Age-specific absolute and relative organ weight distributions for B6C3F1 mice.
Marino, Dale J
2012-01-01
The B6C3F1 mouse is the standard mouse strain used in toxicology studies conducted by the National Cancer Institute (NCI) and the National Toxicology Program (NTP). While numerous reports have been published on growth, survival, and tumor incidence, no overall compilation of organ weight data is available. Importantly, organ weight change is an endpoint used by regulatory agencies to develop toxicity reference values (TRVs) for use in human health risk assessments. Furthermore, physiologically based pharmacokinetic (PBPK) models, which utilize relative organ weights, are increasingly being used to develop TRVs. Therefore, all available absolute and relative organ weight data for untreated control B6C3F1 mice were collected from NCI/NTP studies in order to develop age-specific distributions. Results show that organ weights were collected more frequently in NCI/NTP studies at 2-wk (60 studies), 3-mo (147 studies), and 15-mo (40 studies) intervals than at other intervals, and more frequently from feeding and inhalation than drinking water studies. Liver, right kidney, lung, heart, thymus, and brain weights were most frequently collected. From the collected data, the mean and standard deviation for absolute and relative organ weights were calculated. Results show age-related increases in absolute liver, right kidney, lung, and heart weights and relatively stable brain and right testis weights. The results suggest a general variability trend in absolute organ weights of brain < right testis < right kidney < heart < liver < lung < spleen < thymus. This report describes the results of this effort.
NASA Astrophysics Data System (ADS)
Marti, Hugo H.; Risau, Werner
1998-12-01
Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.
Purification, cDNA cloning, and regulation of lysophospholipase from rat liver.
Sugimoto, H; Hayashi, H; Yamashita, S
1996-03-29
A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.
FOG-2, a Heart- and Brain-Enriched Cofactor for GATA Transcription Factors
Lu, Jian-rong; McKinsey, Timothy A.; Xu, Hongtao; Wang, Da-zhi; Richardson, James A.; Olson, Eric N.
1999-01-01
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in the control of gene expression in a variety of cell types. GATA-1, -2, and -3 are expressed primarily in hematopoietic cell lineages and are required for proliferation and differentiation of multiple hematopoietic cell types, whereas GATA-4, -5, and -6 are expressed in the heart, where they activate cardiac muscle structural genes. Friend of GATA-1 (FOG) is a multitype zinc finger protein that interacts with GATA-1 and serves as a cofactor for GATA-1-mediated transcription. FOG is coexpressed with GATA-1 in developing erythroid and megakaryocyte cell lineages and cooperates with GATA-1 to control erythropoiesis. We describe a novel FOG-related factor, FOG-2, that is expressed predominantly in the developing and adult heart, brain, and testis. FOG-2 interacts with GATA factors, and interaction of GATA-4 and FOG-2 results in either synergistic activation or repression of GATA-dependent cardiac promoters, depending on the specific promoter and the cell type in which they are tested. The properties of FOG-2 suggest its involvement in the control of cardiac and neural gene expression by GATA transcription factors. PMID:10330188
Tissue distribution and toxicity effects of myclobutanil enantiomers in lizards (Eremias argus).
Chen, Li; Li, Ruiting; Diao, Jinling; Tian, Zhongnan; Di, Shanshan; Zhang, Wenjun; Cheng, Cheng; Zhou, Zhiqiang
2017-11-01
In recent years, serious environmental pollution has caused a decrease in the abundance of many species worldwide. Reptiles are the most diverse group of terrestrial vertebrates. There are large amounts of toxicological data available regarding myclobutanil, but the adverse effects of myclobutanil on lizards has not been widely reported. In this study, treatment groups were orally administered a single-dose of myclobutanil (20mg/kg body weight (bw)). Subsequently, it was found that there were differences in myclobutanil levels between the different tissues and concentrations also changed with degradation time. The tissue concentrations of myclobutanil decreased in the order of: stomach > liver > lung > blood > testis > kidney > heart > brain. Based on our results, the liver and testis were considered to be the main target organs in lizards, indicating that the myclobutanil could induce potential hepatic and reproductive toxicity on lizards. Meanwhile, it was also demonstrated that the toxic effects of myclobutanil was different in different species, and the distribution of different pesticides in lizards were different. Copyright © 2017. Published by Elsevier Inc.
DNA methylation and hydroxymethylation analyses of the active LINE-1 subfamilies in mice.
Murata, Yui; Bundo, Miki; Ueda, Junko; Kubota-Sakashita, Mie; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya
2017-10-19
Retrotransposon long interspersed nuclear element-1 (LINE-1) occupies a large proportion of the mammalian genome, comprising approximately 100,000 genomic copies in mice. Epigenetic status of the 5' untranslated region (5'-UTR) of LINE-1 is critical for its promoter activity. DNA methylation levels in the 5'-UTR of human active LINE-1 subfamily can be measured by well-established methods, such as a pyrosequencing-based assay. However, because of the considerable sequence and structural diversity in LINE-1 among species, methods for such assays should be adapted for the species of interest. Here we developed pyrosequencing-based assays to examine methylcytosine (mC) and hydroxymethylcytosine (hmC) levels of the three active LINE-1 subfamilies in mice (TfI, A, and GfII). Using these assays, we quantified mC and hmC levels in four brain regions and four nonbrain tissues including tail, heart, testis, and ovary. We observed tissue- and subfamily-specific mC and hmC differences. We also found that mC levels were strongly correlated among different brain regions, but mC levels of the testis showed a poor correlation with those of other tissues. Interestingly, mC levels in the A and GfII subfamilies were highly correlated, possibly reflecting their close evolutionary relationship. Our assays will be useful for exploring the epigenetic regulation of the active LINE-1 subfamilies in mice.
Jäger, Dirk; Unkelbach, Marc; Frei, Claudia; Bert, Florian; Scanlan, Matthew J; Jäger, Elke; Old, Lloyd J; Chen, Yao-Tseng; Knuth, Alexander
2002-06-28
Serological analysis of recombinant cDNA expression libraries (SEREX) has led to the identification of several categories of new tumor antigens. We analyzed a testicular cDNA expression library with serum obtained from a breast cancer patient and isolated 13 genes designated NW-BR-1 through NW-BR-13. Of these, 3 showed tumor-restricted expression (NW-BR-1, -2 and -3), the others being expressed ubiquitously. NW-BR-3, representing 9 of 24 primary clones, showed tissue-restricted mRNA expression, being expressed in normal testis but not in 15 other normal tissues tested by Northern blotting. RT-PCR analysis showed strong NW-BR-3 expression in normal testis, weak expression in brain, kidney, trachea, uterus and normal prostate, and was negative in liver, heart, lung, colon, small intestine, bone marrow, breast, thymus, muscle, spleen, and stomach. NW-BR-3 mRNA expression was found in different tumor tissues and tumor cell lines by RT-PCR, thus showing a 'cancer/testis' (CT)-like mRNA expression pattern. NW-BR-3 shares 71% nucleotide and amino acid homology to a mouse gene cloned from mouse testicular tissue. Based on the mRNA expression pattern, NW-BR-3 represents a new candidate target gene for cancer immunotherapy. NW-BR-1 and NW-BR-2 also showed tumor-restricted mRNA expression. NW-BR-1 is a partial clone of the breast differentiation antigen NY-BR-1 previously identified by SEREX. NY-BR-1 is expressed in normal breast, testis and 80% of breast cancers. NW-BR-2 is identical to the CT antigen SCP-1, initially isolated by SEREX analysis of renal cancer. This study provides further evidence that SEREX is a powerful tool to identify new tumor antigens potentially relevant for immunotherapy approaches.
The roles of TAM receptor tyrosine kinases in the mammalian testis and immunoprivileged sites.
Deng, Tingting; Chen, Qiaoyuan; Han, Daishu
2016-01-01
Three members of a receptor tyrosine kinase family, including Tyro3, Axl, and Mer, are collectively called as TAM receptors. TAM receptors have two common ligands, namely, growth arrest specific gene 6 (Gas6) and protein S (ProS). The TAM-Gas6/ProS system is essential for phagocytic removal of apoptotic cells, and plays critical roles in regulating immune response. Genetic studies have shown that TAM receptors are essential regulators of the tissue homeostasis in immunoprivileged sites, including the testis, retina and brain. The mechanisms by which the TAM-Gas6/ProS system regulates the tissue homeostasis in immunoprivileged sites are emerging. The roles of the TAM-Gas6/ProS system in regulating the immune privilege were intensively investigated in the mouse testis, and several studies were performed in the eye and brain. This review summarizes our current understanding of TAM signaling in the testis and other immunoprivileged tissues, as well as highlights topics that are worthy of further investigation.
Aksu, D S; Sağlam, Y S; Yildirim, S; Aksu, T
2017-10-31
Pomegranate juice (PJ) contains relevant amounts of active biological compounds which alleviate the detrimental effects of chronic heavy metal exposure. This study investigated the protective potential of PJ against lead-induced oxidative stress. A total of forty adult male Sprague Dawley rats were divided into four experimental groups. The animals were fed a standard pellet diet and tap water ad libitum. The rats were divided into four groups (n=10 for each group): control, lead asetat (2000 ppm), low-treated PJ- a daily dose of 2.000 ppm lead plus 30µl pomegranate juice (included 1.050 µmol total polyphenols, gallic acid equivalent), and high-treated PJ- a daily dose of 2.000 ppm lead plus 60µl pomegranate juice (included 2.100 µmol total polyphenols, gallic acid equivalent). The treatments were delivered for 5 weeks. After the treatment period, the tissues samples (kidney, liver, heart and testis) were collected. Tissue lead (Pb) and mineral amounts (copper, zinc, and iron), tissues lipid peroxidation level and antioxidant status, and tissues histopathological changes were determined. The results showed that the highest rate lead loading was in the kidney and the testis. Pomegranate juice was decreased the lead levels of soft tissues examined; increased Zn amounts in tissues of which the lead accumulation was higher (kidney and the testis); decreased the copper, zinc and the iron levels of the liver and heart tissues, without creating a weakness in antioxidant capacity of these tissues, restricted the oxidative stress by decreasing lipid peroxidation, improved both of the activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalaz (CAT), and the level of glutathione (GSH) in all the tissues examined in lead-treated groups. As histopathological findings, the cellular damage induced by lead in the tissues of the kidney, liver and the heart were observed to have been partially prevented by PJ treatment. The protective effect of PJ was more pronounced in the testis compared to those others.
Hirakawa, Ikumi; Miyagawa, Shinichi; Katsu, Yoshinao; Kagami, Yoshihiro; Tatarazako, Norihisa; Kobayashi, Tohru; Kusano, Teruhiko; Mizutani, Takeshi; Ogino, Yukiko; Takeuchi, Takashi; Ohta, Yasuhiko; Iguchi, Taisen
2012-05-01
The occurrence of oocytes in the testis (testis-ova) of several fish species is often associated with exposure of estrogenic chemicals. However, induction mechanisms of the testis-ova remain to be elucidated. To develop marker genes for detecting testis-ova in the testis, adult male medaka were exposed to nominal concentration of 100 ng L(-1) of 17α-ethinylestradiol (EE2) for 3-5 weeks, and 800 ng estradiol benzoate (EB) for 3 weeks (experiment I), and a measured concentration of 20 ng L(-1) EE2 for 1-6 weeks (experiment II). Histological analysis was performed for the testis, and microarray analyses were performed for the testis, liver and brain. Microarray analysis in the estrogen-exposed medaka liver showed vitellogenin and choriogenin as estrogen responsive genes. Testis-ova were induced in the testis after 4 weeks of exposure to 100 ng L(-1) EE2, 3 weeks of exposure to 800 ng EB, and 6 weeks of exposure to 20 ng L(-1) EE2. Microarray analysis of estrogen-exposed testes revealed up-regulation of genes related to zona pellucida (ZP) and the oocytes marker gene, 42Sp50. Using quantitative RT-PCR we confirmed that Zpc5 gene can be used as a marker for the detection of testis-ova in male medaka. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lu, Y.; Nerurkar, V.R.; Aguirre, A.A.; Work, Thierry M.; Balazs, G.H.; Yanagihara, R.
1999-01-01
Thirteen cell lines were established and characterized from brain, kidney, lung, spleen, heart, liver, gall bladder, urinary bladder, pancreas, testis, skin, and periorbital and tumor tissues of an immature male green turtle (Chelonia mydas) with fibropapillomas. Cell lines were optimally maintained at 30A? C in RPMI 1640 medium supplemented with 10% fetal bovine serum. Propagation of the turtle cell lines was serum dependent, and plating efficiencies ranged from 13 to 37%. The cell lines, which have been subcultivated more than 20 times, had a doubling time of approximately 30 to 36 h. When tested for their sensitivity to several fish viruses, most of the cell lines were susceptible to a rhabdovirus, spring viremia carp virus, but refractory to channel catfish virus (a herpesvirus), infectious pancreatic necrosis virus (a birnavirus), and two other fish rhabdoviruses, infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. During in vitro subcultivation, tumor-like cell aggregates appeared in cell lines derived from lungs, testis, and periorbital and tumor tissues, and small, naked intranuclear virus particles were detected by thin-section electron microscopy. These cell lines are currently being used in attempts to isolate the putative etiologic virus of green turtle fibropapilloma.
Valero, Yulema; Arizcun, Marta; Esteban, M. Ángeles; Bandín, Isabel; Olveira, José G.; Patel, Sonal; Cuesta, Alberto; Chaves-Pozo, Elena
2015-01-01
Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally. However, whether NNV colonizes the gonad, the cell types that are infected, and how the immune response in the gonad is regulated has never been studied. We have demonstrated for the first time the presence and localization of NNV into the testis after an experimental infection in the European sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by immunohistochemistry, suggesting that males might also transmit the virus. In addition, we were able to isolate infective particles from the testis of both species demonstrating that NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues sampled was discarded by completely fish bleeding, furthermore the in situ PCR and immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover, we also determined how the immune and reproductive functions are affected comparing the effects in the testis with those found in the brain, the main target tissue of the virus. Interestingly, NNV triggered the immune response in the European sea bass but not in the gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17β-estradiol and 11-ketotestosterone production and the potential sensitivity of brain and testis to these hormones, whereas there is no disruption of testicular functions according to several reproductive parameters. Moreover, we have also studied the NNV infection of the testis in vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to those observed upon in vivo infections in most of the cases. PMID:26691348
Nolan, Matthew J; Cantacessi, Cinzia; Cutmore, Scott C; Cribb, Thomas H; Miller, Terrence L
2016-10-01
We report a new species of aporocotylid trematode (Platyhelminthes: Digenea) from the heart of the orangelined cardinalfish, Taeniamia fucata (Cantor), from off Heron Island on the southern Great Barrier Reef. We used an integrated approach, analysing host distribution, morphology, and genetic data from the internal transcribed spacer 2 of the ribosomal DNA, to circumscribe Phthinomita heinigerae n. sp. This is the first species of Phthinomita Nolan & Cribb, 2006 reported from the Apogonidae; existing species and known 'types' are recorded from species of the Labridae, Mullidae, and Siganidae. The new species is distinguished from its 11 congeners in having a body 2977-3539 long and 16.5-22.4 times longer than wide, an anterior testis 6.2-8.2 times longer than wide and 8.3-13.0 times longer than the posterior testis, a posterior testis whose width is 35-56% of the body width, and an ovary positioned 11-13% of the body length from the posterior end, and is entirely anterior to the posterior margin of the anterior testis. In addition, 2-34 base differences (0.4-7.0% sequence divergence over 485 base positions) were detected among the ITS2 sequence representing P. heinigerae n. sp. and the 14 representing other Phthinomita species/molecular types. Prevalence and intensity of infection with P. heinigerae n. sp. was relatively high within the heart tissue of T. fucata, with 19 of 20 fish examined from off Heron Island infected (95%) with 7-25 adult worms (arithmetic mean 16.6). Infections by these parasites accounted for an occupation of 7-30% of the total estimated heart volume. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Rat PPAR delta contains a CGG triplet repeat and is prominently expressed in the thalamic nuclei.
Xing, G; Zhang, L; Zhang, L; Heynen, T; Yoshikawa, T; Smith, M; Weiss, S; Detera-Wadleigh, S
1995-12-26
We have isolated a new rat sequence containing motifs of a nuclear hormone receptor from a brain cDNA library. The deduced amino acid sequence encoded by the cDNA clone showed a strong homology to the human NUCI and the mouse peroxisome proliferator activated receptor delta (PPAR delta). We therefore refer to this new clone as rat PPAR delta (rPPAR delta). The new feature of rPPAR delta is a 14 CGG triplet repeat on the 5' untranslated region, not previously reported in either NUCI or mPPAR delta. We found that rPPAR delta was expressed as a 3.5-kb transcript which showed a wide distribution in adult rat tissues. Abundant expression was detected in brain, heart, skeletal muscle, kidney and lung. Weaker expression was noted in the liver, spleen and testis. To determine the specific brain localization of rPPAR delta we performed in situ hybridization analysis. Prominent expression was observed in the thalamus, particularly in the posterior part of the ventral medial nucleus, a site responsive to pain and cold stress. These results raise the possibility that PPAR delta might play a role in modulating response to thermal and pain sensations.
Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian
2014-01-01
In teleosts, the expression of steroidogenic enzymes and related transcription factor genes occurs in a stage- and tissue-specific manner causing sexual development. The role of sox3, an evolutionary ancestor of SRY, has not been studied in detail. Therefore, the full-length cDNA of sox3 (1,197 kb) was cloned from catfish testis, and mRNA expression was analyzed during gonadal development, during the seasonal reproductive cycle, and after human chorionic gonadotropin (hCG) induction. Tissue distribution analysis showed that sox3 expression was higher in testis, ovary, and brain compared to other tissues analyzed. Developing and mature testis showed higher sox3 expression than ovary of corresponding stages, and more sox3 transcripts were found during the spawning phase of the seasonal reproductive cycle. Expression of sox3 was upregulated by hCG after in vivo and in vitro induction, suggesting that gonadotropins might stimulate it. In situ hybridization and immunohistochemistry showed the presence of sox3 mRNA and protein in somatic and interstitial cell layers of the testis. Sox3 could also be found in the zona radiata of developing and mature oocytes. Exposure of methyltestosterone (1 µg/l) and ethinylestradiol (1 µg/l) for 21 days during testicular development showed lower sox3 expression levels in the testis and brain, indicating a certain feedback intervention. These results suggest a possible role for Sox3 in the regulation of testicular development and function. © 2014 S. Karger AG, Basel.
Blood Parameters and Toxicity of Chromium Picolinate Oral Supplementation in Lambs.
Dallago, Bruno Stéfano Lima; Braz, ShélidaVasconcelos; Marçola, Tatiana Guerrero; McManus, Concepta; Caldeira, Denise Ferreira; Campeche, Aline; Gomes, Edgard Franco; Paim, Tiago Prado; Borges, Bárbara Oliveira; Louvandini, Helder
2015-11-01
The effects of oral supplementation of chromium picolinate (CrPic) on various blood parameters and their possible toxicity on the liver, kidneys, lungs, heart, and testis were investigated. Twenty-four Santa Inês (SI) lambs were treated with four different concentrations of CrPic (six animals/treatment): placebo, 0.250, 0.375, and 0.500 mg CrPic/animal/day for 84 days. The basal diet consisted of hay Panicum maximum cv Massai and concentrate. Blood and serum were collected fortnightly for analysis. On day 84, the animals were euthanized, and histopathological analysis in the liver, kidney, heart, lung, and testis was made. The liver and kidney were also submitted to electronic microscopy analysis. Differences between treatments (P < 0.05) were observed for packed cell volume (day 84), hemoglobin (day 84), total plasm protein (day 56 and day 84), and triglycerides (day 70). There was no statistically significant relationship between Cr supplementation and histopathology findings, although some animals treated with supplementary Cr showed morphological changes in the liver, kidney, and testis. Thus, the effectiveness of supplementation with Cr remains in doubt as to its physiological action and toxicity in sheep.
Camerino, Claudia; Conte, Elena; Caloiero, Roberta; Fonzino, Adriano; Carratù, Mariarosaria; Lograno, Marcello D; Tricarico, Domenico
2017-01-01
The correlation between the Ngf/p75ntr-Ntrk1 and Bdnf , Osteocalcin- Ost / Gprc6a and Oxytocin- Oxt/Oxtr genes, was challenged investigating their mRNA levels in 3 months-old mice after cold-stress (CS). Uncoupling protein-1 ( Ucp-1) was used as positive control. Control mice were maintained at room temperature T = 25°C, CS mice were maintained at T = 4°C for 6 h and 5-days ( N = 15 mice). RT-PCR experiments showed that Ucp-1 and Ngf genes were up-regulated after 6 h CS in brown adipose tissues (BAT), respectively, by 2 and 1.5-folds; Ucp-1 was upregulated also after 5-days, while Ngfr (p75ntr) and Ntrk1 genes were downregulated after 6 h and 5-days CS in BAT. NGF and P75NTR were upregulated in bone and testis following 5-days, and P75NTR in testis after 6 h CS. Bdnf was instead up-regulated in bone following 5-days CS and down-regulated in testis. OST was upregulated by 16 and 3-fold in bone and BAT, respectively, following 5-days CS. Gprc6a was upregulated after 6 h in brain, while Bglap ( Ost) gene was downregulated. Oxt gene was upregulated by 5-fold following 5-days CS in bone. Oxtr was upregulated by 0.5 and 0.3-fold, respectively, following 6 h and 5-days CS in brain. Oxtr and Oxt were downregulated in testis and in BAT. The changes in the expression levels of control genes vs. genes following 6 h and 5-days CS were correlated in all tissues, but not in BAT. Correlation in BAT was improved eliminating Ngfr (p75ntr) data. The correlation in brain was lost eliminating Oxtr data. In sum, Ucp-1 potentiation in BAT after cold stress is associated with early Ngf -response in the same tissue and trophic action in bone and testis. In contrast, BDNF exerts bone and neuroprotective effects. Similarly to Ucp-1, Bglap ( Ost) signaling is enhanced in bone and BAT while it may exert local neuroprotective effects thought its receptor. Ngfr (p75ntr) regulates the adaptation to CS through a feed-back loop in BAT. Oxtr regulates the gene-response to CS through a feed-forward loop in brain. Overall these results expand the understanding of the physiology of these molecules under metabolic thermogenesis.
NASA Astrophysics Data System (ADS)
Minchenko, D. O.; Yavorovsky, O. P.; Zinchenko, T. O.; Komisarenko, S. V.; Minchenko, O. H.
2012-09-01
Circadian factors PER1, PER2, ARNTL and CLOCK are important molecular components of biological clock system and play a fundamental role in the metabolism at both the behavioral and molecular levels and potentially have great importance for understanding metabolic health and disease, because disturbance the circadian processes lead to developing of different pathology. The antibacterial effect of silver nanoparticles has resulted in their extensive application in health, electronics, home products, and for water disinfection, but little is yet known about their toxicity. These nanoparticles induce blood-brain barrier destruction, astrocyte swelling, cause degeneration of neurons and impair neurodevelopment as well as embryonic development. We studied the expression of genes encoded the key molecular components of circadian clock system in different rat organs after intratracheally instilled silver nanoparticles which quite rapidly translocate from the lungs into the blood stream and accumulate in different tissues. We have shown that silver nanoparticles significantly affect the expression levels of PER1, PER2, ARNTL and CLOCK mRNA in different rat tissues in time-dependent and tissue-specific manner. High level of PER1, ARNTL and CLOCK mRNA expression was observed in the lung on the 1st 3rd and 14th day after treatment of rats with silver nanoparticles. At the same time, the expression level of PER1 mRNA in the brain and liver increases predominantly on the 1st and 14th day but decreases in the testis. Significant increase of the expression level of PER2 and ARNTL mRNA was detected only in the brain of treated by silver nanoparticles rats. Besides that, intratracheally instilled silver nanoparticles significantly reduced the expression levels of CLOCK mRNA in the brain, heart and kidney. No significant changes in the expression level of PER2 mRNA were found in the lung, liver, heart and testis, except kidney where this mRNA expression decreases on the 3rd and 14th day after treatment of rats with silver nanoparticles. It was also shown that expression level of PFKFB4, a key enzyme of glycolysis regulation, gradually reduces in the brain from 1st to 14th day being up to 4 fold less on 14th day after treatment of animals with silver nanoparticles. Thus, the intratracheally instilled silver nanoparticles significantly affect the expression of PER1, PER2, ARNTL, and CLOCK genes which are an important molecular component of circadian clock system. This is because a disruption of the circadian processes leads to a development of various pathologic processes. The results of this study clearly demonstrate that circadian genes could be a sensitive test for detection of silver nanoparticles toxic action and suggest that more caution is needed in biomedical applications of silver nanoparticles as well as higher level of safety in silver nanoparticles production industry.
Evaluate the Influence of Eupatorium adenophorum Extract with Mice Organ
NASA Astrophysics Data System (ADS)
Nong, Xiang; Yang, Can; Yang, Yaojun; Liang, Zi; Hu, Qiang; Zhang, Ting
2018-01-01
In order to study the influence of extract from Eupatorium adenophorum in mice organs, this experiment will be the basis of further study that make Eupatorium adenophorum become Phyto contraceptive, this experiment take the feeding respectively way after the completion of the 1D, 5D, 10d, 15d of Eupatorium adenophorum mice by intragastrical administration of levonorgestrel group and blank control group. After the same operation in different periods of small rat heart and kidney the uterus, testis, and other organs were observed. The results showed that after extraction of E. adenophorum changes in female mice uterus shape was perfused significantly, showed swelling larger. Data analysis of each viscera coefficient was found E. adenophorum had No obvious effect on the heart, kidneys and testicles of mice. but there are obvious differences date between the treatment group and the blank group. (5d: F=10. 800 P=0. 043 cases) from tissue sections we can see female mice uterus cell morphology changes significantly, there was a similar appearance change in the uterus of the female mice with the estradiol For a male mouse testis of E.adenophorum gavage had No obvious effect. And it is found that the heart, the treated mice kidney, testis, ovary and other organs were observed in each period of time the organization had No obvious change; only female mice uterus tissue sections of individual cells became larger, and the organization of the gap larger. This research shows that E.adenophorum extract has the potential to develop botanical contraceptives, we will conduct in-depth study.
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology
2017-01-01
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed. PMID:28642799
Tissue accumulation and urinary excretion of Cr in chromium picolinate (CrPic)-supplemented lambs.
Dallago, Bruno Stéfano Lima; Lima, Bárbara Alcântara Ferreira; Braz, Shélida Vasconcelos; Mustafa, Vanessa da Silva; McManus, Concepta; Paim, Tiago do Prado; Campeche, Aline; Gomes, Edgard Franco; Louvandini, Helder
2016-05-01
Chromium (Cr) concentrations in liver, kidney, spleen, heart, lymph node, skeletal muscle, bone, testis and urine of lambs were measured to trace the biodistribution and bioaccumulation of Cr after oral supplementation with chromium picolinate (CrPic). Twenty-four Santa Inês lambs were treated with four different concentrations of CrPic: placebo, 0.250, 0.375 and 0.500 mg of CrPic/animal/day for 84 days. The basal diet consisted of Panicum maximum cv Massai hay and concentrate. Cr concentrations were measured by ICP-MS measuring (52)Cr as collected mass. There was a positive linear relationship between dose administered and the accumulation of Cr in the heart, lungs and testis. Urinary excretion of Cr occurred in a time and dose-dependent manner, so the longer or more dietary Cr provided, the greater excretion of the element. As some non-carcass components (such as lungs or heart) are added to bone and visceral meal to feed animals, there is a risk of bioaccumulation and biomagnification due to Cr offered as CrPic in the diet. Copyright © 2016 Elsevier GmbH. All rights reserved.
Different variations of tissue B-group vitamin concentrations in short- and long-term starved rats.
Moriya, Aya; Fukuwatari, Tsutomu; Sano, Mitsue; Shibata, Katsumi
2012-01-01
Prolonged starvation changes energy metabolism; therefore, the metabolic response to starvation is divided into three phases according to changes in glucose, lipid and protein utilisation. B-group vitamins are involved in energy metabolism via metabolism of carbohydrates, fatty acids and amino acids. To determine how changes in energy metabolism alter B-group vitamin concentrations during starvation, we measured the concentration of eight kinds of B-group vitamins daily in rat blood, urine and in nine tissues including cerebrum, heart, lung, stomach, kidney, liver, spleen, testis and skeletal muscle during 8 d of starvation. Vitamin B1, vitamin B6, pantothenic acid, folate and biotin concentrations in the blood reduced after 6 or 8 d of starvation, and other vitamins did not change. Urinary excretion was decreased during starvation for all B-group vitamins except pantothenic acid and biotin. Less variation in B-group vitamin concentrations was found in the cerebrum and spleen. Concentrations of vitamin B1, vitamin B6, nicotinamide and pantothenic acid increased in the liver. The skeletal muscle and stomach showed reduced concentrations of five vitamins including vitamin B1, vitamin B2, vitamin B6, pantothenic acid and folate. Concentrations of two or three vitamins decreased in the kidney, testis and heart, and these changes showed different patterns in each tissue and for each vitamin. The concentration of pantothenic acid rapidly decreased in the heart, stomach, kidney and testis, whereas concentrations of nicotinamide were stable in all tissues except the liver. Different variations in B-group vitamin concentrations in the tissues of starved rats were found. The present findings will lead to a suitable supplementation of vitamins for the prevention of the re-feeding syndrome.
Effects of vitamin E on reproductive hormones and testis structure in chronic dioxin-treated mice.
Yin, Hai-Ping; Xu, Jian-Ping; Zhou, Xian-Qing; Wang, Ying
2012-03-01
The purpose of this study was to investigate the effects of vitamin E on reproductive hormones and testis structure in mice treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five experimental groups of a combination of TCDD and vitamin E were designed as follows: 0 ng/kg/d and 0 mg/kg/d (control group), 100 ng/kg/d and 0 mg/kg/d (Group I), 100 ng/kg/d and 20 mg/kg/d (Group II), 100 ng/kg/d and 100 mg/kg/d (Group III), and 100 ng/kg/d and 500 mg/kg/d (Group IV) respectively. Vitamin E and TCDD were given by oral gavage for 7 weeks. The results demonstrated that TCDD decreased the levels of brain gonadotropin releasing hormone (GnRH), testis luteinizing hormone (LH) and follicle stimulating hormone (FSH), serum testosterone and testis spermatozoa number, and damaged testis structure. Vitamin E at 20 mg/kg alleviated the decrease of GnRH; vitamin E at 20, 100, and 500 mg/kg antagonized the decline of LH and FSH; vitamin E at 20 and 100 mg/kg reversed the decrease of testosterone and spermatozoa number; and vitamin E at 100 mg/kg decreased the damage of the testis structure caused by TCDD. The results indicate that vitamin E antagonizes the reproductive endocrine toxicity and alleviates the changes in testicular structure caused by TCDD.
Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar
2016-01-01
The presence of 137Cesium (137Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l−1) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (–11%) levels, but only for the rats exposed to 137Cs intake in adulthood. Large changes in 17β-estradiol (–69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. PMID:27466399
Morini, Marina; Peñaranda, David S; Vílchez, María C; Gallego, Víctor; Nourizadeh-Lillabadi, Rasoul; Asturiano, Juan F; Weltzien, Finn-Arne; Pérez, Luz
2015-09-01
Activation at fertilization of the vertebrate egg is triggered by Ca(2+) waves. Recent studies suggest the phospholipase C zeta (PLCζ), a sperm-specific protein, triggers egg activation by an IP3-mediated Ca(2+) release and allow Ca(2+) waves at fertilization. In the present study we cloned, characterized, and phylogenetically positioned the European eel PLCζ (PLCζ1). It is 1521 bp long, with 10 exons encoding an open reading frame of 506 amino acids. The amino acid sequence contains an EF-hand domain, X and Y catalytic domains, and a carboxy-terminal C2 domain, all typical of other PLCζ orthologous. The tissue distribution was studied, and the gene expression was determined in testis during induced sexual maturation at three different thermal regimes. Also, brain and pituitary expression was studied through sex maturation at constant temperature. plcζ1 was expressed in brain of male and female, in testis but not in ovaries. By first time in vertebrates, it is reported plcζ1 expression in the pituitary gland. Testis plcζ1 expression increased through spermatogenesis under all the thermal regimes, but being significantly elevated at lower temperatures. It was very low when testis contained only spermatogonia or spermatocytes, while maximum expression was found during spermiogenesis. These results support the hypothesis for an eel sperm-specific PLCζ1 inducing egg activation, similarly to mammals and some teleosts, but different from some other teleost species, which express this protein in ovaries, but not in testes. Copyright © 2015 Elsevier Inc. All rights reserved.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-09-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.
Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M
1990-01-01
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032
Chaturapanich, G; Chaiyakul, S; Verawatnapakul, V; Pholpramool, C
2008-10-01
Krachaidum (KD, Kaempferia parviflora Wall. Ex. Baker), a native plant of Southeast Asia, is traditionally used to enhance male sexual function. However, only few scientific data in support of this anecdote have been reported. The present study investigated the effects of feeding three different extracts of KD (alcohol, hexane, and water extracts) for 3-5 weeks on the reproductive organs, the aphrodisiac activity, fertility, sperm motility, and blood flow to the testis of male rats. Sexual performances (mount latency, mount frequency, ejaculatory latency, post-ejaculatory latency) and sperm motility were assessed by a video camera and computer-assisted sperm analysis respectively, while blood flow to the testis was measured by a directional pulsed Doppler flowmeter. The results showed that all extracts of KD had virtually no effect on the reproductive organ weights even after 5 weeks. However, administration of the alcohol extract at a dose of 70 mg/kg body weight (BW)/day for 4 weeks significantly decreased mount and ejaculatory latencies when compared with the control. By contrast, hexane and water extracts had no influence on any sexual behavior parameters. All types of extracts of KD had no effect on fertility or sperm motility. On the other hand, alcohol extract produced a significant increase in blood flow to the testis without affecting the heart rate and mean arterial blood pressure. In a separate study, an acute effect of alcohol extract of KD on blood flow to the testis was investigated. Intravenous injection of KD at doses of 10, 20, and 40 mg/kg BW caused dose-dependent increases in blood flow to the testis. The results indicate that alcohol extract of KD had an aphrodisiac activity probably via a marked increase in blood flow to the testis.
Tissue distribution and developmental expression of type XVI collagen in the mouse.
Lai, C H; Chu, M L
1996-04-01
The expression of a recently identified collagen, alpha 1 (XVI), in adult mouse tissue and developing mouse embryo was examined by immunohistochemistry and in situ hybridization. A polyclonal antiserum was raised against a recombinant fusion protein, which contained a segment of 161 amino acids in the N-terminal noncollagenous domain of the human alpha 1 (XVI) collagen. Immunoprecipitation of metabolically labelled human or mouse fibroblast cell lysates with this antibody revealed a major, bacterial collagenase sensitive polypeptide of approximately 210 kDa. The size agrees with the prediction from the full-length cDNA. Immunofluorescence examination of adult mouse tissues using the affinity purified antibody revealed a rather broad distribution of the protein. The heart, kidney, intestine, ovary, testis, eye, arterial walls and smooth muscles all exhibited significant levels of expression, while the skeletal muscle, lung and brain showed very restricted and low signals. During development, no significant expression of the mRNA or protein was observed in embryo of day 8 of gestation, but strong signals was detected in placental trophoblasts. Expression in embryos was detectable first after day 11 of gestation with weak positive signals appearing in the heart. In later stages of development, stronger RNA hybridizations were observed in a variety of tissues, particularly in atrial and ventricular walls of the developing heart, spinal root neural fibers and skin. These data demonstrate that type XVI collagen represents another collagenous component widely distributed in the extracellular matrix and may contribute to the structural integrity of various tissues.
[Effects of excess folic acid on growth and metabolism of water-soluble vitamins in weaning rats].
Fukuwatari, Tsutomu; Shibata, Katsumi
2008-02-01
In order to determine the tolerable upper intake level of folic acid in humans, we investigated the effects of excessive folic acid administration on the body weight gain, food intake, tissue weight, and metabolism of B-group vitamins in weaning rats. The rats were freely fed ordinary diet containing 0.0002% folic acid (control diet) or the same diet with 0.01%, 0.1%, or 1.0% folic acid for 29 days. The body weight gains and food intakes did not differ among the four groups. Diarrhea was not seen even in the 1.0% group. Excess folic acid did not affect the tissue weights of the brain, heart, liver, kidney, spleen, lung, or testis, or urinary excretion of other B-group vitamins. These results clearly showed that feeding a diet containing up to 1.0% folic acid did not affect the food intake, body weight gain, tissue weight, or urinary excretion of B-group vitamins in weaning rats.
A novel TRIM family member, Trim69, regulates zebrafish development through p53-mediated apoptosis.
Han, Ruiqin; Zhao, Qing; Zong, Shudong; Miao, Shiying; Song, Wei; Wang, Linfang
2016-05-01
Trim69 contains the hallmark domains of a tripartite motif (TRIM) protein, including a Ring-finger domain, B-box domain, and coiled-coil domain. Trim69 is structurally and evolutionarily conserved in zebrafish, mouse, rat, human, and chimpanzee. The role of this protein is unclear, however, so we investigated its function in zebrafish development. Trim69 is extensively expressed in zebrafish adults and developing embryos-particularly in the testis, brain, ovary, and heart-and its expression decreases in a time- and stage-dependent manner. Loss of trim69 in zebrafish induces apoptosis and activates apoptosis-related processes; indeed, the tp53 pathway was up-regulated in response to the knockdown. Expression of human trim69 rescued the apoptotic phenotype, while overexpression of trim69 does not increase cellular apoptosis. Taken together, our results suggest that trim69 participates in tp53-mediated apoptosis during zebrafish development. Mol. Reprod. Dev. 83: 442-454, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Breast cancer resistance protein (Bcrp) and the testis—an unexpected turn of events
Qian, Xiaojing; Cheng, Yan-Ho; Mruk, Dolores D; Cheng, C Yan
2013-01-01
Breast cancer resistance protein (Bcrp) is an ATP-dependent efflux drug transporter. It has a diverse spectrum of hydrophilic and hydrophobic substrates ranging from anticancer, antiviral and antihypertensive drugs, to organic anions, antibiotics, phytoestrogens (e.g., genistein, daidzein, coumestrol), xenoestrogens and steroids (e.g., dehydroepiandrosterone sulfate). Bcrp is an integral membrane protein in cancer and normal cells within multiple organs (e.g., brain, placenta, intestine and testis) that maintains cellular homeostasis by extruding drugs and harmful substances from the inside of cells. In the brain, Bcrp is a major component of the blood–brain barrier located on endothelial cells near tight junctions (TJs). However, Bcrp is absent at the Sertoli cell blood–testis barrier (BTB); instead, it is localized almost exclusively to the endothelial TJ in microvessels in the interstitium and the peritubular myoid cells in the tunica propria. Recent studies have shown that Bcrp is also expressed stage specifically and spatiotemporally by Sertoli and germ cells in the seminiferous epithelium of rat testes, limited only to a testis-specific cell adhesion ultrastructure known as the apical ectoplasmic specialisation (ES) in stage VI–early VIII tubules. These findings suggest that Bcrp is equipped by late spermatids and Sertoli cells to protect late-stage spermatids completing spermiogenesis. Furthermore, Bcrp was found to be associated with F (filamentous)-actin and several actin regulatory proteins at the apical ES and might be involved in the organisation of actin filaments at the apical ES in stage VII–VIII tubules. These findings will be carefully evaluated in this brief review. PMID:23665760
Santos, Kira L.; Vento, Megan A; Wright, John W.; Speth, Robert C.
2013-01-01
A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50’s ~1–20 μM This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1 mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [1] near the active site of neurolysin. It is proposed that the mercuric ion in PCMB and closely related organomercurial compounds binds to cys650, while the acidic anion forms an ionic bond with a nearby arginine or lysine along the channel to effect a conformational change in neurolysin that promotes Ang II binding. PMID:23511333
Zhang, Hao; Liao, Lan; Kuang, Shao-Qing; Xu, Jianming
2003-04-01
Transcriptional activities of nuclear receptors are modulated by coactivators and corepressors. The amplified in breast cancer-3 protein (AIB3, also known as ASC-2, RAP250, PRIP, TRBP, and NCR) is a newly identified nuclear receptor coactivator that is amplified and overexpressed in breast cancers. This study aims to investigate the spatial expression of AIB3 mRNA and protein in various murine tissues. Quantitative measurements revealed that the concentrations of AIB3 mRNA differ substantially in different tissues in a descending order from the following: testis, brain, thymus, white fat, pituitary, ovary, adrenal gland, lung, uterus, kidney, heart, skeletal muscle, liver, and virgin mammary gland. The AIB3 mRNA level in the testis is 165-fold higher than that in the virgin mammary gland. Specific antiserum was generated and used to map the distribution of AIB3 protein by immunohistochemistry. Although AIB3 protein was detected in many tissues, the AIB3 immunoreactivities varied significantly from cell type to cell type. High levels of AIB3 immunoreactivity were observed in hormone target cells including the testicular Sertoli cells, follicular granulosa cells, and epithelial cells of the prostate, uterus, mammary gland, and kidney tubules. Medium and low levels of AIB3 immunoreactivities were also detected in a variety of other cell types. These results demonstrate that AIB3 mRNA and protein are preferentially expressed in specific cell types, suggesting that AIB3 may support the function of nuclear receptors in a cell type-specific manner.
Manens, Line; Grison, Stéphane; Bertho, Jean-Marc; Lestaevel, Philippe; Guéguen, Yann; Benderitter, Marc; Aigueperse, Jocelyne; Souidi, Maâmar
2016-11-01
The presence of 137 Cesium ( 137 Cs) in the environment after nuclear accidents at Chernobyl and more recently Fukushima Daiichi raises many health issues for the surrounding populations chronically exposed through the food chain. To mimic different exposure situations, we set up a male rat model of exposure by chronic ingestion of a 137 Cs concentration likely to be ingested daily by residents of contaminated areas (6500 Bq.l -1 ) and tested contaminations lasting 9 months for adult, neonatal and fetal rats. We tested plasma and serum biochemistry to identify disturbances in general indicators (lipids, proteins, carbohydrates and electrolytes) and in biomarkers of thyroid, heart, brain, bone, kidney, liver and testis functions. Analysis of the general indicators showed increased levels of cholesterol (+26%), HDL cholesterol (+31%), phospholipids B (+15%) and phosphorus (+100%) in the postnatal group only. Thyroid, heart, brain, bone and kidney functions showed no blood changes in any model. The liver function evaluation showed changes in total bilirubin (+67%) and alkaline phosphatase (-11%) levels, but only for the rats exposed to 137 Cs intake in adulthood. Large changes in 17β-estradiol (-69%) and corticosterone (+36%) levels affected steroidogenesis, but only in the adult model. This study showed that response profiles differed according to age at exposure: lipid metabolism was most radiosensitive in the postnatal model, and steroid hormone metabolism was most radiosensitive in rats exposed in adulthood. There was no evidence of deleterious effects suggesting a potential impact on fertility or procreation. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Hart-Smith, Gene; Tay, Ying Jin; Tng, Wei-Quan; Wilkins, Marc; Ryan, Daniel
2017-01-01
The replacement of histone H2A with its variant forms is critical for regulating all aspects of genome organisation and function. The histone variant H2A.B appeared late in evolution and is most highly expressed in the testis followed by the brain in mammals. This raises the question of what new function(s) H2A.B might impart to chromatin in these important tissues. We have immunoprecipitated the mouse orthologue of H2A.B, H2A.B.3 (H2A.Lap1), from testis chromatin and found this variant to be associated with RNA processing factors and RNA Polymerase (Pol) II. Most interestingly, many of these interactions with H2A.B.3 (Sf3b155, Spt6, DDX39A and RNA Pol II) were inhibited by the presence of endogenous RNA. This histone variant can bind to RNA directly in vitro and in vivo, and associates with mRNA at intron—exon boundaries. This suggests that the ability of H2A.B to bind to RNA negatively regulates its capacity to bind to these factors (Sf3b155, Spt6, DDX39A and RNA Pol II). Unexpectedly, H2A.B.3 forms highly decompacted nuclear subdomains of active chromatin that co-localizes with splicing speckles in male germ cells. H2A.B.3 ChIP-Seq experiments revealed a unique chromatin organization at active genes being not only enriched at the transcription start site (TSS), but also at the beginning of the gene body (but being excluded from the +1 nucleosome) compared to the end of the gene. We also uncover a general histone variant replacement process whereby H2A.B.3 replaces H2A.Z at intron-exon boundaries in the testis and the brain, which positively correlates with expression and exon inclusion. Taken together, we propose that a special mechanism of splicing may occur in the testis and brain whereby H2A.B.3 recruits RNA processing factors from splicing speckles to active genes following its replacement of H2A.Z. PMID:28234895
Golshan, Mahdi; Hatef, Azadeh; Zare, Ava; Socha, Magdalena; Milla, Sylvain; Gosiewski, Grzegorz; Fontaine, Pascal; Sokołowska-Mikołajczyk, Mirosława; Habibi, Hamid R; Alavi, Sayyed Mohammad Hadi
2014-10-01
The fungicide vinclozolin (VZ) is in use globally and known to disrupt reproductive function in male. The present study tested the hypothesis that VZ disrupts testicular function in goldfish (Carassius auratus) by affecting brain-pituitary-testis axis. Goldfish were exposed to 100, 400 and 800 μg/L VZ and 5 μg/L 17β-estradiol (E2) for comparison. In VZ treated goldfish, 11-ketotesteosterone (11-KT) secretion was changed depending on dose and duration period of treatment. Following 7 days of exposure, 11-KT was decreased in goldfish exposed to 800 μg/L VZ, while it was increased in goldfish exposed to 100 μg/L VZ after 30 days of exposure. Circulating E2 level was unchanged in VZ treated goldfish, however the E2/11-KT ratio was increased in a concentration-related manner. In E2 treated goldfish, circulatory 11-KT and E2 levels were decreased and increased, respectively, which resulted in an increase in the E2/11-KT ratio. Exposure to VZ at 100 μg/L caused a significant increase in the circulatory luteinizing hormone (LH) after 30 days. In E2 treated fish circulatory LH was decreased, significantly. Transcripts of genes encoding gonadotropin-releasing hormone and androgen receptor in the brain, and those of genes encoding LH and follicle-stimulating hormone receptors, StAR, CYP17, and 3β-HSD in the testis changed in VZ-treated goldfish depending on concentration and period of treatment. mRNA of genes encoding vitellogenin and estrogen receptor in the liver and cytochrome P450 aromatase in the brain were increased in E2-treated goldfish. The results suggest that VZ-induced changes in 11-KT were due to disruption in brain-pituitary-testis axis and provide integrated characterization of VZ-related reproductive disorders in male fish. Copyright © 2014 Elsevier B.V. All rights reserved.
Rout, P K; Kaushik, R; Ramachandran, N
2016-07-01
It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.
Dai, W; Pan, H; Hassanain, H; Gupta, S L; Murphy, M J
1994-03-01
Using a combination of polymerase chain reaction and conventional cDNA library screening approaches, we have cloned and characterized a putative receptor tyrosine kinase termed tif. The extracellular domain of tif has an immunoglobulin-like loop and a fibronectin type III structure. The intracellular domain contains a tyrosine kinase domain. Compared with ryk, a ubiquitously expressed receptor tyrosine kinase, tif expression is tissue-specific with human ovary and testis containing the highest amount of tif mRNA. Many other tested human tissues such as heart, liver, pancreas and thymus do not contain detectable levels of tif mRNA. The molecular cloning and characterization of tif cDNA will facilitate the identification of a potential ligand(s) for the putative receptor and the study of its biological role.
NASA Astrophysics Data System (ADS)
Lin, Yu; He, Rong; Sun, Liping; Yang, Yushan; Li, Wenqing; Sun, Fei
2016-12-01
Gold-based nanocrystals have attracted considerable attention for drug delivery and biological applications due to their distinct shapes. However, overcoming biological barriers is a hard and inevitable problem, which restricts medical applications of nanomaterials in vivo. Seeking for an efficient transportation to penetrate biological barriers is a common need. There are three barriers: blood-testis barrier, blood-placenta barrier, and blood-brain barrier. Here, we pay close attention to the blood-testis barrier. We found that the pentacle gold-copper alloy nanocrystals not only could enter GC-2 cells in vitro in a short time, but also could overcome the blood-testis barrier and enter male germ cells in vivo. Furthermore, we demonstrated that the entrance efficiency would become much higher in the development stages. The results also suggested that the pentacle gold-copper alloy nanocrystals could easier enter to germ cells in the pathological condition. This system could be a new method for theranostics in the reproductive system.
A BRIEF HISTORY OF CLINICAL XENOTRANSPLANTATION
Cooper, David K. C.; Ekser, Burcin; Tector, A. Joseph
2015-01-01
Between the 17th and 20th centuries, blood was transfused from various animal species into patients with a variety of pathological conditions. Skin grafts were carried out in the 19th century, with grafts from a variety of animals, with frogs being the most popular. In the 1920s, Voronoff advocated the transplantation of slices of chimpanzee testis into elderly men, believing that the hormones produced by the testis would rejuvenate his patients. In 1963–4, when human organs were not available and dialysis was not yet in use, Reemtsma transplanted chimpanzee kidneys into 13 patients, one of whom returned to work for almost 9 months before suddenly dying from what was believed to be an electrolyte disturbance. The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within two hours. Starzl carried out the first chimpanzee-to-human liver transplantation in 1966; in 1992 he obtained patient survival for 70 days following a baboon liver transplant. The first clinical pig islet transplant was carried out by Groth in 1993. Today, genetically-modified pigs offer hope of a limitless supply of organs and cells for those in need of a transplant. PMID:26118617
Han, Kunhuang; Chen, Shihai; Cai, Mingyi; Jiang, Yonghua; Zhang, Ziping; Wang, Yilei
2018-04-01
In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Causes of death among cancer patients.
Zaorsky, N G; Churilla, T M; Egleston, B L; Fisher, S G; Ridge, J A; Horwitz, E M; Meyer, J E
2017-02-01
The purpose of our study was to characterize the causes of death among cancer patients as a function of objectives: (i) calendar year, (ii) patient age, and (iii) time after diagnosis. US death certificate data in Surveillance, Epidemiology, and End Results Stat 8.2.1 were used to categorize cancer patient death as being due to index-cancer, nonindex-cancer, and noncancer cause from 1973 to 2012. In addition, data were characterized with standardized mortality ratios (SMRs), which provide the relative risk of death compared with all persons. The greatest relative decrease in index-cancer death (generally from > 60% to < 30%) was among those with cancers of the testis, kidney, bladder, endometrium, breast, cervix, prostate, ovary, anus, colorectum, melanoma, and lymphoma. Index-cancer deaths were stable (typically >40%) among patients with cancers of the liver, pancreas, esophagus, and lung, and brain. Noncancer causes of death were highest in patients with cancers of the colorectum, bladder, kidney, endometrium, breast, prostate, testis; >40% of deaths from heart disease. The highest SMRs were from nonbacterial infections, particularly among <50-year olds (e.g. SMR >1,000 for lymphomas, P < 0.001). The highest SMRs were typically within the first year after cancer diagnosis (SMRs 10-10,000, P < 0.001). Prostate cancer patients had increasing SMRs from Alzheimer's disease, as did testicular patients from suicide. The risk of death from index- and nonindex-cancers varies widely among primary sites. Risk of noncancer deaths now surpasses that of cancer deaths, particularly for young patients in the year after diagnosis. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tolba, Mai F; Omar, Hany A; Azab, Samar S; Khalifa, Amani E; Abdel-Naim, Ashraf B; Abdel-Rahman, Sherif Z
2016-10-02
Propolis, a honey bee product, has been used in folk medicine for centuries for the treatment of abscesses, canker sores and for wound healing. Caffeic acid phenethyl ester (CAPE) is one of the most extensively investigated active components of propolis which possess many biological activities, including antibacterial, antiviral, antioxidant, anti-inflammatory, and anti-cancer effects. CAPE is a polyphenolic compound characterized by potent antioxidant and cytoprotective activities and protective effects against ischemia-reperfusion (I/R)-induced injury in multiple tissues such as brain, retina, heart, skeletal muscles, testis, ovaries, intestine, colon, and liver. Furthermore, several studies indicated the protective effects of CAPE against chemotherapy-induced adverse drug reactions (ADRs) including several antibiotics (streptomycin, vancomycin, isoniazid, ethambutol) and chemotherapeutic agents (mitomycin, doxorubicin, cisplatin, methotrexate). Due to the broad spectrum of pharmacological activities of CAPE, this review makes a special focus on the recently published data about CAPE antioxidant activity as well as its protective effects against I/R-induced injury and many adverse drug reactions.
Acetyl transfer in arylamine metabolism
Booth, J.
1966-01-01
1. N-Hydroxyacetamidoaryl compounds (hydroxamic acids) are metabolites of arylamides, and an enzyme that transfers the acetyl group from these derivatives to arylamines has been found in rat tissues. The reaction products were identified by thin-layer chromatography and a spectrophotometric method, with 4-amino-azobenzene as acetyl acceptor, was used to measure enzyme activity. 2. The acetyltransferase was in the soluble fraction of rat liver, required a thiol for maximum activity and had a pH optimum between 6·0 and 7·5. 3. The soluble fractions of various rat tissues showed decreasing activity in the following order: liver, adrenal, kidney, lung, spleen, testis, heart; brain was inactive. 4. With the exception of aniline and aniline derivatives all the arylamines tested were effective as acetyl acceptors but aromatic compounds with side-chain amino groups were inactive. 5. The N-hydroxyacetamido derivatives of 2-naphthylamine, 4-amino-biphenyl and 2-aminofluorene were active acetyl donors but N-hydroxyacetanilide showed only slight activity. Acetyl-CoA was not a donor. 6. Some properties of the enzyme are compared with those of other acetyltransferases. PMID:5969287
To help address the consequences of increasing levels of environmental contaminants and to identify potentially novel markers of toxicity, we examined gene expression profiles from medaka (Oryzias latipes) exposed to a prototypical fibrate pharmaceutical. Changes in gene express...
Isolation and expression analysis of FTZ-F1 encoding gene of black rock fish ( Sebastes schlegelii)
NASA Astrophysics Data System (ADS)
Shafi, Muhammad; Wang, Yanan; Zhou, Xiaosu; Ma, Liman; Muhammad, Faiz; Qi, Jie; Zhang, Quanqi
2013-03-01
Sex related FTZ-F1 is a transcriptional factor regulating the expression of fushi tarazu (a member of the orphan nuclear receptors) gene. In this study, FTZ-F1 gene ( FTZ-F1) was isolated from the testis of black rockfish ( Sebastes schlegeli) by homology cloning. The full-length cDNA of S. schlegeli FTZ-F1 ( ssFTZ-F1) contained a 232bp 5' UTR, a 1449bp ORF encoding FTZ-F1 (482 amino acid residules in length) with an estimated molecular weight of 5.4kD and a 105bp 3' UTR. Sequence, tissue distribution and phylogenic analysis showed that ssFTZ-F1 belonged to FTZ group, holding highly conserved regions including I, II and III FTZ-F1 boxes and an AF-2 hexamer. Relatively high expression was observed at different larva stages. In juveniles (105 days old), the transcript of ssFTZ-F1 can be detected in all tissues and the abuncance of the gene transcript in testis, ovary, spleen and brain was higher than that in other tissues. In mature fish, the abundance of gene transcript was higher in testis, ovary, spleen and brain than that in liver (trace amount), and the gene was not transcribed in other tissues. The highest abundance of gene transcript was always observed in gonads of both juvenile and mature fish. In addition, the abundance of gene transcript in male tissues were higher than that in female tissue counterparts ( P<0.05).
Rajakumar, Anbazhagan; Senthilkumaran, Balasubramanian
2014-10-01
In teleosts, the levels of steroids are critical for sexual development and hence, expression of steroidogenic enzyme genes and specific substrate availability are indispensable for gonadal steroidogenesis. Early stages of steroidogenesis specifically cholesterol to pregnenolone conversion by Cyp11a1 is crucial for estradiol and testosterone biosynthesis. Based on this, in this study, full length cDNA of cyp11a1 (2581bp) was cloned from catfish testis to investigate the importance of Cyp11a1 by analyzing the expression of cyp11a1 during gonadal development, seasonal reproductive cycle, after human chorionic gonadotropin (hCG) induction and sex steroid analog treatment. Phylogenetic analysis revealed that the Cyp11a1 is more conserved across teleosts. Tissue distribution analysis showed that the cyp11a1 expression was higher in the testis followed by the brain, head kidney, muscle and ovary compared to other tissues analyzed. High expression of cyp11a1 in the head kidney and muscle revealed that Cyp11a1 could potentially regulate the extra-gonadal and/or circulating steroid levels in teleosts. Developing and mature testes showed higher expression of cyp11a1 than the ovary of corresponding age group. Further, cyp11a1 expression was found to be higher during pre-spawning and spawning phases of testicular cycle and was upregulated by hCG, in vivo and in vitro, which indicates the possible regulation by gonadotropin. Exposure of methyltestosterone (1μg/L) and ethinylestradiol (1μg/L) for 21days during catfish testicular development showed lower cyp11a1 expression levels in the testis and brain indicating a certain feedback intervention. These results suggest possible role for Cyp11a1 in the testis development and recrudescence. Copyright © 2014 Elsevier Inc. All rights reserved.
Bird's the Word: By Raising Chicks, Students Study Animals in the Laboratory
ERIC Educational Resources Information Center
Barra, Paul A.
2002-01-01
Most biology students have the opportunity to look at protozoa under the microscopes or keep mealworms in a bowl. They may manipulate the heart rate of "Daphnia" or calculate the respiration of plants. They may even grow corn in the spring or keep fish and a small rodent or two. But once the class hamster grows testy from being awakened every…
Sexual behavior and testis morphology in the BACHD rat model
Novati, Arianna; Yu-Taeger, Libo; Gonzalez Menendez, Irene; Quintanilla Martinez, Leticia
2018-01-01
Background Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene, which results in brain neurodegeneration and peripheral pathology affecting different organs including testis. Patients with HD suffer from motor and cognitive impairment, and multiple psychiatric symptoms. Among behavioral abnormalities in HD, sexual disturbances have often been reported, but scarcely investigated in animal models. The BACHD rat model of HD carries the human full-length mutated HTT (mHTT) genomic sequence with 97 CAG-CAA repeats and displays HD-like alterations at neuropathological and behavioral level. Objective This study aims to phenotype the BACHD rats’ sexual behavior and performance as well as testis morphology because alterations in these aspects have been associated to HD. Methods Two rat cohorts at the age of 3 and 7 months were subjected to mating tests to assess different parameters of sexual behavior. Histological analyses for testis morphology were performed in different rat cohorts at 1.5, 7 and 12 months of age whereas immunohistochemical analyses were carried out at 7 and 12 months of age to visualize the presence of mHTT in testicular tissue. Furthermore, western blot analyses were used to assess HTT and mHTT expression levels in striatum and testis at three months of age. Results At 3 months, BACHD rats showed a decreased time exploring the female anogenital area (AGA), decreased latency to mount, increased number of intromissions and ejaculations and enhanced hit rate. At 7 months, all sexual parameters were comparable between genotypes with the exception that BACHD rats explored the AGA less than wild type rats. Testis analyses did not reveal any morphological alteration at any of the examined ages, but showed presence of mHTT limited to Sertoli cells in transgenic rats at both 7 and 12 months. BACHD rat HTT and mHTT expression levels in testis were lower than striatum at 3 months of age. Conclusions The testis phenotype in the BACHD rat model does not mimic the changes observed in human HD testis. The altered sexual behavior in BACHD rats at three months of age could be to a certain extent representative of and share common underlying pathways with some of the sexual disturbances in HD patients. Further investigating the biological causes of the sexual phenotype in BACHD rats may therefore contribute to clarifying the mechanisms at the base of sexual behavior changes in HD. PMID:29883458
[Jaws of amphibians and reptiles].
Tanimoto, Masahiro
2005-04-01
Big jaws of amphibians and reptiles are mainly treated in this article. In amphibians enlarged skulls are for the big jaw in contrast with human's skulls for the brain. For example, famous fossils of Homo diluvii testis are ones of salamanders in fact. In reptiles, mosasaur jaws and teeth and their ecology are introduced for instance.
Brossard-Racine, M; du Plessis, A J; Vezina, G; Robertson, R; Bulas, D; Evangelou, I E; Donofrio, M; Freeman, D; Limperopoulos, C
2014-08-01
Brain injury is a major complication in neonates with complex congenital heart disease. Preliminary evidence suggests that fetuses with congenital heart disease are at greater risk for brain abnormalities. However, the nature and frequency of these brain abnormalities detected by conventional fetal MR imaging has not been examined prospectively. Our primary objective was to determine the prevalence and spectrum of brain abnormalities detected on conventional clinical MR imaging in fetuses with complex congenital heart disease and, second, to compare the congenital heart disease cohort with a control group of fetuses from healthy pregnancies. We prospectively recruited pregnant women with a confirmed fetal congenital heart disease diagnosis and healthy volunteers with normal fetal echocardiogram findings who underwent a fetal MR imaging between 18 and 39 weeks gestational age. A total of 338 fetuses (194 controls; 144 with congenital heart disease) were studied at a mean gestational age of 30.61 ± 4.67 weeks. Brain abnormalities were present in 23% of the congenital heart disease group compared with 1.5% in the control group (P < .001). The most common abnormalities in the congenital heart disease group were mild unilateral ventriculomegaly in 12/33 (36.4%) and increased extra-axial spaces in 10/33 (30.3%). Subgroup analyses comparing the type and frequency of brain abnormalities based on cardiac physiology did not reveal significant associations, suggesting that the brain abnormalities were not limited to those with the most severe congenital heart disease. This is the first large prospective study reporting conventional MR imaging findings in fetuses with congenital heart disease. Our results suggest that brain abnormalities are prevalent but relatively mild antenatally in fetuses with congenital heart disease. The long-term predictive value of these findings awaits further study. © 2014 by American Journal of Neuroradiology.
Brain-Heart Interaction: Cardiac Complications After Stroke.
Chen, Zhili; Venkat, Poornima; Seyfried, Don; Chopp, Michael; Yan, Tao; Chen, Jieli
2017-08-04
Neurocardiology is an emerging specialty that addresses the interaction between the brain and the heart, that is, the effects of cardiac injury on the brain and the effects of brain injury on the heart. This review article focuses on cardiac dysfunction in the setting of stroke such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage. The majority of post-stroke deaths are attributed to neurological damage, and cardiovascular complications are the second leading cause of post-stroke mortality. Accumulating clinical and experimental evidence suggests a causal relationship between brain damage and heart dysfunction. Thus, it is important to determine whether cardiac dysfunction is triggered by stroke, is an unrelated complication, or is the underlying cause of stroke. Stroke-induced cardiac damage may lead to fatality or potentially lifelong cardiac problems (such as heart failure), or to mild and recoverable damage such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The role of location and lateralization of brain lesions after stroke in brain-heart interaction; clinical biomarkers and manifestations of cardiac complications; and underlying mechanisms of brain-heart interaction after stroke, such as the hypothalamic-pituitary-adrenal axis; catecholamine surge; sympathetic and parasympathetic regulation; microvesicles; microRNAs; gut microbiome, immunoresponse, and systemic inflammation, are discussed. © 2017 American Heart Association, Inc.
A brief history of clinical xenotransplantation.
Cooper, David K C; Ekser, Burcin; Tector, A Joseph
2015-11-01
Between the 17th and 20th centuries, blood was transfused from various animal species into patients with a variety of pathological conditions. Skin grafts were carried out in the 19th century, with grafts from a variety of animals, with frogs being the most popular. In the 1920s, Voronoff advocated the transplantation of slices of chimpanzee testis into elderly men, believing that the hormones produced by the testis would rejuvenate his patients. In 1963-4, when human organs were not available and dialysis was not yet in use, Reemtsma transplanted chimpanzee kidneys into 13 patients, one of whom returned to work for almost 9 months before suddenly dying from what was believed to be an electrolyte disturbance. The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within 2 h. Starzl carried out the first chimpanzee-to-human liver transplantation in 1966; in 1992 he obtained patient survival for 70 days following a baboon liver transplant. The first clinical pig islet transplant was carried out by Groth in 1993. Today, genetically-modified pigs offer hope of a limitless supply of organs and cells for those in need of a transplant. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.
Tsuji, S; Qureshi, M A; Hou, E W; Fitch, W M; Li, S S
1994-01-01
The nucleotide sequences of the cDNAs encoding LDH (EC 1.1.1.27) subunits LDH-A (muscle), LDH-B (liver), and LDH-C (oocyte) from Xenopus laevis, LDH-A (muscle) and LDH-B (heart) from pig, and LDH-B (heart) and LDH-C (testis) from rat were determined. These seven newly deduced amino acid sequences and 22 other published LDH sequences, and three unpublished fish LDH-A sequences kindly provided by G. N. Somero and D. A. Powers, were used to construct the most parsimonious phylogenetic tree of these 32 LDH subunits from mammals, birds, an amphibian, fish, barley, and bacteria. There have been at least six LDH gene duplications among the vertebrates. The Xenopus LDH-A, LDH-B, and LDH-C subunits are most closely related to each other and then are more closely related to vertebrate LDH-B than LDH-A. Three fish LDH-As, as well as a single LDH of lamprey, also seem to be more related to vertebrate LDH-B than to land vertebrate LDH-A. The mammalian LDH-C (testis) subunit appears to have diverged very early, prior to the divergence of vertebrate LDH-A and LDH-B subunits, as reported previously. Images PMID:7937776
Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood
Buckley, Lauren; Lacey, Michelle; Ehrlich, Melanie
2016-01-01
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology. PMID:26756355
Clinical efficacy of positron emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiss, W.D.; Pawlick, G.; Herholz, K.
1987-01-01
The contents of this book are: Brain: Cerebral Vascular Disease; Brain: Movement Disorders; Brain: Epilepsy and Pediatric Neurology; Brain: Dementias; Brain: Schizophrenia; Heart: Angina Pectoris; Heart: Infarction; Lungs; Soft Tissue Tumors; and Brain Tumors.
The VIP/VPACR system in the reproductive cycle of male lizard Podarcis sicula.
Agnese, Marisa; Rosati, Luigi; Prisco, Marina; Coraggio, Francesca; Valiante, Salvatore; Scudiero, Rosaria; Laforgia, Vincenza; Andreuccetti, Piero
2014-09-01
Starting from the knowledge that in the reproductive period the Vasoactive Intestinal Peptide (VIP) is widely distributed in Podarcis sicula testis, we studied VIP expression and the localization of the neuropeptide and its receptors in the testis of the Italian wall lizard P. sicula in the other phases of its reproductive cycle (summer stasis, autumnal resumption, winter stasis, spring resumption). By Real Time-PCR, we demonstrated that testicular VIP mRNA levels change during the reproductive cycle, showing a cyclic trend with two peaks, one in the mid-autumnal resumption and the other in the reproductive period. By in situ hybridization and immunohistochemistry, we demonstrated that both VIP mRNA and protein were widely distributed in the testis in almost all the phases of the cycle, except in the early autumnal resumption. As regards the receptors, the VPAC1R was localized mainly in Leydig cells, while the VPAC2R showed the same distribution of VIP. Our results demonstrate that, differently from mammals, where VIP is present only in nerve fibres innerving the testis, an endotesticular synthesis takes place in the lizard and the VIP synthesis changes throughout the reproductive cycle. Moreover, the VIP/VPAC receptor system distribution observed in germ and somatic cells in various phases of the cycle, and particularly in the autumnal resumption and the reproductive period, strongly suggests its involvement in both spermatogenesis and steroidogenesis. Finally, the wider distribution of VIP in lizards with respect to mammals leads us to hypothesize that during the evolution the synthesis sites have been transferred from the testis to other districts, such as the brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Menaker, Michael; Roberts, Richard; Elliott, Jeffrey; Underwood, Herbert
1970-01-01
Photoperiodic control of testis growth in Passer domesticus (house sparrow) is mediated entirely by extraretinal photoreceptors in the brain. The eyes do not participate in photoperiodically significant photoreception. Removal of the pineal organ does not affect either the response to light or, to a first approximation, the process of recrudescence. The intensity of light reaching the retina and that reaching the extraretinal photoreceptor were varied independently. This technique will make it possible to study brain photoreception in species of birds that will not tolerate blinding. Extreme caution is necessary in the interpretation of brain lesion experiments in which reproductive function is modified, since photoreception by brain receptors of unknown anatomical location affects testicular state. PMID:5272320
How heart rate variability affects emotion regulation brain networks.
Mather, Mara; Thayer, Julian
2018-02-01
Individuals with high heart rate variability tend to have better emotional well-being than those with low heart rate variability, but the mechanisms of this association are not yet clear. In this paper, we propose the novel hypothesis that by inducing oscillatory activity in the brain, high amplitude oscillations in heart rate enhance functional connectivity in brain networks associated with emotion regulation. Recent studies using daily biofeedback sessions to increase the amplitude of heart rate oscillations suggest that high amplitude physiological oscillations have a causal impact on emotional well-being. Because blood flow timing helps determine brain network structure and function, slow oscillations in heart rate have the potential to strengthen brain network dynamics, especially in medial prefrontal regulatory regions that are particularly sensitive to physiological oscillations.
Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.
Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa
2018-04-07
Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.
Hooghiemstra, Astrid M.; Bertens, Anne Suzanne; Leeuwis, Anna E.; Bron, Esther E.; Bots, Michiel L.; Brunner-La Rocca, Hans-Peter; de Craen, Anton J.M.; van der Geest, Rob J.; Greving, Jacoba P.; Kappelle, L. Jaap; Niessen, Wiro J.; van Oostenbrugge, Robert J.; van Osch, Matthias J.P.; de Roos, Albert; van Rossum, Albert C.; Biessels, Geert Jan; van Buchem, Mark A.; Daemen, Mat J.A.P.; van der Flier, Wiesje M.
2017-01-01
Background Hemodynamic balance in the heart-brain axis is increasingly recognized as a crucial factor in maintaining functional and structural integrity of the brain and thereby cognitive functioning. Patients with heart failure (HF), carotid occlusive disease (COD), and vascular cognitive impairment (VCI) present themselves with complaints attributed to specific parts of the heart-brain axis, but hemodynamic changes often go beyond the part of the axis for which they primarily seek medical advice. The Heart-Brain Study hypothesizes that the hemodynamic status of the heart and the brain is an important but underestimated cause of VCI. We investigate this by studying to what extent hemodynamic changes contribute to VCI and what the mechanisms involved are. Here, we provide an overview of the design and protocol. Methods The Heart-Brain Study is a multicenter cohort study with a follow-up measurement after 2 years among 645 participants (175 VCI, 175 COD, 175 HF, and 120 controls). Enrollment criteria are the following: 1 of the 3 diseases diagnosed according to current guidelines, age ≥50 years, no magnetic resonance contraindications, ability to undergo cognitive testing, and independence in daily life. A core clinical dataset is collected including sociodemographic factors, cardiovascular risk factors, detailed neurologic, cardiac, and medical history, medication, and a physical examination. In addition, we perform standardized neuropsychological testing, cardiac, vascular and brain MRI, and blood sampling. In subsets of participants we assess Alzheimer biomarkers in cerebrospinal fluid, and assess echocardiography and 24-hour blood pressure monitoring. Follow-up measurements after 2 years include neuropsychological testing, brain MRI, and blood samples for all participants. We use centralized state-of-the-art storage platforms for clinical and imaging data. Imaging data are processed centrally with automated standardized pipelines. Results and Conclusions The Heart-Brain Study investigates relationships between (cardio-)vascular factors, the hemodynamic status of the heart and the brain, and cognitive impairment. By studying the complete heart-brain axis in patient groups that represent components of this axis, we have the opportunity to assess a combination of clinical and subclinical manifestations of disorders of the heart, vascular system and brain, with hemodynamic status as a possible binding factor. PMID:29017156
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M.; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO2-mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients. PMID:29487541
Tian, Fangyun; Liu, Tiecheng; Xu, Gang; Li, Duan; Ghazi, Talha; Shick, Trevor; Sajjad, Azeem; Wang, Michael M; Farrehi, Peter; Borjigin, Jimo
2018-01-01
Sudden cardiac arrest is a leading cause of death in the United States. The neurophysiological mechanism underlying sudden death is not well understood. Previously we have shown that the brain is highly stimulated in dying animals and that asphyxia-induced death could be delayed by blocking the intact brain-heart neuronal connection. These studies suggest that the autonomic nervous system plays an important role in mediating sudden cardiac arrest. In this study, we tested the effectiveness of phentolamine and atenolol, individually or combined, in prolonging functionality of the vital organs in CO 2 -mediated asphyxic cardiac arrest model. Rats received either saline, phentolamine, atenolol, or phentolamine plus atenolol, 30 min before the onset of asphyxia. Electrocardiogram (ECG) and electroencephalogram (EEG) signals were simultaneously collected from each rat during the entire process and investigated for cardiac and brain functions using a battery of analytic tools. We found that adrenergic blockade significantly suppressed the initial decline of cardiac output, prolonged electrical activities of both brain and heart, asymmetrically altered functional connectivity within the brain, and altered, bi-directionally and asymmetrically, functional, and effective connectivity between the brain and heart. The protective effects of adrenergic blockers paralleled the suppression of brain and heart connectivity, especially in the right hemisphere associated with central regulation of sympathetic function. Collectively, our results demonstrate that blockade of brain-heart connection via alpha- and beta-adrenergic blockers significantly prolonged the detectable activities of both the heart and the brain in asphyxic rat. The beneficial effects of combined alpha and beta blockers may help extend the survival of cardiac arrest patients.
Sex differences in the developing brain as a source of inherent risk.
McCarthy, Margaret M
2016-12-01
Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaumont, K.; Vaughn, D.A.; Fanestil, D.D.
Thiazides and related diuretics inhibit NaCl reabsorption in the distal tubule through an unknown mechanism. The authors report here that ({sup 3}H)metolazone, a diuretic with a thiazide-like mechanism of action, labels a site in rat kidney membranes that has characteristics of the thiazide-sensitive ion transporter. ({sup 3}H)Metolazone bound with high affinity to a site with a density of 0.717 pmol/mg of protein in kidney membranes. The binding site was localized to the renal cortex, with little or not binding in other kidney regions and 11 other tissues. The affinities of thiazide-type diuretics for this binding site were significantly correlated withmore » their clinical potency. Halide anions specifically inhibited high-affinity binding of ({sup 3}H)metolazone to this site. ({sup 3})Metolazone also bound with lower affinity to sites present in kidney as well as in liver, testis, lung, brain, heart, and other tissues. Calcium antagonists and certain smooth muscle relaxants had K{sub i} values of 0.6-10 {mu}M for these low-affinity sites, which were not inhibited by most of the thiazide diuretics tested. Properties of the high-affinity ({sup 3}H)metolazone binding site are consistent with its identity as the receptor for thiazide-type diuretics.« less
Chopra, I J; Huang, T S; Hurd, R E; Solomon, D H
1984-04-01
We studied the effect of T3-induced hyperthyroidism on the outer ring (5' or 3') monodeiodination of T4 (to T3) and 3',5'-diiodothyronine [3',5'-T2; to 3'-monoiodothyronine (3'-T1)] and on the inner ring (3 or 5) monodeiodination of 3,5-T2 (to 3-T1) by various rat tissues. Weight-matched pairs of male Sprague-Dawley rats were given either saline or T3 (20 micrograms/100 g BW daily) ip for 3 days. The metabolism of the iodothyronines was studied on day 4 in homogenates of the tissues in the presence of 25 mM dithiothreitol. Hyperthyroidism was associated with a significant (P less than 0.05) increase in T4 to T3 monodeiodinating activity in the liver (mean, 95%), kidney (mean, 60%), and heart (mean, 153%), but not in skeletal muscle, small intestine, spleen, testis, cerebral cortex, or cerebellum. The monodeiodinating activity converting 3',5'-T2 to 3'-T1 was greatly increased (P less than 0.05) in the heart (mean, 750%), spleen (mean, 462%), and skeletal muscle (mean, 167%), but not in liver, kidney, small intestine, testis, cerebral cortex, or cerebellum. In the case of liver and kidney, however, there was evidence of an activation of 3',5'-T2 monodeiodinating activity, as suggested by a significant increase in the activity in the absence of added dithiothreitol. The monodeiodination of 3,5-T2 to 3-T1 increased significantly only in the cerebral cortex (mean, 525%) and liver (mean, 69%) and not in any other tissue. The time course of the above-mentioned changes in iodothyronine metabolism was studied in groups of rats (five per group) given T3 (20 micrograms 100 g BW-1 day-1) 6-72 h before death. Significant increases in 3',5'-T2 (to 3'-T1) monodeiodination in the heart and 3,5-T2 (to 3-T1) monodeiodination in the cerebral cortex were evident within 6 h of T3 administration. Changes in T4 to T3 monodeiodinating activity in the kidney and liver, however, did not become statistically significant until 24 and 72 h, respectively. The various effects of T3 on the tissues became maximal between 48 and 72 h after the initiation of T3 treatment. Our data suggest that most tissues, including some that have been considered unresponsive to thyroid hormones, e.g. brain and spleen, demonstrate substantial metabolic changes after T3 administration. The tissue responses are variable in degree; in some instances, they are specific for the substrate and type of tissue.(ABSTRACT TRUNCATED AT 400 WORDS)
Li, Minghui; Wang, Junsong; Lu, Zhaoguang; Wei, Dandan; Yang, Minghua; Kong, Lingyi
2014-01-01
In this study, a (1)H nuclear magnetic resonance (NMR) based metabolomics approach was applied to investigate the toxicity of lambda-cyhalothrin (LCT) in goldfish (Carassius auratus). LCT showed tissue-specific damage to gill, heart, liver and kidney tissues of goldfish. NMR profiling combined with statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) was developed to discern metabolite changes occurring after one week LCT exposure in brain, heart and kidney tissues of goldfish. LCT exposure influenced levels of many metabolites (e.g., leucine, isoleucine and valine in brain and kidney; lactate in brain, heart and kidney; alanine in brain and kidney; choline in brain, heart and kidney; taurine in brain, heart and kidney; N-acetylaspartate in brain; myo-inositol in brain; phosphocreatine in brain and heart; 2-oxoglutarate in brain; cis-aconitate in brain, and etc.), and broke the balance of neurotransmitters and osmoregulators, evoked oxidative stress, disturbed metabolisms of energy and amino acids. The implication of glutamate-glutamine-gamma-aminobutyric axis in LCT induced toxicity was demonstrated for the first time. Our findings demonstrated the applicability and potential of metabolomics approach for the elucidation of toxicological effects of pesticides and the underlying mechanisms, and the discovery of biomarkers for pesticide pollution in aquatic environment. Copyright © 2013 Elsevier B.V. All rights reserved.
Doehner, Wolfram; Ural, Dilek; Haeusler, Karl Georg; Čelutkienė, Jelena; Bestetti, Reinaldo; Cavusoglu, Yuksel; Peña-Duque, Marco A; Glavas, Duska; Iacoviello, Massimo; Laufs, Ulrich; Alvear, Ricardo Marmol; Mbakwem, Amam; Piepoli, Massimo F; Rosen, Stuart D; Tsivgoulis, Georgios; Vitale, Cristiana; Yilmaz, M Birhan; Anker, Stefan D; Filippatos, Gerasimos; Seferovic, Petar; Coats, Andrew J S; Ruschitzka, Frank
2018-02-01
Heart failure (HF) is a complex clinical syndrome with multiple interactions between the failing myocardium and cerebral (dys-)functions. Bi-directional feedback interactions between the heart and the brain are inherent in the pathophysiology of HF: (i) the impaired cardiac function affects cerebral structure and functional capacity, and (ii) neuronal signals impact on the cardiovascular continuum. These interactions contribute to the symptomatic presentation of HF patients and affect many co-morbidities of HF. Moreover, neuro-cardiac feedback signals significantly promote aggravation and further progression of HF and are causal in the poor prognosis of HF. The diversity and complexity of heart and brain interactions make it difficult to develop a comprehensive overview. In this paper a systematic approach is proposed to develop a comprehensive atlas of related conditions, signals and disease mechanisms of the interactions between the heart and the brain in HF. The proposed taxonomy is based on pathophysiological principles. Impaired perfusion of the brain may represent one major category, with acute (cardio-embolic) or chronic (haemodynamic failure) low perfusion being sub-categories with mostly different consequences (i.e. ischaemic stroke or cognitive impairment, respectively). Further categories include impairment of higher cortical function (mood, cognition), of brain stem function (sympathetic over-activation, neuro-cardiac reflexes). Treatment-related interactions could be categorized as medical, interventional and device-related interactions. Also interactions due to specific diseases are categorized. A methodical approach to categorize the interdependency of heart and brain may help to integrate individual research areas into an overall picture. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
Ndika, Joseph D T; Lusink, Vera; Beaubrun, Claudine; Kanhai, Warsha; Martinez-Munoz, Cristina; Jakobs, Cornelis; Salomons, Gajja S
2014-01-10
Interconversion between phosphocreatine and creatine, catalyzed by creatine kinase is crucial in the supply of ATP to tissues with high energy demand. Creatine's importance has been established by its use as an ergogenic aid in sport, as well as the development of intellectual disability in patients with congenital creatine deficiency. Creatine biosynthesis is complemented by dietary creatine uptake. Intracellular transport of creatine is carried out by a creatine transporter protein (CT1/CRT/CRTR) encoded by the SLC6A8 gene. Most tissues express this gene, with highest levels detected in skeletal muscle and kidney. There are lower levels of the gene detected in colon, brain, heart, testis and prostate. The mechanism(s) by which this regulation occurs is still poorly understood. A duplicated unprocessed pseudogene of SLC6A8-SLC6A10P has been mapped to chromosome 16p11.2 (contains the entire SLC6A8 gene, plus 2293 bp of 5'flanking sequence and its entire 3'UTR). Expression of SLC6A10P has so far only been shown in human testis and brain. It is still unclear as to what is the function of SLC6A10P. In a patient with autism, a chromosomal breakpoint that intersects the 5'flanking region of SLC6A10P was identified; suggesting that SLC6A10P is a non-coding RNA involved in autism. Our aim was to investigate the presence of cis-acting factor(s) that regulate expression of the creatine transporter, as well as to determine if these factors are functionally conserved upstream of the creatine transporter pseudogene. Via gene-specific PCR, cloning and functional luciferase assays we identified a 1104 bp sequence proximal to the mRNA start site of the SLC6A8 gene with promoter activity in five cell types. The corresponding 5'flanking sequence (1050 bp) on the pseudogene also had promoter activity in all 5 cell lines. Surprisingly the pseudogene promoter was stronger than that of its parent gene in 4 of the cell lines tested. To the best of our knowledge, this is the first experimental evidence of a pseudogene with stronger promoter activity than its parental gene. © 2013.
Characterization and expression of cyp19a gene in the Chinese giant salamander Andrias davidianus.
Hu, Qiaomu; Xiao, Hanbing; Tian, HaiFeng; Meng, Yan
2016-02-01
We cloned the full length cyp19a of Chinese giant salamander Andrias davidianus, determined its distribution in tissues and developing gonads, and analyzed the CpG methylation pattern of the cyp19a promoter. The results revealed isoforms of 1706 bp (G arom) and 1698 bp (B arom) in length, differing in the 5' flanking region, both encoding 502 amino acids. The G arom gene was observed mainly in the ovary and kidney, with little in other investigated tissues, while B arom expression was high in the brain, ovary, testis, and pituitary, with low or undetected expression in other examined tissues. Total aromatase expression was high in the ovary; moderate in the kidney, brain, testis, and pituitary; and low in the remaining tissues. G arom expression was significantly higher in the ovary than in the testis and gradually decreased with maturation of the salamander. A single injection of methyltestosterone or letrozole resulted in ovarian G arom expression decreasing over a 12-96 h period. A 1366 bp sequence of the cyp19a promoter was cloned and shown to be conserved in selected species. CpG methylation level was negatively correlated with cyp19a expression in the examined tissues and developing ovaries. Five and three CpG methylation sites positively correlated with DNA methylation levels in tissues and developing ovary, suggesting that they play an important role in regulating cyp19a expression. The aromatase gene showed two isoforms with distinct expression patterns, and the promoter methylation level at specific CpG sites was associated with variation in expression profiles of tissues and developing ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.
Hamza, Reham Z; Al-Harbi, Mohammad S; El-Shenawy, Nahla S
2017-07-01
The study purported to define the effects of daily administration of vitamin E (Vit E) and selenium (Se) on antioxidant enzyme activity in mice treated with high doses of sodium azide (SA). Male mice were randomly split into nine groups. Groups 1, 2 and 3 were injected daily with saline, Vit E, and Se, respectively, while groups 4, 5 and 6 administrated with different doses of SA (low, medium and high, respectively). The mice in groups 7, 8 and 9 received 100mg/kg Vit E, 17.5mg/kg Se, and a combination of Vit E and Se, respectively before the SA-treatment. Hepatic, renal, testis and heart, antioxidant enzymes as well as levels of lipid peroxidation and total antioxidant capacity levels were determined. Vit E alone affected on the antioxidant parameters of the examined tissues. Se had a preventive effect on the decrease of antioxidant parameters caused by SA and improved the diminished activities of all of them. The study demonstrates that a high dose of SA may alter the effects of normal level antioxidant/oxidative status of male mice and that Se is effective in reducing the SA-damage. Se acts as a synergistic agent with the effect of Vit E in various damaged caused by SA. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Brossard-Racine, M; du Plessis, A; Vezina, G; Robertson, R; Donofrio, M; Tworetzky, W; Limperopoulos, C
2016-07-01
Brain injury in neonates with congenital heart disease is an important predictor of adverse neurodevelopmental outcome. Impaired brain development in congenital heart disease may have a prenatal origin, but the sensitivity and specificity of fetal brain MR imaging for predicting neonatal brain lesions are currently unknown. We sought to determine the value of conventional fetal MR imaging for predicting abnormal findings on neonatal preoperative MR imaging in neonates with complex congenital heart disease. MR imaging studies were performed in 103 fetuses with confirmed congenital heart disease (mean gestational age, 31.57 ± 3.86 weeks) and were repeated postnatally before cardiac surgery (mean age, 6.8 ± 12.2 days). Each MR imaging study was read by a pediatric neuroradiologist. Brain abnormalities were detected in 17/103 (16%) fetuses by fetal MR imaging and in 33/103 (32%) neonates by neonatal MR imaging. Only 9/33 studies with abnormal neonatal findings were preceded by abnormal findings on fetal MR imaging. The sensitivity and specificity of conventional fetal brain MR imaging for predicting neonatal brain abnormalities were 27% and 89%, respectively. Brain abnormalities detected by in utero MR imaging in fetuses with congenital heart disease are associated with higher risk of postnatal preoperative brain injury. However, a substantial proportion of anomalies on postnatal MR imaging were not present on fetal MR imaging; this result is likely due to the limitations of conventional fetal MR imaging and the emergence of new lesions that occurred after the fetal studies. Postnatal brain MR imaging studies are needed to confirm the presence of injury before open heart surgery. © 2016 by American Journal of Neuroradiology.
... the head; MRI - cranial; NMR - cranial; Cranial MRI; Brain MRI; MRI - brain; MRI - head ... the test, tell your provider if you have: Brain aneurysm clips An artificial heart valves Heart defibrillator ...
Effect of Progressive Heart Failure on Cerebral Hemodynamics and Monoamine Metabolism in CNS.
Mamalyga, M L; Mamalyga, L M
2017-07-01
Compensated and decompensated heart failure are characterized by different associations of disorders in the brain and heart. In compensated heart failure, the blood flow in the common carotid and basilar arteries does not change. Exacerbation of heart failure leads to severe decompensation and is accompanied by a decrease in blood flow in the carotid and basilar arteries. Changes in monoamine content occurring in the brain at different stages of heart failure are determined by various factors. The functional exercise test showed unequal monoamine-synthesizing capacities of the brain in compensated and decompensated heart failure. Reduced capacity of the monoaminergic systems in decompensated heart failure probably leads to overstrain of the central regulatory mechanisms, their gradual exhaustion, and failure of the compensatory mechanisms, which contributes to progression of heart failure.
Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.
von Rhein, Michael; Buchmann, Andreas; Hagmann, Cornelia; Huber, Reto; Klaver, Peter; Knirsch, Walter; Latal, Beatrice
2014-01-01
Patients with complex congenital heart disease are at risk for neurodevelopmental impairments. Evidence suggests that brain maturation can be delayed and pre- and postoperative brain injury may occur, and there is limited information on the long-term effect of congenital heart disease on brain development and function in adolescent patients. At a mean age of 13.8 years, 39 adolescent survivors of childhood cardiopulmonary bypass surgery with no structural brain lesions evident through conventional cerebral magnetic resonance imaging and 32 healthy control subjects underwent extensive neurodevelopmental assessment and cerebral magnetic resonance imaging. Cerebral scans were analysed quantitatively using surface-based and voxel-based morphometry. Compared with control subjects, patients had lower total brain (P = 0.003), white matter (P = 0.004) and cortical grey matter (P = 0.005) volumes, whereas cerebrospinal fluid volumes were not different. Regional brain volume reduction ranged from 5.3% (cortical grey matter) to 11% (corpus callosum). Adolescents with cyanotic heart disease showed more brain volume loss than those with acyanotic heart disease, particularly in the white matter, thalami, hippocampi and corpus callosum (all P-values < 0.05). Brain volume reduction correlated significantly with cognitive, motor and executive functions (grey matter: P < 0.05, white matter: P < 0.01). Our findings suggest that there are long-lasting cerebral changes in adolescent survivors of cardiopulmonary bypass surgery for congenital heart disease and that these changes are associated with functional outcome.
[Ma2 antibody and multiple mononeuropathies].
Ayrignac, X; Castelnovo, G; Landrault, E; Fayolle, H; Pers, Y-M; Honnorat, J; Campello, C; Figarella-Branger, D; Labauge, P
2008-01-01
Anti-Ma2 antibodies belong to a family of onconeuronal antibodies that target proteins expressed in brain, testis and several tumors. Previously observed in patients presenting with limbic encephalitis, they seem to be associated with several other paraneoplastic syndromes. We report the case of a 73-year-old woman presenting sensory and motor neuropathy associated with non-small-cell lung cancer who had Ma2-antibodies.
Dygalo, Nikolay N.; Shemenkova, Tatjana V.; Kalinina, Tatjana S.; Shishkina, Galina T.
2014-01-01
Testis growth during early life is important for future male fertility and shows acceleration during the first months of life in humans. This acceleration coincides with the peak in gonadotropic hormones in the blood, while the role of hypothalamic factors remains vague. Using neonatal rats to assess this issue, we found that day 9 of life is likely critical for testis development in rats. Before this day, testicular growth was proportional to body weight gain, but after that the testes showed accelerated growth. Hypothalamic kisspeptin and its receptor mRNA levels begin to elevate 2 days later, at day 11. A significant increase in the mRNA levels for gonadotropin-releasing hormone (GnRH) receptors in the hypothalamus between days 5 and 7 was followed by a 3-fold decrease in GnRH mRNA levels in this brain region during the next 2 days. Starting from day 9, hypothalamic GnRH mRNA levels increased significantly and positively correlated with accelerated testicular growth. Triptorelin, an agonist of GnRH, at a dose that had no effect on testicular growth during “proportional” period, increased testis weights during the period of accelerated growth. The insensitivity of testicular growth to GnRH during “proportional” period was supported by inability of a 2.5-fold siRNA knockdown of GnRH expression in the hypothalamus of the 7-day-old animals to produce any effect on their testis weights. GnRH receptor blockade with cetrorelix was also without effect on testis weights during “proportional” period but the same doses of this GnRH antagonist significantly inhibited “accelerated” testicular growth. GnRH receptor mRNA levels in the pituitary as well as plasma LH concentrations were higher during “accelerated” period of testicular growth than during “proportional” period. In general, our data defined two distinct periods in rat testicular development that are primarily characterized by different responses to GnRH signaling. PMID:24695464
Analysis of the antibody repertoire of lymphoma patients.
Huang, Shaoming; Preuss, Klaus-Dieter; Xie, Xiaoxun; Regitz, Evi; Pfreundschuh, Michael
2002-12-01
Cancer testis or cancer germline antigens (CGA) are promising vaccine candidates because they are expressed only in malignant but not in normal tissues, except for germ cells in the testis. Since non-Hodgkin's lymphomas (NHL) express the known CGA at low frequencies, we aimed at increasing the number of CGA with frequent expression in NHL by screening a cDNA expression library derived from normal testis for reactivity with high-titered IgG antibodies in the sera of lymphoma patients using SEREX, the serological identification of antigens by recombinant cDNA expression cloning. The analysis of 1.6x10(6) clones with the sera of 25 lymphoma patients revealed 42 clones which coded for 23 antigens, 12 of which had already been included in the SEREX databank. Four cDNA clones coded for unknown and 19 for known genes. Three antigens reacted only with the serum by which they had been detected, 9 antigens reacted with the sera of several NHL patients, but not with that of healthy controls, and 11 antigens reacted with both normal and NHL sera. Most of the antigens were ubiquitously expressed. Only HOM-NHL-6, HOM-NHL-8, HOM-NHL-21 and HOM-NHL-23 showed a restricted expression pattern. HOM-NHL-6 and HOM-NHL-8 were homologous to the previously described CGA NY-ESO-1 and HOM-TES-14/SCP-1, respectively. HOM-NHL-21 was expressed in rare cases of lymphomas, but not in normal tissues except for testis and brain, while HOM-NHL-23 appeared to be a testis-specific antigen. In summary, using the antibody repertoire of these 25 NHL patients, no new CGA were detected. The number of CGA detectable by the classical SEREX approach appears to be limited, and novel strategies are necessary to identify antigens that can serve as a vaccine target in a broad spectrum of NHL patients.
Pressler, Susan J; Giordani, Bruno; Titler, Marita; Gradus-Pizlo, Irmina; Smith, Dean; Dorsey, Susan G; Gao, Sujuan; Jung, Miyeon
Memory loss is an independent predictor of mortality among heart failure patients. Twenty-three percent to 50% of heart failure patients have comorbid memory loss, but few interventions are available to treat the memory loss. The aims of this 3-arm randomized controlled trial were to (1) evaluate efficacy of computerized cognitive training intervention using BrainHQ to improve primary outcomes of memory and serum brain-derived neurotrophic factor levels and secondary outcomes of working memory, instrumental activities of daily living, and health-related quality of life among heart failure patients; (2) evaluate incremental cost-effectiveness of BrainHQ; and (3) examine depressive symptoms and genomic moderators of BrainHQ effect. A sample of 264 heart failure patients within 4 equal-sized blocks (normal/low baseline cognitive function and gender) will be randomly assigned to (1) BrainHQ, (2) active control computer-based crossword puzzles, and (3) usual care control groups. BrainHQ is an 8-week, 40-hour program individualized to each patient's performance. Data collection will be completed at baseline and at 10 weeks and 4 and 8 months. Descriptive statistics, mixed model analyses, and cost-utility analysis using intent-to-treat approach will be computed. This research will provide new knowledge about the efficacy of BrainHQ to improve memory and increase serum brain-derived neurotrophic factor levels in heart failure. If efficacious, the intervention will provide a new therapeutic approach that is easy to disseminate to treat a serious comorbid condition of heart failure.
Ogawa, Kiyohiro; Hirooka, Yoshitaka; Kishi, Takuya; Ide, Tomomi; Sunagawa, Kenji
2013-01-01
Left ventricular (LV) remodeling and activation of sympathetic nervous system (SNS) are cardinal features of heart failure. We previously demonstrated that enhanced central sympathetic outflow is associated with brain toll-like receptor 4 (TLR4) probably mediated by brain angiotensin II type 1 receptor in mice with myocardial infarction (MI)-induced heart failure. The purpose of the present study was to examine whether silencing brain TLR4 could prevent LV remodeling with sympathoinhibition in MI-induced heart failure. MI-induced heart failure model rats were created by ligation of left coronary artery. The expression level of TLR4 in brainstem was significantly higher in MI-induced heart failure treated with intracerebroventricular (ICV) injection of hGAPDH-SiRNA than in sham. TLR4 in brainstem was significantly lower in MI-induced heart failure treated with ICV injection of TLR4-SiRNA than in that treated with ICV injection of hGAPDH-SiRNA. Lung weight, urinary norepinephrine excretion, and LV end-diastolic pressure were significantly lower and LV dimension was significantly smaller in MI-induced heart failure treated with TLR4-SiRNA than in that treated with hGAPDH-SiRNA for 2 weeks. Partially silencing brain TLR4 by ICV injection of TLR4-SiRNA for 2 weeks could in part prevent LV remodeling with sympathoinhibition in rats with MI-induced heart failure. Brain TLR4 has a potential to be a target of the treatment for MI-induced heart failure.
Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan
2014-01-01
Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species. Copyright © 2014 Elsevier Inc. All rights reserved.
Information dynamics of brain-heart physiological networks during sleep
NASA Astrophysics Data System (ADS)
Faes, L.; Nollo, G.; Jurysta, F.; Marinazzo, D.
2014-10-01
This study proposes an integrated approach, framed in the emerging fields of network physiology and information dynamics, for the quantitative analysis of brain-heart interaction networks during sleep. With this approach, the time series of cardiac vagal autonomic activity and brain wave activities measured respectively as the normalized high frequency component of heart rate variability and the EEG power in the δ, θ, α, σ, and β bands, are considered as realizations of the stochastic processes describing the dynamics of the heart system and of different brain sub-systems. Entropy-based measures are exploited to quantify the predictive information carried by each (sub)system, and to dissect this information into a part actively stored in the system and a part transferred to it from the other connected systems. The application of this approach to polysomnographic recordings of ten healthy subjects led us to identify a structured network of sleep brain-brain and brain-heart interactions, with the node described by the β EEG power acting as a hub which conveys the largest amount of information flowing between the heart and brain nodes. This network was found to be sustained mostly by the transitions across different sleep stages, as the information transfer was weaker during specific stages than during the whole night, and vanished progressively when moving from light sleep to deep sleep and to REM sleep.
Sex differences in the developing brain as a source of inherent risk
McCarthy, Margaret M.
2016-01-01
Brain development diverges in males and females in response to androgen production by the fetal testis. This sexual differentiation of the brain occurs during a sensitive window and induces enduring neuroanatomical and physiological changes that profoundly impact behavior. What we know about the contribution of sex chromosomes is still emerging, highlighting the need to integrate multiple factors into understanding sex differences, including the importance of context. The cellular mechanisms are best modeled in rodents and have provided both unifying principles and surprising specifics. Markedly distinct signaling pathways direct differentiation in specific brain regions, resulting in mosaicism of relative maleness, femaleness, and sameness through-out the brain, while canalization both exaggerates and constrains sex differences. Non-neuronal cells and inflammatory mediators are found in greater number and at higher levels in parts of male brains. This higher baseline of inflammation is speculated to increase male vulnerability to developmental neuropsychiatric disorders that are triggered by inflammation. PMID:28179808
Suzuki, Akiko; Endo, Takeshi
2002-02-06
We have cloned a cDNA encoding a novel protein referred to as ermelin from mouse C2 skeletal muscle cells. This protein contained six hydrophobic amino acid stretches corresponding to transmembrane domains, two histidine-rich sequences, and a sequence homologous to the fusion peptides of certain fusion proteins. Ermelin also contained a novel modular sequence, designated as HELP domain, which was highly conserved among eukaryotes, from yeast to higher plants and animals. All these HELP domain-containing proteins, including mouse KE4, Drosophila Catsup, and Arabidopsis IAR1, possessed multipass transmembrane domains and histidine-rich sequences. Ermelin was predominantly expressed in brain and testis, and induced during neuronal differentiation of N1E-115 neuroblastoma cells but downregulated during myogenic differentiation of C2 cells. The mRNA was accumulated in hippocampus and cerebellum of brain and central areas of seminiferous tubules in testis. Epitope-tagging experiments located ermelin and KE4 to a network structure throughout the cytoplasm. Staining with the fluorescent dye DiOC(6)(3) identified this structure as the endoplasmic reticulum. These results suggest that at least some, if not all, of the HELP domain-containing proteins are multipass endoplasmic reticulum membrane proteins with functions conserved among eukaryotes.
Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest.
Li, Duan; Mabrouk, Omar S; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J; Mathur, Abhay; Crooks, Charles P; Kennedy, Robert T; Wang, Michael M; Ghanbari, Hamid; Borjigin, Jimo
2015-04-21
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain-heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain's autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain.
The Brain in Congenital Heart Disease across the Lifespan: The Cumulative Burden of Injury
Marelli, Ariane; Miller, Steven P.; Marino, Bradley Scott; Jefferson, Angela L.; Newburger, Jane W.
2017-01-01
The number of patients surviving with congenital heart disease (CHD) has soared over the last three decades. Adults constitute the fastest growing segment of the CHD population, now outnumbering children. Research to date on the heart-brain intersection in this population has largely been focused on neurodevelopmental outcomes in childhood and adolescence. Mutations in genes that are highly expressed in heart and brain may cause cerebral dysgenesis. Together with altered cerebral perfusion in utero, these factors are associated with abnormalities of brain structure and brain immaturity in a significant portion of neonates with critical CHD even before they undergo cardiac surgery. In infancy and childhood, the brain may be affected by risk factors related to heart disease itself or to its interventional treatments. As children with CHD become adults, they increasingly develop heart failure, atrial fibrillation, hypertension, diabetes and coronary disease. These acquired cardiovascular comorbidities can be expected to have effects similar to those in the general population on cerebral blood flow, brain volumes, and dementia. In both children and adults, cardiovascular disease may have adverse effects on achievement, executive function, memory, language, social interactions, and quality of life. In summary, against the backdrop of shifting demographics, risk factors for brain injury in the CHD population are cumulative and synergistic. As neurodevelopmental sequelae in children with CHD evolve to cognitive decline or dementia during adulthood, a growing population of CHD can be expected to require support services. We highlight evidence gaps and future research directions. PMID:27185022
Abnormal brain development in newborns with congenital heart disease.
Miller, Steven P; McQuillen, Patrick S; Hamrick, Shannon; Xu, Duan; Glidden, David V; Charlton, Natalie; Karl, Tom; Azakie, Anthony; Ferriero, Donna M; Barkovich, A James; Vigneron, Daniel B
2007-11-08
Congenital heart disease in newborns is associated with global impairment in development. We characterized brain metabolism and microstructure, as measures of brain maturation, in newborns with congenital heart disease before they underwent heart surgery. We studied 41 term newborns with congenital heart disease--29 who had transposition of the great arteries and 12 who had single-ventricle physiology--with the use of magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and diffusion tensor imaging (DTI) before cardiac surgery. We calculated the ratio of N-acetylaspartate to choline (which increases with brain maturation), the ratio of lactate to choline (which decreases with maturation), average diffusivity (which decreases with maturation), and fractional anisotropy of white-matter tracts (which increases with maturation). We compared these findings with those in 16 control newborns of a similar gestational age. As compared with control newborns, those with congenital heart disease had a decrease of 10% in the ratio of N-acetylaspartate to choline (P=0.003), an increase of 28% in the ratio of lactate to choline (P=0.08), an increase of 4% in average diffusivity (P<0.001), and a decrease of 12% in white-matter fractional anisotropy (P<0.001). Preoperative brain injury, as seen on MRI, was not significantly associated with findings on MRS or DTI. White-matter injury was observed in 13 newborns with congenital heart disease (32%) and in no control newborns. Term newborns with congenital heart disease have widespread brain abnormalities before they undergo cardiac surgery. The imaging findings in such newborns are similar to those in premature newborns and may reflect abnormal brain development in utero. Copyright 2007 Massachusetts Medical Society.
NASA Astrophysics Data System (ADS)
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-05-01
Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.
Effect of Palestinian honey on spermatogenesis in rats.
Abdul-Ghani, Abdul-Salam; Dabdoub, Nabil; Muhammad, Rateb; Abdul-Ghani, Rula; Qazzaz, Munir
2008-12-01
Treatment of male albino rats with 5% honey for 20 days had no significant effect on total body weight or on the relative weight of other organs like the testis, seminal vesicles, spleen, kidneys, liver, heart, or brain. The only significant change was a 17% increase in the relative weight of the epididymis (P < or = .01). The relative weight of all the other organs was similar to those in control animals treated for the same period with drinking water. Treatment of rats for the same period with the same concentration of 5% sucrose produced no significant changes in absolute or relative weight of tested organs compared to control animals. The same treatment with Palestinian honey increased significantly the epididymal sperm count by 37% (P < or = .05). The activity of testicular marker enzymes for spermatogenesis such as sorbitol dehydrogenase (SDH) was increased by 31% (P < or = .05), and lactate dehydrogenase (LDH) was reduced by 48% (P < or = .05), which indicates that treatment with honey induces spermatogenesis. Similar treatment with sucrose had no significant effect on any of the key enzymes or epididymal sperm count. In conclusion, our results show that ingestion of honey induces spermatogenesis in rats by increasing epididymal sperm count, increasing selectively the relative weight of the epididymis, and increasing SDH activity and reducing LDH activity.
Particle size-dependent organ distribution of gold nanoparticles after intravenous administration.
De Jong, Wim H; Hagens, Werner I; Krystek, Petra; Burger, Marina C; Sips, Adriënne J A M; Geertsma, Robert E
2008-04-01
A kinetic study was performed to determine the influence of particle size on the in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat. Gold nanoparticles were chosen as model substances as they are used in several medical applications. In addition, the detection of the presence of gold is feasible with no background levels in the body in the normal situation. Rats were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 and 250 nm, respectively. After 24 h, the rats were sacrificed and blood and various organs were collected for gold determination. The presence of gold was measured quantitatively with inductively coupled plasma mass spectrometry (ICP-MS). For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in liver and spleen. A clear difference was observed between the distribution of the 10 nm particles and the larger particles. The 10 nm particles were present in various organ systems including blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were only detected in blood, liver and spleen. The results demonstrate that tissue distribution of gold nanoparticles is size-dependent with the smallest 10nm nanoparticles showing the most widespread organ distribution.
Sexually Dimorphic Expression of Foxl2 and Ftz-F1 in Chinese Giant Salamander Andrias Davidianus.
Hu, Qiaomu; Meng, Yan; Tian, Haifeng; Zhang, Y U; Xiao, Hanbing
2016-09-01
Foxl2 and FTZ-F1 play a crucial role in the regulation of gonad development in fish and mammals, but studies of their function in amphibians are scarce. We isolated the full length of Foxl2 (adFoxl2) and Ftz-F1 (adFtz-f1) cDNA from the Chinese giant salamander Andrias davidianus and quantified its expression in various tissues and developing gonads. The adFoxl2 gene encodes 301aa including a conserved forkhead box, and the adFtz-f1 gene encodes 467aa containing an Ftz-F1 box. The amino acid sequences showed high homology with other amphibians. adFoxl2 expression was high in ovary, whereas adFtz-f1 was higher in testis, moderate in pituitary, ovary, and kidney; and low in the remaining tested tissues. Expression of adFoxl2 gradually increased from 1Y to 5Y in ovary, whereas adFtz-f1 expression gradually decreased in testis. In addition, adFoxl2 and adFtz-f1 were detected in granulosa cell in ovary and in spermatocytes in testis. The adFoxl2 transcription was inhibited in brain and ovary after treatment with methyltestosterone and with letrozole, whereas adFtz-f1 expression was upregulated. High-temperature suppressed the expression of adFxl2 in ovary and enhanced the transcription of adFtz-f1. These results suggest that adFoxl2 functioned in ovary differentiation, whereas adFtz-f1 played a role in testis development, which lays a foundation for study of the sex differentiation mechanism in A. davidianus. © 2016 Wiley Periodicals, Inc.
Testis tumor associated to microlithiasis.
Jesus, Lisieux Eyer de; Maciel, Felipe; Monnerat, Andrea Lima C; Fernandes, Marcia Antunes; Dekermache, Samuel
2013-12-01
To discuss the relationship between testicular microlithiasis and testis tumors in children and to consider the chances of testis preserving surgery in specific cases. Pre-adolescent presenting testicular microlithiasis and a larger left testis, corresponding to a cystic testicular tumor. The tumor was excised, with ipsilateral testis preservation. Histology diagnosed a testis dermoid tumor. The relationship between testis tumors and testicular microlithiasis is ill defined in children. Pediatric urologists need to develop specific follow-up protocols for pre-pubertal children.
Lin, Bin-Le; Hagino, Satoshi; Kagoshima, Michio; Iwamatsu, Takashi
2009-02-01
A new quantitative evaluation technique, termed the fragmented testis method, has been developed for the detection of testis-ova in genotypic male fish using the medaka (Oryzias latipes). The routine traditional histological method for detection of testis-ova in male fish exposed to estrogens or suspected endocrine-disrupting chemicals has several disadvantages, including possible oversight of testis-ova due to limited sampling of selected tissue sections. The method we have developed here allows for the accurate determination of the developmental stages and the number and the size of testis-ova in a whole testis. Each testis was removed from the fish specimen, fixed with 10% buffered formalin solution, and then divided into small fragments on a glass slide with a dissecting needle or scalpel and aciform forceps in glycerin solution containing a small amount of methylene blue or toluidine blue. If present, all developing testis-ova of various sizes in fragmented testicular tissues were clearly stained and were observable under a dissecting microscope. Testis-ova occurred in controls were ascertained, while spermatozoa were also distinguishable using this method. This proved to be a convenient and cost-effective method for quantitatively evaluating testis-ova appearance in fish, and it may help to clarify the mechanism of testis-ova formation and the biological significance of testis-ova in future studies of endocrine disruption.
Chauhan, Parul; Verma, H N; Sisodia, Rashmi; Kesari, Kavindra Kumar
2017-01-01
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm 2 ). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.
Immunocytochemical localization of a histone H2A variant in the mammalian nucleolar chromatin.
Bhatnagar, Y M; McCullar, M K; Chronister, R B
1984-11-01
The distribution of protein "A", a minor variant of H2A present in the mouse testis, was studied in the liver and brain nuclei using peroxidase-antiperoxidase technique. The data presented here suggest that nucleolar-associated chromatin is highly enriched in protein "A". Microspectrophotometric measurements corroborate the immunocytochemical data. The regional differentiation in the eukaryotic chromatin, therefore, may involve qualitative changes in the histone composition.
Testis tumor associated to microlithiasis
de Jesus, Lisieux Eyer; Maciel, Felipe; Monnerat, Andrea Lima C.; Fernandes, Marcia Antunes; Dekermache, Samuel
2013-01-01
OBJECTIVE: To discuss the relationship between testicular microlithiasis and testis tumors in children and to consider the chances of testis preserving surgery in specific cases. CASE DESCRIPTION: Pre-adolescent presenting testicular microlithiasis and a larger left testis, corresponding to a cystic testicular tumor. The tumor was excised, with ipsilateral testis preservation. Histology diagnosed a testis dermoid tumor. COMMENTS: The relationship between testis tumors and testicular microlithiasis is ill defined in children. Pediatric urologists need to develop specific follow-up protocols for pre-pubertal children. PMID:24473964
Shilling, F M; Krätzschmar, J; Cai, H; Weskamp, G; Gayko, U; Leibow, J; Myles, D G; Nuccitelli, R; Blobel, C P
1997-06-15
Proteins containing a membrane-anchored metalloprotease domain, a disintegrin domain, and a cysteine-rich region (MDC proteins) are thought to play an important role in mammalian fertilization, as well as in somatic cell-cell interactions. We have identified PCR sequence tags encoding the disintegrin domain of five distinct MDC proteins from Xenopus laevis testis cDNA. Four of these sequence tags (xMDC9, xMDC11.1, xMDC11.2, and xMDC13) showed strong similarity to known mammalian MDC proteins, whereas the fifth (xMDC16) apparently represents a novel family member. Northern blot analysis revealed that the mRNA for xMDC16 was only expressed in testis, and not in heart, muscle, liver, ovaries, or eggs, whereas the mRNAs corresponding to the four other PCR products were expressed in testis and in some or all somatic tissues tested. The xMDC16 protein sequence, as predicted from the full-length cDNA, contains a metalloprotease domain with the active-site sequence HEXXH, a disintegrin domain, a cysteine-rich region, an EGF repeat, a transmembrane domain, and a short cytoplasmic tail. To study a potential role for these xMDC proteins in fertilization, peptides corresponding to the predicted integrin-binding domain of each protein were tested for their ability to inhibit X. laevis fertilization. Cyclic and linear xMDC16 peptides inhibited fertilization in a concentration-dependent manner, whereas xMDC16 peptides that were scrambled or had certain amino acid replacements in the predicted integrin-binding domain did not affect fertilization. Cyclic and linear xMDC9 peptides and linear xMDC13 peptides also inhibited fertilization similarly to xMDC16 peptides, whereas peptides corresponding to the predicted integrin-binding site of xMDC11.1 and xMDC11.2 did not. These results are discussed in the context of a model in which multiple MDC protein-receptor interactions are necessary for fertilization to occur.
Frutkin, Andrew D; Shi, Haikun; Otsuka, Goro; Levéen, Per; Karlsson, Stefan; Dichek, David A
2006-10-01
Smooth muscle cell (SMC)-specific deletion of transforming growth factor beta (TGF-beta) signaling would help elucidate the mechanisms through which TGF-beta signaling contributes to vascular development and disease. We attempted to generate mice with SMC-specific deletion of TGF-beta signaling by mating mice with a conditional ("floxed") allele for the type II TGF-beta receptor (tgfbr2flox) to mice with SMC-targeted expression of Cre recombinase. We bred male mice transgenic for smooth muscle myosin heavy chain (SMMHC)-Cre with females carrying tgfbr2flox. Surprisingly, SMMHC-Cre mice recombined tgfbr2flox at low levels in SMC and at high levels in the testis. Recombination of tgfbr2flox in testis correlated with high-level expression of SMMHC-Cre in testis and germline transmission of tgfbr2null. In contrast, mice expressing Cre from a SM22alpha promoter (SM22-Cre) efficiently recombined tgfbr2flox in vascular and visceral SMC and the heart, but not in testis. Use of the R26R reporter allele confirmed that Cre-mediated recombination in vascular SMC was inefficient for SMMHC-Cre mice and highly efficient for SM22-Cre mice. Breedings that introduced the SM22-Cre allele into tgfbr2flox/flox zygotes in order to generate adult mice that are hemizygous for SM22-Cre and homozygous for tgfbr2flox- and would have conversion of tgfbr2flox/flox to tgfbr2null/null in SMC-produced no live SM22-Cre : tgfbr2flox/flox pups (P<0.001). We conclude: (1) "SMC-targeted" Cre lines vary significantly in specificity and efficiency of Cre expression; (2) TGF-beta signaling in the subset of cells that express SM22alpha is required for normal development; (3) generation of adult mice with absent TGF-beta signaling in SMC remains a challenge.
Hasanzadeh, H; Sharafi, A; Allah Verdi, M; Nikoofar, A
2006-09-07
Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 +/- 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 +/- 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 +/- 15.1 cGy, 9.15 +/- 3.89 cGy, 0.47 +/- 0.3 cGy and 0.53 +/- 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.
Sleep-disordered breathing, brain volume, and cognition in older individuals with heart failure.
Moon, Chooza; Melah, Kelsey E; Johnson, Sterling C; Bratzke, Lisa C
2018-06-19
Sleep-disordered breathing is common in individuals with heart failure and may contribute to changes in the brain and decreased cognition. However, limited research has explored how the apnea-hypopnea index contributes to brain structure and cognition in this population. The aims of this study were to explore how the apnea-hypopnea index is associated with brain volume and cognition in heart failure patients. Data of 28 heart failure patients (mean age = 67.93; SD = 5.78) were analyzed for this cross-sectional observational study. We evaluated the apnea-hypopnea index using a portable multichannel sleep-monitoring device. All participants were scanned using 3.0 Tesla magnetic resonance imaging and neuropsychological tests. Brain volume was evaluated using a voxel-based morphometry method with T1-weighted images. We used multiple regressions to analyze how the apnea-hypopnea index is associated with brain volume and cognition. We found an inverse association between apnea-hypopnea index scores and white matter volume (β = -0.002, p = 0.026), but not in gray matter volume (β = -0.001, p = 0.237). Higher apnea-hypopnea index was associated with reduced regional gray and white matter volume (p < 0.001, uncorrected). Cognitive scores were not associated with the apnea-hypopnea index (p-values were >0.05). Findings from this study provide exploratory evidence that higher apnea-hypopnea index may be associated with greater brain volume reduction in heart failure patients. Future studies are needed to establish the relationship between sleep-disordered breathing, brain volume, and cognition in heart failure samples. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, S.; Bauer, V.
Glucose and fructose are important fuels of cellular energetics in organs like testis and brain. The previous in-vitro studies indicated that THC may disrupt many gonadal functions by inhibiting energy metabolism in the testis. PCP is sold on the street as any one of a variety of psychoactive drugs. Most commonly it is misrepresented as THC. Therefore, to compare the effects of PCP and THC on glucose utilization, in-vitro radiorespirometric experiments were conducted in rat testicular tissues. The /sup 14/CO/sub 2/ production from 5.5 mM radiolabelled glucose was followed in the presence and absence of 0.2, 0.1, 0.05, 0.01, 0.005,more » 0.0025 mM PCP. PCP produced a dose-dependent biphasic effect, stimulating /sup 14/CO/sub 2/ production by 6.2, 17 and 5.8% and then inhibiting it by 13.2, 15.4 and 8.9% with respective concentrations of PCP. This is in contrast to THC which produced a dose-related inhibition of 15.2, 18.1, 20.1 and 25.3% in /sup 14/CO/sub 2/ production with 0.1, 0.2, 0.3 and 0.4 mM THC. These observations are significant due to the possible abuse of PCP together with THC either deliberately or by misrepresentation.« less
The predictive value of resting heart rate following osmotherapy in brain injury: back to basics.
Hasanpour Mir, Mahsa; Yousefshahi, Fardin; Abdollahi, Mohammad; Ahmadi, Arezoo; Nadjafi, Atabak; Mojtahedzadeh, Mojtaba
2012-12-30
The importance of resting heart rate as a prognostic factor was described in several studies. An elevated heart rate is an independent risk factor for adverse cardiovascular events and total mortality in patients with coronary artery disease, chronic heart failure, and the general population. Also heart rate is elevated in the Multi Organ Dysfunction Syndrome (MODS) and the mortality due to MODS is highly correlated with inadequate sinus tachycardia.To evaluate the value of resting heart rate in predicting mortality in patients with traumatic brain injury along scoring systems like Acute Physiology and Chronic Health Evaluation(APACHE II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Score (GCS). By analyzing data which was collected from an open labeled randomized clinical trial that compared the different means of osmotherapy (mannitol vs bolus or infusion hypertonic saline), heart rate, GCS, APACHE II and SOFA score were measured at baseline and daily for 7 days up to 60 days and the relationship between elevated heart rate and mortality during the first 7 days and 60th day were assessed. After adjustments for confounding factors, although there was no difference in mean heart rate between either groups of alive and expired patients, however, we have found a relative correlation between 60th day mortality rate and resting heart rate (P=0.07). Heart rate can be a prognostic factor for estimating mortality rate in brain injury patients along with APACHE II and SOFA scores in patients with brain injury.
Dynamic correlations between heart and brain rhythm during Autogenic meditation
Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan
2013-01-01
This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165
Dynamic correlations between heart and brain rhythm during Autogenic meditation.
Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan
2013-01-01
This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.
2016-07-01
of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, diaphragm, and skin) that were obtained from rats (postnatal days 42 and 70...of blood, tissues, and organs (heart, lung, liver, kidney , brain, eye, and diaphragm) that were used to quantify the amounts of free and regenerated...Biosamples (brain, diaphragm, eye, heart, lung, liver, and kidney ) were collected at time of death or 48 h post-exposure for survivors. All
Dynamics of testis-ova in a wild population of Japanese pond frogs, Rana nigromaculata.
Kobayashi, Tohru; Kumakura, Masahiko; Yoshie, Sumio; Sugishima, Tomomi; Horie, Yoshifumi
2015-02-01
Although many studies have reported the occurrence of testis-ova in wild frog populations, the origin and trigger of testis-ova differentiation/development remain unclear. A high frequency of testis-ova has been previously reported for wild populations of the Japanese pond frog, Rana nigromaculata (cf. Iwasawa and Asai, '59). In the present study, we aimed to clarify the dynamics of testis-ova in this frog species, including the origin and artificial induction of testis-ova. Testis-ova were observed in both mature frogs and puberty-stage frogs (i.e., 0- and 1-year-old frogs). However, the early stages of testis-ova (~pachytene stage) were mostly observed in puberty-stage male frogs at the onset of spermatogenesis. The early stages of testis-ova were observed in the cysts of early secondary spermatogonia and the single cysts of the primary spermatogonium. This finding indicates that testis-ova differentiation occurs during spermatogonial proliferation and that it is correlated with the initiation of spermatogenesis. We also examined whether estrogen exposure induced testis-ova differentiation and how it is correlated with the progression of spermatogenesis. When 1-year-old frogs were exposed to estradiol-17β during spring (i.e., when spermatogenesis was initiated), testis-ova differentiation was induced in a dose-dependent manner. However, this phenomenon did not occur in 1-year-old frogs during summer, (i.e., when the transition from spermatogonia to spermatocytes mainly occurs). These results present the first evidence that testis-ova of the Japanese pond frog are derived from primary and early secondary spermatogonia, and that estrogen exposure induces testis-ova differentiation accompanied by the initiation of spermatogenesis. © 2015 Wiley Periodicals, Inc.
Cecchini, Stefano; Paciolla, Mariateresa; Biffali, Elio; Borra, Marco; Ursini, Matilde V; Lioi, Maria B
2013-09-01
The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout. Copyright © 2013 Elsevier Ltd. All rights reserved.
The neonatal brain in critical congenital heart disease: Insights and future directions.
Peyvandi, Shabnam; Latal, Beatrice; Miller, Steven P; McQuillen, Patrick S
2018-05-19
Neurodevelopmental outcomes are impaired in survivors of critical congenital heart disease (CHD) in several developmental domains including motor, cognitive and sensory outcomes. These deficits can extend into the adolescent and early adulthood years. The cause of these neurodevelopmental impairments is multi-factorial and includes patient specific risk factors, cardiac anatomy and physiology as well as brain changes seen on MRI. Advances in imaging techniques have identified delayed brain development in the neonate with critical CHD as well as acquired brain injury. These abnormalities are seen even before corrective neonatal cardiac surgery. This review focuses on describing brain changes seen on MRI in neonates with CHD, risk factors for these changes and the association with neurodevelopmental outcome. There is an emerging focus on the impact of cardiovascular physiology on brain health and the complex heart-brain interplay that influences ultimate neurodevelopmental outcome in these patients. Copyright © 2018. Published by Elsevier Inc.
Mulkey, Sarah B; Yap, Vivien L; Bai, Shasha; Ramakrishnaiah, Raghu H; Glasier, Charles M; Bornemeier, Renee A; Schmitz, Michael L; Bhutta, Adnan T
2015-06-01
The study aims are to evaluate cerebral background patterns using amplitude-integrated electroencephalography in newborns with critical congenital heart disease, determine if amplitude-integrated electroencephalography is predictive of preoperative brain injury, and assess the incidence of preoperative seizures. We hypothesize that amplitude-integrated electroencephalography will show abnormal background patterns in the early preoperative period in infants with congenital heart disease that have preoperative brain injury on magnetic resonance imaging. Twenty-four newborns with congenital heart disease requiring surgery at younger than 30 days of age were prospectively enrolled within the first 3 days of age at a tertiary care pediatric hospital. Infants had amplitude-integrated electroencephalography for 24 hours beginning close to birth and preoperative brain magnetic resonance imaging. The amplitude-integrated electroencephalographies were read to determine if the background pattern was normal, mildly abnormal, or severely abnormal. The presence of seizures and sleep-wake cycling were noted. The preoperative brain magnetic resonance imaging scans were used for brain injury and brain atrophy assessment. Fifteen of 24 infants had abnormal amplitude-integrated electroencephalography at 0.71 (0-2) (mean [range]) days of age. In five infants, the background pattern was severely abnormal. (burst suppression and/or continuous low voltage). Of the 15 infants with abnormal amplitude-integrated electroencephalography, 9 (60%) had brain injury. One infant with brain injury had a seizure on amplitude-integrated electroencephalography. A severely abnormal background pattern on amplitude-integrated electroencephalography was associated with brain atrophy (P = 0.03) and absent sleep-wake cycling (P = 0.022). Background cerebral activity is abnormal on amplitude-integrated electroencephalography following birth in newborns with congenital heart disease who have findings of brain injury and/or brain atrophy on preoperative brain magnetic resonance imaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Transplanting hearts after death measured by cardiac criteria: the challenge to the dead donor rule.
Veatch, Robert M
2010-06-01
The current definition of death used for donation after cardiac death relies on a determination of the irreversible cessation of the cardiac function. Although this criterion can be compatible with transplantation of most organs, it is not compatible with heart transplantation since heart transplants by definition involve the resuscitation of the supposedly "irreversibly" stopped heart. Subsequently, the definition of "irreversible" has been altered so as to permit heart transplantation in some circumstances, but this is unsatisfactory. There are three available strategies for solving this "irreversibility problem": altering the definition of death so as to rely on circulatory irreversibility, rather than cardiac; defining death strictly on the basis of brain death (either whole-brain or more pragmatically some higher brain criteria); or redefining death in traditional terms and simultaneously legalizing some limited instances of medical killing to procure viable hearts. The first two strategies are the most ethically justifiable and practical.
The predictive value of resting heart rate following osmotherapy in brain injury: back to basics
2012-01-01
Background The importance of resting heart rate as a prognostic factor was described in several studies. An elevated heart rate is an independent risk factor for adverse cardiovascular events and total mortality in patients with coronary artery disease, chronic heart failure, and the general population. Also heart rate is elevated in the Multi Organ Dysfunction Syndrome (MODS) and the mortality due to MODS is highly correlated with inadequate sinus tachycardia. To evaluate the value of resting heart rate in predicting mortality in patients with traumatic brain injury along scoring systems like Acute Physiology and Chronic Health Evaluation(APACHE II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Score (GCS). Method By analyzing data which was collected from an open labeled randomized clinical trial that compared the different means of osmotherapy (mannitol vs bolus or infusion hypertonic saline), heart rate, GCS, APACHE II and SOFA score were measured at baseline and daily for 7 days up to 60 days and the relationship between elevated heart rate and mortality during the first 7 days and 60th day were assessed. Results After adjustments for confounding factors, although there was no difference in mean heart rate between either groups of alive and expired patients, however, we have found a relative correlation between 60th day mortality rate and resting heart rate (P=0.07). Conclusion Heart rate can be a prognostic factor for estimating mortality rate in brain injury patients along with APACHE II and SOFA scores in patients with brain injury. PMID:23351393
Alvarado-Esquivel, Cosme; Sánchez-Anguiano, Luis Francisco; Mendoza-Larios, Alejandra; Hernández-Tinoco, Jesús; Pérez-Ochoa, José Francisco; Antuna-Salcido, Elizabeth Irasema; Rábago-Sánchez, Elizabeth; Liesenfeld, Oliver
2015-06-01
The presence of tissue cysts of Toxoplasma gondii has only poorly been investigated in autopsy series. We determined the presence of T. gondii cysts in a series of 51 autopsies in a public hospital using immunohistochemistry of brain and heart tissues. The association of tissue cysts with the general characteristics of the autopsy cases was also investigated. Of the 51 cases studied, five (9.8%) were positive by immunohistochemistry for T. gondii cysts in the brain. None of the heart specimens was positive for T. gondii cysts. The presence of T. gondii cysts in brains did not vary with age, sex, birthplace, residence, education, occupation, or the presence of pathology in the brain. In contrast, multivariate analysis showed that the presence of T. gondii cysts was associated with undernourishment (OR = 33.90; 95% CI: 2.82-406.32; P = 0.005). We demonstrated cerebral T. gondii cysts in an autopsy series in Durango City, Mexico. Results suggest that T. gondii can be more readily found in brain than in heart of infected individuals. This is the first report of an association between the presence of T. gondii in brains and undernourishment.
Alvarado-Esquivel, Cosme; Sánchez-Anguiano, Luis Francisco; Mendoza-Larios, Alejandra; Hernández-Tinoco, Jesús; Pérez-Ochoa, José Francisco; Antuna-Salcido, Elizabeth Irasema; Rábago-Sánchez, Elizabeth; Liesenfeld, Oliver
2015-01-01
The presence of tissue cysts of Toxoplasma gondii has only poorly been investigated in autopsy series. We determined the presence of T. gondii cysts in a series of 51 autopsies in a public hospital using immunohistochemistry of brain and heart tissues. The association of tissue cysts with the general characteristics of the autopsy cases was also investigated. Of the 51 cases studied, five (9.8%) were positive by immunohistochemistry for T. gondii cysts in the brain. None of the heart specimens was positive for T. gondii cysts. The presence of T. gondii cysts in brains did not vary with age, sex, birthplace, residence, education, occupation, or the presence of pathology in the brain. In contrast, multivariate analysis showed that the presence of T. gondii cysts was associated with undernourishment (OR = 33.90; 95% CI: 2.82–406.32; P = 0.005). We demonstrated cerebral T. gondii cysts in an autopsy series in Durango City, Mexico. Results suggest that T. gondii can be more readily found in brain than in heart of infected individuals. This is the first report of an association between the presence of T. gondii in brains and undernourishment. PMID:26185682
Binesh, Ambika; Devaraj, Sivasithamparam Niranjali; Halagowder, Devaraj
2018-03-01
Atherogenic Diet (AD) was given to rats to understand the key role of inflammatory mediators in atherosclerotic lesion formation, as a serendipitous study, the diet induced inflammatory mediators in liver and brain, whereas pancreas, kidney and spleen were not affected. The efficacy of diosgenin in ameliorating atherosclerotic progression in heart and suppression of inflammatory mediators in liver and brain of Wistar rat fed on AD diet was investigated. Atherogenic diet triggered inflammatory mediators in heart, liver and brain by upregulating TNF-α, COX-2 and NFkBp65 which are the inflammatory hub, played a key role in pathophysiologic conditions. Endothelial dysfunction, liver tissue with prominent steatosis and the stress evoked in the brain by the atherogenic diet triggered these inflammatory mediators. TNF-α and COX-2 expression was upregulated and its elevation was associated with NFkBp65 activation in heart, liver and brain of atherogenic diet induced rat. Diosgenin downregulated these inflammatory mediators, thereby prevented the atherosclerotic disease progression and concomitant suppression of inflammatory mediators in liver and brain. Copyright © 2018. Published by Elsevier Inc.
Caveolins: targeting pro-survival signaling in the heart and brain
Stary, Creed M.; Tsutsumi, Yasuo M.; Patel, Piyush M.; Head, Brian P.; Patel, Hemal H.; Roth, David M.
2012-01-01
The present review discusses intracellular signaling moieties specific to membrane lipid rafts (MLRs) and the scaffolding proteins caveolin and introduces current data promoting their potential role in the treatment of pathologies of the heart and brain. MLRs are discreet microdomains of the plasma membrane enriched in gylcosphingolipids and cholesterol that concentrate and localize signaling molecules. Caveolin proteins are necessary for the formation of MLRs, and are responsible for coordinating signaling events by scaffolding and enriching numerous signaling moieties in close proximity. Specifically in the heart and brain, caveolins are necessary for the cytoprotective phenomenon termed ischemic and anesthetic preconditioning. Targeted overexpression of caveolin in the heart and brain leads to induction of multiple pro-survival and pro-growth signaling pathways; thus, caveolins represent a potential novel therapeutic target for cardiac and neurological pathologies. PMID:23060817
Molecular and clinical diversity in paraneoplastic immunity to Ma proteins.
Rosenfeld, M R; Eichen, J G; Wade, D F; Posner, J B; Dalmau, J
2001-09-01
Antibodies to Ma1 and Ma2 proteins identify a paraneoplastic disorder that affects the limbic system, brain stem, and cerebellum. Preliminary studies suggested the existence of other Ma proteins and different patterns of immune response associated with distinct neurologic symptoms and cancers. In this study, our aim was to isolate the full-length sequence of Ma2 and new family members, identify the major autoantigen of the disorder, and extend the dinical-immunological analysis to 29 patients. Sera from selected patients were used to probe a brainstem cDNA library and isolate the entire Ma2 gene and a new family member, Ma3. Ma3 mRNA is ubiquitously expressed in brain, testis, and several systemic tissues. The variable cellular expression of Ma proteins and analysis of protein motifs suggest that these proteins play roles in the biogenesis of mRNA. Immunoblot studies identify Ma2 as the major autoantigen with unique epitopes recognized by all patients' sera. Eighteen patients had antibodies limited to Ma2: they developed limbic, hypothalamic, and brainstem encephalitis, and 78% had germ-cell tumors of the testis. Eleven patients had antibodies to Ma2 and additional antibodies to Ma1 and/or Ma3; they usually developed additional cerebellar symptoms and more intense brainstem dysfunction, and 82% of these patients had tumors other than germ-cell neoplasms. Overall, 17 of 24 patients (71%) with brain magnetic resonance imaging studies had abnormalities within or outside the temporal lobes, some as contrast-enhancing nodular lesions. A remarkable finding of immunity to Ma proteins is that neurologic symptoms may improve or resolve. This improvement segregated to a group of patients with antibodies limited to Ma2.
Hydroxysteroid dehydrogenase HSD1L is localised to the pituitary–gonadal axis of primates
Bird, A Daniel; Greatorex, Spencer; Reser, David; Lavery, Gareth G
2017-01-01
Steroid hormones play clinically important and specific regulatory roles in the development, growth, metabolism, reproduction and brain function in human. The type 1 and 2 11-beta hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 2) have key roles in the pre-receptor modification of glucocorticoids allowing aldosterone regulation of blood pressure, control of systemic fluid and electrolyte homeostasis and modulation of integrated metabolism and brain function. Although the activity and function of 11β-HSDs is thought to be understood, there exists an open reading frame for a distinct 11βHSD-like gene; HSD11B1L, which is present in human, non-human primate, sheep, pig and many other higher organisms, whereas an orthologue is absent in the genomes of mouse, rat and rabbit. We have now characterised this novel HSD11B1L gene as encoded by 9 exons and analysis of EST library transcripts indicated the use of two alternate ATG start sites in exons 2 and 3, and alternate splicing in exon 9. Relatively strong HSD11B1L gene expression was detected in human, non-human primate and sheep tissue samples from the brain, ovary and testis. Analysis in non-human primates and sheep by immunohistochemistry localised HSD11B1L protein to the cytoplasm of ovarian granulosa cells, testis Leydig cells, and gonadatroph cells in the anterior pituitary. Intracellular localisation analysis in transfected human HEK293 cells showed HSD1L protein within the endoplasmic reticulum and sequence analysis suggests that similar to 11βHSD1 it is membrane bound. The endogenous substrate of this third HSD enzyme remains elusive with localisation and expression data suggesting a reproductive hormone as a likely substrate. PMID:28871060
Mohamed, Naglaa El-Shahat; Abd El-Moneim, Ahmed E
2017-03-01
In the present study, twenty four adult male albino rats were classified into four groups. The control group received normal diet and water; the second group was treated daily with oral dose of Ginkgo biloba (200 mg/kg body weight [b.wt]) for 3 mo; the third group was treated daily with oral dose of aluminum chloride (10 mg/kg b.wt) for 3 mo; and the fourth group was treated with both Ginkgo biloba and aluminum chloride (200 and 10 mg/kg b.wt, respectively) using a stomach tube for 3 mo. The results showed that administration of AlCl 3 to rats induced significant increase (P < 0.05) in thiobarbituric acid reactive substance and decrease (P < 0.05) in glutathione, catalase, and superoxide dismutase in brain and testis homogenates. The data also showed significant decrease (P < 0.05) in noradrenaline, dopamine, and serotonin (5-HT) levels in brain tissue. The rats administered AlCl 3 showed significant decrease (P < 0.05) in serum zinc (Zn) and copper (Cu), significant increase (P < 0.05) in serum iron (Fe), and non-significant decrease in magnesium (Mg). Furthermore, significant increase (P < 0.05) in serum alkaline phosphatase and acid phosphatase and significant decrease (P < 0.05) in testosterone were recorded. The histologic examination showed some degenerative changes in both brain and testis tissues while significant improvement in biochemical and histologic changes were observed in the aluminum chloride plus Ginkgo biloba group. It could be concluded that the protective effect of Ginkgo biloba may be attributed to its antioxidant properties. Copyright © 2017 Elsevier Inc. All rights reserved.
Sarkar, D; Singh, S K
2017-07-01
Thyroid hormones (THs) play an important role in maintaining the link between metabolism and reproduction and the altered THs status is associated with induction of oxidative stress in various organs like brain, heart, liver and testis. Further, reactive oxygen species play a pivotal role in regulation of glucose homeostasis in several organs, and glucose utilization by Leydig cells is essential for testosterone biosynthesis and thus is largely dependent on glucose transporter 8 (GLUT8). Glucose uptake by Sertoli cells is mediated through glucose transporter 3 (GLUT3) under the influence of THs to meet energy requirement of developing germ cells. THs also modulate level of gap junctional protein such as connexin 43 (Cx43), a potential regulator of cell proliferation and apoptosis in the seminiferous epithelium. Although the role of transient neonatal hypothyroidism in adult testis in terms of testosterone production is well documented, the effect of THs deficiency in early developmental period and its role in testicular glucose homeostasis and oxidative stress with reference to Cx43 in immature mice remain unknown. Therefore, the present study was conducted to evaluate the effect of neonatal hypothyroidism on testicular glucose homeostasis and oxidative stress at postnatal days (PND) 21 and 28 in relation to GLUT3, GLUT8 and Cx43. Hypothyroidism induced by 6-propyl-2-thiouracil (PTU) markedly decreased testicular glucose level with considerable reduction in expression level of GLUT3 and GLUT8. Likewise, lactate dehydrogenase (LDH) activity and intratesticular concentration of lactate were also decreased in hypothyroid mice. There was also a rise in germ cell apoptosis with increased expression of caspase-3 in PTU-treated mice. Further, neonatal hypothyroidism affected germ cell proliferation with decreased expression of proliferating cell nuclear antigen (PCNA) and Cx43. In conclusion, our results suggest that neonatal hypothyroidism alters testicular glucose homeostasis via increased oxidative stress in prepubertal mice, thereby affecting germ cell survival and proliferation. © 2017 American Society of Andrology and European Academy of Andrology.
Busić, Zeljko; Bradarić, Nikola; Ledenko, Vlatko; Pavlek, Goran
2011-12-01
Echinococcosis is rarely encountered as a cystic brain disease. In this article we are presenting a case of a young woman repeatedly operated due to echinococcosis of lung, heart and brain. Recurrent brain ecchinococcosis developed despite preoperative and postoperative albendazol therapy after first and combined therapy with albendazol and praziquantel after the second brain surgery. The mechanism of recurrence remains unclear (primary infestation, dissemination after spontaneous or intraoperative cyst rupture or new infestation).
Mirajkar, Nikita; Pope, Carey N
2008-10-15
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.
Mirajkar, Nikita; Pope, Carey N.
2008-01-01
Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328
Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A.; Pappan, Kirk L.; Lampe, Joshua W.; Becker, Lance B.
2014-01-01
Background Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. Method A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. Results After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. Conclusion The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage. PMID:25383962
Kim, Junhwan; Yin, Tai; Yin, Ming; Zhang, Wei; Shinozaki, Koichiro; Selak, Mary A; Pappan, Kirk L; Lampe, Joshua W; Becker, Lance B
2014-01-01
Cardiac arrest induces whole body ischemia, which causes damage to multiple organs particularly the heart and the brain. There is clinical and preclinical evidence that neurological injury is responsible for high mortality and morbidity of patients even after successful cardiopulmonary resuscitation. A better understanding of the metabolic alterations in the brain during ischemia will enable the development of better targeted resuscitation protocols that repair the ischemic damage and minimize the additional damage caused by reperfusion. A validated whole body model of rodent arrest followed by resuscitation was utilized; animals were randomized into three groups: control, 30 minute asphyxial arrest, or 30 minutes asphyxial arrest followed by 60 min cardiopulmonary bypass (CPB) resuscitation. Blood gases and hemodynamics were monitored during the procedures. An untargeted metabolic survey of heart and brain tissues following cardiac arrest and after CPB resuscitation was conducted to better define the alterations associated with each condition. After 30 min cardiac arrest and 60 min CPB, the rats exhibited no observable brain function and weakened heart function in a physiological assessment. Heart and brain tissues harvested following 30 min ischemia had significant changes in the concentration of metabolites in lipid and carbohydrate metabolism. In addition, the brain had increased lysophospholipid content. CPB resuscitation significantly normalized metabolite concentrations in the heart tissue, but not in the brain tissue. The observation that metabolic alterations are seen primarily during cardiac arrest suggests that the events of ischemia are the major cause of neurological damage in our rat model of asphyxia-CPB resuscitation. Impaired glycolysis and increased lysophospholipids observed only in the brain suggest that altered energy metabolism and phospholipid degradation may be a central mechanism in unresuscitatable brain damage.
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-01-01
Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991
Effect of α-alkylated tryptamine derivatives on 5-hydroxytryptamine metabolism in vivo
Gey, K. F.; Pletscher, A.
1962-01-01
In rats, three α-alkylated tryptamine derivatives (α-methyl, α-ethyl, and αα-dimethyltryptamine) caused alterations of 5-hydroxytryptamine metabolism typical of monoamine-oxidase inhibitors with short duration of action, viz., an increase of endogenous 5-hydroxytryptamine in brain, enhancement of the increase of 5-hydroxytryptamine in brain and heart after 5-hydroxytryptophan administration, an inhibition of the decrease in 5-hydroxytryptamine in brain induced by a benzoquinolizine derivative and of the increase induced by iproniazid. The increase after iproniazid was antagonized to the same extent by all the tryptamine derivatives and by harmaline, whereas dexamphetamine showed less effect. In the other experiments with brain, the tryptamine derivatives were less potent than harmaline, but somewhat more active than dexamphetamine. α-Methyltryptamine and α-ethyltryptamine were relatively more effective in the heart than in the brain. Among the tryptamine derivatives αα-dimethyltryptamine had the weakest activity in brain and in heart. PMID:13898151
Matsuura, Timothy R; Bartos, Jason A; Tsangaris, Adamantios; Shekar, Kadambari Chandra; Olson, Matthew D; Riess, Matthias L; Bienengraeber, Martin; Aufderheide, Tom P; Neumar, Robert W; Rees, Jennifer N; McKnite, Scott H; Dikalova, Anna E; Dikalov, Sergey I; Douglas, Hunter F; Yannopoulos, Demetris
2017-07-01
Out-of-hospital cardiac arrest (CA) is a prevalent medical crisis resulting in severe injury to the heart and brain and an overall survival of less than 10%. Mitochondrial dysfunction is predicted to be a key determinant of poor outcomes following prolonged CA. However, the onset and severity of mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) is not fully understood. Ischemic postconditioning (IPC), controlled pauses during the initiation of CPR, has been shown to improve cardiac function and neurologically favorable outcomes after 15min of CA. We tested the hypothesis that mitochondrial dysfunction develops during prolonged CA and can be rescued with IPC during CPR (IPC-CPR). A total of 63 swine were randomized to no ischemia (Naïve), 19min of ventricular fibrillation (VF) CA without CPR (Untreated VF), or 15min of CA with 4min of reperfusion with either standard CPR (S-CPR) or IPC-CPR. Mitochondria were isolated from the heart and brain to quantify respiration, rate of ATP synthesis, and calcium retention capacity (CRC). Reactive oxygen species (ROS) production was quantified from fresh frozen heart and brain tissue. Compared to Naïve, Untreated VF induced cardiac and brain ROS overproduction concurrent with decreased mitochondrial respiratory coupling and CRC, as well as decreased cardiac ATP synthesis. Compared to Untreated VF, S-CPR attenuated brain ROS overproduction but had no other effect on mitochondrial function in the heart or brain. Compared to Untreated VF, IPC-CPR improved cardiac mitochondrial respiratory coupling and rate of ATP synthesis, and decreased ROS overproduction in the heart and brain. Fifteen minutes of VF CA results in diminished mitochondrial respiration, ATP synthesis, CRC, and increased ROS production in the heart and brain. IPC-CPR attenuates cardiac mitochondrial dysfunction caused by prolonged VF CA after only 4min of reperfusion, suggesting that IPC-CPR is an effective intervention to reduce cardiac injury. However, reperfusion with both CPR methods had limited effect on mitochondrial function in the brain, emphasizing an important physiological divergence in post-arrest recovery between those two vital organs. Copyright © 2017 Elsevier B.V. All rights reserved.
Lai, J C; Cooper, A J
1986-11-01
The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.
Schneider, Ana Paula; Matte, Ursula; Pasqualim, Gabriela; Tavares, Angela Maria Vicente; Mayer, Fabiana Quoos; Martinelli, Barbara; Ribas, Graziela; Vargas, Carmen Regla; Giugliani, Roberto; Baldo, Guilherme
2016-10-01
Temporary interruption of enzyme replacement therapy (ERT) in patients with different lysosomal storage disorders may happen for different reasons (adverse reactions, issues with reimbursement, logistic difficulties, and so forth), and the impact of the interruption is still uncertain. In the present work, we studied the effects of the interruption of intravenous ERT (Laronidase, Genzyme) followed by its reintroduction in mice with the prototypical lysosomal storage disorder mucopolysaccharidosis type I, comparing to mice receiving continuous treatment, untreated mucopolysaccharidosis type I mice, and normal mice. In the animals which treatment was temporarily interrupted, we observed clear benefits of treatment in several organs (liver, lung, heart, kidney, and testis) after reintroduction, but a worsening in the thickness of the aortic wall was detected. Furthermore, these mice had just partial improvements in behavioral tests, suggesting some deterioration in the brain function. Despite worsening is some disease aspects, urinary glycosaminoglycans levels did not increase during interruption, which indicates that this biomarker commonly used to monitor treatment in patients should not be used alone to assess treatment efficacy. The deterioration observed was not caused by the development of serum antienzyme antibodies. All together our results suggest that temporary ERT interruption leads to deterioration of function in some organs and should be avoided whenever possible. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Q; Yeldandi, A; Alvares, K; Ide, H; Reddy, J; Rao, M
1995-02-01
Hepatocarcinogenesis in rodents induced by nongenotoxic peroxisome proliferators is postulated to be a receptor-mediated process. The peroxisome proliferator-activated receptors (PPAR) are members of the steroid hormone receptor superfamily, which participate in ligand-dependent transcriptional activation of peroxisomal fatty acid beta oxidation enzyme system genes in liver parenchymal cells of rats and mice. In order to study the tissue distribution and cellular localization of PPAR, we raised polyclonal antibodies against PPAR using a recombinant rat PPAR (rPPAR) expressed as a glutathione-S-transferase-rPPAR fusion protein. On immunoblot analysis the antibodies specifically recognized a 55 kDa PPAR protein in rat, mouse and human liver homogenates. Immunoblotting also showed that in the mouse and rat, PPAR is expressed in liver, kidney and heart, and only weakly in brain and testis. Immunohistochemical localization in the rat and mouse revealed that PPAR is highly expressed in perivenular (i.e., those surrounding hepatic vein) hepatocytes and very weakly in the cytoplasm of remaining hepatocytes. In the kidney, PPAR was visualized predominantly in the p(3) segments of proximal convoluted tubular epithelium. CV-1 cells transiently transfected with rPPAR cDNA construct showed predominant cytoplasmic fluorescence; treatment of these cells with ciprofibrate, a peroxisome proliferator, resulted in the nuclear translocation of PPAR signal.
Brain-heart linear and nonlinear dynamics during visual emotional elicitation in healthy subjects.
Valenza, G; Greco, A; Gentili, C; Lanata, A; Toschi, N; Barbieri, R; Sebastiani, L; Menicucci, D; Gemignani, A; Scilingo, E P
2016-08-01
This study investigates brain-heart dynamics during visual emotional elicitation in healthy subjects through linear and nonlinear coupling measures of EEG spectrogram and instantaneous heart rate estimates. To this extent, affective pictures including different combinations of arousal and valence levels, gathered from the International Affective Picture System, were administered to twenty-two healthy subjects. Time-varying maps of cortical activation were obtained through EEG spectral analysis, whereas the associated instantaneous heartbeat dynamics was estimated using inhomogeneous point-process linear models. Brain-Heart linear and nonlinear coupling was estimated through the Maximal Information Coefficient (MIC), considering EEG time-varying spectra and point-process estimates defined in the time and frequency domains. As a proof of concept, we here show preliminary results considering EEG oscillations in the θ band (4-8 Hz). This band, indeed, is known in the literature to be involved in emotional processes. MIC highlighted significant arousal-dependent changes, mediated by the prefrontal cortex interplay especially occurring at intermediate arousing levels. Furthermore, lower and higher arousing elicitations were associated to not significant brain-heart coupling changes in response to pleasant/unpleasant elicitations.
[Congenital cardiopathy and cerebral abscess].
Paixão, A; de Andrade, F F; Sampayo, F
1989-01-01
During 1986 the authors came across two cases of brain abscess among children with congenital heart disease followed at the Pediatric Cardiology Service and decided to evaluate their global experience on the subject. In a retrospective study of 860 infants and children with cyanotic congenital heart disease and final diagnosis, there were four cases complicated with brain abscess. The following items were evaluated: prevalence of the complication, type of congenital heart disease, date and age at the diagnosis of brain abscess, diagnostic methods, neurosurgical treatment and results. The main findings were: all patients were above two years of age and had noncorrected cyanotic congenital heart disease belonging to the classic high risk group; the first two cases had been treated in other institutions and only scanty information was available; two recent cases had early diagnosis on CAT scan followed by neurosurgical treatment. All children survived. brain abscess is a rare but severe complication occurring in patients with noncorrected cyanotic congenital heart disease above two years of age; whenever prevention turns impossible, early diagnosis and treatment provide good short term and long term results. A multidisciplinar approach with full cooperation is advocated.
Marulasiddappa, Vinay; Raghavavendra, B S
2015-07-01
Children with uncorrected cyanotic congenital heart diseases can present for non cardiac surgeries. They pose several challenges to the Anaesthesiologist, especially when they are posted for emergency surgery, due to the complex haemodynamic changes secondary to the heart disease. Pentalogy of Fallot (POF) is a rare form of congenital heart disease characterized by the association of Tetralogy of Fallot (TOF) with an atrial septal defect (ASD). TOF is the leading cause of intracardiac right to left shunt and is the commonest type of cyanotic congenital heart disease to cause a brain abscess. Children with POF presenting with brain abscess pose several challenges to the anaesthesiologist due to the altered haemodynamics and warrant a meticulous anaesthetic plan. There are very few case reports of Anaesthesia management of a child with Pentalogy of Fallot (POF) presenting for non cardiac surgery. We report the anaesthetic management of a rare case of a 5-year-old child with uncorrected POF, who presented to our Superspeciality hospital with a brain abscess and underwent an emergency craniotomy with drainage of the brain abscess successfully.
Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody.
Barnett, M; Prosser, J; Sutton, I; Halmagyi, G M; Davies, L; Harper, C; Dalmau, J
2001-02-01
A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins.
Paraneoplastic brain stem encephalitis in a woman with anti-Ma2 antibody
Barnett, M; Prosser, J; Sutton, I; Halmagyi, G; Davies, L; Harper, C; Dalmau, J
2001-01-01
A woman developed brain stem encephalopathy in association with serum anti-Ma2 antibodies and left upper lobe lung mass. T2 weighted MRI of the brain showed abnormalities involving the pons, left middle and superior cerebellar peduncles, and bilateral basal ganglia. Immunohistochemical analysis for serum antineuronal antibodies was confounded by the presence of a non-neuronal specific antinuclear antibody. Immunoblot studies showed the presence of anti-Ma2 antibodies. A premortem tissue diagnosis of the lung mass could not be established despite two CT guided needle biopsies, and the patient died as a result of rapid neurological deterioration. The necropsy showed that the lung lesion was an adenocarcinoma which expressed Ma2 immunoreactive protein. Neuropathological findings included prominent perivascular inflammatory infiltrates, glial nodules, and neuronophagia involving the brain stem, basal ganglia, hippocampus and the dentate nucleus of the cerebellum. Ma2 is an autoantigen previously identified in patients with germ cell tumours of the testis and paraneoplastic brain stem and limbic encephalitis. Our patient's clinical and immunopathological findings indicate that this disorder can affect women with lung adenocarcinoma, and that the encephalitic changes predominate in those regions of the brain known to express high concentrations of Ma proteins. PMID:11160472
Clinical safety of 3-T brain magnetic resonance imaging in newborns.
Fumagalli, Monica; Cinnante, Claudia Maria; Calloni, Sonia Francesca; Sorrentino, Gabriele; Gorla, Ilaria; Plevani, Laura; Pesenti, Nicola; Sirgiovanni, Ida; Mosca, Fabio; Triulzi, Fabio
2018-03-29
The effects and potential hazards of brain magnetic resonance imaging (MRI) at 3 T in newborns are debated. Assess the impact of 3-T MRI in newborns on body temperature and physiological parameters. Forty-nine newborns, born preterm and at term, underwent 3-T brain MRI at term-corrected age. Rectal and skin temperature, oxygen saturation and heart rate were recorded before, during and after the scan. A statistically significant increase in skin temperature of 0.6 °C was observed at the end of the MRI scan (P<0.01). There was no significant changes in rectal temperature, heart rate or oxygen saturation. Core temperature, heart rate and oxygen saturation in newborns were not affected by 3-T brain MR scanning.
Wintermark, Pia; Lechpammer, Mirna; Kosaras, Bela; Jensen, Frances E; Warfield, Simon K
2015-10-01
This study aims to evaluate brain perfusion at term in very preterm newborns and newborns with congenital heart disease before their corrective surgery, and to search for histopathological indicators of whether the brain perfusion abnormalities of these newborns may be related to an activated angiogenesis. Using magnetic resonance imaging and arterial spin labeling, regional cerebral blood flow was measured at a term-equivalent age for three very preterm newborns (born at < 32 weeks), one newborn with congenital heart disease before his corrective surgery and three healthy newborns. In addition, a histopathological analysis was performed on a newborn with congenital heart disease. The very preterm newborns and the newborn with congenital heart disease included in this study all displayed an increased signal in their white matter on T2-weighted imaging. The cerebral blood flow of these newborns was increased in their white matter, compared with the healthy term newborns. The vascular endothelial growth factor was overexpressed in the injured white matter of the newborn with congenital heart disease. Brain perfusion may be increased at term in the white matter, in very preterm newborns, and newborns with congenital heart disease, and it correlates with white matter abnormalities on conventional imaging. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunter, Thomas E., E-mail: thomas_gunter@urmc.rochester.ed; Gerstner, Brent, E-mail: brent_gerstner@urmc.rochester.ed; Lester, Tobias, E-mail: Tlester200@gmail.co
2010-11-15
Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays-a measure of ATP production-under rapid phosphorylation conditions to explore sites of Mn{sup 2+} inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of themore » components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn{sup 2+} inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn{sup 2+} inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F{sub 1}F{sub 0} ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn{sup 2+} inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.« less
Transplantation of donor hearts after circulatory or brain death in a rat model.
Li, Shiliang; Loganathan, Sivakkanan; Korkmaz, Sevil; Radovits, Tamás; Hegedűs, Peter; Zhou, Yan; Karck, Matthias; Szabó, Gábor
2015-05-01
Heart transplantation represents the only curative treatment for end-stage heart failure. Presently, the donor pool is restricted to brain-dead donors. Based on the lack of suitable donors and the increasing number of patients, we investigated some molecular pathomechanisms of the potential use of hearts after circulatory determination of death (DCDD) in transplantation. Rats were either maintained brain death for 5 h by inflation of a subdurally placed balloon catheter (n = 6) or subjected to cardiac arrest by exsanguinations (n = 6). Additionally, a control group was used (n = 9). Then the hearts were perfused with a cold preservation solution (Custodiol), explanted, stored at 4°C in Custodiol, and heterotopically transplanted. Brain death was associated with decreased left-ventricular contractility (dP/dtmax: 4895 ± 505 versus 8037 ± 565 mm Hg/s; ejection fraction: 27 ± 5 versus 44 ± 5%; Emax: 2.2 ± 0.3 versus 4.2 ± 0.3 mm Hg/μL; preload recruitable stroke work: 59 ± 5 versus 96 ± 6 mm Hg; 5 h after brain death versus before brain death; P < 0.05) and impaired cardiac relaxation (dP/dtmin: -4734 ± 575 versus -9404 ± 550 mm Hg/s and prolonged Tau, P < 0.05) compared with controls. After transplantation, significantly decreased systolic function and prolonged Tau were observed in brain-dead and DCDD groups compared with those in controls. Tumor necrosis factor-alpha, cyclooxygenase-2, nuclear factor-κB, inducible-NOS, and caspase-3 messenger RNA and protein-levels were significantly increased in the brain-dead compared with both control and DCDD groups. Additionally, marked myocardial inflammatory cell infiltration, edema, necrosis, and DNA-strand breaks were observed in the brain-dead group. Our results show that despite the similar functional outcome in DCDD and brain-dead groups, brain-dead hearts showed marked myocardial inflammatory cell infiltration, edema, necrosis, DNA-strand breaks, and increased transcriptional and posttranscriptional expression for markers of apoptosis and inflammatory signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasanzadeh, H.; Sharafi, A.; Allah Verdi, M.; Nikoofar, A.
2006-09-01
Stereotactic radiosurgery was originally introduced by Lars Leksell in 1951. This treatment refers to the noninvasive destruction of an intracranial target localized stereotactically. The purpose of this study was to identify the dose delivered to the parotid, ovaries, testis and thyroid glands during the Gamma Knife radiosurgery procedure. A three-dimensional, anthropomorphic phantom was developed using natural human bone, paraffin and sodium chloride as the equivalent tissue. The phantom consisted of a thorax, head and neck and hip. In the natural places of the thyroid, parotid (bilateral sides) and ovaries (midline), some cavities were made to place TLDs. Three TLDs were inserted in a batch with 1 cm space between the TLDs and each batch was inserted into a single cavity. The final depth of TLDs was 3 cm from the surface for parotid and thyroid and was 15 cm for the ovaries. Similar batches were placed superficially on the phantom. The phantom was gamma irradiated using a Leksell model C Gamma Knife unit. Subsequently, the same batches were placed superficially over the thyroid, parotid, testis and ovaries in 30 patients (15 men and 15 women) who were undergoing radiosurgery treatment for brain tumours. The mean dosage for treating these patients was 14.48 ± 3.06 Gy (10.5-24 Gy) to a mean tumour volume of 12.30 ± 9.66 cc (0.27-42.4 cc) in the 50% isodose curve. There was no significant difference between the superficial and deep batches in the phantom studies (P-value < 0.05). The mean delivered doses to the parotid, thyroid, ovaries and testis in human subjects were 21.6 ± 15.1 cGy, 9.15 ± 3.89 cGy, 0.47 ± 0.3 cGy and 0.53 ± 0.31 cGy, respectively. The data can be used in making decisions for special clinical situations such as treating pregnant patients or young patients with benign lesions who need radiosurgery for eradication of brain tumours.
[Sclerotherapy with 3% polidocanol for hydrocele testis].
Mizoguchi, H; Imagawa, M; Fukunaga, Y; Nomura, Y; Kubota, M; Okita, J
1995-12-01
We studied the clinical efficacy of sclerotherapy with injection of 3% polidocanol for hydrocele testis. From July, 1992 to March, 1995 sclerotherapy with single injection of polidocanol was performed for 11 patients with 12 hydrocele testis on an outpatient basis. We instilled 3 or 5ml of 3% polidocanol after complete removal of fluid in the hydrocele testis. Complete disappearance on ultrasonography was observed in 75% of the hydrocele testis 6 months after this sclerotherapy. There was neither pain during instillation of 3% polidocanol nor any other complication. Two patients with fluid reaccumulation underwent hydrocelectomy 16 and 6 months after sclerotherapy, respectively. This procedure seems to be a safe and useful technique as primary treatment for hydrocele testis.
Bolor, Hasbaira; Wakasugi, Noboru; Zhao, Wei Dong; Ishikawa, Akira
2006-04-01
The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.
The relationship between the testis and tunica vaginalis changes with age.
Lopez-Marambio, Francisco A; Hutson, John M
2015-12-01
Anatomy of the testis and tunica vaginalis (TV) is taught to pediatric surgeons from adult postmortem material. Textbooks describe the testis as 'behind' the TV, but at pediatric orchidopexy it appears to be inside the TV. We aimed to study whether testis and TV anatomy changes with age. After ethical approval, postmortem photographs and measurements of testis length, width, and mesenteric attachment length (mm) in 37 adults (22-92years), one infant (4/12), and one fetus (19/52) were compared with intraoperative orchidopexies (x6) after opening TV (n=4; 7/12-14years). Testis length, area and perimeter and ratios for mesentery attachment were plotted against age. The fetal and pediatric testes were intraperitoneal with a mesentery (mesorchium), but after 50years secondary adhesions between TV and testis obliterated the mesorchium, so in advanced age the testis appeared to be behind the TV. These results show that in childhood testes were 'intraperitoneal', but after 50years of age the TV progressively shrinks and adheres to the testis, making it appear to be behind the TV. This difference between anatomical texts and childhood anatomy suggests that pediatric surgery may need anatomy texts that specifically highlight age differences. Copyright © 2015 Elsevier Inc. All rights reserved.
Sex-biased miRNAs in gonad and their potential roles for testis development in yellow catfish.
Jing, Jing; Wu, Junjie; Liu, Wei; Xiong, Shuting; Ma, Wenge; Zhang, Jin; Wang, Weimin; Gui, Jian-Fang; Mei, Jie
2014-01-01
Recently, YY super-male yellow catfish had been created by hormonal-induced sex reversal and sex-linked markers, which provides a promising research model for fish sex differentiation and gonad development, especially for testis development. MicroRNAs (miRNAs) have been revealed to play crucial roles in the gene regulation and gonad development in vertebrates. In this study, three small RNA libraries constructed from gonad tissues of XX female, XY male and YY super-male yellow catfish were sequenced. The sequencing data generated a total of 384 conserved miRNAs and 113 potential novel miRNAs, among which 23, 30 and 14 miRNAs were specifically detected in XX ovary, XY testis, and YY testis, respectively. We observed relative lower expression of several miR-200 family members, including miR-141 and miR-429 in YY testis compared with XY testis. Histological analysis indicated a higher degree of testis maturity in YY super-males compared with XY males, as shown by larger spermatogenic cyst, more spermatids and fewer spermatocytes in the spermatogenic cyst. Moreover, five miR-200 family members were significantly up-regulated in testis when treated by 17α-ethinylestradiol (EE2), high dose of which will impair testis development and cell proliferation. The down-regulation of miR-141 and 429 coincides with the progression of testis development in both yellow catfish and human. At last, the expression pattern of nine arbitrarily selected miRNAs detected by quantitative RT-PCR was consistent with the Solexa sequencing results. Our study provides a comprehensive miRNA transcriptome analysis for gonad of yellow catfish with different sex genotypes, and identifies a number of sex-biased miRNAs, some of that are potentially involved in testis development and spermatogenesis.
Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K
2004-01-01
Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P < 0.05) and the histology of the cords that formed were abnormal as compared to vehicle-treated organs. Pregnant rats were exposed to vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P < 0.01), but testis weight was not affected. The adult P60 sperm motility was significantly lower in vinclozolin exposed males (P < 0.01). In addition, apoptotic germ cell number in testis of vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion, transient exposure to vinclozolin during the time of testis differentiation (i.e. cord formation) alters testis development and function. Observations indicate that transient exposure to an anti-androgenic endocrine disruptor during embryonic development causes delayed effects later in adult life on spermatogenic capacity.
How the embryonic brain tube twists
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Forsch, Nickolas; Taber, Larry
2014-03-01
During early development, the tubular brain of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This deformation is one of the major organ-level symmetry-breaking events in development. Available evidence suggests that bending is caused by differential growth, but the mechanism for torsion remains poorly understood. Since the heart almost always loops in the same direction that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is virtually nonexistent, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. In addition, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model is used to interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''.
Kozdag, Guliz; Ertas, Gokhan; Kilic, Teoman; Acar, Eser; Sahin, Tayfun; Ural, Dilek
2010-01-01
Although low levels of free triiodothyronine and high levels of brain natriuretic peptide have been shown as independent predictors of death in chronic heart failure patients, few studies have compared their prognostic values. The aim of this prospective study was to measure free triiodothyronine and brain natriuretic peptide levels and to compare their prognostic values among such patients.A total of 334 patients (mean age, 62 ± 13 yr; 218 men) with ischemic and nonischemic dilated cardiomyopathy were included in the study. The primary endpoint was a major cardiac event.During the follow-up period, 92 patients (28%) experienced a major cardiac event. Mean free triiodothyronine levels were lower and median brain natriuretic peptide levels were higher in patients with major cardiac events than in those without. A significant negative correlation was found between free triiodothyronine and brain natriuretic peptide levels. Receiver operating characteristic curve analysis showed that the predictive cutoff values were < 2.12 pg/mL for free triiodothyronine and > 686 pg/mL for brain natriuretic peptide. Cumulative survival was significantly lower among patients with free triiodothyronine < 2.12 pg/mL and among patients with brain natriuretic peptide > 686 pg/mL. In multivariate analysis, the significant independent predictors of major cardiac events were age, free triiodothyronine, and brain natriuretic peptide.In the present study, free triiodothyronine and brain natriuretic peptide had similar prognostic values for predicting long-term prognosis in chronic heart failure patients. These results also suggested that combining these biomarkers may provide an important risk indicator for patients with heart failure.
Selective Heart, Brain and Body Perfusion in Open Aortic Arch Replacement.
Maier, Sven; Kari, Fabian; Rylski, Bartosz; Siepe, Matthias; Benk, Christoph; Beyersdorf, Friedhelm
2016-09-01
Open aortic arch replacement is a complex and challenging procedure, especially in post dissection aneurysms and in redo procedures after previous surgery of the ascending aorta or aortic root. We report our experience with the simultaneous selective perfusion of heart, brain, and remaining body to ensure optimal perfusion and to minimize perfusion-related risks during these procedures. We used a specially configured heart-lung machine with a centrifugal pump as arterial pump and an additional roller pump for the selective cerebral perfusion. Initial arterial cannulation is achieved via femoral artery or right axillary artery. After lower body circulatory arrest and selective antegrade cerebral perfusion for the distal arch anastomosis, we started selective lower body perfusion simultaneously to the selective antegrade cerebral perfusion and heart perfusion. Eighteen patients were successfully treated with this perfusion strategy from October 2012 to November 2015. No complications related to the heart-lung machine and the cannulation occurred during the procedures. Mean cardiopulmonary bypass time was 239 ± 33 minutes, the simultaneous selective perfusion of brain, heart, and remaining body lasted 55 ± 23 minutes. One patient suffered temporary neurological deficit that resolved completely during intensive care unit stay. No patient experienced a permanent neurological deficit or end-organ dysfunction. These high-risk procedures require a concept with a special setup of the heart-lung machine. Our perfusion strategy for aortic arch replacement ensures a selective perfusion of heart, brain, and lower body during this complex procedure and we observed excellent outcomes in this small series. This perfusion strategy is also applicable for redo procedures.
Choi, Jaewoo; Yin, Tai; Shinozaki, Koichiro; Lampe, Joshua W; Stevens, Jan F; Becker, Lance B; Kim, Junhwan
2018-05-01
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC-MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.
Cosentino, Marco; Algaba, Ferran; Saldaña, Lily; Bujons, Ana; Caffaratti, Jorge; Garat, Jose M; Villavicencio, Humberto
2014-09-01
Granulosa cell tumor of the testis is an infrequent stromal cell tumor that can be distinguished into adult and juvenile, the latter being more common. Juvenile granulosa cell tumor of the testis is a rare pathologic finding, accounting for 1.2%-3.9% of prepubertal testicular tumors. It is considered as a benign stromal sex cord tumor and is usually unilateral. Although radical surgery was previously considered the treatment of choice, testis-sparing surgery is now recommended in all cases where applicable. We report a bilateral synchronous juvenile granulosa cell tumor in a 6-month-old child treated with testis-sparing surgery and provide a review of the literature. Copyright © 2014 Elsevier Inc. All rights reserved.
Chaos in the heart: the interaction between body and mind
NASA Astrophysics Data System (ADS)
Redington, Dana
1993-11-01
A number of factors influence the chaotic dynamics of heart function. Genetics, age, sex, disease, the environment, experience, and of course the mind, play roles in influencing cardiovascular dynamics. The mind is of particular interest because it is an emergent phenomenon of the body admittedly seated and co-occurrent in the brain. The brain serves as the body's controller, and commands the heart through complex multipathway feedback loops. Structures deep within the brain, the hypothalamus and other centers in the brainstem, modulate heart function, partially as a result of afferent input from the body but also a result of higher mental processes. What can chaos in the body, i.e., the nonlinear dynamics of the heart, tell of the mind? This paper presents a brief overview of the spectral structure of heart rate activity followed by a summary of experimental results based on phase space analysis of data from semi-structured interviews. This paper then describes preliminary quantification of cardiovascular dynamics during different stressor conditions in an effort to apply more quantitative methods to clinical data.
Kim, Junhwan; Perales Villarroel, José Paul; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W.; Becker, Lance B.
2016-01-01
Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest. PMID:26770657
Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B
2016-01-01
Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.
Asphyxia-activated corticocardiac signaling accelerates onset of cardiac arrest
Li, Duan; Mabrouk, Omar S.; Liu, Tiecheng; Tian, Fangyun; Xu, Gang; Rengifo, Santiago; Choi, Sarah J.; Mathur, Abhay; Crooks, Charles P.; Kennedy, Robert T.; Wang, Michael M.; Ghanbari, Hamid; Borjigin, Jimo
2015-01-01
The mechanism by which the healthy heart and brain die rapidly in the absence of oxygen is not well understood. We performed continuous electrocardiography and electroencephalography in rats undergoing experimental asphyxia and analyzed cortical release of core neurotransmitters, changes in brain and heart electrical activity, and brain–heart connectivity. Asphyxia stimulates a robust and sustained increase of functional and effective cortical connectivity, an immediate increase in cortical release of a large set of neurotransmitters, and a delayed activation of corticocardiac functional and effective connectivity that persists until the onset of ventricular fibrillation. Blocking the brain’s autonomic outflow significantly delayed terminal ventricular fibrillation and lengthened the duration of detectable cortical activities despite the continued absence of oxygen. These results demonstrate that asphyxia activates a brainstorm, which accelerates premature death of the heart and the brain. PMID:25848007
Pupillary and Heart Rate Reactivity in Children with Minimal Brain Dysfunction
ERIC Educational Resources Information Center
Zahn, Theodore P.; And Others
1978-01-01
In an attempt to replicate and extend previous findings on autonomic arousal and responsivity in children with minimal brain dysfunction (MBD), pupil size, heart rate, skin conductance, and skin temperature were recorded from 32 MBD and 45 control children (6-13 years old). (Author/CL)
Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.
Pierron, Denis; Opazo, Juan C; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I
2011-01-01
Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.
Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c
Pierron, Denis; Opazo, Juan C.; Heiske, Margit; Papper, Zack; Uddin, Monica; Chand, Gopi; Wildman, Derek E.; Romero, Roberto; Goodman, Morris; Grossman, Lawrence I.
2011-01-01
Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades. PMID:22028846
ARX/Arx is expressed in germ cells during spermatogenesis in both marsupial and mouse.
Yu, Hongshi; Pask, Andrew J; Hu, Yanqiu; Shaw, Geoff; Renfree, Marilyn B
2014-03-01
The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.
Gheri, Gherardo; Sgambati, Eleonora; Thyrion, Giorgia D Zappoli; Vichi, Debora; Orlandini, Giovanni E
2004-01-01
The saccharidic content of the glycoconjugates has been studied in the descended the undescended testes of a 8 years old boy. For this purpose, a battery of seven HRP-conjugated lectins (SBA, DBA,PNA,WGA,UEAI, LTA and ConA) was used. D-galactose-N-acetyl-D-galactosamine and alpha-L-fucose sugar residues, which were present in the cytoplasm of the Sertoli cells of the normally positioned prepubertal testis, were not detected in the same cells of the undescended testis. The Leydig's cells of the descended testis appeared characterized by N-acetyl-D-glucosamine which was absent in the rare and atrophic Leydig's cells of the cryptorchid testis. Differences in sugar residues distribution between the descended and the undescended testis were also detected in the lamina propria of the seminiferous tubules. Peritubular myoid cells in the undescended testis only reacted with PNA, after neuraminidase digestion, thus revealing the presence of D-galactose (beta1-->3)-N-acetyl-D-galactosamine and sialic acid. In this study a complete distributional map of the sugar residues of the glycoconjugates in the descended and undescended prepubertal testis is reported.
Kim, J J; Nam, Y K; Bang, I C; Gong, S P
BACKGROUND: Miho spine loach (Cobitis choii) is an endangered Korean endemic fish. Whole testis cryopreservation is a good way for species preservation, but needs to the sacrifice of a large number of fish to optimize the freezing condition. Considering this limitation, a surrogate fish species was used for the protocol development. This study was to establish the effective condition for Miho spine loach whole testis cryopreservation by optimizing the conditions for whole testis cryopreservation in an allied species, mud loach (Misgurnus mizolepis). The condition for whole testis cryopreservation was optimized in mud loach first, and then the optimal condition was applied to Miho spine loach testes. The optimal condition for mud loach testis cryopreservation consists of the freezing medium containing 1.3 M dimethyl sulfoxide, 6% fetal bovine serum and 0.3 M trehalose, -1 C/min cooling rate and 26 degree C thawing temperature, which also permits effective cryopreservation of Miho spine loach testes. An effective cryopreservation condition for whole testis of the endangered Miho spine loach has been established by using mud loach as a surrogate fish.
Li, Faith C H; Yen, J C; Chan, Samuel H H; Chang, Alice Y W
2012-02-07
Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism. The distribution of METH in brain and heart on intravenous administration in male Sprague-Dawley rats, and the resultant changes in arterial pressure (AP), heart rate (HR) and indices for baroreflex-mediated sympathetic vasomotor tone and cardiac responses were evaluated, alongside survival rate and time. Intravenous administration of METH (12 or 24 mg/kg) resulted in a time-dependent and dose-dependent distribution of the psychostimulant in brain and heart. The distribution of METH to neural substrates associated with brain stem cardiovascular regulation was significantly larger than brain targets for its neurological and psychological effects; the concentration of METH in cardiac tissues was the lowest among all tissues studied. In animals that succumbed to METH, the baroreflex-mediated sympathetic vasomotor tone and cardiac response were defunct, concomitant with cessation of AP and HR. On the other hand, although depressed, those two indices in animals that survived were maintained, alongside sustainable AP and HR. Linear regression analysis further revealed that the degree of dampening of brain stem cardiovascular regulation was positively and significantly correlated with the concentration of METH in key neural substrate involved in this homeostatic mechanism. We conclude that on intravenous administration, METH exhibits a preferential distribution to brain stem nuclei that are associated with cardiovascular regulation. We further found that the concentration of METH in those brain stem sites dictates the extent that baroreflex-mediated sympathetic vasomotor tone and cardiac responses are compromised, which in turn determines survival or fatality because of cardiovascular collapse.
2012-01-01
Background Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism. Methods The distribution of METH in brain and heart on intravenous administration in male Sprague-Dawley rats, and the resultant changes in arterial pressure (AP), heart rate (HR) and indices for baroreflex-mediated sympathetic vasomotor tone and cardiac responses were evaluated, alongside survival rate and time. Results Intravenous administration of METH (12 or 24 mg/kg) resulted in a time-dependent and dose-dependent distribution of the psychostimulant in brain and heart. The distribution of METH to neural substrates associated with brain stem cardiovascular regulation was significantly larger than brain targets for its neurological and psychological effects; the concentration of METH in cardiac tissues was the lowest among all tissues studied. In animals that succumbed to METH, the baroreflex-mediated sympathetic vasomotor tone and cardiac response were defunct, concomitant with cessation of AP and HR. On the other hand, although depressed, those two indices in animals that survived were maintained, alongside sustainable AP and HR. Linear regression analysis further revealed that the degree of dampening of brain stem cardiovascular regulation was positively and significantly correlated with the concentration of METH in key neural substrate involved in this homeostatic mechanism. Conclusions We conclude that on intravenous administration, METH exhibits a preferential distribution to brain stem nuclei that are associated with cardiovascular regulation. We further found that the concentration of METH in those brain stem sites dictates the extent that baroreflex-mediated sympathetic vasomotor tone and cardiac responses are compromised, which in turn determines survival or fatality because of cardiovascular collapse. PMID:22313577
Passamonti, Luca; Wald, Lawrence L.; Barbieri, Riccardo
2016-01-01
The causal, directed interactions between brain regions at rest (brain–brain networks) and between resting-state brain activity and autonomic nervous system (ANS) outflow (brain–heart links) have not been completely elucidated. We collected 7 T resting-state functional magnetic resonance imaging (fMRI) data with simultaneous respiration and heartbeat recordings in nine healthy volunteers to investigate (i) the causal interactions between cortical and subcortical brain regions at rest and (ii) the causal interactions between resting-state brain activity and the ANS as quantified through a probabilistic, point-process-based heartbeat model which generates dynamical estimates for sympathetic and parasympathetic activity as well as sympathovagal balance. Given the high amount of information shared between brain-derived signals, we compared the results of traditional bivariate Granger causality (GC) with a globally conditioned approach which evaluated the additional influence of each brain region on the causal target while factoring out effects concomitantly mediated by other brain regions. The bivariate approach resulted in a large number of possibly spurious causal brain–brain links, while, using the globally conditioned approach, we demonstrated the existence of significant selective causal links between cortical/subcortical brain regions and sympathetic and parasympathetic modulation as well as sympathovagal balance. In particular, we demonstrated a causal role of the amygdala, hypothalamus, brainstem and, among others, medial, middle and superior frontal gyri, superior temporal pole, paracentral lobule and cerebellar regions in modulating the so-called central autonomic network (CAN). In summary, we show that, provided proper conditioning is employed to eliminate spurious causalities, ultra-high-field functional imaging coupled with physiological signal acquisition and GC analysis is able to quantify directed brain–brain and brain–heart interactions reflecting central modulation of ANS outflow. PMID:27044985
3D printing of wearable fractal-based sensor systems for neurocardiology and healthcare
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Neurocardiology is the pathophysiological interplay of nervous and cardiovascular systems. The communication between the heart and brain has revealed various methodologies in healthcare that could be investigated to study the heart-brain interactions and other cardiovascular and neurological diseases. A textile based wearable nanosensor system in the form of e-bra, e-shirt, e-headband, e-brief, underwear etc, was presented in this SPIE conferences earlier for noninvasive recording of EEG and EKG, and showing the correlation between the brain and heart signals. In this paper, the technology is expanded further using fractal based geometries using 3D printing system for low cost and flexible wearable sensor system for healthcare.
Divina, Petr; Vlcek, Cestmír; Strnad, Petr; Paces, Václav; Forejt, Jirí
2005-03-05
We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells.
Divina, Petr; Vlček, Čestmír; Strnad, Petr; Pačes, Václav; Forejt, Jiří
2005-01-01
Background We generated the gene expression profile of the total testis from the adult C57BL/6J male mice using serial analysis of gene expression (SAGE). Two high-quality SAGE libraries containing a total of 76 854 tags were constructed. An extensive bioinformatic analysis and comparison of SAGE transcriptomes of the total testis, testicular somatic cells and other mouse tissues was performed and the theory of male-biased gene accumulation on the X chromosome was tested. Results We sorted out 829 genes predominantly expressed from the germinal part and 944 genes from the somatic part of the testis. The genes preferentially and specifically expressed in total testis and testicular somatic cells were identified by comparing the testis SAGE transcriptomes to the available transcriptomes of seven non-testis tissues. We uncovered chromosomal clusters of adjacent genes with preferential expression in total testis and testicular somatic cells by a genome-wide search and found that the clusters encompassed a significantly higher number of genes than expected by chance. We observed a significant 3.2-fold enrichment of the proportion of X-linked genes specific for testicular somatic cells, while the proportions of X-linked genes specific for total testis and for other tissues were comparable. In contrast to the tissue-specific genes, an under-representation of X-linked genes in the total testis transcriptome but not in the transcriptomes of testicular somatic cells and other tissues was detected. Conclusion Our results provide new evidence in favor of the theory of male-biased genes accumulation on the X chromosome in testicular somatic cells and indicate the opposite action of the meiotic X-inactivation in testicular germ cells. PMID:15748293
Wheelock, Craig E.; Goto, Susumu; Hammock, Bruce D.; Newman, John W.
2008-01-01
Peroxisome proliferator activated receptor alpha (PPARα) agonists are anti-hyperlipidemic drugs that influence fatty acid combustion, phospholipid biosynthesis and lipoprotein metabolism. To evaluate impacts on other aspects of lipid metabolism, we applied targeted metabolomics to liver, heart, brain and white adipose tissue samples from male Swiss-Webster mice exposed to a 5 day, 500 mg/kg/day regimen of i.p. clofibrate. Tissue concentrations of free fatty acids and the fatty acid content of sphingomyelin, cardiolipin, cholesterol esters, triglycerides and phospholipids were quantified. Responses were tissue-specific, with changes observed in the liver > heart ≫ brain > adipose. These results indicate that liver saturated fatty acid-rich triglycerides feeds clofibrate-induced monounsaturated fatty acid (MUFA) synthesis, which were incorporated into hepatic phospholipids and sphingomyelin. In addition, selective enrichment of docosahexeneoic acid in the phosphatidylserine of liver (1.7-fold), heart (1.6-fold) and brain (1.5-fold) suggests a clofibrate-dependent systemic activation of phosphatidylserine synthetase 2. Furthermore, the observed ~20% decline in cardiac sphingomyelin is consistent with activation of a sphingomeylinase with a substrate preference for polyunsaturate-containing sphingomyelin. Finally, perturbations in the liver, brain, and adipose cholesterol esters were observed, with clofibrate exposure elevating brain cholesterol arachidonyl-esters ~20-fold. Thus, while supporting previous findings, this study has identified novel impacts of PPARα agonist exposure on lipid metabolism that should be further explored. PMID:19079556
Do retractile testes have anatomical anomalies?
Anderson, Kleber M.; Costa, Suelen F.; Sampaio, Francisco J.B.; Favorito, Luciano A.
2016-01-01
ABSTRACT Objectives: To assess the incidence of anatomical anomalies in patients with retractile testis. Materials and Methods: We studied prospectively 20 patients (28 testes) with truly retractile testis and compared them with 25 human fetuses (50 testes) with testis in scrotal position. We analyzed the relations among the testis, epididymis and patency of the processus vaginalis (PV). To analyze the relations between the testis and epididymis, we used a previous classification according to epididymis attachment to the testis and the presence of epididymis atresia. To analyze the structure of the PV, we considered two situations: obliteration of the PV and patency of the PV. We used the Chi-square test for contingency analysis of the populations under study (p <0.05). Results: The fetuses ranged in age from 26 to 35 weeks post-conception (WPC) and the 20 patients with retractile testis ranged in ages from 1 to 12 years (average of 5.8). Of the 50 fetal testes, we observed complete patency of the PV in 2 cases (4%) and epididymal anomalies (EAs) in 1 testis (2%). Of the 28 retractile testes, we observed patency of the PV in 6 cases (21.4%) and EA in 4 (14.28%). When we compared the incidence of EAs and PV patency we observed a significantly higher prevalence of these anomalies in retractile testes (p=0.0116). Conclusions: Retractile testis is not a normal variant with a significant risk of patent processus vaginalis and epididymal anomalies. PMID:27564294
Optical Coherence Tomography for Brain Imaging and Developmental Biology
Men, Jing; Huang, Yongyang; Solanki, Jitendra; Zeng, Xianxu; Alex, Aneesh; Jerwick, Jason; Zhang, Zhan; Tanzi, Rudolph E.; Li, Airong; Zhou, Chao
2016-01-01
Optical coherence tomography (OCT) is a promising research tool for brain imaging and developmental biology. Serving as a three-dimensional optical biopsy technique, OCT provides volumetric reconstruction of brain tissues and embryonic structures with micrometer resolution and video rate imaging speed. Functional OCT enables label-free monitoring of hemodynamic and metabolic changes in the brain in vitro and in vivo in animal models. Due to its non-invasiveness nature, OCT enables longitudinal imaging of developing specimens in vivo without potential damage from surgical operation, tissue fixation and processing, and staining with exogenous contrast agents. In this paper, various OCT applications in brain imaging and developmental biology are reviewed, with a particular focus on imaging heart development. In addition, we report findings on the effects of a circadian gene (Clock) and high-fat-diet on heart development in Drosophila melanogaster. These findings contribute to our understanding of the fundamental mechanisms connecting circadian genes and obesity to heart development and cardiac diseases. PMID:27721647
Study of heart-brain interactions through EEG, ECG, and emotions
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay K.
2017-04-01
Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomenon. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modality of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.
Morton, Paul D; Ishibashi, Nobuyuki; Jonas, Richard A
2017-03-17
In the past 2 decades, it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however, the underlying causes remain largely unknown, and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. © 2017 American Heart Association, Inc.
Salehi, Fariba; Krewski, Daniel; Mergler, Donna; Normandin, Louise; Kennedy, Greg; Philippe, Suzanne; Zayed, Joseph
2003-09-15
Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese (Mn) compound added to unleaded gasoline in Canada. The primary combustion products of MMT are Mn phosphate, Mn sulfate, and a Mn phosphate/Mn sulfate mixture. Concerns have been raised that the combustion products of MMT containing Mn could be neurotoxic, even at low levels of exposure. The objective of this study is to investigate exposure-response relationships for bioaccumulation and locomotor effects following subchronic inhalation exposure to a mixture of manganese phosphates/sulfate mixture. A control group and three groups of 30 male Sprague-Dawley rats were exposed in inhalation chambers for a period of 13 weeks, 5 days per week, 6 h a day. Exposure concentrations were 3000, 300, and 30 microg/m(3). At the end of the exposure period, locomotor activity and resting time tests were conducted for 36 h using a computerized autotrack system. Rats were then euthanized by exsanguination and Mn concentrations in different tissues (liver, lung, testis, and kidney) and blood and brain (caudate putamen, globus pallidus, olfactory bulb, frontal cortex, and cerebellum) were determined by neutron activation analysis. Increased manganese concentrations were observed in blood, kidney, lung, testis, and in all brain sections in the highest exposure group. Mn in the lung and in the olfactory bulb were dose dependent. Our data indicate that the olfactory bulb accumulated more Mn than other brain regions following inhalation exposure. Locomotor activity was increased at 3000 microg/m(3), but no difference was observed in resting time among the exposed groups. At the end of the experiment, rats exposed to 300 and 3000 microg/m(3) exhibited significantly decreased body weight in comparison with the control group. Biochemical profiles also revealed some significant differences in certain parameters, specifically alkaline phospatase, urea, and chlorate.
BmDJ-1 Is a Key Regulator of Oxidative Modification in the Development of the Silkworm, Bombyx mori
Tabunoki, Hiroko; Ode, Hiroaki; Banno, Yutaka; Katsuma, Susumu; Shimada, Toru; Mita, Kazuei; Yamamoto, Kimiko; Sato, Ryoichi; Ishii-Nozawa, Reiko; Satoh, Jun-ichi
2011-01-01
We cloned cDNA for the Bombyx mori DJ-1 protein (BmDJ-1) from the brains of larvae. BmDJ-1 is composed of 190 amino acids and encoded by 672 nucleotides. Northern blot analysis showed that BmDJ-1 is transcribed as a 756-bp mRNA and has one isoform. Reverse transcriptase (RT)-PCR experiments revealed that the BmDJ-1 was present in the brain, fatbody, Malpighian tubule, ovary and testis but present in only low amounts in the silkgland and hemocyte of day 4 fifth instar larvae. Immunological analysis demonstrated the presence of BmDJ-1 in the brain, midgut, fatbody, Malpighian tubule, testis and ovary from the larvae to the adult. We found that BmDJ-1 has a unique expression pattern through the fifth instar larval to adult developmental stage. We assessed the anti-oxidative function of BmDJ-1 using rotenone (ROT) in day 3 fifth instar larvae. Administration of ROT to day 3 fifth instar larvae, together with exogenous (BmNPV-BmDJ-1 infection for 4 days in advance) BmDJ-1, produced significantly lower 24-h mortality in BmDJ-1 groups than in the control. 2D-PAGE revealed an isoelectric point (pI) shift to an acidic form for BmDJ-1 in BmN4 cells upon ROT stimulus. Among the factors examined for their effects on expression level of BmDJ-1 in the hemolymph, nitric oxide (NO) concentration was identified based on dramatic developmental stage-dependent changes. Administration of isosorbide dinitrate (ISDN), which is an NO donor, to BmN4 cells produced increased expression of BmDJ-1 compared to the control. These results suggest that BmDJ-1 might control oxidative stress in the cell due to NO and serves as a development modulation factor in B. mori. PMID:21455296
Aydin, Suleyman; Kuloglu, Tuncay; Aydin, Suna; Eren, Mehmet Nesimi; Yilmaz, Musa; Kalayci, Mehmet; Sahin, Ibrahim; Kocaman, Nevin; Citil, Cihan; Kendir, Yalcin
2013-08-01
We have investigated how diabetes affects the expression of adropin (ADR) in rat brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The rats in the diabetic group were administered an intraperitoneal (i.p.) injection of a single dose of 60 mg/kg streptozotocin (STZ) dissolved in a 0.1 M phosphate-citrate buffer (pH 4.5). The rats were maintained in standard laboratory conditions in a temperature between 21 and 23 °C and a relative humidity of 70 %, under a 12-h light/dark cycle. The animals were fed a standard commercial pellet diet. After 10 weeks, the animals were sacrified. ADR concentrations in the serum and tissue supernatants were measured by ELISA, and immunohistochemical staining was used to follow the expression of the hormones in the brain, cerebellum, kidneys, heart, liver, and pancreas tissues. The quantities were then compared. Increased ADR immunoreaction was seen in the brain, cerebellum, kidneys, heart, liver, and pancreas in the diabetes-induced rats compared to control subjects. ADR was detected in the brain (vascular area, pia mater, neuroglial cell, and neurons), cerebellum (neuroglial cells, Purkinje cells, vascular areas, and granular layer), kidneys (glomerulus, peritubular interstitial cells, and peritubular capillary endothelial cells), heart (endocardium, myocardium, and epicardium), liver (sinusoidal cells), and pancreas (serous acini). Its concentrations (based on mg/wet weight tissues) in these tissues were measured by using ELISA showed that the levels of ADR were higher in the diabetic rats compared to the control rats. Tissue ADR levels based on mg/wet weight tissues were as follows: Pancreas > liver > kidney > heart > brain > cerebellar tissues. Evidence is presented that shows ADR is expressed in various tissues in the rats and its levels increased in STZ-induced diabetes; however, this effect on the pathophysiology of the disorder remains to be understood.
0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Heng; Denhard, Leslie A.; Zhou Huaxin
Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less
Yamamoto, Keisuke; Takada, Tsuyoshi; Momohara, Chikahiro; Komori, Kazuhiko; Honda, Masahito; Fujioka, Hideki
2003-04-01
A case of epidermoid cyst of the testis is presented. The patient was a 64-year-old man who complained of a painless mass in the left scrotum. Physical examination revealed a hen-egg sized enlargement of the left scrotal contents. The ultrasonographic appearance did not show a hyperechoic partition, which is called echogenic rim, a characteristic of this tumor on the echoic examination, and was homogeneous, almost similar to that of a normal testis. Because malignant testicular tumors could not be excluded preoperatively, excisional biopsy of the left testis was performed first. Histological diagnosis was an epidermoid cyst of the testis. As the left testis was almost completely occupied by the tumor and no normal testicular tissue was recognized, we performed orchiectomy additionally. Epidermoid cyst of the testis is a rare benign tumor that accounts for about 1 percent of all testicular tumors. It clinically resembles malignant testicular tumors, and orchiectomy is often performed for treatment. About 154 cases of testicular epidermoid cyst have been reported in the Japanese literature and are reviewed briefly here.
Pohjoismäki, Jaakko L. O.; Goffart, Steffi; Tyynismaa, Henna; Willcox, Smaranda; Ide, Tomomi; Kang, Dongchon; Suomalainen, Anu; Karhunen, Pekka J.; Griffith, Jack D.; Holt, Ian J.; Jacobs, Howard T.
2009-01-01
Analysis of human heart mitochondrial DNA (mtDNA) by electron microscopy and agarose gel electrophoresis revealed a complete absence of the θ-type replication intermediates seen abundantly in mtDNA from all other tissues. Instead only Y- and X-junctional forms were detected after restriction digestion. Uncut heart mtDNA was organized in tangled complexes of up to 20 or more genome equivalents, which could be resolved to genomic monomers, dimers, and linear fragments by treatment with the decatenating enzyme topoisomerase IV plus the cruciform-cutting T7 endonuclease I. Human and mouse brain also contained a population of such mtDNA forms, which were absent, however, from mouse, rabbit, or pig heart. Overexpression in transgenic mice of two proteins involved in mtDNA replication, namely human mitochondrial transcription factor A or the mouse Twinkle DNA helicase, generated abundant four-way junctions in mtDNA of heart, brain, and skeletal muscle. The organization of mtDNA of human heart as well as of mouse and human brain in complex junctional networks replicating via a presumed non-θ mechanism is unprecedented in mammals. PMID:19525233
Wu, Kun; Tan, Xiao-Ying; Xu, Yi-Huan; Chen, Qi-Liang; Pan, Ya-Xiong
2016-01-15
The present study clones and characterizes the full-length cDNA sequences of members in JAK-STAT pathway, explores their mRNA tissue expression and the biological role in leptin influencing lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Full-length cDNA sequences of five JAKs and seven STAT members, including some splicing variants, were obtained from yellow catfish. Compared to mammals, more members of the JAKs and STATs family were found in yellow catfish, which provided evidence that the JAK and STAT family members had arisen by the whole genome duplications during vertebrate evolution. All of these members were widely expressed across the eleven tissues (liver, white muscle, spleen, brain, gill, mesenteric fat, anterior intestine, heart, mid-kidney, testis and ovary) but at the variable levels. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin changed triglyceride content and mRNA expression of several JAKs and STATs members, and genes involved in lipid metabolism. AG490, a specific inhibitor of JAK2-STAT pathway, partially reversed leptin-induced effects, indicating that the JAK2a/b-STAT3 pathway exerts main regulating actions of leptin on lipid metabolism at transcriptional level. Meanwhile, the different splicing variants were differentially regulated by leptin incubation. Thus, our data suggest that leptin activated the JAK/STAT pathway and increases the expression of target genes, which partially accounts for the leptin-induced changes in lipid metabolism in yellow catfish. Copyright © 2015 Elsevier Inc. All rights reserved.
Usherin expression is highly conserved in mouse and human tissues.
Pearsall, Nicole; Bhattacharya, Gautam; Wisecarver, Jim; Adams, Joe; Cosgrove, Dominic; Kimberling, William
2002-12-01
Usher syndrome is an autosomal recessive disease that results in varying degrees of hearing loss and retinitis pigmentosa. Three types of Usher syndrome (I, II, and III) have been identified clinically with Usher type II being the most common of the three types. Usher type II has been localized to three different chromosomes 1q41, 3p, and 5q, corresponding to Usher type 2A, 2B, and 2C respectively. Usherin is a basement membrane protein encoded by the USH2A gene. Expression of usherin has been localized in the basement membrane of several tissues, however it is not ubiquitous. Immunohistochemistry detected usherin in the following human tissues: retina, cochlea, small and large intestine, pancreas, bladder, prostate, esophagus, trachea, thymus, salivary glands, placenta, ovary, fallopian tube, uterus, and testis. Usherin was absent in many other tissues such as heart, lung, liver, kidney, and brain. This distribution is consistent with the usherin distribution seen in the mouse. Conservation of usherin is also seen at the nucleotide and amino acid level when comparing the mouse and human gene sequences. Evolutionary conservation of usherin expression at the molecular level and in tissues unaffected by Usher 2a supports the important structural and functional role this protein plays in the human. In addition, we believe that these results could lead to a diagnostic procedure for the detection of Usher syndrome and those who carry an USH2A mutation.
[Study on ultra-structural pathological changes of rats poisoned by tetramine].
Zhi, Chuan-hong; Liu, Liang; Liu, Yan
2005-05-01
To observe ultra-structural pathological changes of materiality viscera of rats poisoned by different dose of tetramine and to study the toxic mechanism. Acute and subacute tetramine toxicity models were made by oral administration with different dose of tetramine. Brain, heart, liver, spleen and kidney were extracted and observed by electromicroscopic examination. The injuries of brain cells, cardiocytes and liver cells were induced by different dose of tetramine. These were not obviously different of the injuries of the kindy cells and spleen cells of rats poisoned by different dose of tetramine. Ultra-structural pathological changes were abserved including mitochondria slight swelling and neurolemma's array turbulence in the brain cells, mitochondria swelling or abolish and rupture of muscle fiber in the heart cells, mitochondria swelling and the glycogen decreased in the liver cells. The toxic target organs of tetramine are the heart, brain and liver.
Beca, John; Gunn, Julia K; Coleman, Lee; Hope, Ayton; Reed, Peter W; Hunt, Rodney W; Finucane, Kirsten; Brizard, Christian; Dance, Brieana; Shekerdemian, Lara S
2013-03-05
Abnormalities on magnetic resonance imaging scans are common both before and after surgery for congenital heart disease in early infancy. The aim of this study was to prospectively investigate the nature, timing, and consequences of brain injury on magnetic resonance imaging in a cohort of young infants undergoing surgery for congenital heart disease both with and without cardiopulmonary bypass. A total of 153 infants undergoing surgery for congenital heart disease at <8 weeks of age underwent serial magnetic resonance imaging scans before and after surgery and at 3 months of age, as well as neurodevelopmental assessment at 2 years of age. White matter injury (WMI) was the commonest type of injury both before and after surgery. It occurred in 20% of infants before surgery and was associated with a less mature brain. New WMI after surgery was present in 44% of infants and at similar rates after surgery with or without cardiopulmonary bypass. The most important association was diagnostic group (P<0.001). In infants having arch reconstruction, the use and duration of circulatory arrest were significantly associated with new WMI. New WMI was also associated with the duration of cardiopulmonary bypass, postoperative lactate level, brain maturity, and WMI before surgery. Brain immaturity but not brain injury was associated with impaired neurodevelopment at 2 years of age. New WMI is common after surgery for congenital heart disease and occurs at the same rate in infants undergoing surgery with and without cardiopulmonary bypass. New WMI is associated with diagnostic group and, in infants undergoing arch surgery, the use of circulatory arrest.
Rare presentation of a testicular angiofibroma treated with testis sparing surgery.
Leone, Luca; Fulvi, Paola; Sbrollini, Giulia; Filosa, Alessandra; Caraceni, Enrico; Marronaro, Angelo; Galosi, Andrea B
2016-12-30
Testicular benign tumors are very rare (< 5%). Testicular Angiofibroma (AF) is one of those, however the gold standard of treatment and follow-up is still unclear. A 47 years-old man with only one functioning testis was referred to our clinic for a palpable right testicular mass and atrophic contralateral testis. Patient underwent testis-sparing surgery with inguinal approach and intraoperative frozen sections examination with diagnosis of AF. Final histology confirmed AF. Post-operative follow-up was uneventful. Clinical and ultrasonographic follow-up was negative after 8 months. We report a conservative surgery in a patient with AF of the solitary testis. AF is a benign para-testicular fibrous neoplasm that could be misinterpreted as malignant tumor and treated with orchiectomy. Testis-sparing surgery is recommended in this case with intraoperative pathological examination. The excision of the mass is enough but in front of a possible recurrence a long follow-up is advisable.
An oncological view on the blood-testis barrier.
Bart, Joost; Groen, Harry J M; van der Graaf, Winette T A; Hollema, Harry; Hendrikse, N Harry; Vaalburg, Willem; Sleijfer, Dirk T; de Vries, Elisabeth G E
2002-06-01
The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular wall, connected together with narrow tight junctions, and a myoid-cell layer around the seminiferous tubule. Second, an efflux-pump barrier that contains P-glycoprotein in the luminal capillary endothelium and on the myoid-cell layer; and multidrug-resistance associated protein 1 located basolaterally on Sertoli cells. Third, an immunological barrier, consisting of Fas ligand on Sertoli cells. Inhibition of P-glycoprotein function offers the opportunity to increase the delivery of cytotoxic drugs to the testis. In the future, visualisation of function in the blood-testis barrier may also be helpful to identify groups of patients in whom testis conservation is safe or to select drugs that are less harmful to fertility.
Patel, Shishir Kumar; Singh, Shilpi; Singh, Hemant Kumar; Singh, Shio Kumar
2017-02-02
Bacopa monnieri (BM) has been used in India since the time of Rig-Veda for augmentation of learning, memory, brain health etc. The memory augmenting effect of BM is well documented. CDRI-08 is a standardized extract of Bacopa monnieri, but its effect on the male reproductive health has not been investigated. Therefore, the aim of the present study was to examine the effect of CDRI-08 administration on the male reproductive organs with special emphasis on testis in adult mice. CDRI-08, containing at least 55% bacosides (the major constituent of BM), was investigated for its effect on testicular functions in adult Parkes (P) mice. A suspension of CDRI-08 was orally administered in doses of 40 and 80mgkg -1 body weight day -1 for 28 days and various male reproductive end points were evaluated. Compared to control, CDRI-08 treatment caused a significant increase (p<0.05) in spermatogenic cell density (germinal epithelial height: control, 55.03±4.22 vs 40mg, 67.15±2.65 and 80mg, 69.93±3.76; and tubular diameter: control, 206.55±2.62 vs 80mg, 253.23±12.19), PCNA index (control, 59.85±2.09 vs 40mg, 82.17±1.56 and 80mg, 84.05±3.51) and in steroidogenic indices in the testis, and in sperm viability (control, 0.67±0.010 vs 80mg, 0.80±0.04) in cauda epididymidis of the treated mice. On the other hand, however, the same treatment caused a significant decrease (p<0.05) in abnormal sperm morphology (control, 21.72±1.06 vs 40mg, 10.63±1.50 and 80mg, 15.86±0.87) in cauda epididymidis, and in lipid peroxidation level in testis of the treated mice compared to controls. The results suggest that treatment with CDRI-08 extract improves sperm quality, and spermatogenic cell density and steroidogenic indices in the testis of P mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.
2010-01-01
Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081
ERIC Educational Resources Information Center
Winer, Gerald A.; Cottrell, Jane E.; Bica, Lori A.
2009-01-01
A series of studies examined the presence of centralist versus peripheralist responding about the physical location of psychological processes. Centralists respond that processes such as cognition and emotion are a function of the brain. Peripheralists respond that such processes are located in other parts of the body, such as the heart. Although…
Critchley, Hugo D; Rotshtein, Pia; Nagai, Yoko; O'Doherty, John; Mathias, Christopher J; Dolan, Raymond J
2005-02-01
The James-Lange theory of emotion proposes that automatically generated bodily reactions not only color subjective emotional experience of stimuli, but also necessitate a mechanism by which these bodily reactions are differentially generated to reflect stimulus quality. To examine this putative mechanism, we simultaneously measured brain activity and heart rate to identify regions where neural activity predicted the magnitude of heart rate responses to emotional facial expressions. Using a forewarned reaction time task, we showed that orienting heart rate acceleration to emotional face stimuli was modulated as a function of the emotion depicted. The magnitude of evoked heart rate increase, both across the stimulus set and within each emotion category, was predicted by level of activity within a matrix of interconnected brain regions, including amygdala, insula, anterior cingulate, and brainstem. We suggest that these regions provide a substrate for translating visual perception of emotional facial expression into differential cardiac responses and thereby represent an interface for selective generation of visceral reactions that contribute to the embodied component of emotional reaction.
Male sex determination: insights into molecular mechanisms
McClelland, Kathryn; Bowles, Josephine; Koopman, Peter
2012-01-01
Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary, two functionally distinct organs. The activation of the Y-linked gene Sry (sex-determining region Y) and its downstream target Sox9 (Sry box-containing gene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells, which then direct testis morphogenesis. Once engaged, a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development. This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme. PMID:22179516
Shaffer, Fred; McCraty, Rollin; Zerr, Christopher L
2014-01-01
Heart rate variability (HRV), the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operate on different time scales to adapt to challenges and achieve optimal performance. This article briefly reviews neural regulation of the heart, and its basic anatomy, the cardiac cycle, and the sinoatrial and atrioventricular pacemakers. The cardiovascular regulation center in the medulla integrates sensory information and input from higher brain centers, and afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. This article reviews sympathetic and parasympathetic influences on the heart, and examines the interpretation of HRV and the association between reduced HRV, risk of disease and mortality, and the loss of regulatory capacity. This article also discusses the intrinsic cardiac nervous system and the heart-brain connection, through which afferent information can influence activity in the subcortical and frontocortical areas, and motor cortex. It also considers new perspectives on the putative underlying physiological mechanisms and properties of the ultra-low-frequency (ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF) bands. Additionally, it reviews the most common time and frequency domain measurements as well as standardized data collection protocols. In its final section, this article integrates Porges' polyvagal theory, Thayer and colleagues' neurovisceral integration model, Lehrer et al.'s resonance frequency model, and the Institute of HeartMath's coherence model. The authors conclude that a coherent heart is not a metronome because its rhythms are characterized by both complexity and stability over longer time scales. Future research should expand understanding of how the heart and its intrinsic nervous system influence the brain.
Shaffer, Fred; McCraty, Rollin; Zerr, Christopher L.
2014-01-01
Heart rate variability (HRV), the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operate on different time scales to adapt to challenges and achieve optimal performance. This article briefly reviews neural regulation of the heart, and its basic anatomy, the cardiac cycle, and the sinoatrial and atrioventricular pacemakers. The cardiovascular regulation center in the medulla integrates sensory information and input from higher brain centers, and afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. This article reviews sympathetic and parasympathetic influences on the heart, and examines the interpretation of HRV and the association between reduced HRV, risk of disease and mortality, and the loss of regulatory capacity. This article also discusses the intrinsic cardiac nervous system and the heart-brain connection, through which afferent information can influence activity in the subcortical and frontocortical areas, and motor cortex. It also considers new perspectives on the putative underlying physiological mechanisms and properties of the ultra-low-frequency (ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency (HF) bands. Additionally, it reviews the most common time and frequency domain measurements as well as standardized data collection protocols. In its final section, this article integrates Porges' polyvagal theory, Thayer and colleagues' neurovisceral integration model, Lehrer et al.'s resonance frequency model, and the Institute of HeartMath's coherence model. The authors conclude that a coherent heart is not a metronome because its rhythms are characterized by both complexity and stability over longer time scales. Future research should expand understanding of how the heart and its intrinsic nervous system influence the brain. PMID:25324790
Fink, Cornelia; Weigel, Roswitha; Hembes, Tanja; Lauke-Wettwer, Heidrun; Kliesch, Sabine; Bergmann, Martin; Brehm, Ralph H
2006-01-01
Abstract Carcinoma in situ (CIS) is the noninvasive precursor of most human testicular germ cell tumors. In normal seminiferous epithelium, specialized tight junctions between Sertoli cells constitute the major component of the blood-testis barrier. Sertoli cells associated with CIS exhibit impaired maturation status, but their functional significance remains unknown. The aim was to determine whether the blood-testis barrier is morphologically and/or functionally altered. We investigated the expression and distribution pattern of the tight junction proteins zonula occludens (ZO) 1 and 2 in normal seminiferous tubules compared to tubules showing CIS. In normal tubules, ZO-1 and ZO-2 immunostaining was observed at the blood-testis barrier region of adjacent Sertoli cells. Within CIS tubules, ZO-1 and ZO-2 immunoreactivity was reduced at the blood-testis barrier region, but spread to stain the Sertoli cell cytoplasm. Western blot analysis confirmed ZO-1 and ZO-2, and their respective mRNA were shown by RT-PCR. Additionally, we assessed the functional integrity of the blood-testis barrier by lanthanum tracer study. Lanthanum permeated tight junctions in CIS tubules, indicating disruption of the blood-testis barrier. In conclusion, Sertoli cells associated with CIS show an altered distribution of ZO-1 and ZO-2 and lose their blood-testis barrier function. PMID:17217619
Kobayashi, Tohru; Chiba, Ayaka; Sato, Tadashi; Myosho, Taijun; Yamamoto, Jun; Okamura, Tetsuro; Onishi, Yuta; Sakaizumi, Mitsuru; Hamaguchi, Satoshi; Iguchi, Taisen; Horie, Yoshifumi
2017-10-01
Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka. Copyright © 2017 Elsevier B.V. All rights reserved.
Khalil, A; Suff, N; Thilaganathan, B; Hurrell, A; Cooper, D; Carvalho, J S
2014-01-01
Studies have demonstrated an association between congenital heart disease (CHD) and neurodevelopmental delay. Neuroimaging studies have also demonstrated a high incidence of preoperative brain abnormalities. The aim of this study was to perform a systematic review to quantify the non-surgical risk of brain abnormalities and of neurodevelopmental delay in infants with CHD. MEDLINE, EMBASE and The Cochrane Library were searched electronically without language restrictions, utilizing combinations of the terms congenital heart, cardiac, neurologic, neurodevelopment, magnetic resonance imaging, ultrasound, neuroimaging, autopsy, preoperative and outcome. Reference lists of relevant articles and reviews were hand-searched for additional reports. Cohort and case-control studies were included. Studies reporting neurodevelopmental outcomes and/or brain lesions on neuroimaging in infants with CHD before heart surgery were included. Cases of chromosomal or genetic abnormalities, case reports and editorials were excluded. Between-study heterogeneity was assessed using the I(2) test. The search yielded 9129 citations. Full text was retrieved for 119 and the following were included in the review: 13 studies (n = 425 cases) reporting on brain abnormalities either preoperatively or in those who did not undergo congenital cardiac surgery and nine (n = 512 cases) reporting preoperative data on neurodevelopmental assessment. The prevalence of brain lesions on neuroimaging was 34% (95% CI, 24-46; I(2) = 0%) in transposition of the great arteries, 49% (95% CI, 25-72; I(2) = 65%) in left-sided heart lesions and 46% (95% CI, 40-52; I(2) =18.1%) in mixed/unspecified cardiac lesions, while the prevalence of neurodevelopmental delay was 42% (95% CI, 34-51; I(2) = 68.9). In the absence of chromosomal or genetic abnormalities, infants with CHD are at increased risk of brain lesions as revealed by neuroimaging and of neurodevelopmental delay. These findings are independent of the surgical risk, but it is unclear whether the time of onset is fetal or postnatal. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
Identification of Developmentally Regulated PCP-Responsive Non-Coding RNA, prt6, in the Rat Thalamus
Umino, Asami; Nishikawa, Toru
2014-01-01
Schizophrenia and similar psychoses induced by NMDA-type glutamate receptor antagonists, such as phencyclidine (PCP) and ketamine, usually develop after adolescence. Moreover, adult-type behavioral disturbance following NMDA receptor antagonist application in rodents is observed after a critical period at around 3 postnatal weeks. These observations suggest that the schizophrenic symptoms caused by and psychotomimetic effects of NMDA antagonists require the maturation of certain brain neuron circuits and molecular networks, which differentially respond to NMDA receptor antagonists across adolescence and the critical period. From this viewpoint, we have identified a novel developmentally regulated phencyclidine-responsive transcript from the rat thalamus, designated as prt6, as a candidate molecule involved in the above schizophrenia-related systems using a DNA microarray technique. The transcript is a non-coding RNA that includes sequences of at least two microRNAs, miR132 and miR212, and is expressed strongly in the brain and testis, with trace or non-detectable levels in the spleen, heart, liver, kidney, lung and skeletal muscle, as revealed by Northern blot analysis. The systemic administration of PCP (7.5 mg/kg, subcutaneously (s.c.)) significantly elevated the expression of prt6 mRNA in the thalamus at postnatal days (PD) 32 and 50, but not at PD 8, 13, 20, or 24 as compared to saline-treated controls. At PD 50, another NMDA receptor antagonist, dizocilpine (0.5 mg/kg, s.c.), and a schizophrenomimetic dopamine agonist, methamphetamine (4.8 mg/kg, s.c.), mimicked a significant increase in the levels of thalamic prt6 mRNAs, while a D2 dopmamine receptor antagonist, haloperidol, partly inhibited the increasing influence of PCP on thalamic prt6 expression without its own effects. These data indicate that prt6 may be involved in the pathophysiology of the onset of drug-induced schizophrenia-like symptoms and schizophrenia through the possible dysregulation of target genes of the long non-coding RNA or microRNAs in the transcript. PMID:24886782
Integrative genomic analyses of the histamine H1 receptor and its role in cancer prediction.
Wang, Minghai; Wei, Xiaolong; Shi, Lianghui; Chen, Bin; Zhao, Guohai; Yang, Haiwei
2014-04-01
The human histamine receptor H1 (HRH1) gene is located on chromosome 3p25 and encodes for a 487 amino acid G protein-coupled receptor (GPCR) with a long third intracellular loop (IL3). The HRH1 predominantly couples to Gαq/11 proteins, leading to the activation of phospholipase C (PLC) and subsequent release of the second messengers inositol trisphosphate (IP3) and diacylglycerol (DAG) followed by the activation of PKC and the release of [Ca2+]i. In the present study, we identified HRH1 genes from 14 vertebrate genomes and found that HRH1 exists in all types of vertebrates including fish, amphibians, birds and mammals. We identified 88 SNPs including 4 available alleles disrupting an existing exonic splicing enhancer and 84 SNPs causing missense mutation, which may impact the effect of histamine on the HRH1 protein. We found that the human HRH1 gene was expressed in many tissues or organs, and predominant expression of HRH1 was shown in the bone marrow, whole blood, lymph node, thymus, brain, cerebellum, retina, spinal cord, heart, smooth muscle, skeletal muscle, small intestine, colon, adipocytes, kidney, liver, lung, pancreas, thyroid salivary gland, skin, ovary, uterus, placenta, prostate and testis. When searched in the PrognoScan database, human HRH1 was also found to be expressed in bladder cancer, blood cancer, brain cancer, breast cancer, colorectal cancer, eye cancer, head and neck cancer, lung cancer, ovarian cancer, skin cancer and soft tissue cancer tissues. The relationship between the expression of HRH1 and prognosis was found to vary in different types of cancers, even in the same cancer from different databases. This implies that the function of HRH1 in these tumors may be multidimensional. GR, STAT5A and c-Myb regulatory transcription factor binding sites were identified in the HRH1 gene upstream (promoter) region, which may be involved in the effect of HRH1 in tumors.
Takane, Koki; Hasegawa, Yu; Lin, Bowen; Koibuchi, Nobutaka; Cao, Cheng; Yokoo, Takashi; Kim-Mitsuyama, Shokei
2017-04-20
The significance of brain angiotensin II in Alzheimer disease (AD) is unclear. To examine the role of brain angiotensin II in AD, intracerebroventricular angiotensin II infusion was performed on 5XFAD mice, a mouse model of AD, and wild-type mice, and the detrimental effects of brain angiotensin II was compared between the 2 strains of mice. Intracerebroventricular angiotensin II infusion significantly impaired cognitive function in 5XFAD mice but not in wild-type mice. This vulnerability of 5XFAD mice to brain angiotensin II was associated with enhancement of hippocampal inflammation and oxidative stress and with increased cerebrovascular amyloid β deposition. We also compared the effect of brain angiotensin II on the heart and skeletal muscle between the 2 strains because AD is associated with heart failure and sarcopenia. We found that cardiac compensatory response of 5XFAD mice to brain angiotensin II-induced hypertension was less than that of wild-type mice. Brain angiotensin II caused skeletal muscle atrophy and injury in 5XFAD mice more than in wild-type mice. Brain angiotensin II seems to be involved in cognitive impairment and brain injury in AD, which is associated with oxidative stress, inflammation, and cerebral amyloid angiopathy. Further, brain angiotensin II may participate in cardiac disease and sarcopenia observed in AD. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Hu, Xiangjing; Shen, Bin; Liao, Shangying; Ning, Yan; Ma, Longfei; Chen, Jian; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Zheng, Chunwei; Feng, Yanmin; Huang, Xingxu; Han, Chunsheng
2017-06-29
ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.
Soul, Janet S; Robertson, Richard L; Wypij, David; Bellinger, David C; Visconti, Karen J; du Plessis, Adré J; Kussman, Barry D; Scoppettuolo, Lisa A; Pigula, Frank; Jonas, Richard A; Newburger, Jane W
2009-08-01
Perioperative stroke and periventricular leukomalacia have been reported to occur commonly in infants with congenital heart disease. We aimed to determine the incidence and type of brain injury in infants undergoing 2-ventricle repair in infancy and to determine risk factors associated with such injury. Forty-eight infants enrolled in a trial comparing 2 different hematocrits during surgical repair of congenital heart disease underwent brain magnetic resonance imaging scans and neurodevelopmental testing at 1 year of age. Eighteen (38%) of our subjects had tiny foci of hemosiderin by susceptibility imaging, without evidence of abnormalities in corresponding regions on conventional magnetic resonance imaging sequences. Subjects with foci of hemosiderin had a significantly lower Psychomotor Developmental Index at 1 year of age (79.6 +/- 16.5, mean +/- standard deviation) compared with subjects without these foci (89.5 +/- 15.3; P = .04). Older age at surgery and diagnostic group were significantly associated with the presence of hemosiderin foci. Only 1 subject had a small stroke (2%), and 2 subjects had periventricular leukomalacia (4%). Foci of hemosiderin without radiologic evidence of ischemic brain injury are an abnormality associated with adverse neurodevelopmental outcome not previously described in magnetic resonance imaging studies of children with surgically repaired congenital heart disease. The association of hemosiderin foci with older age at surgery and cardiac diagnosis, and not with risk factors associated with brain injury, in previous studies suggests that the cause and pathogenesis of this abnormality are different from ischemic brain lesions reported previously.
Ito, Koji; Hirooka, Yoshitaka; Matsukawa, Ryuichi; Nakano, Masatsugu; Sunagawa, Kenji
2012-01-01
Depression often coexists with cardiovascular disease, such as hypertension and heart failure, in which sympathetic hyperactivation is critically involved. Reduction in the brain sigma-1 receptor (S1R) functions in depression pathogenesis via neuronal activity modulation. We hypothesized that reduced brain S1R exacerbates heart failure, especially with pressure overload via sympathetic hyperactivation and worsening depression. Male Institute of Cancer Research mice were treated with aortic banding and, 4 weeks thereafter, fed a high-salt diet for an additional 4 weeks to accelerate cardiac dysfunction (AB-H). Compared with sham-operated controls (Sham), AB-H showed augmented sympathetic activity, decreased per cent fractional shortening, increased left ventricular dimensions, and significantly lower brain S1R expression. Intracerebroventricular (ICV) infusion of S1R agonist PRE084 increased brain S1R expression, lowered sympathetic activity, and improved cardiac function in AB-H. ICV infusion of S1R antagonist BD1063 increased sympathetic activity and decreased cardiac function in Sham. Tail suspension test was used to evaluate the index of depression-like behaviour, with immobility time and strain amplitude recorded as markers of struggle activity using a force transducer. Immobility time increased and strain amplitude decreased in AB-H compared with Sham, and these changes were attenuated by ICV infusion of PRE084. These results indicate that decreased brain S1R contributes to the relationship between heart failure and depression in a mouse model of pressure overload.
MedlinePlus Videos and Cool Tools
As the heart pumps, the arteries carry oxygen-rich blood (shown in red) away from the heart and toward the body's tissues and vital organs. ... brain, liver, kidneys, stomach, and muscles, including the heart muscle itself. At the same time, the veins ...
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-05-13
Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Human testis and testis cancer specimens from orchidectomies were cultured in 'hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche.
Yao, Humphrey Hung-Chang; Capel, Blanche
2014-01-01
Most studies to date indicate that the formation of testis cords is critical for proper Sertoli cell differentiation, inhibition of germ cell meiosis, and regulation of Leydig cell differentiation. However, the connections between these events are poorly understood. The objective of this study was to dissect the molecular and cellular relationships between these events in testis formation. We took advantage of the different effects of two hedgehog signaling inhibitors, cyclopamine and forskolin, on gonad explant cultures. Both hedgehog inhibitors phenocopied the disruptive effect of Dhh−/− on formation of testis cords without influencing Sertoli cell differentiation. However, they exhibited different effects on other cellular events during testis development. Treatment with cyclopamine did not affect inhibition of germ cell meiosis and mesonephric cell migration but caused defects in Leydig cell differentiation. In contrast, forskolin treatment induced germ cell meiosis, inhibited mesonephric cell migration, and had no effect on Leydig cell differentiation. By carefully contrasting the different effects of these two hedgehog inhibitors, we demonstrate that although formation of testis cords and development of other cell types normally take place in a tightly regulated sequence, each of these events can occur independent of the others. PMID:12051821
2005-01-01
In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation. PMID:15601595
Pailhoux, Eric; Vigier, Bernard; Schibler, Laurent; Cribiu, Edmond P; Cotinot, Corinne; Vaiman, Daniel
2005-01-01
In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4-5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation.
[Cloning and characterization of a novel rat gene RSD-7 differentially expressed in testis].
Zhang, Xiao-dong; Gou, Da-wei; Miao, Shi-ying; Zhang, Jian-chao; Zong, Shu-dong; Wang, Lin-fang
2003-06-01
To isolate and identify the differentially expressed genes in spermatogenesis for the understanding molecular mechanism of spermatogenesis. Screening of the cDNA library, Northern blot, expression and purification in E. coli with GST expression system, immunocytochemical staining of testis sections were used. (1) A cDNA fragment designated as RSD-7 was isolated from rat testis cDNA library. It was 1,238 bp in length, coding a protein of 232 amino acids with the GenBank accession number AF315467. The encoding protein of RSD-7 cDNA had a Ubiquitin-like domain. (2) Northern blot indicated that RSD-7 was uniquely expressed in rat testis, and in the testis RSD-7 emerged on the 30th postnatal day and expressed until 120th postnatal day. (3) Expression and purification of RSD-7 protein in E. coli with GST expression system and were used to obtain anti-RSD-7 antibody. (4) Immunolocalization of RSD-7 in rat testis revealed that it is expressed only in Sertoli cells. Transcription pattern of RSD-7 and localization of RSD-7 protein in testis have been made, which established the base for the functional study of RSD-7.
Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption
Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang
2015-01-01
Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412
NASA Technical Reports Server (NTRS)
Hadley, Jill A.; Hall, Joseph C.; O'Brien, Ami; Ball, Richard
1992-01-01
The effect of simulated microgravity on the structure and function of the testis and epididymis cells was investigated in rats subjected to 7 days of tail suspension. Results of a histological examination revealed presence of disorganized seminiferous tubules and accumulation of large multinucleated cells and spermatids in the lumen of the epididymis. In addition, decreases in the content of testis protein and in testosterone levels in the testis, the interstitial fluid, and the epididymis were observed.
Martyn, Helen; Barrett, Anthony; Trotman, Paul; Nicholson, Helen
2012-04-01
The search for the soul has been documented since the fifth Century BCE when philosophers and physicians began to explore the role of human consciousness and emotion. Traditionally in western civilization, there have been two distinct followings with some believing that the brain was the seat of the soul and others believing that this role belonged to the heart. The aim of this study was to assess the attitudes of medical students towards the heart and brain during their anatomy laboratory dissections to evaluate if any extra meaning is given to these organs and where they perceived the origin of the soul. Medical students (n = 16) at the University of Otago were interviewed in regards to their thoughts about body dissection and particularly their views towards the brain and the heart. Semi-structured interviews were conducted following the dissection of these two organs, and then transcribed and analyzed. There were mixed opinions among students with some experiencing difficulty dissecting the brain because this organ had special meaning to them; they perceived it as the organ that "made a person who they were." Others commented on their emotional reactions when removing the heart, which they viewed as the "seat of emotion." Some students experienced emotional and physical reactions to these two dissections and Anatomy faculty need to be aware that students may struggle because they viewed these organs as special. A dialogue emerged amongst some medical students on the seat of the soul which gave extra meaning to the dissection. Copyright © 2011 Wiley Periodicals, Inc.
Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I.
2018-01-01
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA’s in vivo kinetics might elucidate these effects. [1-14C] EPA was infused i.v. for 5 min in unanesthetized male rats fed a standard EPA–DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5 min, 31–48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA–CoA pools into lipids, mainly phospholipids, were 36 and 2529 nmol/s/g × 10−4, insignificant for heart. Deacylation–reacylation half-lives were 22 h and 38–128 min. Conversion rates to DHA equaled 0.65 and 25.1 nmol/s/g × 10−4, respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. PMID:24209500
Igarashi, Miki; Chang, Lisa; Ma, Kaizong; Rapoport, Stanley I
2013-01-01
Eicosapentaenoic acid (EPA, 20:5n-3), a precursor of docosahexaenoic acid (DHA), may benefit cardiovascular and brain health. Quantifying EPA's in vivo kinetics might elucidate these effects. [1-(14)C]EPA was infused i.v. for 5min in unanesthetized male rats fed a standard EPA-DHA diet. Plasma and microwaved tissue were analyzed. Kinetic parameters were calculated using our compartmental model. At 5min, 31-48% of labeled EPA in brain and heart was oxidized, 7% in liver. EPA incorporation rates from brain and liver precursor EPA-CoA pools into lipids, mainly phospholipids, were 36 and 2529nmol/s/g×10(-4), insignificant for heart. Deacylation-reacylation half-lives were 22h and 38-128min. Conversion rates to DHA equaled 0.65 and 25.1nmol/s/g×10(-4), respectively. The low brain concentration and incorporation rate and high oxidation of EPA suggest that, if EPA has a beneficial effect in brain, it might result from its suppression of peripheral inflammation and hepatic conversion to bioactive DHA. © 2013 Published by Elsevier Ltd.
FGF9, activin and TGFβ promote testicular characteristics in an XX gonad organ culture model.
Gustin, Sonja E; Stringer, Jessica M; Hogg, Kirsten; Sinclair, Andrew H; Western, Patrick S
2016-11-01
Testis development is dependent on the key sex-determining factors SRY and SOX9, which activate the essential ligand FGF9. Although FGF9 plays a central role in testis development, it is unable to induce testis formation on its own. However, other growth factors, including activins and TGFβs, also present testis during testis formation. In this study, we investigated the potential of FGF9 combined with activin and TGFβ to induce testis development in cultured XX gonads. Our data demonstrated differing individual and combined abilities of FGF9, activin and TGFβ to promote supporting cell proliferation, Sertoli cell development and male germ line differentiation in cultured XX gonads. FGF9 promoted proliferation of supporting cells in XX foetal gonads at rates similar to those observed in vivo during testis cord formation in XY gonads but was insufficient to initiate testis development. However, when FGF9, activin and TGFβ were combined, aspects of testicular development were induced, including the expression of Sox9, morphological reorganisation of the gonad and deposition of laminin around germ cells. Enhancing β-catenin activity diminished the testis-promoting activities of the combined growth factors. The male promoting activity of FGF9 and the combined growth factors directly or indirectly extended to the germ line, in which a mixed phenotype was observed. FGF9 and the combined growth factors promoted male germ line development, including mitotic arrest, but expression of pluripotency genes was maintained, rather than being repressed. Together, our data provide evidence that combined signalling by FGF9, activin and TGFβ can induce testicular characteristics in XX gonads. © 2016 Society for Reproduction and Fertility.
Misuse of ultrasound for palpable undescended testis by primary care providers: A prospective study
Wong, Nathan C.; Bansal, Rahul K.; Lorenzo, Armando J.; DeMaria, Jorge; Braga, Luis H.
2015-01-01
Introduction: Although previous evidence has shown that ultrasound is unreliable to diagnose undescended testis, many primary care providers (PCP) continue to misuse it. We assessed the performance of ultrasound as a diagnostic tool for palpable undescended testis, as well as the diagnostic agreement between PCP and pediatric urologists. Methods: We performed a prospective observational cohort study between 2011 and 2013 for consecutive boys referred with a diagnosis of undescended testis to our tertiary pediatric hospital. Patients referred without an ultrasound and those with non-palpable testes were excluded. Data on referring diagnosis, pediatric urology examination and ultrasound reports were analyzed. Results: Our study consisted of 339 boys. Of these, patients without an ultrasound (n = 132) and those with non-palpable testes (n = 38) were excluded. In the end, there were 169 pateints in this study. Ultrasound was performed in 50% of referred boys showing 256 undescended testis. The mean age at time of referral was 45 months. When ultrasound was compared to physical examination by the pediatric urologist, agreement was only 34%. The performance of ultrasound for palpable undescended testis was: sensitivity = 100%; specificity = 16%; positive predictive value = 34%; negative predictive value = 100%; positive likelihood ratio = 1.2; and negative likelihood ratio = 0. Diagnosis of undescended testis by PCP was confirmed by physical examination in 30% of cases, with 70% re-diagnosed with normal or retractile testes. Conclusion: Ultrasound performed poorly to assess for palpable undescended testis in boys and should not be used. Although the study has important limitations, there is an increasing need for education and evidence-based guidelines for PCP in the management of undescended testis. PMID:26788226
Wen, Qing; Wang, Yuqian; Tang, Jixin; Cheng, C Yan; Liu, Yi-Xun
2016-01-01
Sertoli cells play a significant role in regulating fetal testis compartmentalization to generate testis cords and interstitium during development. The Sertoli cell Wilms' tumor 1 (Wt1) gene, which encodes ~24 zinc finger-containing transcription factors, is known to play a crucial role in fetal testis cord assembly and maintenance. However, whether Wt1 regulates fetal testis compartmentalization by modulating the development of peritubular myoid cells (PMCs) and/or fetal Leydig cells (FLCs) remains unknown. Using a Wt1-/flox; Amh-Cre mouse model by deleting Wt1 in Sertoli cells (Wt1SC-cKO) at embryonic day 14.5 (E14.5), Wt1 was found to regulate PMC and FLC development. Wt1 deletion in fetal testis Sertoli cells caused aberrant differentiation and proliferation of PMCs, FLCs and interstitial progenitor cells from embryo to newborn, leading to abnormal fetal testis interstitial development. Specifically, the expression of PMC marker genes α-Sma, Myh11 and Des, and interstitial progenitor cell marker gene Vcam1 were down-regulated, whereas FLC marker genes StAR, Cyp11a1, Cyp17a1 and Hsd3b1 were up-regulated, in neonatal Wt1SC-cKO testes. The ratio of PMC:FLC were also reduced in Wt1SC-cKO testes, concomitant with a down-regulation of Notch signaling molecules Jag 1, Notch 2, Notch 3, and Hes1 in neonatal Wt1SC-cKO testes, illustrating changes in the differentiation status of FLC from their interstitial progenitor cells during fetal testis development. In summary, Wt1 regulates the development of FLC and interstitial progenitor cell lineages through Notch signaling, and it also plays a role in PMC development. Collectively, these effects confer fetal testis compartmentalization.
HISTOLOGICAL AND HISTOPATHOLOGICAL EVALUATION OF THE TESTIS
This book, the first to describe how the testis is evaluated in research and toxicology testing settings, is a resource for individuals who wish to perform a systematic evaluation of the testis. he book contains 728 illustrations and drawings. The book begins with a description o...
Testisimmune privilege - Assumptions versus facts
Kaur, G.; Mital, P.; Dufour, J.M.
2013-01-01
The testis has long enjoyed a reputation as an immunologically privileged site based on its ability to protect auto-antigenic germ cells and provide an optimal environment for the extended survival of transplanted allo- or xeno-grafts. Exploration of the role of anatomical, physiological, immunological and cellular components in testis immune privilege revealed that the tolerogenic environment of the testis is a result of the immunomodulatory factors expressed or secreted by testicular cells (mainly Sertoli cells, peritubular myoid cells, Leydig cells, and resident macrophages). The blood-testis barrier/Sertoli cell barrier, is also important to seclude advanced germ cells but its requirement in testis immune privilege needs further investigation. Testicular immune privilege is not permanent, as an effective immune response can be mounted against transplanted tissue, and bacterial/viral infections in the testis can be effectively eliminated. Overall, the cellular components control the fate of the immune response and can shift the response from immunodestructive to immunoprotective, resulting in immune privilege. PMID:25309630
Cavalie, G; Bellier, Alexandre; Marnas, G; Boisson, B; Robert, Y; Rabattu, P Y; Chaffanjon, P
2018-04-01
The anatomy of gubernaculum testis (GT) is often discussed; however, the postnatal anatomy of the GT or scrotal ligament (SL) is rarely described. Hence, we performed an anatomical and histological study to analyze histologically the structures between testis and scrotum. We performed anatomical dissections on 25 human fresh cadavers' testes. Each testis was removed with its envelopes and macroscopically analyzed. Then samples were included for histological study. Finally, they were analyzed under microscope, looking for attachments between testis, epididymis and scrotal envelopes. The absence of proximal and distal attachment was found in 56.0% of cases. Looking at the proximal attachment of the SL, the main one found is the epididymal attachment (28.0%), whereas no cases of testis attachment was found. Distally, there are more variations with scrotal attachment (12%) and cremaster attachment (12.0%). We found a significant prevalence of multiple adherences in 16.0% of cases too. Finally, in 15 cases (57.7%) an attachment is present between testis and epididymis, as it is commonly described. In the majority of cases there is no attachment of the lower pole of the testis and epididymis and these structures remain free. So it seems that the SL disappears with aging. Moreover, there is not only one kind of ligamentous attachment, but a high variability of attachments at the lower pole of the testiculo-epididymal structure. When it exists, this structure is never a real ligament and it seems more appropriate to use the term "attachments".
Kwak, Ho-Geun; Dohmae, Naoshi
2016-11-15
Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS. Histone variants were successfully separated on a reversed phase column using high performance liquid chromatography (HPLC) with an ion-pairing reagent. Increasing concentrations of testis-specific histones were observed in the mouse testis and some somatic histones increased in the epididymis. Specifically, the increase of mass abundance in H3.2 in the epididymis was inversely proportional to the decrease in H3t in the testis, which was approximately 80%. The top-down characterization of intact histone variants in the mouse testis was performed using LC-MS/MS. The masses of separated histone variants and their expected post-translation modifications were calculated by performing deconvolution with information taken from the database. TH2A, TH2B and H3t were characterized by MS/MS fragmentation. Our approach provides comprehensive knowledge for identification of histone variants in the mouse testis that will contribute to the structural and functional research of histone variants during spermatogenesis.
Schultz, R; Yan, W; Toppari, J; Völkl, A; Gustafsson, J A; Pelto-Huikko, M
1999-07-01
Peroxisome proliferator-activated receptor a (PPARalpha), a member of the steroid hormone receptor superfamily, has been linked to lipid homeostasis and tumorigenesis in tissues with high expression of receptor protein. On the other hand, the role of PPARalpha in tissues with a lower expression is not well known. Here we demonstrate the localization of PPARalpha messenger RNA (mRNA) and protein in developing and adult rat testis. Additionally, we demonstrate the expression of PPARalpha protein in adult human testis. Our experiments with Northern analysis, in situ hybridization and immunocytochemistry reveal a complex distribution of PPARalpha in tubular and interstitial cells of both adult and developing rat testis. The overall expression is rather low but may be modified by exogenous or endogenous stimuli. An up-regulation of PPARalpha mRNA could be observed after stimulation with FSH. In the developing rat testis, a clear expression of PPARalpha mRNA was present from the first days after birth. Additionally, PPARalpha mRNA and protein increased toward adulthood. In adult human testis PPARalpha immunoreactivity (IR) was present in interstitial Leydig cells and tubular cells. In the seminiferous epithelium of adult human testis the expression of PPARalpha-IR could be seen in meiotic spermatocytes, spermatids and myoid peritubular cells. The findings of our study suggest that PPARalpha may be involved in the regulation of growth and differentiation of tubular and interstitial cells in rat and human testis.
Li, Mingcheng; Gao, Lijun; Qu, Li; Sun, Jingyu; Yuan, Guangxin; Xia, Wei; Niu, Jiamu; Fu, Guilian; Zhang, Lihua
2016-07-01
The use of Penis et testis cervi, as a kind of precious Traditional Chinese Medicine (TCM), which is derived from dry deer's testis and penis, has been recorded for many years in China. There are abundant species of deer in China, the Penis et testis from species of Cervus Nippon and Cervus elaphusL were authentic, others species were defined as adulterant (different subspecies of deer) or counterfeits (different species). Identification of their origins or authenticity becomes a key in controlling the herbal products. A modified column chromatography was used to extract mitochondrial DNA of dried deer's testis and penis from sika deer (C. Nippon) and red deer (C. elaphusL) in addition to adulterants and counterfeits. Column chromatography requires for a short time to extract mitochondrial DNA of high purity with little damage of DNA molecules, which provides the primary structure of guarantee for the specific PCR; PCR-SSCP method showed a clear intra-specific difference among patterns of single-chain fragments, and completely differentiate Penis et testis origins from C. Nippon and C. elaphusL. RAPD-HPCE was based on the standard electropherograms to compute a control spectrum curve as similarity reference (R) among different samples. The similarity analysis indicated that there were significant inter-species differences among Penis et testis' adulterant or counterfeits. Both techniques provide a fast, simple, and accurate way to directly identify among inter-species or intra-species of Penis et testis.
[Effects of electromagnetic pulses on apoptosis and TGF-β3 expression of mouse testis tissue].
Luo, Yaning; Ding, Guirong; Chen, Yongbin; Xu, Shenglong; Wang, Xiaowu
2014-04-01
To investigate the effects of electromagnetic pulses (EMP) on the apoptosis and transforming growth factor beta 3 (TGF-β3) expression of mouse testis tissue. Thirty-two male BALB/c mice were randomly and equally divided into one control group and three EMP treated groups, which were whole-body exposed to EMP at 200 kV/m with 100, 200, and 400 pulses, respectively. The control group received no treatment. The pathological changes and cell apoptosis in testis tissue were analyzed by TUNEL assay. The mRNA expression of TGF-β3 in testis tissue was determined by RT-PCR, and the protein expression of TGF-β3 was determined by immunohistochemistry and Western blot. No obvious pathological changes were found in testis tissue after EMP exposure at 200 kV/m with 100 and 200 pulses. However, after EMP exposure with 400 pulses, degeneration and shedding of testis tissue, accompanied by significant increase in apoptosis rate (P < 0.05), was observed. The RT-PCR, immunohistochemistry, and Western blot showed that the expression of TGF-β3 mRNA and protein increased significantly after EMP exposure with 400 pulses as compared with that of the control group (P < 0.05). EMP exposure at 200 kV/m with 400 pulses increases the incidence of apoptosis and expression of TGF-β3 in mouse testis tissue, which is potentially one of the mechanisms by which EMP increases blood-testis barrier permeability in mice.
Cerebral oxygen delivery is reduced in newborns with congenital heart disease.
Lim, Jessie Mei; Kingdom, Theodore; Saini, Brahmdeep; Chau, Vann; Post, Martin; Blaser, Susan; Macgowan, Christopher; Miller, Steven P; Seed, Mike
2016-10-01
To investigate preoperative cerebral hemodynamics in newborns with congenital heart disease. We hypothesized that cerebral blood flow and oxygen delivery would be decreased in newborns with congenital heart disease compared with controls. Using a "feed-and-sleep" approach to performing neonatal magnetic resonance imaging, we measured cerebral blood flow by using a slice prescription perpendicular to the right and left internal carotid arteries and basilar artery at the level of the clivus. We calculated brain volume by segmenting a 3-dimensional steady-state free procession acquisition of the whole brain, allowing quantification of cerebral blood flow indexed to brain volume. Cerebral oxygen delivery was calculated as the product of cerebral blood flow and preductal systemic arterial oxygen content obtained via a combination of conventional pulse oximetry and laboratory analysis of venous blood samples for hemoglobin concentration. A complete set of measurements were obtained in 32 newborns with heart disease and 31 controls. There was no difference in gestational age between the heart disease and control groups. There was no difference in cerebral blood flow compared with controls (103.5 ± 34.0 vs 119.7 ± 40.4 mL/min), whereas cerebral oxygen delivery was significantly lower in the congenital heart disease subjects (1881 ± 625.7 vs 2712 ± 915.7 mLO2/min). Ten newborns with congenital heart disease had diffuse excessive high signal intensity in their white matter and 2 had white matter injury whereas another 5 had both. Newborns with unrepaired cyanotic congenital heart disease have decreased cerebral oxygen delivery due to arterial desaturation. If brain growth and development are adversely affected through oxygen conformance, our findings could have clinical implications in terms of timing of surgical repair. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
A brief history of cross-species organ transplantation
2012-01-01
Cross-species transplantation (xenotransplantation) offers the prospect of an unlimited supply of organs and cells for clinical transplantation, thus resolving the critical shortage of human tissues that currently prohibits a majority of patients on the waiting list from receiving transplants. Between the 17th and 20th centuries, blood was transfused from various animal species into patients with a variety of pathological conditions. Skin grafts were carried out in the 19th century from a variety of animals, with frogs being the most popular. In the 1920s, Voronoff advocated the transplantation of slices of chimpanzee testis into aged men whose “zest for life” was deteriorating, believing that the hormones produced by the testis would rejuvenate his patients. Following the pioneering surgical work of Carrel, who developed the technique of blood vessel anastomosis, numerous attempts at nonhuman primate organ transplantation in patients were carried out in the 20th century. In 1963–1964, when human organs were not available and chronic dialysis was not yet in use, Reemtsma transplanted chimpanzee kidneys into 13 patients, one of whom returned to work for almost 9 months before suddenly dying from what was believed to be an electrolyte disturbance. The first heart transplant in a human ever performed was by Hardy in 1964, using a chimpanzee heart, but the patient died within 2 hours. Starzl carried out the first chimpanzee-to-human liver transplantation in 1966; in 1992, he obtained patient survival for 70 days following a baboon liver transplant. With the advent of genetic engineering and cloning technologies, pigs are currently available with a number of different manipulations that protect their tissues from the human immune response, resulting in increasing pig graft survival in nonhuman primate models. Genetically modified pigs offer hope of a limitless supply of organs and cells for those in need of a transplant. PMID:22275786
Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam
2014-01-01
One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan).
[Molecular mechanisms in sex determination: from gene regulation to pathology].
Ravel, C; Chantot-Bastaraud, S; Siffroi, J-P
2004-01-01
Testis determination is the complex process by which the bipotential gonad becomes a normal testis during embryo development. As a consequence, this process leads to sexual differentiation corresponding to the masculinization of both genital track and external genitalia. The whole phenomenon is under genetic control and is particularly driven by the presence of the Y chromosome and by the SRY gene, which acts as the key initiator of the early steps of testis determination. However, many other autosomal genes, present in both males and females, are expressed during testis formation in a gene activation pathway, which is far to be totally elucidated. All these genes act in a dosage-sensitive manner by which quantitative gene abnormalities, due to chromosomal deletions, duplications or mosaicism, may lead to testis determination failure and sex reversal.
Jørgensen, A; Young, J; Nielsen, J E; Joensen, U N; Toft, B G; Rajpert-De Meyts, E; Loveland, K L
2014-01-01
Background: Testicular germ cell tumours of young adults, seminoma or non-seminomas, are preceded by a pre-invasive precursor, carcinoma in situ (CIS), understood to arise through differentiation arrest of embryonic germ cells. Knowledge about the malignant transformation of germ cells is currently limited by the lack of experimental models. The aim of this study was to establish an experimental tissue culture model to maintain normal and malignant germ cells within their niche and allow investigation of treatment effects. Methods: Human testis and testis cancer specimens from orchidectomies were cultured in ‘hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. Results: Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis. Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. Conclusions: Hanging drop cultures of human testis and testis cancer samples can be employed to delineate mechanisms governing growth of normal, CIS and tumorigenic germ cells retained within their niche. PMID:24781282
Eyre, J A; Flecknell, P A; Kenyon, B R; Koh, T H; Miller, S
1990-01-01
The influence of repeated high intensity electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate has been investigated in the cat, to evaluate the safety of the method. The observations have been made in preparations under propofol anaesthesia before, during and after periods of anoxia. Electromagnetic stimulation of the brain evoked activity in descending motor pathways and was recorded by activity in the median nerve and by muscle twitches. Following repeated series of high intensity stimulation there were no systematic changes in somatosensory evoked potentials or background EEG, nor were there signs of epileptogenic activity during electromagnetic stimulation, before, during or after periods of anoxia. No systematic changes in cortical blood flow, blood pressure or heart rate were observed during electromagnetic stimulation, before or after periods of anoxia. In conclusion, no acute adverse consequences following electromagnetic stimulation in the normal and anoxic cat brain were demonstrated. PMID:2380732
Hu, Xuesong; Liu, Xiaochun; Zhang, Haifa; Zhang, Yong; Li, Shuisheng; Sang, Qing; Wang, Qian; Luo, Wenna; Liu, Qizhi; Lu, Danqi; Meng, Zining; Lin, Haoran
2011-06-01
It is known that the hypothalamic-pituitary-gonadal axis participates in the sex change of hermaphrodite teleosts, and gonadal steroid hormones mediate this physiological process. The secretion of gonadal steroids is directly regulated by signaling pathways involving gonadotropins (GtHs) and gonadotropin receptors (GtHRs) in teleosts. To gain insight into the involvement of GtH/GtHR systems in the sex change process, cDNAs encoding follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) were firstly isolated from gonads of orange-spotted grouper (Epinephelus coioides), a protogynous hermaphrodite fish. Reverse transcription-PCR (RT-PCR) analysis demonstrated that the expression of the FSHR was confined to the brain, pituitary gland, ovary, and testis, while the LHR was expressed only in the brain, ovary, and testis. Furthermore, the expression profiles of GtH subunits (FSHβ and LHβ) and their receptors were analyzed in parallel with the serum levels of estradiol-17β (E(2) ), testosterone (T), and 11-ketotestosterone (11-KT) during 17α-methyltestosterone (MT)-induced sex change. Quantitative real-time PCR determined that the abundances of FSHβ and FSHR were significantly inhibited after MT treatment for 2 and 4 weeks, but subsequently returned to the control level after 6 weeks. In contrast, the mRNA levels of LHβ and LHR were significantly elevated throughout the sex change process. During MT-induced sex change, serum concentrations of E(2) remained constant while T and 11-KT levels were significantly increased. Taken together, our results suggest that GtH/GtHR systems are involved in MT-induced sex change, and two signaling pathways may have distinct roles in modulating the variations of the corresponding steroid hormones in the orange-spotted grouper. Copyright © 2011 Wiley-Liss, Inc.
Marchetto, G S; Henry, H L
1997-02-01
The heat-stable protein kinase inhibitor (PKI) protein is a specific and potent competitive inhibitor of the catalytic subunit of cAMP-dependent protein kinase (PKA). Previously, it has been shown that vitamin D status affects chick kidney PKI activity: a 5- to 10-fold increase in PKI activity was observed in kidneys of chronically vitamin D-deficient chicks and treatment with 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) in cultured kidney cells resulted in a 95% decrease in PKI activity. The authors have recently cloned the cDNA for chick kidney PKI and have used the coding sequence to study the regulation of PKI mRNA. Northern analysis showed the expression of two PKI messages, which are 2.7 and 3.3 kb in size. These mRNAs are expressed in brain, muscle, testis, and kidney, but not in pancreas, liver, or intestine. PKI mRNA steady-state levels are downregulated by 47% in kidneys from vitamin D-replete chicks as compared to vitamin D-deficient chicks. PKI mRNA levels in brain, muscle, and testis are not affected by vitamin D status. Treatment of primary chick kidney cultures treated with 10(-7) M 1,25(OH)2D3 for 24h resulted in a 20-30% decrease in PKI mRNA. 1,25(OH)2D3 treatment does not affect the stability of PKI mRNA as determined by treatment of cell cultures with actinomycin D. This study shows that 1,25(OH)2D3 directly and tissue-specifically downregulates PKI mRNA in the chick kidney.
Denisova, L A; Lavrova, E A; Natochin, Iu V; Serova, L V
1988-01-01
After the 7-day space flight onboard the biosatellite Cosmos-1667 the water, Na, K, Ca and Mg content of the liver, kidney, heart, skin and bone of male rats was measured. No significant changes in the weight or water content of the above organs were seen. The exception was a decrease of water contained in the heart and an increase of water contained in the caudal appendage of the epididymis. After flight the mineral composition of the liver was identical to that after control studies. The K content of the heart of the flight rats was lower and that of Na, Ca and Mg was identical to the parameter in the controls. The K content of the skin and bone increased and the Na content of the skin also grew. In the kidney the Ca content did not change whereas the content of K, Na and Mg decreased significantly. In the testis Na decreased and K increased after flight. Thus, changes in fluid-electrolyte homeostasis at the organ and tissue level can develop within 7 days of space flight. They occur not only in the musculoskeletal system but may also evolve in the nonweight-bearing organs.
Yamaguchi, Kyohei; Lear, Christopher A; Beacom, Michael J; Ikeda, Tomoaki; Gunn, Alistair J; Bennet, Laura
2018-01-08
Fetal heart rate variability is a critical index of fetal wellbeing. Suppression of heart rate variability may provide prognostic information on the risk of hypoxic-ischaemic brain injury after birth. In the present study, we report the evolution of fetal heart rate variability after both mild and severe hypoxia-ischaemia. Both mild and severe hypoxia-ischaemia were associated with an initial, brief suppression of multiple measures of heart rate variability. This was followed by normal or increased levels of heart rate variability during the latent phase of injury. Severe hypoxia-ischaemia was subsequently associated with the prolonged suppression of measures of heart rate variability during the secondary phase of injury, which is the period of time when brain injury is no longer treatable. These findings suggest that a biphasic pattern of heart rate variability may be an early marker of brain injury when treatment or intervention is probably most effective. Hypoxia-ischaemia (HI) is a major contributor to preterm brain injury, although there are currently no reliable biomarkers for identifying infants who are at risk. We tested the hypothesis that fetal heart rate (FHR) and FHR variability (FHRV) would identify evolving brain injury after HI. Fetal sheep at 0.7 of gestation were subjected to either 15 (n = 10) or 25 min (n = 17) of complete umbilical cord occlusion or sham occlusion (n = 12). FHR and four measures of FHRV [short-term variation, long-term variation, standard deviation of normal to normal R-R intervals (SDNN), root mean square of successive differences) were assessed until 72 h after HI. All measures of FHRV were suppressed for the first 3-4 h in the 15 min group and 1-2 h in the 25 min group. Measures of FHRV recovered to control levels by 4 h in the 15 min group, whereas the 25 min group showed tachycardia and an increase in short-term variation and SDNN from 4 to 6 h after occlusion. The measures of FHRV then progressively declined in the 25 min group and became profoundly suppressed from 18 to 48 h. A partial recovery of FHRV measures towards control levels was observed in the 25 min group from 49 to 72 h. These findings illustrate the complex regulation of FHRV after both mild and severe HI and suggest that the longitudinal analysis of FHR and FHRV after HI may be able to help determine the timing and severity of preterm HI. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Soul, Janet S.; Robertson, Richard L.; Wypij, David; Bellinger, David C.; Visconti, Karen J.; du Plessis, Adré J.; Kussman, Barry D.; Scoppettuolo, Lisa A.; Pigula, Frank; Jonas, Richard A.; Newburger, Jane W.
2009-01-01
Objective Perioperative stroke and periventricular leukomalacia have been reported to occur commonly in infants with congenital heart disease. We aimed to determine the incidence and type of brain injury in infants undergoing two-ventricle repair in infancy and to determine risk factors associated with such injury. Methods Forty-eight infants enrolled in a trial comparing two different hematocrits during surgical repair of congenital heart disease underwent brain MRI scans and neurodevelopmental testing at one year of age. Results Eighteen (38%) of our subjects had tiny foci of hemosiderin by susceptibility imaging, without evidence of abnormalities in corresponding regions on conventional MRI sequences. Subjects who had foci of hemosiderin had a significantly lower Psychomotor Developmental Index at one year of age (79.6 ± 16.5, mean ± SD) compared with subjects who did not have these foci (89.5 ± 15.3; p=0.04). Older age at surgery and diagnostic group were significantly associated with presence of hemosiderin foci. Only one subject had a small stroke (2%) and two had periventricular leukomalacia (4%). Conclusions Foci of hemosiderin without radiologic evidence of ischemic brain injury are an abnormality associated with adverse neurodevelopmental outcome not previously described in MRI studies of children with surgically repaired congenital heart disease. The association of hemosiderin foci with older age at surgery and cardiac diagnosis and not risk factors associated with brain injury in previous studies suggests that the etiology and pathogenesis of this abnormality is different from ischemic brain lesions reported previously. PMID:19619781
Honda, Nobuhiro; Hirooka, Yoshitaka; Ito, Koji; Matsukawa, Ryuichi; Shinohara, Keisuke; Kishi, Takuya; Yasukawa, Keiji; Utsumi, Hideo; Sunagawa, Kenji
2013-11-01
Enhanced central sympathetic outflow is an indicator of the prognosis of heart failure. Although the central sympatholytic drug moxonidine is an established therapeutic strategy for hypertension, its benefits for hypertensive heart failure are poorly understood. In the present study, we investigated the effects of central sympathoinhibition by intracerebral infusion of moxonidine on survival in a rat model of hypertensive heart failure and the possible mechanisms involved. As a model of hypertensive heart failure, we fed Dahl salt-sensitive rats an 8% NaCl diet from 7 weeks of age. Intracerebroventricular (ICV) infusion of moxonidine (moxonidine-ICV-treated group [Mox-ICV]) or vehicle (vehicle-ICV-treated group [Veh-ICV]) was performed at 14-20 weeks of age, during the increased heart failure phase. Survival rates were examined, and sympathetic activity, left ventricular function and remodelling, and brain oxidative stress were measured. Hypertension and left ventricular hypertrophy were established by 13 weeks of age. At around 20 weeks of age, Veh-ICV rats exhibited overt heart failure concomitant with increased urinary norepinephrine (uNE) excretion as an index of sympathetic activity, dilated left ventricle, decreased percentage fractional shortening, and myocardial fibrosis. Survival rates at 21 weeks of age (n = 28) were only 23% in Veh-ICV rats, and 76% (n = 17) in Mox-ICV rats with concomitant decreases in uNE, myocardial fibrosis, collagen type I/III ratio, brain oxidative stress, and suppressed left ventricular dysfunction. Moxonidine-induced central sympathoinhibition attenuated brain oxidative stress, prevented cardiac dysfunction and remodelling, and improved the prognosis in rats with hypertensive heart failure. Central sympathoinhibition can be effective for the treatment of hypertensive heart failure.
... brain Early development of coronary artery disease (CAD) Endocarditis (infection in the heart) Heart failure Hoarseness Kidney ... include: Continued or repeated narrowing of the aorta Endocarditis High blood pressure
... your body: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Recently placed artificial joints Certain types of vascular stents Pain pumps ...
Piro, Eugenia; Abati, Laura; Zocca, Veronica; Brugnoni, Marta; D'Alessio, Antonio
2017-06-23
Polyorchidism is an anomaly characterized by more than two gonads; triorchidism is the most common variant. Its management is controversial, mostly when surgical treatment is occasional. CB, 14 year-old, came to the hospital due to right-sided testicular torsion. During surgery, testis was rotated and the contralateral testis, which presented as an anatomically continuum with a gonadic structure similar to the other testes but with a smaller diameter, was fixed. We performed biopsy on both left testes and decided to preserve the supernumerary one. Following the anatomic and functional classification of polyorchidism by Singer, preservation is justified on the grounds of the presence of a supernumerary testis that drains into the epididymis of the normal testis, merging into one single deferent duct (Singer Type 1). At biopsy, both testes had a valid spermatogenic asset. The diagnostic follow-up at 6 and 12 months did not show any pathological alteration. Diagnosis of polyorchidism is occasional. Its treatment varies depending on the site, dimension, and anatomy of the drainage system of the supernumerary testis. If the supernumerary testis is preserved, a standardized diagnostic follow-up is recommended.
Genetic regulation of mammalian gonad development.
Eggers, Stefanie; Ohnesorg, Thomas; Sinclair, Andrew
2014-11-01
Sex-specific gonadal development starts with formation of the bipotential gonad, which then differentiates into either a mature testis or an ovary. This process is dependent on activation of either the testis-specific or the ovary-specific pathway while the opposite pathway is continuously repressed. A network of transcription factors tightly regulates initiation and maintenance of these distinct pathways; disruption of these networks can lead to disorders of sex development in humans and male-to-female or female-to-male sex reversal in mice. Sry is the Y-linked master switch that is both required and sufficient to drive the testis-determining pathway. Another key component of the testis pathway is Sox9, which acts immediately downstream of Sry. In contrast to the testis pathway, no single sex-determining factor has been identified in the ovary pathway; however, multiple genes, such as Foxl2, Rspo1, Ctnnb1, and Wnt4, seem to work synergistically and in parallel to ensure proper ovary development. Our understanding of the regulatory networks that underpin testis and ovary development has grown substantially over the past two decades.
Lim, Jung-Hyun; Choi, Seong-Young; Yoo, Han-Woong; Cho, Sun-Jung; Son, Youngsook
2013-01-01
The expression of the Crlz-1 gene in mouse testis, where it was found to be expressed most highly among the tested mouse organs, was analyzed spatiotemporally by employing RT-PCR and in situ hybridization techniques with the aid of immunohistochemistry and/or immunofluorescence methods. In 1-week-old neonatal testis, Crlz-1 was strongly expressed in the spermatogonia and Sertoli cells in its seminiferous cord. In 2- to 3-week-old prepubertal testis, where Sertoli cells cease to proliferate, Crlz-1 expression dropped and remained weakly at the rim layer of seminiferous cords and/or tubules, where spermatogonia are present. In the adult testis at 12 weeks after birth, Crlz-1 was expressed mainly in the spermatids near the lumen of seminiferous tubules. In a further in situ hybridization of Crlz-1 in the 12-week-old adult testis with hematoxylin nuclear counterstaining, Crlz-1 was mainly expressed at step 16 of spermatids between stages VII and VIII of seminiferous tubules as well as in their residual bodies at stage IX of seminiferous tubules. PMID:23525569
Thyroid Hormone Role and Economy in the Developing Testis.
Hernandez, Arturo
2018-01-01
Thyroid hormones (TH) exhibit pleiotropic regulatory effects on growth, development, and metabolism, and it is becoming increasingly apparent that the developing testis is an important target for them. Testicular development is highly dependent on TH status. Both hypo- and hyperthyroidism affect testis size and the proliferation and differentiation of Sertoli, Leydig, and germ cells, with consequences for steroidogenesis, spermatogenesis, and male fertility. These observations suggest that an appropriate content of TH and by implication TH action in the testis, whether the result of systemic hormonal levels or regulatory mechanisms at the local level, is critical for normal testicular and reproductive function. The available evidence indicates the presence in the developing testis of a number of transporters, deiodinases and receptors that could play a role in the timely delivery of TH action on testicular cells. These include the thyroid hormone receptor alpha (THRA), the MCT8 transporter, the TH-activating deiodinase DIO2, and the TH-inactivating deiodinase DIO3, all of which appear to modulate testicular TH economy and testis outcomes. © 2018 Elsevier Inc. All rights reserved.
Diethylstilbestrol affects the expression of GPER in the gubernaculum testis.
Zhang, Xuan; Ke, Song; Chen, Kai-Hong; Li, Jian-Hong; Ma, Lian; Jiang, Xue-Wu
2015-01-01
Recent evidence suggested a positive correlation between environmental estrogens (EEs) and high incidence of abnormalities in male urogenital system. EEs are known to cause the abnormalities of testes development and testicular descent. Diethylstilbestrol (DES) is a nonsteroidal synthetic estrogen that disrupts the morphology and proliferation of gubernacular cells, and its nongenomic effects on gubernaculum testis cells may be mediated by G protein-coupled estrogen receptor (GPER). In this study, we detected the expression of GPER in mouse gubernacular testis and investigated the effects of DES on the expression of GPER in gubernaculum testis cells. RT-PCR analysis revealed that GPER mRNA was expressed in the gubernaculum. GPER protein was detected in the parenchymal cells of the gubernaculum early in development. Furthermore, we demonstrate that GPER inhibitor G15 relieved DES-induced inhibition of GPER expression in gubernaculum testis cell, but ER inhibitor ICI 182780 had the converse effects on DES-induced inhibition of GPER expression in these cells. These data suggest that the effects of DES on mouse gubernaculum testis cells are mediated at least partially by the regulation of GPER expression.
Jehan, Zeenath; Vallinayagam, Sambandam; Tiwari, Shrish; Pradhan, Suman; Singh, Lalji; Suresh, Amritha; Reddy, Hemakumar M.; Ahuja, Y.R.; Jesudasan, Rachel A.
2007-01-01
The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric β sv13 isoform. This 67-nt 5′UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the β sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript. PMID:17095710
Mattson, Mark P; Wan, Ruiqian
2005-03-01
Intermittent fasting (IF; reduced meal frequency) and caloric restriction (CR) extend lifespan and increase resistance to age-related diseases in rodents and monkeys and improve the health of overweight humans. Both IF and CR enhance cardiovascular and brain functions and improve several risk factors for coronary artery disease and stroke including a reduction in blood pressure and increased insulin sensitivity. Cardiovascular stress adaptation is improved and heart rate variability is increased in rodents maintained on an IF or a CR diet. Moreover, rodents maintained on an IF regimen exhibit increased resistance of heart and brain cells to ischemic injury in experimental models of myocardial infarction and stroke. The beneficial effects of IF and CR result from at least two mechanisms--reduced oxidative damage and increased cellular stress resistance. Recent findings suggest that some of the beneficial effects of IF on both the cardiovascular system and the brain are mediated by brain-derived neurotrophic factor signaling in the brain. Interestingly, cellular and molecular effects of IF and CR on the cardiovascular system and the brain are similar to those of regular physical exercise, suggesting shared mechanisms. A better understanding of the cellular and molecular mechanisms by which IF and CR affect the blood vessels and heart and brain cells will likely lead to novel preventative and therapeutic strategies for extending health span.
Brain natriuretic peptide-guided therapy in the inpatient management of decompensated heart failure.
Saremi, Adonis; Gopal, Dipika; Maisel, Alan S
2012-02-01
Heart failure is extremely prevalent and is associated with significant mortality, morbidity and cost. Studies have already established mortality benefit with the use of neurohormonal blockade therapy in systolic failure. Unfortunately, physical signs and symptoms of heart failure lack diagnostic sensitivity and specificity, and medication doses proven to improve mortality in clinical trials are often not achieved. Brain natriuretic peptide (BNP) has proven to be of clinical use in the diagnosis and prognosis of heart failure, and recent efforts have been taken to further elucidate its role in guiding heart failure management. Multiple studies have been conducted on outpatient guided management, and although still controversial, there is a trend towards improved outcomes. Inpatient studies are lacking, but preliminary data suggest various BNP cut-off values, as well as percentage changes in BNP, that could be useful in predicting outcomes and improving mortality. In the future, heart failure management will probably involve an algorithm using clinical assessment and a multibiomarker-guided approach.
Golshan, Mahdi; Habibi, Hamid R; Alavi, Sayyed Mohammad Hadi
2016-08-01
Vinclozolin (VZ) is a pesticide that acts as an anti-androgen to impair reproduction in mammals. However, VZ-induced disruption of reproduction is largely unknown in fish. In the present study, we have established a combination exposure in which adult goldfish were exposed to VZ (30 and 100 μg/L), anti-androgen flutamide (Flu, 300 μg/L), and androgen testosterone (T, 1 μg/L) to better understand effects of VZ on reproductive endocrine system. mRNA levels of kisspeptin (kiss-1 and kiss-2) and its receptor (gpr54), salmon gonadotropin-releasing hormone (gnrh3) and androgen receptor (ar) in the mid-brain, and luteinizing hormone receptor (lhr) in the testis were analyzed and compared with those of control following 10 days of exposure. kiss-1 mRNA level was increased in goldfish exposed to 100 µg/L VZ and to Flu, while kiss-2 mRNA level was increased following exposure to Flu and to combinations of 30 µg/L VZ with Flu, 100 µg/L VZ with T, and Flu with T. gpr54 mRNA level was increased in goldfish exposed to Flu and to combination of 30 µg/L VZ with Flu and 100 µg/L VZ with T. gnrh3 mRNA level was increased in goldfish exposed to 100 µg/L VZ, to Flu, and to combinations of 30 µg/L VZ with Flu, 100 µg/L VZ with T, and Flu with T. The mid-brain ar mRNA level was increased in goldfish exposed to Flu and to combinations of 30 µg/L VZ with Flu, 100 µg/L VZ with T, and Flu with T. Testicular lhr mRNA level was increased in goldfish exposed to Flu and to combination of 30 µg/L VZ with Flu. These results suggest that VZ and Flu are capable of interfering with kisspeptin and GnRH systems to alter pituitary and testicular horonal functions in adult goldfish and the brain ar mediates VZ-induced disruption of androgen production.
Kadry, Mai O; Megeed, Rehab Abdel
2018-02-09
Cadmium chloride (CdCl 2 ) is a ubiquitous environmental toxicant that causes a variety of disturbances in biological systems, including brain dysfunction and testicular tissue degeneration. On the other hand, it is supposed that beneficial properties of probiotic bacteria (Lactobacillus and Acidobacillus) are related to their capacity to adhere or bind different targets, thus leading to improved intestinal microbial balance and other benefits to the host. Bearing aforementioned in mind, the present study was undertaken to investigate the protective effect of probiotic supplementation against cadmium chloride-induced brain and testis toxicity in mice model. Animals received Lactobacillus and Acidobacillus either alone or added to folic acid for 1 week before CdCl2 intoxication in a dose of 20 mg/kg BW followed by probiotics (5 × 10 9) and/or folic acid (12 mg/kg) treatment for 3 weeks. The levels of malondialdehyde (MDA), butyrl choline esterase (BCHE), reduced glutathione (GSH), and total superoxide dismutase (SOD) activities were investigated. Finally, cadmium neurotoxicity was determined by estimating the gene expression of β-catenin and brain-derived neurotrophic factor (BDNF), as well as estimating the alterations in testicular function by determining acid phosphatase level in addition to steroidogenic acute regulatory protein (StAR) and 17-hydroxy steroid dehydrogenase (17-β HSD) gene expression. Based on our results, we can conclude that exposure of mice to cadmium chloride resulted in a significant elevation in MDA, BCHE levels accompanied with a significant reduction in GSH and SOD activities compared to the control value. CdCl 2 also downregulated the gene expression of β-catenin and BDNF, as well as acid phosphatase level, in addition to StAR and 17-β HSD gene expression. These deviated parameters were significantly modulated in the co-treated animals with probiotics compared with the cadmium-treated group. In conclusion, Lactobacillus and folic acid in a mixture with cadmium acted beneficially to an organism, increasing the cadmium excretion in feces, and consequently increasing β-catenin and BDNF in brain tissue and StAR and 17-β HSD in testis and improving their functions. Histoarchitecture analysis confirmed these results.
Mašek, T; Starčević, K
2017-05-01
We studied the influence of long-term treatment with sucrose and tannic acid in drinking water on the fatty acid profile and lipid peroxidation in rat testes. Male Wistar rats were supplemented with sucrose (30% w/v) or with sucrose and tannic acid (sucrose 30% w/v, tannic acid 0.1% w/v) in drinking water. The treatment with sucrose elevated blood glucose levels in the plasma (p < .05) and decreased the testis weight (p < .05) and testis index (p < .05) of the rats. Sucrose treatment increased monounsaturated fatty acids (MUFA) and C22:6n3, and decreased n6 fatty acids in testis tissue. Lipid peroxidation was significantly increased after sucrose administration in plasma (p < .05) and testis tissue (p < .01). The addition of tannic acid led to the decrease in lipid peroxidation in the plasma (p < .05) and testis (p < .05), a further increase in MUFA and decrease in n6 fatty acids. In conclusion, sucrose significantly altered the testis fatty acid profile with an increase in MUFA and C22:6n3, and a decrease in n6 fatty acids. Tannic acid attenuated oxidative stress and hyperglycaemia, but it did not improve pathological changes in the fatty acid composition of the testis. © 2016 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somani, S.M.; Dube, S.N.
1989-01-01
Dose response of physostigmine (Phy) was studied in rat using various doses. Rats were sacrificed 15 min after Phy administration. Blood and tissues were analyzed for ChE activity by radiometric method and Phy concentration by HPLC method. A comparison of ChE values in different tissues of rats indicated that ChE activity was highest in brain and least in diaphragm. The enzyme activity was eleven times more in brain as compared to diaphragm. Phy produced a dose-dependent inhibition of ChE in RBC, brain and diaphragm from 50 to 200 {mu}g/kg, then ChE inhibition was plateaued from 200 to 500 {mu}g/kg inmore » these tissues. A dose related ChE inhibition was seen in heart and thigh muscle from 50 to 500 {mu}g/kg. Phy concentration increased linearly from 50 to 400 {mu}g/kg in plasma, brain, heart and thigh muscle. These results indicate that ChE inhibition is linear up to 200 {mu}g/kg in RBC, 150 {mu}g/kg in brain and 300 {mu}g/kg in heart. This linearity is not consistent in other tissues.« less
van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M
2004-03-01
To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004
Siemann, David N; Strange, Daniel P; Maharaj, Payal N; Shi, Pei-Yong; Verma, Saguna
2017-11-15
Confirmed reports of Zika virus (ZIKV) in human seminal fluid for months after the clearance of viremia suggest the ability of ZIKV to establish persistent infection in the seminiferous tubules, an immune-privileged site in the testis protected by the blood-testis barrier, also called the Sertoli cell (SC) barrier (SCB). However, cellular targets of ZIKV in human testis and mechanisms by which the virus enters seminiferous tubules remain unclear. We demonstrate that primary human SCs were highly susceptible to ZIKV compared to the closely related dengue virus and induced the expression of alpha interferon (IFN-α), key cytokines, and cell adhesion molecules (vascular cell adhesion molecule 1 [VCAM-1] and intracellular adhesion molecule 1 [ICAM-1]). Furthermore, using an in vitro SCB model, we show that ZIKV was released on the adluminal side of the SCB model with a higher efficiency than in the blood-brain barrier model. ZIKV-infected SCs exhibited enhanced adhesion of leukocytes that correlated with decreases in SCB integrity. ZIKV infection did not affect the expression of tight and adherens junction proteins such as ZO-1, claudin, and JAM-A; however, exposure of SCs to inflammatory mediators derived from ZIKV-infected macrophages led to the degradation of the ZO-1 protein, which correlated with increased SCB permeability. Taken together, our data suggest that infection of SCs may be one of the crucial steps by which ZIKV gains access to the site of spermatozoon development and identify SCs as a therapeutic target to clear testicular infections. The SCB model opens up opportunities to assess interactions of SCs with other testicular cells and to test the ability of anti-ZIKV drugs to cross the barrier. IMPORTANCE Recent outbreaks of ZIKV, a neglected mosquito-borne flavivirus, have identified sexual transmission as a new route of disease spread, which has not been reported for other flaviviruses. To be able to sexually transmit for months after the clearance of viremia, ZIKV must establish infection in the seminiferous tubules, the site of spermatozoon development. However, little is known about the cell types that support ZIKV infection in the human testis. Currently, there are no models to study mechanisms of virus persistence in the seminiferous tubules. We provide evidence that ZIKV infection of human Sertoli cells, which are an important component of the seminiferous tubules, is robust and induces a strong antiviral response. The use of an in vitro Sertoli cell barrier to describe how ZIKV or inflammatory mediators derived from ZIKV-infected macrophages compromise barrier integrity will enable studies to explore the interactions of other testicular cells with Sertoli cells and to test novel antivirals for clearing testicular ZIKV infection. Copyright © 2017 American Society for Microbiology.
USDA-ARS?s Scientific Manuscript database
The second mammalian GnRH isoform (GnRH-II) and its cognate receptor (GnRHR-II) are poor modulators of gonadotropin secretion in swine. However, both are abundantly produced within the porcine testis suggesting an autocrine/paracrine role. Within the boar testis, GnRHR-II immunolocalizes to the plas...
Vaucher, Laurent; Funaro, Michael G; Mehta, Akanksha; Mielnik, Anna; Bolyakov, Alexander; Prossnitz, Eric R; Schlegel, Peter N; Paduch, Darius A
2014-01-01
Estradiol (E2) modulates testicular functions including steroidogenesis, but the mechanisms of E2 signaling in human testis are poorly understood. GPER-1 (GPR30), a G protein-coupled membrane receptor, mediates rapid genomic and non-genomic response to estrogens. The aim of this study was to evaluate GPER-1 expression in the testis, and its role in estradiol dependent regulation of steroidogenesis in isolated rat Leydig cells and human testis. Isolated Leydig cells (LC) from adult rats and human testicular tissue were used in this study. Expression and localization studies of GPER-1 were performed with qRT-PCR, immunofluorescence, immunohistochemistry and Western Blot. Luteinizing Hormone (LH) -stimulated, isolated LC were incubated with estradiol, G-1 (GPER-1-selective agonist), and estrogen receptor antagonist ICI 182,780. Testosterone production was measured with radioimmunoassay. LC viability after incubation with G-1 was measured using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay. GPER-1 mRNA is abundantly expressed in rat LC and human testis. Co-localization experiments showed high expression levels of GPER-1 protein in LC. E2-dependent activation of GPER-1 lowers testosterone production in isolated rats LCs and in human testis, with statistically and clinically significant drops in testosterone production by 20-30% as compared to estradiol-naïve LC. The exposure to G-1 does not affect viability of isolated LCs. Our results indicate that activation of GPER-1 lowers testosterone levels in the rat and human testis. The expression of GPER-1 in human testis, which lack ERα, makes it an exciting target for developing new agents affecting testosterone production in men.
Ultrasonographic Assessment of Testicular Viability Using Heterogeneity Levels in Torsed Testicles.
Samson, Patrick; Hartman, Christopher; Palmerola, Ricardo; Rahman, Zara; Siev, Michael; Palmer, Lane S; Ghorayeb, Sleiman R
2017-03-01
Gross testicular heterogeneity on ultrasound has been associated with testis loss following testicular torsion in children. We aimed to quantify the extent of temporal heterogeneity associated with testis loss in testicular torsion cases using a noninvasive technique to determine a HI (heterogeneity index) on ultrasound images. We retrospectively studied the records of patients who presented with acute scrotal pain to the Pediatric Emergency Department over a 6-year period. Ultrasound images of the affected testis and the unaffected contralateral testis were examined using a proprietary program to determine the extent of heterogeneity of each image. The difference between the HI of the torsed testis and that of the contralateral normal testis was termed ΔHI. Receiver operating characteristics curve analysis was performed to determine the ΔHI threshold for nonviability. Among 529 patients who presented with acute scrotal pain 147 had testicular torsion based on surgical findings. Of these 147 patients 110 (74.8%) were found to have a viable testis while 37 (25.2%) had a nonviable testis. Using the ΔHI cutoff of 0.394 or greater for nonviability, sensitivity and specificity were 100% and 94.5%, respectively. Positive and negative predictive values were 86% and 100%, respectively. Our results demonstrate that a quantifiable temporal gradation of heterogeneity exists and the heterogeneity index can be used as an objective parameter to determine the viability of a torsed testicle. By developing the technology to measure the heterogeneity index in real time, we could potentially identify which patients with testicular torsion have a nonviable testicle and, thus, would not require immediate surgical exploration. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Liu, Hai Lun; Garzoni, Luca; Herry, Christophe; Durosier, Lucien Daniel; Cao, Mingju; Burns, Patrick; Fecteau, Gilles; Desrochers, André; Patey, Natalie; Seely, Andrew J E; Faure, Christophe; Frasch, Martin G
2016-04-01
Necrotizing enterocolitis of the neonate is an acute inflammatory intestinal disease that can cause necrosis and sepsis. Chorioamnionitis is a risk factor of necrotizing enterocolitis. The gut represents the biggest vagus-innervated organ. Vagal activity can be measured via fetal heart rate variability. We hypothesized that fetal heart rate variability can detect fetuses with incipient gut inflammation. Prospective animal study. University research laboratory. Chronically instrumented near-term fetal sheep (n = 21). Animals were surgically instrumented with vascular catheters and electrocardiogram to allow manipulation and recording from nonanesthetized animals. In 14 fetal sheep, inflammation was induced with lipopolysaccharide (IV) to mimic chorioamnionitis. Fetal arterial blood samples were drawn at selected time points over 54 hours post lipopolysaccharide for blood gas and cytokines (interleukin-6 and tumor necrosis factor-α enzymelinked immunosorbent assay). Fetal heart rateV was quantified throughout the experiment. The time-matched fetal heart rate variability measures were correlated to the levels of interleukin-6 and tumor necrosis factor-α. Upon necropsy, ionized calcium binding adaptor molecule 1+ (Iba1+), CD11c+ (M1), CD206+ (M2 macrophages), and occludin (leakiness marker) immunofluorescence in the terminal ileum was quantified along with regional Iba1+ signal in the brain (microglia). Interleukin-6 peaked at 3 hours post lipopolysaccharide accompanied by mild cardiovascular signs of sepsis. At 54 hours, we identified an increase in Iba1+ and, specifically, M1 macrophages in the ileum accompanied by increased leakiness, with no change in Iba1 signal in the brain. Preceding this change on tissue level, at 24 hours, a subset of nine fetal heart rate variability measures correlated exclusively to the Iba+ markers of ileal, but not brain, inflammation. An additional fetal heart rate variability measure, mean of the differences of R-R intervals, correlated uniquely to M1 ileum macrophages increasing due to lipopolysaccharide. We identified a unique subset of fetal heart rate variability measures reflecting 1.5 days ahead of time the levels of macrophage activation and increased leakiness in terminal ileum. We propose that such subset of fetal heart rate variability measures reflects brain-gut communication via the vagus nerve. Detecting such noninvasively obtainable organ-specific fetal heart rate variability signature of inflammation would alarm neonatologists about neonates at risk of developing necrotizing enterocolitis and sepsis. Clinical validation studies are required.
Shaffer, Fred
2015-01-01
Heart rate variability, the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operates on different time scales to adapt to environmental and psychological challenges. This article briefly reviews neural regulation of the heart and offers some new perspectives on mechanisms underlying the very low frequency rhythm of heart rate variability. Interpretation of heart rate variability rhythms in the context of health risk and physiological and psychological self-regulatory capacity assessment is discussed. The cardiovascular regulatory centers in the spinal cord and medulla integrate inputs from higher brain centers with afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. We also discuss the intrinsic cardiac nervous system and the heart-brain connection pathways, through which afferent information can influence activity in the subcortical, frontocortical, and motor cortex areas. In addition, the use of real-time HRV feedback to increase self-regulatory capacity is reviewed. We conclude that the heart's rhythms are characterized by both complexity and stability over longer time scales that reflect both physiological and psychological functional status of these internal self-regulatory systems. PMID:25694852
McCraty, Rollin; Shaffer, Fred
2015-01-01
Heart rate variability, the change in the time intervals between adjacent heartbeats, is an emergent property of interdependent regulatory systems that operates on different time scales to adapt to environmental and psychological challenges. This article briefly reviews neural regulation of the heart and offers some new perspectives on mechanisms underlying the very low frequency rhythm of heart rate variability. Interpretation of heart rate variability rhythms in the context of health risk and physiological and psychological self-regulatory capacity assessment is discussed. The cardiovascular regulatory centers in the spinal cord and medulla integrate inputs from higher brain centers with afferent cardiovascular system inputs to adjust heart rate and blood pressure via sympathetic and parasympathetic efferent pathways. We also discuss the intrinsic cardiac nervous system and the heart-brain connection pathways, through which afferent information can influence activity in the subcortical, frontocortical, and motor cortex areas. In addition, the use of real-time HRV feedback to increase self-regulatory capacity is reviewed. We conclude that the heart's rhythms are characterized by both complexity and stability over longer time scales that reflect both physiological and psychological functional status of these internal self-regulatory systems.
[Perineal ectopic testis: report of four paediatric cases].
Jlidi, Said; Echaieb, Anis; Ghorbel, Sofiene; Khemakhem, Rachid; Ben Khalifa, Sonia; Chaouachi, Béji
2004-09-01
Perineal ectopic testis is a rare congenital malformation in which the testis is abnormally situated between the penoscrotal raphe and the genitofemoral fold. The authors report four new cases in children aged 2 months, 6 months, 2 years and 5 years. The abnormality was associated with an inguinal hernia in one case. The diagnosis was based on the presence of an empty scrotum or perineal swelling. Treatment, via an inguinal incision, consisted of orchidopexy in a dartos pouch with a favourable course in every case. The aetiopathogenesis of perineal ectopic testis is controversial. It can be easily diagnosed by palpation of the testis in the perineal region. Orchidopexy in a dartos pouch must be performed early, and does not raise any particular problems because of the sufficient length of the spermatic cord. The functional prognosis, always difficult to define, appears to be identical to that of other sites.
A case of adenocarcinoma of the rete testis accompanied by focal adenomatous hyperplasia
2013-01-01
Abstract Adenocarcinoma of the rete testis is very rare. There is still little knowledge about its etiology and pathogenesis. Herein, we present a case of rete testis adenocarcinoma in a 36-year-old Chinese male. The tumor was predominantly composed of irregular small tubules and papillary structures with cuboidal or polygonal cells. In peripheral area of the tumor, the remaining normal rete testis and adenomatous hyperplasia of the rete testis could also be seen, indicating the possible relationship between adenomatous hyperplasia and adenocarcinoma. In addition, the patient underwent a left hydrocelectomy because of the existence of hydrocele 3 years ago. But, it is unclear whether hydrocele and hydrocelectomy is its cause or just the early clinical presentation of the adenocarcinoma. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6757609119625499 PMID:23800084
Specialized rules of gene transcription in male germ cells: the CREM paradigm.
Monaco, Lucia; Kotaja, Noora; Fienga, Giulia; Hogeveen, Kevin; Kolthur, Ullas S; Kimmins, Sarah; Brancorsini, Stefano; Macho, Betina; Sassone-Corsi, Paolo
2004-12-01
Specialized transcription complexes that coordinate the differentiation programme of spermatogenesis have been found in germ cells, which display specific differences in the components of the general transcription machinery. The TATA-binding protein family and its associated cofactors, for example, show upregulated expression in testis. In this physiological context, transcriptional control mediated by the activator cAMP response element modulator (CREM) represents an established paradigm. Somatic cell activation by CREM requires its phosphorylation at a unique regulatory site (Ser117) and subsequent interaction with the ubiquitous coactivator CREB-binding protein. In testis, CREM transcriptional activity is controlled through interaction with a tissue-specific partner, activator of CREM in the testis (ACT), which confers a powerful, phosphorylation-independent activation capacity. The function of ACT was found to be regulated by the testis-specific kinesin KIF17b. Here we discuss some aspects of the testis-specific transcription machinery, whose function is essential for the process of spermatogenesis.
... CJD: Electroencephalogram (EEG) measures the brain's patterns of electrical activity similar to the way an electrocardiogram (ECG) measures the heart's electrical activity. Brain magnetic resonance imaging (MRI) can detect ...
Sudhakumari, Cheni-Chery; Anitha, Arumugam; Murugananthkumar, Raju; Tiwari, Dinesh Kumar; Bhasker, Dharavath; Senthilkumaran, Balasubramanian; Dutta-Gupta, Aparna
2017-09-15
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis. Copyright © 2017 Elsevier Inc. All rights reserved.
Uptake and distribution of the abused inhalant 1,1-difluoroethane in the rat.
Avella, Joseph; Kunaparaju, Naveen; Kumar, Sunil; Lehrer, Michael; Zito, S William; Barletta, Michael
2010-09-01
1,1-Difluoroethane (DFE) is a halogenated hydrocarbon used as a propellant in products designed for dusting electronic equipment and air brush painting. When abused, inhaled DFE produces intoxication and loss of muscular coordination. To investigate DFE toxicokinetics, groups (n = 3) of Sprague-Dawley rats were exposed to 30 s of 20 L/min DFE. The experimental model was designed to mimic exposure during abuse, a protocol which has not been conducted. Tissue collection (blood, brain, heart, liver, and kidney) occurred at 0, 10, 20, 30, 45, 60, 120, 240, 480, and 900 s. Average peak DFE levels were blood 352, brain 519, heart 338, liver 187, and kidney 364 mg/L or mg/kg. The total percent uptake of the administered dose was 4.0%. Uptake into individual compartments was 2.72, 0.38, 0.15, 0.41, and 0.32% for blood, brain, heart, liver, and kidney, respectively. All animals showed signs of intoxication within 20 s manifested as lethargy, prostration and loss of righting reflex. Marked intoxication continued for about 4 min when DFE averaged 21 mg/L in blood and 17 mg/kg in brain. Between 4 and 8 min, animals continued to show signs of sedation as evidenced by reduced aggression and excitement during handling. No discernable intoxication was evident after 8 min and blood and brain levels had fallen to 10 and 6 mg/L or kg, respectively. Plots of concentration (log) versus time were consistent with a two compartment model. Initial distribution was rapid with average half life (t((1/2))) during the alpha phase of 9 s for blood, 18 s for brain and 27 s in cardiac tissue. During beta slope elimination average t((1/2)) was 86 s in blood, 110 s in brain and 168 s in heart. Late elimination half lives were longer with blood gamma = 240 s, brain gamma = 340 s, and heart gamma = 231 s. Following acute exposure the Vd = 0.06 L, beta = 0.48 min(-1), AUC = 409.8 mg.min L(-1), and CL from blood was 0.03 L min(-1). The calculated toxicokinetic data may underestimate these parameters if DFE is abused chronically due to continued uptake into lowly perfused tissues with repeated dosing.
Komai, Michio; Shirakawa, Hitoshi
2007-11-01
Phylloquinone (vitamin K(1) = VK(1)) and the menaquinones (MK-n, or vitamin K(2) = VK(2)) are naturally occurring forms of VK. Most of the menaquinone series are synthesized by microorganisms, but we have reported that MK-4 is usual in being synthesized by the conversion of orally ingested VK(1) or MK-n in the major tissues of germfree rats and mice which lack their intestinal microflora. This result led us to deny 1960's Martius' hypothesis that described the participation of bacterial enzyme of the intestinal flora to this conversion. VK acts as a cofactor in the posttranslational synthesis of gamma-carboxyglutamic acid (Gla) from glutamic acid (Glu) residues in the nascent Gla-protein molecule. Therefore, VK is essential for blood coagulation (various clotting factors) and bone structure (as osteocalcin [OC = BGP] and matrix Gla-protein [MGP] in mammals. In addition to the liver, VK is found in the bone, brain, heart, testis, kidney, pancreas and salivary glands mainly as MK-4, and it has been reported that MK-4 itself has specific biological activities in these tissues beside Gla-protein formation. However, the physiological role of MK-4 in these organs has not been fully understood yet. Recently MK-4 has been attracted the attention of researchers due to its activities such as apoptotic activity on the osteoclast cells and leukemia cells, SXR/PXR ligand, and so on. We further review the potent important physiological role of MK-4 in the bone as well as other major tissues.
Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam
2017-05-10
In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities.
Sik, Hin Hung; Gao, Junling; Fan, Jicong; Wu, Bonnie Wai Yan; Leung, Hang Kin; Hung, Yeung Sam
2017-01-01
In both the East and West, traditional teachings say that the mind and heart are somehow closely correlated, especially during spiritual practice. One difficulty in proving this objectively is that the natures of brain and heart activities are quite different. In this paper, we propose a methodology that uses wavelet entropy to measure the chaotic levels of both electroencephalogram (EEG) and electrocardiogram (ECG) data and show how this may be used to explore the potential coordination between the mind and heart under different experimental conditions. Furthermore, Statistical Parametric Mapping (SPM) was used to identify the brain regions in which the EEG wavelet entropy was the most affected by the experimental conditions. As an illustration, the EEG and ECG were recorded under two different conditions (normal rest and mindful breathing) at the beginning of an 8-week standard Mindfulness-based Stress Reduction (MBSR) training course (pretest) and after the course (posttest). Using the proposed method, the results consistently showed that the wavelet entropy of the brain EEG decreased during the MBSR mindful breathing state as compared to that during the closed-eye resting state. Similarly, a lower wavelet entropy of heartrate was found during MBSR mindful breathing. However, no difference in wavelet entropy during MBSR mindful breathing was found between the pretest and posttest. No correlation was observed between the entropy of brain waves and the entropy of heartrate during normal rest in all participants, whereas a significant correlation was observed during MBSR mindful breathing. Additionally, the most well-correlated brain regions were located in the central areas of the brain. This study provides a methodology for the establishment of evidence that mindfulness practice (i.e., mindful breathing) may increase the coordination between mind and heart activities. PMID:28518101
NASA Astrophysics Data System (ADS)
Tremoleda, Jordi L.; Alvarez, Karl; Aden, Abdirahman; Donnan, Robert; Michael-Titus, Adina T.; Tomlins, Peter H.
2017-12-01
Traumatic brain injury (TBI) results in direct vascular disruption, triggering edema, and reduction in cerebral blood flow. Therefore, understanding the pathophysiology of brain microcirculation following TBI is important for the development of effective therapies. Optical coherence angiography (OCA) is a promising tool for evaluating TBI in rodent models. We develop an approach to OCA that uses the heart-rate frequency to discriminate between static tissue and vasculature. This method operates on intensity data and is therefore not phase sensitive. Furthermore, it does not require spatial overlap of voxels and thus can be applied to pre-existing datasets for which oversampling may not have been explicitly considered. Heart-rate sensitive OCA was developed for dynamic assessment of mouse microvasculature post-TBI. Results show changes occurring at 5-min intervals within the first 50 min of injury.
The current study examines the actions of methoxychlor and its estrogenic metabolite, 2, 2-bis-(p-hydroxyphenyl)-1, 1, 1-trichloroethane (HPTE), on seminiferous cord formation and growth of the developing rat testis. The developing testis in the embryonic and ...
Kong, Lesheng; Lovell, Peter V.; Heger, Andreas; Mello, Claudio V.; Ponting, Chris P.
2010-01-01
Genes encoding protein kinases tend to evolve slowly over evolutionary time, and only rarely do they appear as recent duplications in sequenced vertebrate genomes. Consequently, it was a surprise to find two families of kinase genes that have greatly and recently expanded in the zebra finch (Taeniopygia guttata) lineage. In contrast to other amniotic genomes (including chicken) that harbor only single copies of p21-activated serine/threonine kinase 3 (PAK3) and proviral integration site 1 (PIM1) genes, the zebra finch genome appeared at first to additionally contain 67 PAK3-like (PAK3L) and 51 PIM1-like (PIM1L) protein kinase genes. An exhaustive analysis of these gene models, however, revealed most to be incomplete, owing to the absence of terminal exons. After reprediction, 31 PAK3L genes and 10 PIM1L genes remain, and all but three are predicted, from the retention of functional sites and open reading frames, to be enzymatically active. PAK3L, but not PIM1L, gene sequences show evidence of recurrent episodes of positive selection, concentrated within structures spatially adjacent to N- and C-terminal protein regions that have been discarded from zebra finch PAK3L genes. At least seven zebra finch PAK3L genes were observed to be expressed in testis, whereas two sequences were found transcribed in the brain, one broadly including the song nuclei and the other in the ventricular zone and in cells resembling Bergmann's glia in the cerebellar Purkinje cell layer. Two PIM1L sequences were also observed to be expressed with broad distributions in the zebra finch brain, one in both the ventricular zone and the cerebellum and apparently associated with glial cells and the other showing neuronal cell expression and marked enrichment in midbrain/thalamic nuclei. These expression patterns do not correlate with zebra finch-specific features such as vocal learning. Nevertheless, our results show how ancient and conserved intracellular signaling molecules can be co-opted, following duplication, thereby resulting in lineage-specific functions, presumably affecting the zebra finch testis and brain. PMID:20237222
Genome-wide analysis of long non-coding RNAs and their role in postnatal porcine testis development.
Weng, Bo; Ran, Maoliang; Chen, Bin; He, Changqing; Dong, Lianhua; Peng, Fuzhi
2017-10-01
A comprehensive and systematic understanding of the roles of lncRNAs in the postnatal development of the pig testis has still not been achieved. In the present study, we obtained more than one billion clean reads and identified 15,528 lncRNA transcripts; these transcripts included 5032 known and 10,496 novel porcine lncRNA transcripts and corresponded to 10,041 lncRNA genes. Pairwise comparisons identified 449 known and 324 novel lncRNAs that showed differential expression patterns. GO and KEGG pathway enrichment analyses revealed that the targeted genes were involved in metabolic pathways regulating testis development and spermatogenesis, such as the TGF-beta pathway, the PI3K-Akt pathway, the Wnt/β-catenin pathway, and the AMPK pathway. Using this information, we predicted some lncRNAs and coding gene pairs were predicted that may function in testis development and spermatogenesis; these are listed in detail. This study has provided the most comprehensive catalog to date of lncRNAs in the postnatal pig testis and will aid our understanding of their functional roles in testis development and spermatogenesis. Copyright © 2017. Published by Elsevier Inc.
A blood-testis barrier restricting passage from blood into rete testis fluid but not into lymph
Setchell, B. P.; Voglmayr, J. K.; Waites, G. M. H.
1969-01-01
1. A permeability barrier in or around the seminiferous tubules of rams has been demonstrated by studying the rate of passage of a variety of substances from blood plasma into fluid collected from the rete testis and into testicular lymph. 2. All substances studied passed readily into testicular lymph. 3. Tritiated water, urea, ethanol and bicarbonate in rete testis fluid equilibrated with blood plasma within 3 hr; Na+, K+, Rb+, Cl-, I-, CNS-, creatinine and galactose entered slowly and p-aminohippurate (PAH), glutamate, iodinated albumin, inulin and [51Cr]EDTA did not appear in rete testis fluid at all. 4. Rubidium was excluded relative to iodoantipyrine from the testes of control and hypophysectomized rats and from rat testes heated to 37, 40, 43 and 45° C; no such exclusion was seen in testes of rats which had been given cadmium chloride 5 months earlier so as to destroy the seminiferous tubules. 5. It is suggested that this permeability barrier will regulate the access to the seminiferous epithelium of some constituents of blood plasma, isolate the germinal cells immunologically and help to maintain the concentration differences between rete testis fluid and lymph or blood plasma. PMID:4973530
Brinkmann, Ulrich; Vasmatzis, George; Lee, Byungkook; Yerushalmi, Noga; Essand, Magnus; Pastan, Ira
1998-01-01
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus. PMID:9724777
Brinkmann, U; Vasmatzis, G; Lee, B; Yerushalmi, N; Essand, M; Pastan, I
1998-09-01
We have used a combination of computerized database mining and experimental expression analyses to identify a gene that is preferentially expressed in normal male and female reproductive tissues, prostate, testis, fallopian tube, uterus, and placenta, as well as in prostate cancer, testicular cancer, and uterine cancer. This gene is located on the human X chromosome, and it is homologous to a family of genes encoding GAGE-like proteins. GAGE proteins are expressed in a variety of tumors and in testis. We designate the novel gene PAGE-1 because the expression pattern in the Cancer Genome Anatomy Project libraries indicates that it is predominantly expressed in normal and neoplastic prostate. Further database analysis indicates the presence of other genes with high homology to PAGE-1, which were found in cDNA libraries derived from testis, pooled libraries (with testis), and in a germ cell tumor library. The expression of PAGE-1 in normal and malignant prostate, testicular, and uterine tissues makes it a possible target for the diagnosis and possibly for the vaccine-based therapy of neoplasms of prostate, testis, and uterus.
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
Cystic dysplasia of the testis: a very rare paediatric tumor of the testis.
Eberli, Daniel; Gretener, Heini; Dommann-Scherrer, Corina; Pestalozzi, Dietegen; Fehr, Jean-Luc
2002-01-01
To describe a case of cystic dysplasia of the testis (CDT), an uncommon cause of scrotal swelling in the pediatric patient. Clinic, therapy, fertility, and radiographic and pathologic findings are discussed and the 30 previously reported cases are reviewed. A 9-year-old boy presented with asymptomatic scrotal swelling. A scrotal ultrasound showed a multicystic scrotal mass in the rete testis and an ipsilateral renal agenesis. The growth in size of the mass forced the authors to perform an operative exploration. Intraoperative findings included a multicystic mass in the rete testis of the right testicle. Testicle-sparing total removal of the multicystic mass was performed and the pathologic examination revealed a benign, multilobulated configuration of the cysts in the region of the rete testis. These findings were similar to those found in previously reported cases of CDT. Ipsilateral renal agenesis is the most common associated anomaly. As a pathogenetic factor, mal-junction of the Wolffian duct in the 5th week of gestation is most creditable. CDT is a rare cause of pediatric scrotal mass. When feasible, a testicle-sparing approach should be considered and all patients should undergo evaluation for associated urologic anomalies.
Ma, Qixiang; Shao, Haozhen; Feng, Yanyan; Zhang, Linpeng; Li, Pengshou; Hu, Xiaowei; Ma, Zhitao; Lou, Hua; Zeng, Xianwei; Luo, Guangbin
2018-05-24
Excessive oxidative stress (OS) leads to cellular dysfunctions and cell death and constitutes a major cause of male infertility. However, the etiologies of increased reactive oxygen species (ROS) in male infertility is not fully understood. One major limitation is the lack of an in vivo imaging system that can be used to effectively study the impact of excessive ROS in the testis. Recently, we discovered that the hepatocellular carcinoma reporter (HCR) mice previously generated in our laboratory also expressed luciferase in the spermatids of the testis. The goal of the current study is to use the HCR mice to detect OS in the testis and to investigate the potential use of this new system in studying OS-induced male infertility. Bioluminescence imaging (BLI) was performed in HCR mice that were treated with peroxy caged luciferin-1 (PCL-1), an OS reporter, to establish a new mouse model for in vivo monitoring of the OS status inside the male reproductive tract. Subsequently, the effect of acetaminophen (APAP) overdose on the OS inside the testis and male fertility were determined. Lastly, APAP was co-administered with glutathione, an antioxidant reagent, to test if the HCR mice can serve as a model for the effective and rapid assessment of the potency of individual agents in modifying the OS inside the mouse testis. The OS level in the testis in the HCR mice was readily detected by BLI. The use of this new model led to the discovery that APAP caused a sudden rise of OS in the testis and was a potent toxicant for the male reproductive system. Moreover, administration of glutathione was effective in preventing the APAP-induced elevation of OS and in ameliorating all of the OS-induced anomalies in the testis. The HCR mice represent an excellent model for monitoring OS change in the mouse testis by real time BLI. APAP is a potent male reproductive toxicant and APAP-treated mice represent a valid model for OS-induced male infertility. This model can be used to study OS-induced damage in male reproductive tract and in assessing the effects of therapeutic agents on the relative levels of OS and male fertility. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelali, Ala
Diabetes induces oxidative stress, DNA damage and alters several intracellular signaling pathways in organ systems. This study investigated modulatory effects of Trans-Resveratrol on type 1 diabetes mellitus (T1DM)-induced abnormal spermatogenesis, DNA damage and alterations in poly (ADP-ribose) polymerase (PARP) signaling in rat testis. Trans-Resveratrol administration (5mg/kg/day, ip) to Streptozotocin-induced T1DM adult male Wistar rats from day 22–42 resulted in recovery of induced oxidative stress, abnormal spermatogenesis and inhibited DNA synthesis, and led to mitigation of 8-hydroxy-2'-deoxyguanosine formation in the testis and spermatozoa, and DNA double-strand breaks in the testis. Trans-Resveratrol aggravated T1DM-induced up-regulation of aminoacyl tRNA synthetase complex-interacting multifunctional proteinmore » 2 expression; however, it did not modify the up-regulated total PARP and down-regulated PARP1 expressions, but recovered the decreased SirT1 (Sirtuin 1) levels in T1DM rat testis. Trans-Resveratrol, when given alone, reduced the poly (ADP-ribosyl)ation (pADPr) process in the testis due to an increase in PAR glycohydrolase activity, but when given to T1DM rats it did not affect the pADPr levels. T1DM with or without Trans-Resveratrol did not induce nuclear translocation of apoptosis-inducing factor and the formation of 50 kb DNA breaks, suggesting to the lack of caspase-3-independent cell death called parthanatos. T1DM with or without Trans-Resveratrol did not increase necrotic cell death in the testis. Primary spermatocytes, Sertoli cells, Leydig cells and intra-testicular vessels showed the expression of PARP pathway related proteins. In conclusion, Trans-Resveratrol mitigates T1DM-induced sperm abnormality and DNA damage, but does not significantly modulate PARP signaling pathway, except the SirT1 expression, in the rat testis. - Highlights: • Resveratrol inhibits diabetes-induced abnormal sperm morphogenesis • Resveratrol recovers diabetes-induced DNA damage in testis and spermatozoa • Resveratrol does not normalize diabetes-induced increase in total PARP • Resveratrol does not modulate diabetes-induced decrease in PARP1 • Resveratrol normalizes diabetes-induced decrease in SirT1 levels in testis.« less
Effect of vitamin E supplement in diet on antioxidant ability of testis in Boer goat.
Hong, Zhu; Hailing, Luo; Hui, Meng; Guijie, Zhang; Leyan, Yan; Dubing, Yue
2010-01-01
The aim of this study was to evaluate the supplementation of Vitamin E in diet on the antioxidant capacity of testis in Boer goat. Twenty-four healthy, Boer male kids of similar body weight (BW) were selected at 3 months of age from the kid flock. Kids were born from does treated with simultaneous flushing and artificial insemination technology. The Boer kids were divided into four groups randomly, supplemented with 0, 80, 320 and 880 IU kid(-1)d(-1) Vitamin E, which were labeled as Groups 1, 2, 3 and 4, respectively, for 150 days (5 months). Blood samples were collected at the 15th-, 30th-, 60th-, 90th-, 120th-, and 150th-day during the experimental period, and the serums were used to determine Vitamin E content. Three Boer goats in each group were slaughtered at the age of eight months at the end of the experiment. Liver and testis were collected to test the Vitamin E content and the antioxidant capacity of testis. Results showed that the content of Vitamin E in serum, liver and testis increased with the increasing addition of Vitamin E. However, the content of Vitamin E in the serum, liver and testis, in the control, was significantly lower than in Groups 2 and 3, respectively, but there was no significant difference between the control Group and Group 4. When high levels of Vitamin E (880 IU kid(-1)d(-1)) were added, contents of Vitamin E in serum, liver and testis were decreased and compared with the controls. Adding a low level (80 IU kid(-1)d(-1)) of Vitamin E can increase activity of total anti-oxidation competence (T-AOC) and superoxide dismutase (SOD), and decrease content of nitric oxide (NO) in testis. MDA (malondialdehyde) content was decreased significantly in Group 3 (P<0.05). Supplementing a low level (80 IU kid(-1)d(-1)) and middle level (320 IU kid(-1)d(-1)) of Vitamin E decreased activity of nitric oxide syntha (NOS) in testis (P<0.05). Vitamin E can increase activity of GSH-PX (glutathione peroxidase). These results indicate that supplementing Vitamin E protects testis from damage by preoxidation.
[The application of gonadotropin in treatment of male central hypogonadism].
Di, Fu-song; Cui, Yu-gui; Jia, Yue
2005-11-01
To observe the efficacy of human chorionic gonadotrophin (hCG) and hCG plus human menopausal gonadotropin (HMG) for central hypogonadism in male patients. 64 men with central hypogonadism were recruited in this study, including 19 patients with Kallmann syndrome, 41 patients with idiopathic hypogonadotrophic hypogonadism (IHH) and 4 patients with hypogonadism after brain surgery. 33 patients were treated with hCG 1500 IU intramuscularly twice a week, whereas 31 patients were treated with intramuscular hCG 1500 IU plus HMG 75 IU twice a week, for at least 6 months. After treatment, all patients felt stronger physically and 42/64 patients developed beard, pubes or armpit hair. The testis volume enlarged significantly [(3.08 +/- 2.44) ml vs (8.92 +/- 5.37) ml, P < 0.001], and serum follicle-stimulating hormone, luteinizing hormone and testosterone concentrations were higher significantly than those before treatment (P < 0.05). 6/64 patients underwent spermatorrhea and 2 patient were found to have spermatogenesis. If judged by the testis volume, 52 patients (81.2%) were effective and 12 patients were ineffective. For male patients with the central hypogonadism, hCG and hCG plus HMG can promote the pubertal development and maturation of second sex characteristics, as well as enhance the physical strength; in some patients both androgen production and spermatogenesis can be achieved.
Morton, Paul D.; Ishibashi, Nobuyuki; Jonas, Richard A.
2017-01-01
In the past two decades it has become evident that individuals born with congenital heart disease (CHD) are at risk of developing life-long neurological deficits. Multifactorial risk factors contributing to neurodevelopmental abnormalities associated with CHD have been identified; however the underlying etiologies remain largely unknown and efforts to address this issue have only recently begun. There has been a dramatic shift in focus from newly acquired brain injuries associated with corrective and palliative heart surgery to antenatal and preoperative factors governing altered brain maturation in CHD. In this review, we describe key time windows of development during which the immature brain is vulnerable to injury. Special emphasis is placed on the dynamic nature of cellular events and how CHD may adversely impact the cellular units and networks necessary for proper cognitive and motor function. In addition, we describe current gaps in knowledge and offer perspectives about what can be done to improve our understanding of neurological deficits in CHD. Ultimately, a multidisciplinary approach will be essential in order to prevent or improve adverse neurodevelopmental outcomes in individuals surviving CHD. PMID:28302742
Chang, Catie; Raven, Erika P; Duyn, Jeff H
2016-05-13
Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).
Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat.
Schultrich, Katharina; Frenzel, Falko; Oberemm, Axel; Buhrke, Thorsten; Braeuning, Albert; Lampen, Alfonso
2017-09-01
The chlorinated propanols 2- and 3-monochloropropanediol (MCPD), and their fatty acid esters have gained public attention due to their frequent occurrence as heat-induced food contaminants. Toxic properties of 3-MCPD in kidney and testis have extensively been characterized. Other 3-MCPD target organs include heart and liver, while 2-MCPD toxicity has been observed in striated muscle, heart, kidney, and liver. Inhibition of glycolysis appears to be important in 3-MCPD toxicity, whereas mechanisms of 2-MCPD toxicity are still unknown. It is thus not clear whether toxicity by the two isomeric compounds is dependent on similar or dissimilar modes of action. A 28-day oral feeding study in rats was conducted using daily non-toxic doses of 2-MCPD or 3-MCPD [10 mg/kg body weight], or an equimolar (53 mg/kg body weight) or a lower (13.3 mg/kg body weight) dose of 2-MCPD dipalmitate. Comprehensive comparative proteomic analyses of substance-induced alterations in the common target organ heart revealed striking similarities between effects induced by 2-MCPD and its dipalmitate ester, whereas the degree of effect overlap between 2-MCPD and 3-MCPD was much less. The present data demonstrate that even if exerting effects in the same organ and targeting similar metabolic networks, profound differences between molecular effects of 2-MCPD and 3-MCPD exist thus warranting the necessity of separate risk assessment for the two substances. This study for the first time provides molecular insight into molecular details of 2-MCPD toxicity. Furthermore, for the first time, molecular data on 3-MCPD toxicity in the heart are presented.
Sakai, Hiroki; Kirino, Yohei; Katsuma, Susumu; Aoki, Fugaku; Suzuki, Masataka G
2016-01-01
The gonad develops as a testis in male or an ovary in female. In the silkworm, B. mori , little is known about testis and ovary in the embryonic stages and early larval stages. In this study, we performed morphological and histomorphological observations of ovaries and testes from the late embryonic stage to the 1st instar larval stage. Results obtained with lack of accurate information on sex of examined individuals may be misleading, thus we performed phenotypic observations of gonads by utilizing sex-limited strain that enables us to easily discriminate female embryos from male ones based on those egg colors. In testis, four testicular follicles were clearly observed in the testis at the first instar larval stage, and boundary layers were formed between the testicular follicles. At the late embryonic stage, the testis consisted of four testicular follicles, while the boundary layers were still obscure. In ovary, four ovarioles were easily recognizable in the ovary at the first instar larval stage, and boundary layers were formed between the ovarioles. However, in the late embryonic stage, it was quite difficult to identify four ovarioles. Morphological characteristics were almost similar between testis and ovary in early developmental stages. Our present study demonstrates that the most reliable difference between testis and ovary in early developmental stages is the attaching point of the duct. Formation and development of the duct may be sensitive to the sex-determining signal and display sexual dimorphism in early embryonic stages.
Chronic pain has a negative impact on sexuality in testis cancer survivors.
Pühse, Gerald; Wachsmuth, Julia Urte; Kemper, Sebastian; Husstedt, Ingo W; Evers, Stefan; Kliesch, Sabine
2012-01-01
Testis cancer is a disease that directly affects a man's sense of masculinity and involves treatments compromising sexual function. The aim of this study was to investigate the prevalence of sexual dysfunction and the influence of chronic pain on sexuality in long-term testis cancer survivors. Thus, we examined 539 patients after they had one testis removed because of a testicular germ cell tumor. Having completed oncologic therapy, all patients received a detailed questionnaire asking about the occurrence and clinical presentation of testis pain before and after orchiectomy. In addition, items from the abridged International Index of Erectile Function and Brief Sexual Function Inventory were used to gain precise information on individual sexual function. Overall, 34.5% of our testicular cancer survivors complained of reduced sexual desire, and sexual activity was reduced in 41.6%. Erectile dysfunction was present in up to 31.5% of patients. In 24.4%, the ability to maintain an erection during intercourse was impaired. Ejaculatory disorders (premature, delayed, retrograde, or anejaculation) occurred in 84.9% of our testis cancer survivors. A total of 32.4% of our participants experienced a reduced intensity of orgasm, and 95.4% experienced reduced overall sexual satisfaction. There was a significant correlation between the occurrence of chronic pain symptoms and the relative frequency and intensity of erectile dysfunction, inability to maintain an erection, ejaculation disorders, and reduced intensity of orgasm. In conclusion, chronic pain has a negative impact on sexuality in testis cancer survivors.
Interaction of organic cation transporter 3 (SLC22A3) and amphetamine
Zhu, Hao-Jie; Appel, David I.; Gründemann, Dirk; Markowitz, John S.
2013-01-01
The organic cation transporter (OCT) 3 is widely expressed in various organs in humans, and involved in the disposition of many exogenous and endogenous compounds. Several lines of evidence have suggested that OCT3 expressed in the brain plays an important role in the regulation of neurotransmission. Relative to wild-type (WT) animals, Oct3 knockout (KO) mice have displayed altered behavioral and neurochemical responses to psychostimulants such as amphetamine (AMPH) and methamphetamine. In the present study, both in vitro and in vivo approaches were utilized to explore potential mechanisms underlying the disparate neuropharmacological effects observed following AMPH exposure in Oct3 KO mice. In vitro uptake studies conducted in OCT3 transfected cells indicated that dextroamphetamine (d-AMPH) is not a substrate of OCT3. However, OCT3 was determined to be a high-capacity and low-affinity transporter for the neurotransmitters dopamine (DA), norepinephrine (NE), and serotonin (5-HT). Inhibition studies demonstrated that d-AMPH exerts relatively weak inhibitory effects on the OCT3-mediated uptake of DA, NE, 5-HT, and the model OCT3 substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide. The IC50 values were determined to be 41.5 ± 7.5 and 24.1 ± 7.0 μM for inhibiting DA and 5-HT uptake, respectively, while 50% inhibition of NE and 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide uptake was not achieved by even the highest concentration of d-AMPH applied (100 μM). Furthermore, the disposition of d-AMPH in various tissues including the brain, liver, heart, kidney, muscle, intestine, spleen, testis, uterus, and plasma were determined in both male and female Oct3 KO and WT mice. No significant difference was observed between either genotypes or sex in all tested organs and tissues. Our findings suggest that OCT3 is not a prominent factor influencing the disposition of d-AMPH. Additionally, based upon the inhibitory potency observed in vitro, d-AMPH is unlikely to inhibit the uptake of monoamines mediated by OCT3 in the brain. Differentiated neuropharmacological effects of AMPHs noted between Oct3 KO and WT mice appear to be due to the absence of Oct3 mediated uptake of neurotransmitters in the KO mice. PMID:20402963
Interaction of organic cation transporter 3 (SLC22A3) and amphetamine.
Zhu, Hao-Jie; Appel, David I; Gründemann, Dirk; Markowitz, John S
2010-07-01
The organic cation transporter (OCT) 3 is widely expressed in various organs in humans, and involved in the disposition of many exogenous and endogenous compounds. Several lines of evidence have suggested that OCT3 expressed in the brain plays an important role in the regulation of neurotransmission. Relative to wild-type (WT) animals, Oct3 knockout (KO) mice have displayed altered behavioral and neurochemical responses to psychostimulants such as amphetamine (AMPH) and methamphetamine. In the present study, both in vitro and in vivo approaches were utilized to explore potential mechanisms underlying the disparate neuropharmacological effects observed following AMPH exposure in Oct3 KO mice. In vitro uptake studies conducted in OCT3 transfected cells indicated that dextroamphetamine (d-AMPH) is not a substrate of OCT3. However, OCT3 was determined to be a high-capacity and low-affinity transporter for the neurotransmitters dopamine (DA), norepinephrine (NE), and serotonin (5-HT). Inhibition studies demonstrated that d-AMPH exerts relatively weak inhibitory effects on the OCT3-mediated uptake of DA, NE, 5-HT, and the model OCT3 substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide. The IC(50) values were determined to be 41.5 +/- 7.5 and 24.1 +/- 7.0 microM for inhibiting DA and 5-HT uptake, respectively, while 50% inhibition of NE and 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide uptake was not achieved by even the highest concentration of d-AMPH applied (100 microM). Furthermore, the disposition of d-AMPH in various tissues including the brain, liver, heart, kidney, muscle, intestine, spleen, testis, uterus, and plasma were determined in both male and female Oct3 KO and WT mice. No significant difference was observed between either genotypes or sex in all tested organs and tissues. Our findings suggest that OCT3 is not a prominent factor influencing the disposition of d-AMPH. Additionally, based upon the inhibitory potency observed in vitro, d-AMPH is unlikely to inhibit the uptake of monoamines mediated by OCT3 in the brain. Differentiated neuropharmacological effects of AMPHs noted between Oct3 KO and WT mice appear to be due to the absence of Oct3 mediated uptake of neurotransmitters in the KO mice.
... the test, tell your provider if you have: Artificial heart valves Brain aneurysm clips Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... artificial joints Vascular stents Worked with sheet metal in ...
Magnetic resonance angiography
... your provider if you have: Brain aneurysm clips Artificial heart valve Heart defibrillator or pacemaker Inner ear (cochlear) implants Insulin or chemotherapy port Intrauterine device (IUD) Kidney ... artificial joints Vascular stent Worked with sheet metal in ...
Baysal, Ayse; Saşmazel, Ahmet; Yildirim, Ayse; Ozyaprak, Buket; Gundogus, Narin; Kocak, Tuncer
2014-01-01
In children undergoing congenital heart surgery, plasma brain natriuretic peptide levels may have a role in development of low cardiac output syndrome that is defined as a combination of clinical findings and interventions to augment cardiac output in children with pulmonary hypertension. In a prospective observational study, fifty-one children undergoing congenital heart surgery with preoperative echocardiographic study showing pulmonary hypertension were enrolled. The plasma brain natriuretic peptide levels were collected before operation, 12, 24 and 48h after operation. The patients enrolled into the study were divided into two groups depending on: (1) Development of LCOS which is defined as a combination of clinical findings or interventions to augment cardiac output postoperatively; (2) Determination of preoperative brain natriuretic peptide cut-off value by receiver operating curve analysis for low cardiac output syndrome. The secondary end points were: (1) duration of mechanical ventilation ≥72h, (2) intensive care unit stay >7days, and (3) mortality. The differences in preoperative and postoperative brain natriuretic peptide levels of patients with or without low cardiac output syndrome (n=35, n=16, respectively) showed significant differences in repeated measurement time points (p=0.0001). The preoperative brain natriuretic peptide cut-off value of 125.5pgmL-1 was found to have the highest sensitivity of 88.9% and specificity of 96.9% in predicting low cardiac output syndrome in patients with pulmonary hypertension. A good correlation was found between preoperative plasma brain natriuretic peptide level and duration of mechanical ventilation (r=0.67, p=0.0001). In patients with pulmonary hypertension undergoing congenital heart surgery, 91% of patients with preoperative plasma brain natriuretic peptide levels above 125.5pgmL-1 are at risk of developing low cardiac output syndrome which is an important postoperative outcome. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.
Ghrelin: an emerging player in the regulation of reproduction in non-mammalian vertebrates.
Unniappan, Suraj
2010-07-01
The endocrine regulation of vertebrate reproduction is achieved by the coordinated actions of multiple endocrine factors mainly produced from the brain, pituitary, and gonads. In addition to these, several other tissues including the fat and gut produce factors that have reproductive effects. Ghrelin is one such gut/brain hormone with species-specific effects in the regulation of mammalian reproduction. Recent studies have shown that ghrelin and ghrelin receptor mRNAs, and protein are expressed in the ovary and testis of mammals, indicating a direct effect for ghrelin in the control of reproduction. Ghrelin regulates mammalian reproduction by modulating hormone secretion from the brain and pituitary, and by acting directly on the gonads to influence reproductive tissue development and steroid hormone release. Based on the studies reported so far, ghrelin seems to have a predominantly inhibitory role on mammalian reproduction. The presence of ghrelin and ghrelin receptor has been found in the brain, pituitary and gonads of several non-mammalian vertebrates. In contrast to mammals, ghrelin seems to have a stimulatory role in the regulation of non-mammalian reproduction. The main objective of this review is to do a perspective analysis of the comparative aspects of ghrelin regulation of reproduction. (c) 2009 Elsevier Inc. All rights reserved.
Schulz, Rainer; Görge, Philipp Maximilian; Görbe, Anikó; Ferdinandy, Péter; Lampe, Paul D.; Leybaert, Luc
2015-01-01
Connexins are widely distributed proteins in the body that are crucially important for heart and brain function. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localisation at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodelling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injury as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissue following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection. PMID:26073311
Menet, Marie-Claude; Baron, Stephanie; Taghi, Meryam; Diestra, Remi; Dargère, Delphine; Laprévote, Olivier; Nivet-Antoine, Valérie; Beaudeux, Jean-Louis; Bédarida, Tatiana; Cottart, Charles-Henry
2017-08-01
Trans-resveratrol is widely studied for its potentially beneficial effects on numerous disorders. It is rapidly metabolized and its metabolites can exhibit biological activity. The present study aimed to investigate whether acute or sustained trans-resveratrol administration impacted on the distribution of trans-resveratrol and its metabolites in brain, heart, and liver. We used ultra-HPLC quadrupole-TOF (UHPLC-Q-TOF) in a full-scan mode to identify and assess large numbers of resveratrol metabolites. For acute intake, mice were overfed with a single dose of trans-resveratrol (150 mg/kg) and organs were collected after 30 and 60 min. For sustained intake, trans-resveratrol was given in the chow (0.04% w/w corresponding to 40 mg/kg/day), and plasma and the organs were collected after 3 months of this resveratrol diet. We found that trans-resveratrol-3-O-glucuronide and resveratrol-3-sulfate were the main metabolites found after acute intake, and free trans-resveratrol (in the brain and heart) and dihydroresveratrol derivatives were found after sustained administration CONCLUSIONS: Our results show notable differences between acute and sustained administration of trans-resveratrol and distribution of trans-resveratrol and its metabolites in mouse heart, brain, and liver. The results suggest a strategy for development of galenic forms of resveratrol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brain embolic phenomena associated with cardiopulmonary bypass.
Challa, V R; Moody, D M; Troost, B T
1993-07-01
Various biologic and non-biologic materials may be embolized to the brain after the use of cardiopulmonary bypass (CPB) pumps during open heart surgery but their relative frequency and importance are uncertain. Among the nonbiologic materials, Antifoam A, which contains organosilicates and silicon, continues to be employed as an additive to prevent frothing. Recent improvements in filtration and oxygenation techniques have clearly reduced the incidence of large emboli and complications like stroke but other neurologic sequelae following open heart surgery are common and in many cases poorly explained. A recently developed histochemical technique for the demonstration of the endothelial alkaline phosphatase (AP) was employed in a post-mortem study of brains from 8 patients and 6 dogs dying within a few days after open heart surgery employing cardiopulmonary bypass perfusion. Brains from 38 patients and 6 dogs who were not subjected to heart surgery were studied as controls with the same technique. The AP-stained slides are suitable for both light microscopic examination of the thick celloidin sections as well as a subsequent processing for high-resolution microradiography. Small capillary and arteriolar dilatations (SCADs) were seen in the test subjects/animals but not controls. SCADs were seen in all parts of the brain. Approximately 50% of the SCADs showed birefringence when examined with polarized light. SCADs are putative embolic phenomena and the exact nature and source of the embolic material is under investigation. A glycolipid component is indicated by preliminary studies. SCADs are difficult to find in routine paraffin sections and most if not all of the offending material seems to be dissolved during processing.(ABSTRACT TRUNCATED AT 250 WORDS)
Synaptic Plasticity in Cardiac Innervation and Its Potential Role in Atrial Fibrillation
Ashton, Jesse L.; Burton, Rebecca A. B.; Bub, Gil; Smaill, Bruce H.; Montgomery, Johanna M.
2018-01-01
Synaptic plasticity is defined as the ability of synapses to change their strength of transmission. Plasticity of synaptic connections in the brain is a major focus of neuroscience research, as it is the primary mechanism underpinning learning and memory. Beyond the brain however, plasticity in peripheral neurons is less well understood, particularly in the neurons innervating the heart. The atria receive rich innervation from the autonomic branch of the peripheral nervous system. Sympathetic neurons are clustered in stellate and cervical ganglia alongside the spinal cord and extend fibers to the heart directly innervating the myocardium. These neurons are major drivers of hyperactive sympathetic activity observed in heart disease, ventricular arrhythmias, and sudden cardiac death. Both pre- and postsynaptic changes have been observed to occur at synapses formed by sympathetic ganglion neurons, suggesting that plasticity at sympathetic neuro-cardiac synapses is a major contributor to arrhythmias. Less is known about the plasticity in parasympathetic neurons located in clusters on the heart surface. These neuronal clusters, termed ganglionated plexi, or “little brains,” can independently modulate neural control of the heart and stimulation that enhances their excitability can induce arrhythmia such as atrial fibrillation. The ability of these neurons to alter parasympathetic activity suggests that plasticity may indeed occur at the synapses formed on and by ganglionated plexi neurons. Such changes may not only fine-tune autonomic innervation of the heart, but could also be a source of maladaptive plasticity during atrial fibrillation. PMID:29615932
... fatty foods and stay away from fast food restaurants to make your heart and blood vessels healthier. ... 22, 2016. Read More Brain aneurysm repair Brain surgery Carotid artery surgery High blood cholesterol levels Recovering ...
Nutrition in the prevention of Coronary Heart Disease and the management of lipoprotein disorders
USDA-ARS?s Scientific Manuscript database
Cardiovascular disease (CVD) is comprised of coronary heart disease (CHD), stroke, and peripheral vascular disease (PVD). CVD is caused by progressive narrowing and blockage of arteries supplying the heart, brain, and other tissues and organs. CVD is the leading cause of death and disability in our ...
Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki
2009-05-01
The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-alpha and PdgfR-beta in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-alpha mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-beta mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-alpha and PdgfR-beta in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle.
Rhen, Turk; Jangula, Adam; Schroeder, Anthony; Woodward-Bosh, Rikki
2009-01-01
The platelet-derived growth factor (Pdgf) signaling system is known to play a significant role during embryonic and postnatal development of testes in mammals and birds. In contrast, genes that comprise the Pdgf system in reptiles have never been cloned or studied in any tissue, let alone developing gonads. To explore the potential role of PDGF ligands and their receptors during embryogenesis, we cloned cDNA fragments of Pdgf-A, Pdgf-B, and receptors PdgfR-α and PdgfR-β in the snapping turtle, a reptile with temperature-dependent sex determination (TSD). We then compared gene expression profiles in gonads from embryos incubated at a male-producing temperature to those from embryos at a female-producing temperature, as well as between hatchling testes and ovaries. Expression of Pdgf-B mRNA in embryonic gonads was significantly higher at a male temperature than at a female temperature, but there was no difference between hatchling testes and ovaries. This developmental pattern was reversed for Pdgf-A and PdgfR-α mRNA: expression of these genes did not differ in embryos, but diverged in hatchling testes and ovaries. Levels of PdgfR-β mRNA in embryonic gonads were not affected by temperature and did not differ between testes and ovaries. However, expression of both receptors increased at least an order of magnitude from the embryonic to the post-hatching period. Finally, we characterized expression of these genes in several other embryonic tissues. The brain, heart, and liver displayed unique expression patterns that distinguished these tissues from each other and from intestine, lung, and muscle. Incubation temperature had a significant effect on expression of PdgfR-α and PdgfR-β in the heart but not other tissues. Together, these findings demonstrate that temperature has tissue specific effects on the Pdgf system and suggest that Pdgf signaling is involved in sex determination and the ensuing differentiation of testes in the snapping turtle. PMID:19523392
Blueberry extracts protect testis from hypobaric hypoxia induced oxidative stress in rats.
Zepeda, Andrea; Aguayo, Luis G; Fuentealba, Jorge; Figueroa, Carolina; Acevedo, Alejandro; Salgado, Perla; Calaf, Gloria M; Farías, Jorge
2012-01-01
Exposure to hypobaric hypoxia causes oxidative damage to male rat reproductive function. The aim of this study was to evaluate the protective effect of a blueberry extract (BB-4) in testis of rats exposed to hypobaric hypoxia. Morphometric analysis, cellular DNA fragmentation, glutathione reductase (GR), and superoxide dismutase (SOD) activities were evaluated. Our results showed that supplementation of BB-4 reduced lipid peroxidation, decreased apoptosis, and increased GR and SOD activities in rat testis under hypobaric hypoxia conditions (P < 0.05). Therefore, this study demonstrates that blueberry extract significantly reduced the harmful effects of oxidative stress caused by hypobaric hypoxia in rat testis by affecting glutathione reductase and superoxide dismutase activities.
Congenital heart disease affects cerebral size but not brain growth.
Ortinau, Cynthia; Inder, Terrie; Lambeth, Jennifer; Wallendorf, Michael; Finucane, Kirsten; Beca, John
2012-10-01
Infants with congenital heart disease (CHD) have delayed brain maturation and alterations in brain volume. Brain metrics is a simple measurement technique that can be used to evaluate brain growth. This study used brain metrics to test the hypothesis that alterations in brain size persist at 3 months of age and that infants with CHD have slower rates of brain growth than control infants. Fifty-seven infants with CHD underwent serial brain magnetic resonance imaging (MRI). To evaluate brain growth across the first 3 months of life, brain metrics were undertaken using 19 tissue and fluid spaces shown on MRIs performed before surgery and again at 3 months of age. Before surgery, infants with CHD have smaller frontal, parietal, cerebellar, and brain stem measures (p < 0.001). At 3 months of age, alterations persisted in all measures except the cerebellum. There was no difference between control and CHD infants in brain growth. However, the cerebellum trended toward greater growth in infants with CHD. Somatic growth was the primary factor that related to brain growth. Presence of focal white matter lesions before and after surgery did not relate to alterations in brain size or growth. Although infants with CHD have persistent alterations in brain size at 3 months of age, rates of brain growth are similar to that of healthy term infants. Somatic growth was the primary predictor of brain growth, emphasizing the importance of optimal weight gain in this population.
Transgenerational Epigenetic Programming of the Embryonic Testis Transcriptome
Anway, Matthew D.; Rekow, Stephen S.; Skinner, Michael K.
2008-01-01
Embryonic exposure to the endocrine disruptor vinclozolin during gonadal sex determination appears to promote an epigenetic reprogramming of the male germ-line that is associated with transgenerational adult onset disease states. Transgenerational effects on the embryonic day 16 (E16) testis demonstrated reproducible changes in the testis transcriptome for multiple generations (F1-F3). The expression of 196 genes were found to be influenced, with the majority of gene expression being decreased or silenced. Dramatic changes in the gene expression of methyltransferases during gonadal sex determination were observed in the F1 and F2 vinclozolin generation (E16) embryonic testis, but the majority returned to control generation levels by the F3 generation. The most dramatic effects were on the germ-line associated Dnmt3A and Dnmt3L isoforms. Observations demonstrate that an embryonic exposure to vinclozolin appears to promote an epigenetic reprogramming of the male germ-line that correlates with transgenerational alterations in the testis transcriptome in subsequent generations. PMID:18042343
An indirect component in the evoked compound action potential of the vagal nerve.
Ordelman, Simone C M A; Kornet, Lilian; Cornelussen, Richard; Buschman, Hendrik P J; Veltink, Peter H
2010-12-01
The vagal nerve plays a vital role in the regulation of the cardiovascular system. It not only regulates the heart but also sends sensory information from the heart back to the brain. We hypothesize that the evoked vagal nerve compound action potential contains components that are indirect via the brain stem or coming via the neural network on the heart. In an experimental study of 15 pigs, we identified four components in the evoked compound action potentials. The fourth component was found to be an indirect component, which came from the periphery. The latency of the indirect component increased when heart rate and contractility were decreased by burst stimulation (P = 0.01; n = 7). When heart rate and contractility were increased by dobutamine administration, the latency of the indirect component decreased (P = 0.01; n = 9). This showed that the latency of the indirect component of the evoked compound action potentials may relate to the state of the cardiovascular system.
Ciejka, Elżbieta; Skibska, Beata; Gorąca, Anna
2017-06-27
The human population is exposed ever more frequently to magnetic fields (MF). This is due to both technological progress and development of the economy as well as to advances made in medical science. That is why the thorough understanding and systematized knowledge about mechanisms by which MF exerts its effects on living organisms play such an important role. In this context the health of MF-exposed people is the subject of particular concern. The aim of the study was to evaluate the effect of extremely low frequency magnetic field (ELFMF) used in magnetotherapy on the concentration of interleukin 6 (IL-6) in rat heart and brain. The male rats were randomly divided into 3 experimental groups: group I - control, without contact with magnetic field; group II - exposed to bipolar, rectangular magnetic field 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks; and group III - exposed to bipolar, rectangular magnetic field 40 Hz, 7 mT 60 min/day for 2 weeks. Concentration of IL-6 in the heart and brain of animals was measured after MF exposure. Exposure to ELFMF: 40 Hz, induction "peak-to-peak" 7 mT 30 min/day for 2 weeks caused a significant IL-6 increase in rat hearts compared to the control group (p < 0.05) and a non-significant IL-6 decrease in rat brain. The magnetic field applied for 60 min resulted in non-significant IL-6 increase in rat hearts compared to the control group and significant IL-6 decrease in rat brain (p < 0.05). The influence of magnetic field on inflammation in the body varies depending on the MF parameters and the affected tissues or cells. Med Pr 2017;68(4):517-523. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Testis development, fertility, and survival in Ethanolamine kinase 2-deficient mice.
Gustin, Sonja E; Western, Patrick S; McClive, Peter J; Harley, Vincent R; Koopman, Peter A; Sinclair, Andrew H
2008-12-01
Ethanolamine kinase 2 (Eki2) was previously isolated from a differential expression screen designed to identify candidate genes involved in testis development and differentiation. In mouse, Eki2 is specifically up-regulated in Sertoli cells of the developing testis at the time of sex determination. Based on this expression profile, Eki2 was considered a good candidate testis-determining gene. To investigate a possible role of Eki2 in testis development, we have generated a mouse with targeted disruption of the Eki2 gene by using an EGFP replacement strategy. No abnormalities were detected in the Eki2-deficient mice with regard to embryonic and adult testis morphology, differentiation, function, or fertility. Furthermore, no significant differences were observed in litter sizes, pup mortality rates, or distribution of the sexes among the offspring. Ethanolamine kinases are involved in the biosynthesis of phosphatidylethanolamine, a major membrane phospholipid. Expression analysis indicates that the absence of an apparent phenotype in the Eki2-deficient mice may be due to compensation by Eki2-family members or the activation of an alternative pathway to generate phosphatidylethanolamine. Expression of EGFP in this mouse model enabled the isolation of gonad cell populations, providing a useful resource from which to obtain relatively pure early steroidogenic cells for further studies.
Does testis weight decline towards the Subarctic? A case study on the common frog, Rana temporaria
NASA Astrophysics Data System (ADS)
Hettyey, Attila; Laurila, Anssi; Herczeg, Gábor; Jönsson, K. Ingemar; Kovács, Tibor; Merilä, Juha
2005-04-01
Interpopulation comparisons of variation in resource availability and in allocation patterns along altitudinal and latitudinal gradients allow insights into the mechanisms shaping the life history of animals. Patterns of between-population differences in female life history traits have been studied intensively across a wide range of taxa, but similar investigations in males have remained scarce. To study if testis weight—a measure of reproductive investment—varies on a geographical scale in anurans, we focussed on the variation in relative testis weight (RelTW) and asymmetry in 22 populations of the common frog Rana temporaria along a 1,600-km latitudinal transect across the Scandinavian peninsula. We found that RelTW decreased towards the north. Body mass and body length both had independent positive effects on testes mass. We found evidence for directional asymmetry (DA) in testis weight with the right testis being larger than the left. The level of DA in testis weight was not related to latitude, but both body mass and testes mass had independent positive effects on asymmetry. We discuss the northwards decrease in RelTW in terms of a decreased reproductive investment as a possible consequence of harsher environmental conditions, and perhaps also, weaker sexual selection in the north than in the south.
Noorafshan, Ali; Karbalay-Doust, Saied; Ardekani, Fakhrodin Mesbah
2005-02-01
Anabolic-androgenic steroid (AAS) compounds rank among the drugs most widely abused with the goal of improving athletic ability, appearance, or muscle mass. It has been shown that these compounds have adverse effects on human and animal physiology and sperm quality, but quantitative structural changes of the testis have received less attention. The present study was conducted to evaluate the effects of nandrolone decanoate, which is one of the AAS compounds, on testis weight and volume, diameter and length of seminiferous tubules in rats by unbiased stereological methods. Adult rats were divided into three groups. The first comprised control rats; the second and third groups received low and high doses of nandrolone decanoate for 14 weeks. The rats were then left untreated for 14 weeks. After removal of the testis, stereological study of these tissues showed that the mean volume of testis and length of the seminiferous tubules in the animals that received high doses of nandrolone decanoate were reduced approximately 32% (p<0.01) and approximately 31% (p<0.04), respectively, in comparison with the control group. It can be concluded that the high doses of nandrolone decanoate produce structural changes in the rat testis that remain 14 weeks after stopping injection of the drug.
Mavrogenis, Stelios; Urbán, Robert; Czeizel, Andrew E
2015-07-01
Undescended testis (cryptorchidism) is a common congenital abnormality of male genital organs diagnosed at birth followed with frequent postnatal descensus. However, the so-called isolated true undescended testis (ITUT) diagnosed at the third postnatal month seems to be an independent defect-entity, and this hypothesis was planned to confirm or reject in the study. The evaluation of birth outcomes and maternal socio-demographic data of cases with ITUT in the population-based large dataset of the Hungarian Congenital Abnormality Registry. There was a higher rate of preterm birth and particularly of low birthweight in 2052 cases with ITUT compared to 24,814 population male controls without any defects. The rate of twins was not higher in cases with older mothers, higher birth order and lower socio-economic status. The comparison of data of boys with undescended testis diagnosed at birth found in the previous study and with ITUT in this study confirmed our hypothesis. Undescended testis can be differentiated into two subgroups: boys with frequent postnatal descensus mainly after preterm delivery and boys with ITUT without postnatal testis descensus with frequent intrauterine growth restriction, older mothers with higher birth order and low socio-economic status.
Zhang, Ling; Zhang, Hui; Zhang, Huan; Benson, Mikael; Han, Xiaodong; Li, Dongmei
2017-07-01
In the present study, we evaluated the toxic effects on the testis of the male offspring of MC-LR exposure during fetal and lactational periods. Pregnant females were distributed into two experimental groups: control group and MC-LR group which were exposed to 0 and 10 μg/L of MC-LR, respectively, through drinking water separately during fetal and lactational periods. At the age of 30 days after birth, the male offspring were euthanized. The body weight, testis index, and histomorphology change were observed and the global changes of piwi-interacting RNA (piRNA) expression were evaluated. The results revealed that MC-LR was found in the testis of male offspring, body weight and testis index decreased significantly, and testicular tissue structure was damaged in the MC-LR group. In addition, the exposure to MC-LR resulted in an altered piRNA expression profile and an increase of the cell apoptosis and a decrease of the cell proliferation in the testis of the male offspring. It was reasonable to speculate that the toxic effects on reproductive system of the male offspring in MC-LR group might be mediated by piRNAs through the regulation of the target genes. As far as we are aware, this is the first report showing that MC-LR could play a role in disorder of proliferative and cell apoptosis in the testis of the male offspring by the maternal transmission effect of toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás
2018-01-01
Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval. PMID:28440264
Esteves, Sandro C; Roque, Matheus; Garrido, Nicolás
2018-01-01
Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval.
Replacement of serum with ocular fluid for cryopreservation of immature testes.
Pothana, Lavanya; Devi, Lalitha; Venna, Naresh Kumar; Pentakota, Niharika; Varma, Vivek Phani; Jose, Jedy; Goel, Sandeep
2016-12-01
Cryopreservation of immature testis is a feasible approach for germplasm preservation of male animals. Combinations of dimethyl sulfoxide (DMSO) and foetal bovine serum (FBS) are used for testis cryopreservation. However, an alternative to FBS is needed, because FBS is expensive. Buffalo ocular fluid (BuOF), a slaughter house by-product, could be an economical option. The objective of the present study was to assess whether BuOF can replace FBS for cryopreservation of immature mouse (Mus musculus), rat (Rattus norvegicus), and buffalo (Bubalus bubalis) testes. Results showed that rodent and buffalo testes frozen in DMSO (10% for rodents and 20% for buffalo) with 20% FBS or BuOF had similar numbers of viable and DNA-damaged cells (P > 0.05). The expression of cell proliferation- (PCNA) and apoptosis-specific proteins (Annexin V and BAX/BCL2 ratio) were also comparable in mouse and buffalo testes frozen in DMSO with FBS or BuOF (P > 0.05). Interestingly, rat testis frozen in DMSO with BuOF had lower expression of Annexin V protein than testis frozen in DMSO with FBS (P < 0.05). The percentage of meiotic germ cells (pachytene-stage spermatocytes) in xenografts from testis frozen either in DMSO with BuOF or FBS did not significantly differ in rats or buffalo (P > 0.05). These findings provide evidence that BuOF has potential to replace FBS for cryopreservation of immature rodent and buffalo testis. Further investigation is needed to explore whether BuOF can replace FBS for testis cryopreservation of other species. Copyright © 2016 Elsevier Inc. All rights reserved.
Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption
Heger, Nicholas E; Hall, Susan J; Sandrof, Moses A; McDonnell, Elizabeth V; Hensley, Janan B; McDowell, Erin N; Martin, Kayla A; Gaido, Kevin W; Johnson, Kamin J
2012-01-01
Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates. Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response. Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points. Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression. Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis. PMID:22511013
Identification of human candidate genes for male infertility by digital differential display.
Olesen, C; Hansen, C; Bendsen, E; Byskov, A G; Schwinger, E; Lopez-Pajares, I; Jensen, P K; Kristoffersson, U; Schubert, R; Van Assche, E; Wahlstroem, J; Lespinasse, J; Tommerup, N
2001-01-01
Evidence for the importance of genetic factors in male fertility is accumulating. In the literature and the Mendelian Cytogenetics Network database, 265 cases of infertile males with balanced reciprocal translocations have been described. The candidacy for infertility of 14 testis-expressed transcripts (TETs) were examined by comparing their chromosomal mapping position to the position of balanced reciprocal translocation breakpoints found in the 265 infertile males. The 14 TETs were selected by using digital differential display (electronic subtraction) to search for apparently testis-specific transcripts in the TIGR database. The testis specificity of the 14 TETs was further examined by reverse transcription-polymerase chain reaction (RT-PCR) on adult and fetal tissues showing that four TETs (TET1 to TET4) were testis-expressed only, six TETs (TET5 to TET10) appeared to be differentially expressed and the remaining four TETs (TET11 to TET14) were ubiquitously expressed. Interestingly, the two tesis expressed-only transcripts, TET1 and TET2, mapped to chromosomal regions where seven and six translocation breakpoints have been reported in infertile males respectively. Furthermore, one ubiquitously, but predominantly testis-expressed, transcript, TET11, mapped to 1p32-33, where 13 translocation breakpoints have been found in infertile males. Interestingly, the mouse mutation, skeletal fusions with sterility, sks, maps to the syntenic region in the mouse genome. Another transcript, TET7, was the human homologue of rat Tpx-1, which functions in the specific interaction of spermatogenic cells with Sertoli cells. TPX-1 maps to 6p21 where three cases of chromosomal breakpoints in infertile males have been reported. Finally, TET8 was a novel transcript which in the fetal stage is testis-specific, but in the adult is expressed in multiple tissues, including testis. We named this novel transcript fetal and adult testis-expressed transcript (FATE).
Ebuehi, O A T; Ajayl, O E; Onyeulor, A L; Awelimobor, D
2011-01-01
Energy drinks are canned or bottled carbonated beverages that contain large amounts of caffeine and sugar with additional ingredients, such as B-Vitamins, amino acids and herbal stimulants. Previous reports have shown that consumption of large amounts of these energy drinks may result in adverse health consequences. The present study is to ascertain if oral administration of energy drinks, such as "power horse" and "red bull", may affect blood chemistry, tissue histology and acetyl choline levels in rabbits. Five ml of power horse and red bull energy drinks, caffeine and saline (control) were orally administered daily for 36 days to rabbits. Body weight, feed and water intake were measured every other day. The blood samples were taken by cardiac puncture for blood chemistry measurement and their liver, heart and brain tissues were used for histological assay. The plasma, liver, brain and heart acetylcholine levels were also determined. There were no significant differences in the body weight, feed intake and organ weights of rabbits administered energy drinks or caffeine as compared to the control. The blood chemistry results showed that the activities of the aspartate and alanine amino transferase, concentrations of plasma creatinine, uric acid and albumin were increased in the control as compared to the red bull and caffeine administered rabbits. The concentrations of total protein, total cholesterol, triglyceride, high density lipoprotein (HDL) and low density lipoprotein (LDL) and glucose concentrations were increased in power horse and red bull administered rabbits as compared to caffeine administered rabbits and control rabbits. The concentrations of plasma and brain acetylcholine of rabbits administered power horse and red bull were significantly higher than in the control, while it was lower in liver and heart acetyl choline levels. The histopathological findings of the brain and liver show that there were no obvious histopathological abnormalities in the brain, liver and heart of rabbits administered power horse or red bull and caffeine as compared to the control rabbits. Data of the present study indicate that oral administration of the energy drinks, specifically power horse and red bull, affected blood chemistry, liver enzymes activities, but do not significantly affect the histopathology of the brain, heart and liver of the rabbits. This findings suggest that energy drinks may alter cholinergic neurotransmission and neural functions mediated by acetylcholine.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the trimmings, which may include, but are not limited to, brains, thymus, pancreas, liver, heart... undetermined risk for BSE are considered SRMs if they are derived from bovines over 12 months of age: Brain...
Loureiro-Vieira, Sara; Costa, Vera Marisa; Duarte, José Alberto; Duarte-Araújo, Margarida; Gonçalves-Monteiro, Salomé; Maria de Lourdes, Bastos; Carvalho, Félix; Capela, João Paulo
2018-04-01
Methylphenidate (MPH) is a first-line stimulant drug to treat attention deficit hyperactivity disorder (ADHD). Overdiagnosis of ADHD and MPH abuse lead to serious concerns about the possible long-term adverse consequences of MPH in healthy children and adolescents. We aimed to evaluate MPH effects in adolescent male Wistar rats (postnatal day 40) using an oral dose scheme (2 daily MPH doses 5 mg/kg in a 5% sucrose solution, 5 h apart, for 7 days) that mimics the therapeutic doses given to human adolescents. Twenty-four hours after the last MPH administration, rats were sacrificed and brain areas [cerebellum, prefrontal cortex (PFC), hippocampus, and striatum], peripheral organs (liver, heart, and kidneys), and blood were collected for biochemical and histological analysis. MPH treatment did not alter rats' body temperature or weight, neither food or water intake throughout the experiment. The ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) significantly increased in the PFC and hippocampus of MPH-treated rats, meanwhile protein carbonylation remained unchanged in the brain. In the heart, the GSH/GSSG ratio and GSH levels were significantly increased, with decreased GSSG, while histology revealed significant damage, namely interstitial edema, vascular congestion, and presence of a fibrin-like material in the interstitial space. In the kidneys, MPH treatment resulted in extensive necrotic areas with cellular disorganization and cell infiltration, and immunohistochemistry analysis revealed a marked activation of nuclear factor-ĸB. This study showed that clinically relevant oral MPH doses improve the GSH redox status in the brain and heart, but evoke heart and kidney tissue damage to adolescent rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Fusion Imaging: A Novel Staging Modality in Testis Cancer
2010-01-01
the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion...imaging in evaluation of patients with testis cancer. Methods: A prospective study of 49 patients presenting to Walter Reed Army Medical Center with...incidence of testis cancer has been increasing at an annual rate of 3%, leading to a doubling in cases world-wide over the last 40 years. With the advent
... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to receive contrast) Recently placed artificial joints Certain types of vascular stents Worked with ...
... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to receive contrast) Recently placed artificial joints Certain types of vascular stents Worked with ...
... you have: Brain aneurysm clips Certain types of artificial heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not be able to receive contrast) Recently placed artificial joints Certain types of vascular stents Worked with ...
Transcending Right Brain/Left Brain Boundaries: The Teacher as Model.
ERIC Educational Resources Information Center
Bump, Jerome
One of the deepest and most debilitating schisms in the university classroom, as in life, is that between the left and right sides of the brain, reason and emotion, the head and the heart. More and more college English teachers have become aware of the value of addressing the whole brain, the whole person. Teachers set up goals and communicate…
... staying socially engaged, and maintaining good heart health. Select a Topic 10 Ways to Love Your Brain ... Security and Privacy Policy Copyrights and Reprints Pressroom Select Language English Español Other © 2018 Alzheimer's Association® | All ...
Mechanical origins of rightward torsion in early chick brain development
NASA Astrophysics Data System (ADS)
Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry
2015-03-01
During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.
Zhang, Z; Wilson, F; Read, R; Pace, L; Zhang, S
2006-03-01
An adult female wild turkey exhibiting disorientation and failure to flee when approached was submitted to the Mississippi Veterinary Research and Diagnostic Laboratory. Gross pathologic examination revealed evidence of dehydration and the presence of modest numbers of adult nematodes in the small intestine. Histologic examination revealed extensive multifocal perivascular lymphocytic infiltration in brain, marked heterophilic hyperplasia in bone marrow, and multifocal interstitial lymphocytic infiltration in heart, pancreas, ventriculus, and skeletal muscles. West Nile virus (WNV) was isolated from the brain, lung, and kidney tissues using cultured Vero cells. Higher copies of viral RNA were detected from brain, lung, and kidney than from heart, liver, or spleen by quantitative real-time reverse transcription-polymerase chain reaction (RRT-PCR) analysis. Immunohistochemical (IHC) analysis detected WNV antigen in various tissues including neurons, kidney, respiratory tract epithelium, heart, and bone marrow. On the basis of the data from this investigation, it is concluded that WNV caused encephalitis along with many other pathologic changes in the affected wild turkey.
Sabayan, Behnam; van Buchem, Mark A; Sigurdsson, Sigurdur; Zhang, Qian; Meirelles, Osorio; Harris, Tamara B; Gudnason, Vilmundur; Arai, Andrew E; Launer, Lenore J
2016-11-01
Pathologies in the heart-brain axis might, independently or in combination, accelerate the process of brain parenchymal loss. We aimed to investigate the association of serum N-terminal brain natriuretic peptide (NT-proBNP), as a marker of cardiac dysfunction, and carotid intima media thickness (CIMT), as a marker of carotid atherosclerosis burden, with structural brain changes. In the longitudinal population-based AGES-Reykjavik study (Age, Gene/Environment Susceptibility-Reykjavik), we included 2430 subjects (mean age, 74.6 years; 41.4% men) with baseline data on NT-proBNP and CITM (assessed by ultrasound imaging). Participants underwent a high-resolution brain magnetic resonance imaging at baseline and 5 years later to assess total brain (TBV), gray matter, and white matter volumes. Each unit higher log-transformed NT-proBNP was associated with 3.6 mL (95% confidence interval [CI], -6.0 to -1.1) decline in TBV and 3.5 mL (95% CI, -5.7 to -1.3) decline in gray matter volume. Likewise, each millimeter higher CIMT was associated with 10.8 mL (95% CI, -17.3 to -4.2) decline in TBV and 8.6 mL (95% CI, -14.4 to -2.8) decline in gray matter volume. There was no association between NT-proBNP and CIMT and changes in white matter volume. Compared with participants with low NT-proBNP and CIMT, participants with both high NT-proBNP and CIMT had 3.8 mL (95% CI, -6.0 to -1.6) greater decline in their TBV and 4 mL (95% CI, -6.0 to -2.0) greater decline in GMW. These associations were independent of sociodemographic and cardiovascular factors. Older subjects with both cardiac dysfunction and carotid atherosclerosis are at an increased risk for brain parenchymal loss. Accumulated pathologies in the heart-brain axis might accelerate brain atrophy. © 2016 American Heart Association, Inc.
Poudel, Rajan; McMillen, I Caroline; Dunn, Stacey L; Zhang, Song; Morrison, Janna L
2015-02-01
In the fetus, there is a redistribution of cardiac output in response to acute hypoxemia, to maintain perfusion of key organs, including the brain, heart, and adrenal glands. There may be a similar redistribution of cardiac output in the chronically hypoxemic, intrauterine growth-restricted fetus. Surgical removal of uterine caruncles in nonpregnant ewe results in the restriction of placental growth (PR) and intrauterine growth. Vascular catheters were implanted in seven control and six PR fetal sheep, and blood flow to organs was determined using microspheres. Placental and fetal weight was significantly reduced in the PR group. Despite an increase in the relative brain weight in the PR group, there was no difference in blood flow to the brain between the groups, although PR fetuses had higher blood flow to the temporal lobe. Adrenal blood flow was significantly higher in PR fetuses, and there was a direct relationship between mean gestational PaO2 and blood flow to the adrenal gland. There was no change in blood flow, but a decrease in oxygen and glucose delivery to the heart in the PR fetuses. In another group, there was a decrease in femoral artery blood flow in the PR compared with the Control group, and this may support blood flow changes to the adrenal and temporal lobe. In contrast to the response to acute hypoxemia, these data show that there is a redistribution of blood flow to the adrenals and temporal lobe, but not the heart or whole brain, in chronically hypoxemic PR fetuses in late gestation. Copyright © 2015 the American Physiological Society.
Stepanova, Anna; Shurubor, Yevgeniya; Valsecchi, Federica; Manfredi, Giovanni; Galkin, Alexander
2016-09-01
Mitochondrial Complex II is a key mitochondrial enzyme connecting the tricarboxylic acid (TCA) cycle and the electron transport chain. Studies of complex II are clinically important since new roles for this enzyme have recently emerged in cell signalling, cancer biology, immune response and neurodegeneration. Oxaloacetate (OAA) is an intermediate of the TCA cycle and at the same time is an inhibitor of complex II with high affinity (Kd~10(-8)M). Whether or not OAA inhibition of complex II is a physiologically relevant process is a significant, but still controversial topic. We found that complex II from mouse heart and brain tissue has similar affinity to OAA and that only a fraction of the enzyme in isolated mitochondrial membranes (30.2±6.0% and 56.4±5.6% in the heart and brain, respectively) is in the free, active form. Since OAA could bind to complex II during isolation, we established a novel approach to deplete OAA in the homogenates at the early stages of isolation. In heart, this treatment significantly increased the fraction of free enzyme, indicating that OAA binds to complex II during isolation. In brain the OAA-depleting system did not significantly change the amount of free enzyme, indicating that a large fraction of complex II is already in the OAA-bound inactive form. Furthermore, short-term ischemia resulted in a dramatic decline of OAA in tissues, but it did not change the amount of free complex II. Our data show that in brain OAA is an endogenous effector of complex II, potentially capable of modulating the activity of the enzyme. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Shi, Lei; Song, Ruigao; Yao, Xiaolei; Duan, Yunli; Ren, Youshe; Zhang, Chunxiang; Yue, Wenbin; Lei, Fulin
2018-07-01
To investigate the effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and steroidogenesis-related gene expression in testis of their male kids, selected pregnant Taihang Black Goats were randomly allotted to four treatment groups. They were fed the basal gestation and lactation diets supplemented with 0 (control), 0.5, 2.0 and 4.0 mg of Se/kg DM. Thirty days after weaning, testes were collected from the kids. After the morphological development status of testis was examined, tissue samples were collected for analyzing testosterone concentration and histological parameters. Testosterone synthesis-related genes were detected using real-time PCR. Localization and quantification of androgen receptor (AR) in testis of goats were determined by immunohistochemical and western blot analysis. The results show that Se supplementation in the diet of dams led to higher (p < 0.05) testicular weight, volume, length, width, transverse and vertical grith of their male kids. Excessive Se (4.0 mg/kg) can inhibit the development of testis by decreasing testicular weight and volume. The density of spermatogenic cells and Leydig cells in the Se treatment groups was significantly (p < 0.05) higher than that in the control. Maternal dietary Se did not affect the thickness of testes, thickness of germinal epithelium and diameter of seminiferous tubule. Se supplemented in the diet of dams improved the testosterone level in testis tissue and serum, and promote the expression of testosterone-related genes. The mRNA expression of StAR, 3β-HSD and CYP11A1 was decreased with the increasing dietary Se levels of dams. Maternal dietary Se can improve the AR protein abundance in testis of their offspring. AR immunopositive product was detected in Leydig cells, peritubular myoid cells, perivascular smooth muscle cells, primary spermatocytes and spermatids. The expression of AR in spermatogenetic cells is stage specific. This study suggests that maternal dietary Se can influence the testis development and spermatogenesis of their male kids by modulating testosterone synthesis in goats. More attention should be given to the potential role of maternal nutrition in improving reproductive performance of their offspring. Copyright © 2018 Elsevier Inc. All rights reserved.
Gheri, G; Vannelli, G B; Marini, M; Zappoli Thyrion, G D; Gheri, R G; Sgambati, E
2004-01-01
In the present research we have investigated the distribution of the sugar residues of the glycoconjugates in the prepubertal and postpubertal testes of a subject with Morris's syndrome (CAIS, Complete Androgen Insensitivity Syndrome). For this purpose a battery of six horseradish peroxidase-conjugated lectins was used (SBA, PNA, WGA, ConA, LTA and UEAI). We have obtained a complete distributional map of the terminal and sub-terminal oligosaccharides in the tunica albuginea, interstitial tissue, lamina propria of the seminiferous tubules, Leydig cells, Sertoli cells, spermatogonia, mastocytes and endothelial cells. Furthermore the present study has shown that a large amount of sugar residues were detectable in the prepubertal and postpubertal testes but that some differences exist with particular regard to the Sertoli cells. The Sertoli cells and the Leydig cells of the retained prepubertal testis of the patient affected by Morris's syndrome were characterized by the presence of alpha-L-fucose, which was absent in the retained prepubertal testis of the normal subjects. Comparing the results on the postpubertal testis with those obtained on the same aged testis of healthy subjects we have demonstrated that alpha-L-fucose in the Sertoli and Leydig cells and D-galactose-N-acetyl-D-galactosamine in the Leydig cells are a unique feature of the subject affected by Morris's syndrome. D-galactose (ss1,3)-N-acetyl-D-galactosamine and sialic acid, which are present in the Leydig cells of the normal testis were never observed in the same cells of the postpubertal testis of the CAIS patient.
Castillo, Rodrigo L; Zepeda, Andrea B; Short, Stefania E; Figueroa, Elías; Bustos-Obregon, Eduardo; Farías, Jorge G
2015-01-23
Intermittent hypobaric hypoxia (IHH) induces changes in the redox status and structure in rat testis. These effects may be present in people at high altitudes, such as athletes and miners. Polyunsaturated fatty acids (PUFA) can be effective in counteracting these oxidative modifications due to their antioxidants properties. The aim of the work was to test whether PUFA supplementation attenuates oxidative damage in testis by reinforcing the antioxidant defense system. The animals were divided into four groups (7 rats per group): normobaric normoxia (~750 tor; pO2 156 mmHg; Nx); Nx + PUFA, supplemented with PUFA (DHA: EPA = 3:1; 0.3 g kg(-1) of body weight per day); hypoxic hypoxia (~428 tor; pO2 90 mmHg; Hx) and, Hx + PUFA. The hypoxic groups were exposed in 4 cycles to 96 h of HH followed by 96 h of normobaric normoxia for 32 days. Total antioxidant capacity (FRAP) and lipid peroxidation (malondialdehyde, MDA) in plasma and reduced (GSH)/oxidized glutathione (GSSG) ratio, tissue lipid peroxidation (TBARS) and antioxidant enzymes activity were assessed at the end of the study in testis. Also, SIRTUIN 1 and HIF-1 protein expression in testis were determined. IHH increased lipid peroxidation in plasma and HIF-1 protein levels in testis. In addition, IHH reduced FRAP levels in plasma, antioxidant enzymes activities and SIRTUIN 1 protein levels in testis. PUFA supplementation attenuated these effects, inducing the increases in FRAP, in the antioxidant enzymes activity and HIF-1 levels. These results suggest that the IHH model induces a prooxidant status in plasma and testis. The molecular protective effect of PUFA may involve the induction of an antioxidant mechanism.
Szczepny, Anette; Hogarth, Cathryn A; Young, Julia; Loveland, Kate L
2009-02-01
The Hedgehog (Hh) signaling pathway affects fetal testis growth. Recently, we described the dynamic cellular production of Hh signaling pathway components in juvenile and adult rodent testes. The Hh signaling is understood to regulate cord formation in the fetal testis, but minimal knowledge exists regarding how Hh signaling impacts the postnatal testis. To investigate this, we employed hanging drop cultures, which are used routinely in embryoid body formation. This approach has the advantage of using small media volume, and we examined its suitability for short-term culture of both murine embryonic gonads and adult testis tubules. The effects of cyclopamine, a specific Hh signaling inhibitor, were examined following culture of Embryonic Day 11.5 urogenital ridges (as control) and adult seminiferous tubule fragments for 24-48 h using histological, cell proliferation, and gene expression analyses. Cultured embryonic testes displayed generally normal cord structure, anti-Müllerian hormone (Amh) expression, and cell proliferation; known Hh target gene expression (Gli1, osteopontin, official symbol Spp1, and Amh) was altered in response to cyclopamine. Cultured adult tubules exhibited some loss of seminiferous epithelium organization over 48 h. Spermatogonia continued to proliferate, however, and no significant loss of viability was noted overall. Addition of cyclopamine significantly affected levels of Gli1, Igfbp6, Ccnd2 (cyclin D2), Ccnb1 (cyclin B1), Spp1, Kit, and Amh mRNAs; these genes have been shown previously to be expressed in Sertoli and germ cells. These novel results identify Hh target genes in the testis and demonstrate this signaling pathway likely affects cell survival and differentiation in the context of normal adult testis.
Szczepny, Anette; Hogarth, Cathryn A.; Young, Julia; Loveland, Kate L.
2008-01-01
The Hedgehog (Hh) signaling pathway affects fetal testis growth. Recently, we described the dynamic cellular production of Hh signaling pathway components in juvenile and adult rodent testes. The Hh signaling is understood to regulate cord formation in the fetal testis, but minimal knowledge exists regarding how Hh signaling impacts the postnatal testis. To investigate this, we employed hanging drop cultures, which are used routinely in embryoid body formation. This approach has the advantage of using small media volume, and we examined its suitability for short-term culture of both murine embryonic gonads and adult testis tubules. The effects of cyclopamine, a specific Hh signaling inhibitor, were examined following culture of Embryonic Day 11.5 urogenital ridges (as control) and adult seminiferous tubule fragments for 24–48 h using histological, cell proliferation, and gene expression analyses. Cultured embryonic testes displayed generally normal cord structure, anti-Müllerian hormone (Amh) expression, and cell proliferation; known Hh target gene expression (Gli1, osteopontin, official symbol Spp1, and Amh) was altered in response to cyclopamine. Cultured adult tubules exhibited some loss of seminiferous epithelium organization over 48 h. Spermatogonia continued to proliferate, however, and no significant loss of viability was noted overall. Addition of cyclopamine significantly affected levels of Gli1, Igfbp6, Ccnd2 (cyclin D2), Ccnb1 (cyclin B1), Spp1, Kit, and Amh mRNAs; these genes have been shown previously to be expressed in Sertoli and germ cells. These novel results identify Hh target genes in the testis and demonstrate this signaling pathway likely affects cell survival and differentiation in the context of normal adult testis. PMID:18843087
Stringer, Jessica M.; van den Bergen, Jocelyn A.; Wilhelm, Dagmar; Sinclair, Andrew H.; Western, Patrick S.
2013-01-01
The developing testis provides an environment that nurtures germ cell development, ultimately ensuring spermatogenesis and fertility. Impacts on this environment are considered to underlie aberrant germ cell development and formation of germ cell tumour precursors. The signaling events involved in testis formation and male fetal germ cell development remain largely unknown. Analysis of knockout mice lacking single Tgfβ family members has indicated that Tgfβ's are not required for sex determination. However, due to functional redundancy, it is possible that additional functions for these ligands in gonad development remain to be discovered. Using FACS purified gonadal cells, in this study we show that the genes encoding Activin's, TGFβ's, Nodal and their respective receptors, are expressed in sex and cell type specific patterns suggesting particular roles in testis and germ cell development. Inhibition of signaling through the receptors ALK4, ALK5 and ALK7, and ALK5 alone, demonstrated that TGFβ signaling is required for testis cord formation during the critical testis-determining period. We also show that signaling through the Activin/NODAL receptors, ALK4 and ALK7 is required for promoting differentiation of male germ cells and their entry into mitotic arrest. Finally, our data demonstrate that Nodal is specifically expressed in male germ cells and expression of the key pluripotency gene, Nanog was significantly reduced when signaling through ALK4/5/7 was blocked. Our strategy of inhibiting multiple Activin/NODAL/TGFβ receptors reduces the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development. PMID:23342175
Stage-specific expression of DDX4 and c-kit at different developmental stages of the porcine testis.
Lee, Ran; Lee, Won-Young; Park, Hyun-Jung; Ha, Woo-Tae; Woo, Jae-Seok; Chung, Hak-Jae; Lee, Ji-Heon; Hong, Kwonho; Song, Hyuk
2018-03-01
Spermatogenesis begins with spermatogonial stem cells (SSCs), which are located in the basement membrane of the adult testes. Previous studies have described specific biomarkers for undifferentiated porcine spermatogonia or SSCs; however, these markers are not sufficient to understand spermatogenesis at different developmental stages. The objective of this study was characterize the expression of DEAD-Box polypeptide 4 (DDX4, also known as VASA) and tyrosine-protein kinase kit (c-kit), as potential markers of male germ cells in the porcine testis. In porcine testis tissue at prepubertal stages (5, 30, and 60 days), DDX4 and c-kit protein expression was detected in the most undifferentiated spermatogonia, which also express protein gene product 9.5 (PGP9.5). However, in porcine testis tissues from pubertal and postpubertal stages (90, 120, and 150 days), DDX4 and c-kit were not detected in PGP9.5-positive undifferentiated spermatogonia. The DDX4 expression pattern was similar to that of c-kit in the porcine testis. In adult porcine testes, DDX4-expressing cells were located on the lumenal side, compared to synaptonemal complex protein 3-positive primary spermatocytes, but DDX-4 was not co-expressed with acrosin, a known acrosome marker. In addition, DDX4 was detected in PGP9.5-expressing porcine SSCs in culture. Based on our results, we suggest that DDX4 and c-kit are putative markers of undifferentiated spermatogonia in the prepubertal porcine testis. While in the postpubertal porcine testis, they are markers of differentiated spermatocytes. These findings may facilitate future studies of porcine spermatogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.
George, Manju; Rainey, Mark A.; Naramura, Mayumi; Ying, GuoGuang; Harms, Don W.; Vitaterna, Martha H.; Doglio, Lynn; Crawford, Susan E.; Hess, Rex A.; Band, Vimla; Band, Hamid
2010-01-01
The four highly homologous members of the C-terminal EH domain-containing (EHD) protein family (EHD1-4) regulates endocytic recycling. To delineate the role of EHD4 in normal physiology and development, mice with a conditional knockout of the Ehd4 gene were generated. PCR of genomic DNA and Western blotting of organ lysates from Ehd4−/− mice confirmed EHD4 deletion. Ehd4−/− mice were viable and born at expected Mendelian ratios; however, males showed a 50% reduction in testis weight, obvious from postnatal day 31. An early (day 10) increase in germ cell proliferation and apoptosis and a later increase in apoptosis (day 31) were seen in the Ehd4−/− testis. Other defects included a progressive reduction in seminiferous tubule diameter, dysregulation of seminiferous epithelium and head abnormalities in elongated spermatids. As a consequence, lower sperm counts and reduced fertility were observed in Ehd4−/− males. Interestingly, EHD protein expression was seen to be temporally regulated in the testis and levels peaked between days 10 and 15. In the adult testis, EHD4 was highly expressed in primary spermatocytes and EHD4 deletion altered the levels of other EHD proteins in an age-dependent manner. We conclude that high levels of EHD1in the adult Ehd4−/− testis functionally compensate for lack of EHD4 and prevents the development of severe fertility defects. Our results suggest a role for EHD4 in the proper development of post-mitotic and post-meiotic germ cells and implicate EHD protein-mediated endocytic recycling as an important process in germ cell development and testis function. PMID:20213691
Yan, Hongwei; Cui, Xin; Shen, Xufang; Wang, Lianshun; Jiang, Linan; Liu, Haiying; Liu, Ying; Liu, Qi; Jiang, Chen
2018-06-01
The mantis shrimp Oratosquilla oratoria is a widely distributed, commercially important crustacean species. Although its conservation and the development of successful artificial breeding technologies have recently received considerable attention, there are currently no available data regarding the molecular mechanisms in controlling reproduction. In this study, we performed transcriptome sequencing of the testis, ovary, female and male eyestalks and the androgenic gland of O. oratoria, and compared the expression pattern of transcripts from the testis and ovary libraries to identify genes involved in gonadal development. A total of 147,130,937 clean reads were retrieved after removing the adapters in reads and filtering out low-quality data. All the reads were assembled into 94,990 unigenes (23,133 in testis and ovary) with an average length of 783 base pairs (bp) and N50 of 1502 bp. A search of all-unigenes against COG, GO, KEGG, KOG, Pfam, Swiss-Prot and Nr databases resulted in a total of 19,404 annotated unigenes. Comparison of the sequences in the ovary and testis libraries revealed that 1188 unigenes were up-regulated in the ovary and 2732 were up-regulated in the testis. Twenty ovary-up-regulated and 21 testis-up-regulated unigenes were confirmed by quantitative real-time PCR. Additionally, 13,437 simple sequence repeats (SSRs) and 275,799 putative single nucleotide polymorphisms (SNPs) were identified. The important functional genes and pathways identified here provide a valuable dataset for understanding the molecular mechanisms controlling gonad development in O. oratoria, and the numerous (13,437 SSRs and 275,799 SNPs) molecular markers obtained here will provide fundamental basis for functional genomic and population genetic studies of O. oratoria. Copyright © 2018 Elsevier Inc. All rights reserved.
Ketelslegers, J M; Catt, K J
1978-07-03
The interaction between enzymatically radioiodinated human follitropin and the follitropin receptors in testis homogenate was investigated in immature and adult rats. The 125I-labeled human follitropin exhibited high binding activity with specific binding of up to 17% in the presence of an excess of testis homogenate. Approx. 50% of the bound hormone could be eluted at pH 5, and the receptor purified tracer exhibited a 3.6-fold increase in binding activity when compared with the original tracer preparation. Quantitative analysis of equilibrium binding data was performed with corrections for the measured specific activity and maximum binding activity of the tracer hormone. The equilibrium association constants (Ka) determined 24 degrees C were not significantly different in immature and adult rat testis, and the mean value for Ka was 3.9 . 10(9) M-1. At 37 degrees C, the Ka value obtained using immature rat testis was 1.3 . 10(10) M-1. The association of 125I-labeled human follitropin with immature rat testis homogenate was time and temperature dependent. In the presence of an excess of unlabeled hormone, 30--60% of the preformed hormone . receptor complex was dissociated after 24 h incubation. A specific and sensitive radioligand-receptor assay for follitropin was developed using immature rat testis homogenate. The minimum detectable dose of purified human follitropin was 0.6 ng, and human urinary and pituitary follitropin, ovine follitropin and pregnant mare serum gonadotropin reacted in the assay with equivalent slopes. The potencies of highly purified pregnent mare serum gonadotropin and highly purified human follitropin were similar in the radioligand-receptor assay, consistent with the follitropin bioactivity of the equine gonadotropin.
Ahangarpour, Akram; Oroojan, Ali Akbar; Radan, Maryam
2014-01-01
Background: One of the considerable uses of lettuce (Lactuca sativa) seed in traditional medicine has been to reduce semen, sperm and sexuality. Objective: The aim of this study was to investigate the effects of aqueous and hydro-alcoholic extracts of lettuce seed on testosterone level and spermatogenesis. Materials and Methods: In this experimental study 24 adult male NMRI mice weighing 20-25gr were purchased. Animals were randomly divided into 4 groups: controls, hydro-alcoholic (200 mg/kg) and aqueous extracts (50, 100mg/kg). The extracts were injected intraperitoneally once a day for 10 consecutive days. 2 weeks after the last injection, the mice were anaesthetized by ether and after laparatomy blood was collected from the heart to determine testosterone by ELISA assay kit. Then testis and cauda epididymis of all animals were removed for analyzing testis morphology and sperm count and viability. Results: Testis weight in hydro-alcoholic and aqueous extracts 100 mg/kg (p=0.001) and aqueous extract 50 mg/kg (p=0.008) groups was increased. Sperm viability in hydro-alcoholic (p=0.001) and aqueous extracts 50 (p=0.026), 100 mg/kg (p=0.045) groups was decreased, Also the results showed a significant decrease in sperm count in hydro-alcoholic (p=0.035) and aqueous extracts 50 mg/kg (p=0.006) groups in comparison with control group. Also there was a significant increase in serum level of testosterone in aqueous extract 50 mg/kg group in comparison with control (p=0.002) hydro-alcoholic (p=0.001) and aqueous extracts 100 mg/kg (p=0.003) groups. Conclusion: Present results demonstrated that hydro-alcoholic and aqueous 50 mg/kg extracts of lettuce seed have antispermatogenic effects, also aqueous extract 50 mg/kg increased serum level of testosterone in mice. Therefore we can suggest that lettuce seed could be a potential contraceptive agent. This article extracted from M.Sc. student research project. (Ali Akbar Oroojan) PMID:24799863
Morphological and Surgical Overview of Adolescent Testis Affected by Varicocele
Santoro, Giuseppe
2013-01-01
Varicocele is a common pathology of the testis frequently associated with infertility. For its management, a fine morphological study of the testis, both macroscopically and microscopically, and an accurate choice of surgical procedure are mandatory. The present review focuses its attention on the anatomic substrates of adolescent varicocele and its pathophysiologic modifications. The comprehensive assessment of all the reported alterations should be considered by the clinician before deciding the type of treatment and the timing. PMID:24348160
Cheng, C Yan; Mruk, Dolores D
2002-10-01
Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.
SRY protein is expressed in ovotestis and streak gonads from human sex-reversal.
Salas-Cortés, L; Jaubert, F; Nihoul-Feketé, C; Brauner, R; Rosemblatt, M; Fellous, M
2000-01-01
In mammals, a master gene located on the Y chromosome, the testis-determining gene SRY, controls sex determination. SRY protein is expressed in the genital ridge before testis determination, and in the testis it is expressed in Sertoli and germ cells. Completely sex-reversed patients are classified as either 46,XX males or 46,XY females. SRY mutations have been described in only 15% of patients with 46,XY complete or partial gonadal dysgenesis. However, although incomplete or partial sex-reversal affects 46,XX true hermaphrodites, 46,XY gonadal dysgenesis, and 46,XX/46,XY mosaicism, only 15% of the 46,XX true hermaphrodites analyzed have the SRY gene. Here, we demonstrate that the SRY protein is expressed in the tubules of streak gonads and rete testis, indicating that the SRY protein is normally expressed early during testis determination. Based on these results, we propose that some factors downstream from SRY may be mutated in these 46,XY sex-reversal patients. We have also analyzed SRY protein expression in the ovotestis from 46,XX true hermaphrodites and 46,XX/46,XY mosaicism, demonstrating SRY protein expression in both testicular and ovarian portions in these patients. This suggests that the SRY protein does not inhibit ovary development. These results confirm that other factors are needed for complete testis development, in particular, those downstream of the SRY protein. Copyright 2001 S. Karger AG, Basel
Archambeault, Denise R.; Yao, Humphrey Hung-Chang
2014-01-01
ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173
Protective effect of Zingiber officinale extract on rat testis after cyclophosphamide treatment.
Mohammadi, F; Nikzad, H; Taghizadeh, M; Taherian, A; Azami-Tameh, A; Hosseini, S M; Moravveji, A
2014-08-01
Decreasing the side effects of chemotherapy in testis has been the subjects of many studies. In this study, the protective effects of Zingiber officinale extract on rat testis were investigated after chemotherapy with cyclophosphamide. Histological and biochemical parameters were compared in cyclophosphamide-treated rats with or without ginger extract intake. Wistar male rats were randomly divided into four groups each 10. The control group received a single injection of 1 ml isotonic saline intraperitoneally. The Cyclophosphamide (CP) group received a single dose of cyclophosphamide (100 mg kg(-1) BW) intraperitoneally. CP + 300 and CP + 600 groups received orally 300 or 600 mg of ginger extract, respectively, for a period of 6 weeks after cyclophosphamide injection. The morphologic and histological structure of the testis was compared in different groups of the rats. Also, factors like malondialdehyde, reactive oxygen species, total antioxidant capacity and testosterone level were assessed in blood serum as well. Our results showed that although ginger extract could not change testis weight, malondialdehyde (MDA) and ROS, but antioxidant and testosterone levels in serum were increased significantly. Also, an obvious improved histological change was seen in CP + 300 and CP + 600 groups in comparison with CP group. These protective effects of ginger on rat testis after cyclophosphamide treatment could be attributed to the higher serum level of antioxidants. © 2013 Blackwell Verlag GmbH.
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues.
Anafi, Ron C; Pellegrino, Renata; Shockley, Keith R; Romer, Micah; Tufik, Sergio; Pack, Allan I
2013-05-30
Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed "sleep specific" changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.
Free radicals in adolescent varicocele testis.
Romeo, Carmelo; Santoro, Giuseppe
2014-01-01
We examine the relationship between the structure and function of the testis and the oxidative and nitrosative stress, determined by an excessive production of free radicals and/or decreased availability of antioxidant defenses, which occur in the testis of adolescents affected by varicocele. Moreover, the effects of surgical treatment on oxidative stress were provided. We conducted a PubMed and Medline search between 1980 and 2014 using "adolescent," "varicocele," "free radicals," "oxidative and nitrosative stress," "testis," and "seminiferous tubules" as keywords. Cross-references were checked in each of the studies, and relevant articles were retrieved. We conclude that increased concentration of free radicals, generated by conditions of hypoxia, hyperthermia, and hormonal dysfunction observed in adolescent affected by varicocele, can harm germ cells directly or indirectly by influencing nonspermatogenic cells and basal lamina. With regard to few available data in current literature, further clinical trials on the pre- and postoperative ROS and RNS levels together with morphological studies of the cellular component of the testis are fundamental for complete comprehension of the role played by free radicals in the pathogenesis of adolescent varicocele and could justify its pharmacological treatment with antioxidants.
Chandrashekar, K N; Muralidhara
2008-07-01
The objective of the present study was to investigate the oxidative induction response following in vitro treatment with D-aspartic acid (DA) in prepubertal rat testis (homogenates, explants, and cell suspensions). In all three preparations, DA enhanced (P<0.001) lipid peroxidation, manifest as increased reactive oxygen species (ROS) and malondialdehyde (MDA). Further, DA-induced oxidative induction was potentiated (P<0.001) in the presence of iron (5 microM) and 3-amino triazole and mercaptosuccinate (P<0.001), known inhibitors of the peroxide metabolizing enzymes, catalase and glutathione peroxidase, respectively. Testis homogenates exposed to L-arginine (LA) per se had reduced (P<0.001) endogenous levels of ROS and MDA; furthermore, pre-incubation with L-arginine markedly suppressed (P<0.001) DA-induced oxidative induction, suggesting an antagonistic action, perhaps due to LA-derived nitric oxide. In conclusion, DA caused significant oxidative induction in prepubertal rat testis, but this action was abrogated by L-arginine. The relevance of this phenomenon in vivo merits further study, as both of these molecules have specific physiological functions in the testis.
Sivasankaran, T G; Udayakumar, R; Elanchezhiyan, C; Sabhanayakam, Selvi
2008-02-01
The effects of sildenafil citrate with ethanol on the rat testis was studied using scanning electron microscopy. Male Albino rats were divided into 8 groups, each being treated for a maximum of 45 days as follows. In the 4 short-term treatment groups, control rats were administered normal saline orally, whereas experimental animals were fed sildenafil citrate (Viagra) 1 microg/g with 18% ethanol (5 g/kg body weight), which was given orally as a single dose. After 1, 2.5, 4 and 24h the rats were killed. In the 4 long-term treatment groups, daily continuous doses of drug and ethanol with a single dosage were given for 15, 30 and 45 days and the animals killed 4h after the last dosage. Changes in the testis were compared with the normal healthy rat testis. The use of a scanning electron microscope for evaluation of the changes in the testis is more suitable for observation of the surface and morphological shapes of the tissue structures.
Peripheral and central localization of the nesfatin-1 receptor using autoradiography in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinz, Philip; Goebel-Stengel, Miriam; Teuffel, Pauline
2016-02-12
Nesfatin-1 was recently identified and introduced as food intake-regulatory hormone. Soon thereafter, mounting evidence indicated a much broader role for nesfatin-1 with an involvement in the regulation of food intake, gastrointestinal motility, glucose homeostasis, blood pressure and stress. Despite the growing knowledge on the physiological regulation and functions of nesfatin-1, the receptor mediating these effects remains to be characterized. Therefore, the aim of this study was to investigate the peripheral and central localization of the nesfatin-1 receptor by autoradiography. Male Sprague–Dawley rats were used and peripheral as well as brain tissue was processed for {sup 125}I-nesfatin-1 autoradiography. In peripheral tissues,more » an autoradiographic signal was observed in the gastric mucosa of corpus and antrum, in duodenum, jejunum and ileum, while no signal was detected in the colon. Preabsorption of {sup 125}I-nesfatin-1 with non-labeled nesfatin-1 greatly diminished the autoradiographic signal in the stomach indicating specificity (−32%, p < 0.001). A displacement assay showed an effective concentration by which 50% of {sup 125}I-nesfatin-1 bound to the receptor (EC{sub 50}) in the gastric corpus of 80 pM. Moreover, autoradiography was observed in endocrine tissues including the pituitary, pancreas, adrenal gland, testis and visceral adipose tissue. In addition, also heart, skeletal muscle, lung, liver and kidney showed autoradiographic signals. In the brain, strong {sup 125}I-nesfatin-1 autoradiography was detected in the cortex, paraventricular nucleus of the hypothalamus, area postrema, dorsal motor nucleus of the vagus nerve and cerebellum. Based on the distribution of nesfatin-1 autoradiography, nesfatin-1 is a pleiotropic hormone that is involved in the regulation of several homeostatic functions. - Highlights: • Although our knowledge on nesfatin-1 is increasing, the receptor is still unknown. • {sup 125}I-nesfatin-1 autoradiography was detected in (a.o.) the stomach and pancreas. • Central signals were observed in the hypothalamic paraventricular and dorsal motor nucleus. • Distribution data support the notion of nesfatin-1 being a pleiotropic hormone.« less
Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study.
Sykora, Marek; Czosnyka, Marek; Liu, Xiuyun; Donnelly, Joseph; Nasr, Nathalie; Diedler, Jennifer; Okoroafor, Francois; Hutchinson, Peter; Menon, David; Smielewski, Peter
2016-06-01
Autonomic impairment after acute traumatic brain injury has been associated independently with both increased morbidity and mortality. Links between autonomic impairment and increased intracranial pressure or impaired cerebral autoregulation have been described as well. However, relationships between autonomic impairment, intracranial pressure, impaired cerebral autoregulation, and outcome remain poorly explored. Using continuous measurements of heart rate variability and baroreflex sensitivity we aimed to test whether autonomic markers are associated with functional outcome and mortality independently of intracranial variables. Further, we aimed to evaluate the relationships between autonomic functions, intracranial pressure, and cerebral autoregulation. Retrospective analysis of a prospective database. Neurocritical care unit in a university hospital. Sedated patients with severe traumatic brain injury. Waveforms of intracranial pressure and arterial blood pressure, baseline Glasgow Coma Scale and 6 months Glasgow Outcome Scale were recorded. Baroreflex sensitivity was assessed every 10 seconds using a modified cross-correlational method. Frequency domain analyses of heart rate variability were performed automatically every 10 seconds from a moving 300 seconds of the monitoring time window. Mean values of baroreflex sensitivity, heart rate variability, intracranial pressure, arterial blood pressure, cerebral perfusion pressure, and impaired cerebral autoregulation over the entire monitoring period were calculated for each patient. Two hundred and sixty-two patients with a median age of 36 years entered the analysis. The median admission Glasgow Coma Scale was 6, the median Glasgow Outcome Scale was 3, and the mortality at 6 months was 23%. Baroreflex sensitivity (adjusted odds ratio, 0.9; p = 0.02) and relative power of a high frequency band of heart rate variability (adjusted odds ratio, 1.05; p < 0.001) were individually associated with mortality, independently of age, admission Glasgow Coma Scale, intracranial pressure, pressure reactivity index, or cerebral perfusion pressure. Baroreflex sensitivity showed no correlation with intracranial pressure or cerebral perfusion pressure; the correlation with pressure reactivity index was strong in older patients (age, > 60 yr). The relative power of high frequency correlated significantly with intracranial pressure and cerebral perfusion pressure, but not with pressure reactivity index. The relative power of low frequency correlated significantly with pressure reactivity index. Autonomic impairment, as measured by heart rate variability and baroreflex sensitivity, is significantly associated with increased mortality after traumatic brain injury. These effects, though partially interlinked, seem to be independent of age, trauma severity, intracranial pressure, or autoregulatory status, and thus represent a discrete phenomenon in the pathophysiology of traumatic brain injury. Continuous measurements of heart rate variability and baroreflex sensitivity in the neuromonitoring setting of severe traumatic brain injury may carry novel pathophysiological and predictive information.
Brain Dysplasia Associated with Ciliary Dysfunction In Infants with Congenital Heart Disease
Panigrahy, Ashok; Lee, Vincent; Ceschin, Rafael; Zuccoli, Giulio; Beluk, Nancy; Khalifa, Omar; Votava-Smith, Jodie K; DeBrunner, Mark; Munoz, Ricardo; Domnina, Yuliya; Morell, Victor; Wearden, Peter; De Toledo, Joan Sanchez; Devine, William; Zahid, Maliha; Lo, Cecilia W.
2016-01-01
Objective To test for associations between abnormal respiratory ciliary motion (CM) and brain abnormalities in infants with congenital heart disease (CHD) Study design We recruited 35 infants with CHD preoperatively and performed nasal tissue biopsy to assess respiratory CM by videomicroscopy. Cranial ultrasound and brain magnetic resonance imaging were obtained pre- and/or post-operatively and systematically reviewed for brain abnormalities. Segmentation was used to quantitate cerebrospinal fluid and regional brain volumes. Perinatal and perioperative clinical variables were collected. Results A total of 10 (28.5%) patients with CHD had abnormal CM. Abnormal CM was not associated with brain injury, but was correlated with increased extra-axial CSF volume (p<0.001), delayed brain maturation (p<0.05), and a spectrum of subtle dysplasia including the hippocampus (p<0.0078) and olfactory bulb (p<0.034). Abnormal CM was associated with higher composite dysplasia score (p<0.001) and both were correlated with elevated pre-operative serum lactate (p <0.001). Conclusion Abnormal respiratory CM in infants with CHD is associated with a spectrum of brain dysplasia. These findings suggest that ciliary defects may play a role in brain dysplasia in patients with CHD and have the potential to prognosticate neurodevelopmental risks. PMID:27574995
Dietary intake of high-dose biotin inhibits spermatogenesis in young rats.
Sawamura, Hiromi; Ikeda, Chieko; Shimada, Ryoko; Yoshii, Yui; Watanabe, Toshiaki
2015-02-01
To characterize a new function of the water-soluble vitamin, biotin, in reproduction and early growth in mammals, the effects of high dietary doses of biotin on early spermatogenesis were biochemically and histologically investigated in male rats. Weaned rats were fed a CE-2 (control) diet containing 0.00004% biotin, or a control diet supplemented with 0.01%, 0.1%, or 1.0% biotin. Pair-fed rats were fed a control diet that was equal in calories to the amount ingested by the 1.0% biotin group, because food intake was decreased in the 1.0% biotin group. Food intake and body weight gain were lower in the 1.0% biotin group than in the control group. The kidney, brain and testis weights were significantly lower in the 1.0% biotin group than in the pair-fed group after 6 weeks of feeding. The accumulation of biotin in the liver and testis increased in a dose-dependent manner. In the 1.0% biotin group, the number of mature sperm was markedly lower, that of sperm with morphologically abnormal heads, mainly consisting of round heads, had increased. In addition, the development of seminiferous tubules was inhibited, and few spermatogonia and no spermatocytes were histologically observed. These results demonstrated that the long-term intake of high-dose biotin inhibited spermatogenesis in young male rats. © 2014 Japanese Teratology Society.
Bernardi, Maria M; Kirsten, Thiago B; Matsuoka, Suzana M; Teodorov, Elizabeth; Habr, Soraya F; Penteado, Sandra H W N; Palermo-Neto, João
2010-01-01
This study investigates the effects of prenatal lipopolysaccharide (LPS) exposure on the maternal behavior of pregnant rats and the physical development and sexual behavior of their male offspring in adulthood. For two experiments, pregnant rats were injected with LPS (250 microg/kg, i.p.) on gestation day (GD) 21. In the first experiment, the maternal behavior (postnatal day, PND, 6) and the dam's open-field general activity (PND7) were evaluated. In the second experiment, the maternal pre- and postnatal parameters, the pup's development, the offspring's sexual behavior in adulthood, and the pup's organ weights were assessed. Compared to the control group, the LPS-treated dams presented reduced maternal behavior, decreased general activity, a smaller body weight difference between GD21 and PND1, a greater number of perinatal deaths, and smaller litters. For the male pups, LPS treatment resulted in a decreased body weight on PND2, whereas the anogenital distance and the day of testis descent were not modified. The male sexual behavior was impaired by prenatal LPS. Particularly the number of ejaculating animals was reduced. The testis weight was also lower in the prenatally LPS-treated rats than in the control rats. We propose that prenatal LPS exposure on GD21 acts as an imprinting factor that interferes with the programming of brain sexual determination in offspring. Copyright 2009 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlowe, C.; Clark, M.J.; Mast, R.W.
1986-12-01
Male and 13.5- and 17.5-day pregnant Swiss-Webster mice were administered 120 mg/kg (2,3-14C)acrylamide orally. The male mice were frozen 0.33, 1, 3, 9, 24, 72, and 216 hr later, and the pregnant mice at each gestational period were frozen at 3 and 24 hr. Whole-body autoradiographs from the male mice at early time intervals revealed accumulation of radioactivity in the contents of the gastrointestinal tract, liver, pancreas, testis, brain and gallbladder, and epithelia of oral cavity, esophagus, and bronchi. The distribution appears to be similar in the male and pregnant mice. Absorption from the stomach was virtually complete by 3more » hr; renal and hepatic elimination was essentially complete at 24 hr. Radioactivity in the male reproductive tract appeared in the parenchyma of the testis at 1 hr, moved to the seminiferous tubules and head of the epididymis at 9 hr, and by 9 days remained only in the tail of the epididymis and the crypts of the epithelium of the glans penis. This movement parallels that of spermatids. The 13.5-day fetuses were uniformly labeled except for a slightly increased uptake in fetal brain. The distribution of radioactivity in the 17.5-day fetal tissues resembled that in maternal tissues; the remarkable exception was an intense accumulation in fetal skin. This study indicates that acrylamide is efficiently absorbed from the stomach and eliminated by the liver, kidney, and possibly the pancreas. A previously unrecognized affinity of acrylamide or a metabolic product was demonstrated for fetal skin in late gestation and for adult epithelia of oral cavity, esophagus, forestomach, and bronchi. Also, acrylamide or a metabolite appears to bind to spermatids at a specific stage near maturation.« less
Juvenile granulosa cell tumor of the testis: case report and review of literature.
Nieto, Nieves; Torres-Valdivieso, Maria José; Aguado, Pablo; Mateos, Maria Elena; López-Pérez, Jesús; Melero, Carmen; Vivanco, José Luis; Gómez, Andrés
2002-01-01
Juvenile granulosa cell tumor of the testis is an infrequent tumor of the gonadal stroma characteristic of the pediatric age. It usually appears as a scrotal mass and less frequently as an abdominal or inguinal mass. It may be associated with ambiguous genitalia and/or abnormal sex chromosomes. The recommended treatment is orchiectomy alone because local recurrence or metastasis have never been observed. We describe a patient with a juvenile granulosa cell tumor of the testis and review the literature.
[Recurrence plot analysis of HRV for brain ischemia and asphyxia].
Chen, Xiaoming; Qiu, Yihong; Zhu, Yisheng
2008-02-01
Heart rate variability (HRV) is the tiny variability existing in the cycles of the heart beats, which reflects the corresponding balance between sympathetic and vagus nerves. Since the nonlinear characteristic of HRV is confirmed, the Recurrence Plot method, a nonlinear dynamic analysis method based on the complexity, could be used to analyze HRV. The results showed the recurrence plot structures and some quantitative indices (L-Mean, L-Entr) during asphyxia insult vary significantly as compared to those in normal conditions, which offer a new method to monitor brain asphyxia injury.
Identification and cloning of a glycoprotein hormone receptor from sea lamprey, Petromyzon marinus.
Freamat, Mihael; Kawauchi, Hiroshi; Nozaki, Masumi; Sower, Stacia A
2006-08-01
A full-length transcript encoding a functional lamprey glycoprotein hormone receptor I (lGpH-R I, GenBank AY750688) was cloned from the testes of the sea lamprey, Petromyzon marinus, using the GpH-R protein fingerprint GLYCHORMONER from the PRINTS database. The present study is the first to identify a GpH-R transcript in an agnathan, which is one of the only two representatives of the oldest lineage of vertebrates. The 719-amino acid full-length cDNA encoding lGpH-R I is highly similar and is likely a homolog of the vertebrate GpH-Rs (including LH, FSH, and TSH receptors). The key motifs, sequence comparisons, and characteristics of the identified GpH-R reveal a mosaic of features common to all other classes of GpH-Rs in vertebrates. The lGpH-R I was shown to activate the cAMP signaling system using human chorionic gonadotropin in transiently transfected COS-7 cells. The highest expression of the receptor transcript was demonstrated in the testes using reverse transcriptase-PCR. Lower levels of the receptor transcript were also detected in brain, heart, intestine, kidney, liver, muscle, and thyroid. The high expression of lGpH-R I in the testis and the high similarity with gnathostome gonadotropin hormone receptors suggest that lGpH-R I functions as a receptor for lamprey gonadotropin hormones. We hypothesize from these data that there is lower specificity of gonadotropin and its receptor in agnathans and that during co-evolution of the ligand and its receptor in gnathostomes, there were increased specificities of interactions between each GpH (TSH, LH, and FSH) and its receptor.
Amyloidosis in transgenic mice expressing murine amyloidogenic apolipoprotein A-II (Apoa2c).
Ge, Fengxia; Yao, Junjie; Fu, Xiaoying; Guo, Zhanjun; Yan, Jingmin; Zhang, Beiru; Zhang, Huanyu; Tomozawa, Hiroshi; Miyazaki, Junichi; Sawashita, Jinko; Mori, Masayuki; Higuchi, Keiichi
2007-07-01
In mice, apolipoprotein A-II (apoA-II) self-associates to form amyloid fibrils (AApoAII) in an age-associated manner. We postulated that the two most important factors in apoA-II amyloidosis are the Apoa2(c) allele, which codes for the amyloidogenic protein APOA2C (Gln5, Ala38) and transmission of amyloid fibrils. To characterize further the contribution of the Apoa2(c) allele to amyloidogenesis and improve detection of amyloidogenic materials, we established transgenic mice that overexpress APOA2C protein under the cytomegalovirus (CMV) immediate early gene (CMV-IE) enhancer/chicken beta promoter. Compared to transgene negative (Tg(-/-)) mice that express apoA-II protein mainly in the liver, mice homozygous (Tg(+/+)) and heterozygous (Tg(+/-)) for the transgene express a high level of apoA-II protein in many tissues. They also have higher plasma concentrations of apoA-II, higher ratios of ApoA-II/apolipoprotein A-I (ApoA-I) and higher concentrations of high-density lipoprotein (HDL) cholesterol. Following injection of AApoAII fibrils into Tg(+/+) mice, amyloid deposition was observed in the testis, liver, kidney, heart, lungs, spleen, tongue, stomach and intestine but not in the brain. In Tg(+/+) mice, but not in Tg(-/-) mice, amyloid deposition was induced by injection of less than 10(-8) mug AApoAII fibrils. Furthermore, deposition in Tg(+/+) mice occurred more rapidly and to a greater extent than in Tg(-/-) mice. These studies indicate that increased levels of APOA2C protein lead to earlier and greater amyloid deposition and enhanced sensitivity to the transmission of amyloid fibrils in transgenic mice. This transgenic mouse model should prove valuable for studies of amyloidosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, S; Indiana University School of Medicine, Indianapolis, IN, University Hospitals Case Medical Center, Cleaveland, OH; Andersen, A
2015-06-15
Purpose: The Leksell Gamma Knife (GK) B & C series contains 201 Cobalt-60 sources with a helmet. The new model, Perfexion uses 192 Cobalt-60 sources without a helmet; using IRIS system for collimation and stereotactic guidance to deliver SRS to brain tumors. Relative dose to extracranial organs at risk (OARs) is measured in phantom in this study for Perfexion and C-series GK. Materials & Methods: Measurements were performed in a Rando anthropomorphic phantom on both systems using a large ion chamber (Keithley-175) for each collimator. The Keithley-175 cc ion chamber was sandwiched between phantom slices at various locations in themore » phantom to correspond to different extracranial OARs (thyroid, heart, kidney, ovary and testis, etc.) The dose measurement was repeated with OSL detectors for each position and collimator. Results: A large variation is observed in the normalized dose between these two systems. The dose beyond the housing falls off exponentially for Perfexion. Dose beyond the C-series GK housing falls off exponentially from 0–20cm then remains relatively constant from 20–40cm and again falls off with distance but less rapidly. The variation of extracranial dose with distance for each collimator is found to be parallel to each other for both systems. Conclusion: Whole body dose is found to vary significantly between these systems. It is important to measure the extracranial dose, especially for young patients. It is estimated that dose falls off exponentially from the GK housing and is about 1% for large collimators at 75 cm. The dose is two-orders of magnitude smaller for the 4mm collimator. However, this small dose for patient may be significant radiologically.« less
Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides
NASA Astrophysics Data System (ADS)
Xie, Tianwu; Zaidi, Habib
2013-01-01
In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.
Homozygous carnitine palmitoyltransferase 1a (liver isoform) deficiency is lethal in the mouse.
Nyman, Lara R; Cox, Keith B; Hoppel, Charles L; Kerner, Janos; Barnoski, Barry L; Hamm, Doug A; Tian, Liqun; Schoeb, Trenton R; Wood, Philip A
2005-01-01
To better understand carnitine palmitoyltransferase 1a (liver isoform, gene=Cpt-1a, protein=CPT-1a) deficiency in human disease, we developed a gene knockout mouse model. We used a replacement gene targeting strategy in ES cells that resulted in the deletion of exons 11-18, thus producing a null allele. Homozygous deficient mice (CPT-1a -/-) were not viable. There were no CPT-1a -/- pups, embryos or fetuses detected from day 10 of gestation to term. FISH analysis demonstrated targeting vector recombination at the expected single locus on chromosome 19. The inheritance pattern from heterozygous matings was skewed in both C57BL/6NTac, 129S6/SvEvTac (B6;129 mixed) and 129S6/SvEvTac (129 coisogenic) genetic backgrounds biased toward CPT-1a +/- mice (>80%). There was no sex preference with regard to germ-line transmission of the mutant allele. CPT-1a +/- mice had decreased Cpt-1a mRNA expression in liver, heart, brain, testis, kidney, and white fat. This resulted in 54.7% CPT-1 activity in liver from CPT-1a +/- males but no significant difference in females as compared to CPT-1a +/+ controls. CPT-1a +/- mice showed no fatty change in liver and were cold tolerant. Fasting free fatty acid concentrations were significantly elevated, while blood glucose concentrations were significantly lower in 6-week-old CPT-1a +/- mice compared to controls. Although the homozygous mutants were not viable, we did find some aspects of haploinsufficiency in the CPT-1a +/- mutants, which will make them an important mouse model for studying the role of CPT-1a in human disease.
[Protective effects of a new glutamic acid derivative against stress after nNOS blockade].
Tyurenkov, I N; Popova, T A; Perfilova, V N; Prokofiev, I I; Borisov, A V; Kustova, M V; Zaypullaev, G I; Ostrovskij, О V
2017-01-01
We studied the effects of a new glutamic acid derivative, glufimet, on oxidative stress, activity of antioxidant enzymes, mitochondrial respiration, endothelial vasodilation and anti-platelet activity in female rats after exposure to 24-hour immobilization pain stress and 7-nitroindazole, a neuronal nitric oxide synthase (nNOS) inhibitor. A single dose administration of glufimet (29 mg/kg intraperitoneally) 10 minutes before stress exposure caused a decrease of NO metabolites in serum (by 27.2%) and heart homogenate (33.5% (p£0.05), respectively, compared with the control group. Administration of 7-nitroindazole with glufimet also decreased the studied parameters by 14.3% in the heart homogenate and by 30,3% in the brain (p£0.05) compared with stress exposed rats receiving only the nNOS inhibitor. Glufimet decreased the levels of primary and secondary products of lipid peroxidation (LPO), conjugated dienes by 20% (p£0.05) and 17.3% (p£0.05), ketodienes by 16% and 13.7%, malondialdehyde by 15% (p£0.05) and 26.6% (p£0.05) in the heart and brain mitochondria of stress exposed rats, respectively, compared with the control group. Glufimet administration also increased SOD activity (by 14.4% and 13.1%, respectively), catalase (by 19% and 26.8%, respectively) and glutathione peroxidase (GPx) activity (by 45.5% (p£0.05) and 7.3%, respectively). The antioxidant effect of glufimet may be also attributed to increased coupling between the processes of mitochondria respiration and oxidative phosphorylation. This was evidenced by an increase in the respiratory control ratio (RCR) (by 46.0% (p£0.05) for malate/glutamate and by 49,7% (p£0.05) for succinate) in the heart mitochondria. A statistically significant increase in RCR (by 37.3% (p£0.05)) was observed in stress exposed female rat brain mitochondria for succinate. RCRs differed significantly for succinate in the heart and brain of rats receiving glufimet after nNOS blockade. RCR increased by 62.3% (p£0.05) in the heart mitochondria and by 72.2% (p£0.05) in the brain mitochondria compared with the RCRs in stress exposed rats receiving 7-nitroindazole.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... the Treatment of Brain, Liver, and Pancreatic Cancers and Congestive Heart Failure AGENCY: National..., development, manufacture, distribution, sale, and use in humans for the treatment of brain cancer, liver...
NASA Astrophysics Data System (ADS)
Zienkiewicz, Aleksandra; Huotari, Niko; Raitamaa, Lauri; Raatikainen, Ville; Ferdinando, Hany; Vihriälä, Erkki; Korhonen, Vesa; Myllylä, Teemu; Kiviniemi, Vesa
2017-03-01
The lymph system is responsible for cleaning the tissues of metabolic waste products, soluble proteins and other harmful fluids etc. Lymph flow in the body is driven by body movements and muscle contractions. Moreover, it is indirectly dependent on the cardiovascular system, where the heart beat and blood pressure maintain force of pressure in lymphatic channels. Over the last few years, studies revealed that the brain contains the so-called glymphatic system, which is the counterpart of the systemic lymphatic system in the brain. Similarly, the flow in the glymphatic system is assumed to be mostly driven by physiological pulsations such as cardiovascular pulses. Thus, continuous measurement of blood pressure and heart function simultaneously with functional brain imaging is of great interest, particularly in studies of the glymphatic system. We present our MRI compatible optics based sensing system for continuous blood pressure measurement and show our current results on the effects of blood pressure variations on cerebral brain dynamics, with a focus on the glymphatic system. Blood pressure was measured simultaneously with near-infrared spectroscopy (NIRS) combined with an ultrafast functional brain imaging (fMRI) sequence magnetic resonance encephalography (MREG, 3D brain 10 Hz sampling rate).
Aged rats are more vulnerable than adolescents to "ecstasy"-induced toxicity.
Feio-Azevedo, R; Costa, V M; Barbosa, D J; Teixeira-Gomes, A; Pita, I; Gomes, S; Pereira, F C; Duarte-Araújo, M; Duarte, J A; Marques, F; Fernandes, E; Bastos, M L; Carvalho, F; Capela, J P
2018-06-04
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a widespread drug of abuse with known neurotoxic properties. The present study aimed to evaluate the differential toxic effects of MDMA in adolescent and aged Wistar rats, using doses pharmacologically comparable to humans. Adolescent (post-natal day 40) (3 × 5 mg/kg, 2 h apart) and aged (mean 20 months old) (2 × 5 mg/kg, 2 h apart) rats received MDMA intraperitoneally. Animals were killed 7 days later, and the frontal cortex, hippocampus, striatum and cerebellum brain areas were dissected, and heart, liver and kidneys were collected. MDMA caused hyperthermia in both treated groups, but aged rats had a more dramatic temperature elevation. MDMA promoted serotonergic neurotoxicity only in the hippocampus of aged, but not in the adolescents' brain, and did not change the levels of dopamine or serotonin metabolite in the striatum of both groups. Differential responses according to age were also seen regarding brain p-Tau levels, a hallmark of a degenerative brain, since only aged animals had significant increases. MDMA evoked brain oxidative stress in the hippocampus and striatum of aged, and in the hippocampus, frontal cortex, and striatum brain areas of adolescents according to protein carbonylation, but only decreased GSH levels in the hippocampus of aged animals. The brain maturational stage seems crucial for MDMA-evoked serotonergic neurotoxicity. Aged animals were more susceptible to MDMA-induced tissue damage in the heart and kidneys, and both ages had an increase in liver fibrotic tissue content. In conclusion, age is a determinant factor for the toxic events promoted by "ecstasy". This work demonstrated special susceptibility of aged hippocampus to MDMA neurotoxicity, as well as impressive damage to the heart and kidney tissue following "ecstasy".
Masson, Serge; Vago, Tarcisio; Baldi, Gabriella; Salio, Monica; De Angelis, Noeleen; Nicolis, Enrico; Maggioni, Aldo P; Latini, Roberto; Norbiato, Guido; Bevilacqua, Maurizio
2002-08-01
It is not clear whether brain natriuretic peptide (BNP) or N-terminal proBNP (NT-proBNP) is superior as a diagnostic and prognostic indicator in cardiac diseases. Here, we compare the clinical correlations of both peptides in a population of 92 ambulatory patients with heart failure, using a well-established immunoradiometric assay (IRMA) for BNP and an automated electrochemiluminescence immunoassay for NT-proBNP. The analytical correlation between the two peptides was satisfactory over a wide range of concentrations (1-686 pM for BNP) with the equation: NT-proBNP = 3.48 x BNP -19 and a correlation coefficient r2=0.94. In addition, the concentration of both peptides increased in a similar fashion according to the severity of the disease New York Heart Association (NYHA) functional class, left ventricular ejection fraction, etiology) and age; for instance, the ratios between median levels measured in NYHA class III vs. class II patients were comparable for BNP (383 vs. 16 pM, ratio 24) and NT-proBNP (1306 vs. 57 pM, ratio 23). We conclude that N-terminal proBNP, as assayed in the present study, correlates equally to BNP with clinical variables in patients with heart failure.
Howell, Brett A; Chauhan, Anuj
2010-08-01
Physiologically based pharmacokinetic (PBPK) models were developed for design and optimization of liposome therapy for treatment of overdoses of tricyclic antidepressants and local anesthetics. In vitro drug-binding data for pegylated, anionic liposomes and published mechanistic equations for partition coefficients were used to develop the models. The models were proven reliable through comparisons to intravenous data. The liposomes were predicted to be highly effective at treating amitriptyline overdoses, with reductions in the area under the concentration versus time curves (AUC) of 64% for the heart and brain. Peak heart and brain drug concentrations were predicted to drop by 20%. Bupivacaine AUC and peak concentration reductions were lower at 15.4% and 17.3%, respectively, for the heart and brain. The predicted pharmacokinetic profiles following liposome administration agreed well with data from clinical studies where protein fragments were administered to patients for overdose treatment. Published data on local cardiac function were used to relate the predicted concentrations in the body to local pharmacodynamic effects in the heart. While the results offer encouragement for future liposome therapies geared toward overdose, it is imperative to point out that animal experiments and phase I clinical trials are the next steps to ensuring the efficacy of the treatment. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association
Miller, David W; Harrison, Joanne L; Brown, Yvonne A; Doyle, Una; Lindsay, Alanna; Adam, Clare L; Lea, Richard G
2005-01-01
Background The gut hormone, ghrelin, is involved in the neuroendocrine and metabolic responses to hunger. In monogastric species, circulating ghrelin levels show clear meal-related and body weight-related changes. The pattern of secretion and its role in ruminant species is less clear. Ghrelin acts via growth hormone secretagogue receptors (GHSR-1a) to alter food intake, fat utilization, and cellular proliferation. There is also evidence that ghrelin is involved in reproductive function. In the present study we used immunohistochemistry to investigate the presence of ghrelin and GHSR-1a in sheep reproductive tissues. In addition, we examined whether ghrelin and GHSR-1a protein expression is developmentally regulated in the adult and fetal ovine testis, and whether there is an association with markers of cellular proliferation, i.e. stem cell factor (SCF) and proliferating cell nuclear antigen (PCNA). Methods Antibodies raised against ghrelin and its functional receptor, GHSR-type 1a, were used in standard immunohistochemical protocols on various reproductive tissues collected from adult and fetal sheep. GHSR-1a mRNA presence was also confirmed by in situ hybridisation. SCF and PCNA immunoexpression was investigated in fetal testicular samples. Adult and fetal testicular immunostaining for ghrelin, GHSR-1a, SCF and PCNA was analysed using computer-aided image analysis. Image analysis data were subjected to one-way ANOVA, with differences in immunostaining between time-points determined by Fisher's least significant difference. Results In adult sheep tissue, ghrelin and GHSR-1a immunostaining was detected in the stomach (abomasum), anterior pituitary gland, testis, ovary, and hypothalamic and hindbrain regions of the brain. In the adult testis, there was a significant effect of season (photoperiod) on the level of immunostaining for ghrelin (p < 0.01) and GHSR-1a (p < 0.05). In the fetal sheep testis, there was a significant effect of gestational age on the level of immunostaining for ghrelin (p < 0.001), GHSR-1a (p < 0.05), SCF (p < 0.05) and PCNA (p < 0.01). Conclusion Evidence is presented for the presence of ghrelin and its receptor in various reproductive tissues of the adult and fetal sheep. In addition, the data indicate that testicular expression of ghrelin and its receptor is physiologically regulated in the adult and developmentally regulated in the fetus. Therefore, the ghrelin ligand/receptor system may have a role (endocrine and/or paracrine) in the development (cellular proliferation) and function of the reproductive axis of the sheep. PMID:16259638
Tissue-Specific Transcriptomics in the Field Cricket Teleogryllus oceanicus
Bailey, Nathan W.; Veltsos, Paris; Tan, Yew-Foon; Millar, A. Harvey; Ritchie, Michael G.; Simmons, Leigh W.
2013-01-01
Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection—testis and accessory gland—would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection. PMID:23390599
Tissue-specific transcriptomics in the field cricket Teleogryllus oceanicus.
Bailey, Nathan W; Veltsos, Paris; Tan, Yew-Foon; Millar, A Harvey; Ritchie, Michael G; Simmons, Leigh W
2013-02-01
Field crickets (family Gryllidae) frequently are used in studies of behavioral genetics, sexual selection, and sexual conflict, but there have been no studies of transcriptomic differences among different tissue types. We evaluated transcriptome variation among testis, accessory gland, and the remaining whole-body preparations from males of the field cricket, Teleogryllus oceanicus. Non-normalized cDNA libraries from each tissue were sequenced on the Roche 454 platform, and a master assembly was constructed using testis, accessory gland, and whole-body preparations. A total of 940,200 reads were assembled into 41,962 contigs, to which 36,856 singletons (reads not assembled into a contig) were added to provide a total of 78,818 sequences used in annotation analysis. A total of 59,072 sequences (75%) were unique to one of the three tissues. Testis tissue had the greatest proportion of tissue-specific sequences (62.6%), followed by general body (56.43%) and accessory gland tissue (44.16%). We tested the hypothesis that tissues expressing gene products expected to evolve rapidly as a result of sexual selection--testis and accessory gland--would yield a smaller proportion of BLASTx matches to homologous genes in the model organism Drosophila melanogaster compared with whole-body tissue. Uniquely expressed sequences in both testis and accessory gland showed a significantly lower rate of matching to annotated D. melanogaster genes compared with those from general body tissue. These results correspond with empirical evidence that genes expressed in testis and accessory gland tissue are rapidly evolving targets of selection.
High androgen receptor immunoexpression in human "Sertoli cell only" testis.
Loukil, L Hadjkacem; Boudawara, T Sellami; Ayadi, I; Bahloul, A; Jlidi, R; Ayadi, H; Keskes, L Ammar
2005-01-01
Our purpose was to evaluate cellular androgen receptor (AR) distribution and intensity of immunostaining in the human azoospermic testis. Thirty six biopsy specimens from azoospermic men were immunostained, using a monoclonal antibody of human AR. The localization and the intensity of AR immunostaining was evaluated in Sertoli Cell Only (SCO) testis (G1, n = 21), in spermatogenesis arrest testis (G2, n = 11) and in histologically normal testis (G3, n = 4). We found an AR immunostaining in Sertoli, peritubular myoid and Leydig cells, but not in germ cells. The intensity of the immunostaining varied substantially between biopsy specimens of different patients. Sertoli and Leydig cells AR immunostaining (score and intensity) in SCO group was higher than in the other groups. For Sertoli cells, the score means of AR immunoreactivity were 20 +/- 2.36, 10.18 +/- 1.0 and 1 +/- 1, for G1, G2 and G3 groups, respectively. For Leydig cells, the score means were 10.24 +/- 1.37, 6 +/- 0.71 and 0, for G1, G2 and G3 groups, respectively. We found significant differences between G1 and G2 (p = 0.0008), between G1 and G3 (p = 1.54 10-7) and G2 and G3 (p = 0.00032). These results suggest that in the testis AR is located exclusively in somatic cells and its expression is higher in SCO syndrome than in normal and in arrest spermatogenesis testes.
Implications of sodium hydrogen exchangers in various brain diseases.
Verma, Vivek; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh
2015-09-01
Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.
Bivariate Heritability of Total and Regional Brain Volumes: the Framingham Study
DeStefano, Anita L.; Seshadri, Sudha; Beiser, Alexa; Atwood, Larry D.; Massaro, Joe M.; Au, Rhoda; Wolf, Philip A.; DeCarli, Charles
2009-01-01
Heritability and genetic and environmental correlations of total and regional brain volumes were estimated from a large, generally healthy, community-based sample, to determine if there are common elements to the genetic influence of brain volumes and white matter hyperintensity volume. There were 1538 Framingham Heart Study participants with brain volume measures from quantitative magnetic resonance imaging (MRI) who were free of stroke and other neurological disorders that might influence brain volumes and who were members of families with at least two Framingham Heart Study participants. Heritability was estimated using variance component methodology and adjusting for the components of the Framingham stroke risk profile. Genetic and environmental correlations between traits were obtained from bivariate analysis. Heritability estimates ranging from 0.46 to 0.60, were observed for total brain, white matter hyperintensity, hippocampal, temporal lobe, and lateral ventricular volumes. Moderate, yet significant, heritability was observed for the other measures. Bivariate analyses demonstrated that relationships between brain volume measures, except for white matter hyperintensity, reflected both moderate to strong shared genetic and shared environmental influences. This study confirms strong genetic effects on brain and white matter hyperintensity volumes. These data extend current knowledge by showing that these two different types of MRI measures do not share underlying genetic or environmental influences. PMID:19812462
Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David
2015-10-01
Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. Copyright © 2015 the American Physiological Society.
What You Need to Know about Drugs: Ecstasy
... his or her body can dangerously overheat during dancing or other physical activities, which can lead to muscle breakdown, kidney, liver and heart damage, and even death. Taking the drug can cause seizures, brain swelling and permanent brain ...
[Expression and localization of transmembrane protein CMTM2 in human testis and sperm].
Zhang, X W; Lan, K; Yang, W B; Li, Q; Zhao, Y P; Yin, H Q; Kite, B; Bai, W J; Xu, T
2017-08-18
To study the expression of transmembrane protein CMTM2 in the testis and sperm of adult males and to approach the potential function of the protein in the male reproductive system. The expression of CMTM2 in human testis and sperm was confirmed by Western blot. Immunohistochemical staining was used for detecting CMTM2 localization in the testis tissue, TRITC-CMTM2 and FITC-Hoechst double immunofluorescence staining was performed to examine the subcellular localization of CMTM2 in the human sperm before and after acrosome reaction, that is, immunofluorescent staining was used for detecting CMTM2 localization in both the testis and sperm before and after the acrosome reaction. CMTM2 was presented in both human testis and sperm. In the testis, CMTM2 immunoreactive particles were observed mainly in the membrane of the different stages of spermatogenic cells. In the human sperm, its immunoreactivity was restrictively localized to the posterior head where sperm-egg fusion occurred, and the CMTM2 localization was not affected by sperm acrosome reaction. CMTM2 was widely expressed in seminiferous tubules of the human testis, mainly in the cell membranes of spermatogenic cells, which was consistent with the previous reports. The immunofluorescence performed on frozen human testis slides showed similar findings with immunohistochemistry, which gave weight to the localization of CMTM2 in the cell membranes of spermatogenic cells at different stages. TRITC-CMTM2 and FITC-Hoechst double immunofluorescence staining was performed to examine the subcellular localization of CMTM2 in the human sperm before and after acrosome reaction. CMTM2 was localized at the posterior head of sperm before and after acrosome reaction. The localization and expression of CMTM2 were not affected by sperm acrosome reaction. Expression of CMTM2 in the male reproductive system of the adult human exhibits cell- and region-specific patterns, which suggests that they may play an important role in spermatogenesis and sperm-egg fusion. The expression of CMTM2 in the male reproductive system of the adult human exhibits cell- and region-specific patterns, which suggests that they may play an important role in spermatogenesis and sperm-egg fusion. However, it still remains to be further elucidated about the definite role of CMTM2 in male reproductive system and the process of spermatogenesis. And in vitro fertilization experiments are needed to confirm the role of CMTM2 in fertilization in future.
Manjanatha, Mugimane G; Bishop, Michelle E; Pearce, Mason G; Kulkarni, Rohan; Lyn-Cook, Lascelles E; Ding, Wei
2014-01-01
Doxorubicin (DOX) is an antineoplastic drug effective against many human malignancies. DOX's clinical efficacy is greatly limited because of severe cardiotoxicity. To evaluate if DOX is genotoxic in the heart, ~7-week-old, male F344 rats were administered intravenously 1, 2, and 3 mg/kg bw DOX at 0, 24, 48, and 69 hr and the Comet assays in heart, liver, kidney, and testis and micronucleus (MN) assay in the peripheral blood (PB) erythrocytes using flow cytometry were conducted. Rats were euthanized at 72 hr and PB was removed for the MN assay and single cells were isolated from multiple tissues for the Comet assays. None of the doses of DOX induced a significant DNA damage in any of the tissues examined by the alkaline Comet assay. Contrastingly, the glycosylase enzymes-modified Comet assay showed a significant dose dependent increase in the oxidative DNA damage in the cardiac tissue (P ≤ 0.05). In the liver, only the top dose induced significant increase in the oxidative DNA damage (P ≤ 0.05). The histopathology showed no severe cardiotoxicity but non-neoplastic lesions were present in both untreated and treated samples. A severe toxicity likely occurred in the bone marrow because no viable reticulocytes could be screened for the MN assay. Gene expression profiling of the heart tissues showed a significant alteration in the expression of 11 DNA damage and repair genes. These results suggest that DOX is genotoxic in the heart and the DNA damage may be induced primarily via the production of reactive oxygen species. Copyright © 2013 Wiley Periodicals, Inc.
Wofford, Joshua D; Chakrabarti, Mrinmoy; Lindahl, Paul A
2017-03-31
Cardiac function requires continuous high levels of energy, and so iron, a critical player in mitochondrial respiration, is an important component of the heart. Hearts from 57 Fe-enriched mice were evaluated by Mössbauer spectroscopy. Spectra consisted of a sextet and two quadrupole doublets. One doublet was due to residual blood, whereas the other was due to [Fe 4 S 4 ] 2+ clusters and low-spin Fe II hemes, most of which were associated with mitochondrial respiration. The sextet was due to ferritin; there was no evidence of hemosiderin, a ferritin decomposition product. Iron from ferritin was nearly absent in young hearts, but increased steadily with age. EPR spectra exhibited signals similar to those of brain, liver, and human cells. No age-dependent EPR trends were apparent. Hearts from HFE -/- mice with hemochromatosis contained slightly more iron overall than controls, including more ferritin and less mitochondrial iron; these differences typify slightly older hearts, perhaps reflecting the burden due to this disease. HFE -/- livers were overloaded with ferritin but had low mitochondrial iron levels. IRP2 -/- hearts contained less ferritin than controls but normal levels of mitochondrial iron. Hearts of young mice born to an iron-deficient mother contained normal levels of mitochondrial iron and no ferritin; the heart from the mother contained low ferritin and normal levels of mitochondrial iron. High-spin Fe II ions were nearly undetectable in heart samples; these were evident in brains, livers, and human cells. Previous Mössbauer spectra of unenriched diseased human hearts lacked mitochondrial and blood doublets and included hemosiderin features. This suggests degradation of iron-containing species during sample preparation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Lew, S; Hämäläinen, M S; Okada, Y
2017-12-01
To evaluate whether a full-coverage fetal-maternal scanner can noninvasively monitor ongoing electrophysiological activity of maternal and fetal organs. A simulation study was carried out for a scanner with an array of magnetic field sensors placed all around the torso from the chest to the hip within a horizontal magnetic shielding enclosure. The magnetic fields from internal organs and an external noise source were computed for a pregnant woman with a 35-week old fetus. Signal processing methods were used to reject the external and internal interferences, to visualize uterine activity, and to detect activity of fetal heart and brain. External interference was reduced by a factor of 1000, sufficient for detecting signals from internal organs when combined with passive and active shielding. The scanner rejects internal interferences better than partial-coverage arrays. It can be used to estimate currents around the uterus. It clearly detects spontaneous activity from the fetal heart and brain without averaging and weaker evoked brain activity at all fetal head positions after averaging. The simulated device will be able to monitor the ongoing activity of the fetal and maternal organs. This type of scanner may become a novel tool in fetal medicine. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bittl, J.A.; DeLayre, J.; Ingwall, J.S.
1987-09-22
Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate formore » V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.« less
Mishra, Vikas; Gautier, Nicole M; Glasscock, Edward
2018-01-29
In epilepsy, seizures can evoke cardiac rhythm disturbances such as heart rate changes, conduction blocks, asystoles, and arrhythmias, which can potentially increase risk of sudden unexpected death in epilepsy (SUDEP). Electroencephalography (EEG) and electrocardiography (ECG) are widely used clinical diagnostic tools to monitor for abnormal brain and cardiac rhythms in patients. Here, a technique to simultaneously record video, EEG, and ECG in mice to measure behavior, brain, and cardiac activities, respectively, is described. The technique described herein utilizes a tethered (i.e., wired) recording configuration in which the implanted electrode on the head of the mouse is hard-wired to the recording equipment. Compared to wireless telemetry recording systems, the tethered arrangement possesses several technical advantages such as a greater possible number of channels for recording EEG or other biopotentials; lower electrode costs; and greater frequency bandwidth (i.e., sampling rate) of recordings. The basics of this technique can also be easily modified to accommodate recording other biosignals, such as electromyography (EMG) or plethysmography for assessment of muscle and respiratory activity, respectively. In addition to describing how to perform the EEG-ECG recordings, we also detail methods to quantify the resulting data for seizures, EEG spectral power, cardiac function, and heart rate variability, which we demonstrate in an example experiment using a mouse with epilepsy due to Kcna1 gene deletion. Video-EEG-ECG monitoring in mouse models of epilepsy or other neurological disease provides a powerful tool to identify dysfunction at the level of the brain, heart, or brain-heart interactions.
de Oliveira, Ramatis Birnfeld; Senger, Mario Roberto; Vasques, Laura Milan; Gasparotto, Juciano; dos Santos, João Paulo Almeida; Pasquali, Matheus Augusto de Bittencourt; Moreira, José Claudio Fonseca; Silva, Floriano Paes; Gelain, Daniel Pens
2013-04-01
Schistosomiasis is a parasitic disease caused by trematode worms from the Schistosoma genus and is characterized by high rates of morbidity. The main organs affected in this pathology, such as liver, kidneys and spleen, are shifted to a pro-oxidant state in the course of the infection. Here, we compared oxidative stress parameters of liver, kidney and spleen with other organs affected by schistosomiasis - heart, brain cortex and lungs. The results demonstrated that mice infected with Schistosoma mansoni had altered non-enzymatic antioxidant status in lungs and brain, increased carbonyl levels in lungs, and a moderate level of oxidative stress in heart. A severe redox imbalance in liver and kidneys and decreased non-enzymatic antioxidant capacity in spleen were also observed. Superoxide dismutase and catalase activities were differently modulated in liver, kidney and heart, and we found that differences in Superoxide dismutase 2 and catalase protein content may be responsible for these differences. Lungs had decreased receptor for advanced glycation endproduct expression and the brain cortex presented altered tau expression and phosphorylation levels, suggesting important molecular changes in these tissues, as homeostasis of these proteins is widely associated with the normal function of their respective organs. We believe that these results demonstrate for the first time that changes in the redox profile and expression of tissue-specific proteins of organs such as heart, lungs and brain are observed in early stages of S. mansoni infection. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Krivonogova, E V; Poskotinova, L V; Demin, D B
2015-01-01
A single session of heart rate variability (HRV) biofeedback in apparently healthy young people and adolescents aged 14-17 years in order to increase vagal effects on heart rhythm and also electroencephalograms were carried out. Different variants of EEG spectral power during the successful HRV biofeedback session were identified. In the case of I variant of EEG activity the increase of power spectrum of alpha-, betal-, theta-components takes place in all parts of the brain. In the case of II variant of EEG activity the reduction of power spectrum of alpha-, betal-, theta-activity in all parts of the brain was observed. I and II variants of EEG activity cause more intensive regime of cortical-subcortical interactions. During the III variant of EEG activity the successful biofeedback is accompanied by increase of alpha activity in the central, front and anteriofrontal brain parts and so indicates the formation of thalamocortical relations of neural network in order to optimize the vegetal regulation of heart function. There was an increase in alpha- and beta1-activity in the parietal, central, frontal and temporal brain parts during the IV variant of EEG activity and so that it provides the relief of neural networks communication for information processing. As a result of V variance of EEG activity there was the increase of power spectrum of theta activity in the central and frontal parts of both cerebral hemispheres, so it was associated with the cortical-hippocampal interactions to achieve a successful biofeedback.
Ultrasonographic anatomy of bearded dragons (Pogona vitticeps).
Bucy, Daniel S; Guzman, David Sanchez-Migallon; Zwingenberger, Allison L
2015-04-15
To determine which organs can be reliably visualized ultrasonographically in bearded dragons (Pogona vitticeps), describe their normal ultrasonographic appearance, and describe an ultrasonographic technique for use with this species. Cross-sectional study. 14 healthy bearded dragons (6 females and 8 males). Bearded dragons were manually restrained in dorsal and sternal recumbency, and coelomic organs were evaluated by use of linear 7- to 15-MHz and microconvex 5- to 8-MHz transducers. Visibility, size, echogenicity, and ultrasound transducer position were assessed for each organ. Coelomic ultrasonography with both microconvex and linear ultrasound transducers allowed for visualization of the heart, pleural surface of the lungs, liver, caudal vena cava, aorta, ventral abdominal vein, gallbladder, fat bodies, gastric fundus, cecum, colon, cloaca, kidneys, and testes or ovaries in all animals. The pylorus was visualized in 12 of 14 animals. The small intestinal loops were visualized in 12 of 14 animals with the linear transducer, but could not be reliably identified with the microconvex transducer. The hemipenes were visualized in 7 of 8 males. The adrenal glands and spleen were not identified in any animal. Anechoic free coelomic fluid was present in 11 of 14 animals. Heart width, heart length, ventricular wall thickness, gastric fundus wall thickness, and height of the caudal poles of the kidneys were positively associated with body weight. Testis width was negatively associated with body weight in males. Results indicated coelomic ultrasonography is a potentially valuable imaging modality for assessment of most organs in bearded dragons and can be performed in unsedated animals.
NASA Astrophysics Data System (ADS)
Han, Tiantian; Ma, Xiaoshi; Liang, Shaoshuai; Gao, Beibei; Zhang, Zhifeng
2015-12-01
Prohibitin (PHB) participates in several biological processes including apoptosis, transcription regulation and suppression of cell proliferation in mammals. In this study, we cloned the full-length cDNA of prohibitin 2 ( Cf-phb2) from the testis of scallop ( Chlamys farreri). The deduced amino acid sequence presented a characteristic of PHB family with the PHB domain, and clustered with PHB2 of other species. Temporal and spatial expression of Cf-phb2 in testis during the reproductive cycle was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization. The expression of Cf-phb2 in the testis increased when testis developed from the resting stage to mature stage. The mRNA abundance of Cf-phb2 was the highest at mature stage, which was about 15-fold higher than that at proliferative stage. The expression of Cf-phb2 could be detected by in situ hybridization in all types of germ cells in testis, including spermatogonia, spermatocytes, spermatids and spermatozoa. The intensity of the signal increased with the spermatogenesis and was the highest in spermatids, which suggested that CF-PHB2 might affect the spermatogenesis of C. farreri.
Cooper, Deborah S.; Lee, Hye Jeong; Yang, Han Soo; Kippen, Joseph; Yun, C. Chris; Choi, Inyeong
2006-01-01
Summary In this study, we examined the tissue-specific expression of two electroneutral Na/HCO3 cotransporter (NBCn1) variants that differ from each other by the presence of the N-terminal 123 amino acids (cassette II). A rat Northern blot with the probe to nucleotides encoding cassette II detected a 9 kb NBCn1 mRNA strongly in the heart and weakly in skeletal muscles, but absent from most of the tissues including kidney, brain, and pancreas. In the rat heart, PCR with primers flanking cassette II preferentially amplified a DNA fragment that lacked cassette II. However, in the human heart, PCR preferentially amplified a fragment that contained cassette II. This larger PCR product was found virtually in all regions of the human cardiovascular system with strong amplification in the apex, atrium, and atrioventricular nodes. These findings indicate that the variant containing cassette II is almost absent in tissues including brain, kidney, and pancreas, where NBCn1 has been extensively examined. PMID:16547769
[Postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pigs].
Liu, Wei; Da, Qing; Shen, Min
2012-06-01
To investigate the postmortem distribution of tetrodotoxin in tissues and body fluids of guinea pig, and to provide method and evidence for forensic identification and clinical diagnosis and treatment. Guinea pigs were intragastric administrated with 100, 50, 15 microg/kg tetrodotoxin, respectively. The poisoning symptoms were observed. The samples of heart, liver, spleen, lung, kidney, brain, stomach, intestines, bile, heart blood and urine were collected. The concentrations of tetrodotoxin in tissues and body fluids were measured with liquid chromatography-tandem mass spectrometry (LC-MS/MS). After administrated with tetrodotoxin, all guinea pigs came out poisoning signs including tachypnea, weary and dead finally. Tetrodotoxin concentrations in lung, stomach, intestines and urine were higher, followed by blood, heart and brain. The concentration in bile was the lowest. Postmortem distribution of tetrodotoxin in guinea pig is uneven. The concentration in the lung, stomach, intestines, urine and heart blood are higher, those tissues could be used for diagnosis of tetrodotoxin poisoning.
[Organ procurement and transplantation from non-heart-beating donors].
Antoine, Corinne; Brun, Frédéric; Tenaillon, Alain; Loty, Bernard
2008-02-01
Despite a significant increase in procurement and transplantation activities observed in France in the last eight years, the shortage in grafts is on the rise and demand keeps being much higher than supply. Since 1968 and until now, procurement was limited to heart beating brain donors. The results of kidneys transplanted from non-heart-beating donors have significantly improved and are nowadays comparable to those of kidney transplantations from brain death donors, thanks to a more accurate selection of donors and recipients, to better respect of preventing cold and warm ischemia times and to several major therapeutic innovations. Procurement on non-heart-beating donors are therefore being reconsidered under considerations of feasibility, results and ethical and legal consequences, under a specific medical protocol issued by the agency of biomedicine with the pilot hospital center agreement to comply with the protocol. Referring to foreign experiences, this program is likely to decrease the organ shortage, which is jeopardizing the treatment of a large number of patients awaiting transplantation.
Inducing Sex Reversal in Marsupial Mammals.
Chew, Keng Y; Renfree, Marilyn B
2016-01-01
Marsupials are born with undifferentiated gonads, and their reproductive organs differentiate consecutively, not simultaneously as in eutherian mammals. Thus, in the main marsupial model, the tammar wallaby, Macropus eugenii, the testis forms cords 2 days after birth, the ovary develops cortex and medulla about 8 days after birth, the Wolffian duct enlarges from day 10, the prostate begins to form prostatic buds about 25 days after birth, and the phallus does not become sexually dimorphic until after 50 days postpartum (pp). The brain responses also become sexually dimorphic relatively late in development, after day 25 pp. This relatively elongated period of differentiation has allowed experimental manipulation at each stage of development to induce often dramatic sex reversal of both internal and external genitalia. © 2016 S. Karger AG, Basel.
Study of emotion-based neurocardiology through wearable systems
NASA Astrophysics Data System (ADS)
Ramasamy, Mouli; Varadan, Vijay
2016-04-01
Neurocardiology is the exploration of neurophysiological, neurological and neuroanatomical facets of neuroscience's influence in cardiology. The paraphernalia of emotions on the heart and brain are premeditated because of the interaction between the central and peripheral nervous system. This is an investigative attempt to study emotion based neurocardiology and the factors that influence this phenomena. The factors include: interaction between sleep EEG (electroencephalogram) and ECG (electrocardiogram), relationship between emotion and music, psychophysiological coherence between the heart and brain, emotion recognition techniques, and biofeedback mechanisms. Emotions contribute vitally to the mundane life and are quintessential to a numerous biological and everyday-functional modalities of a human being. Emotions are best represented through EEG signals, and to a certain extent, can be observed through ECG and body temperature. Confluence of medical and engineering science has enabled the monitoring and discrimination of emotions influenced by happiness, anxiety, distress, excitement and several other factors that influence the thinking patterns and the electrical activity of the brain. Similarly, HRV (Heart Rate Variability) widely investigated for its provision and discerning characteristics towards EEG and the perception in neurocardiology.
Statistical Analysis of Organ Morphometric Parameters and Weights in South Iranian Adult Autopsies.
Gholamzadeh, Saeid; Zarenezhad, Mohammad; Montazeri, Mahmoud; Zareikordshooli, Marzieh; Sadeghi, Ghazaleh; Malekpour, Abdorrasoul; Hoseni, Sanaz; Bahrani, Mohammadreza; Hajatmand, Razieh
2017-05-01
Organ weight is one important indicator to discern normal from abnormal condition in forensic pathology as well as in clinical medicine. The present study aimed to investigate morphometric parameters and organ weights of southern Iranian adults, which can be fundamental sources to be compared to abnormal cases.Morphometric parameters and weights of 6 organs (heart, liver, kidney, spleen, appendix, and brain), which were harvested from 501 southern Iranian adults (385 males and 116 females) during ordinary postmortem examination, were measured.All the organs were heavier in males than in females. Heart, brain, spleen, and right kidney were significantly heavier in males compared to females, but no significant difference was observed between the 2 sexes regarding the weights of the rest of the organs. Moreover, brain and heart became heavier as one got older and most organs were heavier in middle-aged individuals compared to other age groups. Furthermore, various types of correlations were observed between different organs' weights and body parameters.These results can be useful anatomical data for autopsy investigations, clinical practices, and research in southern Iran.
Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A
2017-10-18
Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
McMaster, Mark E.; Servos, Mark R.; Martyniuk, Christopher J.; Munkittrick, Kelly R.
2016-01-01
Intersex is a condition that has been associated with exposure to sewage effluents in male rainbow darter (Etheostoma caeruleum). To better understand changes in the transcriptome that are associated with intersex, we characterized annual changes in the testis transcriptome in wild, unexposed fish. Rainbow darter males were collected from the Grand River (Ontario, Canada) in May (spawning), August (post-spawning), October (recrudescence), January (developing) and March (pre-spawning). Histology was used to determine the proportion of spermatogenic cell types that were present during each period of testicular maturation. Regression analysis determined that the proportion of spermatozoa versus spermatocytes in all stages of development (R2 ≥ 0.58) were inversely related; however this was not the case when males were in the post-spawning period. Gene networks that were specific to the transition from developing to pre-spawning stages included nitric oxide biosynthesis, response to wounding, sperm cell function, and stem cell maintenance. The pre-spawning to spawning transition included gene networks related to amino acid import, glycogenesis, Sertoli cell proliferation, sperm capacitation, and sperm motility. The spawning to post-spawning transition included unique gene networks associated with chromosome condensation, ribosome biogenesis and assembly, and mitotic spindle assembly. Lastly, the transition from post-spawning to recrudescence included gene networks associated with egg activation, epithelial to mesenchymal transition, membrane fluidity, and sperm cell adhesion. Noteworthy was that there were a significant number of gene networks related to immune system function that were differentially expressed throughout reproduction, suggesting that immune network signalling has a prominent role in the male testis. Transcripts in the testis of post-spawning individuals showed patterns of expression that were most different for the majority of transcripts investigated when compared to the other stages. Interestingly, many transcripts associated with female sex differentiation (i.e. esr1, sox9, cdca8 and survivin) were significantly higher in the testis during the post-spawning season compared to other testis stages. At post-spawning, there were higher levels of estrogen and androgen receptors (esr1, esr2, ar) in the testis, while there was a decrease in the levels of sperm associated antigen 1 (spag1) and spermatogenesis associated 4 (spata4) mRNA. Cyp17a was more abundant in the testis of fish in the pre-spawning, spawning, and post-spawning seasons compared to those individuals that were recrudescent while aromatase (cyp19a) did not vary in expression over the year. This study identifies cell process related to testis development in a seasonally spawning species and improves our understanding regarding the molecular signaling events that underlie testicular growth. This is significant because, while there are a number of studies characterizing molecular pathways in the ovary, there are comparatively less describing transcriptomic patterns in the testis in wild fish. PMID:27861489
Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N
2017-09-01
BackgroundDecreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern using magnetic resonance imaging (MRI) in newborns with HIE undergoing therapeutic hypothermia.MethodsHRV metrics were quantified in the time domain (α S , α L , and root mean square at short (RMS S ) and long (RMS L ) timescales) and frequency domain (relative low-(LF) and high-frequency (HF) power) over 24-27 h of life. The brain injury pattern shown by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal ganglia injury, predominant basal ganglia or global injury, and death. HRV metrics were compared across brain injury pattern groups using a random-effects mixed model.ResultsData from 74 infants were analyzed. Brain injury pattern was significantly associated with the degree of HRV suppression. Specifically, negative associations were observed between the pattern of brain injury and RMS S (estimate -0.224, SE 0.082, P=0.006), RMS L (estimate -0.189, SE 0.082, P=0.021), and LF power (estimate -0.044, SE 0.016, P=0.006).ConclusionDegree of HRV depression is related to the pattern of brain injury. HRV monitoring may provide insights into the pattern of brain injury at the bedside.
Metzler, Marina; Govindan, Rathinaswamy; Al-Shargabi, Tareq; Vezina, Gilbert; Andescavage, Nickie; Wang, Yunfei; du Plessis, Adre; Massaro, An N
2017-01-01
Background Decreased heart rate variability (HRV) is a measure of autonomic dysfunction and brain injury in newborns with hypoxic ischemic encephalopathy (HIE). This study aimed to characterize the relationship between HRV and brain injury pattern by MRI in newborns with HIE undergoing therapeutic hypothermia. Methods HRV metrics were quantified in the time domain (αS, αL, and root mean square at short [RMSS] and long [RMSL] time scales) and frequency domain (relative low-[LF] and high-frequency [HF] power) during the time period 24–27 hours of life. Brain injury pattern by MRI was classified as no injury, pure cortical/white matter injury, mixed watershed/mild basal nuclei injury, predominant basal nuclei or global injury, and died. HRV metrics were compared across brain injury pattern groups using a random effects mixed model. Results Data from 74 infants were analyzed. Brain injury pattern was significantly associated with degree of HRV suppression. Specifically, negative associations were observed between pattern of brain injury and RMSS (estimate −0.224, SE 0.082, p=0.006), RMSL (estimate −0.189, SE 0.082, p=0.021), and LF power (estimate −0.044, SE 0.016, p=0.006). Conclusion Degree of HRV depression is related to pattern of brain injury. HRV monitoring may provide insights into pattern of brain injury at the bedside. PMID:28376079
White Matter Volume Predicts Language Development in Congenital Heart Disease
Rollins, Caitlin K.; Asaro, Lisa A.; Akhondi-Asl, Alireza; Kussman, Barry D.; Rivkin, Michael J.; Bellinger, David C.; Warfield, Simon K.; Wypij, David; Newburger, Jane W.; Soul, Janet S.
2016-01-01
Objective To determine whether brain volume is reduced at one year and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Study design Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II (BSID-II) and the MacArthur-Bates Communicative Development Inventories (CDI) at one year. A multi-template based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the CHD group, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Results Compared with controls, CHD infant had reductions of 54 mL in total brain (P = 0.009), 40 mL in cerebral white matter (P < 0.001), and 1.2 mL in brainstem (P = 0.003) volumes. Within the CHD group, brain volumes were not correlated with BSID-II scores but did correlate positively with CDI language development. Conclusion Infants with biventricular CHD show total brain volume reductions at one year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. Trial registration ClinicalTrials.gov: NCT00006183 PMID:27837950
Multi-Tiered Analysis of Brain Injury in Neonates with Congenital Heart Disease
Mulkey, Sarah B.; Swearingen, Christopher J.; Melguizo, Maria S.; Schmitz, Michael L.; Ou, Xiawei; Ramakrishnaiah, Raghu H.; Glasier, Charles M.; Schaefer, G. Bradley; Bhutta, Adnan T.
2014-01-01
Early brain injury occurs in newborns with congenital heart disease (CHD) placing them at risk for impaired neurodevelopmental outcomes. Predictors for preoperative brain injury have not been well described in CHD newborns. This study aimed to analyze, retrospectively, brain magnetic resonance imaging (MRI) in a heterogeneous group of newborns who had CHD surgery during the first month of life using a detailed qualitative CHD MRI Injury Score, quantitative imaging assessments (regional apparent diffusion coefficient [ADC] values and brain volumes), and clinical characteristics. Seventy-three newborns that had CHD surgery at 8 ± 5 (mean ± standard deviation) days of life and preoperative brain MRI were included; 38 also had postoperative MRI. Thirty-four (34/73, 47%) had at least 1 type of preoperative brain injury, and 28/38 (74%) had postoperative brain injury. The 5-minute APGAR score was negatively associated with preoperative injury, but there was no difference between CHD types. Infants with intraparenchymal hemorrhage, deep gray matter injury, and/or watershed infarcts had the highest CHD MRI Injury Scores. ADC values and brain volumes were not different in infants with different CHD types, or in those with and without brain injury. In a mixed group of CHD newborns, brain injury was found preoperatively on MRI in almost 50%, and there were no significant baseline characteristic differences to predict this early brain injury, except 5-minute APGAR score. We conclude that all infants, regardless of CHD type, who require early surgery, should be evaluated with MRI as they are all at high risk for brain injury. PMID:23652966
Tanna, Rajiv N; Tetreault, Gerald R; Bennett, Charles J; Smith, Brendan M; Bragg, Leslie M; Oakes, Ken D; McMaster, Mark E; Servos, Mark R
2013-09-01
The variability and extent of the intersex condition (oocytes in testes, or testis-ova) was documented in fish along an urban gradient in the Grand River, Ontario, Canada, that included major wastewater treatment plant outfalls. A method for rapid enumeration of testis-ova was developed and applied that increased the capacity to quantify intersex prevalence and severity. Male rainbow darters (Etheostoma caeruleum) sampled downstream of the first major wastewater outfall (Waterloo) had a significant increase, relative to 4 upstream reference sites, in the mean proportion of fish with at least 1 testis-oocyte per lobe of testes (9-20% proportion with ≤ 1 testis-oocyte/lobe vs 32-53% and >1.4 testis-oocyte/lobe). A much higher mean incidence of intersex proportion and degree was observed immediately downstream of the second wastewater outfall (Kitchener; 73-100% and 8-70 testis-oocyte/lobe); but only 6.3 km downstream of the Kitchener outfall, the occurrence of intersex dropped to those of the reference sites. In contrast, downstream of a tertiary treated wastewater outfall on a small tributary, intersex was similar to reference sites. Estrogenicity, measured using a yeast estrogen screen, followed a similar pattern, increasing from 0.81 ± 0.02 ng/L 17b-estradiol equivalents (EEq) (Guelph), to 4.32 ± 0.07 ng/L (Waterloo), and 16.99 ± 0.40 ng/L (Kitchener). Female rainbow darter downstream of the Kitchener outfall showed significant decreases in gonadosomatic index and liver somatic index, and increases in condition factor (k) relative to corresponding reference sites. The prevalence of intersex and alterations in somatic indices suggest that exposure to municipal wastewater effluent discharges can impact endocrine function, energy use, and energy storage in wild fish. Copyright © 2013 SETAC.
Shi, Lei; Zhao, Hui; Ren, Youshe; Yao, Xiaolei; Song, Ruigao; Yue, Wenbin
2014-10-01
The objective of this study was to investigate the different levels of dietary Se (from sodium selenite) on the proliferation of SSCs (spermatogonial stem cells) in testis of roosters. Also, the antioxidant status and Se content in blood plasma and testis were evaluated. A total of eighty 12-week-old Hy-Line Variety white roosters at an averaged body weight of 1.38 ± 0.2 kg were selected and randomly divided into four experimental groups. They were fed with the basal diet (0.044 mgSe/kg DM) supplemented with 0 (control), 0.5, 1.0 or 2.0 mgSe/kg DM (from sodium selenite). After the feeding experiment, blood and testis samples were collected for analysis of the antioxidant status and Se concentration. The testis samples were also used to examine the Thy-1 and β1-integrin mRNA expression by RT-PCR and detect the population of SSCs by immunofluorescence analysis. The results show that Se concentration in blood and testis of the animals was progressively increased with the increasing Se level in diet. The highest GSH-Px (glutathione peroxidase) activity and lowest MDA content in blood and testis was obtained in the treatment of 0.5mg/kg. RT-PCR analysis showed that mRNA expression of SSCs markers were significantly lower in the control and 1.0mg/kg groups when compared with that in the treatment of 0.5mg/kg. A similar trend was observed in the population of SSCs analyzed by immunofluorescence assay. These data suggest that dietary Se can influence the population of SSCs of roosters during spermatogenesis and that oxidative stress can modulate SSCs behavior through regulating some key factors during spermatogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.
Katsh, Seymour
1958-01-01
Female guinea pigs were injected with the following materials: homogenates of guinea pig testis in saline or in adjuvant; suspensions of washed guinea pig sperm in saline or in adjuvant; homogenates of rabbit testis in adjuvant; guinea pig sperm and rabbit sperm in adjuvant. Control animals were not injected or were injected with adjuvant alone. At various times between 15 and 39 days after injection, the animals were sacrificed. Their ilea and uterine horns were removed and tested in vitro for reaction to washed epididymal sperm of the guinea pig, rabbit, or bull. It was found that the animals which were injected with homologous testis or sperm in adjuvant possessed organs which responded strongly to the challenge with homologous sperm. The response was a contracture which began 10 to 30 seconds after the sperm were injected into the bath and lasted for 5 minutes to 4 hours, the longest period of observation. Responses which lasted for periods of 5 minutes to 30 minutes were obtained with the uteri of the animals injected with guinea pig testis in saline or with guinea pig sperm in saline. Animals which were injected with rabbit testis and adjuvant responded to rabbit sperm, and animals injected with guinea pig sperm and rabbit sperm in adjuvant reacted to both gametes. A large proportion of the control animals possessed organs which reacted weakly to the challenge with homologous sperm. Retesting the organ which had contracted following exposure to sperm indicated that desensitization had occurred. Testing with heterologous sperm indicated a species selectivity. The evidence is interpreted to mean that injections of sperm or testis induce a hypersensitivity which is similar in some respects but differs from true anaphylaxis. The findings are discussed from the point of view of the nature of the response and the implications regarding natural immunity to sperm. PMID:13481258
Sinha, Nilam; Puri, Pawan; Nairn, Angus C; Vijayaraghavan, Srinivasan
2013-11-01
The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.
A novel gene, RSD-3/HSD-3.1, encodes a meiotic-related protein expressed in rat and human testis.
Zhang, Xiaodong; Liu, Huixian; Zhang, Yan; Qiao, Yuan; Miao, Shiying; Wang, Linfang; Zhang, Jianchao; Zong, Shudong; Koide, S S
2003-06-01
The expression of stage-specific genes during spermatogenesis was determined by isolating two segments of rat seminiferous tubule at different stages of the germinal epithelium cycle delineated by transillumination-delineated microdissection, combined with differential display polymerase chain reaction to identify the differential transcripts formed. A total of 22 cDNAs were identified and accepted by GenBank as new expressed sequence tags. One of the expressed sequence tags was radiolabeled and used as a probe to screen a rat testis cDNA library. A novel full-length cDNA composed of 2228 bp, designated as RSD-3 (rat sperm DNA no.3, GenBank accession no. AF094609) was isolated and characterized. The reading frame encodes a polypeptide consisting of 526 amino acid residues, containing a number of DNA binding motifs and phosphorylation sites for PKC, CK-II, and p34cdc2. Northern blot of mRNA prepared from various tissues of adult rats showed that RSD-3 is expressed only in the testis. The initial expression of the RSD-3 gene was detected in the testis on the 30th postnatal day and attained adult level on the 60th postnatal day. Immunolocalization of RSD-3 in germ cells of rat testis showed that its expression is restricted to primary spermatocytes, undergoing meiosis division I. A human testis homologue of RSD-3 cDNA, designated as HSD-3.1 (GenBank accession no. AF144487) was isolated by screening the Human Testis Rapid-Screen arrayed cDNA library panels by RT-PCR. The exon-intron boundaries of HSD-3.1 gene were determined by aligning the cDNA sequence with the corresponding genome sequence. The cDNA consisted of 12 exons that span approximately 52.8 kb of the genome sequence and was mapped to chromosome 14q31.3.
Gay, L; Hosken, D J; Vasudev, R; Tregenza, T; Eady, P E
2009-05-01
The evolutionary factors affecting testis size are well documented, with sperm competition being of major importance. However, the factors affecting sperm length are not well understood; there are no clear theoretical predictions and the empirical evidence is inconsistent. Recently, maternal effects have been implicated in sperm length variation, a finding that may offer insights into its evolution. We investigated potential proximate and microevolutionary factors influencing testis and sperm size in the bruchid beetle Callosobruchus maculatus using a combined approach of an artificial evolution experiment over 90 generations and an environmental effects study. We found that while polyandry seems to select for larger testes, it had no detectable effect on sperm length. Furthermore, population density, a proximate indicator of sperm competition risk, was not significantly associated with sperm length or testis size variation. However, there were strong maternal effects influencing sperm length.
Conditions in utero and cancer risk.
Grotmol, Tom; Weiderpass, Elisabete; Tretli, Steinar
2006-01-01
There is increasing recognition that conditions in utero are of importance for later cancer risk in several organs, particularly the testis and breast. A review of the most recent literature on this topic is therefore warranted. The PubMed database was searched for relevant recent literature on intrauterine conditions associated with cancer risk later in life, with particular emphasis on the testis, breast, but also studies pertaining to other organs were included. Epidemiological and experimental data support the hypothesis that factors acting in utero play a role in the development of cancer in the testis and breast. For other organs, such as the prostate, urinary system and colorectum, the results are inconclusive. While conditions during foetal life are associated with later cancer risk in the testis and breast, the biological mechanisms are for the most part elusive. They are, however, likely to involve hormonal disturbances, number of cells at risk, and genetic or epigenetic events.
The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals.
Decotto, Eva; Spradling, Allan C
2005-10-01
The stem cell niches at the apex of Drosophila ovaries and testes have been viewed as distinct in two major respects. While both contain germline stem cells, the testis niche also contains "cyst progenitor" stem cells, which divide to produce somatic cells that encase developing germ cells. Moreover, while both niches utilize BMP signaling, the testis niche requires a key JAK/STAT signal. We now show, by lineage marking, that the ovarian niche also contains a second type of stem cell. These "escort stem cells" morphologically resemble testis cyst progenitor cells and their daughters encase developing cysts before undergoing apoptosis at the time of follicle formation. In addition, we show that JAK/STAT signaling also plays a critical role in ovarian niche function, and acts within escort cells. These observations reveal striking similarities in the stem cell niches of male and female gonads, and suggest that they are largely governed by common mechanisms.
Tzfp represses the androgen receptor in mouse testis.
Furu, Kari; Klungland, Arne
2013-01-01
The testis zinc finger protein (Tzfp), also known as Repressor of GATA, belongs to the BTB/POZ zinc finger family of transcription factors and is thought to play a role in spermatogenesis due to its remarkably high expression in testis. Despite many attempts to find the in vivo role of the protein, the molecular function is still largely unknown. Here, we address this issue using a novel mouse model with a disrupted Tzfp gene. Homozygous Tzfp null mice are born at reduced frequency but appear viable and fertile. Sertoli cells in testes lacking Tzfp display an increase in Androgen Receptor (AR) signaling, and several genes in the testis, including Gata1, Aie1 and Fanc, show increased expression. Our results indicate that Tzfp function as a transcriptional regulator and that loss of the protein leads to alterations in AR signaling and reduced number of apoptotic cells in the testicular tubules.
Brain abscesses associated with right-to-left shunts in adults.
Memon, Kashif A; Cleveland, Kerry O; Gelfand, Michael S
2012-04-01
Although brain abscesses are frequently cryptogenic in origin, bacteria must reach the brain either by direct or hematogenous spread. Right-to-left shunts, caused either by intrapulmonary vascular malformations or congenital heart defects, may allow microorganisms to evade the normal host defenses in the lungs and lead to development of brain abscesses. Two patients recently presented with brain abscesses and were found to have conditions associated with right-to-left shunts. The diagnosis of brain abscess should prompt the clinician to consider right-to-left shunts as a possible predisposing condition for brain abscess.
ERIC Educational Resources Information Center
Dalton, Marilee Serns
2013-01-01
The analysis of heart rate variability (HRV) is one tool shown to be of value in examining heart-brain interactions. HRV is remarkably responsive to emotion, and the importance of emotional state in cognitive function is increasingly being recognized and socio-emotional learning strategies being utilized in the classroom. Consequently, the…
Sergeeva, Irina A; Christoffels, Vincent M
2013-12-01
The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions. © 2013.
Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition
Hubers, Scott A.; Brown, Nancy J.
2016-01-01
Heart failure affects approximately 5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the FDA approved the first of a new class of drugs for the treatment of heart failure; valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses two of the pathophysiologic mechanisms of heart failure - activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared to enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacologic properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916
Increased prevalence of some birth defects in Korea, 2009-2010.
Lamichhane, Dirga Kumar; Leem, Jong-Han; Park, Myungsook; Kim, Jung Ae; Kim, Hwan Cheol; Kim, Jin Hee; Hong, Yun-Chul
2016-03-22
Birth defects are a leading cause of neonatal and infant mortality, and several studies have indicated an increase in the prevalence of birth defects; more recent investigations have suggested that the trends of some defects are increasing in rapidly industrialized areas. This study estimates the prevalence rate and types of birth defects in Korea. This study used medical insurance benefit data of 403,250 infants aged less than one year from the National Health Insurance Corporation from seven metropolitan areas in Korea for 2009 and 2010. The prevalence rate of birth defects was 548.3 per 10,000 births (95% CI: 541.1-555.6), 306.8 among boys and 241.5 among girls. Anomalies of the circulatory system (particularly septal defects) were the most common (180.8 per 10,000), followed by defects of the genitourinary tract (130.1 per 10,000) (particularly obstructive genitourinary and undescended testis), musculoskeletal system (105.7 per 10,000), digestive system (24.7 per 10,000), and central nervous system (15.6 per 10,000). Relatively higher rates of some birth defects were found in the metropolitan areas. The high differences of birth prevalences for septal heart defects and undescended testis are probably due in part to progress in clinical management and more frequent prenatal diagnosis. Environmental exposure might play a critical role in the development of some birth defects. In attempting to describe the prevalence and spatio-temporal variations of birth defects in Korea, establishment of a registry system of birth defects and environmental surveillance are needed.
Lele, Abhijit V; Wilson, Daren; Chalise, Prabhakar; Nazzaro, Jules; Krishnamoorthy, Vijay; Vavilala, Monica S
2018-01-01
Blood pressure data may vary by measurement technique. We performed a technological assessment of differences in blood pressure measurement between non-invasive blood pressure (NIBP) and invasive arterial blood pressure (ABP) in neurocritically ill patients. After IRB approval, a prospective observational study was performed to study differences in systolic blood pressure (SBP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) values measured by NIBP arm, ABP at level of the phlebostatic axis (ABP heart) and ABP at level of the external auditory meatus (ABP brain) at 30 and 45-degree head of bed elevation (HOB) using repeated measure analysis of covariance and correlation coefficients. Overall, 168 patients were studied with median age of 57 ± 15 years, were mostly female (57%), with body mass index ≤30 (66%). Twenty-three percent (n = 39) had indwelling intracranial pressure monitors, and 19.7% (n = 33) received vasoactive agents. ABP heart overestimated ABP brain for SBP (11.5 ± 2.7 mmHg, p < .001), MAP (mean difference 13.3 ± 0.5 mmHg, p < .001) and CPP (13.4 ± 3.2 mmHg, p < .001). ABP heart overestimated NIBP arm for SBP (8 ± 1.5 mmHg, p < .001), MAP (mean difference 8.6 ± 0.8 mmHg, p < .001), and CPP (mean difference 9.8 ± 3.2 mmHg, p < .001). Regardless of HOB elevation, ABP heart overestimates MAP compared to ABP brain and NIBP arm. Using ABP heart data overestimates CPP and may be responsible for not achieving SBP, MAP or CPP targets aimed at the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Renin-angiotensin-aldosterone system (RAAS) and its pharmacologic modulation].
Giestas, Anabela; Palma, Isabel; Ramos, Maria Helena
2010-01-01
The renin-angiotensin-aldosterone system (RAAS) is a neuroendocrine complex system that regulates the modulation of salt and water homeostasis, and regulation of blood pressure. Through its multiple interactions it protects the endothelium, heart, brain and kidney. In addition, the RAAS regulates the vascular response to injury and inflammation. Chronic activation/dysregulation of the RAAS leads to hypertension and perpetuates a cascade of proinflammatory, prothrombotic and atherogenic effects associated with endorgan damage (heart, brain, kidney, endothelium). Consequently, the RAAS is an important therapeutic target in these situations. This article presents an overview of physiology, pathophysiology and pharmacologic modulation of the RAAS.
[Distributions of H3K27me3 and its modification enzymes in different tissues of mice].
Wang, Yuying; Wang, Xinli; Zhang, Ran; Zhang, Zhiyan; Wang, Yu; Yang, Bo; Wang, Guanjie; Zhang, Xin; Ma, Fuhao; Xu, Hongye; Wu, Xiaohui; Zhang, Feng; Li, Qing
2017-11-01
Objective To investigate the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3) and its modification enzymes Zeste gene enhancer homolog 2 (EZH2), lysine-specific demethylase 6B (Kdm6B/JMJD3) and lysine-specific demethylase 6A (Kdm6A/UTX) in tissues and organs of 7-day and 2-month postnatal mice. Methods Immunohistochemistry was used to detect the expressions of H3K27me3 and its modification enzymes EZH2, JMJD3 and UTX in the brain, salivary glands, back fat, thymus, lung, heart, stomach, intestines, liver, testes, and skin of 7-day and 2-month mice. Real-time quantitative PCR was used to confirm the results. The relationships between H3K27me3 and its modification enzymes were analyzed statistically. Results Immunohistochemistry showed H3K27me3 persistently present in all examined tissues of 7-day and 2-month mice. EZH2 was persistently expressed in the brain, heart, liver, and skin of 7-day and 2-month mice, but only expressed in the salivary glands, adipose tissues, thymus, lung, intestines, and testes of 2-month mice. JMJD3 was expressed in the brain, salivary glands, adipose tissues, lung, heart, stomach, intestines, testes, skin of 7-day mice, but was not expressed in the lung, adipose tissues and stomach of 2-month mice. UTX was expressed in the brain, salivary glands, adipose tissues, lung, heart, testes, skin of 7-day mice, but only expressed in the testes of 2-month mice. Most mRNA of H3K27 modification enzymes were moderately or highly expressed as their immunohistochemical results were positive. Conclusion There was H3K27me3 persistently present in the all examined tissues at different stages. EZH2 was mostly expressed in the brain, salivary glands, adipose tissues, thymus, lung, heart, intestines, liver, testes and skin of 2-month-old mice. JMJD3 and UTX were mostly expressed in the brain, salivary glands, adipose tissues, lung, heart, skin and testes of 7-day-old mice. No significant association was found between the distribution of H3K27me3 and the expression of EZH2. There was also no obvious inverse distribution relationship between H3K27me3 and JMJD3 or UTX. Moreover, there was no negative relationship between the distribution of EZH2, JMJD3 and UTX. These results suggest that EZH2, JMJD3 and UTX may play important roles in many tissues of mice after birth. The levels of H3K27me3 and its modified enzymes may be controlled by multiple factors in vivo to fulfill complex physiological functions.
Drug transporters, the blood–testis barrier, and spermatogenesis
Su, Linlin; Mruk, Dolores D; Cheng, C Yan
2015-01-01
The blood–testis barrier (BTB), which is created by adjacent Sertoli cells near the basement membrane, serves as a ‘gatekeeper’ to prohibit harmful substances from reaching developing germ cells, most notably postmeiotic spermatids. The BTB also divides the seminiferous epithelium into the basal and adluminal (apical) compartment so that postmeiotic spermatid development, namely spermiogenesis, can take place in a specialized microenvironment in the apical compartment behind the BTB. The BTB also contributes, at least in part, to the immune privilege status of the testis, so that anti-sperm antibodies are not developed against antigens that are expressed transiently during spermatogenesis. Recent studies have shown that numerous drug transporters are expressed by Sertoli cells. However, many of these same drug transporters are also expressed by spermatogonia, spermatocytes, round spermatids, elongating spermatids, and elongated spermatids, suggesting that the developing germ cells are also able to selectively pump drugs ‘in’ and/or ‘out’ via influx or efflux pumps. We review herein the latest developments regarding the role of drug transporters in spermatogenesis. We also propose a model utilized by the testis to protect germ cell development from ‘harmful’ environmental toxicants and xenobiotics and/or from ‘therapeutic’ substances (e.g. anticancer drugs). We also discuss how drug transporters that are supposed to protect spermatogenesis can work against the testis in some instances. For example, when drugs (e.g. male contraceptives) that can perturb germ cell adhesion and/or maturation are actively pumped out of the testis or are prevented from entering the apical compartment, such as by efflux pumps. PMID:21134990
Jalili, Cyrus; Salahshoor, Mohammad Reza; Naseri, Ali
2014-06-01
Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. In this study, hydro-alcoholic extract of U.dioica was prepared and various doses of U.dioica (0, 10, 20, and 50 mg/kg) and U.dioica plus nicotine (0, 10, 20, and 50 mg/kg) were administered intraperitoneally to 56 male mice for 28 consequent days. These mice were randomly assigned to 8 groups (n=7) and sperm parameters (sperm cells viability, count, motility, and morphology), testis and prostate weight, testis histology and testosterone hormone were analyzed and compared. The results indicated that nicotine administration (0.5 mg/kg) significantly decreased testosterone level, count and motility of sperm cells, and testis weight compared to control group (p=0.00). However, increasing the dose of U.dioica significantly boosted motility, count, normal morphology of sperm cells, seminiferous tubules diameter, and testosterone in all groups compared to control (p=0.00) and testis weight in 20 and 50 mg/kg doses in comparison with control group (p=0.00). It seems that U.dioica hydro-alcoholic extract administration could increase the quality of spermatozoa and inhibits nicotine-induced adverse effects on sperm parameters.
Expression of Apg-1, a member of the Hsp110 family, in the human testis and sperm.
Nonoguchi, K; Tokuchi, H; Okuno, H; Watanabe, H; Egawa, H; Saito, K; Ogawa, O; Fujita, J
2001-06-01
Apg-1 encodes a heat shock protein belonging to the Hsp110 family and is inducible by a 32 degrees C to 39 degrees C heat shock in somatic cells. In mouse testicular germ cells Apg-1 mRNA is constitutively expressed depending on the developmental stage. As human Apg-1 has recently been identified, the expression of Apg-1 in the human testis and sperm was investigated. Expression and heat-inducibility of Apg-1 in the human testicular germ cell tumor cell line, NEC8, was analyzed. Using an antimouse Apg-1 antibody, expression of Apg-1 in the human testis and sperm was examined by western blotting after confirmation of the specificity of the antibody. The cells expressing Apg-1 in the testis were further determined by immunohistochemistry. Slight induction of Apg-1 mRNA was detected in NEC8 cells after 32 degrees C to 39 degrees C temperature shift. In the human testis, the antibody specifically recognized Apg-1, which was absent in the testis without germ cells (Sertoli-cell-only syndrome) or arrested at spermatogonia. Spermatocytes and spermatids, but not testicular somatic cells, were positively stained with the anti-Apg-1 antibody. By western blot analysis, Apg-1 was detected in the preparation enriched for sperm from normal volunteers and infertile patients, but not from azoospermia patients. Apg-1 is developmentally expressed in human testicular germ cells and sperm, suggesting its role in spermatogenesis and fertilization. Identification of substrates for Apg-1 chaperone activity will help elucidate its function.
Xu, Cui-Ping; Zhu, Qing-Jun; Song, Jie; Li, Zhen; Zhang, Dan
2013-02-01
To explore the effects of Jingui Shenqi Pill (JSP) on the testis telomerase activity in mice of Shen-yang deficiency syndrome (SYDS). The SYDS model was prepared in 30 mice by over-fatigue and sexual overstrain. They were randomly divided into the model group and the JSP group, 15 in each group. Another 15 normal male mice were selected as the normal group. Mice in the normal group were fed routinely, with distilled water administered intragastrically at the daily dose of 0.1 mL/10 g. Mice in the model group were also administered intragastrically with distilled water at the daily dose of 0.1 mL/10 g while modeling establishment. Mice in the treatment group were administered intragastrically with JSP suspension at 0.1 mL/10 g (the concentration was 0.241 g/mL). The intervention lasted for 4 weeks. Four weeks later, the testis telomerase activity was detected in the three groups by ELISA. The SYDS model was replicated successfully by over-fatigue and sexual overstrain. JSP could improve the signs of mice of SYDS. Compared with the normal group, the activity of testis telomerase decreased in the model group (P < 0.01). Compared with the model group, the testis telomerase activity markedly increased in the treatment group (P < 0.01). The testis telomerase activity in mice of SYDS caused by over-fatigue and sexual overstrain obviously decreased, when compared with that in mice of the normal group. JSP could recover its activity.
Alrahel, Ahmad; Movahedin, Mansoureh; Mazaheri, Zohre; Amidi, Fardin
2018-07-01
In vitro spermatogenesis has a long research history beginning in the early 20th century. This organ culture method was therefore abandoned, and alternative cell culture methods were chosen by many researchers. Here, whether Tnp1, Tekt1, and Plzf, which play a crucial role in spermatogenesis, can be expressed during testis organ culture was assessed. Testes of 10 mouse pups were first removed, and the testis tissue was then separated into smaller pieces of seminiferous tubules. The size of the pieces was arbitrary; approximately 1 mg in weight or 1 mm3 in size when compacted. Afterwards, the testis tissue fragments (1–3) were transferred to the hexahedrons, incubated in a culture incubator and cultured for 12 weeks. Histological assessment and molecular evaluation were carried out at the end of the study. The results showed that the expression of Tekt1 as a mitotic gene in mouse pups decreased significantly (p ≤ 0.05) in comparison to adult mouse testis. Meanwhile, the expression of Tnp1 as a meiotic gene increased significantly (p ≤ 0.05) as compared to neonate mouse testis at the beginning of the culture. The expression of Plzf showed no significant difference during the 12 weeks of culture (p ≥ 0.05). Based on histological study, different types of spermatocytes and post-meiotic stages of germ cells could not be detected. This kind of three-dimensional culture can induce expression of post-meiotic gene, Tnp1, but only at the molecular level and not beyond meiosis.
Jalili, Cyrus; Salahshoor, Mohammad Reza; Naseri, Ali
2014-01-01
Background: Nicotine consumption can decrease fertility drive in males by inducing oxidative stress and DNA damage. Urtica dioica L (U.dioica) is a multipurpose herb in traditional medicine for which some anti-oxidative and anti-inflammatory properties have been identified. Objective: The main goal is to investigate whether the U.dioica could inhibit nicotine adverse effects on sperm cells viability, count, motility, and testis histology and testosterone hormone. Materials and Methods: In this study, hydro-alcoholic extract of U.dioica was prepared and various doses of U.dioica (0, 10, 20, and 50 mg/kg) and U.dioica plus nicotine (0, 10, 20, and 50 mg/kg) were administered intraperitoneally to 56 male mice for 28 consequent days. These mice were randomly assigned to 8 groups (n=7) and sperm parameters (sperm cells viability, count, motility, and morphology), testis and prostate weight, testis histology and testosterone hormone were analyzed and compared. Results: The results indicated that nicotine administration (0.5 mg/kg) significantly decreased testosterone level, count and motility of sperm cells, and testis weight compared to control group (p=0.00). However, increasing the dose of U.dioica significantly boosted motility, count, normal morphology of sperm cells, seminiferous tubules diameter, and testosterone in all groups compared to control (p=0.00) and testis weight in 20 and 50 mg/kg doses in comparison with control group (p=0.00). Conclusion: It seems that U.dioica hydro-alcoholic extract administration could increase the quality of spermatozoa and inhibits nicotine-induced adverse effects on sperm parameters. PMID:25071848
Fetal Brain Behavior and Cognitive Development.
ERIC Educational Resources Information Center
Joseph, R.
2000-01-01
Presents information on prenatal brain development, detailing the functions controlled by the medulla, pons, and midbrain, and the implications for cognitive development. Concludes that fetal cognitive motor activity, including auditory discrimination, orienting, the wake-sleep cycle, fetal heart rate accelerations, and defensive reactions,…
Alcohol: A Women's Health Issue
... Drinking: Benefits and Risks Moderate drinking can have short- and long-term health effects, both positive and negative: Benefits Heart ... threatening. Alcoholism is based in the brain. Alcohol’s short-term ... In some people, alcohol’s long-term effects can change the way the brain ...
Liang, B; Leenen, F H H
2007-01-01
Background and purpose: In Dahl S rats, high salt increases activity of the tissue renin-angiotensin-aldosterone system (RAAS) in the CNS, heart and kidneys. Here, we assessed the effects of chronic angiotensin converting enzyme (ACE) inhibition on salt-induced hypertension and cardiovascular and renal hypertrophy and fibrosis, relative to the extent of ACE blockade. Experimental approach: From 4.5 weeks of age, Dahl S rats received either the lipophilic ACE inhibitor trandolapril (1 or 5 mg kg-1 day-1) or the hydrophilic ACE inhibitor lisinopril (10 or 50 mg kg-1 day-1) and a high salt diet was started 0.5 week later. Treatments ended at 9 weeks of age. Key results: High salt diet markedly increased blood pressure (BP), decreased plasma angiotensin II and increased ACE binding densities in brain, heart, aorta and kidneys. Trandolapril and lisinopril prevented 50% of the increase in BP in light and dark period of the day. After the last doses, trandolapril decreased ACE densities by ∼80% in brain nuclei and heart and lisinopril by ∼60% in the brain and by ∼70% in the heart. The two ACE inhibitors prevented right ventricular hypertrophy and attenuated left ventricular hypertrophy but did not affect renal hypertrophy caused by high salt. Both drugs prevented high salt-induced fibrosis in heart, kidney and aorta. Conclusion and implication: As the ACE inhibitors could completely prevent tissue fibrosis and partially prevent tissue hypertrophy and hypertension, the tissue RAAS may play a critical role in salt-induced fibrosis, but a lesser role in the hypertrophy. PMID:17906684
Ohta, S; Mineta, T; Kimoto, M; Tabuchi, K
1997-08-18
We have used the differential display method to identify genes that control the neural cell development in CNS. Screening of the differential display bands that showed higher expression at neonate than at adult age enabled us to identify a novel rat cDNA (RNB6) coding for a protein of 393 amino acid residues. Database search revealed this gene as a rat homologue of the murine EVL, a member of Ena/VASP protein family that is implicated to be involved in the control of cell motility through actin filament assembly by their GP5 motifs. Although the precise characterization of EVL was not reported, our Northern blot and immunoblot analyses demonstrated that RNB6 expression in the brain gradually increases during embryonic development, reaches maximum at postnatal day 1 and decreases thereafter. Studies of tissue distribution revealed the expression of RNB6 not only in the brain but also in the spleen, thymus and testis. Histochemical analyses showed that RNB6 protein is mainly expressed in neurons and may be expressed in neural fibers. Our analyses suggest that RNB6 is critically involved in the development of CNS probably through the control of neural cell motility and/or including neuronal fiber extension.
HPLC/UV quantitation of retinal, retinol, and retinyl esters in serum and tissues
Kane, Maureen A.; Folias, Alexandra E.; Napoli, Joseph L.
2008-01-01
We report robust HPLC/UV methods for quantifying retinyl esters (RE), retinol (ROL) and retinal (RAL) applicable to diverse biological samples, with lower limits of detection of 0.7 pmol, 0.2 pmol, and 0.2 pmol, respectively, and linear ranges >3 orders of magnitude. These assays function well with small, complex biological samples (10–20 mg tissue). Coefficients of variation range from: intra-day, 5.9–10.0%; inter-day, 5.9–11.0%. Quantification of endogenous RE, ROL, and RAL in mouse serum and tissues (liver, kidney, adipose, muscle, spleen, testis, skin, brain, and brain regions) reveals utility. Ability to discriminate spatial concentrations of ROL and RE is illustrated with C57BL/6 mouse brain loci (hippocampus, cortex, olfactory bulb, thalamus, cerebellum, and striatum.) We also developed a method to distinguish isomeric forms of ROL to investigate precursors of retinoic acid. The ROL isomer assay has limits of detection between 3.5–4.5 pmol and a similar linear range and % CV as the ROL/RE and RAL assays. The assays described here provide for sensitive and rigorous quantification of endogenous RE, ROL, and RAL to elucidate retinoid homeostasis in disease states, such as Alzheimer’s disease, type 2 diabetes, obesity, and cancer. PMID:18410739
Cheon, M S; Kim, S H; Fountoulakis, M; Lubec, G
2003-01-01
Fatty acid binding proteins (FABPs) are thought to play a role in the binding, targeting and transport of long-chain fatty acids, and at least three types of FABPs are found in human brain; heart type (H)-FABP, brain type (B)-FABP and epidermal type (E)-FABP. Although all three FABPs could be involved in normal brain function in prenatal and postnatal life, a neurobiological role of FABPs in neurodegenerative diseases has not been reported yet. These made us evaluate the protein levels of FABPs in brains from patients with Down syndrome (DS) and Alzheimer's disease (AD) and fetal cerebral cortex with DS using two-dimensional (2-D) gel electrophoresis with subsequent matrix-assisted laser desorption ionization mass spectroscopy (MALDI-MS) identification and specific software for quantification of proteins. In adult brain, B-FABP was significantly increased in occipital cortex of DS, and H-FABP was significantly decreased in DS (frontal, occipital and parietal cortices) and AD (frontal, temporal, occipital and parietal cortices). In fetal brain, B-FABP and epidermal E-FABP levels were comparable in controls and DS. We conclude that aberrant expression of FABPs, especially H-FABP may alter membrane fluidity and signal transduction, and consequently could be involved in cellular dysfunction in neurodegenerative disorders.
Mattner, Filomena; Mardon, Karine; Loc'h, Christian; Katsifis, Andrew
2006-06-13
In vitro binding of the iodinated imidazopyridine, N',N'-dimethyl-6-methyl-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [(123)I]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [(123)I]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K(d)=30 nM). The density of binding sites was 22+/-6 and 1.2+/-0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [(123)I]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [(123)I]IZOL by 30% (p<0.05) in olfactory bulbs and by 51-86% (p<0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p<0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p<0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [(123)I]IZOL in peripheral organs and in the brain. [(123)I]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites.
Gorelick, Philip B; Furie, Karen L; Iadecola, Costantino; Smith, Eric E; Waddy, Salina P; Lloyd-Jones, Donald M; Bae, Hee-Joon; Bauman, Mary Ann; Dichgans, Martin; Duncan, Pamela W; Girgus, Meighan; Howard, Virginia J; Lazar, Ronald M; Seshadri, Sudha; Testai, Fernando D; van Gaal, Stephen; Yaffe, Kristine; Wasiak, Hank; Zerna, Charlotte
2017-10-01
Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index <25 kg/m 2 ) and 3 ideal health factors (untreated blood pressure <120/<80 mm Hg, untreated total cholesterol <200 mg/dL, and fasting blood glucose <100 mg/dL). In addition, in relation to maintenance of cognitive health, we recommend following previously published guidance from the AHA/American Stroke Association, Institute of Medicine, and Alzheimer's Association that incorporates control of cardiovascular risks and suggest social engagement and other related strategies. We define optimal brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to cardiovascular health may drive cognitive health. Defining optimal brain health in adults and its maintenance is consistent with the AHA's Strategic Impact Goal to improve cardiovascular health of all Americans by 20% and to reduce deaths resulting from cardiovascular disease and stroke by 20% by the year 2020. This work in defining optimal brain health in adults serves to provide the AHA/American Stroke Association with a foundation for a new strategic direction going forward in cardiovascular health promotion and disease prevention. © 2017 American Heart Association, Inc.
Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues
2013-01-01
Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues. PMID:23721503
Localization of S-100 proteins in the testis and epididymis of poultry and rabbits
Abd-Elmaksoud, Ahmed; Marei, Hany E. S.
2014-01-01
The present investigation was conducted to demonstrate S-100 protein in the testis and epididymis of adult chickens, Sudani ducks, pigeons, and rabbits. This study may represent the first indication for the presence of S-100 in the male reproductive organs of these species and might therefore serve as a milestone for further reports. In the testis of chickens, pigeons and rabbits, intense S-100 was seen in Sertoli cells. S-100 was also seen in the endothelial lining of blood vessels in rabbit testis. On the contrary, no S-100 reaction was detected in the Sertoli cells of Sudani ducks. In epididymis, the localization of S-100 had varied according to species studied; it was seen in the basal cells (BC) of epididymal duct in duck, non-ciliated cells of the distal efferent ductules in pigeons and ciliated cells of the efferent ductules and BC of rabbit epididymis. Conversely, S-100 specific staining was not detected in the epithelial lining of the rooster and pigeon epididymal duct as well as the principal cells of the rabbit epididymis. In conclusion, the distribution of the S-100 proteins in the testis and epididymis might point out to its roles in the male reproduction. PMID:25276477
Zhao, Jian; Zhai, Lingling; Liu, Zheng; Wu, Shuang; Xu, Liping
2014-01-01
Objective. This study evaluated the effects of obesity on the function of reproductive organs in male mice and the possible mechanism of male secondary hypogonadism (SH) in obesity. Methods. Ninety-six mice were randomly assigned to three groups: the control group, diet-induced obesity group, and diet-induced obesity resistant group for 8 weeks and 19 weeks. The effects of short- and long-term high-fat diet on the reproductive organs were determined by measuring sperm count and motility, relative testis weight, testosterone level, pathological changes and apoptosis of Leydig cells. Oxidative stress was evaluated by determining malondialdehyde, H2O2, NO levels, and GSH in testis tissues. CAT, SOD, GSH-Px and Nrf2 mRNA were measured by real-time PCR. Results. Short- and long-term high-fat diet decreased sperm count and motility, relative testis weight, testosterone level; decreased CAT, SOD, GSH-Px and Nrf2 mRNA expression; increased MDA, H2O2, NO and leptin levels; inhibited the activity of CAT and GSH-Px enzymes. Pathological injury and apoptosis of Leydig cells were found in testis tissue. Conclusions. Pathological damage of Leydig cells, oxidative stress in testis tissue, and high level of leptin may provide some evidence to clarify the mechanisms of male SH in obesity. PMID:24829619
Schoeller, Erica L.; Albanna, Gabriella; Frolova, Antonina I.; Moley, Kelle H.
2012-01-01
The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility. PMID:22522616
Odacı, E; Hancı, H; Yuluğ, E; Türedi, S; Aliyazıcıoğlu, Y; Kaya, H; Çolakoğlu, S
2016-01-01
We investigated the effects of exposure in utero to a 900 megahertz (MHz) electromagnetic field (EMF) on 60-day-old rat testis and epididymis. Pregnant rats were divided into control (CG; no treatment) and EMF (EMFG) groups. The EMFG was exposed to 900 MHz EMF for 1 h each day during days 13 - 21 of pregnancy. Newborn rats were either newborn CG (NCG) or newborn EMF groups (NEMFG). On postnatal day 60, a testis and epididymis were removed from each animal. Epididymal semen quality, and lipid and DNA oxidation levels, apoptotic index and histopathological damage to the testis were compared. We found a higher apoptotic index, greater DNA oxidation levels and lower sperm motility and vitality in the NEMFG compared to controls. Immature germ cells in the seminiferous tubule lumen, and altered seminiferous tubule epithelium and seminiferous tubule structure also were observed in hematoxylin and eosin stained sections of NEMFG testis. Nuclear changes that indicated apoptosis were identified in TUNEL stained sections and large numbers of apoptotic cells were observed in most of the seminiferous tubule epithelium in the NEMFG. Sixty-day-old rat testes exposed to 900 MHz EMF exhibited altered sperm quality and biochemical characteristics.
Chen, Mei-Er; Holmes, Steven P; Pietrantonio, Patricia V
2006-06-01
We have cloned the fire ant glucose transporter 8 (GLUT8) cDNA providing the first molecular characterization of a GLUT8 in insects. Glucose is a poly-alcohol and, due to its high hydrophilicity, cannot move across cell membranes. GLUT8 is a putative facilitative transporter for the cellular import and export of glucose. The complete 2,974-bp cDNA encodes a 501-residue protein with a predicted molecular mass of 54.8 kDa. Transcripts were detected in the brain, midgut, hindgut, Malpighian tubule, fat body, ovary, and testis. The highest transcriptional expression was found in fat body. Northern blot analysis revealed different transcript sizes in mated queen brains, alate female ovaries, and male testes. We propose that four other sequences obtained from insect genome projects from the honey bee Apis mellifera (ENSAPMP00000006624), the malaria mosquito Anopheles gambiae (EAA11842), and the fruit fly Drosophila melanogaster (AAQ23604 and AAM52591) are likely the orthologues of the fire ant GLUT8. Phylogenetic relationships in insect glucose transporters are presented.
... brain (cerebrovascular disease). Like the heart, the brain’s cells need a constant supply of oxygen-rich blood. This blood supply is delivered to the brain by the 2 large carotid arteries in the front of your neck and by 2 smaller vertebral arteries at the back of your ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliwal, B; Asprey, W; Yan, Y
Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less
Smith, Eric E; Saposnik, Gustavo; Biessels, Geert Jan; Doubal, Fergus N; Fornage, Myriam; Gorelick, Philip B; Greenberg, Steven M; Higashida, Randall T; Kasner, Scott E; Seshadri, Sudha
2017-02-01
Two decades of epidemiological research shows that silent cerebrovascular disease is common and is associated with future risk for stroke and dementia. It is the most common incidental finding on brain scans. To summarize evidence on the diagnosis and management of silent cerebrovascular disease to prevent stroke, the Stroke Council of the American Heart Association convened a writing committee to evaluate existing evidence, to discuss clinical considerations, and to offer suggestions for future research on stroke prevention in patients with 3 cardinal manifestations of silent cerebrovascular disease: silent brain infarcts, magnetic resonance imaging white matter hyperintensities of presumed vascular origin, and cerebral microbleeds. The writing committee found strong evidence that silent cerebrovascular disease is a common problem of aging and that silent brain infarcts and white matter hyperintensities are associated with future symptomatic stroke risk independently of other vascular risk factors. In patients with cerebral microbleeds, there was evidence of a modestly increased risk of symptomatic intracranial hemorrhage in patients treated with thrombolysis for acute ischemic stroke but little prospective evidence on the risk of symptomatic hemorrhage in patients on anticoagulation. There were no randomized controlled trials targeted specifically to participants with silent cerebrovascular disease to prevent stroke. Primary stroke prevention is indicated in patients with silent brain infarcts, white matter hyperintensities, or microbleeds. Adoption of standard terms and definitions for silent cerebrovascular disease, as provided by prior American Heart Association/American Stroke Association statements and by a consensus group, may facilitate diagnosis and communication of findings from radiologists to clinicians. © 2016 American Heart Association, Inc.
Stability of the anti-oxidative enzymes in aqueous and detergent solution.
Mailer, K; Del Maestro, R F
1991-09-18
Activities of the anti-oxidative enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase were studied in rat tissues to determine the ability of detergents both to solubilize the enzymes and also to stabilize enzyme activity. Rat brain, heart and liver were homogenized in 0.1M KCl, 0.1% sodium dodecyl sulfate, 0.1% lubrol, or 0.1% cetyl-trimethylammonium bromide. In general lubrol was more effective than the other solutions in solubilizing GPx and catalase. Lubrol and 0.1M KCl were equally effective in solubilizing SOD. The highest enzyme activities were (1) SOD: 2484 ng/mg (brain), 2501 ng/mg (heart), and 5586 ng/mg (liver); (2) GPx: 224 mU/mg (brain), 1870 mU/mg (heart), and 7332 mU/mg (liver); (3) catalase: 2.8 mU/mg (brain), 10.6 mU/mg (heart), and 309 mU/mg (liver). While cetyl trimethylammonium bromide is marginally better than sodium dodecyl sulfate in solubilizing active enzyme, neither ionic detergent has any advantage over lubrol or 0.1M KCl. For catalase and GPx, enzyme activity loss with time is biphasic. After initial, rapid activity loss (1-5 days for GPx and 7-10 days for catalase) the differences noted among the homogenizing solutions disappear and very little if any activity loss is noted over the next 2-3 weeks. For catalase and GPx, only baseline enzyme activity from t = 0-3 weeks is found in the most chaotropic solution, 0.1% sodium dodecyl sulfate while biphasic activity loss is most pronounced in 0.1% lubrol. These results may indicate active GPx and catalase species stabilized by a lipid-like environment. Correlating in vitro catalase or GPx measurements with in vivo anti-oxidative protection may underestimate tissue defences.
Aune, Sverre E.; Herr, Daniel J.; Kutz, Craig J.; Menick, Donald R.
2015-01-01
Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain. PMID:26175715
Lakič, Nikola; Mrak, Miha; Šušteršič, Miha; Rakovec, Peter; Bunc, Matjaž
2016-12-01
The aim of this study was to establish erythropoietin as a protective factor against brain ischemia during open heart surgery. A total of 36 consecutive patients scheduled for revascularization heart surgery were included in the study. Of the patients 18 received 3 intravenous doses of recombinant human erythropoietin (rHuEpo, 24,000 IU) and 18 patients received a placebo. Magnetic resonance imaging (MRI) to detect new brain ischemic lesions was performed. Additionally, S100A, S100B, neuron-specific enolase A and B (NSE-A and B) and the concentration of antibodies against N‑methyl-D-aspartate receptors (NMDAR) to identify new neurological complications were determined. Patients who received rHuEpo showed no postoperative ischemic changes in the brain on MRI images. In the control group 5 (27.8 %) new ischemic lesions were found. The NMDAR antibody concentration, S100A, S100B and NSE showed no significant differences between the groups for new cerebral ischemia. High levels of lactate before and after external aortic compression (p = 0.022 and p = 0.048, respectively) and duration of operation could predict new ischemic lesions (p = 0.009). The addition of rHuEpo reduced the formation of lesions detectable by MRI in the brain and could be used clinically as neuroprotection in cardiac surgery.
Dibb, Russell; Liu, Chunlei
2017-06-01
To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Accelerated death rate in population-based cohort of persons with traumatic brain injury.
Selassie, Anbesaw W; Cao, Yue; Church, Elizabeth C; Saunders, Lee L; Krause, James
2014-01-01
To determine the influence of preexisting heart, liver, kidney, cancer, stroke, and mental health problems and examine the influence of low socioeconomic status on mortality after discharge from acute care facilities for individuals with traumatic brain injury. Population-based retrospective cohort study of 33695 persons discharged from acute care hospital with traumatic brain injury in South Carolina, 1999-2010. Days elapsing from the dates of injury to death established the survival time (T). Data were censored at the 145th month. Multivariable Cox regression was used to examine the independent effect of the variables on death. Age-adjusted cumulative probability of death for each chronic disease of interest was plotted. By the 70th month of follow-up, rate of death was accelerated from 10-fold for heart diseases to 2.5-fold for mental health problems. Adjusted hazard ratios for diseases of the heart (2.13), liver-renal (3.25), cancer (2.64), neurological diseases and stroke (2.07), diabetes (1.89), hypertension (1.43), and mental health problems (1.59) were highly significant (each with P < .001). Compared with persons with private insurance, the hazard ratio was significantly elevated with Medicaid (1.67), Medicare (1.54), and uninsured (1.27) (each with P < .001). Specific chronic diseases strongly influenced postdischarge mortality after traumatic brain injury. Low socioeconomic status as measured by the type of insurance elevated the risk of death.
Case Report: Congenital Erythroleukemia in a Premature Infant with Dysmorphic Features.
Helin, Heidi; van der Walt, Jon; Holder, Muriel; George, Simi
2016-01-01
We present a case of pure erythroleukemia, diagnosed at autopsy, in a dysmorphic premature infant who died of multiorgan failure within 24 hours of birth. Dysmorphic features included facial and limb abnormalities with long philtrum, microagnathia, downturned mouth, short neck as well as abnormal and missing nails, missing distal phalanx from the second toe, and overlapping toes. Internal findings included gross hepatomegaly and patchy hemorrhages in the liver, splenomegaly, and cardiomegaly; and subdural, intracerebral, and intraventricular hemorrhages. Histology revealed infiltration of bone marrow, kidney, heart, liver, adrenal, lung, spleen, pancreas, thyroid, testis, thymus, and placenta by pure erythroleukemia. Only 6 cases of congenital erythroleukemia have been previously reported with autopsy findings similar to those of this case. The dysmorphic features, although not fitting any specific syndrome, make this case unique. Congenital erythroleukemia and possible syndromes suggested by the dysmorphic features are discussed.
Gonadal Identity in the Absence of Pro-Testis Factor SOX9 and Pro-Ovary Factor Beta-Catenin in Mice1
Nicol, Barbara; Yao, Humphrey H.-C.
2015-01-01
Sex-reversal cases in humans and genetic models in mice have revealed that the fate of the bipotential gonad hinges upon the balance between pro-testis SOX9 and pro-ovary beta-catenin pathways. Our central query was: if SOX9 and beta-catenin define the gonad's identity, then what do the gonads become when both factors are absent? To answer this question, we developed mouse models that lack either Sox9, beta-catenin, or both in the somatic cells of the fetal gonads and examined the morphological outcomes and transcriptome profiles. In the absence of Sox9 and beta-catenin, both XX and XY gonads progressively lean toward the testis fate, indicating that expression of certain pro-testis genes requires the repression of the beta-catenin pathway, rather than a direct activation by SOX9. We also observed that XY double knockout gonads were more masculinized than their XX counterpart. To identify the genes responsible for the initial events of masculinization and to determine how the genetic context (XX vs. XY) affects this process, we compared the transcriptomes of Sox9/beta-catenin mutant gonads and found that early molecular changes underlying the XY-specific masculinization involve the expression of Sry and 21 SRY direct target genes, such as Sox8 and Cyp26b1. These results imply that when both Sox9 and beta-catenin are absent, Sry is capable of activating other pro-testis genes and drive testis differentiation. Our findings not only provide insight into the mechanism of sex determination, but also identify candidate genes that are potentially involved in disorders of sex development. PMID:26108792
Anastasiadou, M; Michailidis, G
2016-08-01
Infection of rooster testis and epididymis by pathogens can lead to impaired fertility, resulting in economic losses in the poultry industry. Antimicrobial protection of rooster reproductive organs is, therefore, an important aspect of reproductive physiology. Salmonellosis is one of the most important zoonotic diseases, caused by Salmonella bacteria including Salmonella Enteritidis (SE) and is usually the result of infection of the reproductive organs. Thus, knowledge of the endogenous innate immune mechanisms of the rooster testis and epididymis is an emerging aspect of reproductive physiology. Cytokines are key factors for stimulating the immune response and inflammation in chickens to Salmonella infection. In the present study the expression profile of 11 pro-inflammatory cytokine genes in the rooster testis and epididymis in vivo and transcriptional changes in these organs during sexual maturation and SE infection were investigated. Gene expression analysis data revealed that in both testis and epididymis nine cytokines namely the IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, IL-16, IL-17 and IL-18 genes were expressed, while no mRNA transcripts were detected in both organs for IL-2 and IL-4. Furthermore, the expression of various cytokine genes during sexual maturation appeared to be developmentally regulated, while SE infection resulted in a significant up-regulation of IL-1β, -6, -12 and -18 genes in the testis and an increase in the mRNA relative abundance of IL-1β, -6, -12, -16 and -18 in the epididymis of SE-infected sexually mature 28-week-old roosters. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the rooster reproductive tract. Copyright © 2016 Elsevier B.V. All rights reserved.
Chen, Haiqi; Mruk, Dolores D.; Xia, Weiliang; Bonanomi, Michele; Silvestrini, Bruno; Cheng, Chuen-Yan
2016-01-01
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men. PMID:26758796
RAI14 (retinoic acid induced protein 14) is an F-actin regulator
Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-ho; Cheng, C. Yan
2013-01-01
RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis. PMID:23885305
Chen, Haiqi; Mruk, Dolores D; Xia, Weiliang; Bonanomi, Michele; Silvestrini, Bruno; Cheng, Chuen-Yan
2016-01-01
The blood-testis barrier (BTB) is one of the tightest blood-tissue barriers in the mammalian body. It divides the seminiferous epithelium of the seminiferous tubule, the functional unit of the testis, where spermatogenesis takes place, into the basal and the adluminal (apical) compartments. Functionally, the BTB provides a unique microenvironment for meiosis I/II and post-meiotic spermatid development which take place exclusively in the apical compartment, away from the host immune system, and it contributes to the immune privilege status of testis. However, the BTB also poses major obstacles in developing male contraceptives (e.g., adjudin) that exert their effects on germ cells in the apical compartment, such as by disrupting spermatid adhesion to the Sertoli cell, causing germ cell exfoliation from the testis. Besides the tight junction (TJ) between adjacent Sertoli cells at the BTB that restricts the entry of contraceptives from the microvessels in the interstitium to the adluminal compartment, drug transporters, such as P-glycoprotein and multidrug resistance-associated protein 1 (MRP1), are also present that actively pump drugs out of the testis, limiting drug bioavailability. Recent advances in drug formulations, such as drug particle micronization (<50 μm) and co-grinding of drug particles with ß-cyclodextrin have improved bioavailability of contraceptives via considerable increase in solubility. Herein, we discuss development in drug formulations using adjudin as an example. We also put emphasis on the possible use of nanotechnology to deliver adjudin to the apical compartment with multidrug magnetic mesoporous silica nanoparticles. These advances in technology will significantly enhance our ability to develop effective non-hormonal male contraceptives for men.
Verma, Rachna; Krishna, Amitabh
2017-01-15
The aim of present study was to evaluate the significance of estradiol (E2) in testicular activities and to find out the mechanism by which E2 regulates spermatogenesis in mice. To achieve this, both in vivo and in vitro effect of Letrozole on testis of adult mice was investigated. Letrozole-induced changes in testicular histology, cell proliferation (proliferating cell nuclear antigen; PCNA), cell survival (B cell lymphoma factor-2; Bcl2), apoptotic (cysteine-aspartic proteases; caspase-3), steroidogenic (side chain cleavage; SCC, 3β-hydroxy steroid dehydrogenase enzyme; 3β HSD, steroidogenic acute regulatory protein; StAR, aromatase and luteinizing hormone receptor; LH-R) markers, glucose level, and rate of expression of glucose transporter (GLUT) 8 and insulin receptor (IR) proteins in the testis along with changes in serum E2 and testosterone (T) levels were evaluated. Letrozole acts on testis and caused significant decrease in E2 synthesis, but increase in testosterone level and showed regressive changes in the spermatogenesis. Letrozole-induced changes in various testicular markers were compared with the changes in serum E2 level. The correlation study showed that decreased circulating E2 level may be responsible for decreased insulin receptor (IR) level in the testis. The decreased effects of insulin inhibited the glucose transport in the testis by suppressing GLUT8. The decreased level of testicular glucose may produce less lactate as energy support to developing germ cells consequently resulting in decreased cell proliferation and cell survival, but increased apoptosis. Thus, Letrozole suppresses spermatogenesis by reducing insulin sensitivity and glucose transport in the testis, but significantly increased testosterone level by promoting gonadotrophin release by decreased E2. Copyright © 2016 Elsevier Inc. All rights reserved.
Borghesi, M; Brunocilla, E; Schiavina, R; Gentile, G; Dababneh, H; Della Mora, L; del Prete, C; Franceschelli, A; Colombo, F; Martorana, G
2015-01-01
Radical orchiectomy (RO) is still considered the standard of care for malignant germ cell tumours, which represent the vast majority of the palpable testicular masses. In those patients diagnosed with small testicular masses (STMs), testis-sparing surgery (TSS) could be an alternative treatment to RO. The aim of this updated review is to evaluate the current indications for TSS, and discuss the oncological and functional results of patients who had undergone organ-sparing surgery for STMs. A non-systematic review of the Literature using the Medline database has been performed, including a free-text protocol using the terms "testis-sparing surgery", "testicular sparing surgery", "partial orchiectomy", "testis tumour", "sex cord tumour", and "testis function". Other significant studies cited in the reference lists of the selected papers were also evaluated. No randomized controlled trials comparing TSS with radical orchiectomy have been reported yet. In those patients with normal contra-lateral testis, the use of TSS is still controversial. In selected cases of gonadal masses < 2 cm, TSS seems to be a safe and feasible treatment option. Frozen section examination allows us to discriminate between benign and malignant neoplasms during TSS. Intermediate and long-term follow-up results showed no significant risk of local and distant recurrences in the main series reported in the literature. TSS is an effective treatment for STMs in selected patients, limiting the unnecessary surgical over-treatments, without compromising the oncological and functional outcomes. Further studies are needed in order to confirm the oncological safety. Copyright © 2013 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.
Orchiopexy for intra-abdominal testes: factors predicting success.
Stec, Andrew A; Tanaka, Stacy T; Adams, Mark C; Pope, John C; Thomas, John C; Brock, John W
2009-10-01
Intra-abdominal testes can be treated with several surgical procedures. We evaluated factors influencing the outcome of orchiopexy for intra-abdominal testis. We retrospectively reviewed 156 consecutive orchiopexies performed for intra-abdominal testis, defined as a nonpalpable testis on examination and located in the abdomen at surgery. All surgical approaches were included in the study. Primary outcome was the overall success rate and secondary outcomes were success based on surgical approach, age and a patent processus vaginalis. Success was considered a testis with normal texture and size compared to the contralateral testis at followup. Multivariate analysis was performed to determine factors predictive of success. The overall success rate of all orchiopexies was 79.5%. Median patient age at orchiopexy was 12 months and mean followup was 16 months. Of the patients 117 had a patent processus vaginalis at surgery. One-stage abdominal orchiopexy was performed in 92 testes with 89.1% success. Of these cases 32 were performed laparoscopically with 96.9% success. One-stage Fowler-Stephens orchiopexy was performed in 27 testes and 2-stage Fowler-Stephens orchiopexy was performed in 37 with success in 63.0% and 67.6%, respectively. Multivariate analysis revealed that 1-stage orchiopexy without vessel division had more successful outcomes than 1 and 2-stage Fowler-Stephens orchiopexy (OR 0.24, p = 0.007 and 0.29, p = 0.19, respectively). Neither age at surgery nor an open internal ring was significant (p = 0.49 and 0.12, respectively). The overall success of orchiopexy for intra-abdominal testis is 79.5%. While patient selection remains a critical factor, 1-stage orchiopexy without vessel division was significantly more successful and a laparoscopic approach was associated with the fewest failures for intra-abdominal testes.
Hess, Rex A
2014-01-01
Abstract: Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules. PMID:26413389
Hess, Rex A
2014-01-01
Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion : The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.
McClusky, Leon M
2006-09-01
Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity.
Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.
2013-01-01
Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093
Banerjee, Arnab; Anuradha; Mukherjee, Kaustab; Krishna, Amitabh
2014-11-01
The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P < 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging. © 2014 Wiley Periodicals, Inc.
White Matter Volume Predicts Language Development in Congenital Heart Disease.
Rollins, Caitlin K; Asaro, Lisa A; Akhondi-Asl, Alireza; Kussman, Barry D; Rivkin, Michael J; Bellinger, David C; Warfield, Simon K; Wypij, David; Newburger, Jane W; Soul, Janet S
2017-02-01
To determine whether brain volume is reduced at 1 year of age and whether these volumes are associated with neurodevelopment in biventricular congenital heart disease (CHD) repaired in infancy. Infants with biventricular CHD (n = 48) underwent brain magnetic resonance imaging (MRI) and neurodevelopmental testing with the Bayley Scales of Infant Development-II and the MacArthur-Bates Communicative Development Inventories at 1 year of age. A multitemplate based probabilistic segmentation algorithm was applied to volumetric MRI data. We compared volumes with those of 13 healthy control infants of comparable ages. In the group with CHD, we measured Spearman correlations between neurodevelopmental outcomes and the residuals from linear regression of the volumes on corrected chronological age at MRI and sex. Compared with controls, infants with CHD had reductions of 54 mL in total brain (P = .009), 40 mL in cerebral white matter (P <.001), and 1.2 mL in brainstem (P = .003) volumes. Within the group with CHD, brain volumes were not correlated with Bayley Scales of Infant Development-II scores but did correlate positively with MacArthur-Bates Communicative Development Inventory language development. Infants with biventricular CHD show total brain volume reductions at 1 year of age, driven by differences in cerebral white matter. White matter volume correlates with language development, but not broader developmental indices. These findings suggest that abnormalities in white matter development detected months after corrective heart surgery may contribute to language impairment. ClinicalTrials.gov: NCT00006183. Copyright © 2016 Elsevier Inc. All rights reserved.
Csermely, Gyula; Susánszky, Éva; Czeizel, Andrew E
2015-03-01
To analyze the possible association of maternal age with the risk of all congenital abnormalities (CAs) in a population-based large case-matched control data set. The Hungarian Case-Control Surveillance of Congenital Abnormalities included 21,494 cases with isolated CA and their 34,311 matched controls. First the distribution of maternal age groups in 24 CA-groups and their matched controls was compared. In the second step, young (19 years or less) and advanced (35 years or more) age groups were compared. Finally, the subgroups of neural-tube defects, congenital heart defects and abdominal wall's CA were evaluated separately. A higher risk of gastroschisis, congenital heart defects, particularly left-sided obstructive defects, undescended testis and clubfoot was found in the youngest age group (19 years or less) of cases. The higher proportion of pregnant women with advanced age (i.e. 35 years or more) showed only a borderline excess in cases with clubfoot. The so-called U-shaped risk of maternal age distribution was found in cases with clubfoot and in the total group of isolated CAs. The maternal age is a contributing factor to the origin of some isolated CAs mainly in young pregnant women.
Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates
Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko
2009-01-01
Background Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. Results We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. Conclusion These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes. PMID:19138430
Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates.
Matsui, Toshiaki; Yamamoto, Toshiyuki; Wyder, Stefan; Zdobnov, Evgeny M; Kadowaki, Tatsuhiko
2009-01-12
Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.
Evaluation of Reference Genes for Quantitative Real-Time PCR in Songbirds
Zinzow-Kramer, Wendy M.; Horton, Brent M.; Maney, Donna L.
2014-01-01
Quantitative real-time PCR (qPCR) is becoming a popular tool for the quantification of gene expression in the brain and endocrine tissues of songbirds. Accurate analysis of qPCR data relies on the selection of appropriate reference genes for normalization, yet few papers on songbirds contain evidence of reference gene validation. Here, we evaluated the expression of ten potential reference genes (18S, ACTB, GAPDH, HMBS, HPRT, PPIA, RPL4, RPL32, TFRC, and UBC) in brain, pituitary, ovary, and testis in two species of songbird: zebra finch and white-throated sparrow. We used two algorithms, geNorm and NormFinder, to assess the stability of these reference genes in our samples. We found that the suitability of some of the most popular reference genes for target gene normalization in mammals, such as 18S, depended highly on tissue type. Thus, they are not the best choices for brain and gonad in these songbirds. In contrast, we identified alternative genes, such as HPRT, RPL4 and PPIA, that were highly stable in brain, pituitary, and gonad in these species. Our results suggest that the validation of reference genes in mammals does not necessarily extrapolate to other taxonomic groups. For researchers wishing to identify and evaluate suitable reference genes for qPCR songbirds, our results should serve as a starting point and should help increase the power and utility of songbird models in behavioral neuroendocrinology. PMID:24780145
Sundarrajan, Lakshminarasimhan; Blanco, Ayelén Melisa; Bertucci, Juan Ignacio; Ramesh, Naresh; Canosa, Luis Fabián; Unniappan, Suraj
2016-01-01
Nesfatin-1 is an 82 amino acid anorexigen encoded in a secreted precursor nucleobindin-2 (NUCB2). NUCB2 was named so due to its high sequence similarity with nucleobindin-1 (NUCB1). It was recently reported that NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP) in mice. Here, we aimed to characterize NLP in fish. RT- qPCR showed NUCB1 expression in both central and peripheral tissues. Western blot analysis and/or fluorescence immunohistochemistry determined NUCB1/NLP in the brain, pituitary, testis, ovary and gut of goldfish. NUCB1 mRNA expression in goldfish pituitary and gut displayed a daily rhythmic pattern of expression. Pituitary NUCB1 mRNA expression was downregulated by estradiol, while testosterone upregulated its expression in female goldfish brain. High carbohydrate and fat suppressed NUCB1 mRNA expression in the brain and gut. Intraperitoneal injection of synthetic rat NLP and goldfish NLP at 10 and 100 ng/g body weight doses caused potent inhibition of food intake in goldfish. NLP injection also downregulated the expression of mRNAs encoding orexigens, preproghrelin and orexin-A, and upregulated anorexigen cocaine and amphetamine regulated transcript mRNA in goldfish brain. Collectively, these results provide the first set of results supporting the anorectic action of NLP, and the regulation of tissue specific expression of goldfish NUCB1. PMID:27329836
Role of Axumin PET Scan in Germ Cell Tumor
2018-05-01
Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos
Long-term preservation of eri and ailanthus silkworms using frozen gonads.
Fukumori, Hisayoshi; Lee, Jung; Fujii, Tsuguru; Kajiura, Zenta; Banno, Yutaka
2017-08-01
Cryopreservation of eri and ailanthus silkworms using frozen gonads was investigated. First, we evaluated the freeze tolerance of ovary and testis in the eri silkworm, which showed high tolerance. Mating between frozen ovary-transplanted females and frozen testis-transplanted males produced 163.0 eggs, yielding 105.7 larvae per moth. In a second experiment, we tested the use of the eri silkworm as a host insect for gonad transplantation from ailanthus silkworm donors. A high success ratio for laid and hatched eggs was demonstrated for ovary transplantation (97.8 and 51.3 eggs per moth, respectively). For testis transplantation, however, the average number of hatched larvae was low (12.0). Mating between host eri females and males in which both frozen ovary and testis of the ailanthus silkworm had been transplanted produced 6.4 fertilized eggs per host moth. Our success in using cross subspecies cryopreservation between these wild silkworms could lead to the alternative use of hosts between species in other insects. Copyright © 2017 Elsevier Inc. All rights reserved.
Serum immunoreactivity of cancer/testis antigen OY-TES-1 and its tissues expression in glioma.
Li, Xisheng; Yan, Jun; Fan, Rong; Luo, Bin; Zhang, Qingmei; Lin, Yongda; Zhou, Sufang; Luo, Guorong; Xie, Xiaoxun; Xiao, Shaowen
2017-05-01
OY-TES-1 is a member of the cancer/testis antigen family that is expressed in healthy testis tissue and certain types of cancerous tissue. The present study aimed to analyze the expression pattern of OY-TES-1 and serum anti-OY-TES-1 antibody concentration in patients with glioma. OY-TES-1 mRNA was detected in 28/36 (78%) of glioma cases using conventional reverse transcription polymerase chain reaction (RT-PCR) analysis. RT-quantitative-PCR revealed that OY-TES-1 was expressed at a higher level in glioma tissues compared with normal adult tissues (with the exception of testis tissue). Anti-OY-TES-1 antibodies were present in the serum of 5/36 (14%) of patients with glioma, but absent in all the serum samples from 107 healthy donors. Immunohistochemical analysis demonstrated that OY-TES-1 protein was expressed in all glioma tissues from patients with anti-OY-TES-1 antibody seropositivity. These results suggest that OY-TES-1 is a novel candidate for glioma immunotherapy.
Wajda, A; Łapczuk, J; Grabowska, M; Pius-Sadowska, E; Słojewski, M; Laszczynska, M; Urasinska, E; Machalinski, B; Drozdzik, M
2017-04-01
Aryl hydrocarbon receptor (AhR) plays multiple important functions in adaptive responses. Exposure to AhR ligands may produce an altered metabolic activity controlled by the AhR pathways, and consequently affect drug/toxin responses, hormonal status and cellular homeostasis. This research revealed species-, cell- and region-specific pattern of the AhR system expression in the rat and human testis and epididymis, complementing the existing knowledge, especially within the epididymal segments. The study showed that AhR level in the rat and human epididymis is higher than in the testis. The downregulation of AhR expression after TCDD treatment was revealed in the spermatogenic cells at different stages and the epididymal epithelial cells, but not in the Sertoli and Leydig cells. Hence, this basic research provides information about the AhR function in the testis and epididymis, which may provide an insight into deleterious effects of drugs, hormones and environmental pollutants on male fertility. Copyright © 2017 Elsevier Inc. All rights reserved.
Iamsaard, Sitthichai; Prabsattroo, Thawatchai; Sukhorum, Wannisa; Muchimapura, Supaporn; Srisaard, Panee; Uabundit, Nongnut; Thukhammee, Wipawee; Wattanathorn, Jintanaporn
2013-01-01
Objective: To investigate the effect of Anethum graveolens (AG) extracts on the mounting frequency, histology of testis and epididymis, and sperm physiology. Methods: Male rats induced by cold immobilization before treating with vehicle or AG extracts [50, 150, and 450 mg/kg body weight (BW)] via gastric tube for consecutive 1, 7, and 14 d were examined for mounting frequency, testicular phosphorylation level by immunoblotting, sperm concentration, sperm acrosome reaction, and histological structures of testis and epididymis, respectively. Results: AG (50 mg/kg BW) significantly increased the mounting frequency on Days 1 and 7 compared to the control group. Additionally, rat testis treated with 50 mg/kg BW AG showed high levels of phosphorylated proteins as compared with the control group. In histological analyses, AG extract did not affect the sperm concentration, acrosome reaction, and histological structures of testis and epididymis. Conclusions: AG extract enhances the aphrodisiac activity and is not harmful to sperm and male reproductive organs. PMID:23463768
Iamsaard, Sitthichai; Prabsattroo, Thawatchai; Sukhorum, Wannisa; Muchimapura, Supaporn; Srisaard, Panee; Uabundit, Nongnut; Thukhammee, Wipawee; Wattanathorn, Jintanaporn
2013-03-01
To investigate the effect of Anethum graveolens (AG) extracts on the mounting frequency, histology of testis and epididymis, and sperm physiology. Male rats induced by cold immobilization before treating with vehicle or AG extracts [50, 150, and 450 mg/kg body weight (BW)] via gastric tube for consecutive 1, 7, and 14 d were examined for mounting frequency, testicular phosphorylation level by immunoblotting, sperm concentration, sperm acrosome reaction, and histological structures of testis and epididymis, respectively. AG (50 mg/kg BW) significantly increased the mounting frequency on Days 1 and 7 compared to the control group. Additionally, rat testis treated with 50 mg/kg BW AG showed high levels of phosphorylated proteins as compared with the control group. In histological analyses, AG extract did not affect the sperm concentration, acrosome reaction, and histological structures of testis and epididymis. AG extract enhances the aphrodisiac activity and is not harmful to sperm and male reproductive organs.
Adenocarcinoma of the rete testis - a rare case of testicular malignancy.
Chovanec, M; Mego, M; Sycova-Mila, Z; Obertova, J; Rajec, J; Palacka, P; Mardiak, J
2014-01-01
Adenocarcinoma of rete testis is an extremely rare dia-gnosis described in around 70 patients worldwide. The prognosis of the disease in metastatic stage is very poor and there is no standard systemic treatment available. Herein we present a unique case report of a 47-year- old man with metastatic adenocarcinoma of rete testis who achieved substantial disease response after four cycles of paclitaxel, ifosfamide and cisplatin. The chemotherapy was administered in five -day regimen, which comprised 250 mg/ m2 of paclitaxel on day one, 20 mg/ m2 of cisplatin on day one to five and 1,2 g/ m2 of ifosfamide on day one to five, in a three-week interval. The patient received prophylactic pegfilgrastim after each cycle of TIP. The treatment was well tolerated - without any significant toxicity. Patient achieved a partial 14- month remission. On basis of this experience we suggest that paclitaxel, ifosfamide and cisplatin might be adopted as novel agents in treatment of rete testis adenocarcinoma.
Claes, Filip; Vodnala, Suman K.; van Reet, Nick; Boucher, Nathalie; Lunden-Miguel, Hilda; Baltz, Theo; Goddeeris, Bruno Maria; Büscher, Philippe; Rottenberg, Martin E.
2009-01-01
Monitoring Trypanosoma spread using real-time imaging in vivo provides a fast method to evaluate parasite distribution especially in immunoprivileged locations. Here, we generated monomorphic and pleomorphic recombinant Trypanosoma brucei expressing the Renilla luciferase. In vitro luciferase activity measurements confirmed the uptake of the coelenterazine substrate by live parasites and light emission. We further validated the use of Renilla luciferase-tagged trypanosomes for real-time bioluminescent in vivo analysis. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. This is of importance when considering trypanocidal drug development, since parasites might be protected from many drugs by the blood-testis barrier. This hypothesis was supported by our final study of the efficacy of treatment with trypanocidal drugs in T. brucei-infected mice. We showed that parasites located in the testis, as compared to those located in the abdominal cavity, were not readily cleared by the drugs. PMID:19621071
The Treatment of the Incompletely Descended Testis
Wilson, D. S. Poole
1939-01-01
(1) Under three years of age the diagnosis of the incompletely descended testis is uncertain. (2) The policy of awaiting spontaneous descent may be pursued until 10 years of age but, unless the testis lies in the superior scrotal position, this policy should not be persisted in thereafter. (3) Hormonal therapy may be employed before operative treatment as a means of determining testes which will descend spontaneously. It should only be used in the prepuberty period. (4) Operative treatment may be safely carried out at any age after 3 years and should be completed before puberty. The optimum period is between 8 and 11 years. The Bevan operation may be successful when the testis is very mobile but the most consistent results are obtained by the septal transposition or Keetley-Torek operations. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 8Fig. 9Fig. 10Fig. 13Fig. 14Fig. 15Fig. 16Fig. 18Fig. 19Fig. 20Fig. 21Fig. 22 PMID:19991991
Zamoner, Ariane; Barreto, Kátia Padilha; Filho, Danilo Wilhelm; Sell, Fabíola; Woehl, Viviane Mara; Guma, Fátima Costa Rodrigues; Silva, Fátima Regina Mena Barreto; Pessoa-Pureur, Regina
2007-03-15
Hyperthyroidism was induced in rats and somatic indices and metabolic parameters were analyzed in testis. In addition, the morphological analysis evidenced testes maturation and intense protein synthesis and processing, supporting the enhancement in vimentin synthesis in hyperthyroid testis. Furthermore, vimentin phosphorylation was increased, indicating an accumulation of phosphorylated vimentin associated to the cytoskeleton, which could be a consequence of the extracellular-regulated kinase (ERK) activation regulating the cytoskeleton. Biomarkers of oxidative stress demonstrated an increased basal metabolic rate measured by tissue oxygen consumption, as well as, increased TBARS levels. In addition, the enzymatic and non-enzymatic antioxidant defences appeared to respond according to the augmented oxygen consumption. We observed decreased total glutathione levels, with enhancement of reduced glutathione, whereas most of the antioxidant enzyme activities were induced. Otherwise, superoxide dismutase activity was inhibited. These results support the idea that an increase in mitochondrial ROS generation, underlying cellular oxidative damage, is a side effect of hyperthyroid-induced biochemical changes by which rat testis increase their metabolic capacity.
Regulation of the X Chromosome in the Germline and Soma of Drosophila melanogaster Males.
Argyridou, Eliza; Parsch, John
2018-05-04
During the evolution of heteromorphic sex chromosomes, the sex-specific Y chromosome degenerates, while the X chromosome evolves new mechanisms of regulation. Using bioinformatic and experimental approaches, we investigate the expression of the X chromosome in Drosophila melanogaster . We observe nearly complete X chromosome dosage compensation in male somatic tissues, but not in testis. The X chromosome contains disproportionately fewer genes with high expression in testis than the autosomes, even after accounting for the lack of dosage compensation, which suggests that another mechanism suppresses their expression in the male germline. This is consistent with studies of reporter genes and transposed genes, which find that the same gene has higher expression when autosomal than when X-linked. Using a new reporter gene that is expressed in both testis and somatic tissues, we find that the suppression of X-linked gene expression is limited to genes with high expression in testis and that the extent of the suppression is positively correlated with expression level.
Identification and characterization of Rhox13, a novel X-linked mouse homeobox gene
Geyer, Christopher B.; Eddy, Edward M.
2008-01-01
Homeobox genes encode transcription factors whose expression organizes programs of development. A number of homeobox genes expressed in reproductive tissues have been identified recently, including a colinear cluster on the X chromosome in mice. This has led to an increased interest in understanding the role(s) of homeobox genes in regulating development of reproductive tissues including the testis, ovary, and placenta. Here we report the identification and characterization of a novel homeobox gene of the paired-like class on the X chromosome distal to the reproductive homeobox (Rhox) cluster in mice. Transcripts are found in the testis and ovary as early as 13.5 days post-coitum (dpc). Transcription ceases in the ovary by 3 days post-partum (dpp), but continues in the testis through adulthood. The Rhox13 gene encodes a 25.3 kDa protein expressed in the adult testis in germ cells at the basal aspect of the seminiferous epithelium. PMID:18675325
Hot heads and cold brains. Aristotle, Galen and the "radiator theory".
Longo, O
1996-01-01
The Author examines two similar theories about the functioning of human brain as a refrigerator: Falk's and Fialkowski's (1990) and Aristotle's (IVth century b.C.). There are surprising, although fortuitous, convergences between the two, with the remarkable difference, however, that Artistotle's doctrine (later severely criticized by Galen) thinks of the brain merely as an organ for the cooling of the body's (the heart's) heat, while according to the modern radiator theory the human brain developed starting as a refrigerator of itself.
Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.
2000-01-01
In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.
Alcohol, Other Drugs, and Obesity: Plan-of-the-Day Notes
1992-05-01
to the brain and heart, and increased risk formany cancers .23 Some studies have suggested that moderate drinking is linked to lower risk for heart...military authorities. Events requiring medical care or involving a suspicious public or domestic disturbance must be carefully evaluated to determine if...is 26.28 In 1990, there were 10.2 million alcoholics and 7.2 million alcohol abusers in the United States. After heart disease and cancer , alcohol is
Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping
2014-01-01
MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258
Özorak, Alper; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Özçelik, Derviş; Özkaya, Mehmet Okan; Çetin, Hasan; Kahya, Mehmet Cemal; Kose, Seyit Ali
2013-12-01
The present study was designed to determine the effects of both Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) on oxidative stress and trace element levels in the kidney and testis of growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their 96 newborn offspring were equally divided into four different groups, namely, control, 2.45 GHz, 900 MHz, and 1800 MHz groups. The 2.45 GHz, 900 MHz, and 1,800 MHz groups were exposed to EMR for 60 min/day during pregnancy and growth. During the fourth, fifth, and sixth weeks of the experiment, kidney and testis samples were taken from decapitated rats. Results from the fourth week showed that the level of lipid peroxidation in the kidney and testis and the copper, zinc, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and total antioxidant status (TAS) values in the kidney decreased in the EMR groups, while iron concentrations in the kidney as well as vitamin A and vitamin E concentrations in the testis increased in the EMR groups. Results for fifth-week samples showed that iron, vitamin A, and β-carotene concentrations in the kidney increased in the EMR groups, while the GSH and TAS levels decreased. The sixth week results showed that iron concentrations in the kidney and the extent of lipid peroxidation in the kidney and testis increased in the EMR groups, while copper, TAS, and GSH concentrations decreased. There were no statistically significant differences in kidney chromium, magnesium, and manganese concentrations among the four groups. In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats.
Oestrogens and spermatogenesis
Carreau, Serge; Hess, Rex A.
2010-01-01
The role of oestrogens in male reproductive tract physiology has for a long time been a subject of debate. The testis produces significant amounts of oestrogenic hormones, via aromatase, and oestrogen receptors (ERs)α (ESR1) and ERβ (ESR2) are selectively expressed in cells of the testis as well as the epididymal epithelium, depending upon species. This review summarizes the current knowledge concerning the presence and activity of aromatase and ERs in testis and sperm and the potential roles that oestrogens may have in mammalian spermatogenesis. Data show that physiology of the male gonad is in part under the control of a balance of androgens and oestrogens, with aromatase serving as a modulator. PMID:20403867
Danylov, Iu V; Motkov, K V; Shevchenko, T I
2013-01-01
Problem of a diagnostic of Chernobyl factor influences on different organs and systems of Chernobyl accident liquidators are remain actually until now. Though morbidly background which development at unfavorable work conditions in underground coalminers prevents from objective identification features of Chernobyl factor influences. The qualitative and quantitative histological and immunohistochemical law of morphogenesis changes in testis of Donbas's coalminer - non-liquidators Chernobyl accident in comparison with the group of Donbas's coalminers-liquidators Chernobyl accident, which we were stationed non determined problem. This reason stipulates to development and practical use of mathematical model of morphogenesis of a testis changes.
Ambiguous genitalia in a fertile, unilaterally cryptorchid male miniature schnauzer dog.
Breshears, M A; Peters, J L
2011-09-01
A 7-year-old male miniature schnauzer dog with unilateral cryptorchidism was presented for elective orchiectomy. Surgery to remove the cryptorchid testis revealed a fully formed uterus with horns attached to both testis and the body and cervix terminating at the prostate gland. The gross and microscopic diagnosis for the genital tract was persistent Müllerian duct syndrome with unilateral cryptorchidism. Additional associated lesions included cystic endometrial hyperplasia and a solitary, intratubular seminoma within the undescended testis. Persistent Müllerian duct syndrome is rare among domestic animals but is more common in miniature schnauzer dogs because of inheritance as an autosomal recessive trait.
Chloroma of the testis in a patient with a history of acute myeloid leukemia
Sanei, Mohammad Hossein; Shariati, Matin
2017-01-01
Chloroma, or granulocytic sarcoma, is a rare extramedullary solid hematologic cancer, found concomitant with acute myeloid leukemia. It is infrequently associated with other myeloproliferative disorders or chronic myelogenous leukemia. Chloroma of the testis after allogeneic bone marrow transplantation is particularly sparsely represented in the literature. It is suggested that an appropriate panel of marker studies be performed along with clinical correlation and circumspection to avoid misleading conclusions. We report an interesting case of a 32-year-old male with a clinical history of acute myelogenous leukemia, postallogeneic peripheral blood stem cell transplantation that was found to have chloroma of the right testis. PMID:28919910
Chloroma of the testis in a patient with a history of acute myeloid leukemia.
Sanei, Mohammad Hossein; Shariati, Matin
2017-01-01
Chloroma, or granulocytic sarcoma, is a rare extramedullary solid hematologic cancer, found concomitant with acute myeloid leukemia. It is infrequently associated with other myeloproliferative disorders or chronic myelogenous leukemia. Chloroma of the testis after allogeneic bone marrow transplantation is particularly sparsely represented in the literature. It is suggested that an appropriate panel of marker studies be performed along with clinical correlation and circumspection to avoid misleading conclusions. We report an interesting case of a 32-year-old male with a clinical history of acute myelogenous leukemia, postallogeneic peripheral blood stem cell transplantation that was found to have chloroma of the right testis.
Sex cord-gonadal stromal tumor of the rete testis.
Sajadi, Kamran P; Dalton, Rory R; Brown, James A
2009-01-01
A 34-year-old tetraplegic patient with suppurative epididymitis was found on follow-up examination and ultrasonography to have a testicular mass. The radical orchiectomy specimen contained an undifferentiated spindled sex cord-stromal tumor arising in the rete testis. Testicular sex cord-stromal tumors are far less common than germ cell neoplasms and are usually benign. The close relationship between sex cords and ductules of the rete testis during development provides the opportunity for these uncommon tumors to arise anatomically within the rete tesis. This undifferentiated sex cord-stromal tumor, occurring in a previously unreported location, is an example of an unusual lesion mimicking an intratesticular malignant neoplasm.
Lee, Jae Eun; Kim, Bum Soo; Park, Wan; Huh, Jung Kwon; Kim, Byung Jin; Sung, Ki Chul; Kang, Jin Ho; Lee, Man Ho; Park, Jung Ro
2010-04-01
The correlation between brain natruretic peptide (BNP) level and cardiac autonomic function has been studied in type 2 diabetic patients. However, there is limited data from patients with normal systolic function. We evaluated the association between heart rate recovery (HRR) representing autonomic dysfunction and three plasma BNP levels: pre-exercise, post-exercise, and change during exercise in patients with normal systolic function. Subjects included 105 patients with chest pain and normal systolic function. HRR was defined as the difference between the peak heart rate and the rate measured two minutes after completion of a treadmill exercise test. We measured plasma BNP levels before exercise, 5 minutes after completion of exercise, and during exercise (absolute value of difference between pre- and post-exercise BNP levels). Patients with abnormal HRR values (=24 beats for the first 2 minutes of HRR) had lower high-density lipoprotein, lower peak heart rates, and higher pre- and post-exercise BNP levels than patients with normal HRR values. The patients with coronary artery disease (CAD) had abnormal HRR. However, no significant differences were found between the two groups in terms of history of hypertension (HTN), diabetes, and peak systolic blood pressure (SBP) and diastolic blood pressure (DBP). HRR was significantly associated with pre-exercise BNP (r=-0.36, p=0.004) and post-exercise BNP (r=-0.27, p=0.006), but not BNP changes. Further, pre-exercise BNP levels showed a greater association with HRR than post-exercise BNP levels. HRR is independently associated with pre-exercise and post-exercise BNP levels, even in patients with normal systolic function.
Carbon dioxide field flooding reduces neurologic impairment after open heart surgery.
Martens, Sven; Neumann, Katrin; Sodemann, Christian; Deschka, Heinz; Wimmer-Greinecker, Gerhard; Moritz, Anton
2008-02-01
Air emboli released from incompletely deaired cardiac chambers may cause neurocognitive decline after open heart surgery. Carbon dioxide (CO2) field flooding is reported to reduce residual intracavital air during cardiac surgery. A protective effect of carbon dioxide insufflation on postoperative brain function remains unproven in clinical trials. Eighty patients undergoing heart valve operations by median sternotomy were randomly assigned to either CO2 insufflation (group I, n = 39) or unprotected controls (group II, n = 41). Preoperative evaluation included neurocognitive test batteries consisting of six different tests, and objective measurements of brain function by means of P300 wave auditory-evoked potentials (peak latencies, ms). Neurocognitive testing and P300 measurements were repeated on postoperative day 5. Neurocognitive deficit (ND) was defined as a 20% decrement in two or more tests. Preoperatively, P300 peak latencies did not differ between groups (374 +/- 75 vs 366 +/- 72 ms, not significant [n.s.]). Five days after surgery, P300 peak latencies were significantly shorter with CO2 protection as compared with the unprotected control group (group I: 390 +/- 68 ms, group II: 429 +/- 75 ms, p = 0.02). Clinical outcome was comparable as for mortality (group I: 1 patient; group II: 2 patients) and cerebrovascular events or confusional syndromes (group I: 5 patients; group II: 4 patients) or other clinical variables as intubation time or hospital stay. Neurocognitive test batteries did not reveal differences between groups. Shorter P300 peak latencies after surgery indicate less brain damage in patients who underwent heart valve operations with CO2 flooding of the thoracic cavity. Even if these findings were not supported by clinical results or neurocognitive test batteries in our cohort, carbon dioxide field flooding has proven efficiency and should be advocated for all patients undergoing open heart surgery.
Neurotransmitter receptor research has blossomed in the past decade in the human health sciences. owever, little attention has been given to this line of investigation by environmental scientists. n this study, binding characteristics of membrane preparations from four brain regi...
Park-Hansen, Jesper; Holme, Susanne J V; Irmukhamedov, Akhmadjon; Carranza, Christian L; Greve, Anders M; Al-Farra, Gina; Riis, Robert G C; Nilsson, Brian; Clausen, Johan S R; Nørskov, Anne S; Kruuse, Christina R; Rostrup, Egill; Dominguez, Helena
2018-05-23
Open heart surgery is associated with high occurrence of atrial fibrillation (AF), subsequently increasing the risk of post-operative ischemic stroke. Concomitant with open heart surgery, a cardiac ablation procedure is commonly performed in patients with known AF, often followed by left atrial appendage closure with surgery (LAACS). However, the protective effect of LAACS on the risk of cerebral ischemia following cardiac surgery remains controversial. We have studied whether LAACS in addition to open heart surgery protects against post-operative ischemic brain injury regardless of a previous AF diagnosis. One hundred eighty-seven patients scheduled for open heart surgery were enrolled in a prospective, open-label clinical trial and randomized to concomitant LAACS vs. standard care. Randomization was stratified by usage of oral anticoagulation (OAC) planned to last at least 3 months after surgery. The primary endpoint was a composite of post-operative symptomatic ischemic stroke, transient ischemic attack or imaging findings of silent cerebral ischemic (SCI) lesions. During a mean follow-up of 3.7 years, 14 (16%) primary events occurred among patients receiving standard surgery vs. 5 (5%) in the group randomized to additional LAACS (hazard ratio 0.3; 95% CI: 0.1-0.8, p = 0.02). In per protocol analysis (n = 141), 14 (18%) primary events occurred in the control group vs. 4 (6%) in the LAACS group (hazard ratio 0.3; 95% CI: 0.1-1.0, p = 0.05). In a real-world setting, LAACS in addition to elective open-heart surgery was associated with lower risk of post-operative ischemic brain injury. The protective effect was not conditional on AF/OAC status at baseline. LAACS study, clinicaltrials.gov NCT02378116 , March 4th 2015, retrospectively registered.
Precursors to radiopharmaceutical agents for tissue imaging
Srivastava, Prem C.; Knapp, Jr., Furn F.
1988-01-01
A class of radiolabeled compounds to be used in tissue imaging that exhibits rapid brain uptake, good brain:blood radioactivity ratios, and long retention times. The imaging agents are more specifically radioiodinated aromatic amines attached to dihydropyridine carriers, that exhibit heart as well as brain specificity. In addition to the radiolabeled compounds, classes of compounds are also described that are used as precursors and intermediates in the preparation of the imaging agents.
Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations.
Horiguchi, Toshihiro; Kojima, Mitsuhiro; Hamada, Fumihiko; Kajikawa, Akira; Shiraishi, Hiroaki; Morita, Masatoshi; Shimizu, Makoto
2006-04-01
We histopathologically examined gonads and chemically determined organotin compounds in tissues of the ivory shell, Babylonia japonica. Imposex (a superimposition of male-type genital organs on females) occurred in approximately 80-90% of B. japonica specimens that we examined, with the penis and vas deferens both well developed. No oviduct blockage by vas deferens formation was observed. Ovarian spermatogenesis and suppressed ovarian maturation were observed in the females that exhibited imposex, although no histopathological abnormalities were found in males. Tissue distributions of organotin compounds [tributyltin (TBT), triphenyltin (TPhT), and their metabolites] were different for butyltins and phenyltins; a remarkably high accumulation of TBT was observed in the ctenidium, osphradium, and heart, whereas high concentrations of TPhT were detected in the ovary and digestive gland. More than one-third of TBT accumulated in the digestive glands of both males and females, followed by the testis, ctenidium, muscle, and heart tissues in males and in the muscle, ovary, ctenidium, and head tissues (including the central nervous system ganglia) in females. In both males and females, more than half of total TPhT accumulated in the digestive glands, followed by the gonads. The next highest values were in the muscle, ctenidium, and heart tissues in males and in the muscle, oviduct, and head tissues in females. Both TBT and TPhT concentrations in the gonads were positively correlated with penis length in females. Our findings strongly suggest that reproductive failure in adult females accompanied by imposex, possibly induced by TBT and TPhT from antifouling paints, may have caused the marked decline of B. japonica populations in Japan.
Suicide in men with testis cancer.
Alanee, S; Russo, P
2012-11-01
Depression, anxiety and aggression are documented in testis cancer patients and can result in death from suicides; however, their risk of suicide is not defined. We report suicide rates among testis cancer patients in the USA and determine factors associated with higher rates. We used the Surveillance, Epidemiology, and End Results (SEER) database maintained by the National Cancer Institute to identify patients diagnosed with testis cancer between 1995 and 2008. Multivariate analysis was used to assess factors affecting suicide rate. Among 23,381 patients followed for 126,762 person-years, suicide rate was 26.0 per 100,000 person-years, with the average corresponding rate in the US population aged 25-44 years being 21.5 per 100,000 person-years; the calculated standardised mortality ratio for death by suicide was 1.2 [95% confidence interval (CI): 1.1-2.1]. The standardised mortality ratio for suicide was 1.5 (95% CI: 1.1-2.1) in ages less than 30 years, and 1.8 (95% CI: 1.3-2.4) in men of races other than White and Black. Other patient and disease characteristics were not predictive. In conclusion, patients with testis cancer have a 20% increase in the risk of suicide over that of the general population, and races other than White and Black and younger patients may commit suicide at higher rates. © 2012 Blackwell Publishing Ltd.
A time-course study of long term over-expression of ARR19 in mice
Qamar, Imteyaz; Ahmad, Mohammad Faiz; Narayanasamy, Arul
2015-01-01
A leucine-rich protein, ARR19 (androgen receptor corepressor-19 kDa), is highly expressed in male reproductive organs and moderately in others. Previously, we have reported that ARR19 is differentially expressed in adult Leydig cells during the testis development and inhibits steroidogenesis by reducing the expression of steroidogenic enzymes. Whereas in prostate, ARR19 represses the transcriptional activity of AR (androgen receptor), it is important for male sexual differentiation and maturation in prostate and epididymis, through the recruitment of HDAC4. In this study we show that long term adenovirus mediated overexpression of ARR19 in mice testis has the potential of inhibiting the differentiation of testicular and prostatic cells by reducing the size of testis and prostate but has no effect on the growth of seminal vesicles. Further, it reduces the level of progesterone and testosterone by reducing the steroidogenic enzymes such as 3HSD, P450c17 and StAR. This is the first study reporting a time-course analysis of the implications of long term overexpression of ARR19 in mice testis and its effect on other organs such as prostate and seminal vesicles. Taken together, these results suggest that ARR19 may play an important role in the differentiation of male reproductive organs such as testis and prostate. PMID:26260329
Clear cell adenocarcinoma of the tunica vaginalis of the testis with an adjacent uterus-like tissue.
Tulunay, Ozden; Gögüş, Cagatay; Baltaci, Sümer; Bulut, Safak
2004-08-01
Testicular and paratesticular neoplasms that resemble the common epithelial type of ovarian tumor are quite rare. Paratesticular clear cell carcinoma is very uncommon in the testis, with no reported cases of a tumor arising from the tunica vaginalis in the literature to our knowledge. The present case shows that it is highly malignant and metastatic. The differential diagnosis of the tumor was made after thorough clinical, pathological and immunohistochemical investigations, from the mesothelioma of the tunica vaginalis, paratesticular serous papillary carcinoma, carcinoma of the rete testis, epididymal adenocarcioma, yolk sac tumor of the testis and metastatic carcinoma. The tumor showed Bcl-2 and Her-2/neu immunoreactivity, but was non-reactive for p53. This tumor, with a uterus-like structure as a paratesticular tumor-like mass, was composed of endometrial-type glands and stroma surrounded by bundles of smooth muscle, and is the third example of this kind of structure in English written literature. The patient, having normal external genitalia and fertility, represents the first reported case of paratesticular malignant differentiation of müllerian-type epithelium in the normal gonadal state. Müllerian-type epithelium located in the vicinity of the testis and/or endometriotic metaplasia of the mesothelium of the tunica vaginalis might be the possible origins for this uterus-like structure, and as a result, for this tumor.
NASA Astrophysics Data System (ADS)
Feng, Junrong; Liu, Liming; Jiang, Haibin; Wang, Maojian; Du, Rongbin
2014-10-01
Black rockfish ( Sebastes schlegeli) is an important species for culture; however, its reproductive characteristics have not been fully documented. In this study, we investigated the morphology and developmental process of germ cells in this ovoviviparous rockfish in reproductive season (October 2011-November 2012) with histological methods. We found that the gonad of mature fish showed notable seasonal changes in developmental characteristics and morphological structure. The sperm cells matured during a period lasting from October to December, significantly earlier than the oocytes did. A large number of spermatozoa and other cells occurred in testis at different developmental stages. Vitellogenesis in oocytes began in October, and gestation appeared in April next year. Spermatophores were discovered for the first time in Sebastes, which assembled in testis, main sperm duct, oviduct and genital tract, as well as ovarian cavity in October and April. These organs may serve either as production or hiding places for spermatophores and spermatozoa which were stored and transported in form of spermatophores. Testicular degeneration started from the distal part of testis in April, with spermatophores assembled in degenerating testis and waiting for transportation. The copulation probably lasted for a long period, during which the spermatozoa were discharged in batches as spermatophores. These spermatophores were coated with sticky materials secreted from the interstitial areas of testis and the main sperm duct, then transported into ovary.
Hurtado, Alicia; Real, Francisca M; Palomino, Rogelio; Carmona, Francisco David; Burgos, Miguel; Jiménez, Rafael; Barrionuevo, Francisco J
2018-01-01
MicroRNAs are frequently organized into polycistronic clusters whose transcription is controlled by a single promoter. The miR-17-92 cluster is expressed in most embryonic and postnatal organs. It is a potent oncogene associated to several types of cancer and it is involved in several important developmental processes. In the testis, expression of the miR-17-92 cluster in the germ cells is necessary to maintain normal spermatogenesis. This cluster is also expressed in Sertoli cells (the somatic cells of the seminiferous tubules), which require miRNAs for correct cell development and survival. To study the possible role of miR-17-92 in Sertoli cell development and function and, in order to overcome the postnatal lethality of miR-17-92-/ mice, we conditionally deleted it in embryonic Sertoli cells shortly after the sex determination stage using an Amh-Cre allele. Mutant mice developed apparently normal testes and were fertile, but their testis transcriptomes contained hundreds of moderately deregulated genes, indicating that testis homeostasis is tightly controlled in mammals and that miR-17-92 expression in Sertoli cells contribute to maintain normal gene expression levels, but is unnecessary for testis development and function. Our results show that significant deregulation of hundreds of genes might have no functional consequences.
CHEN, JIANG KAI; HECKERT, LESLIE L.
2006-01-01
Dmrt1 is a recently described gene that is expressed exclusively in the testis and is required for postnatal testis differentiation. Here we describe the expression of Dmrt1 in postnatal rat testis and Sertoli cells. RNase protection analysis was used to examine Dmrt1 messenger RNA (mRNA) levels in intact testis during postnatal development and in primary cultures of Sertoli cells under various culture conditions. We show that Dmrt1 mRNA levels rise significantly beginning approximately 10 days after birth and remain elevated until after the third postnatal week. Thereafter, mRNA levels drop coincident with the proliferation of germ cells in the testis. In freshly isolated Sertoli cells, Dmrt1 mRNA levels were robust but decreased significantly when the cells were placed in culture for 24 h. Treatment of Sertoli cells with either FSH or 8-bromo-cAMP resulted in a significant rise in Dmrt1 mRNA levels. This cAMP response was sensitive to treatment with the transcriptional inhibitor actinomycin D but not to the translational inhibitor cycloheximide. The cAMP-dependent rise in Dmrt1 mRNA also required activation of protein kinase A, as mRNA induction was sensitive to the inhibitor H89. Studies also show that Dmrt1 expression was inhibited by phorbol esters (PMA) but only modestly effected by serum. PMID:11181532
Dysregulation of heart and brain specific micro-RNA in sudden infant death syndrome.
Courts, Cornelius; Grabmüller, Melanie; Madea, Burkhard
2013-05-10
Channelopathic heart arrhythmias and dysfunctional autonomic regulation of respiration and arousal based on defects in the brainstem are assumed to be involved in the pathogenesis of SIDS. There is evidence that, apart from mutational alterations in associated genes, disruption of physiological processes and deficient responses to external stressors may be influenced by the dysregulation of organ specific micro-RNA expression. It is unknown, however, whether these small, non-coding regulatory RNA molecules are involved in any SIDS pathomechanism. In a case-control study of two series of fresh-frozen heart tissue (n=14) and formalin fixed, paraffin embedded brainstem tissue (n=11) from SIDS and respective control cases, differential expression of heart and brain specific miR-1/miR-133 and miR-124a/let-7b, respectively, was determined using quantitative PCR analysis. Our results show a significant upregulation of heart specific miR-1 and brainspecific let-7b in SIDS compared to control cases. This pilot study is first to analyze differential miRNA expression in SIDS. Our findings suggest that organ specific miRNA dysregulation may be associated with SIDS pathogenesis and establishes the feasibility of miRNA analysis in different kinds of preserved and archived SIDS tissues. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Battisti, Umberto M; Citti, Cinzia; Larini, Martina; Ciccarella, Giuseppe; Stasiak, Natalia; Troisi, Luigino; Braghiroli, Daniela; Parenti, Carlo; Zoli, Michele; Cannazza, Giuseppe
2016-04-22
A "heart-cut" two-dimensional achiral-chiral liquid chromatography triple-quadrupole mass spectrometry method (LC-LC-MS/MS) was developed and coupled to in vivo cerebral microdialysis to evaluate the brain response to the chiral compound (±)-7-chloro-5-(3-furanyl)-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide ((±)-1), a potent positive allosteric modulator (PAM) of AMPA receptor. The method was successfully employed to evaluate also its stereoselective metabolism and in vitro biological activity. In particular, the LC achiral method developed, employs a pentafluorinated silica based column (Discovery HS-F5) to separate dopamine, acetylcholine, serotonin, (±)-1 and its two hepatic metabolites. In the "heart-cut" two-dimension achiral-chiral configuration, (±)-1 and (±)-1-d4 eluted from the achiral column (1st dimension), were transferred to a polysaccharide-based chiral column (2nd dimension, Chiralcel OD-RH) by using an automatic six-port valve. Single enantiomers of (±)-1 were separated and detected using electrospray positive ionization mode and quantified in selected reaction monitoring mode. The method was validated and showed good performance in terms of linearity, accuracy and precision. The new method employed showed several possible applications in the evaluation of: (a) brain response to neuroactive compounds by measuring variations in the brain extracellular levels of selected neurotransmitters and other biomarkers; (b) blood brain barrier penetration of drug candidates by measuring the free concentration of the drug in selected brain areas; (c) the presence of drug metabolites in the brain extracellular fluid that could prove very useful during drug discovery; (d) a possible stereoselective metabolization or blood brain barrier stereoselective crossing of chiral drugs. Finally, compared to the methods reported in the literature, this technique avoids the necessity of euthanizing an animal at each time point to measure drug concentration in whole brain tissue and provides continuous monitoring of extracellular concentrations of single chiral drug enantiomers along with its metabolites in specific brain regions at each selected time point for a desired period by using a single animal. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of ex vivo DSP and in vitro MBP Exposures on Fetal Testis Testosterone Production
In utero exposure to di‐butyl phthalate (DBP) during sex differentiation reduces androgen production and produces a characteristic profile of gene expression changes in the fetal testis. The DPB metabolite mono‐butyl phthalate (MBP) is hypothesized to produce these changes by ...
2015-10-01
TERMS Cancer Testis Antigen (CTA), Fanconia- Anemia (FA), DNA Damage, Genomic Instability, DNA Double Strand Break (DSB) 16. SECURITY CLASSIFICATION OF...Cancer Testis Antigen (CTA) o Fanconia- Anemia (FA) o DNA Damage o Genomic Instability o DNA Double Strand Break (DSB) 3. Accomplishments • What
METABOLOMIC EVALUATION OF RAT LIVER AND TESTIS TO CHARACTERIZE THE TOXICITY OF TRIAZOLE FUNGICIDES
The effects of two triazole fungicides, myclobutanil and triadimefon, on endogenous rat metabolite profiles in blood serum, liver, and testis was assessed using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Adult male Sprague-Dawley rats were dosed daily by gavage for...
The spermatogenic cell-specific variant of glyceraldehyde 3-phosphate dehydrogenase (GAPDS) has been cloned from a rat testis cDNA library and its pattern of expression determined. A 1417 nucleotide cDNA has been found to encode an enzyme with substantial homology to mouse GAPDS...