglycemic reflex initiated by CBR stimulation. Copyright © 2017. Published by Elsevier B.V.
Functional integration changes in regional brain glucose metabolism from childhood to adulthood.
Trotta, Nicola; Archambaud, Frédérique; Goldman, Serge; Baete, Kristof; Van Laere, Koen; Wens, Vincent; Van Bogaert, Patrick; Chiron, Catherine; De Tiège, Xavier
2016-08-01
The aim of this study was to investigate the age-related changes in resting-state neurometabolic connectivity from childhood to adulthood (6-50 years old). Fifty-four healthy adult subjects and twenty-three pseudo-healthy children underwent [(18) F]-fluorodeoxyglucose positron emission tomography at rest. Using statistical parametric mapping (SPM8), age and age squared were first used as covariate of interest to identify linear and non-linear age effects on the regional distribution of glucose metabolism throughout the brain. Then, by selecting voxels of interest (VOI) within the regions showing significant age-related metabolic changes, a psychophysiological interaction (PPI) analysis was used to search for age-induced changes in the contribution of VOIs to the metabolic activity in other brain areas. Significant linear or non-linear age-related changes in regional glucose metabolism were found in prefrontal cortices (DMPFC/ACC), cerebellar lobules, and thalamo-hippocampal areas bilaterally. Decreases were found in the contribution of thalamic, hippocampal, and cerebellar regions to DMPFC/ACC metabolic activity as well as in the contribution of hippocampi to preSMA and right IFG metabolic activities. Increases were found in the contribution of the right hippocampus to insular cortex and of the cerebellar lobule IX to superior parietal cortex metabolic activities. This study evidences significant linear or non-linear age-related changes in regional glucose metabolism of mesial prefrontal, thalamic, mesiotemporal, and cerebellar areas, associated with significant modifications in neurometabolic connectivity involving fronto-thalamic, fronto-hippocampal, and fronto-cerebellar networks. These changes in functional brain integration likely represent a metabolic correlate of age-dependent effects on sensory, motor, and high-level cognitive functional networks. Hum Brain Mapp 37:3017-3030, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii
Boychuk, Carie R.; Gyarmati, Peter; Xu, Hong
2015-01-01
Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated. PMID:26084907
Chen, Mei-Er; Holmes, Steven P; Pietrantonio, Patricia V
2006-06-01
We have cloned the fire ant glucose transporter 8 (GLUT8) cDNA providing the first molecular characterization of a GLUT8 in insects. Glucose is a poly-alcohol and, due to its high hydrophilicity, cannot move across cell membranes. GLUT8 is a putative facilitative transporter for the cellular import and export of glucose. The complete 2,974-bp cDNA encodes a 501-residue protein with a predicted molecular mass of 54.8 kDa. Transcripts were detected in the brain, midgut, hindgut, Malpighian tubule, fat body, ovary, and testis. The highest transcriptional expression was found in fat body. Northern blot analysis revealed different transcript sizes in mated queen brains, alate female ovaries, and male testes. We propose that four other sequences obtained from insect genome projects from the honey bee Apis mellifera (ENSAPMP00000006624), the malaria mosquito Anopheles gambiae (EAA11842), and the fruit fly Drosophila melanogaster (AAQ23604 and AAM52591) are likely the orthologues of the fire ant GLUT8. Phylogenetic relationships in insect glucose transporters are presented.
Bilzon, J L J; Murphy, J L; Allsopp, A J; Wootton, S A; Williams, C
2002-08-01
Carbohydrate (CHO) ingestion during short-term recovery from prolonged running has been shown to increase the capacity for subsequent exercise in a warm environment. The aim of this study was to examine the effects of the amount of glucose given during recovery on substrate storage and utilisation during recovery and subsequent exercise in a warm environment. A group of 11 healthy male volunteers took part in two experiments in a controlled warm environment (35 degrees C, 40% relative humidity), 1 week apart. On each occasion the subjects completed two treadmill runs (T1 and T2) at a speed equivalent to 60% of maximal oxygen uptake, for 90 min, until they were fatigued, or until aural temperature (T(aur)) reached 39 degrees C. The two runs were separated by a 4 h recovery period (REC), during which subjects consumed 55 g of naturally enriched [U-(13)C]-glucose in the form of a 7.5% carbohydrate-electrolyte solution (CES, mass of solution 667 g) immediately after T1. The subjects then consumed either: the same quantity of CES, or an equivalent volume of an electrolyte placebo, at 60, 120 and 180 min during REC, providing a total of 220 g (C220) or 55 g (C55) of [U-(13)C]-glucose, respectively. Expired gases were collected at 15 min intervals during exercise and 60 min intervals during REC, for determination of total CHO and fat oxidation by indirect respiratory calorimetry, and orally ingested [U-(13)C]-glucose oxidation, estimated from the (13)C:(12)C ratio of expired CO(2). Substrate metabolism did not differ between conditions during T1. Despite the fact that total CHO (P < 0.05) and ingested glucose oxidation (P < 0.01) were greater during REC of the C220 condition, glycogen synthesis was estimated to be approximately fivefold greater (P < 0.01) than in the C55 condition. During T2 the rate of total CHO oxidation was higher (P < 0.01) and total fat oxidation lower (P < 0.01) at all times during the C220 compared to the C55 condition. The greater CHO oxidation during C220 appeared to be met from ingested sources, as the rate of [U-(13)C]-glucose oxidation was greater (P < 0.01) at all times during T2, compared to C55. Whilst more of the ingested substrate remained unoxidised on completion of T2 during C220, exercise duration was similar in the two experimental conditions, and was limited by thermoregulatory incapacity (T(aur) > 39 degrees C) rather than substrate availability per se.
Astroglial pentose phosphate pathway rates in response to high-glucose environments
Takahashi, Shinichi; Izawa, Yoshikane; Suzuki, Norihiro
2012-01-01
ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of 14CO2 production from [1-14C]glucose and [6-14C]glucose. ROS production, mainly H2O2, and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke. PMID:22300409
Protas, Hillary D; Chen, Kewei; Langbaum, Jessica B S; Fleisher, Adam S; Alexander, Gene E; Lee, Wendy; Bandy, Daniel; de Leon, Mony J; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W; Caselli, Richard J; Reiman, Eric M
2013-03-01
To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxyglucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Academic medical center. A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P = .60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P = .001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r = 0.29, P = .0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P < .05, determined by use of pairwise Fisher z tests). Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or metabolism in cognitively normal persons at increased genetic risk for Alzheimer disease.
Yang, Lijun; Cui, Hong; Cao, Ting
2014-03-01
Oligodendrocyte lineage gene 1 plays a key role in hypoxic-ischemic brain damage and myelin repair. miRNA-9 is involved in the occurrence of many related neurological disorders. Bioinformatics analysis demonstrated that miRNA-9 complementarily, but incompletely, bound oligodendrocyte lineage gene 1, but whether miRNA-9 regulates oligodendrocyte lineage gene 1 remains poorly understood. Whole brain slices of 3-day-old Sprague-Dawley rats were cultured and divided into four groups: control group; oxygen-glucose deprivation group (treatment with 8% O2 + 92% N2 and sugar-free medium for 60 minutes); transfection control group (after oxygen and glucose deprivation for 60 minutes, transfected with control plasmid) and miRNA-9 transfection group (after oxygen and glucose deprivation for 60 minutes, transfected with miRNA-9 plasmid). From the third day of transfection, and with increasing culture days, oligodendrocyte lineage gene 1 expression increased in each group, peaked at 14 days, and then decreased at 21 days. Real-time quantitative PCR results, however, demonstrated that oligodendrocyte lineage gene 1 expression was lower in the miRNA-9 transfection group than that in the transfection control group at 1, 3, 7, 14, 21 and 28 days after transfection. Results suggested that miRNA-9 possibly negatively regulated oligodendrocyte lineage gene 1 in brain tissues during hypoxic-ischemic brain damage.
Evans, M L; Hopkins, D; Macdonald, I A; Amiel, S A
2004-05-01
To investigate the potential for the non-glucose metabolic substrate alanine to support brain function during glucose deprivation in man. Seven healthy men were studied on two occasions using a hyperinsulinaemic glucose clamp to lower arterialized plasma glucose to 2.5 mmol/l, in the presence of either 2 mmol/kg/h alanine infusion or saline, measuring counter-regulatory hormonal responses, symptoms generated and cognitive function with a mini-battery of tests sensitive to hypoglycaemia. Alanine infusion elevated plasma alanine (peak value 1481 +/- 1260 vs. 138 +/- 32 micro mol/l, P = 0.02 alanine vs. saline) and lactate (peak value 3.09 +/- 0.14 vs. 2.05 +/- 0.12 mmol/l, P = 0.02). Cognitive function assessed by the Stroop word and colour subtests deteriorated less with alanine than saline (P < 0.01 for both). Other cognitive function tests deteriorated equally and counter-regulatory hormones rose equally during hypoglycaemia in both studies (P > 0.34) except for increased glucagon with alanine (peak 260 +/- 53 vs. 91 + 8 ng/l, P = 0.03). There was no significant effect of alanine on either autonomic or neuroglycopenic symptom scores. Some, but not all, aspects of cognitive performance may be supported by an alanine infusion during hypoglycaemia. It is not clear whether alanine supports brain function directly or via increased availability of lactate. These data contribute to the growing evidence that regional metabolic differences exist in the brain's ability to use non-glucose fuels during hypoglycaemia.
Intelligence and Changes in Regional Cerebral Glucose Metabolic Rate Following Learning.
ERIC Educational Resources Information Center
Haier, Richard J.; And Others
1992-01-01
A study of eight normal right-handed men demonstrates widespread significant decreases in brain glucose metabolic rate (GMR) following learning a complex computer task, a computer game. Correlations between magnitude of GMR change and intelligence scores are also demonstrated. (SLD)
Upper intestinal lipids regulate energy and glucose homeostasis.
Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T
2009-09-01
Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.
Zhang, Yifan; Zhang, Shenghui; Marin-Valencia, Isaac; Puchowicz, Michelle A.
2014-01-01
The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies towards oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies towards citric acid cycle (CAC) and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-13C]glucose or [U-13C]acetoacetate tracers. Concentrations and 13C-labeling pattern of CAC intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-13C]glucose to acetyl-CoA and amino acids decreased by ~30% in the KG group vs STD, whereas [U-13C]acetoacetate contributions were more than 2-fold higher. The concentration of GABA remained constant across all groups; however, the 13C-labeling of GABA was markedly increased in the KG group infused with [U-13C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions. PMID:25314677
Medeiros, N; Dai, L; Ferguson, A V
2012-01-10
Glucose-sensitive neurons have been identified in a number of CNS regions including metabolic control centers of the hypothalamus. The location of these regions behind the blood-brain barrier restricts them to sensing central, but not circulating glucose concentrations. In this study, we have used patch-clamp electrophysiology to examine whether neurons in a specialized region lacking the blood-brain barrier, the subfornical organ (SFO), are also glucose sensitive. In dissociated SFO neurons, altering the bath concentration of glucose (1 mM, 5 mM, 10 mM) influenced the excitability of 49% of neurons tested (n=67). Glucose-inhibited (GI) neurons depolarized in response to decreased glucose (n=10; mean, 4.6±1.0 mV) or hyperpolarized in response to increased glucose (n=8; mean,-4.4±0.8 mV). In contrast, glucose-excited (GE) neurons depolarized in response to increased glucose (n=9; mean, 6.4±0.4 mV) or hyperpolarized in response to decreased glucose (n=6; mean,-4.8±0.6 mV). Using voltage-clamp recordings, we also identified GI (outward current to increased glucose) and GE (inward current to increased glucose) SFO neurons. The mean glucose-induced inward current had a reversal potential of -24±12 mV (n=5), while GE responses were maintained during sodium-dependent glucose transporter inhibition, supporting the conclusion that GE properties result from the activation of a nonselective cation conductance (NSCC). The glucose-induced outward current had a mean reversal potential of -78±1.2 mV (n=5), while GI responses were not observed in the presence of glibenclamide, suggesting that these properties result from the modulation of K(ATP) channels. These data demonstrate that SFO neurons are glucose responsive, further emphasizing the potential roles of this circumventricular organ as an important sensor and integrator of circulating signals of energy status. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Glucose Plus Fructose Ingestion for Post-Exercise Recovery—Greater than the Sum of Its Parts?
Gonzalez, Javier T.; Fuchs, Cas J.; Betts, James A.; van Loon, Luc J. C.
2017-01-01
Carbohydrate availability in the form of muscle and liver glycogen is an important determinant of performance during prolonged bouts of moderate- to high-intensity exercise. Therefore, when effective endurance performance is an objective on multiple occasions within a 24-h period, the restoration of endogenous glycogen stores is the principal factor determining recovery. This review considers the role of glucose–fructose co-ingestion on liver and muscle glycogen repletion following prolonged exercise. Glucose and fructose are primarily absorbed by different intestinal transport proteins; by combining the ingestion of glucose with fructose, both transport pathways are utilised, which increases the total capacity for carbohydrate absorption. Moreover, the addition of glucose to fructose ingestion facilitates intestinal fructose absorption via a currently unidentified mechanism. The co-ingestion of glucose and fructose therefore provides faster rates of carbohydrate absorption than the sum of glucose and fructose absorption rates alone. Similar metabolic effects can be achieved via the ingestion of sucrose (a disaccharide of glucose and fructose) because intestinal absorption is unlikely to be limited by sucrose hydrolysis. Carbohydrate ingestion at a rate of ≥1.2 g carbohydrate per kg body mass per hour appears to maximise post-exercise muscle glycogen repletion rates. Providing these carbohydrates in the form of glucose–fructose (sucrose) mixtures does not further enhance muscle glycogen repletion rates over glucose (polymer) ingestion alone. In contrast, liver glycogen repletion rates are approximately doubled with ingestion of glucose–fructose (sucrose) mixtures over isocaloric ingestion of glucose (polymers) alone. Furthermore, glucose plus fructose (sucrose) ingestion alleviates gastrointestinal distress when the ingestion rate approaches or exceeds the capacity for intestinal glucose absorption (~1.2 g/min). Accordingly, when rapid recovery of endogenous glycogen stores is a priority, ingesting glucose–fructose mixtures (or sucrose) at a rate of ≥1.2 g·kg body mass−1·h−1 can enhance glycogen repletion rates whilst also minimising gastrointestinal distress. PMID:28358334
Brain Routes for Reading in Adults with and without Autism: EMEG Evidence
ERIC Educational Resources Information Center
Moseley, Rachel L.; Pulvermüller, Friedemann; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Shtyrov, Yury
2014-01-01
Reading utilises at least two neural pathways. The temporal lexical route visually maps whole words to their lexical entries, whilst the nonlexical route decodes words phonologically via parietal cortex. Readers typically employ the lexical route for familiar words, but poor comprehension plus precocity at mechanically "sounding out"…
Central insulin action in energy and glucose homeostasis.
Plum, Leona; Belgardt, Bengt F; Brüning, Jens C
2006-07-01
Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.
Effects of hypoglycemia on human brain activation measured with fMRI.
Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C
2006-07-01
Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.
ERIC Educational Resources Information Center
Willerman, Lee; Schultz, Robert T.
1995-01-01
The relationship between mental retardation and brain size is discussed. Research suggests that a common path for many otherwise idiopathic mild retardation cases (genetic or environmental) could be small brain size, indicating reduced information processing capacity. Suggestions are made for further research on neuron number. (SLD)
Krushinitskaya, Olga; Tønnessen, Tor Inge; Jakobsen, Henrik; Johannessen, Erik
2011-10-15
Continuous surveillance of blood glucose is a prerogative of maintaining a tight glycaemic control in people suffering from diabetes mellitus. Implantable sensor technology offers the potential of conducting direct long term continuous glucose measurements, but current size restrictions and operational challenges have limited their applications. The osmotic sensor utilises diffusion to create a hydrostatic pressure that is independent of sensor operation and power consumption. This permits ultra-low power architectures to be realized with a minimal start-up time in a package suitable for miniaturization. In contrast, osmotic sensors suffer from the inability of their membranes to discriminate between different constituents in blood or the interstitial fluid that are of comparable size to glucose. By implementing an affinity assay based on the competitive bonding between concanavalin A and dextran, the selectivity of the membrane can be transferred to the glucose specific recognition of the affinity assay. The osmotic effect from the physiological levels of several key metabolites and nutritional components has been addressed identifying in particular ethanol, lactate and amino acids as potential interfering constituents. Both ascorbic acid and mannose would have a normal physiological concentration that is too low to be detected. The studies shows that an osmotic glucose sensor equipped with the con A-dextran affinity assay, is able to filter out potential interfering constituents present in blood, plasma and the interstitial fluid yet retaining a pressure that is proportional to glucose only. Copyright © 2011 Elsevier B.V. All rights reserved.
Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne
2017-01-01
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus, spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (rs=0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (rs=0.56) and hippocampus (rs=−0.62) or septum (rs=−0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes. PMID:28039490
Djelti, Fathia; Dhenain, Marc; Terrien, Jérémy; Picq, Jean-Luc; Hardy, Isabelle; Champeval, Delphine; Perret, Martine; Schenker, Esther; Epelbaum, Jacques; Aujard, Fabienne
2016-12-28
Age-associated cognitive impairment is a major health and social issue because of increasing aged population. Cognitive decline is not homogeneous in humans and the determinants leading to differences between subjects are not fully understood. In middle-aged healthy humans, fasting blood glucose levels in the upper normal range are associated with memory impairment and cerebral atrophy. Due to a close evolutional similarity to Man, non-human primates may be useful to investigate the relationships between glucose homeostasis, cognitive deficits and structural brain alterations. In the grey mouse lemur, Microcebus murinus , spatial memory deficits have been associated with age and cerebral atrophy but the origin of these alterations have not been clearly identified. Herein, we showed that, on 28 female grey mouse lemurs (age range 2.4-6.1 years-old), age correlated with impaired fasting blood glucose (r s =0.37) but not with impaired glucose tolerance or insulin resistance. In middle-aged animals (4.1-6.1 years-old), fasting blood glucose was inversely and closely linked with spatial memory performance (r s =0.56) and hippocampus (r s =-0.62) or septum (r s =-0.55) volumes. These findings corroborate observations in humans and further support the grey mouse lemur as a natural model to unravel mechanisms which link impaired glucose homeostasis, brain atrophy and cognitive processes.
Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo.
Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L
2011-12-01
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-(13)C(2)]-D-β-hydroxybutyrate (BHB). Time courses of (13)C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized (1)H-[(13)C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron-astrocyte) metabolic model to the (13)C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. D-β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (≈ 70:30), and followed a pattern closely similar to the metabolism of [1-(13)C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-(13)C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use.
Cortical substrate oxidation during hyperketonemia in the fasted anesthetized rat in vivo
Jiang, Lihong; Mason, Graeme F; Rothman, Douglas L; de Graaf, Robin A; Behar, Kevin L
2011-01-01
Ketone bodies are important alternate brain fuels, but their capacity to replace glucose and support neural function is unclear. In this study, the contributions of ketone bodies and glucose to cerebral cortical metabolism were measured in vivo in halothane-anesthetized rats fasted for 36 hours (n=6) and receiving intravenous [2,4-13C2]--β-hydroxybutyrate (BHB). Time courses of 13C-enriched brain amino acids (glutamate-C4, glutamine-C4, and glutamate and glutamine-C3) were measured at 9.4 Tesla using spatially localized 1H-[13C]-nuclear magnetic resonance spectroscopy. Metabolic rates were estimated by fitting a constrained, two-compartment (neuron–astrocyte) metabolic model to the 13C time-course data. We found that ketone body oxidation was substantial, accounting for 40% of total substrate oxidation (glucose plus ketone bodies) by neurons and astrocytes. -β-Hydroxybutyrate was oxidized to a greater extent in neurons than in astrocytes (∼70:30), and followed a pattern closely similar to the metabolism of [1-13C]glucose reported in previous studies. Total neuronal tricarboxylic acid cycle (TCA) flux in hyperketonemic rats was similar to values reported for normal (nonketotic) anesthetized rats infused with [1-13C]glucose, but neuronal glucose oxidation was 40% to 50% lower, indicating that ketone bodies had compensated for the reduction in glucose use. PMID:21731032
Revisiting the physiological roles of SGLTs and GLUTs using positron emission tomography in mice
Sala‐Rabanal, Monica; Hirayama, Bruce A.; Ghezzi, Chiara; Liu, Jie; Huang, Sung‐Cheng; Kepe, Vladimir; Koepsell, Hermann; Yu, Amy; Powell, David R.; Thorens, Bernard; Barrio, Jorge R.
2016-01-01
Key points Glucose transporters are central players in glucose homeostasis.There are two major classes of glucose transporters in the body, the passive facilitative glucose transporters (GLUTs) and the secondary active sodium‐coupled glucose transporters (SGLTs).In the present study, we report the use of a non‐invasive imaging technique, positron emission tomography, in mice aiming to evaluate the role of GLUTs and SGLTs in controlling glucose distribution and utilization.We show that GLUTs are most significant for glucose uptake into the brain and liver, whereas SGLTs are important in glucose recovery in the kidney.This work provides further support for the use of SGLT imaging in the investigation of the role of SGLT transporters in human physiology and diseases such as diabetes and cancer. Abstract The importance of sodium‐coupled glucose transporters (SGLTs) and facilitative glucose transporters (GLUTs) in glucose homeostasis was studied in mice using fluorine‐18 labelled glucose molecular imaging probes and non‐invasive positron emission tomography (PET) imaging. The probes were: α‐methyl‐4‐[F‐18]‐fluoro‐4‐deoxy‐d‐glucopyranoside (Me‐4FDG), a substrate for SGLTs; 4‐deoxy‐4‐[F‐18]‐fluoro‐d‐glucose (4‐FDG), a substrate for SGLTs and GLUTs; and 2‐deoxy‐2‐[F‐18]‐fluoro‐d–glucose (2‐FDG), a substrate for GLUTs. These radiolabelled imaging probes were injected i.v. into wild‐type, Sglt1–/–, Sglt2–/– and Glut2–/– mice and their dynamic whole‐body distribution was determined using microPET. The distribution of 2‐FDG was similar to that reported earlier (i.e. it accumulated in the brain, heart, liver and kidney, and was excreted into the urinary bladder). There was little change in the distribution of 2‐FDG in Glut2–/– mice, apart from a reduction in the rate of uptake into liver. The major differences between Me‐4FDG and 2‐FDG were that Me‐4FDG did not enter the brain and was not excreted into the urinary bladder. There was urinary excretion of Me‐4FDG in Sglt1–/– and Sglt2–/– mice. However, Me‐4FDG was not reabsorbed in the kidney in Glut2–/– mice. There were no differences in Me‐4FDG uptake into the heart of wild‐type, Sglt1–/– and Sglt2–/– mice. We conclude that GLUT2 is important in glucose liver transport and reabsorption of glucose in the kidney along with SGLT2 and SGLT1. Complete reabsorption of Me‐4FDG from the glomerular filtrate in wild‐type mice and the absence of reabsorption in the kidney in Glut2–/– mice confirm the importance of GLUT2 in glucose absorption across the proximal tubule. PMID:27018980
Varner, Erika L; Leong, Chi Leng; Jaquins-Gerstl, Andrea; Nesbitt, Kathryn M; Boutelle, Martyn G; Michael, Adrian C
2017-08-16
Microdialysis is well established in chemical neuroscience as a mainstay technology for real time intracranial chemical monitoring in both animal models and human patients. Evidence shows that microdialysis can be enhanced by mitigating the penetration injury caused during the insertion of microdialysis probes into brain tissue. Herein, we show that retrodialysis of dexamethasone in the rat cortex enhances the microdialysis detection of K + and glucose transients induced by spreading depolarization. Without dexamethasone, quantification of glucose transients was unreliable by 5 days after probe insertion. With dexamethasone, robust K + and glucose transients were readily quantified at 2 h, 5 days, and 10 days after probe insertion. The amplitudes of the K + transients declined day-to-day following probe insertion, and the amplitudes of the glucose transients exhibited a decreasing trend that did not reach statistical significance. Immunohistochemistry and fluorescence microscopy confirm that dexamethasone is highly effective at preserving a healthy probe-brain interface for at least 10 days even though retrodialysis of dexamethasone ceased after 5 days.
Novel Peak Assignments of in Vivo 13C MRS in Human Brain at 1.5 T
NASA Astrophysics Data System (ADS)
Blüml, Stefan; Hwang, Jong-Hee; Moreno, Angel; Ross, Brian D.
2000-04-01
13C MRS studies at natural abundance and after intravenous 1-13C glucose infusion were performed on a 1.5-T clinical scanner in four subjects. Localization to the occipital cortex was achieved by a surface coil. In natural abundance spectra glucose C3β,5β, myo-inositol, glutamate C1,2,5, glutamine C1,2,5, N-acetyl-aspartate C1-4,Cdbnd O, creatine CH2, CH3, and CCdbnd N, taurine C2,3, bicarbonate HCO-3 were identified. After glucose infusion 13C enrichment of glucose C1α,1β, glutamate C1-4, glutamine C1-4, aspartate C2,3, N-acetyl-aspartate C2,3, lactate C3, alanine C3, and HCO-3 were observed. The observation of 13C enrichment of resonances resonating at >150 ppm is an extension of previously published studies and will provide a more precise determination of metabolic rates and substrate decarboxylation in human brain.
CREB1 regulates glucose transport of glioma cell line U87 by targeting GLUT1.
Chen, Jiaying; Zhang, Can; Mi, Yang; Chen, Fuxue; Du, Dongshu
2017-12-01
Glioma is stemmed from the glial cells in the brain, which is accounted for about 45% of all intracranial tumors. The characteristic of glioma is invasive growth, as well as there is no obvious boundary between normal brain tissue and glioma tissue, so it is difficult to resect completely with worst prognosis. The metabolism of glioma is following the Warburg effect. Previous researches have shown that GLUT1, as a glucose transporter carrier, affected the Warburg effect, but the molecular mechanism is not very clear. CREB1 (cAMP responsive element-binding protein1) is involved in various biological processes, and relevant studies confirmed that CREB1 protein regulated the expression of GLUT1, thus mediating glucose transport in cells. Our experiments mainly reveal that the CREB1 could affect glucose transport in glioma cells by regulating the expression of GLUT1, which controlled the metabolism of glioma and affected the progression of glioma.
Koch, Christiane E; Ganjam, Goutham K; Steger, Juliane; Legler, Karen; Stöhr, Sigrid; Schumacher, Daniela; Hoggard, Nigel; Heldmaier, Gerhard; Tups, Alexander
2013-03-28
Secondary metabolites of herbs and spices are widely used as an alternative strategy in the therapy of various diseases. The polyphenols naringenin, quercetin and curcumin have been characterised as anti-diabetic agents. Conversely, in vitro, naringenin and quercetin are described to inhibit phosphoinositide-3-kinase (PI3K), an enzyme that is essential for the neuronal control of whole body glucose homoeostasis. Using both in vitro and in vivo experiments, we tested whether the inhibitory effect on PI3K occurs in neurons and if it might affect whole body glucose homoeostasis. Quercetin was found to inhibit basal and insulin-induced phosphorylation of Akt (Ser473), a downstream target of PI3K, in HT-22 cells, whereas naringenin and curcumin had no effect. In Djungarian hamsters (Phodopus sungorus) naringenin and quercetin (10 mg/kg administered orally) diminished insulin-induced phosphorylation of Akt (Ser473) in the arcuate nucleus, indicating a reduction in hypothalamic PI3K activity. In agreement with this finding, glucose tolerance in naringenin-treated hamsters (oral) and mice (oral and intracerebroventricular) was reduced compared with controls. Dietary quercetin also impaired glucose tolerance, whereas curcumin was ineffective. Circulating levels of insulin and insulin-like growth factor-binding protein were not affected by the polyphenols. Oral quercetin reduced the respiratory quotient, suggesting that glucose utilisation was impaired after treatment. These data demonstrate that low doses of naringenin and quercetin acutely and potently impair glucose homoeostasis. This effect may be mediated by inhibition of hypothalamic PI3K signalling. Whether chronic impairments in glucose homoeostasis occur after long-term application remains to be identified.
Elsutohy, Mohamed M; Chauhan, Veeren M; Markus, Robert; Kyyaly, Mohammed Aref; Tendler, Saul J B; Aylott, Jonathan W
2017-05-11
Intracellular pH is a key parameter that influences many biochemical and metabolic pathways that can also be used as an indirect marker to monitor metabolic and intracellular processes. Herein, we utilise ratiometric fluorescent pH-sensitive nanosensors with an extended dynamic pH range to measure the intracellular pH of yeast (Saccharomyces cerevisiae) during glucose metabolism in real-time. Ratiometric fluorescent pH-sensitive nanosensors consisting of a polyacrylamide nanoparticle matrix covalently linked to two pH-sensitive fluorophores, Oregon green (OG) and 5(6)carboxyfluorescein (FAM), and a reference pH-insensitive fluorophore, 5(6)carboxytetramethylrhodamine (TAMRA), were synthesised. Nanosensors were functionalised with acrylamidopropyltrimethyl ammonium hydrochloride (ACTA) to confer a positive charge to the nanoparticle surfaces that facilitated nanosensor delivery to yeast cells, negating the need to use stress inducing techniques. The results showed that under glucose-starved conditions the intracellular pH of yeast population (n ≈ 200) was 4.67 ± 0.15. Upon addition of d-(+)-glucose (10 mM), this pH value decreased to pH 3.86 ± 0.13 over a period of 10 minutes followed by a gradual rise to a maximal pH of 5.21 ± 0.26, 25 minutes after glucose addition. 45 minutes after the addition of glucose, the intracellular pH of yeast cells returned to that of the glucose starved conditions. This study advances our understanding of the interplay between glucose metabolism and pH regulation in yeast cells, and indicates that the intracellular pH homestasis in yeast is highly regulated and demonstrates the utility of nanosensors for real-time intracellular pH measurements.
Val-Laillet, David; Guérin, Sylvie; Coquery, Nicolas; Nogret, Isabelle; Formal, Michèle; Romé, Véronique; Le Normand, Laurence; Meurice, Paul; Randuineau, Gwénaëlle; Guilloteau, Paul; Malbert, Charles-Henri; Parnet, Patricia; Lallès, Jean-Paul; Segain, Jean-Pierre
2018-04-01
Butyrate can improve gut functions, whereas histone deacetylase inhibitors might alleviate neurocognitive alterations. Our aim was to assess whether oral butyrate could modulate brain metabolism and plasticity and if this would relate to gut function. Sixteen pigs were subjected to sodium butyrate (SB) supplementation via beverage water or water only [control (C)]. All pigs had blood sampled after 2 and 3 wk of treatment, and were subjected to a brain positron emission tomography after 3 wk. Animals were euthanized after 4 wk to sample pancreas, intestine, and brain for gut physiology and anatomy measurements, as well as hippocampal histology, Ki67, and doublecortin (DCX) immunohistochemistry. SB compared with C treatment triggered basal brain glucose metabolism changes in the nucleus accumbens and hippocampus ( P = 0.003), increased hippocampal granular cell layer volume ( P = 0.006), and neurogenesis (Ki67: P = 0.026; DCX: P = 0.029). After 2 wk of treatment, plasma levels of glucose, insulin, lactate, glucagon-like peptide 1, and peptide tyrosine tyrosine remained unchanged. After 3 wk, plasma levels of lactate were lower in SB compared with C animals ( P = 0.028), with no difference for glucose and insulin. Butyrate intake impacted very little gut anatomy and function. These results demonstrate that oral SB impacted brain functions with little effects on the gut.-Val-Laillet, D., Guérin, S., Coquery, N., Nogret, I., Formal, M., Romé, V., Le Normand, L., Meurice, P., Randuineau, G., Guilloteau, P., Malbert, C.-H., Parnet, P., Lallès, J.-P., Segain, J.-P. Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs.
How the Brain May Have Shaped Muscle Anatomy and Physiology: A Preliminary Study.
Muchlinski, Magdalena N; Hemingway, Holden W; Pastor, Juan; Omstead, Kailey M; Burrows, Anne M
2018-03-01
Skeletal muscle fibers are often used to evaluate functional differences in locomotion. However, because there are energetic differences among muscle fiber cells, muscle fiber composition could be used to address evolutionary questions about energetics. Skeletal muscle is composed of two main types of fibers: Type I and II. The difference between the two can be reduced to how these muscle cells use oxygen and glucose. Type I fibers convert glucose to ATP using oxygen, while Type II fibers rely primarily on anaerobic metabolic processes. The expensive tissue hypothesis (ETH) proposes that the energetic demands imposed on the body by the brain result in a reduction in other expensive tissues (e.g., gastrointestinal tract). The original ETH dismisses the energetic demands of skeletal muscle, despite skeletal muscle being (1) an expensive tissue when active and (2) in direct competition for glucose with the brain. Based on these observations we hypothesize that larger brained primates will have relatively less muscle mass and a decrease in Type I fibers. As part of a larger study to test this hypothesis, we present data from 10 species of primates. We collected body mass, muscle mass, and biopsied four muscles from each specimen for histological procedures. We collected endocranial volumes from the literature. Using immunohistochemistry, a muscle fiber composition profile was created for each species sampled. Results show that larger brained primates have less muscle and fewer Type I fibers than primates with smaller brains. Results clarify the relationship between muscle mass and brain mass and illustrate how muscle mass could be used to address energetic questions. Anat Rec, 301:528-537, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Castellano, Christian-Alexandre; Paquet, Nancy; Dionne, Isabelle J; Imbeault, Hélène; Langlois, Francis; Croteau, Etienne; Tremblay, Sébastien; Fortier, Mélanie; Matte, J Jacques; Lacombe, Guy; Fülöp, Tamás; Bocti, Christian; Cunnane, Stephen C
2017-01-01
Aerobic training has some benefits for delaying the onset or progression of Alzheimer's disease (AD). Little is known about the implication of the brain's two main fuels, glucose and ketones (acetoacetate), associated with thesebenefits. To determine whether aerobic exercise training modifies brain energy metabolism in mild AD. In this uncontrolled study, ten patients with mild AD participated in a 3-month, individualized, moderate-intensity aerobic training on a treadmill (Walking). Quantitative measurement of brain uptake of glucose (CMRglu) and acetoacetate (CMRacac) using neuroimaging and cognitive testing were done before and after the Walking program. Four men and six women with an average global cognitive score (MMSE) of 26/30 and an average age of 73 y completed the Walking program. Average total distance and treadmill speed were 8 km/week and 4 km/h, respectively. Compared to the Baseline, after Walking, CMRacac was three-fold higher (0.6±0.4 versus 0.2±0.1 μmol/100 g/min; p = 0.01). Plasma acetoacetate concentration and the blood-to-brain acetoacetate influx rate constant were also increased by 2-3-fold (all p≤0.03). CMRglu was unchanged after Walking (28.0±0.1 μmol/100 g/min; p = 0.96). There was a tendency toward improvement in the Stroop-color naming test (-10% completion time, p = 0.06). Performance on the Trail Making A&B tests was also directly related to plasma acetoacetate and CMRacac (all p≤0.01). In mild AD, aerobic training improved brain energy metabolism by increasing ketone uptake and utilization while maintaining brain glucose uptake, and could potentially be associated with some cognitive improvement.
A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid.
Castro, Maite A; Beltrán, Felipe A; Brauchi, Sebastián; Concha, Ilona I
2009-07-01
In this review, we discuss a novel function of ascorbic acid in brain energetics. It has been proposed that during glutamatergic synaptic activity neurons preferably consume lactate released from glia. The key to this energetic coupling is the metabolic activation that occurs in astrocytes by glutamate and an increase in extracellular [K(+)]. Neurons are cells well equipped to consume glucose because they express glucose transporters and glycolytic and tricarboxylic acid cycle enzymes. Moreover, neuronal cells express monocarboxylate transporters and lactate dehydrogenase isoenzyme 1, which is inhibited by pyruvate. As glycolysis produces an increase in pyruvate concentration and a decrease in NAD(+)/NADH, lactate and glucose consumption are not viable at the same time. In this context, we discuss ascorbic acid participation as a metabolic switch modulating neuronal metabolism between rest and activation periods. Ascorbic acid is highly concentrated in CNS. Glutamate stimulates ascorbic acid release from astrocytes. Ascorbic acid entry into neurons and within the cell can inhibit glucose consumption and stimulate lactate transport. For this switch to occur, an ascorbic acid flow is necessary between astrocytes and neurons, which is driven by neural activity and is part of vitamin C recycling. Here, we review the role of glucose and lactate as metabolic substrates and the modulation of neuronal metabolism by ascorbic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.F.; Lear, J.L.
We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less
Forskolin photoaffinity labels with specificity for adenylyl cyclase and the glucose transporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, D.I.; Robbins, J.D.; Ruoho, A.E.
1991-07-15
Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of (3H)forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited (3H)forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP {gamma} S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolinmore » but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP {gamma} S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.« less
Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V
2016-02-01
The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with misbalance between endocytosis and exocytosis could be involved in the anticonvulsant activity of the ketogenic diet. Copyright © 2016 Elsevier Ltd. All rights reserved.
Achanta, Lavanya B; Rowlands, Benjamin D; Thomas, Donald S; Housley, Gary D; Rae, Caroline D
2017-06-01
The ketone body, β-hydroxybutyrate (βOHB), is metabolised by the brain alongside the mandatory brain fuel glucose. To examine the extent and circumstances by which βOHB can supplement glucose metabolism, we studied guinea pig cortical brain slices using increasing concentrations of [U- 13 C]D-βOHB in conjunction with [1- 13 C]D-glucose under conditions of normo- and hypoglycaemia, as well as under high potassium (40 mmol/L K + ) depolarization in normo- and hypoglycaemic conditions. The contribution of βOHB to synthesis of GABA was also probed by inhibiting the synthesis of glutamine, a GABA precursor, with methionine sulfoximine (MSO). [U- 13 C]D-βOHB at lower concentrations (0.25 and 1.25 mmol/L) stimulated mitochondrial metabolism, producing greater total incorporation of label into glutamate and GABA but did not have a similar effect in the cytosolic compartment where labelling of glutamine was reduced at 1.25 mmol/L [U- 13 C]D-βOHB. At higher concentrations (2.5 mmol/L) [U- 13 C]D-βOHB inhibited metabolism of [1- 13 C]D-glucose, and reduced total label incorporation and total metabolite pools. When glucose levels were reduced, βOHB was able to partially restore the loss of glutamate and GABA caused by hypoglycaemia, but was not able to supplement levels of lactate, glutamine or alanine or to prevent the increase in aspartate. Under depolarizing conditions glucose was the preferred substrate over βOHB, even in hypoglycaemic conditions where comparatively less βOHB was incorporated except into aspartate isotopomers. Inhibition of glutamine synthesis with MSO had no significant effect on incorporation of label from [U- 13 C]D-βOHB into GABA C2,1 indicating that the majority of this GABA was synthesized in GABAergic neurons from [U- 13 C]D-βOHB rather than from Gln C4,5 imported from astrocytes.
Bak, Lasse K; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S
2006-10-01
Glucose is the primary energy substrate for the adult mammalian brain. However, lactate produced within the brain might be able to serve this purpose in neurons. In the present study, the relative significance of glucose and lactate as substrates to maintain neurotransmitter homeostasis was investigated. Cultured cerebellar (primarily glutamatergic) neurons were superfused in medium containing [U-13C]glucose (2.5 mmol/L) and lactate (1 or 5 mmol/L) or glucose (2.5 mmol/L) and [U-13C]lactate (1 mmol/L), and exposed to pulses of N-methyl-D-aspartate (300 micromol/L), leading to synaptic activity including vesicular release. The incorporation of 13C label into intracellular lactate, alanine, succinate, glutamate, and aspartate was determined by mass spectrometry. The metabolism of [U-13C]lactate under non-depolarizing conditions was high compared with that of [U-13C]glucose; however, it decreased significantly during induced depolarization. In contrast, at both concentrations of extracellular lactate, the metabolism of [U-13C]glucose was increased during neuronal depolarization. The role of glucose and lactate as energy substrates during vesicular release as well as transporter-mediated influx and efflux of glutamate was examined using preloaded D-[3H]aspartate as a glutamate tracer and DL-threo-beta-benzyloxyaspartate to inhibit glutamate transporters. The results suggest that glucose is essential to prevent depolarization-induced reversal of the transporter (efflux), whereas vesicular release was unaffected by the choice of substrate. In conclusion, the present study shows that glucose is a necessary substrate to maintain neurotransmitter homeostasis during synaptic activity and that synaptic activity does not induce an upregulation of lactate metabolism in glutamatergic neurons.
Itoh, Yoshiaki; Esaki, Takanori; Shimoji, Kazuaki; Cook, Michelle; Law, Mona J; Kaufman, Elaine; Sokoloff, Louis
2003-04-15
Neuronal cultures in vitro readily oxidized both D-[(14)C]glucose and l-[(14)C]lactate to (14)CO(2), whereas astroglial cultures oxidized both substrates sparingly and metabolized glucose predominantly to lactate and released it into the medium. [(14)C]Glucose oxidation to (14)CO(2) varied inversely with unlabeled lactate concentration in the medium, particularly in neurons, and increased progressively with decreasing lactate concentration. Adding unlabeled glucose to the medium inhibited [(14)C]lactate oxidation to (14)CO(2) only in astroglia but not in neurons, indicating a kinetic preference in neurons for oxidation of extracellular lactate over intracellular pyruvatelactate produced by glycolysis. Protein kinase-catalyzed phosphorylation inactivates pyruvate dehydrogenase (PDH), which regulates pyruvate entry into the tricarboxylic acid cycle. Dichloroacetate inhibits this kinase, thus enhancing PDH activity. In vitro dichloroacetate stimulated glucose and lactate oxidation to CO(2) and reduced lactate release mainly in astroglia, indicating that limitations in glucose and lactate oxidation by astroglia may be due to a greater balance of PDH toward the inactive form. To assess the significance of astroglial export of lactate to neurons in vivo, we attempted to diminish this traffic in rats by administering dichloroacetate (50 mgkg) intravenously to stimulate astroglial lactate oxidation and then examined the effects on baseline and functionally activated local cerebral glucose utilization (lCMR(glc)). Dichloroacetate raised baseline lCMR(glc) throughout the brain and decreased the percent increases in lCMR(glc) evoked by functional activation. These studies provide evidence in support of the compartmentalization of glucose metabolism between astroglia and neurons but indicate that the compartmentalization may be neither complete nor entirely obligatory.
Quintard, Hervé; Patet, Camille; Zerlauth, Jean-Baptiste; Suys, Tamarah; Bouzat, Pierre; Pellerin, Luc; Meuli, Reto; Magistretti, Pierre J.
2016-01-01
Abstract Energy dysfunction is associated with worse prognosis after traumatic brain injury (TBI). Recent data suggest that hypertonic sodium lactate infusion (HL) improves energy metabolism after TBI. Here, we specifically examined whether the efficacy of HL (3h infusion, 30–40 μmol/kg/min) in improving brain energetics (using cerebral microdialysis [CMD] glucose as a main therapeutic end-point) was dependent on baseline cerebral metabolic state (assessed by CMD lactate/pyruvate ratio [LPR]) and cerebral blood flow (CBF, measured with perfusion computed tomography [PCT]). Using a prospective cohort of 24 severe TBI patients, we found CMD glucose increase during HL was significant only in the subgroup of patients with elevated CMD LPR >25 (n = 13; +0.13 [95% confidence interval (CI) 0.08–0.19] mmol/L, p < 0.001; vs. +0.04 [–0.05–0.13] in those with normal LPR, p = 0.33, mixed-effects model). In contrast, CMD glucose increase was independent from baseline CBF (coefficient +0.13 [0.04–0.21] mmol/L when global CBF was <32.5 mL/100 g/min vs. +0.09 [0.04–0.14] mmol/L at normal CBF, both p < 0.005) and systemic glucose. Our data suggest that improvement of brain energetics upon HL seems predominantly dependent on baseline cerebral metabolic state and support the concept that CMD LPR – rather than CBF – could be used as a diagnostic indication for systemic lactate supplementation following TBI. PMID:26421521
McBride, Devin W; Matei, Nathanael; Câmara, Justin R; Louis, Jean-Sébastien; Oudin, Guillaume; Walker, Corentin; Adam, Loic; Liang, Xiping; Hu, Qin; Tang, Jiping; Zhang, John H
2016-01-01
Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.
Porter, R; van der Logt, P; Howell, S; Kyröläinen-Reay, M; Badley, A
2001-12-01
Most immunoassays currently rely on optical methods for signal generation e.g. in ELISA and rapid assay formats. It has become apparent as in the Glucose sensor market that there is a need for simple direct electrical immuno-sensors. We have investigated the novel use of organic conducting monolayers used as a direct electrochemical detection support for an immuno-reaction. It was found that antibodies raised to a carbazole dimer monolayer could increase the charge movement across that monolayer surface. Antibody fragments were taken from a specific anti-carbazole antibody fragment library and combined with an antibody fragment directed to the hormone estrone 3 glucuronide (E3G), the target antigen to form a bispecific antibody fragment. The device utilised these specific antibody fragments and incorporated them on the top plate of a capillary fill format as the immuno-assay components. The immuno-reaction utilised a competition assay. Free E3G analyte in the sample displaced the bispecific antibody fragment from the immuno-surface leaving it free to bind the carbazole monolayer surface. There the binding was detected using amperometric or coulometric methods. By combining all there element it was possible to develop a sensitive immuno-assay that could detect E3G in a reproducible calibrated fashion down to 10 ng/ml.
Carbohydrate changes during growth and fruiting in Pleurotus ostreatus.
Zhou, Shuai; Ma, Fuying; Zhang, Xiaoyu; Zhang, Jingsong
2016-01-01
The carbohydrate distribution in mushrooms is reported changing greatly in its different regions during growth and fruiting. In this study, the carbohydrate distribution in the compost and fruiting bodies of Pleurotus ostreatus was analysed. Sugar, polyol, polysaccharide, and chitin content during different growth phases and in different regions of the mushroom were determined. Results indicate that trehalose, mannitol, and glucose were first accumulated in the compost and then decreased during differentiation and growth of fruiting bodies. Meanwhile, trehalose, mannitol, and glucose also accumulated in the fruiting bodies and primarily distributed in the stipe, base, and pileus region, respectively. Polysaccharides mainly accumulated within the pileus and stipe regions, and chitin was mainly observed in the base region. These findings provide insights into carbohydrate function and utilisation during mushroom growth. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Aljiffry, M; Hassanain, M; Schricker, T; Shaheen, M; Nouh, T; Lattermann, R; Salman, A; Wykes, L; Metrakos, P
2016-05-01
Brain death is a major stress that is associated with a massive inflammatory response and systemic hyperglycemia. Severe inflammation leads to increased graft immunogenicity and risk of graft dysfunction; while acute hyperglycemia aggravates the inflammatory response and increases the risk of morbidity and mortality. Insulin therapy not only controls hyperglycemia but also suppresses inflammation. The present study is to investigate the anti-inflammatory properties and the normoglycemia maintenance of high dose insulin on brain dead organ donors. 15 brain dead organ donors were divided into 2 groups, insulin treated (n=6) and controls (n=9). Insulin was provided for a minimum of 6 h using the hyperinsulinemic normoglycemic clamp technique. The changes of serum cytokines, including IL-6, IL-10, IL-1β, IL-8, TNFα, TGFα and MCP-1, were measured by suspension bead array immunoassay and glucose by a glucose monitor. Compared to controls, insulin treated donors had a significant lower blood glucose 4.8 (4-6.9) vs. 9 (5.6-11.7) mmol/L, p<0.01); the net decreases of pro-inflammatory cytokines, such as IL-6 and MCP-1, and the net increase of anti-inflammatory cytokine, such as IL-10, reached significant level in insulin treated donors compared with those in controls. High dose insulin therapy decreases the concentrations of inflammatory cytokines in brain dead donors and preserves normoglycemia. High dose of insulin may have anti-inflammatory effects in brain dead organ donors and therefore, improve the quality of donor organs and potentially improve outcomes. © Georg Thieme Verlag KG Stuttgart · New York.
Inverse association between BMI and prefrontal metabolic activity in healthy adults.
Volkow, Nora D; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S; Goldstein, Rita Z; Alia-Klein, Nelly; Logan, Jean; Wong, Christopher; Thanos, Panayotis K; Ma, Yemine; Pradhan, Kith
2009-01-01
Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19-37 kg/m(2)) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.
Kelly, Sean D.; Harrell, Constance S.; Neigh, Gretchen N.
2014-01-01
Facilitative glucose transporters (GLUT) mediate glucose uptake across the blood-brain-barrier into neurons and glia. Deficits in specific cerebral GLUT isoforms are linked to developmental and neurological dysfunction, but less is known about the range of variation in cerebral GLUT expression in normal conditions and the effects of environmental influences on cerebral GLUT expression. Knowing that puberty is a time of increased cerebral plasticity, metabolic demand, and shifts in hormonal balance for males and females, we first assessed gene expression of five GLUT subtypes in four brain regions in male and female adolescent and adult Wistar rats. The data indicated that sex differences in GLUT expression were most profound in the hypothalamus, and the transition from adolescence to adulthood had the most profound effect on GLUT expression in the hippocampus. Next, given the substantial energetic demands during adolescence and prior demonstrations of the adverse effects of adolescent stress, we determined the extent to which chronic stress altered GLUT expression in males and females in both adolescence and adulthood. Chronic stress significantly altered cerebral GLUT expression in males and females throughout both developmental stages but in a sexually dimorphic and brain region-specific manner. Collectively, our data demonstrate that cerebral GLUTs are expressed differentially based on brain region, sex, age, and stress exposure. These results suggest that developmental and environmental factors influence GLUT expression in multiple brain regions. Given the importance of appropriate metabolic balance within the brain, further assessment of the functional implications of life stage and environmentally-induced changes in GLUTs are warranted. PMID:24382486