Science.gov

Sample records for brain images obtained

  1. Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging.

    PubMed

    Laudadio, Teresa; Martínez-Bisbal, M Carmen; Celda, Bernardo; Van Huffel, Sabine

    2008-05-01

    A new fast and accurate tissue typing technique has recently been successfully applied to prostate MR spectroscopic imaging (MRSI) data. This technique is based on canonical correlation analysis (CCA), a statistical method able to simultaneously exploit the spectral and spatial information characterizing the MRSI data. Here, the performance of CCA is further investigated by using brain data obtained by two-dimensional turbo spectroscopic imaging (2DTSI) from patients affected by glioblastoma. The purpose of this study is to investigate the applicability of CCA when typing tissues of heterogeneous tumors. The performance of CCA is also compared with that of ordinary correlation analysis on simulated as well as in vivo data. The results show that CCA outperforms ordinary correlation analysis in terms of robustness and accuracy.

  2. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    PubMed Central

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    Objective(s): The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123I solution (20.1 kBq/mL) in the gray matter region and with K2HPO4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. Results: The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. Conclusion: By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity. PMID:27408856

  3. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  4. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  5. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  6. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  7. Imaging the Working Brain.

    ERIC Educational Resources Information Center

    Swithenby, S. J.

    1996-01-01

    Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)

  8. MRI of the brain (image)

    MedlinePlus

    An MRI (magnetic resonance imaging) of the brain creates a detailed image of the complex structures in the brain. An MRI can give a three-dimensional depiction of the brain, making location of problems such ...

  9. Distribution and binding of 18F-labeled and 125I-labeled analogues of ACI-80, a prospective molecular imaging biomarker of disease: a whole hemisphere post mortem autoradiography study in human brains obtained from Alzheimer's disease patients.

    PubMed

    Gulyás, Balázs; Spenger, Christian; Beliczai, Zsuzsa; Gulya, Károly; Kása, Péter; Jahan, Mahabuba; Jia, Zhisheng; Weber, Urs; Pfeifer, Andrea; Muhs, Andreas; Willbold, Dieter; Halldin, Christer

    2012-01-01

    One of the major pathological landmarks of Alzheimer's disease and other neurodegenerative diseases is the presence of amyloid deposits in the brain. The early non-invasive visualization of amyloid is a major objective of recent diagnostic neuroimaging approaches, including positron emission tomography (PET), with an eye on follow-up of disease progression and/or therapy efficacy. The development of molecular imaging biomarkers with binding affinity to amyloid in the brain is therefore in the forefront of imaging biomarker and radiochemistry research. Recently, a dodecamer peptide (amino acid sequence=QSHYRHISPAQV; denominated D1 or ACI-80) was identified as a prospective ligand candidate, binding with high ex vivo affinity to L-Aβ-amyloid (K(d): 0.4 μM). In order to assess the ligand's capacity to visualize amyloid in Alzheimer's disease (AD), two (125)I labeled and three (18)F labeled analogues of the peptide were synthesized and tested in post mortem human autoradiography experiments using whole hemisphere brain slices obtained from deceased AD patients and age matched control subjects. The (18)F-labeled radioligands showed more promising visualization capacity of amyloid that the (125)I-labeled radioligands. In the case of each (18)F radioligands the grey matter uptake in the AD brains was significantly higher than that in control brains. Furthermore, the grey matter: white matter uptake ratio was over ~2, the difference being significant for each (18)F-radioligands. The regional distribution of the uptake of the various radioligands systematically shows a congruent pattern between the high uptake regions and spots in the autoradiographic images and the disease specific signals obtained in adjacent or identical brain slices labeled with histological, immunohistochemical or autoradiographic stains for amyloid deposits or activated astrocytes. The present data, using post mortem human brain autoradiography in whole hemisphere human brains obtained from deceased

  10. SOFIA Observatory Obtains 'First Light' Images

    NASA Video Gallery

    NASA's Stratospheric Observatory for Infrared Astronomy, or SOFIA, successfully obtained its "First Light"" images during an overnight flight May 26. Scientists are now processing the data gathered...

  11. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  12. Brain Imaging: Applications in Psychiatry.

    ERIC Educational Resources Information Center

    Andreasen, Nancy C.

    1988-01-01

    Discusses various brain imaging techniques, including computed tomography, magnetic resonance imaging, measurement of regional cerebral blood flow, single photo emission tomography, and position emission tomography. Describes the uses of these techniques in helping to understand brain functioning. (TW)

  13. Imaging the Alzheimer Brain

    PubMed Central

    Ashford, J. Wesson; Salehi, Ahmad; Furst, Ansgar; Bayley, Peter; Frisoni, Giovanni B.; Jack, Clifford R.; Sabri, Osama; Adamson, Maheen M.; Coburn, Kerry L.; Olichney, John; Schuff, Norbert; Spielman, Daniel; Edland, Steven D.; Black, Sandra; Rosen, Allyson; Kennedy, David; Weiner, Michael; Perry, George

    2013-01-01

    This supplement to the Journal of Alzheimer's Disease contains more than half of the chapters from The Handbook of Imaging the Alzheimer Brain, which was first presented at the International Conference on Alzheimer's Disease in Paris, in July, 2011. While the Handbook contains 27 chapters that are modified articles from 2009, 2010, and 2011 issues of the Journal of Alzheimer's Disease, this supplement contains the 31 new chapters of that book and an introductory article drawn from the introductions to each section of the book. The Handbook was designed to provide a multilevel overview of the full field of brain imaging related to Alzheimer's disease (AD). The Handbook, as well as this supplement, contains both reviews of the basic concepts of imaging, the latest developments in imaging, and various discussions and perspectives of the problems of the field and promising directions. The Handbook was designed to be useful for students and clinicians interested in AD as well as scientists studying the brain and pathology related to AD. PMID:21971448

  14. Functional Brain Imaging

    PubMed Central

    2006-01-01

    Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be

  15. Gd-DTPA T1 relaxivity in brain tissue obtained by convection-enhanced delivery, magnetic resonance imaging and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Haar, Peter J.; Broaddus, William C.; Chen, Zhi-jian; Fatouros, Panos P.; Gillies, George T.; Corwin, Frank D.

    2010-06-01

    A common approach to quantify gadolinium (Gd) contrast agents involves measuring the post-contrast change in T1 rate and then using the constant T1 relaxivity R to determine the contrast agent concentration. Because this method is fast and non-invasive, it could be potentially valuable in many areas of brain research. However, to accurately measure contrast agent concentrations in the brain, the T1 relaxivity R of the specific agent must be accurately known. Furthermore, the macromolecular content and compartmentalization of the brain extracellular space (ECS) are expected to significantly alter R from values measured in aqueous solutions. In this study, the T1 relaxivity R of gadolinium-diethylene-triamine penta-acetic acid (Gd-DTPA) was measured following direct interstitial infusions of three different contrast agent concentrations to the parenchyma of rat brains. Changes in magnetic resonance (MR) T1 values were compared to brain slice concentrations determined with inductively coupled plasma atomic emission spectroscopy (ICP-AES) to determine R in 15 rats. Additionally, samples of cerebrospinal fluid, blood and urine were analyzed to evaluate possible Gd-DTPA clearance from the brain. The T1 relaxivity R of Gd-DTPA in the brain ECS was measured to be 5.35 (mM s)-1 in a 2.4 T field. This value is considerably higher than estimations used in studies by other groups. Measurements of brain Gd-DTPA tissue concentrations using MRI and ICP-AES demonstrated a high degree of coincidence. Clearance of Gd-DTPA was minimal at the time point immediately after infusion. These results suggest that the environment of the brain does in fact significantly affect Gd T1 relaxivity, and that MRI can accurately measure contrast agent concentrations when this relaxivity is well characterized.

  16. Imaging the Gambling Brain.

    PubMed

    Balodis, I M; Potenza, M N

    2016-01-01

    Neuroimaging studies examining the neurobiological basis of gambling disorder (GD) have increased over the past decade. Functional magnetic resonance imaging studies during appetitive cue and reward processing tasks demonstrate altered functioning in frontostriatal brain areas, including the ventral striatum and the ventromedial prefrontal cortex. Findings suggest differences in how the anticipation and outcome of rewards are processed in individuals with GD. Future research requires larger sample sizes and should include appropriate clinical reference groups. Overall, studies to date highlight a common pathophysiology between substance-based addictions and GD, the latter offering a unique condition in which to examine nonchemical factors in addiction. PMID:27503450

  17. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  18. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  19. Brain tumor (image)

    MedlinePlus

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  20. Imaging of Traumatic Brain Injury.

    PubMed

    Bodanapally, Uttam K; Sours, Chandler; Zhuo, Jiachen; Shanmuganathan, Kathirkamanathan

    2015-07-01

    Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome.

  1. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  2. Advances in electromagnetic brain imaging

    NASA Astrophysics Data System (ADS)

    Nagarajan, Srikantan S.

    2010-02-01

    Non-invasive and dynamic imaging of brain activity in the sub-millisecond time-scale is enabled by measurements on or near the scalp surface using an array of sensors that measure magnetic fields (magnetoencephalography (MEG)) or electric potentials (electroencephalography (EEG)). Algorithmic reconstruction of brain activity from MEG and EEG data is referred to as electromagnetic brain imaging (EBI). Reconstructing the actual brain response to external events and distinguishing unrelated brain activity has been a challenge for many existing algorithms in this field. Furthermore, even under conditions where there is very little interference, accurately determining the spatial locations and timing of brain sources from MEG and EEG data is challenging problem because it involves solving for unknown brain activity across thousands of voxels from just a few sensors (~300). In recent years, my research group has developed a suite of novel and powerful algorithms for EBI that we have shown to be considerably superior to existing benchmark algorithms. Specifically, these algorithms can solve for many brain sources, including sources located far from the sensors, in the presence of large interference from unrelated brain sources. Our algorithms efficiently model interference contributions to sensors, accurately estimate sparse brain source activity using fast and robust probabilistic inference techniques. Here, we review some of these algorithms and illustrate their performance in simulations and real MEG/EEG data.

  3. Physical and technical aspects of ultrasonic brain imaging through thick skull bones: 2. Experimental studies

    NASA Astrophysics Data System (ADS)

    Baykov, S. V.; Babin, L. V.; Molotilov, A. M.; Neiman, S. I.; Riman, V. V.; Svet, V. D.; Selyanin, A. I.

    2003-07-01

    Experimental results of the ultrasonic imaging of brain structures through thick skull bones are presented. The model imaging system and the ultrasonic images of blood vessel models and images obtained in vivo for some brain structures are described.

  4. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  5. Imaging the Addicted Human Brain

    PubMed Central

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A.; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address potential clinical and therapeutic applications. PMID:17514067

  6. Obtaining a palatal trace for ultrasound images

    NASA Astrophysics Data System (ADS)

    Epstein, Melissa A.; Stone, Maureen; Pouplier, Marianne; Parthasarathy, Vijay

    2001-05-01

    This paper presents methods for collection and display of the palate with ultrasound, for use as a reference for tongue movements. Ultrasound does not usually capture structures other than the tongue, because the air above the tongue in the vocal tract reflects the ultrasound beam back to the transducer. However, when the tongue touches the palate, the ultrasound beam is transmitted through the soft tissue until it reaches and is reflected by the palatine bone. The tongue touches the palate during swallowing and some speech sounds. The palate contour can be traced from these images. The paper presents a corpus of speech and swallowing tasks that can be used to create a full palatal trace. The corpus is tested on a subject for whom it is easy to collect palatal images and a subject for whom it is difficult to collect palatal images. The availability of a palate will enhance our ability for data quantification from ultrasound images. In combination with tongue contours, the palate contour allows the computation of linguistically important measures, such as the constriction degree, area functions, and L2 norms. [Work supported by NIH RO1-DC01758 and T32-DE07309.

  7. Modeling of functional brain imaging data

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry

    1999-03-01

    The richness and complexity of data sets obtained from functional neuroimaging studies of human cognitive behavior, using techniques such as positron emission tomography and functional magnetic resonance imaging, have until recently not been exploited by computational neural modeling methods. In this article, following a brief introduction to functional neuroimaging methodology, two neural modeling approaches for use with functional brain imaging data are described. One, which uses structural equation modeling, examines the effective functional connections between various brain regions during specific cognitive tasks. The second employs large-scale neural modeling to relate functional neuroimaging signals in multiple, interconnected brain regions to the underlying neurobiological time-varying activities in each region. These two modeling procedures are illustrated using a visual processing paradigm.

  8. Evolution of brain imaging instrumentation.

    PubMed

    Abraham, Tony; Feng, Janine

    2011-05-01

    Computed tomography (CT) and static magnetic resonance imaging (MRI) are now the most common imaging modalities used for anatomic evaluation of pathologic processes affecting the brain. By contrast, radionuclide-based methods, including planar imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET), are the most widely used methods for evaluating brain function. SPECT and PET have been evolving for a longer time than CT and MRI and have made significant contributions to understanding brain function. The pioneering work on cerebral flow early in the last century laid the foundation of measurement with radioactive gases. This was initially performed with scintillation counters, which gave way to single, then multiple scintillation and multiprobe detectors. The invention of rectilinear scanners, MARK series, Anger cameras, and SPECT imaging further advanced nuclear medicine's role in brain imaging. Measurement of regional cerebral blood flow by SPECT provides pathophysiologic information that directs patient management in a variety of central nervous disorders (CNS), with the greatest clinical impact found in cerebrovascular disease and seizure disorder. In the former, SPECT not only provides means of early detection and localization of acute strokes but can also direct thrombolysis and determine prognosis in the postcerebrovascular accident period. With respect to the latter, ictal SPECT can localize seizure foci so that patients with refractory disease can potentially undergo surgical resection of the affected area. In contrast to brain SPECT, brain PET images reflect regional cerebral metabolism. Because of neurovascular coupling, findings on SPECT and PET images are often comparable. PET, however, still has improved spatial resolution and is therefore more sensitive than SPECT, particularly in the evaluation of dementias. Brain PET instrumentation has greatly evolved from its infancy, when it was used in regional

  9. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  10. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  11. Imaging the Addicted Brain: Alcohol.

    PubMed

    Dupuy, M; Chanraud, S

    2016-01-01

    Alcohol use disorder (AUD) represents a major public health issue due to its prevalence and severe health consequences. It may affect several aspects of an individual's life including work and relationships, and it also increases risk for additional problems such as brain injury. The causes and outcomes of AUD are varied; thus, attempting to understand this complex phenomenon requires investigation from multiple perspectives. Magnetic resonance imaging (MRI) is a powerful means to investigate brain anatomical and functional alterations related to AUD. Recent advances in MRI methods allow better investigation of the alterations to structural and functional brain networks in AUD. Here, we focus on findings from studies using multiple MRI techniques, which converge to support the considerable vulnerability of frontal systems. Indeed, MRI studies provide evidence for a "disconnection syndrome" which could be involved in the poor behavioral control observed in AUD. PMID:27503446

  12. Imaging visual function of the human brain

    SciTech Connect

    Marg, E.

    1988-10-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references.

  13. Dynamic imaging of brain function

    PubMed Central

    Hyder, Fahmeed

    2013-01-01

    In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neuronal activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used as a model to reveal activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with specified spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Because the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques. PMID:18839085

  14. Optical Coherence Tomography for Brain Imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  15. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  16. Rodent brain imaging with SPECT/CT.

    PubMed

    Seo, Youngho; Gao, Dong-Wei; Hasegawa, Bruce H; Dae, Michael W; Franc, Benjamin L

    2007-04-01

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of 99mTc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with 99mTc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of 99mTc-exametazime. Time activity curve of 99mTc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  17. Ultrasound, normal fetus- ventricles of brain (image)

    MedlinePlus

    ... of brain ventricles. Ventricles are spaces in the brain that are filled with fluid. In this early ultrasound, the ventricles can be seen as light lines extending through the skull, seen in the upper right side of the image.

  18. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  19. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  20. Magnetic resonance imaging of the canine brain at 7 T.

    PubMed

    Kang, Byeong-Teck; Ko, Ki-Jin; Jang, Dong-Pyo; Han, Jae-Yong; Lim, Chae-Young; Park, Chul; Yoo, Jong-Hyun; Kim, Ju-Won; Jung, Dong-In; Kim, Young-Bo; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung

    2009-01-01

    The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.

  1. Brain 'imaging' in the Renaissance.

    PubMed

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  2. Linking brain imaging signals to visual perception.

    PubMed

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  3. Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E.

    1994-06-01

    In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

  4. Evaluating Similarity Measures for Brain Image Registration

    PubMed Central

    Razlighi, Q. R.; Kehtarnavaz, N.; Yousefi, S.

    2013-01-01

    Evaluation of similarity measures for image registration is a challenging problem due to its complex interaction with the underlying optimization, regularization, image type and modality. We propose a single performance metric, named robustness, as part of a new evaluation method which quantifies the effectiveness of similarity measures for brain image registration while eliminating the effects of the other parts of the registration process. We show empirically that similarity measures with higher robustness are more effective in registering degraded images and are also more successful in performing intermodal image registration. Further, we introduce a new similarity measure, called normalized spatial mutual information, for 3D brain image registration whose robustness is shown to be much higher than the existing ones. Consequently, it tolerates greater image degradation and provides more consistent outcomes for intermodal brain image registration. PMID:24039378

  5. FASTSPECT: A four-dimensional brain imager

    SciTech Connect

    Patton, D.D.; Barrett, H.H.; Chen, J.C. |

    1994-05-01

    The exact location of a lesion in the brain is most critical. High-resolution quantitative 4-dimensional brain imaging would offer improvement in detecting and characterizing brain lesions over state-of-the-art SPECT systems. We report the first clinical brain images on FASTSPECT (Four-dimensional Arizona Stationary SPECT), a fixed imaging system based on 24 modular 10 cm x 10 cm gamma cameras in 2 rings (13+11) about the bead. Each module views the entire brain continuously from a different perspective through one or more pinhole apertures. The system gathers true 3-dimensional whole-brain data it 1-2 frame/sec, fully adequate for vascular dynamics, and is therefore a 4-dimensional imaging system (dynamic SPECT). To calibrate the system a (3.3 mm){sup 3} point source of Tc-99m is stepped through each voxel in the object space. We measure the response of each detector element on each modular camera to the source at each position. The resulting system matrix (dimensions approximately 100,000 x 160,000) is compressed, stored and used in the iterative reconstruction algorithm. Three volunteers, blindfolded for 20 min to suppress visual cortical uptake, were imaged after bolus IV injection of 30 mCi (1.11 GBq) Tc-99m HMPAO. Dynamic images at 2 sec/frame clearly showed common and internal carotid arteries, and anterior and middle cerebral artery groups. Static images (11 million counts in 20 min imaging time) clearly showed the cerebral cortex and white matter, cerebellar cortex and white matter, thalami, caudate, lentiform nuclei, cingulate gyrus, brain stem, and brachium pontis. Distinguishable only with difficulty were putamen from globus pallidus, ventral from dorsal thalamus, and cerebrospinal fluid from white matter. Comparison with concurrent conventional single-headed SPECT images in the same subjects showed significantly better anatomic definition in the FASTSPECT images. Conventional SPECT is incapable of full-brain dynamic imaging.

  6. Brain imaging in type 2 diabetes.

    PubMed

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  7. Imaging Brain Development: Benefiting from Individual Variability

    PubMed Central

    Sharda, Megha; Foster, Nicholas E.V.; Hyde, Krista L.

    2015-01-01

    Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development. PMID:26648753

  8. Novel optical system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  9. Brain-thyroid link (image)

    MedlinePlus

    Although the thyroid gland releases the hormones which govern growth and metabolism, the brain (the pituitary and the hypothalamus) manages the release and the balance of the amount of hormones circulated.

  10. NIH Conference. Brain imaging: aging and dementia

    SciTech Connect

    Cutler, N.R.; Duara, R.; Creasey, H.; Grady, C.L.; Haxby, J.V.; Schapiro, M.B.; Rapoport, S.I.

    1984-09-01

    The brain imaging techniques of positron emission tomography using (18F)-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings.

  11. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  12. Image guided constitutive modeling of the silicone brain phantom

    NASA Astrophysics Data System (ADS)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  13. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  14. See the brain at work: intraoperative laser Doppler functional brain imaging

    NASA Astrophysics Data System (ADS)

    Martin-Williams, E. J.; Raabe, A.; Van De Ville, D.; Leutenegger, M.; Szelényi, A.; Hattingen, E.; Gerlach, R.; Seifert, V.; Hauger, C.; Lopez, A.; Leitgeb, R.; Unser, M.; Lasser, T.

    2009-07-01

    During open brain surgery we acquire perfusion images non-invasively using laser Doppler imaging. The regions of brain activity show a distinct signal in response to stimulation providing intraoperative functional brain maps of remarkably strong contrast.

  15. Potential for photoacoustic imaging of the neonatal brain

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Kosik, Ivan; Chamson-Reig, Astrid; St. Lawrence, Keith; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) has been proposed as a non-invasive technique for imaging neonatal brain injury. Since PAI combines many of the merits of both optical and ultrasound imaging, images with high contrast, high resolution, and a greater penetration depth can be obtained when compared to more traditional optical methods. However, due to the strong attenuation and reflection of photoacoustic pressure waves at the skull bone, PAI of the brain is much more challenging than traditional methods (e.g. near infrared spectroscopy) for optical interrogation of the neonatal brain. To evaluate the potential limits the skull places on 3D PAI of the neonatal brain, we constructed a neonatal skull phantom (1.4-mm thick) with a mixture of epoxy and titanium dioxide powder that provided acoustic insertion loss (1-5MHz) similar to human infant skull bone. The phantom was molded into a realistic infant skull shape by means of a CNCmachined mold that was based upon a 3D CAD model. To evaluate the effect of the skull bone on PAI, a photoacoustic point source was raster scanned within the phantom brain cavity to capture the imaging operator of the 3D PAI system (128 ultrasound transducers in a hemispherical arrangement) with and without the intervening skull phantom. The resultant imaging operators were compared to determine the effect of the skull layer on the PA signals in terms of amplitude loss and time delay.

  16. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  17. Multiparametric MR Imaging of Brain Disorders

    PubMed Central

    Wu, Ona; Dijkhuizen, Rick M; Sorensen, Alma Gregory

    2012-01-01

    Magnetic resonance imaging (MRI) has been shown to improve the diagnosis and management of patients with brain disorders. Multiparametric MRI offers the possibility of noninvasively assessing multiple facets of pathophysiological processes that exist simultaneously, thereby further assisting in patient treatment management. Voxel-based analysis approaches, such as tissue theme mapping, have the benefit over volumetric approaches in being able to identify spatially heterogeneous co-localized changes on multiple parametric MR images that are not readily discernible. Tissue theme maps appear to be a promising tool for integrating the plethora of novel imaging contrasts that are being developed for the non-invasive investigation of the different stages of disease progression into easily interpretable maps of brain injury. We describe here various implementations for combining multiparametric imaging and their merits in the evaluation of brain diseases. PMID:21613877

  18. Potential brain imaging using near field radiomety

    NASA Astrophysics Data System (ADS)

    Oikonomou, A.; Karanasiou, I. S.; Uzunoglu, N. K.

    2009-05-01

    During the past decades there has been a tremendous increase throughout the scientific community for developing methods of understanding human brain functionality, as diagnosis and treatment of diseases and malfunctions could be effectively developed through understanding of how the brain works. In parallel, research effort is driven on minimizing drawbacks of existing imaging techniques including potential risks from radiation and invasive attributes of the imaging methodologies. Towards that direction, we are proposing a near filed radiometry imaging system for intracranial applications. The methodology is based on the fact that human tissues emit chaotic thermal type radiation at temperatures above the absolute zero. Using a phase shifted antenna array system, resolution, detection depth and sensitivity are increased. Several different setups are theoretically investigated and compared, so as to make the proposed system useful for clinical applications. Combining previous research as well as new findings, the possibility of using the proposed system as a complementary method for brain imaging is discussed in the present paper.

  19. Obtaining anisotropic velocity data for proper depth seismic imaging

    SciTech Connect

    Egerev, Sergey; Yushin, Victor; Ovchinnikov, Oleg; Dubinsky, Vladimir; Patterson, Doug

    2012-05-24

    The paper deals with the problem of obtaining anisotropic velocity data due to continuous acoustic impedance-based measurements while scanning in the axial direction along the walls of the borehole. Diagrams of full conductivity of the piezoceramic transducer were used to derive anisotropy parameters of the rock sample. The measurements are aimed to support accurate depth imaging of seismic data. Understanding these common anisotropy effects is important when interpreting data where it is present.

  20. Imaging Evaluation of Acute Traumatic Brain Injury.

    PubMed

    Mutch, Christopher A; Talbott, Jason F; Gean, Alisa

    2016-10-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it also helps predict patient outcomes. TBI consists of multiple pathoanatomic entities. This article reviews the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each of these pathoanatomic entities. Also briefly surveyed are advanced imaging techniques, which include several promising areas of TBI research. PMID:27637393

  1. Proton MRS imaging in pediatric brain tumors.

    PubMed

    Zarifi, Maria; Tzika, A Aria

    2016-06-01

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. PMID:27233788

  2. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  3. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  4. Generating Text from Functional Brain Images

    PubMed Central

    Pereira, Francisco; Detre, Greg; Botvinick, Matthew

    2011-01-01

    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

  5. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    PubMed

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  6. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    PubMed

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  7. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  8. Advances in imaging explosive blast mild traumatic brain injury.

    PubMed

    Hetherington, H; Bandak, A; Ling, G; Bandak, F A

    2015-01-01

    In the past, direct physical evidence of mild traumatic brain injury (mTBI) from explosive blast has been difficult to obtain through conventional imaging modalities such as T1- and T2-weighted magnetic resonance imaging (MRI) and computed tomography (CT). Here, we review current progress in detecting evidence of brain injury from explosive blast using advanced imaging, including diffusion tensor imaging (DTI), functional MRI (fMRI), and the metabolic imaging methods such as positron emission tomography (PET) and magnetic resonance spectroscopic imaging (MRSI), where each targets different aspects of the pathology involved in mTBI. DTI provides a highly sensitive measure to detect primary changes in the microstructure of white matter tracts. fMRI enables the measurement of changes in brain activity in response to different stimuli or tasks. Remarkably, all three of these paradigms have found significant success in conventional mTBI where conventional clinical imaging frequently fails to provide definitive differences. Additionally, although used less frequently for conventional mTBI, PET has the potential to characterize a variety of neurotransmitter systems using target agents and will undoubtedly play a larger role, once the basic mechanisms of injury are better understood and techniques to identify the injury are more common. Finally, our MRSI imaging studies, although acquired at much lower spatial resolution, have demonstrated selectivity to different metabolic and physiologic processes, uncovering some of the most profound differences on an individual by individual basis, suggesting the potential for utility in the management of individual patients.

  9. Content based retrieval of lesioned brain images

    NASA Astrophysics Data System (ADS)

    Batty, Stephen; Blandford, Ann; Clark, John; Fryer, Tim; Gao, Xiaohong

    2002-05-01

    HI-PACS enable more efficient data-management leading to increased operating efficiency and therefore better patient care, a content based pet image retrieval system would contribute to the development of a HI-PACS. A database of PET neuro-images has been created with a facility for retrieving via visual content. The adaptation of algorithms developed for alternate imaging modalities (eg-MRI) formed the basis of feature detection and measurement algorithms. The application of these algorithms to greyscale PET images results in data that is employed as database indices and similarity metrics. The feature detection and measurement algorithms can be split into two different methods. The first uses the extracted ideal mid sagittal symmetry line to detect differences between the two hemisphere of the brain, while the second utilizes Gabor filters to measure the texture of the whole brain.

  10. An integral design strategy combining optical system and image processing to obtain high resolution images

    NASA Astrophysics Data System (ADS)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  11. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  12. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  13. Brain mapping: new wave optical imaging.

    PubMed

    Mrsic-Flogel, Thomas; Hübener, Mark; Bonhoeffer, Tobias

    2003-09-30

    Optical imaging of intrinsic signals is widely used for high-resolution brain mapping in various animal species. A new approach using continuous data acquisition and Fourier decomposition of the signal allows for much faster mapping, opening up the possibility of applying this method to new experimental questions. PMID:14521859

  14. Biophotonics: Through-skull brain imaging

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.

    2014-09-01

    The use of carbon nanotubes makes it possible to perform fluorescent imaging of cerebral vasculature of mice through their intact skulls. The high spatial and temporal resolution of the non-invasive technique may prove useful for studies of stroke and other brain disorders.

  15. Brain Imaging Studies of Developmental Stuttering.

    ERIC Educational Resources Information Center

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  16. Reliability of fish size estimates obtained from multibeam imaging sonar

    USGS Publications Warehouse

    Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.

    2013-01-01

    Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄  =  −8.34, SE  =  2.39) and white perch (x̄  = 14.48, SE  =  3.99) but not striped bass (x̄  =  3.71, SE  =  2.58) or channel catfish (x̄  = 3.97, SE  =  5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of

  17. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  18. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox

    PubMed Central

    Lacerda, Luis Miguel; Ferreira, Hugo Alexandre

    2015-01-01

    Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19–73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results. It was observed both a high inter-hemispheric symmetry

  19. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox.

    PubMed

    Ribeiro, Andre Santos; Lacerda, Luis Miguel; Ferreira, Hugo Alexandre

    2015-01-01

    Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19-73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results. It was observed both a high inter-hemispheric symmetry and

  20. Study of freshly excised brain tissues using terahertz imaging

    PubMed Central

    Oh, Seung Jae; Kim, Sang-Hoon; Ji, Young Bin; Jeong, Kiyoung; Park, Yeonji; Yang, Jaemoon; Park, Dong Woo; Noh, Sam Kyu; Kang, Seok-Gu; Huh, Yong-Min; Son, Joo-Hiuk; Suh, Jin-Suck

    2014-01-01

    We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz binary images of brain tissues with tumors indicated that the tumor boundaries in the THz images corresponded well to those in visible images. Grey and white-matter regions were distinguishable owing to the different distribution of myelin in the brain tissue. THz images corresponded closely with magnetic resonance imaging (MRI) results. The MRI and hematoxylin and eosin-stained microscopic images were investigated to account for the intensity differences in the THz images for fresh and paraffin-embedded brain tissue. Our results indicated that the THz signals corresponded to the cell density when water was removed. Thus, THz imaging could be used as a tool for label-free and real-time imaging of brain tumors, which would be helpful for physicians to determine tumor margins during brain surgery. PMID:25136506

  1. Neptune's Wind Speeds Obtained by Tracking Clouds in Voyager Images.

    PubMed

    Hammel, H B; Beebe, R F; De Jong, E M; Hansen, C J; Howell, C D; Ingersoll, A P; Johnson, T V; Limaye, S S; Magalhaes, J A; Pollack, J B; Sromovsky, L A; Suomi, V E; Swift, C E

    1989-09-22

    Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.

  2. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  3. Structural and functional brain imaging in schizophrenia.

    PubMed Central

    Cleghorn, J M; Zipursky, R B; List, S J

    1991-01-01

    We present an evaluation of the contribution of structural and functional brain imaging to our understanding of schizophrenia. Methodological influences on the validity of the data generated by these new technologies include problems with measurement and clinical and anatomic heterogeneity. These considerations greatly affect the interpretation of the data generated by these technologies. Work in these fields to date, however, has produced strong evidence which suggests that schizophrenia is a disease which involves abnormalities in the structure and function of many brain areas. Structural brain imaging studies of schizophrenia using computed tomography (CT) and magnetic resonance imaging (MRI) are reviewed and their contribution to current theories of the pathogenesis of schizophrenia are discussed. Positron emission tomography (PET) studies of brain metabolic activity and dopamine receptor binding in schizophrenia are summarized and the critical questions raised by these studies are outlined. Future studies in these fields have the potential to yield critical insights into the pathophysiology of schizophrenia; new directions for studies of schizophrenia using these technologies are identified. PMID:1911736

  4. Analysis of images obtained by the Phobos 2 spacecraft

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The reflection spectrum and density of the Martian satellite, Phobos, suggests that it may be a captured C-type asteroid and hence may contain relatively unaltered organic material from the early history of the solar system. Since there is evidence from isotopic anomalies that meteorites presumably derived from such asteroids contain preserved interstellar material, it is conceivable that evidence for interstellar matter might also be present on Phobos. The present research concerns interpretation of the chemical composition of Phobos' surface and analysis of images of Phobos taken by the FREGAT camera equipment aboard the Phobos 2 Spacecraft, including both disk-integrated and disk-resolved photometry. Because the surface of Phobos is a regolith, spectral information on the surface composition will be convolved with information on the surface texture. A primary goal was to untangle these effects. Unfortunately, the Phobos 1 Spacecraft lost contact with Earth during its transit to Mars, and Phobos 2 likewise lost contact after two months in orbit around Mars. Thus, the hovering phase of very close approach and the landing of instruments on the surface of Phobos did not take place, so no data on the elemental composition of the surface is available. However, 37 images were obtained of the satellite. The results include the first such observations at near infrared wavelengths, for which disk-integrated results show that the corresponding geometric albedo is quite small and very similar to the value in the blue. The resolved surface photometry was analyzed by developing new methods of radiative transfer in rough surface layers and a procedure referred to as statistical photoclinometry. The results provide root mean square surface slopes on scales from the order of 1 millimeter to 250 meters, albedo fluctuations, and corresponding correlation lengths.

  5. Introduction to machine learning for brain imaging.

    PubMed

    Lemm, Steven; Blankertz, Benjamin; Dickhaus, Thorsten; Müller, Klaus-Robert

    2011-05-15

    Machine learning and pattern recognition algorithms have in the past years developed to become a working horse in brain imaging and the computational neurosciences, as they are instrumental for mining vast amounts of neural data of ever increasing measurement precision and detecting minuscule signals from an overwhelming noise floor. They provide the means to decode and characterize task relevant brain states and to distinguish them from non-informative brain signals. While undoubtedly this machinery has helped to gain novel biological insights, it also holds the danger of potential unintentional abuse. Ideally machine learning techniques should be usable for any non-expert, however, unfortunately they are typically not. Overfitting and other pitfalls may occur and lead to spurious and nonsensical interpretation. The goal of this review is therefore to provide an accessible and clear introduction to the strengths and also the inherent dangers of machine learning usage in the neurosciences. PMID:21172442

  6. Thermoacoustic tomography arising in brain imaging

    NASA Astrophysics Data System (ADS)

    Stefanov, Plamen; Uhlmann, Gunther

    2011-04-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  7. Photoacoustic brain imaging: from microscopic to macroscopic scales

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Abstract. Human brain mapping has become one of the most exciting contemporary research areas, with major breakthroughs expected in the coming decades. Modern brain imaging techniques have allowed neuroscientists to gather a wealth of anatomic and functional information about the brain. Among these techniques, by virtue of its rich optical absorption contrast, high spatial and temporal resolutions, and deep penetration, photoacoustic tomography (PAT) has attracted more and more attention, and is playing an increasingly important role in brain studies. In particular, PAT complements other brain imaging modalities by providing high-resolution functional and metabolic imaging. More importantly, PAT’s unique scalability enables scrutinizing the brain at both microscopic and macroscopic scales, using the same imaging contrast. In this review, we present the state-of-the-art PAT techniques for brain imaging, summarize representative neuroscience applications, outline the technical challenges in translating PAT to human brain imaging, and envision potential technological deliverables. PMID:25401121

  8. Decoding post-stroke motor function from structural brain imaging.

    PubMed

    Rondina, Jane M; Filippone, Maurizio; Girolami, Mark; Ward, Nick S

    2016-01-01

    Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes from early post

  9. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    PubMed Central

    Jiang, Quan

    2016-01-01

    Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic. PMID:26981068

  10. Imaging systems and methods for obtaining and using biometric information

    DOEpatents

    McMakin, Douglas L [Richland, WA; Kennedy, Mike O [Richland, WA

    2010-11-30

    Disclosed herein are exemplary embodiments of imaging systems and methods of using such systems. In one exemplary embodiment, one or more direct images of the body of a clothed subject are received, and a motion signature is determined from the one or more images. In this embodiment, the one or more images show movement of the body of the subject over time, and the motion signature is associated with the movement of the subject's body. In certain implementations, the subject can be identified based at least in part on the motion signature. Imaging systems for performing any of the disclosed methods are also disclosed herein. Furthermore, the disclosed imaging, rendering, and analysis methods can be implemented, at least in part, as one or more computer-readable media comprising computer-executable instructions for causing a computer to perform the respective methods.

  11. Multimodality Brain Tumor Imaging: MR Imaging, PET, and PET/MR Imaging.

    PubMed

    Fink, James R; Muzi, Mark; Peck, Melinda; Krohn, Kenneth A

    2015-10-01

    Standard MR imaging and CT are routinely used for anatomic diagnosis in brain tumors. Pretherapy planning and posttreatment response assessments rely heavily on gadolinium-enhanced MR imaging. Advanced MR imaging techniques and PET imaging offer physiologic, metabolic, or functional information about tumor biology that goes beyond the diagnostic yield of standard anatomic imaging. With the advent of combined PET/MR imaging scanners, we are entering an era wherein the relationships among different elements of tumor metabolism can be simultaneously explored through multimodality MR imaging and PET imaging. The purpose of this review is to provide a practical and clinically relevant overview of current anatomic and physiologic imaging of brain tumors as a foundation for further investigations, with a primary focus on MR imaging and PET techniques that have demonstrated utility in the current care of brain tumor patients.

  12. Analysis of dynamic brain imaging data.

    PubMed Central

    Mitra, P P; Pesaran, B

    1999-01-01

    Modern imaging techniques for probing brain function, including functional magnetic resonance imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques for analysis and visualization of such imaging data to separate the signal from the noise and characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging, and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: "noise" characterization and suppression, and "signal" characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for nonstationarity in the data. Of particular note are 1) the development of a decomposition technique (space-frequency singular value decomposition) that is shown to be a useful means of characterizing the image data, and 2) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources. PMID:9929474

  13. Brain tumor resection guided by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Leblond, Frederic; Fontaine, Kathryn M.; Valdes, Pablo; Ji, Songbai; Pogue, Brian W.; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2009-02-01

    We present the methods that are being used in the scope of an on-going clinical trial designed to assess the usefulness of ALA-PpIX fluorescence imaging when used in conjunction with pre-operative MRI. The overall objective is to develop imaging-based neuronavigation approaches to aid in maximizing the completeness of brain tumor resection, thereby improving patient survival rate. In this paper we present the imaging methods that are used, emphasizing technical aspects relating to the fluorescence optical microscope, including initial validation approaches based on phantom and small-animal experiments. The surgical workflow is then described in detail based on a high-grade glioma resection we performed.

  14. Robust Intensity Standardization in Brain Magnetic Resonance Images.

    PubMed

    De Nunzio, Giorgio; Cataldo, Rosella; Carlà, Alessandra

    2015-12-01

    The paper is focused on a tiSsue-Based Standardization Technique (SBST) of magnetic resonance (MR) brain images. Magnetic Resonance Imaging intensities have no fixed tissue-specific numeric meaning, even within the same MRI protocol, for the same body region, or even for images of the same patient obtained on the same scanner in different moments. This affects postprocessing tasks such as automatic segmentation or unsupervised/supervised classification methods, which strictly depend on the observed image intensities, compromising the accuracy and efficiency of many image analyses algorithms. A large number of MR images from public databases, belonging to healthy people and to patients with different degrees of neurodegenerative pathology, were employed together with synthetic MRIs. Combining both histogram and tissue-specific intensity information, a correspondence is obtained for each tissue across images. The novelty consists of computing three standardizing transformations for the three main brain tissues, for each tissue class separately. In order to create a continuous intensity mapping, spline smoothing of the overall slightly discontinuous piecewise-linear intensity transformation is performed. The robustness of the technique is assessed in a post hoc manner, by verifying that automatic segmentation of images before and after standardization gives a high overlapping (Dice index >0.9) for each tissue class, even across images coming from different sources. Furthermore, SBST efficacy is tested by evaluating if and how much it increases intertissue discrimination and by assessing gaussianity of tissue gray-level distributions before and after standardization. Some quantitative comparisons to already existing different approaches available in the literature are performed.

  15. Portal dosimetry for VMAT using integrated images obtained during treatment

    SciTech Connect

    Bedford, James L. Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantom thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and

  16. Spatial normalization of brain images and beyond.

    PubMed

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images.

  17. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  18. [Head and brain injuries. Place of imaging].

    PubMed

    Braun, M; Cordoliani, Y S; Dosch, J C

    2000-04-01

    This article considers the various mechanisms of brain injury and specifies the most efficient radiologic technique for assessing patients, depending on clinical presentation. The brain injuries include either extracerebral and intracerebral lesions. The former require rapid diagnosis and therapy and the latter determine management in an intensive therapy, unit and outcome. Standard X-rays are obsolete. The CT, rapidly performed, is the most relevant imaging procedure for surgical lesions. Cortical contusions and diffuse axonal injuries are underestimated by CT and best depicted by MRI. Only late MRI has a strong correlation with neuropsychological outcome. In terms of prognosis, MRI needs to be evaluated. The indications include: a) unstable neurological status: CT; b) moderate head injury: CT may help to decide hospital admission; c) severe head injury: initial CT may be followed by MRI; d) long-term consequences: MRI. Special Indications: a) angio-MRI: suspicion of vascular lesion; b) CT with thin slices and bone window: depressed skull fracture; c) teleradiology (image transfer): to decide a patient transport from a peripheral hospital to a neurosurgical centre. In conclusion, CT remains the first-line examination to detect immediately life-threatening lesions. MRI is the examination of choice for full assessment of brain lesions.

  19. Spatial normalization of brain images and beyond.

    PubMed

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images. PMID:27344104

  20. Electroencephalographic imaging of higher brain function.

    PubMed Central

    Gevins, A; Smith, M E; McEvoy, L K; Leong, H; Le, J

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities. PMID:10466140

  1. Imaging Brain Mechanisms in Chronic Visceral Pain

    PubMed Central

    Mayer, Emeran A.; Gupta, Arpana; Kilpatrick, Lisa A.; Hong, Jui-Yang

    2015-01-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia and bladder pain syndrome/interstitial cystitis has identified abnormalities in evoked brain responses, resting state activity and connectivity, as well as in grey and white matter properties. Structural and functional alterations in brain regions of the salience, emotional arousal, and sensorimotor networks, as well as in prefrontal regions, are the most consistently reported findings. Some of these changes show moderate correlations with behavioral and clinical measures. Most recently, data driven machine-learning approaches to larger data sets have been able to classify visceral pain syndromes from healthy control subjects. Future studies need to identify the mechanisms underlying the altered brain signatures of chronic visceral pain and identify targets for therapeutic interventions. PMID:25789437

  2. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  3. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  4. Diffuse Optical Tomography for Brain Imaging: Theory

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  5. Noise characteristics of neutron images obtained by cooled CCD device

    NASA Astrophysics Data System (ADS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-06-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  6. Shade images of forested areas obtained from Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The objective of this report is to generate a shade (shadow) image of forested areas from Landsat MSS data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure; i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The constrained least-squares method is used to generate shade images for forest of eucalyptus and vegetation of 'cerrado' over the Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on tree crown cover for vegetation of cerrado.

  7. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders.

    PubMed

    Burhan, Amer M; Marlatt, Nicole M; Palaniyappan, Lena; Anazodo, Udunna C; Prato, Frank S

    2015-01-01

    This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder. PMID:26854172

  8. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders

    PubMed Central

    Burhan, Amer M.; Marlatt, Nicole M.; Palaniyappan, Lena; Anazodo, Udunna C.; Prato, Frank S.

    2015-01-01

    This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder. PMID:26854172

  9. An Objective Focussing Measure for Acoustically Obtained Images

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof; Moszyński, Marek; Rojewski, Mirosław

    In scientific literature many parameters of an image sharpness can be defined, that can be used for the evaluation of display energy concentration (EC). This paper proposes a new, simple approach to EC quantitative evaluation in spectrograms, which are used for the analysis and visualization of sonar signals. The presented approach of the global-image EC measure was developed to the evaluation of EC in arbitrary direction (or at an arbitrary angle) and along an arbitrary path that is contained within the displayed area. The proposed measures were used to establish optimum spectrograph parameters, subject to high EC in images, in particular the type and width of the window. Moreover, the paper defines the marginal EC distributions that can be used in sonar signal detection as a support to the main detector.

  10. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    PubMed

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role. PMID:27344937

  11. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    PubMed

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role.

  12. Shade images of forested areas obtained from LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1989-01-01

    The pixel size in the present day Remote Sensing systems is large enough to include different types of land cover. Depending upon the target area, several components may be present within the pixel. In forested areas, generally, three main components are present: tree canopy, soil (understory), and shadow. The objective is to generate a shade (shadow) image of forested areas from multispectral measurements of LANDSAT MSS (Multispectral Scanner) data by implementing a linear mixing model, where shadow is considered as one of the primary components in a pixel. The shade images are related to the observed variation in forest structure, i.e., the proportion of inferred shadow in a pixel is related to different forest ages, forest types, and tree crown cover. The Constrained Least Squares (CLS) method is used to generate shade images for forest of eucalyptus and vegetation of cerrado using LANDSAT MSS imagery over Itapeva study area in Brazil. The resulted shade images may explain the difference on ages for forest of eucalyptus and the difference on three crown cover for vegetation of cerrado.

  13. Neurolight -astonishing advances in brain imaging.

    PubMed

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining. PMID:24730999

  14. Neurolight -astonishing advances in brain imaging.

    PubMed

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  15. Animal imaging studies of potential brain damage

    NASA Astrophysics Data System (ADS)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  16. Quantitative magnetization transfer imaging of human brain at 7 T☆

    PubMed Central

    Dortch, Richard D.; Moore, Jay; Li, Ke; Jankiewicz, Marcin; Gochberg, Daniel F.; Hirtle, Jane A.; Gore, John C.; Smith, Seth A.

    2013-01-01

    Quantitative magnetization transfer (qMT) imaging yields indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular to free pool size ratio (PSR), which has been shown to be correlated with myelin content in white matter. Because of the long scan times required for whole-brain imaging (≈20–30 min), qMT studies of the human brain have not found widespread application. Herein, we investigated whether the increased signal-to-noise ratio available at 7.0 T could be used to reduce qMT scan times. More specifically, we developed a selective inversion recovery (SIR) qMT imaging protocol with a i) novel transmit radiofrequency (B1+) and static field (B0) insensitive inversion pulse, ii) turbo field-echo readout, and iii) reduced TR. In vivo qMT data were obtained in the brains of healthy volunteers at 7.0 T using the resulting protocol (scan time≈40 s/slice, resolution=2×2×3 mm3). Reliability was also assessed in repeated acquisitions. The results of this study demonstrate that SIR qMT imaging can be reliably performed within the radiofrequency power restrictions present at 7.0 T, even in the presence of large B1+ and B0 inhomogeneities. Consistent with qMT studies at lower field strengths, the observed PSR values were higher in white matter (mean±SD=17.6±1.3%) relative to gray matter (10.3±1.6%) at 7.0 T. In addition, regional variations in PSR were observed in white matter. Together, these results suggest that qMT measurements are feasible at 7.0 T and may eventually allow for the high-resolution assessment of changes in composition throughout the normal and diseased human brain in vivo. PMID:22940589

  17. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  18. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  19. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    energy, for a maximal dose deposit in the tumor, while sparing healthy tissues. The methodology, the associated dosimetry as well as the preclinical validation of iodine enhanced strereotactic synchrotron radiation therapy is developed in the thesis. Significant survival increases were obtained, especially when the delivery of iodine is coupled with a transient blood-brain-barrier opener. The two complementary methods developed in this thesis offer perspectives in the understanding of the glioma growth process and in their treatment by radiation therapy. They show the potential of synchrotron radiation for absolute high-resolution morphological and functional CT imaging, and for new therapeutic modalities using intense monochromatic x rays.

  20. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    PubMed Central

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-01-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue. PMID:27456312

  1. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  2. Automatic recognition of corpus callosum from sagittal brain MR images

    NASA Astrophysics Data System (ADS)

    Lee, Chulhee; Unser, Michael A.; Ketter, Terence A.

    1995-08-01

    We propose a new method to find the corpus callosum from sagittal brain MR images automatically. First, we calculate the statistical characteristics of the corpus callosum and obtain shape information. The recognition algorithm consists of two stages: extracting regions satisfying the statistical characteristics (gray level distribtuions) of the corpus callosum, and finding a region matching the shape information. An innovative feature of the algorithm is that we adaptively relax the statistical requirement until we find a region matching the shape information. In order to match the shape information, we propose a new directed window region growing algorithm instead of using conventional contour matching. Experiments show promising results.

  3. Pitfalls and Limitations of PET/CT in Brain Imaging.

    PubMed

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  4. Neuromorphometry of primary brain tumors by magnetic resonance imaging.

    PubMed

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I; Lamothe-Molina, Paul J; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A

    2015-04-01

    Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  5. Neuromorphometry of primary brain tumors by magnetic resonance imaging

    PubMed Central

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I.; Lamothe-Molina, Paul J.; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A.

    2015-01-01

    Abstract. Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973±14, whereas oligodendrogliomas exhibit a mean of 942±21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919±43, and the necrotic region presented a mean of 869±66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  6. Neuromorphometry of primary brain tumors by magnetic resonance imaging.

    PubMed

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I; Lamothe-Molina, Paul J; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A

    2015-04-01

    Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor.

  7. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    PubMed

    Paletzki, Ronald; Gerfen, Charles R

    2015-10-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ).

  8. Fetal Functional Brain Age Assessed from Universal Developmental Indices Obtained from Neuro-Vegetative Activity Patterns

    PubMed Central

    Hoyer, Dirk; Tetschke, Florian; Jaekel, Susan; Nowack, Samuel; Witte, Otto W.; Schleußner, Ekkehard; Schneider, Uwe

    2013-01-01

    Fetal brain development involves the development of the neuro-vegetative (autonomic) control that is mediated by the autonomic nervous system (ANS). Disturbances of the fetal brain development have implications for diseases in later postnatal life. In that context, the fetal functional brain age can be altered. Universal principles of developmental biology applied to patterns of autonomic control may allow a functional age assessment. The work aims at the development of a fetal autonomic brain age score (fABAS) based on heart rate patterns. We analysed n = 113 recordings in quiet sleep, n = 286 in active sleep, and n = 29 in active awakeness from normals. We estimated fABAS from magnetocardiographic recordings (21.4–40.3 weeks of gestation) preclassified in quiet sleep (n = 113, 63 females) and active sleep (n = 286, 145 females) state by cross-validated multivariate linear regression models in a cross-sectional study. According to universal system developmental principles, we included indices that address increasing fluctuation range, increasing complexity, and pattern formation (skewness, power spectral ratio VLF/LF, pNN5). The resulting models constituted fABAS. fABAS explained 66/63% (coefficient of determination R2 of training and validation set) of the variance by age in quiet, while 51/50% in active sleep. By means of a logistic regression model using fluctuation range and fetal age, quiet and active sleep were automatically reclassified (94.3/93.1% correct classifications). We did not find relevant gender differences. We conclude that functional brain age can be assessed based on universal developmental indices obtained from autonomic control patterns. fABAS reflect normal complex functional brain maturation. The presented normative data are supplemented by an explorative study of 19 fetuses compromised by intrauterine growth restriction. We observed a shift in the state distribution towards active awakeness. The lower WGA dependent f

  9. Statistical shape model-based segmentation of brain MRI images.

    PubMed

    Bailleul, Jonathan; Ruan, Su; Constans, Jean-Marc

    2007-01-01

    We propose a segmentation method that automatically delineates structures contours from 3D brain MRI images using a statistical shape model. We automatically build this 3D Point Distribution Model (PDM) in applying a Minimum Description Length (MDL) annotation to a training set of shapes, obtained by registration of a 3D anatomical atlas over a set of patients brain MRIs. Delineation of any structure from a new MRI image is first initialized by such registration. Then, delineation is achieved in iterating two consecutive steps until the 3D contour reaches idempotence. The first step consists in applying an intensity model to the latest shape position so as to formulate a closer guess: our model requires far less priors than standard model in aiming at direct interpretation rather than compliance to learned contexts. The second step consists in enforcing shape constraints onto previous guess so as to remove all bias induced by artifacts or low contrast on current MRI. For this, we infer the closest shape instance from the PDM shape space using a new estimation method which accuracy is significantly improved by a huge increase in the model resolution and by a depth-search in the parameter space. The delineation results we obtained are very encouraging and show the interest of the proposed framework. PMID:18003193

  10. Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

    PubMed Central

    Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming

    2015-01-01

    Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860

  11. Novel Nanotechnologies for Brain Cancer Therapeutics and Imaging.

    PubMed

    Ferroni, Letizia; Gardin, Chiara; Della Puppa, Alessandro; Sivolella, Stefano; Brunello, Giulia; Scienza, Renato; Bressan, Eriberto; D'Avella, Domenico; Zavan, Barbara

    2015-11-01

    Despite progress in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of brain cancer, specifically malignant gliomas, does not yet exist. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood-brain barrier. Nanotechnology today offers a unique opportunity to develop more effective brain cancer imaging and therapeutics. In particular, the development of nanocarriers that can be conjugated with several functional molecules including tumor-specific ligands, anticancer drugs, and imaging probes, can provide new devices which are able to overcome the difficulties of the classical strategies. Nanotechnology-based approaches hold great promise for revolutionizing brain cancer medical treatments, imaging, and diagnosis.

  12. Automated in situ brain imaging for mapping the Drosophila connectome.

    PubMed

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  13. Eeg Imaging Of Brain Activity: Methods And Potentials

    NASA Astrophysics Data System (ADS)

    Coppola, Richard

    1984-08-01

    Currently there are several methods for creating images that relate to either the anatomy or function of the human brain. Static pictures of anatomical structures are produced by computerized axial tomography (CAT) and the presently evolving methods of nuclear magnetic resonance (NM P). These images give excellent resolution of various degrees of structures but do not reveal any aspects of function. A variety of radioactive labeling and detection techniques are available that produce images related to brain activity.

  14. Evaluation of the quality of CT-like images obtained using a commercial flat panel detector system

    PubMed Central

    Smyth, JM; Sutton, DG; Houston, JG

    2006-01-01

    Purpose The development of flat panel detector technology has resulted in renewed interest in the possibility of generating CT-like images from rotational angiographic acquisitions. At least two commercial products now use cone beam reconstruction software in conjunction with flat panel detectors to produce such images. The purpose of the work presented here is to report on image quality obtained from one such system in objective and subjective terms and to compare it with the quality of images obtained from a modern multi-detector CT scanner. Method The Image quality was assessed using a CATPHAN 500 model and an AAPM CT Performance Phantom model. Image noise, CT number accuracy, CT number consistency, Low Contrast Resolution, surface dose and Modulation Transfer Function were assessed for the flat panel detector and compared with results obtained from a 4 slice CT scanner. Results As expected image quality obtained from the CT scanner was much better than from the flat panel detector. Low contrast resolution was much worse and the surface dose was higher for the flat panel detector than the CT scanner. There was an inaccuracy in CT number determination and the noise was greater by a factor of two or three. Limiting resolution was better on images from the CT scanner. Conclusion The poor low contrast resolution from flat panel detector was expected given the expected resolution of ±10 Hounsfield Units. These systems should not be considered as diagnostic CT scanners. However, the remaining performance figures indicate that the CT-like images obtained from this type of equipment are of sufficient quality for at least some clinical applications, such as detection of brain haemorrhages in the vascular suite. PMID:21614331

  15. Pseudo-coherent optical enhancement of the quality of an image obtained from the screen of an image converter

    NASA Astrophysics Data System (ADS)

    Auslender, A. L.; Korolev, A. N.; Simonov, V. P.; Piotkovskaia, I. A.; Sidorina, T. P.

    A method for the pseudo-coherent enhancement of images produced by an image converter is examined which is based on an implementation of a convolution with a bipolar core. Results of experiments including processing of images obtained from the screen of an image converter using an image processor demonstrate a significant contrast enhancement at medium and high spatial frequencies. The possibility of carrying pseudo-coherent transformations in real time using an image converter as a scanning device is discussed.

  16. The role of image registration in brain mapping.

    PubMed

    Toga, A W; Thompson, P M

    2001-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  17. Development of identification of the central sulcus in brain magnetic resonance imaging.

    PubMed

    Hayashi, Norio; Sakuta, Keita; Minehiro, Kaori; Takanaga, Masako; Sanada, Shigeru; Suzuki, Masayuki; Miyati, Tosiaki; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    Magnetic resonance imaging (MRI) is useful in the quantitative evaluation of brain atrophy, because the superior contrast resolution facilitates separation of the gray and white matter. Quantitative assessment of brain atrophy has mainly been performed by manual measurement, which requires considerable time and effort to determine the brain volume. Therefore, computer-aided quantitative measurement methods for the diagnosis of brain atrophy are required. We have developed a method of segmenting the cerebrum, cerebellum-brainstem, and temporal lobe simultaneously on MR images obtained in a single sequence. It is important to measure the volume of not only these regions but also the frontal lobe in clinical use. However, for segmenting the frontal lobe, it is necessary to identify the Sylvian fissure and the central sulcus, which represent boundaries. Here, we developed a method of identifying the central sulcus from MR images obtained with a 1.5 T MRI scanner. The brain and the cerebrospinal fluid (CSF) regions were segmented using semiautomated segmentation method on MR images. The central sulcus shows an oblique line from the inside to the outside on the convexity view. The almost straight appearance of the central sulcus was used for segmentation of the central sulcus from the segmented CSF images. The central sulcus was identified with this technique in 77% of the images obtained by all sequences. This technique for identifying the central sulcus is very important not only for volumetry, but also for clinical diagnosis.

  18. Novel Magnetic Resonance Imaging Techniques in Brain Tumors.

    PubMed

    Nechifor, Ruben E; Harris, Robert J; Ellingson, Benjamin M

    2015-06-01

    Magnetic resonance imaging is a powerful, noninvasive imaging technique with exquisite sensitivity to soft tissue composition. Magnetic resonance imaging is primary tool for brain tumor diagnosis, evaluation of drug response assessment, and clinical monitoring of the patient during the course of their disease. The flexibility of magnetic resonance imaging pulse sequence design allows for a variety of image contrasts to be acquired, including information about magnetic resonance-specific tissue characteristics, molecular dynamics, microstructural organization, vascular composition, and biochemical status. The current review highlights recent advancements and novel approaches in MR characterization of brain tumors.

  19. Tomographic brain imaging with nucleolar detail and automatic cell counting.

    PubMed

    Hieber, Simone E; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-01-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm(3) of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm(2) on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner. PMID:27581254

  20. Tomographic brain imaging with nucleolar detail and automatic cell counting

    NASA Astrophysics Data System (ADS)

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-09-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner.

  1. Tomographic brain imaging with nucleolar detail and automatic cell counting

    PubMed Central

    Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schweighauser, Gabriel; Hench, Jürgen; Chicherova, Natalia; Schulz, Georg; Müller, Bert

    2016-01-01

    Brain tissue evaluation is essential for gaining in-depth insight into its diseases and disorders. Imaging the human brain in three dimensions has always been a challenge on the cell level. In vivo methods lack spatial resolution, and optical microscopy has a limited penetration depth. Herein, we show that hard X-ray phase tomography can visualise a volume of up to 43 mm3 of human post mortem or biopsy brain samples, by demonstrating the method on the cerebellum. We automatically identified 5,000 Purkinje cells with an error of less than 5% at their layer and determined the local surface density to 165 cells per mm2 on average. Moreover, we highlight that three-dimensional data allows for the segmentation of sub-cellular structures, including dendritic tree and Purkinje cell nucleoli, without dedicated staining. The method suggests that automatic cell feature quantification of human tissues is feasible in phase tomograms obtained with isotropic resolution in a label-free manner. PMID:27581254

  2. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  3. Fuzzy object models for newborn brain MR image segmentation

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  4. Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations.

    PubMed

    Somasundaram, K; Kalaiselvi, T

    2011-08-01

    In this work we propose two brain extraction methods (BEM) that solely depend on the brain anatomy and its intensity characteristics. Our methods are simple, unsupervised and knowledge based. Using an adaptive intensity thresholding method on the magnetic resonance images of head scans, a binary image is obtained. The binary image is labeled using the anatomical facts that the scalp is the boundary between head and background, and the skull is the boundary separating brain and scalp. A run length scheme is applied on the labeled image to get a rough brain mask. Morphological operations are then performed to obtain the fine brain on the assumption that brain is the largest connected component (LCC). But the LCC concept failed to work on some slices where brain is composed of more than one connected component. To solve this problem a 3-D approach is introduced in the BEM. Experimental results on 61 sets of T1 scans taken from MRI scan center and neuroimage web services showed that our methods give better results than the popular methods, FSL's Brain Extraction Tool (BET), BrainSuite's Brain Surface Extractor (BSE) gives results comparable to that of Model-based Level Sets (MLS) and works well even where MLS failed. The average Dice similarity index computed using the "Gold standard" and the specificity values are 0.938 and 0.992, respectively, which are higher than that for BET, BSE and MLS. The average processing time by one of our methods is ≈1s/slice, which is smaller than for MLS, which is ≈4s/slice. One of our methods produces the lowest false positive rate of 0.075, which is smaller than that for BSE, BET and MLS. It is independent of imaging orientation and works well for slices with abnormal features like tumor and lesion in which the existing methods fail in certain cases. PMID:21724183

  5. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    PubMed

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  6. In vivo high-resolution diffusion tensor imaging of the mouse brain.

    PubMed

    Wu, Dan; Xu, Jiadi; McMahon, Michael T; van Zijl, Peter C M; Mori, Susumu; Northington, Frances J; Zhang, Jiangyang

    2013-12-01

    Diffusion tensor imaging (DTI) of the laboratory mouse brain provides important macroscopic information for anatomical characterization of mouse models in basic research. Currently, in vivo DTI of the mouse brain is often limited by the available resolution. In this study, we demonstrate in vivo high-resolution DTI of the mouse brain using a cryogenic probe and a modified diffusion-weighted gradient and spin echo (GRASE) imaging sequence at 11.7 T. Three-dimensional (3D) DTI of the entire mouse brain at 0.125 mm isotropic resolution could be obtained in approximately 2 h. The high spatial resolution, which was previously only available with ex vivo imaging, enabled non-invasive examination of small structures in the adult and neonatal mouse brains. Based on data acquired from eight adult mice, a group-averaged DTI atlas of the in vivo adult mouse brain with 60 structure segmentations was developed. Comparisons between in vivo and ex vivo mouse brain DTI data showed significant differences in brain morphology and tissue contrasts, which indicate the importance of the in vivo DTI-based mouse brain atlas.

  7. Mechanism of Chronic Pain in Rodent Brain Imaging

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  8. Brain imaging of pain: state of the art.

    PubMed

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony Kp

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain's role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  9. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics

    PubMed Central

    Budin, Francois; Hoogstoel, Marion; Reynolds, Patrick; Grauer, Michael; O'Leary-Moore, Shonagh K.; Oguz, Ipek

    2013-01-01

    Magnetic resonance imaging (MRI) of rodent brains enables study of the development and the integrity of the brain under certain conditions (alcohol, drugs etc.). However, these images are difficult to analyze for biomedical researchers with limited image processing experience. In this paper we present an image processing pipeline running on a Midas server, a web-based data storage system. It is composed of the following steps: rigid registration, skull-stripping, average computation, average parcellation, parcellation propagation to individual subjects, and computation of region-based statistics on each image. The pipeline is easy to configure and requires very little image processing knowledge. We present results obtained by processing a data set using this pipeline and demonstrate how this pipeline can be used to find differences between populations. PMID:23964234

  10. Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis

    PubMed Central

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD. PMID:24967286

  11. Optical coherence tomography as a promising imaging tool for brain investigations.

    PubMed

    Osiac, Eugen; Bălşeanu, Tudor-Adrian; Cătălin, Bogdan; Mogoantă, Laurenţiu; Gheonea, Cristian; Dinescu, Sorin Nicolae; Albu, Carmen Valeria; Cotoi, Bogdan Virgil; Tica, Oana-Sorina; Sfredel, Veronica

    2014-01-01

    This paper will review the newest results and directions for the usage of optical coherence tomography as an imaging tool for brain studies, focusing mostly on a rodent model. Together with state of the art in the field, based on some of the most recent work, this paper will include a brief look on some results obtained by our group. Brain injuries and stroke data obtained by optical coherence tomography analyzing will be presented as a possibility of detection and evaluation for affected tissue, using this imaging system.

  12. Development of image and information management system for Korean standard brain

    NASA Astrophysics Data System (ADS)

    Chung, Soon Cheol; Choi, Do Young; Tack, Gye Rae; Sohn, Jin Hun

    2004-04-01

    The purpose of this study is to establish a reference for image acquisition for completing a standard brain for diverse Korean population, and to develop database management system that saves and manages acquired brain images and personal information of subjects. 3D MP-RAGE (Magnetization Prepared Rapid Gradient Echo) technique which has excellent Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) as well as reduces image acquisition time was selected for anatomical image acquisition, and parameter values were obtained for the optimal image acquisition. Using these standards, image data of 121 young adults (early twenties) were obtained and stored in the system. System was designed to obtain, save, and manage not only anatomical image data but also subjects' basic demographic factors, medical history, handedness inventory, state-trait anxiety inventory, A-type personality inventory, self-assessment depression inventory, mini-mental state examination, intelligence test, and results of personality test via a survey questionnaire. Additionally this system was designed to have functions of saving, inserting, deleting, searching, and printing image data and personal information of subjects, and to have accessibility to them as well as automatic connection setup with ODBC. This newly developed system may have major contribution to the completion of a standard brain for diverse Korean population since it can save and manage their image data and personal information.

  13. Rapid and automatic detection of brain tumors in MR images

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjia; Hu, Qingmao; Loe, KiaFock; Aziz, Aamer; Nowinski, Wieslaw L.

    2004-04-01

    An algorithm to automatically detect brain tumors in MR images is presented. The key concern is speed in order to process efficiently large brain image databases and provide quick outcomes in clinical setting. The method is based on study of asymmetry of the brain. Tumors cause asymmetry of the brain, so we detect brain tumors in 3D MR images using symmetry analysis of image grey levels with respect to the midsagittal plane (MSP). The MSP, separating the brain into two hemispheres, is extracted using our previously developed algorithm. By removing the background pixels, the normalized grey level histograms are calculated for both hemispheres. The similarity between these two histograms manifests the symmetry of the brain, and it is quantified by using four symmetry measures: correlation coefficient, root mean square error, integral of absolute difference (IAD), and integral of normalized absolute difference (INAD). A quantitative analysis of brain normality based on 42 patients with tumors and 55 normals is presented. The sensitivity and specificity of IAD and INAD were 83.3% and 89.1%, and 85.7% and 83.6%, respectively. The running time for each symmetry measure for a 3D 8bit MR data was between 0.1 - 0.3 seconds on a 2.4GHz CPU PC.

  14. A Unified Framework for Brain Segmentation in MR Images

    PubMed Central

    Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.

    2015-01-01

    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978

  15. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sekino, Masaki; Yamaguchi, Kikuo; Iriguchi, Norio; Ueno, Shoogo

    2003-05-01

    Conductivity tensor images of the rat brain were obtained by a method based on diffusion-weighted magnetic resonance imaging (MRI). Diffusion-weighted images were acquired by a 4.7 T MRI system with motion probing gradients (MPGs) applied in three directions. Conductivities in each MPG direction were calculated from the fast component of the apparent diffusion coefficient and the fraction of the fast component, and two-dimensional conductivity tensor was estimated. Regions of interest (ROIs) were selected in the cortex and the corpus callosum. The mean conductivities in each ROI were 0.014 S/m and 0.018 S/m, respectively. The corpus callosum exhibited higher conductivity anisotropy resulting from anisotropic tissue structures such as axons and dendrites.

  16. Skull-stripping magnetic resonance brain images using a model-based level set.

    PubMed

    Zhuang, Audrey H; Valentino, Daniel J; Toga, Arthur W

    2006-08-01

    The segmentation of brain tissue from nonbrain tissue in magnetic resonance (MR) images, commonly referred to as skull stripping, is an important image processing step in many neuroimage studies. A new mathematical algorithm, a model-based level set (MLS), was developed for controlling the evolution of the zero level curve that is implicitly embedded in the level set function. The evolution of the curve was controlled using two terms in the level set equation, whose values represented the forces that determined the speed of the evolving curve. The first force was derived from the mean curvature of the curve, and the second was designed to model the intensity characteristics of the cortex in MR images. The combination of these forces in a level set framework pushed or pulled the curve toward the brain surface. Quantitative evaluation of the MLS algorithm was performed by comparing the results of the MLS algorithm to those obtained using expert segmentation in 29 sets of pediatric brain MR images and 20 sets of young adult MR images. Another 48 sets of elderly adult MR images were used for qualitatively evaluating the algorithm. The MLS algorithm was also compared to two existing methods, the brain extraction tool (BET) and the brain surface extractor (BSE), using the data from the Internet brain segmentation repository (IBSR). The MLS algorithm provides robust skull-stripping results, making it a promising tool for use in large, multi-institutional, population-based neuroimaging studies.

  17. [Brain development of infant and MRI by diffusion tensor imaging].

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Mangin, J-F; Le Bihan, D; Hüppi, P S; Hertz-Pannier, L

    2012-01-01

    Studying how the brain develops and becomes functional is important to understand how the man has been able to develop specific cognitive abilities, and to comprehend the complexity of some developmental pathologies. Thanks to magnetic resonance imaging (MRI), it is now possible to image the baby's immature brain and to consider subtle correlations between the brain anatomical development and the early acquisition of cognitive functions. Dedicated methodologies for image acquisition and post-treatment must then be used because the size of cerebral structures and the image contrast are very different in comparison with the adult brain, and because the examination length is a major constraint. Two recent studies have evaluated the developing brain under an original perspective. The first one has focused on cortical folding in preterm newborns, from 6 to 8 months of gestational age, assessed with T2-weighted conventional MRI. The second study has mapped the organization and maturation of white matter fiber bundles in 1- to 4-month-old healthy infants with diffusion tensor imaging (DTI). Both studies have enabled to highlight spatio-temporal differences in the brain regions' maturation, as well as early anatomical asymmetries between cerebral hemispheres. These studies emphasize the potential of MRI to evaluate brain development compared with the infant's psychomotor acquisitions after birth.

  18. An architecture for a brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.

    2000-01-01

    The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.

  19. The Potential of Using Brain Images for Authentication

    PubMed Central

    Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  20. The potential of using brain images for authentication.

    PubMed

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  1. The brains in Brain: the coevolution of localization and its images.

    PubMed

    Gross, Alan G

    2008-01-01

    Images of brain localization from Brain's inception to the present are analyzed. Textual representations and their accompanying images are shown to coevolve; that is, the technological and conceptual development of the research program of localization is shown to evolve simultaneously with the exploitation of visual resources that support these developments. The semiotics of Peirce, the social semiotics of Kress and van Leeuwen, and the insights of Gestalt psychology provide a critical vocabulary with which to describe and to analyze these visual resources. I conclude that brain images evolve in a manner that reflects the uniformity in measuring instruments and the increase in their precision in the localization of brain functions; at the same time, they draw attention away from a persistent constraint: the brain functions so precisely localized are just those that are not constitutive of our humanity.

  2. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  3. Noninvasive Imaging of Head-Brain Conductivity Profiles Using Magnetic Resonance Electrical Impedance Imaging

    PubMed Central

    Zhang, Xiaotong; Yan, Dandan; Zhu, Shanan; He, Bin

    2008-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a recently introduced non-invasive conductivity imaging modality, which combines the magnetic resonance current density imaging (CDI) and the traditional electrical impedance tomography (EIT) techniques. MREIT is aimed at providing high spatial resolution images of electrical conductivity, by avoiding solving the well-known ill-posed problem in the traditional EIT. In this paper, we review our research activities in MREIT imaging of head-brain tissue conductivity profiles. We have developed several imaging algorithms and conducted a series of computer simulations for MREIT imaging of the head and brain tissues. Our work suggests MREIT brain imaging may become a useful tool in imaging conductivity distributions of the brain and head. PMID:18799394

  4. sup 31 P saturation transfer and phosphocreatine imaging in the monkey brain

    SciTech Connect

    Mora, B.; Narasimhan, P.T.; Ross, B.D. California Inst. of Tech., Pasadena ); Allman, J. ); Barker, P.B. )

    1991-10-01

    {sup 31}P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response.

  5. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    PubMed

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  6. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats. PMID:27604743

  7. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    PubMed

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862

  8. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    PubMed Central

    Meng, Zi Jun; Sajib, Saurav Z. K.; Chauhan, Munish; Sadleir, Rosalind J.; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862

  9. Optical imaging to map blood-brain barrier leakage

    NASA Astrophysics Data System (ADS)

    Jaffer, Hayder; Adjei, Isaac M.; Labhasetwar, Vinod

    2013-11-01

    Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.

  10. Brain imaging of pain: state of the art

    PubMed Central

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  11. Brain imaging of pain: state of the art

    PubMed Central

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained.

  12. Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit.

    PubMed

    Guegan, Thomas; Cutando, Laura; Ayuso, Eduard; Santini, Emanuela; Fisone, Gilberto; Bosch, Fatima; Martinez, Albert; Valjent, Emmanuel; Maldonado, Rafael; Martin, Miquel

    2013-02-01

    Palatability enhances food intake by hedonic mechanisms that prevail over caloric necessities. Different studies have demonstrated the role of endogenous cannabinoids in the mesocorticolimbic system in controlling food hedonic value and consumption. We hypothesize that the endogenous cannabinoid system could also be involved in the development of food-induced behavioral alterations, such as food-seeking and binge-eating, by a mechanism that requires neuroplastic changes in the brain reward pathway. For this purpose, we evaluated the role of the CB1 cannabinoid receptor (CB1-R) in the behavioral and neuroplastic changes induced by operant training for standard, highly caloric or highly palatable isocaloric food using different genetics, viral and pharmacological approaches. Neuroplasticity was evaluated by measuring changes in dendritic spine density in neurons previously labeled with the dye DiI. Only operant training to obtain highly palatable isocaloric food induced neuroplastic changes in neurons of the nucleus accumbens shell and prefrontal cortex that were associated to changes in food-seeking behavior. These behavioral and neuroplastic modifications induced by highly palatable isocaloric food were dependent on the activity of the CB1-R. Neuroplastic changes induced by highly palatable isocaloric food are similar to those produced by some drugs of abuse and may be crucial in the alteration of food-seeking behavior leading to overweight and obesity.

  13. Intersubject coregistration of brain images: a phantom study

    NASA Astrophysics Data System (ADS)

    Rusinek, Henry; Tsui, Wai-Hon; Sanfilipo, Michael; Wolkin, Adam

    1998-06-01

    Inter-subject coregistration is a powerful neuroimaging technique that enables comparison and detection of morphological differences across groups of subjects. The present study uses digital phantoms to evaluate errors in two widely employed approaches to inter-subject coregistration of structural MR images of the brain: the manual step-wise approach and the automated method provided with the software package SPM96. Phantoms were constructed by deforming a high resolution T1-weighted MR image in which we have embedded 12 landmarks. For the manual method the accuracy ranged from 0.8 mm in quadrigeminal plate to 2.4 mm in superior central sulcus and occipital lobe. The average error was 1.5 mm. For the automated SPM96 method and the 9 parameter model, the accuracy ranged from 0.8 mm to 2.1 mm and averaged 1.1 mm. Error of the manual method correlated strongly with the distance from the center of the image (r equals 0.77, slope equals .020, p equals .003). The linear correlation of the error obtained with the automated method with the distance was poor (r equals 0.39, slope equals .008, p > 0.2). The results suggest that the inferior performance of the manual method is due to its step-wise approach and to a relatively large rotational error.

  14. Nanoparticles for imaging and treating brain cancer

    PubMed Central

    Meyers, Joseph D; Doane, Tennyson; Burda, Clemens; Basilion, James P

    2013-01-01

    Brain cancer tumors cause disruption of the selective properties of vascular endothelia, even causing disruptions in the very selective blood–brain barrier, which are collectively referred to as the blood–brain–tumor barrier. Nanoparticles (NPs) have previously shown great promise in taking advantage of this increased vascular permeability in other cancers, which results in increased accumulation in these cancers over time due to the accompanying loss of an effective lymph system. NPs have therefore attracted increased attention for treating brain cancer. While this research is just beginning, there have been many successes demonstrated thus far in both the laboratory and clinical setting. This review serves to present the reader with an overview of NPs for treating brain cancer and to provide an outlook on what may come in the future. For NPs, just like the blood–brain–tumor barrier, the future is wide open. PMID:23256496

  15. Whole Brain Imaging with Serial Two-Photon Tomography

    PubMed Central

    Amato, Stephen P.; Pan, Feng; Schwartz, Joel; Ragan, Timothy M.

    2016-01-01

    Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. This has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this article, we describe in detail Serial Two-Photon (STP) tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as Optical Coherence Tomography (OCT), in order to provide unique contrast mechanisms. Furthermore, we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches. PMID:27047350

  16. Diffusion tensor imaging for understanding brain development in early life.

    PubMed

    Qiu, Anqi; Mori, Susumu; Miller, Michael I

    2015-01-01

    The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.

  17. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  18. Evaluation of improvement of diffuse optical imaging of brain function by high-density probe arrangements and imaging algorithms

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kurihara, Kazuki; Okada, Eiji

    2016-04-01

    Diffuse optical imaging has been applied to measure the localized hemodynamic responses to brain activation. One of the serious problems with diffuse optical imaging is the limitation of the spatial resolution caused by the sparse probe arrangement and broadened spatial sensitivity profile for each probe pair. High-density probe arrangements and an image reconstruction algorithm considering the broadening of the spatial sensitivity can improve the spatial resolution of the image. In this study, the diffuse optical imaging of the absorption change in the brain is simulated to evaluate the effect of the high-density probe arrangements and imaging methods. The localization error, equivalent full-width half maximum and circularity of the absorption change in the image obtained by the mapping and reconstruction methods from the data measured by five probe arrangements are compared to quantitatively evaluate the imaging methods and probe arrangements. The simple mapping method is sufficient for the density of the measurement points up to the double-density probe arrangement. The image reconstruction method considering the broadening of the spatial sensitivity of the probe pairs can effectively improve the spatial resolution of the image obtained from the probe arrangements higher than the quadruple density, in which the distance between the neighboring measurement points is 10.6 mm.

  19. Image Labeling for LIDAR Intensity Image Using K-Nn of Feature Obtained by Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Umemura, Masaki; Hotta, Kazuhiro; Nonaka, Hideki; Oda, Kazuo

    2016-06-01

    We propose an image labeling method for LIDAR intensity image obtained by Mobile Mapping System (MMS) using K-Nearest Neighbor (KNN) of feature obtained by Convolutional Neural Network (CNN). Image labeling assigns labels (e.g., road, cross-walk and road shoulder) to semantic regions in an image. Since CNN is effective for various image recognition tasks, we try to use the feature of CNN (Caffenet) pre-trained by ImageNet. We use 4,096-dimensional feature at fc7 layer in the Caffenet as the descriptor of a region because the feature at fc7 layer has effective information for object classification. We extract the feature by the Caffenet from regions cropped from images. Since the similarity between features reflects the similarity of contents of regions, we can select top K similar regions cropped from training samples with a test region. Since regions in training images have manually-annotated ground truth labels, we vote the labels attached to top K similar regions to the test region. The class label with the maximum vote is assigned to each pixel in the test image. In experiments, we use 36 LIDAR intensity images with ground truth labels. We divide 36 images into training (28 images) and test sets (8 images). We use class average accuracy and pixel-wise accuracy as evaluation measures. Our method was able to assign the same label as human beings in 97.8% of the pixels in test LIDAR intensity images.

  20. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  1. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  2. {sup 99m}Tc radiopharmaceuticals for brain perfusion imaging

    SciTech Connect

    Deutsch, E.; Volkert, W.A.

    1991-12-31

    It is well established that small, neutral, lipophilic technetium complexes can diffuse into the brain and then be trapped intracellularly by a variety of mechanisms. A more detailed understanding of the structural and chemical parameters which promote efficient diffusion into the brain, and which underlie the trapping mechanisms, will be necessary to delineate the clinical relevance of current agents, and to design improved technetium 99 pharmaceuticals. Current technetium 99 brain-perfusion imaging agents do not show ideal characteristics of brain uptake and retention. Furthermore, significant fractions of the technetium 99 complexes are lost between site of injection and the brain. Thus, it is difficult to use these current agents to quantitate regional cerebral blood flow. Nevertheless, these agents are proving extremely valuable for the SPECT evaluation of abnormalities in brain perfusion patients with neurological disorders.

  3. Ethical issues of brain functional imaging: reading your mind.

    PubMed

    Karanasiou, Irene S; Biniaris, Christos G; Marsh, Andrew J

    2008-01-01

    Neuroimaging practice and research are overviewed in this paper through an ethics lens. The main ethical implications in biomedical research concerning functional brain imaging are discussed with the focus on issues related to imaging of personal information and privacy. Specific norms and guidelines will be eventually formed in the future under the umbrella of the new discipline of Neuroethics.

  4. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    PubMed

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  5. Look again: effects of brain images and mind-brain dualism on lay evaluations of research.

    PubMed

    Hook, Cayce J; Farah, Martha J

    2013-09-01

    Brain scans have frequently been credited with uniquely seductive and persuasive qualities, leading to claims that fMRI research receives a disproportionate share of public attention and funding. It has been suggested that functional brain images are fascinating because they contradict dualist beliefs regarding the relationship between the body and the mind. Although previous research has indicated that brain images can increase judgments of an article's scientific reasoning, the hypotheses that brain scans make research appear more interesting, surprising, or worthy of funding have not been tested. Neither has the relation between the allure of brain imaging and dualism. In the following three studies, laypersons rated both fictional research descriptions and real science news articles accompanied by brain scans, bar charts, or photographs. Across 988 participants, we found little evidence of neuroimaging's seductive allure or of its relation to self-professed dualistic beliefs. These results, taken together with other recent null findings, suggest that brain images are less powerful than has been argued.

  6. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury*

    PubMed Central

    Bayly, Philip V.; Black, Erin E.; Pedersen, Rachel C.; Leister, Elizabeth P.; Genin, Guy M.

    2005-01-01

    In traumatic brain injury (TBI) rapid deformation of brain tissue leads to axonal injury and cell death. In vivo quantification of such fast deformations is extremely difficult, but important for understanding the mechanisms of degeneration post-trauma and for development of numerical models of injury biomechanics. In this paper, strain fields in the brain of the perinatal rat were estimated from data obtained in vivo during rapid indentation. Tagged magnetic resonance (MR) images were obtained with high spatial (0.2 mm) and temporal (3.9 ms) resolution by gated image acquisition during and after impact. Impacts were repeated either 64 or 128 times to obtain images of horizontal and vertical tag lines in coronal and sagittal planes. Strain fields were estimated by harmonic phase (HARP) analysis of the tagged images. The original MR data was filtered and Fourier-transformed to obtain HARP images, following a method originally developed by Osman et al. (IEEE Trans. Med. Imaging 19(3) (2000) 186). The displacements of material points were estimated from intersections of HARP contours and used to generate estimates of the deformation gradient and Lagrangian strain tensors. Maximum principal Lagrangian strains of >0.20 at strain rates >40/s were observed during indentations of 2 mm depth and 21 ms duration. PMID:16549098

  7. [Graph-based interactive three-dimensional segmentation of magnetic resonance images of brain tumors].

    PubMed

    Li, Wei; Chen, Wu-fan

    2009-01-01

    We propose a graph-based three-dimensional (3D) algorithm to automatically segment brain tumors from magnetic resonance images (MRI). The algorithm uses minimum s/t cut criteria to obtain a global optimal result of objective function formed according to Markov Random Field Model and Maximum a posteriori (MAP-MRF) theory, and by combining the expectation-maximization (EM) algorithm to estimate the parameters of mixed Gaussian model for normal brain and tumor tissues. 3D segmentation results of brain tumors are fast achieved by our algorithm. The validation of the algorithm was tested and showed good accuracy and adaptation under simple interactions with the physicians. PMID:19218135

  8. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  9. Images of the brain: past as prologue

    SciTech Connect

    Wagner, H.N. Jr.

    1986-12-01

    The invention of the Anger scintillation camera and the development of /sup 99m/Tc tracers brought about a tenfold increase in nuclear brain scanning between 1963 and 1973, an increase that plateaued with the introduction of x-ray computed tomography. A second growth curve began in 1976 at which time there were four PET centers in the United States, a number that grew to 60 worldwide over the next decade. PET, SPECT, MRI, and MRS are leading us into a new era of in vivo brain chemistry, based on regional bioenergetics and neurotransmission. The immediate impact is in epilepsy, stroke, brain tumors and the dementias, with psychiatric diseases becoming a major focus of research. Receptivity has become a biochemical as well as a psychological approach to mental functions. The finding of elevated D2 dopamine receptors in schizophrenia in living patients may be the forerunner of a new biochemical approach to psychiatry.

  10. Recent Developments in Diffusion Tensor Imaging of Brain

    PubMed Central

    Parekh, Mansi Bharat; Gurjarpadhye, Abhijit Achyut; Manoukian, Martin A.C.; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Magnetic resonance imaging (MRI) has come to be known as a unique radiological imaging modality because of its ability to perform tomographic imaging of body without the use of any harmful ionizing radiation. The radiologists use MRI to gain insight into the anatomy of organs, including the brain, while biomedical researchers explore the modality to gain better understanding of the brain structure and function. However, due to limited resolution and contrast, the conventional MRI fails to show the brain microstructure. Diffusion tensor imaging (DTI) harnesses the power of conventional MRI to deduce the diffusion dynamics of water molecules within the tissue and indirectly create a three-dimensional sketch of the brain anatomy. DTI enables visualization of brain tissue microstructure, which is extremely helpful in understanding various neuropathologies and neurodegenerative disorders. In this review, we briefly discuss the background and operating principles of DTI, followed by current trends in DTI applications for biomedical and clinical investigation of various brain diseases and disorders. PMID:27077135

  11. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  12. Visualization and volumetric structures from MR images of the brain

    SciTech Connect

    Parvin, B.; Johnston, W.; Robertson, D.

    1994-03-01

    Pinta is a system for segmentation and visualization of anatomical structures obtained from serial sections reconstructed from magnetic resonance imaging. The system approaches the segmentation problem by assigning each volumetric region to an anatomical structure. This is accomplished by satisfying constraints at the pixel level, slice level, and volumetric level. Each slice is represented by an attributed graph, where nodes correspond to regions and links correspond to the relations between regions. These regions are obtained by grouping pixels based on similarity and proximity. The slice level attributed graphs are then coerced to form a volumetric attributed graph, where volumetric consistency can be verified. The main novelty of our approach is in the use of the volumetric graph to ensure consistency from symbolic representations obtained from individual slices. In this fashion, the system allows errors to be made at the slice level, yet removes them when the volumetric consistency cannot be verified. Once the segmentation is complete, the 3D surfaces of the brain can be constructed and visualized.

  13. Method of obtaining intensified image from developed photographic films and plates

    NASA Technical Reports Server (NTRS)

    Askins, B. S. (Inventor)

    1978-01-01

    A method is explained of obtaining intensified images from silver images on developed photographic films and plates. The steps involve converting silver of the developed film or plate to a radioactive compound by treatment with an aqueous alkaline solution of an organo-S35 compound; placing the treated film or plate in direct contact with a receiver film which is then exposed by radiation from the activated film; and developing and fixing the resulting intensified image on the receiver film.

  14. Monitoring fractional anisotropy in developing rabbit brain using MR diffusion tensor imaging at 3T

    NASA Astrophysics Data System (ADS)

    Jao, Jo-Chi; Yang, Yu-Ting; Hsiao, Chia-Chi; Chen, Po-Chou

    2016-03-01

    The aim of this study was to investigate the factional anisotropy (FA) in various regions of developing rabbit brain using magnetic resonance diffusion tensor imaging (MR DTI) at 3 T. A whole-body clinical MR imaging (MRI) scanner with a 15-channel high resolution knee coil was used. An echo-planar-imaging (EPI)-DTI pulse sequence was performed. Five 5 week-old New Zealand white (NZW) rabbits underwent MRI once per week for 24 weeks. After scanning, FA maps were obtained. ROIs (regions of interests) in the frontal lobe, parietal & temporal lobe, and occipital lobe were measured. FA changes with time were evaluated with a linear regression analysis. The results show that the FA values in all lobes of the brain increased linearly with age. The ranking of FA values was FA(frontal lobe) < FA(parietal & temporal lobe) > FA(occipital lobe). There was significant difference (p < 0.05) among these lobes. FA values are associated with the nerve development and brain functions. The FA change rate could be a biomarker to monitor the brain development. Understanding the FA values of various lobes during development could provide helpful information to diagnosis the abnormal syndrome earlier and have a better treatment and prognosis. This study established a brain MR-DTI protocol for rabbits to investigate the brain anatomy during development using clinical MRI. This technique can be further applied to the pre-clinical diagnosis, treatment, prognosis and follow-up of brain lesions.

  15. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    PubMed Central

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors. PMID:27786240

  16. Image reconstruction in transcranial photoacoustic computed tomography of the brain

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, Kenji; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Photoacoustic computed tomography (PACT) holds great promise for transcranial brain imaging. However, the strong reflection, scattering, attenuation, and mode-conversion of photoacoustic waves in the skull pose serious challenges to establishing the method. The lack of an appropriate model of solid media in conventional PACT imaging models, which are based on the canonical scalar wave equation, causes a significant model mismatch in the presence of the skull and thus results in deteriorated reconstructed images. The goal of this study was to develop an image reconstruction algorithm that accurately models the skull and thereby ameliorates the quality of reconstructed images. The propagation of photoacoustic waves through the skull was modeled by a viscoelastic stress tensor wave equation, which was subsequently discretized by use of a staggered grid fourth-order finite-difference time-domain (FDTD) method. The matched adjoint of the FDTD-based wave propagation operator was derived for implementing a back-projection operator. Systematic computer simulations were conducted to demonstrate the effectiveness of the back-projection operator for reconstructing images in a realistic three-dimensional PACT brain imaging system. The results suggest that the proposed algorithm can successfully reconstruct images from transcranially-measured pressure data and readily be translated to clinical PACT brain imaging applications.

  17. Time-difference imaging of magnetic induction tomography in a three-layer brain physical phantom

    NASA Astrophysics Data System (ADS)

    Liu, Ruigang; Li, Ye; Fu, Feng; You, Fusheng; Shi, Xuetao; Dong, Xiuzhen

    2014-06-01

    Magnetic induction tomography (MIT) is a contactless and noninvasive technique to reconstruct the conductivity distribution in a human cross-section. In this paper, we want to study the feasibility of imaging the low-contrast perturbation and small volume object in human brains. We construct a three-layer brain physical phantom which mimics the real conductivity distribution of brains by introducing an artificial skull layer. Using our MIT data acquisition system on this phantom and differential algorithm, we have obtained a series of reconstructed images of conductivity perturbation objects. All of the conductivity perturbation objects in the brain phantom can be clearly distinguished in the reconstructed images. The minimum detectable conductivity difference between the object and the background is 0.03 S m-1 (12.5%). The minimum detectable inner volume of the objects is 3.4 cm3. The three-layer brain physical phantom is able to simulate the conductivity distribution of the main structures of a human brain. The images of the low-contrast perturbation and small volume object show the prospect of MIT in the future.

  18. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  19. Intrinsic signal imaging of brain function using a small implantable CMOS imaging device

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Sunaga, Yoshinori; Yamaguchi, Takahiro; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-04-01

    A brain functional imaging technique over a long period is important to understand brain functions related to animal behavior. We have developed a small implantable CMOS imaging device for measuring brain activity in freely moving animals. This device is composed of a CMOS image sensor chip and LEDs for illumination. In this study, we demonstrated intrinsic signal imaging of blood flow using the device with a green LED light source at a peak wavelength of 535 nm, which corresponds to one of the absorption spectral peaks of blood cells. Brain activity increases regional blood flow. The device light weight of about 0.02 g makes it possible to stably measure brain activity through blood flow over a long period. The device has successfully measured the intrinsic signal related to sensory stimulation on the primary somatosensory cortex.

  20. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  1. Localized q-space imaging of the mouse brain.

    PubMed

    King, M D; Houseman, J; Gadian, D G; Connelly, A

    1997-12-01

    Localized q-space imaging was used to obtain water displacement profiles from mouse brain. These profiles take the form of unidirectional diffusive displacement probability distributions. Two groups of mice were studied, a normal group and a group in which surgery had been performed to produce a unilateral reduction in the supply of blood to the forebrain. q-Space measurements were made both in vivo and postmortem. The displacement profiles were characterized using the summary parameter prob[d < 10], which is the proportion of water molecules that undergo a net diffusive displacement that is less than +/-10 microm, during the diffusion period (50 ms). The range of prob[d < 10] values in the normal group was 0.71 to 0.77 in vivo compared with 0.78 to 0.87 in the impaired hemisphere of the surgically treated group. An increase in prob[d < 10] occurred postmortem to yield values in the range 0.79 to 0.81 and 0.80 to 0.89 in the normal and surgically treated group, respectively. These observations are consistent with the diffusion-weighted image intensity changes that occur after a period of ischemia.

  2. Automated segmentation of MR images of brain tumors.

    PubMed

    Kaus, M R; Warfield, S K; Nabavi, A; Black, P M; Jolesz, F A; Kikinis, R

    2001-02-01

    An automated brain tumor segmentation method was developed and validated against manual segmentation with three-dimensional magnetic resonance images in 20 patients with meningiomas and low-grade gliomas. The automated method (operator time, 5-10 minutes) allowed rapid identification of brain and tumor tissue with an accuracy and reproducibility comparable to those of manual segmentation (operator time, 3-5 hours), making automated segmentation practical for low-grade gliomas and meningiomas. PMID:11161183

  3. Imaging diagnosis of congenital brain anomalies and injuries.

    PubMed

    Pooh, Ritsuko K

    2012-12-01

    Fetal brain is rapidly developing and changing its appearance week by week during pregnancy. The brain is the most important organ but it is quite hard to observe detailed structure of this organ by conventional transabdominal sonography. Transvaginal high-resolution ultrasound and three-dimensional (3D) ultrasound has been a great diagnostic tool for evaluation of three-dimensional structure of fetal central nervous system (CNS). This method has contributed to the prenatal assessment of congenital CNS anomalies, intracranial vascular anomalies and acquired brain damage in utero. It is possible to observe the whole brain structure by magnetic resonance imaging in the post half of pregnancy but transvaginal high-resolution 3D ultrasound is certainly powerful modality as well for understanding brain anatomy. Longitudinally and carefully evaluation of neurological short- or long-term prognosis should be required according to precise prenatal diagnosis, for proper counseling and management based on precise evidence.

  4. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Yang, Xinmai

    2011-09-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse.

  5. Functional photoacoustic imaging to observe regional brain activation induced by cocaine hydrochloride

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic microscopy (PAM) was used to detect small animal brain activation in response to drug abuse. Cocaine hydrochloride in saline solution was injected into the blood stream of Sprague Dawley rats through tail veins. The rat brain functional change in response to the injection of drug was then monitored by the PAM technique. Images in the coronal view of the rat brain at the locations of 1.2 and 3.4 mm posterior to bregma were obtained. The resulted photoacoustic (PA) images showed the regional changes in the blood volume. Additionally, the regional changes in blood oxygenation were also presented. The results demonstrated that PA imaging is capable of monitoring regional hemodynamic changes induced by drug abuse. PMID:21950909

  6. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  7. In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Tsytsarev, Vassiliy; Liang, Chia-Pin; Akkentli, Fatih; Erzurumlu, Reha S.; Chen, Yu

    2015-11-01

    The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex (“barrels”), thalamus (“barreloids”), and brain stem (“barrelettes”). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.

  8. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  9. Size-optimized 32-Channel Brain Arrays for 3 T Pediatric Imaging

    PubMed Central

    Keil, Boris; Alagappan, Vijay; Mareyam, Azma; McNab, Jennifer A.; Fujimoto, Kyoko; Tountcheva, Veneta; Triantafyllou, Christina; Dilks, Daniel D.; Kanwisher, Nancy; Lin, Weili; Grant, P. Ellen; Wald, Lawrence L.

    2011-01-01

    Size-optimized 32-channel receive array coils were developed for five age groups, neonates, 6 months old, 1 year old, 4 years old, and 7 years old, and evaluated for pediatric brain imaging. The array consisted of overlapping circular surface coils laid out on a close-fitting coil-former. The two-section coil former design was obtained from surface contours of aligned three-dimensional MRI scans of each age group. Signal-to-noise ratio and noise amplification for parallel imaging were evaluated and compared to two coils routinely used for pediatric brain imaging; a commercially available 32-channel adult head coil and a pediatric-sized birdcage coil. Phantom measurements using the neonate, 6-month-old, 1-year-old, 4-year-old, and 7-year-old coils showed signal-to-noise ratio increases at all locations within the brain over the comparison coils. Within the brain cortex the five dedicated pediatric arrays increased signal-to-noise ratio by up to 3.6-, 3.0-, 2.6-, 2.3-, and 1.7-fold, respectively, compared to the 32-channel adult coil, as well as improved G-factor maps for accelerated imaging. This study suggests that a size-tailored approach can provide significant sensitivity gains for accelerated and unaccelerated pediatric brain imaging. PMID:21656548

  10. Enhancement of brain tumor MR images based on intuitionistic fuzzy sets

    NASA Astrophysics Data System (ADS)

    Deng, Wankai; Deng, He; Cheng, Lifang

    2015-12-01

    Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.

  11. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    PubMed

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  12. Digital Processing and Segmentation of Breast Microcalcifications Images Obtained by a Si Microstrips Detector: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Díaz, Claudia. C.; Angulo, Abril A.

    2007-02-01

    We present the preliminary results of digital processing and segmentation of breast microcalcifications images. They were obtained using a Bede X ray tube with Cu anode, which was fixed at 20 kV and 1 mA. Different biopsies were scanned using a 128 Si microstrips detector. Total scanning resulted in a data matrix, which corresponded with the image of each biopsy. We manipulated the contrast of the images using histograms and filters in the frequency domain in Matlab. Then we intended to investigate about different contour models for the segmentation of microcalcifications boundaries, which were based on the contrast and shape of the image. These algorithms could be applied to mammographic images, which may be obtained by digital mammography or digitizing conventional mammograms.

  13. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  14. Hybrid PET/MR Imaging and Brain Connectivity

    PubMed Central

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity. PMID:26973446

  15. Laser Doppler imaging for intraoperative human brain mapping.

    PubMed

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging.

  16. Hybrid PET/MR Imaging and Brain Connectivity.

    PubMed

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity. PMID:26973446

  17. Exploring the feasibility of iris recognition for visible spectrum iris images obtained using smartphone camera

    NASA Astrophysics Data System (ADS)

    Trokielewicz, Mateusz; Bartuzi, Ewelina; Michowska, Katarzyna; Andrzejewska, Antonina; Selegrat, Monika

    2015-09-01

    In the age of modern, hyperconnected society that increasingly relies on mobile devices and solutions, implementing a reliable and accurate biometric system employing iris recognition presents new challenges. Typical biometric systems employing iris analysis require expensive and complicated hardware. We therefore explore an alternative way using visible spectrum iris imaging. This paper aims at answering several questions related to applying iris biometrics for images obtained in the visible spectrum using smartphone camera. Can irides be successfully and effortlessly imaged using a smartphone's built-in camera? Can existing iris recognition methods perform well when presented with such images? The main advantage of using near-infrared (NIR) illumination in dedicated iris recognition cameras is good performance almost independent of the iris color and pigmentation. Are the images obtained from smartphone's camera of sufficient quality even for the dark irides? We present experiments incorporating simple image preprocessing to find the best visibility of iris texture, followed by a performance study to assess whether iris recognition methods originally aimed at NIR iris images perform well with visible light images. To our best knowledge this is the first comprehensive analysis of iris recognition performance using a database of high-quality images collected in visible light using the smartphones flashlight together with the application of commercial off-the-shelf (COTS) iris recognition methods.

  18. Faster permutation inference in brain imaging.

    PubMed

    Winkler, Anderson M; Ridgway, Gerard R; Douaud, Gwenaëlle; Nichols, Thomas E; Smith, Stephen M

    2016-11-01

    Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations irrespective of generic software or hardware improvements. We compare the following approaches: (i) performing a small number of permutations; (ii) estimating the p-value as a parameter of a negative binomial distribution; (iii) fitting a generalised Pareto distribution to the tail of the permutation distribution; (iv) computing p-values based on the expected moments of the permutation distribution, approximated from a gamma distribution; (v) direct fitting of a gamma distribution to the empirical permutation distribution; and (vi) permuting a reduced number of voxels, with completion of the remainder using low rank matrix theory. Using synthetic data we assessed the different methods in terms of their error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the rejection of the null hypotheses (known as the resampling risk). We also conducted a re-analysis of a voxel-based morphometry study as a real-data example. All methods yielded exact error rates. Likewise, power was similar across methods. Resampling risk was higher for methods (i), (iii) and (v). For comparable resampling risks, the method in which no permutations are done (iv) was the absolute fastest. All methods produced visually similar maps for the real data, with stronger effects being detected in the family-wise error rate corrected maps by (iii) and (v), and generally similar to the results seen in the reference set. Overall, for uncorrected p-values, method (iv

  19. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging.

    PubMed

    Semendeferi, K; Damasio, H

    2000-02-01

    Primary comparative data on the hominoid brain are scarce and major neuroanatomical differences between humans and apes have not yet been described satisfactorily, even at the gross level. Basic questions that involve the evolution of the human brain cannot be addressed adequately unless the brains of all extant hominoid species are analyzed. Contrary to the scarcity of original data, there is a rich literature on the topic of human brain evolution and several debates exist on the size of particular sectors of the brain, e.g., the frontal lobe. In this study we applied a non-invasive imaging technique (magnetic resonance) on living human, great ape and lesser ape subjects in order to investigate the overall size of the hominoid brain. The images were reconstructed in three dimensions and volumetric estimates were obtained for the brain and its main anatomical sectors, including the frontal and temporal lobes, the insula, the parieto-occipital sector and the cerebellum.A remarkable homogeneity is present in the relative size of many of the large sectors of the hominoid brain, but interspecific and intraspecific variation exists in certain parts of the brain. The human cerebellum is smaller than expected for an ape brain of human size. It is suggested that the cerebellum increased less than the cerebrum after the split of the human lineage from the African ancestral hominoid stock. In contrast, humans have a slightly larger temporal lobe and insula than expected, but differences are not statistically significant. Humans do not have a larger frontal lobe than expected for an ape brain of human size and gibbons have a relatively smaller frontal lobe than the rest of the hominoids. Given the fact that the frontal lobe in humans and great apes has similar relative size, it is parsimonious to suggest that the relative size of the whole of the frontal lobe has not changed significantly during hominid evolution in the Plio-Pleistocene. PMID:10656781

  20. S-values calculated from a tomographic head/brain model for brain imaging

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-chian; Xu, X. George

    2004-11-01

    A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.

  1. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  2. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    SciTech Connect

    Usmani, Nawaid; Sloboda, Ron; Kamal, Wafa; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John; Monajemi, Tara

    2011-07-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  3. Automated Brain Extraction from T2-weighted Magnetic Resonance Images

    PubMed Central

    Datta, Sushmita; Narayana, Ponnada A.

    2011-01-01

    Purpose To develop and implement an automated and robust technique to extract brain from T2-weighted images. Materials and Methods Magnetic resonance imaging (MRI) was performed on 75 adult volunteers to acquire dual fast spin echo (FSE) images with fat-saturation technique on a 3T Philips scanner. Histogram-derived thresholds were derived directly from the original images followed by the application of regional labeling, regional connectivity, and mathematical morphological operations to extract brain from axial late-echo FSE (T2-weighted) images. The proposed technique was evaluated subjectively by an expert and quantitatively using Bland-Altman plot and Jaccard and Dice similarity measures. Results Excellent agreement between the extracted brain volumes with the proposed technique and manual stripping by an expert was observed based on Bland-Altman plot and also as assessed by high similarity indices (Jaccard: 0.9825± 0.0045; Dice: 0.9912 ±0.0023). Conclusion Brain extraction using proposed automated methodology is robust and the results are reproducible. PMID:21448946

  4. Different impressions of other agents obtained through social interaction uniquely modulate dorsal and ventral pathway activities in the social human brain.

    PubMed

    Takahashi, Hideyuki; Terada, Kazunori; Morita, Tomoyo; Suzuki, Shinsuke; Haji, Tomoki; Kozima, Hideki; Yoshikawa, Masahiro; Matsumoto, Yoshio; Omori, Takashi; Asada, Minoru; Naito, Eiichi

    2014-09-01

    Internal (neuronal) representations in the brain are modified by our experiences, and this phenomenon is not unique to sensory and motor systems. Here, we show that different impressions obtained through social interaction with a variety of agents uniquely modulate activity of dorsal and ventral pathways of the brain network that mediates human social behavior. We scanned brain activity with functional magnetic resonance imaging (fMRI) in 16 healthy volunteers when they performed a simple matching-pennies game with a human, human-like android, mechanical robot, interactive robot, and a computer. Before playing this game in the scanner, participants experienced social interactions with each opponent separately and scored their initial impressions using two questionnaires. We found that the participants perceived opponents in two mental dimensions: one represented "mind-holderness" in which participants attributed anthropomorphic impressions to some of the opponents that had mental functions, while the other dimension represented "mind-readerness" in which participants characterized opponents as intelligent. Interestingly, this "mind-readerness" dimension correlated to participants frequently changing their game tactic to prevent opponents from envisioning their strategy, and this was corroborated by increased entropy during the game. We also found that the two factors separately modulated activity in distinct social brain regions. Specifically, mind-holderness modulated activity in the dorsal aspect of the temporoparietal junction (TPJ) and medial prefrontal and posterior paracingulate cortices, while mind-readerness modulated activity in the ventral aspect of TPJ and the temporal pole. These results clearly demonstrate that activity in social brain networks is modulated through pre-scanning experiences of social interaction with a variety of agents. Furthermore, our findings elucidated the existence of two distinct functional networks in the social human brain

  5. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing

    PubMed Central

    2014-01-01

    Introduction Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator’s (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. Material and method The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. Results For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient’s back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects – error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18

  6. The psychopath magnetized: insights from brain imaging

    PubMed Central

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2014-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and posterior cingulate and adjacent (para)limbic structures. We discuss these findings in the context of extant theories of psychopathy and highlight the potential legal and policy implications of this body of work. PMID:22177031

  7. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    SciTech Connect

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo; Peng, Guanyun

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  8. Identifying radiotherapy target volumes in brain cancer by image analysis

    PubMed Central

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B.; Erridge, Sara C.; McLaughlin, Stephen

    2015-01-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required. PMID:26609418

  9. In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation

    PubMed Central

    Tang, Qinggong; Tsytsarev, Vassiliy; Frank, Aaron; Wu, Yalun; Chen, Chao-wei; Erzurumlu, Reha S.; Chen, Yu

    2016-01-01

    Functional mapping of brain activity is important in elucidating how neural networks operate in the living brain. The whisker sensory system of rodents is an excellent model to study peripherally evoked neural activity in the central nervous system. Each facial whisker is represented by discrete modules of neurons all along the pathway leading to the neocortex. These modules are called “barrels” in layer 4 of the primary somatosensory cortex. Their location (approximately 300–500 μm below cortical surface) allows for convenient imaging of whisker-evoked neural activity in vivo. Fluorescence laminar optical tomography (FLOT) provides depth-resolved fluorescence molecular information with an imaging depth of a few millimeters. Angled illumination and detection configurations can improve both resolution and penetration depth. We applied angled FLOT (aFLOT) to record 3D neural activities evoked in the whisker system of mice by deflection of a single whisker in vivo. A 100 μm capillary and a pair of microelectrodes were inserted to the mouse brain to test the capability of the imaging system. The results show that it is possible to obtain 3D functional maps of the sensory periphery in the brain. This approach can be broadly applicable to functional imaging of other brain structures. PMID:27125318

  10. In Vivo Mesoscopic Voltage-Sensitive Dye Imaging of Brain Activation

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Tsytsarev, Vassiliy; Frank, Aaron; Wu, Yalun; Chen, Chao-Wei; Erzurumlu, Reha S.; Chen, Yu

    2016-04-01

    Functional mapping of brain activity is important in elucidating how neural networks operate in the living brain. The whisker sensory system of rodents is an excellent model to study peripherally evoked neural activity in the central nervous system. Each facial whisker is represented by discrete modules of neurons all along the pathway leading to the neocortex. These modules are called “barrels” in layer 4 of the primary somatosensory cortex. Their location (approximately 300–500 μm below cortical surface) allows for convenient imaging of whisker-evoked neural activity in vivo. Fluorescence laminar optical tomography (FLOT) provides depth-resolved fluorescence molecular information with an imaging depth of a few millimeters. Angled illumination and detection configurations can improve both resolution and penetration depth. We applied angled FLOT (aFLOT) to record 3D neural activities evoked in the whisker system of mice by deflection of a single whisker in vivo. A 100 μm capillary and a pair of microelectrodes were inserted to the mouse brain to test the capability of the imaging system. The results show that it is possible to obtain 3D functional maps of the sensory periphery in the brain. This approach can be broadly applicable to functional imaging of other brain structures.

  11. Functional brain imaging and bioacoustics in the Bottlenose dolphins, Tursiops truncatus

    NASA Astrophysics Data System (ADS)

    Ridgway, Sam; Finneran, James; Carder, Donald; van Bonn, William; Smith, Cynthia; Houser, Dorian; Mattrey, Robert; Hoh, Carl

    2003-10-01

    The dolphin brain is the central processing computer for a complex and effective underwater echolocation and communication system. Until now, it has not been possible to study or diagnose disorders of the dolphin brain employing modern functional imaging methods like those used in human medicine. Our most recent studies employ established methods such as behavioral tasks, physiological observations, and computed tomography (CT) and, for the first time, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Trained dolphins slide out of their enclosure on to a mat and are transported by trainers and veterinarians to the laboratory for injection of a ligand. Following ligand injection, brief experiments include trained vocal responses to acoustic, visual, or tactile stimuli. We have used the ligand technetium (Tc-99m) biscisate (Neurolite) to image circulatory flow by SPECT. Fluro-deoxy-d-glucose (18-F-FDG) has been employed to image brain metabolism with PET. Veterinarians carefully monitored dolphins during and after the procedure. Through these methods, we have demonstrated that functional imaging can be employed safely and productively with dolphins to obtain valuable information on brain structure and function for medical and research purposes. Hemispheric differences and variations in flow and metabolism in different brain areas will be shown.

  12. Registration, segmentation, and visualization of multimodal brain images.

    PubMed

    Viergever, M A; Maintz, J B; Niessen, W J; Noordmans, H J; Pluim, J P; Stokking, R; Vincken, K L

    2001-01-01

    This paper gives an overview of the studies performed at our institute over the last decade on the processing and visualization of brain images, in the context of international developments in the field. The focus is on multimodal image registration and multimodal visualization, while segmentation is touched upon as a preprocessing step for visualization. The state-of-the-art in these areas is discussed and suggestions for future research are given. PMID:11137791

  13. Flyception: imaging brain activity in freely walking fruit flies.

    PubMed

    Grover, Dhruv; Katsuki, Takeo; Greenspan, Ralph J

    2016-07-01

    Genetically encoded calcium sensors have enabled monitoring of neural activity in vivo using optical imaging techniques. Linking neural activity to complex behavior remains challenging, however, as most imaging systems require tethering the animal, which can impact the animal's behavioral repertoire. Here, we report a method for monitoring the brain activity of untethered, freely walking Drosophila melanogaster during sensorially and socially evoked behaviors to facilitate the study of neural mechanisms that underlie naturalistic behaviors. PMID:27183441

  14. Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging.

    PubMed

    Wolak, Daniel J; Pizzo, Michelle E; Thorne, Robert G

    2015-01-10

    Antibody-based therapeutics exhibit great promise in the treatment of central nervous system (CNS) disorders given their unique customizable properties. Although several clinical trials have evaluated therapeutic antibodies for treatment of CNS disorders, success to date has likely been limited in part due to complex issues associated with antibody delivery to the brain and antibody distribution within the CNS compartment. Major obstacles to effective CNS delivery of full length immunoglobulin G (IgG) antibodies include transport across the blood-brain and blood-cerebrospinal fluid barriers. IgG diffusion within brain extracellular space (ECS) may also play a role in limiting central antibody distribution; however, IgG transport in brain ECS has not yet been explored using established in vivo methods. Here, we used real-time integrative optical imaging to measure the diffusion properties of fluorescently labeled, non-targeted IgG after pressure injection in both free solution and in adult rat neocortex in vivo, revealing IgG diffusion in free medium is ~10-fold greater than in brain ECS. The pronounced hindered diffusion of IgG in brain ECS is likely due to a number of general factors associated with the brain microenvironment (e.g. ECS volume fraction and geometry/width) but also molecule-specific factors such as IgG size, shape, charge and specific binding interactions with ECS components. Co-injection of labeled IgG with an excess of unlabeled Fc fragment yielded a small yet significant increase in the IgG effective diffusion coefficient in brain, suggesting that binding between the IgG Fc domain and endogenous Fc-specific receptors may contribute to the hindered mobility of IgG in brain ECS. Importantly, local IgG diffusion coefficients from integrative optical imaging were similar to those obtained from ex vivo fluorescence imaging of transport gradients across the pial brain surface following controlled intracisternal infusions in anesthetized animals. Taken

  15. Clinical applications of modern imaging technology: stereo image formation and location of brain cancer

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-05-01

    It is very important to locate the tumor for a patient, who has cancer in his brain. If he only gets X-CT or MRI pictures, the doctor does not know the size, shape location of the tumor and the relation between the tumor and other organs. This paper presents the formation of stereo images of cancer. On the basis of color code and color 3D reconstruction. The stereo images of tumor, brain and encephalic truncus are formed. The stereo image of cancer can be round on X, Y, Z-coordinates to show the shape from different directions. In order to show the location of tumor, stereo image of tumor and encephalic truncus are provided on different angles. The cross section pictures are also offered to indicate the relation of brain, tumor and encephalic truncus on cross sections. In this paper the calculating of areas, volume and the space between cancer and the side of the brain are also described.

  16. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  17. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    PubMed

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification.

  18. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments

    PubMed Central

    Gorgolewski, Krzysztof J.; Auer, Tibor; Calhoun, Vince D.; Craddock, R. Cameron; Das, Samir; Duff, Eugene P.; Flandin, Guillaume; Ghosh, Satrajit S.; Glatard, Tristan; Halchenko, Yaroslav O.; Handwerker, Daniel A.; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B. Nolan; Nichols, Thomas E.; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A.; Varoquaux, Gaël; Poldrack, Russell A.

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  19. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments.

    PubMed

    Gorgolewski, Krzysztof J; Auer, Tibor; Calhoun, Vince D; Craddock, R Cameron; Das, Samir; Duff, Eugene P; Flandin, Guillaume; Ghosh, Satrajit S; Glatard, Tristan; Halchenko, Yaroslav O; Handwerker, Daniel A; Hanke, Michael; Keator, David; Li, Xiangrui; Michael, Zachary; Maumet, Camille; Nichols, B Nolan; Nichols, Thomas E; Pellman, John; Poline, Jean-Baptiste; Rokem, Ariel; Schaefer, Gunnar; Sochat, Vanessa; Triplett, William; Turner, Jessica A; Varoquaux, Gaël; Poldrack, Russell A

    2016-01-01

    The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment. This renders sharing and reusing data (within or between labs) difficult if not impossible and unnecessarily complicates the application of automatic pipelines and quality assurance protocols. To solve this problem, we have developed the Brain Imaging Data Structure (BIDS), a standard for organizing and describing MRI datasets. The BIDS standard uses file formats compatible with existing software, unifies the majority of practices already common in the field, and captures the metadata necessary for most common data processing operations. PMID:27326542

  20. Segmentation of confocal microscopic image of insect brain

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Jin; Lin, Chih-Yang; Ching, Yu-Tai

    2002-05-01

    Accurate analysis of insect brain structures in digital confocal microscopic images is valuable and important to biology research needs. The first step is to segment meaningful structures from images. Active contour model, known as snakes, is widely used for segmentation of medical images. A new class of active contour model called gradient vector flow snake has been introduced in 1998 to overcome some critical problems encountered in the traditional snake. In this paper, we use gradient vector flow snake to segment the mushroom body and the central body from the confocal microscopic insect brain images. First, an edge map is created from images by some edge filters. Second, a gradient vector flow field is calculated from the edge map using a computational diffusion process. Finally, a traditional snake deformation process starts until it reaches a stable configuration. User interface is also provided here, allowing users to edit the snake during deformation process, if desired. Using the gradient vector flow snake as the main segmentation method and assist with user interface, we can properly segment the confocal microscopic insect brain image for most of the cases. The identified mushroom and central body can then be used as the preliminary results toward a 3-D reconstruction process for further biology researches.

  1. Brain Imaging in Children with Neurodevelopmental Disorders.

    ERIC Educational Resources Information Center

    Mantovani, John F.

    1994-01-01

    This article reviews neuroimaging techniques such as cranial ultrasound, computed tomography scanning, and magnetic resonance imaging. Their roles in the care of children with neurodevelopmental disabilities include identification of high-risk infants, establishment of the diagnosis and prognosis in affected children, and enhancement of discussion…

  2. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  3. Processing method of images obtained during the TESIS/CORONAS-PHOTON experiment

    NASA Astrophysics Data System (ADS)

    Kuzin, S. V.; Shestov, S. V.; Bogachev, S. A.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.

    2011-04-01

    In January 2009, the CORONAS-PHOTON spacecraft was successfully launched. It includes a set of telescopes and spectroheliometers—TESIS—designed to image the solar corona in soft X-ray and EUV spectral ranges. Due to features of the reading system, to obtain physical information from these images, it is necessary to preprocess them, i.e., to remove the background, correct the white field, level, and clean. The paper discusses the algorithms and software developed and used for the preprocessing of images.

  4. Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications

    PubMed Central

    Stankiewicz, James; Panter, Scott S; Neema, Mohit; Arora, Ashish; Batt, Courtney; Bakshi, Rohit

    2007-01-01

    Summary Iron is important for brain oxygen transport, electron transfer, neurotransmitter synthesis, and myelin production. Though iron deposition has been observed in the brain with normal aging, increased iron has also been shown in many chronic neurologic disorders including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In vitro studies have demonstrated that excessive iron can lead to free radical production, which can promote neurotoxicity. However, the link between observed iron deposition and pathologic processes underlying various diseases of the brain is not well understood. It is not known whether excessive in vivo iron directly contributes to tissue damage or is solely an epiphenomenon. In this article we focus on the imaging of brain iron and the underlying physiology and metabolism relating to iron deposition. We conclude with a discussion of the potential implications of iron-related toxicity to neurotherapeutic development. PMID:17599703

  5. Thermal Images of Seeds Obtained at Different Depths by Photoacoustic Microscopy (PAM)

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2015-06-01

    The objective of the present study was to obtain thermal images of a broccoli seed ( Brassica oleracea) by photoacoustic microscopy, at different modulation frequencies of the incident light beam ((0.5, 1, 5, and 20) Hz). The thermal images obtained in the amplitude of the photoacoustic signal vary with each applied frequency. In the lowest light frequency modulation, there is greater thermal wave penetration in the sample. Likewise, the photoacoustic signal is modified according to the structural characteristics of the sample and the modulation frequency of the incident light. Different structural components could be seen by photothermal techniques, as shown in the present study.

  6. Power of the metaphor: forty signs on brain imaging.

    PubMed

    Gocmen, Rahsan; Guler, Ezgi; Kose, Ilgaz Cagatay; Oguz, Kader K

    2015-01-01

    We retrospectively reviewed neuroradiology database at our tertiary-care hospital to search for patients with metaphoric or descriptive signs on brain computed tomography or magnetic resonance imaging. Only patients who had clinical or pathological definitive diagnosis were included in this review.

  7. Imaging brain morphology with ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Unterhuber, Angelika; Hermann, Boris; Povazay, Boris; Sattmann, Harald; Mei, Michael; Holzwarth, Ronald; Preusser, Matthias; Reitsamer, Herbert; Seefeldt, Michael; Menzel, Ralf; Budka, Herbert; Fercher, Adolf F.; Drexler, Wolfgang

    2003-10-01

    The morphology of healthy and pathological human brain tissue, as well as the brain structural organization of various animal models has been imaged in-vitro using ultrahigh resolution optical coherence tomography (UHR OCT). Micrometer-scale OCT resolution (< 2 μm axial resolution) was achieved at different central wavelengths by interfacing three state-of-the-art broad bandwidth light sources (Ti:Al2O3, λc = 790 nm, Δλ = 260 nm and Pout = 50 mW; PCF based laser, λc = 1150 nm, Δλ = 350 nm and Pout = 2 W; Fiber laser based light source, λc = 1350 nm, Δλ = 470 nm and Pout = 4 mW) to a modular free-space OCT system, utilizing a dynamic focusing and designed for optimal performance in the appropriate wavelength regions. Images acquired from a fixed honeybee brain demonstrated the ability of UHR OCT to image the globular structure of the brain, some fine morphological details such as the nerve fiber bundles connecting the medulla (visual center) to the honeybee eyes, and the interfaces between different tissue layers in the medulla. Tomograms of various human neuropathologies demonstrated the feasibility of UHR OCT to visualize morphological details such as small (~20 μm) calcifications typical for fibrous meningioma, and enlarged nuclei of cancer cells (~10-15 μm) characteristic for many other neuropathologies. In addition UHR OCT was used to image cellular morphology in living ganglion cells.

  8. Image fusion for enhanced visualization of brain imaging

    NASA Astrophysics Data System (ADS)

    Socolinsky, Diego A.; Wolff, Lawrence B.

    1999-05-01

    We present a new formalism for the treatment and understanding of multispectral imags and multisensor fusion based on first order contrast information. Although little attention has been paid to the utility of multispectral contrast, we develop a theory for multispectral contrast that enables us to produce an optimal grayscale visualization of the first order contrast of an image with an arbitrary number of bands. In particular, we consider multiple registered visualization of multi-modal medical imaging. We demonstrate how our methodology can reveal significantly more interpretive information to a radiologist or image analyst, who can use it in a number of image understanding algorithms. Existing grayscale visualization strategies are reviewed and a discussion is given as to why our algorithm performs better. A variety of experimental results from medical imagin and remotely sensed data are presented.

  9. Assessment of vessel diameters for MR brain angiography processed images

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  10. Window classification of brain CT images in biomedical articles.

    PubMed

    Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R

    2012-01-01

    Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.

  11. Image-guided drug delivery to the brain using nanotechnology

    PubMed Central

    Ding, Hong; Wu, Fang; Nair, Madhavan P.

    2013-01-01

    Targeting across the blood--brain barrier (BBB) for treatment of central nervous system (CNS) diseases represents the most challenging aspect of, as well as one of the largest growing fields in, neuropharmaceutics. Combining nanotechnology with multiple imaging techniques has a unique role in the diagnosis and treatment (theranostics) of CNS disease. Such imaging techniques include anatomical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound (US), X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), electron microscopy, autoradiography and optical imaging as well as thermal images. In this review, we summarize and discuss recent advances in formulations, current challenges and possible hypotheses concerning the use of such theranostics across the BBB.[LM1] PMID:23817076

  12. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  13. Intraoperative magnetic resonance imaging findings during deep brain stimulation surgery

    PubMed Central

    Huston, Olivia O.; Watson, Robert E.; Bernstein, Matt A.; McGee, Kiaran P.; Stead, S. Matt; Gorman, Debb A.; Lee, Kendall H.; Huston, John

    2012-01-01

    Object Deep brain stimulation (DBS) is an established neurosurgical technique used to treat a variety of neurological disorders, including Parkinson disease, essential tremor, dystonia, epilepsy, depression, and obsessive-compulsive disorder. This study reports on the use of intraoperative MR imaging during DBS surgery to evaluate acute hemorrhage, intracranial air, brain shift, and accuracy of lead placement. Methods During a 46-month period, 143 patients underwent 152 DBS surgeries including 289 lead placements utilizing intraoperative 1.5-T MR imaging. Imaging was supervised by an MR imaging physicist to maintain the specific absorption rate below the required level of 0.1 W/kg and always included T1 magnetization-prepared rapid gradient echo and T2* gradient echo sequences with selected use of T2 fluid attenuated inversion recovery (FLAIR) and T2 fast spin echo (FSE). Retrospective review of the intraoperative MR imaging examinations was performed to quantify the amount of hemorrhage and the amount of air introduced during the DBS surgery. Results Intraoperative MR imaging revealed 5 subdural hematomas, 3 subarachnoid hemorrhages, and 1 intra-parenchymal hemorrhage in 9 of the 143 patients. Only 1 patient experiencing a subarachnoid hemorrhage developed clinically apparent symptoms, which included transient severe headache and mild confusion. Brain shift due to intracranial air was identified in 144 separate instances. Conclusions Intraoperative MR imaging can be safely performed and may assist in demonstrating acute changes involving intracranial hemorrhage and air during DBS surgery. These findings are rarely clinically significant and typically resolve prior to follow-up imaging. Selective use of T2 FLAIR and T2 FSE imaging can confirm the presence of hemorrhage or air and preclude the need for CT examinations. PMID:21699482

  14. Brain MR diffusion tensor imaging in Kennedy’s disease

    PubMed Central

    Garaci, Francesco; Lanzafame, Simona; Marfia, Girolama A; Marziali, Simone; Meschini, Alessandro; Di Giuliano, Francesca; Simonetti, Giovanni; Guerrisi, Maria; Massa, Roberto; Floris, Roberto

    2015-01-01

    Introduction Kennedy’s disease (KD) is a progressive degenerative disorder affecting lower motor neurons. We investigated the correlation between disease severity and whole brain white matter microstructure, including upper motor neuron tracts, by using diffusion-tensor imaging (DTI) in eight patients with KD in whom disease severity was evaluated using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS). Methods From DTI acquisitions we obtained maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1) and radial diffusivities (L2, L3). We then employed tract-based spatial statistics (TBSS) to investigate within-patient correlations of DTI invariants with ALSFRS and disease duration (DD). Results We found a significant correlation between low ALSFRS and 1) low FA values in association commissural and projection fibers, and 2) high L3 values in commissural tracts and fronto-parietal white matter. Additionally, we found a significant association between longer DD and 1) low FA in the genu and body of corpus callosum, association fibers and midbrain and 2) high L1 in projection and association tracts. Conclusions The associations between clinical variables and white matter microstructural changes in areas thought to be spared by the disease process support the hypothesis of a multisystem involvement in the complex pathogenic mechanisms responsible for the clinical disability of these patients. PMID:25963157

  15. Imaging genetics of structural brain connectivity and neural integrity markers

    PubMed Central

    Marenco, Stefano; Radulescu, Eugenia

    2009-01-01

    We review studies that have used diffusion imaging (DI) and magnetic resonance spectroscopy (MRS) to investigate genetic associations. A brief description of the measures obtainable with these methods and of some methodological and interpretability limitations is given. The usefulness of DI and MRS in defining intermediate phenotypes and in demonstrating the effects of common genetic variants known to increase risk for psychiatric manifestations on anatomical and metabolic phenotypes are reviewed. The main focus is on schizophrenia where the greatest amount of data has been collected. Moreover, we present an example coming from a different approach, where the genetic alteration is known (the deletion that causes Williams syndrome) and the DI phenotype can shed new light on the function of genes affected by the mutation. We conclude that, although these are still early days of this type of research and many findings remain controversial, both techniques can significantly contribute to the understanding of genetic effects in the brain and the pathophysiology of psychiatric disorders. PMID:19932755

  16. Brain imaging of mild cognitive impairment and Alzheimer's disease☆

    PubMed Central

    Yin, Changhao; Li, Siou; Zhao, Weina; Feng, Jiachun

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed. PMID:25206685

  17. A versatile clearing agent for multi-modal brain imaging.

    PubMed

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-05-07

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2'-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue.

  18. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  19. Spatial prior in SVM-based classification of brain images

    NASA Astrophysics Data System (ADS)

    Cuingnet, Rémi; Chupin, Marie; Benali, Habib; Colliot, Olivier

    2010-03-01

    This paper introduces a general framework for spatial prior in SVM-based classification of brain images based on Laplacian regularization. Most existing methods include spatial prior by adding a feature aggregation step before the SVM classification. The problem of the aggregation step is that the individual information of each feature is lost. Our framework enables to avoid this shortcoming by including the spatial prior directly in the SVM. We demonstrate that this framework can be used to derive embedded regularization corresponding to existing methods for classification of brain images and propose an efficient way to implement them. This framework is illustrated on the classification of MR images from 55 patients with Alzheimer's disease and 82 elderly controls selected from the ADNI database. The results demonstrate that the proposed algorithm enables introducing straightforward and anatomically consistent spatial prior into the classifier.

  20. Imaging of Brain Tumors With Paramagnetic Vesicles Targeted to Phosphatidylserine

    PubMed Central

    Winter, Patrick M.; Pearce, John; Chu, Zhengtao; McPherson, Christopher M.; Takigiku, Ray; Lee, Jing-Huei; Qi, Xiaoyang

    2014-01-01

    Purpose To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. Materials and Methods Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/ SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. Results The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)−1 relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). Conclusion These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS. PMID:24797437

  1. Multiscale modeling for image analysis of brain tumor studies.

    PubMed

    Bauer, Stefan; May, Christian; Dionysiou, Dimitra; Stamatakos, Georgios; Büchler, Philippe; Reyes, Mauricio

    2012-01-01

    Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multiscale, multiphysics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlas-based segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression. PMID:21813362

  2. Anaglyph stereo images generated from object topography obtained through fringe projection

    NASA Astrophysics Data System (ADS)

    López Dóminguez, Yolanda Yanet; Martínez García, Amalia; Rayas Álvarez, Juan Antonio; Genovese, Katia

    2013-09-01

    The structured light technique is useful to evaluate the topography of an object. By using the Fourier transform, the phase of a fringe pattern is obtained from a single image. With the phase information and the sensibility vector of the optical system, the value z(x, y) at each point of the object can be determined. It is known that color is a subjective sensation, and it changes depending on the observer. In order to make an association of real color and texture, it is necessary to calibrate and profile the optical devices involved in the process. Thus, we ensure that the color detected by a camera is the same displayed on the monitor and perceived by the observer, so it is possible to associate the color of the target object in addition to the evaluation of topography. On the other hand, 3D visualization is possible by using a stereoscopic system that provides two different images of the same object (one for each eye). One possible technique is that known as the anaglyph method, based on the binocular disparity of two images obtained with different color filters. Each one of the images is taken with complementary colors (red-blue or red-green), and the tri-dimensional shape can be seen through the use of special glasses; this way, each eye sees an image from its own angle. Object topography is obtained with the fringe projection technique, and then one image is selected and pseudo colored; then, the second image is taken, slightly changing the perspective of the tridimensional display and pseudo coloring it with a complimentary color. A computational algorithm is developed to evaluate and visualize the object in real time.

  3. A new versatile clearing method for brain imaging

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-03-01

    Light scattering inside biological tissue is a limitation for large volumes imaging with microscopic resolution. Based on refractive index matching, different approaches have been developed to reduce scattering in fixed tissue. High refractive index organic solvents and water-based optical clearing agents, such as Sca/e, SeeDB and CUBIC have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability to large volumes. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging blocks of dysplastic human brain transformed with CLARITY, immunostained and cleared with the TDE. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  4. Reflection mode photoacoustic imaging through infant skull toward noninvasive imaging of neonatal brains

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Fowlkes, J. Brian; Chamberland, David L.; Xi, Guohua; Carson, Paul L.

    2009-02-01

    The feasibility of transcranial imaging of neonatal brains with reflection mode photoacoustic technology has been explored. By using unembalmed infant skulls and fresh canine brains, experiments have been conducted to examine the ultrasound and light attenuation in the skull bone as well as consequent photoacoustic images through the skull. Mapping of blood vessels in a transcranial manner has been successfully achieved by employing the raster scan of a single-element transducer or a 2D PVDF array transducer. Experimental results indicate that noninvasive photoacoustic imaging of neonatal brain with a depth of 2 cm or more beneath the skull is feasible when working with near-infrared light. This study suggests that the emerging photoacoustic technology may become a powerful tool in the future for noninvasive diagnosis, monitoring and prognosis of disorders in prenatal or neonatal brains.

  5. Brain activation in response to randomized visual stimulation as obtained from conjunction and differential analysis: an fMRI study

    NASA Astrophysics Data System (ADS)

    Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.

    2014-11-01

    The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.

  6. Threshold selection for classification of MR brain images by clustering method

    NASA Astrophysics Data System (ADS)

    Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita

    2015-12-01

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  7. Threshold selection for classification of MR brain images by clustering method

    SciTech Connect

    Moldovanu, Simona; Obreja, Cristian; Moraru, Luminita

    2015-12-07

    Given a grey-intensity image, our method detects the optimal threshold for a suitable binarization of MR brain images. In MR brain image processing, the grey levels of pixels belonging to the object are not substantially different from the grey levels belonging to the background. Threshold optimization is an effective tool to separate objects from the background and further, in classification applications. This paper gives a detailed investigation on the selection of thresholds. Our method does not use the well-known method for binarization. Instead, we perform a simple threshold optimization which, in turn, will allow the best classification of the analyzed images into healthy and multiple sclerosis disease. The dissimilarity (or the distance between classes) has been established using the clustering method based on dendrograms. We tested our method using two classes of images: the first consists of 20 T2-weighted and 20 proton density PD-weighted scans from two healthy subjects and from two patients with multiple sclerosis. For each image and for each threshold, the number of the white pixels (or the area of white objects in binary image) has been determined. These pixel numbers represent the objects in clustering operation. The following optimum threshold values are obtained, T = 80 for PD images and T = 30 for T2w images. Each mentioned threshold separate clearly the clusters that belonging of the studied groups, healthy patient and multiple sclerosis disease.

  8. Automatic tissue segmentation of neonate brain MR Images with subject-specific atlases

    NASA Astrophysics Data System (ADS)

    Cherel, Marie; Budin, Francois; Prastawa, Marcel; Gerig, Guido; Lee, Kevin; Buss, Claudia; Lyall, Amanda; Zaldarriaga Consing, Kirsten; Styner, Martin

    2015-03-01

    Automatic tissue segmentation of the neonate brain using Magnetic Resonance Images (MRI) is extremely important to study brain development and perform early diagnostics but is challenging due to high variability and inhomogeneity in contrast throughout the image due to incomplete myelination of the white matter tracts. For these reasons, current methods often totally fail or give unsatisfying results. Furthermore, most of the subcortical midbrain structures are misclassified due to a lack of contrast in these regions. We have developed a novel method that creates a probabilistic subject-specific atlas based on a population atlas currently containing a number of manually segmented cases. The generated subject-specific atlas is sharp and adapted to the subject that is being processed. We then segment brain tissue classes using the newly created atlas with a single-atlas expectation maximization based method. Our proposed method leads to a much lower failure rate in our experiments. The overall segmentation results are considerably improved when compared to using a non-subject-specific, population average atlas. Additionally, we have incorporated diffusion information obtained from Diffusion Tensor Images (DTI) to improve the detection of white matter that is not visible at this early age in structural MRI (sMRI) due to a lack of myelination. Although this necessitates the acquisition of an additional sequence, the diffusion information improves the white matter segmentation throughout the brain, especially for the mid-brain structures such as the corpus callosum and the internal capsule.

  9. Automatic Tissue Segmentation of Neonate Brain MR Images with Subject-specific Atlases

    PubMed Central

    Cherel, Marie; Budin, Francois; Prastawa, Marcel; Gerig, Guido; Lee, Kevin; Buss, Claudia; Lyall, Amanda; Consing, Kirsten Zaldarriaga; Styner, Martin

    2015-01-01

    Automatic tissue segmentation of the neonate brain using Magnetic Resonance Images (MRI) is extremely important to study brain development and perform early diagnostics but is challenging due to high variability and inhomogeneity in contrast throughout the image due to incomplete myelination of the white matter tracts. For these reasons, current methods often totally fail or give unsatisfying results. Furthermore, most of the subcortical midbrain structures are misclassified due to a lack of contrast in these regions. We have developed a novel method that creates a probabilistic subject-specific atlas based on a population atlas currently containing a number of manually segmented cases. The generated subject-specific atlas is sharp and adapted to the subject that is being processed. We then segment brain tissue classes using the newly created atlas with a single-atlas expectation maximization based method. Our proposed method leads to a much lower failure rate in our experiments. The overall segmentation results are considerably improved when compared to using a non-subject-specific, population average atlas. Additionally, we have incorporated diffusion information obtained from Diffusion Tensor Images (DTI) to improve the detection of white matter that is not visible at this early age in structural MRI (sMRI) due to a lack of myelination. Although this necessitates the acquisition of an additional sequence, the diffusion information improves the white matter segmentation throughout the brain, especially for the mid-brain structures such as the corpus callosum and the internal capsule. PMID:26089584

  10. Bayesian analysis of multimodal data and brain imaging

    NASA Astrophysics Data System (ADS)

    Assadi, Amir H.; Eghbalnia, Hamid; Backonja, Miroslav; Wakai, Ronald T.; Rutecki, Paul; Haughton, Victor

    2000-06-01

    It is often the case that information about a process can be obtained using a variety of methods. Each method is employed because of specific advantages over the competing alternatives. An example in medical neuro-imaging is the choice between fMRI and MEG modes where fMRI can provide high spatial resolution in comparison to the superior temporal resolution of MEG. The combination of data from varying modes provides the opportunity to infer results that may not be possible by means of any one mode alone. We discuss a Bayesian and learning theoretic framework for enhanced feature extraction that is particularly suited to multi-modal investigations of massive data sets from multiple experiments. In the following Bayesian approach, acquired knowledge (information) regarding various aspects of the process are all directly incorporated into the formulation. This information can come from a variety of sources. In our case, it represents statistical information obtained from other modes of data collection. The information is used to train a learning machine to estimate a probability distribution, which is used in turn by a second machine as a prior, in order to produce a more refined estimation of the distribution of events. The computational demand of the algorithm is handled by proposing a distributed parallel implementation on a cluster of workstations that can be scaled to address real-time needs if required. We provide a simulation of these methods on a set of synthetically generated MEG and EEG data. We show how spatial and temporal resolutions improve by using prior distributions. The method on fMRI signals permits one to construct the probability distribution of the non-linear hemodynamics of the human brain (real data). These computational results are in agreement with biologically based measurements of other labs, as reported to us by researchers from UK. We also provide preliminary analysis involving multi-electrode cortical recording that accompanies

  11. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner.

    PubMed

    Laufer, Jan; Zhang, Edward; Raivich, Gennadij; Beard, Paul

    2009-04-01

    The application of a novel photoacoustic imaging instrument based on a Fabry-Perot polymer film sensing interferometer to imaging the small animal brain is described. This approach provides a convenient backward mode sensing configuration that offers the prospect of overcoming the limitations of existing piezoelectric based detection schemes for small animal brain imaging. Noninvasive images of the vasculature in the mouse brain were obtained at different wavelengths between 590 and 889 nm, showing that the cerebral vascular anatomy can be visualized with high contrast and spatial resolution to depths up to 3.7 mm. It is considered that the instrument has a role to play in characterizing small animal models of human disease and injury processes such as stroke, epilepsy, and traumatic brain injury.

  12. New perspectives on using brain imaging to study CNS stimulants.

    PubMed

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  13. Magnetic resonance imaging quality and volumes of brain structures from live and postmortem imaging of California sea lions with clinical signs of domoic acid toxicosis.

    PubMed

    Montie, Eric W; Wheeler, Elizabeth; Pussini, Nicola; Battey, Thomas W K; Barakos, Jerome; Dennison, Sophie; Colegrove, Kathleen; Gulland, Frances

    2010-09-17

    Our goal in this study was to compare magnetic resonance images and volumes of brain structures obtained alive versus postmortem of California sea lions Zalophus californianus exhibiting clinical signs of domoic acid (DA) toxicosis and those exhibiting normal behavior. Proton density-(PD) and T2-weighted images of postmortem-intact brains, up to 48 h after death, provided similar quality to images acquired from live sea lions. Volumes of gray matter (GM) and white matter (WM) of the cerebral hemispheres were similar to volumes calculated from images acquired when the sea lions were alive. However, cerebrospinal fluid (CSF) volumes decreased due to leakage. Hippocampal volumes from postmortem-intact images were useful for diagnosing unilateral and bilateral atrophy, consequences of DA toxicosis. These volumes were similar to the volumes in the live sea lion studies, up to 48 h postmortem. Imaging formalin-fixed brains provided some information on brain structure; however, images of the hippocampus and surrounding structures were of poorer quality compared to the images acquired alive and postmortem-intact. Despite these issues, volumes of cerebral GM and WM, as well as the hippocampus, were similar to volumes calculated from images of live sea lions and sufficient to diagnose hippocampal atrophy. Thus, postmortem MRI scanning (either intact or formalin-fixed) with volumetric analysis can be used to investigate the acute, chronic and possible developmental effects of DA on the brain of California sea lions.

  14. Emerging techniques and technologies in brain tumor imaging.

    PubMed

    Ellingson, Benjamin M; Bendszus, Martin; Sorensen, A Gregory; Pope, Whitney B

    2014-10-01

    The purpose of this report is to describe the state of imaging techniques and technologies for detecting response of brain tumors to treatment in the setting of multicenter clinical trials. Within currently used technologies, implementation of standardized image acquisition and the use of volumetric estimates and subtraction maps are likely to help to improve tumor visualization, delineation, and quantification. Upon further development, refinement, and standardization, imaging technologies such as diffusion and perfusion MRI and amino acid PET may contribute to the detection of tumor response to treatment, particularly in specific treatment settings. Over the next few years, new technologies such as 2(3)Na MRI and CEST imaging technologies will be explored for their use in expanding the ability to quantitatively image tumor response to therapies in a clinical trial setting.

  15. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

    PubMed Central

    Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui

    2015-01-01

    In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381

  16. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    NASA Astrophysics Data System (ADS)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  17. Optical imaging of neural activity: from neuron to brain

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Zeng, Shaoqun; Gong, Hui

    2003-12-01

    This paper introduces the optical imaging approaches at three levels in cognitive neuroscience in the Key Laboratory of Biomedical Photonics of Ministry of Education of China. In molecular and cellular level, the advances in microscopy, molecular optical marker, and sample preparations have made possible studies that characterize the form and function of neurons in unprecedented detail. The development of two-photon excitation has enabled fluorescent imaging of small structures in the midst of highly scattering media with little photodamage. The combination of MPE and multi-electrode array provides a powerful approach for neuronal networks imaging. Intrinsic signal imaging (ISI) and laser speckle imaging (LSI) are effective approaches for intrinsic signal imaging at a given cortical site. No alternative imaging technique for the visualization of functional organization in the living brain provides a comparable spatial resolution. It is this level of resolution that reveals where processing is performed - a necessary step for the understanding of the neural code at the population level. Completely noninvasive optical imaging through the intact human skull, such as functional near infrared imaging may provide an imaging tool offering both the spatial and the temporal resolutions required to expand our knowledge of the principles underlying the remarkable performance of the human cerebral cortex.

  18. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update.

    PubMed

    Wu, Xin; Kirov, Ivan I; Gonen, Oded; Ge, Yulin; Grossman, Robert I; Lui, Yvonne W

    2016-06-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016. PMID:27183405

  19. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update.

    PubMed

    Wu, Xin; Kirov, Ivan I; Gonen, Oded; Ge, Yulin; Grossman, Robert I; Lui, Yvonne W

    2016-06-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.

  20. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  1. A skull segmentation method for brain MR images based on multiscale bilateral filtering scheme

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2010-03-01

    We present a novel automatic segmentation method for the skull on brain MR images for attenuation correction in combined PET/MRI applications. Our method transforms T1-weighted MR images to the Radon domain and then detects the feature of the skull. In the Radon domain we use a bilateral filter to construct a multiscale images series. For the repeated convolution we increase the spatial smoothing at each scale and make the cumulative width of the spatial and range Gaussian doubled at each scale. Two filters with different kernels along the vertical direction are applied along the scales from the coarse to fine levels. The results from a coarse scale give a mask for the next fine scale and supervise the segmentation in the next fine scale. The method is robust for noise MR images because of its multiscale bilateral filtering scheme. After combining the two filtered sinogram, the reciprocal binary sinogram of the skull is obtained for the reconstruction of the skull image. We use the filtered back projection method to reconstruct the segmented skull image. We define six metrics to evaluate our segmentation method. The method has been tested with brain phantom data, simulated brain data, and real MRI data. Evaluation results showed that our method is robust and accurate, which is useful for skull segmentation and subsequently for attenuation correction in combined PET/MRI applications.

  2. A Primer on Brain Imaging in Developmental Psychopathology: What Is It Good For?

    ERIC Educational Resources Information Center

    Pine, Daniel S.

    2006-01-01

    This primer introduces a Special Section on brain imaging, which includes a commentary and 10 data papers presenting applications of brain imaging to questions on developmental psychopathology. This primer serves two purposes. First, the article summarizes the strength and weaknesses of various brain-imaging techniques typically employed in…

  3. Enhancement of topographic images obtained in liquid media by atomic force microscopy.

    PubMed

    Kim, Younghun; Yi, Jongheop

    2006-10-19

    The open liquid-cell atomic force microscope (AFM) has potential for studies of biomaterials and surface morphology in liquid media, and a variety of fluids can be used as buffer solutions. The dependence of image distortion on fluid properties (kinematic viscosity) has been studied with edge friction force obtained in lateral images and will shortly appear elsewhere [Appl. Phys. Lett. 2006, 88, 173121]. Previous studies indicate that the scan rate should be slower for obtaining a nondistorted image. However, the time required for the scan is greatly increased. Therefore, we introduced the vector concept to evaluate the net force for scanning in the y-direction and found two solutions to achieve a zero force difference introduced by the cantilever-fluid and the tip-surface. When the scan rate approaches zero or a specific velocity (30 microm/s in this study), the force of the interaction induced by the cantilever-fluid and tip-surface is reduced to a considerable extent. Among the two solutions, a scan with a specific velocity is an easy, rapid method for obtaining a nondistorted image, compared to the previously proposed method (scan rate approaches zero). This proposed model was confirmed in a proof-of-concept test using 2-propanol. PMID:17034239

  4. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Song; Maslov, Konstantin; Tsytsarev, Vassiliy; Wang, Lihong V.

    2009-07-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is applied to functional brain imaging in living mice. A near-diffraction-limited bright-field optical illumination is employed to achieve micrometer lateral resolution, and a dual-wavelength measurement is utilized to extract the blood oxygenation information. The variation in hemoglobin oxygen saturation (sO2) along vascular branching has been imaged in a precapillary arteriolar tree and a postcapillary venular tree, respectively. To the best of our knowledge, this is the first report on in vivo volumetric imaging of brain microvascular morphology and oxygenation down to single capillaries through intact mouse skulls. It is anticipated that: (i) chronic imaging enabled by this minimally invasive procedure will advance the study of cortical plasticity and neurological diseases; (ii) revealing the neuroactivity-dependent changes in hemoglobin concentration and oxygenation will facilitate the understanding of neurovascular coupling at the capillary level; and (iii) combining functional OR-PAM and high-resolution blood flowmetry will have the potential to explore cellular pathways of brain energy metabolism.

  5. Automatic segmentation of MR brain images in multiple sclerosis patients

    NASA Astrophysics Data System (ADS)

    Avula, Ramesh T. V.; Erickson, Bradley J.

    1996-04-01

    A totally automatic scheme for segmenting brain from extracranial tissues and to classify all intracranial voxels as CSF, gray matter (GM), white matter (WM), or abnormality such as multiple sclerosis (MS) lesions is presented in this paper. It is observed that in MR head images, if a tissue's intensity values are normalized, its relationship to the other tissues is essentially constant for a given type of image. Based on this approach, the subcutaneous fat surrounding the head is normalized to classify other tissues. Spatially registered 3 mm MR head image slices of T1 weighted, fast spin echo [dual echo T2 weighted and proton density (PD) weighted images] and fast fluid attenuated inversion recovery (FLAIR) sequences are used for segmentation. Subcutaneous fat surrounding the skull was identified based on intensity thresholding from T1 weighted images. A multiparametric space map was developed for CSF, GM and WM by normalizing each tissue with respect to the mean value of corresponding subcutaneous fat on each pulse sequence. To reduce the low frequency noise without blurring the fine morphological high frequency details an anisotropic diffusion filter was applied to all images before segmentation. An initial slice by slice classification was followed by morphological operations to delete any brides connecting extracranial segments. Finally 3-dimensional region growing of the segmented brain extracts GM, WM and pathology. The algorithm was tested on sequential scans of 10 patients with MS lesions. For well registered sequences, tissues and pathology have been accurately classified. This procedure does not require user input or image training data sets, and shows promise for automatic classification of brain and pathology.

  6. Determining Spectral Reflectance Coefficients from Hyperspectral Images Obtained from Low Altitudes

    NASA Astrophysics Data System (ADS)

    Walczykowski, P.; Jenerowicz, A.; Orych, A.; Siok, K.

    2016-06-01

    Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based), object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor mounted on an

  7. Automatic segmentation of brain images: selection of region extraction methods

    NASA Astrophysics Data System (ADS)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  8. Brain responses strongly correlate with Weibull image statistics when processing natural images.

    PubMed

    Scholte, H Steven; Ghebreab, Sennay; Waldorp, Lourens; Smeulders, Arnold W M; Lamme, Victor A F

    2009-01-01

    The visual appearance of natural scenes is governed by a surprisingly simple hidden structure. The distributions of contrast values in natural images generally follow a Weibull distribution, with beta and gamma as free parameters. Beta and gamma seem to structure the space of natural images in an ecologically meaningful way, in particular with respect to the fragmentation and texture similarity within an image. Since it is often assumed that the brain exploits structural regularities in natural image statistics to efficiently encode and analyze visual input, we here ask ourselves whether the brain approximates the beta and gamma values underlying the contrast distributions of natural images. We present a model that shows that beta and gamma can be easily estimated from the outputs of X-cells and Y-cells. In addition, we covaried the EEG responses of subjects viewing natural images with the beta and gamma values of those images. We show that beta and gamma explain up to 71% of the variance of the early ERP signal, substantially outperforming other tested contrast measurements. This suggests that the brain is strongly tuned to the image's beta and gamma values, potentially providing the visual system with an efficient way to rapidly classify incoming images on the basis of omnipresent low-level natural image statistics. PMID:19757938

  9. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  10. Brain CT and MRI: differential diagnosis of imaging findings.

    PubMed

    Masdeu, Joseph C; Gadhia, Rajan; Faridar, Alireza

    2016-01-01

    Following a traditional approach, in Chapters 5 and 14-29 in the previous volume, diverse brain diseases are listed and their imaging findings described in detail. In this chapter the approach is from the imaging finding to the disease: for instance, what list of diseases can give rise to a contrast-enhancing mass in the cerebellopontine angle? Imaging findings that are reviewed in succession include the location of the lesion, its multiplicity and symmetry, its volume, ranging from atrophy to mass effect, its homogeneity, its density, measurable by computed tomography (CT), its appearance on T1, T2, and diffusion magnetic resonance imaging (MRI), and, finally, its characteristics after the infusion of intravenous contrast. A differential diagnosis for each finding is provided. While the approach adopted in this chapter is unconventional, we hope that it will be most helpful to anyone reading images. Furthermore, it could serve as the basis to create or complete image databases to guide in the interpretation of brain CT and MRI. PMID:27430457

  11. Brain imaging during the transition from psychosis prodrome to schizophrenia.

    PubMed

    Chung, Yoonho; Cannon, Tyrone D

    2015-05-01

    Neuroimaging studies have identified patterns of brain abnormalities in various stages of schizophrenia, but whether these abnormalities reflect primary factors associated with the causes of illness or secondary phenomena such as medications has been unclear. Recent work conducted within the prodromal risk paradigm suggests that progressive change in brain structure and function occurs around the time when clinically high-risk individuals transition into full-blown psychosis, effects that cannot be explained by exposure to medications or illness chronicity. This article reviews recent work bearing on the question of the timing of onset and course of brain changes, focusing on structural MRI, diffusion tensor imaging, and resting state connectivity MRI, in association with the onset and course of psychosis. We conclude with a consideration of potential mechanisms underlying progressive tissue changes during the prodromal phase of schizophrenia and implications for prevention. PMID:25900551

  12. Image Montaging for Creating a Virtual Pathology Slide: An Innovative and Economical Tool to Obtain a Whole Slide Image

    PubMed Central

    Pandurangappa, Rohit; Annavajjula, Saileela; Rajashekaraiah, Premalatha Bidadi

    2016-01-01

    Background. Microscopes are omnipresent throughout the field of biological research. With microscopes one can see in detail what is going on at the cellular level in tissues. Though it is a ubiquitous tool, the limitation is that with high magnification there is a small field of view. It is often advantageous to see an entire sample at high magnification. Over the years technological advancements in optics have helped to provide solutions to this limitation of microscopes by creating the so-called dedicated “slide scanners” which can provide a “whole slide digital image.” These scanners can provide seamless, large-field-of-view, high resolution image of entire tissue section. The only disadvantage of such complete slide imaging system is its outrageous cost, thereby hindering their practical use by most laboratories, especially in developing and low resource countries. Methods. In a quest for their substitute, we tried commonly used image editing software Adobe Photoshop along with a basic image capturing device attached to a trinocular microscope to create a digital pathology slide. Results. The seamless image created using Adobe Photoshop maintained its diagnostic quality. Conclusion. With time and effort photomicrographs obtained from a basic camera-microscope set up can be combined and merged in Adobe Photoshop to create a whole slide digital image of practically usable quality at a negligible cost. PMID:27747147

  13. Alzheimer Disease: Quantitative H-1 MR Spectroscopic Imaging of Frontoparietal Brain1

    PubMed Central

    Schuff, Norbert; Amend, Diane L.; Meyerhoff, Dieter J.; Tanabe, Jody L.; Norman, David; Fein, George; Weiner, Michael W.

    2009-01-01

    PURPOSE To replicate previous hydrogen-1 magnetic resonance (MR) spectroscopic imaging findings of metabolic abnormalities in patients with Alzheimer disease (AD), to verify that metabolic abnormalities are not an artifact of structural variations measured at MR imaging, to determine whether metabolic changes correlate with dementia severity, and to test whether MR imaging and MR spectroscopic imaging findings together improve ability to differentiate AD. MATERIALS AND METHODS MR spectroscopic imaging and MR imaging were performed in 28 patients with AD and 22 healthy elderly subjects. Spectroscopic imaging data were coregistered with MR imaging segmentation data to obtain volume-corrected metabolite concentrations. RESULTS Consistent with previous results, N-acetyl aspartate (NAA) levels were statistically significantly reduced in frontal and posterior mesial cortex of AD patients, presumably due to neuronal loss. NAA level reductions were independent of structural variations measured at MR imaging and, in parietal mesial cortex, were correlated mildly with dementia severity. Spectroscopic imaging findings of NAA level combined with MR imaging measures did not improve discrimination power for AD relative to that of MR imaging alone. CONCLUSION Reduced NAA levels in frontoparietal brain are of limited use for diagnosis of AD. However, they are not an artifact of structural variations and thus may provide useful information for the understanding of the pathologic processes underlying AD. PMID:9530304

  14. Topological characterization of signal in brain images using min-max diagrams.

    PubMed

    Chung, Moo K; Singh, Vikas; Kim, Peter T; Dalton, Kim M; Davidson, Richard J

    2009-01-01

    We present a novel computational framework for characterizing signal in brain images via nonlinear pairing of critical values of the signal. Among the astronomically large number of different pairings possible, we show that representations derived from specific pairing schemes provide concise representations of the image. This procedure yields a "min-max diagram" of the image data. The representation turns out to be especially powerful in discriminating image scans obtained from different clinical populations, and directly opens the door to applications in a variety of learning and inference problems in biomedical imaging. It is noticed that this strategy significantly departs from the standard image analysis paradigm--where the 'mean' signal is used to characterize an ensemble of images. This offers robustness to noise in subsequent statistical analyses, for example; however, the attenuation of the signal content due to averaging makes it rather difficult to identify subtle variations. The proposed topologically oriented method seeks to address these limitations by characterizing and encoding topological features or attributes of the image. As an application, we have used this method to characterize cortical thickness measures along brain surfaces in classifying autistic subjects. Our promising experimental results provide evidence of the power of this representation.

  15. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  16. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    S. Lee, B. Kross, D. Weisenberger, J. McKisson, J.S. Goddard, J.S. Baba, M.S. Smith

    2012-02-01

    Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  17. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    Lee, Seung Joon; Weisenberger, A G; McKisson, J; Goddard Jr, James Samuel; Baba, Justin S; Smith, M F

    2011-01-01

    Abstract- Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  18. Functional imaging of single synapses in brain slices.

    PubMed

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  19. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    PubMed

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification. PMID:19729899

  20. Obtaining Formability Characteristics Of Automotive Materials Using On-line Strain Imaging System

    NASA Astrophysics Data System (ADS)

    Situ, Quan; Bruhis, Moisei; Jain, Mukesh

    2005-08-01

    The formability of automobile sheet material AA6111-T4 was investigated in the hemispherical punch test. Specimens with various geometry and lubrication conditions were utilized to obtain a continuous strain map from a biaxial stretching. The data was processed to obtain strain path and limit strain values as measures of formability. The Strain imaging system, ARAMIS, in which a speckle pattern is utilized instead of the conventional grid system, was employed to capture the strains during the forming process. Features of the evolving dome surface, such as development of shear bands and strain localization were accurately captured and studied. Specimen profile with non-symmetric notches for shearing test in biaxial loading was designed and investigated in both the experimental and the FE approach. The on-line strain imaging method offers a useful approach towards developing an understanding of flow localization, formability and fracture under biaxial loading conditions.

  1. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    PubMed

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies. PMID:23439846

  2. [Functional magnetic resonance imaging of psychopharmacological brain effects: an update].

    PubMed

    Braus, D F; Brassen, S; Weimer, E; Tost, H

    2003-02-01

    Functional magnetic resonance imaging (fMRI) is well established for the examination of functional activity in the living brain. The method permits the development of functional activation maps during perceptual, cognitive and emotional efforts with a high temporal and spatial resolution. As of late there has been growing interest in using this technique to investigate regionally specific brain activity following the administration of drugs such as nicotine, cocaine, lorazepam, scopolamine, antipsychotics or antidepressants. Studies in experimental animals investigate signal changes associated with the administration of psychopharmacological substances in different brain areas using a high magnetising field (> 4 Tesla). FMRI-studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects of the CNS due to long- term medication. Their results provide insights into brain physiology and neuropharmacological mechanisms which are in turn relevant for preclinical pharmacological studies, responder analyses and for the investigation of pathogenetic models in psychiatric diseases. However, with these new opportunities, additional methodological considerations and limitations emerge. Besides the need of controlling motion artefacts, the influence of interfering psychological variables, an exact specification of the experimental design, a standardised analysis for data adjustment and technical limitations have to be considered. This article provides an overview of the underlying model of brain function, present applications, future possibilities and methodological limitations of fMRI for the understanding of human psychopharmacology. PMID:12579470

  3. Label-free dopamine imaging in live rat brain slices.

    PubMed

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue.

  4. Label-Free Dopamine Imaging in Live Rat Brain Slices

    PubMed Central

    2014-01-01

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ∼ 270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue. PMID:24661118

  5. Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T.

    PubMed

    Williams, Lori-Anne; DeVito, Timothy J; Winter, Jeff D; Orr, Timothy N; Thompson, R Terry; Gelman, Neil

    2007-10-01

    Three-dimensional (3D) magnetic resonance imaging (MRI) has shown great potential for studying the impact of prematurity and pathology on brain development. We have investigated the potential of optimized T1-weighted 3D magnetization-prepared rapid gradient-echo imaging (MP-RAGE) for obtaining contrast between white matter (WM) and gray matter (GM) in neonates at 3 T. Using numerical simulations, we predicted that the inversion time (TI) for obtaining strongest contrast at 3 T is approximately 2 s for neonates, whereas for adults, this value is approximately 1.3 s. The optimal neonatal TI value was found to be insensitive to reasonable variations of the assumed T1 relaxation times. The maximum theoretical contrast for neonates was found to be approximately one third of that for adults. Using the optimized TI values, MP-RAGE images were obtained from seven neonates and seven adults at 3 T, and the contrast-to-noise ratio (CNR) was measured for WM versus five GM regions. Compared to adults, neonates exhibited lower CNR between cortical GM and WM and showed a different pattern of regional variation in CNR. These results emphasize the importance of sequence optimization specifically for neonates and demonstrate the challenge in obtaining strong contrast in neonatal brain with T1-weighted 3D imaging. PMID:17391887

  6. Imaging synaptic density in the living human brain.

    PubMed

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  7. Round Randomized Learning Vector Quantization for Brain Tumor Imaging.

    PubMed

    Sheikh Abdullah, Siti Norul Huda; Bohani, Farah Aqilah; Nayef, Baher H; Sahran, Shahnorbanun; Al Akash, Omar; Iqbal Hussain, Rizuana; Ismail, Fuad

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  8. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  9. Comparison of accelerated T1-weighted whole-brain structural-imaging protocols.

    PubMed

    Falkovskiy, Pavel; Brenner, Daniel; Feiweier, Thorsten; Kannengiesser, Stephan; Maréchal, Bénédicte; Kober, Tobias; Roche, Alexis; Thostenson, Kaely; Meuli, Reto; Reyes, Denise; Stoecker, Tony; Bernstein, Matt A; Thiran, Jean-Philippe; Krueger, Gunnar

    2016-01-01

    Imaging in neuroscience, clinical research and pharmaceutical trials often employs the 3D magnetisation-prepared rapid gradient-echo (MPRAGE) sequence to obtain structural T1-weighted images with high spatial resolution of the human brain. Typical research and clinical routine MPRAGE protocols with ~1mm isotropic resolution require data acquisition time in the range of 5-10min and often use only moderate two-fold acceleration factor for parallel imaging. Recent advances in MRI hardware and acquisition methodology promise improved leverage of the MR signal and more benign artefact properties in particular when employing increased acceleration factors in clinical routine and research. In this study, we examined four variants of a four-fold-accelerated MPRAGE protocol (2D-GRAPPA, CAIPIRINHA, CAIPIRINHA elliptical, and segmented MPRAGE) and compared clinical readings, basic image quality metrics (SNR, CNR), and automated brain tissue segmentation for morphological assessments of brain structures. The results were benchmarked against a widely-used two-fold-accelerated 3T ADNI MPRAGE protocol that served as reference in this study. 22 healthy subjects (age=20-44yrs.) were imaged with all MPRAGE variants in a single session. An experienced reader rated all images of clinically useful image quality. CAIPIRINHA MPRAGE scans were perceived on average to be of identical value for reading as the reference ADNI-2 protocol. SNR and CNR measurements exhibited the theoretically expected performance at the four-fold acceleration. The results of this study demonstrate that the four-fold accelerated protocols introduce systematic biases in the segmentation results of some brain structures compared to the reference ADNI-2 protocol. Furthermore, results suggest that the increased noise levels in the accelerated protocols play an important role in introducing these biases, at least under the present study conditions. PMID:26297848

  10. Optical motion tracking to improve image quality in MRI of the brain

    NASA Astrophysics Data System (ADS)

    Maclaren, Julian; Aksoy, Murat; Ooi, Melvyn; Bammer, Roland

    2012-10-01

    Magnetic resonance imaging (MRI) of the brain is highly sensitivity to head motion. Prospective motion correction is a promising new method to prevent artifacts resulting from this effect. The image volume is continuously updated based on head tracking information, ensuring that the magnetic fields used for imaging maintain a constant geometric relationship relative to the object. This paper reviews current developments and methods of performing prospective correction. Optical tracking using cameras has major advantages over other methods used to obtain head pose information, as it does not affect the MR imaging process or interfere with the sequence timing. Results show that motion artifacts can be almost completely prevented for most imaging sequences. Despite this success, there are still engineering challenges to be solved before the technique becomes widely accepted in the clinic. These include improvements in miniaturization, marker fixation and MR compatibility.

  11. Neurovascular coupling: in vivo optical techniques for functional brain imaging

    PubMed Central

    2013-01-01

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

  12. Neurovascular coupling: in vivo optical techniques for functional brain imaging.

    PubMed

    Liao, Lun-De; Tsytsarev, Vassiliy; Delgado-Martínez, Ignacio; Li, Meng-Lin; Erzurumlu, Reha; Vipin, Ashwati; Orellana, Josue; Lin, Yan-Ren; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2013-04-30

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

  13. Fuzzy neural-network-based segmentation of multispectral magnetic-resonance brain images

    NASA Astrophysics Data System (ADS)

    Blonda, Palma N.; Bennardo, A.; Satalino, Giuseppe; Pasquariello, Guido; De Blasi, Roberto A.; Milella, D.

    1996-06-01

    This study investigates the applicability of a multimodular neuro-fuzzy system in the multispectral analysis of magnetic resonance (MR) images of the human brain. The system consists of two components: an unsupervised neural module for image segmentation in tissue regions and a supervised module for tissue labeling. The former is the fuzzy Kohonen clustering network (FKCN). The latter is a feed-forward network based on the back-propagation learning rule. The results obtained with the FKCN have been compared with those extracted by a self organizing map (SOM). The system has been used to analyze the multispectral MR brain images of a healthy volunteer. The data set included the proton density (PD), T2, T1 weighted spin-echo (SE) bands and a new T1- weighted three dimensional sequence, i.e. the magnetization- prepared rapid gradient echo (MP-RAGE). One of the main objectives of this study has been to evaluate the usefulness of brain imaging with the MP-RAGE sequence in view of automatic tissue classification. To this purpose, a quantitative evaluation has been provided on the base of some labeled areas selected interactively by a neuro- radiologist from the input raw images. Quantitative results seem to indicate that the MP-RAGE sequence may provide higher tissue separability than the T1-weighted SE sequence.

  14. In Vivo Brain MR Imaging at Subnanoliter Resolution: Contrast and Histology.

    PubMed

    Watanabe, Takashi; Frahm, Jens; Michaelis, Thomas

    2016-01-01

    This article provides an overview of in vivo magnetic resonance (MR) imaging contrasts obtained for mammalian brain in relation to histological knowledge. Emphasis is paid to the (1) significance of high spatial resolution for the optimization of T1, T2, and magnetization transfer contrast, (2) use of exogenous extra- and intracellular contrast agents for validating endogenous contrast sources, and (3) histological structures and biochemical compounds underlying these contrasts and (4) their relevance to neuroradiology. Comparisons between MR imaging at subnanoliter resolution and histological data indicate that (a) myelin sheaths, (b) nerve cells, and (c) the neuropil are most responsible for observed MR imaging contrasts, while (a) diamagnetic macromolecules, (b) intracellular paramagnetic ions, and (c) extracellular free water, respectively, emerge as the dominant factors. Enhanced relaxation rates due to paramagnetic ions, such as iron and manganese, have been observed for oligodendrocytes, astrocytes, microglia, and blood cells in the brain as well as for nerve cells. Taken together, a plethora of observations suggests that the delineation of specific structures in high-resolution MR imaging of mammalian brain and the absence of corresponding contrasts in MR imaging of the human brain do not necessarily indicate differences between species but may be explained by partial volume effects. Second, paramagnetic ions are required in active cells in vivo which may reduce the magnetization transfer ratio in the brain through accelerated T1 recovery. Third, reductions of the magnetization transfer ratio may be more sensitive to a particular pathological condition, such as astrocytosis, microglial activation, inflammation, and demyelination, than changes in relaxation. This is because the simultaneous occurrence of increased paramagnetic ions (i.e., shorter relaxation times) and increased free water (i.e., longer relaxation times) may cancel T1 or T2 effects, whereas

  15. Free magnesium levels in normal human brain and brain tumors: sup 31 P chemical-shift imaging measurements at 1. 5 T

    SciTech Connect

    Taylor, J.S.; Vigneron, D.B.; Murphy-Boesch, J.; Nelson, S.J.; Kessler, H.B.; Coia, L.; Curran, W.; Brown, T.R. )

    1991-08-01

    The authors have studied a series of normal subjects and patients with brain tumors, by using {sup 31}P three-dimensional chemical shift imaging to obtain localized {sup 31}P spectra of the brain. A significant proportion of brain cytosolic ATP in normal brain is not complexed to Mg{sup 2+}, as indicated by the chemical shift {delta} of the {beta}-P resonance of ATP. The ATP {beta}P resonance position in brain thus is sensitive to changes in intracellular free Mg{sup 2+} concentration and in the proportion of ATP complexed with Mg because this shift lies on the rising portion of the {delta} vs. Mg{sup 2+} titration curve for ATP. They have measured the ATP {beta}-P shift and compared intracellular free Mg{sup 2+} concentration and fractions of free ATP for normal individuals and a limited series of patients with brain tumors. In four of the five spectra obtained from brain tissue containing a substantial proportion of tumor, intracellular free Mg{sup 2+} was increased, and the fraction of free ATP was decreased, compared with normal brain.

  16. Nanoparticle-assisted-multiphoton microscopy for in vivo brain imaging of mice

    NASA Astrophysics Data System (ADS)

    Qian, Jun

    2015-03-01

    Neuro/brain study has attracted much attention during past few years, and many optical methods have been utilized in order to obtain accurate and complete neural information inside the brain. Relying on simultaneous absorption of two or more near-infrared photons by a fluorophore, multiphoton microscopy can achieve deep tissue penetration and efficient light detection noninvasively, which makes it very suitable for thick-tissue and in vivo bioimaging. Nanoparticles possess many unique optical and chemical properties, such as anti-photobleaching, large multiphoton absorption cross-section, and high stability in biological environment, which facilitates their applications in long-term multiphoton microscopy as contrast agents. In this paper, we will introduce several typical nanoparticles (e.g. organic dye doped polymer nanoparticles and gold nanorods) with high multiphoton fluorescence efficiency. We further applied them in two- and three-photon in vivo functional brain imaging of mice, such as brain-microglia imaging, 3D architecture reconstruction of brain blood vessel, and blood velocity measurement.

  17. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation.

    PubMed

    Stanescu, Luana; Ishak, Gisele E; Khanna, Paritosh C; Biyyam, Deepa R; Shaw, Dennis W; Parisi, Marguerite T

    2013-01-01

    Positron emission tomography (PET) of the brain is an important problem-solving tool in pediatric neuroimaging, neurology, and neurosurgery. Fluorine 18 fluorodeoxyglucose (FDG) PET or dual-modality PET and computed tomographic (CT) imaging (PET/CT), with magnetic resonance (MR) imaging correlation, can be used to evaluate childhood epilepsy and pediatric brain tumors, areas in which PET adds value in patient management. FDG PET has been widely used in pediatric temporal lobe epilepsy, most commonly manifesting as mesial temporal sclerosis, which demonstrates hypometabolism at interictal PET and hypermetabolism during seizures. Recently, FDG PET has shown added value for patients with extratemporal epilepsy, in whom FDG PET can help identify cortical foci of interictal hypometabolism that are undetectable or difficult to detect with MR imaging. These findings can then guide additional investigations and surgery. FDG PET also enhances medical decision making in children with brain tumors, in whom FDG PET can be used to (a) improve the diagnostic yield of stereotactic biopsies by detecting metabolically active areas of tumor, (b) help guide the surgeon in achieving total tumor resection, and (c) increase detection of residual or recurrent tumor. Technologic advances in the past decade have allowed fusion of PET and MR images, combining the high resolution of MR imaging with the low-resolution functional capability of PET. As dual-modality integrated PET/MR imaging systems become available, CT coregistration for PET can be eliminated, thus reducing patient radiation exposure. Increasing familiarity with normal and abnormal appearances of FDG PET brain images correlated with MR images can enhance diagnostic yield and improve the care of children with epilepsy and brain tumors.

  18. Volume delineation by fusion of fuzzy sets obtained from multiplanar tomographic images.

    PubMed

    Vial, S; Gibon, D; Vasseur, C; Rousseau, J

    2001-12-01

    Techniques of three-dimensional (3-D) volume delineation from tomographic medical imaging are usually based on 2-D contour definition. For a given structure, several different contours can be obtained depending on the segmentation method used or the user's choice. The goal of this work is to develop a new method that reduces the inaccuracies generally observed. A minimum volume that is certain to be included in the volume concerned (membership degree mu = 1), and a maximum volume outside which no part of the volume is expected to be found (membership degree mu = 0), are defined semi-automatically. The intermediate fuzziness region (0 < mu < 1) is processed using the theory of possibility. The resulting fuzzy volume is obtained after data fusion from multiplanar slices. The influence of the contrast-to-noise ratio was tested on simulated images. The influence of slice thickness as well as the accuracy of the method were studied on phantoms. The absolute volume error was less than 2% for phantom volumes of 2-8 cm3, whereas the values obtained with conventional methods were much larger than the actual volumes. Clinical experiments were conducted, and the fuzzy logic method gave a volume lower than that obtained with the conventional method. Our fuzzy logic method allows volumes to be determined with better accuracy and reproducibility. PMID:11811836

  19. The Dynamic Dielectric at a Brain Functional Site and an EM Wave Approach to Functional Brain Imaging

    PubMed Central

    Li, X. P.; Xia, Q.; Qu, D.; Wu, T. C.; Yang, D. G.; Hao, W. D.; Jiang, X.; Li, X. M.

    2014-01-01

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging. PMID:25367217

  20. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    PubMed

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  1. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  2. Sub-Millimeter Imaging of Brain-Free Water for Rapid Volume Assessment in Atrophic Brains

    PubMed Central

    Gao, Katherine C.; Nair, Govind; Cortese, Irene C. M.; Koretsky, Alan; Reich, Daniel S.

    2016-01-01

    Introduction Cerebral atrophy occurs in healthy aging, and in disease processes such as multiple sclerosis (MS), it correlates with disability accumulation. Imaging measurements of brain atrophy are commonly based on tissue segmentation, which is susceptible to classification errors and inconsistencies. High-resolution imaging techniques with strong contrast between brain parenchyma and cerebrospinal fluid (CSF) might allow fully automated, rapid, threshold-based determination of the free water in the brain. We hypothesized that total brain-free-water (BFW) volume and BFW volume expressed as a normalized fraction of the intracranial volume (“BFW fraction”), determined from heavily T2-weighted images, would be useful surrogates for cerebral atrophy and therefore would correlate with clinical measures of disability in MS. Methods Whole brains of 83 MS cases and 7 healthy volunteers were imaged with a 4.7-min, heavily T2-weighted sequence on a 3T MRI scanner, acquiring 650-μm isotropic voxels. MS cases were clinically assessed on Expanded Disability Status Scale (EDSS), Scripps Neurological Rating Scale (SNRS), Paced Auditory Serial Addition Test (PASAT), 9-Hole Peg Test (9HP), Symbol Digit Modalities Test (SDMT), and 25-Foot Walk. Twelve of the MS cases were rescanned within an average of 1.8 months to assess reproducibility. Automated calculations of BFW volume and BFW fraction were correlated with clinical measures of disability upon adjusting for age and sex. Results were compared to data from T1-based approaches (SIENAX and Lesion-TOADS). Results and Discussion BFW volume was automatically derived from heavily T2-weighted images with no need for separate skull stripping. BFW volume and fraction had mean scan-rescan coefficients of variation of 1.5% and 1.9%, respectively, similar to the T1-based approaches tested here. BFW fraction more strongly correlated with clinical measures than T1-derived results. Among those clinical measures, modality

  3. Brain imaging in the assessment for epilepsy surgery.

    PubMed

    Duncan, John S; Winston, Gavin P; Koepp, Matthias J; Ourselin, Sebastien

    2016-04-01

    Brain imaging has a crucial role in the presurgical assessment of patients with epilepsy. Structural imaging reveals most cerebral lesions underlying focal epilepsy. Advances in MRI acquisitions including diffusion-weighted imaging, post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection. Functional MRI can be used to identify areas of the cortex that are essential for language, motor function, and memory, and tractography can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. PET, SPECT, simultaneous EEG and functional MRI, and electrical and magnetic source imaging can be used to infer the localisation of epileptic foci and assist in the design of intracranial EEG recording strategies. Progress in semi-automated methods to register imaging data into a common space is enabling the creation of multimodal three-dimensional patient-specific datasets. These techniques show promise for the demonstration of the complex relations between normal and abnormal structural and functional data and could be used to direct precise intracranial navigation and surgery for individual patients.

  4. Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging.

    PubMed

    Costanzo, Michelle E; Chou, Yi-Yu; Leaman, Suzanne; Pham, Dzung L; Keyser, David; Nathan, Dominic E; Coughlin, Mary; Rapp, Paul; Roy, Michael J

    2014-08-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may share common symptom and neuropsychological profiles in military service members (SMs) following deployment; while a connection between the two conditions is plausible, the relationship between them has been difficult to discern. The intent of this report is to enhance our understanding of the relationship between findings on structural and functional brain imaging and symptoms of PTSD. Within a cohort of SMs who did not meet criteria for PTSD but were willing to complete a comprehensive assessment within 2 months of their return from combat deployment, we conducted a nested case-control analysis comparing those with combat-related mTBI to age/gender-matched controls with diffusion tensor imaging, resting state functional magnetic resonance imaging and a range of psychological measures. We report degraded white matter integrity in those with a history of combat mTBI, and a positive correlation between the white matter microstructure and default mode network (DMN) connectivity. Higher clinician-administered and self-reported subthreshold PTSD symptoms were reported in those with combat mTBI. Our findings offer a potential mechanism through which mTBI may alter brain function, and in turn, contribute to PTSD symptoms.

  5. Signal transduction images in human brain by positron emission tomography

    SciTech Connect

    Imahori, Y.; Fujii, R.; Ueda, S.

    1994-05-01

    Analysis of changes in intracellular signal transduction will provide clear images of the projected target neurons. We have recently developed a technique which allows second-messenger imaging of changes in intracellular signal transduction which is activated in parallel with phosphoinositide (PI) turnover. Using carbon-11-labeled 1,2-diacylglycerol (DAG), we have recently succeeded in making an image of intracellular signal transduction during the course of synaptic transmission in human brains. When five healthy volunteers were examined by this technique, they had high activity in the associate field, in particular the prefrontal area. In the absence of paradigm loading, the associate field was unilaterally active, and human subjects showed predominant activity in the right prefrontal area. Activation of the ipsilateral supraorbital region and the superior temporal area was also seen at the same time. In conclusion, no previous study has directly demonstrated the unilateral predominance of the activity in the associate fields (projected target area) and the accompanying areas. Unlike the conventional positron-labeled compounds which did not permit visualization of activation of the associate fields, our technique can measure the PI turnover, as a postsynaptic response, and thus provide clear images of the projected target nerve cells in relation to higher cortical function in human brain.

  6. Wearable scanning photoacoustic brain imaging in behaving rats.

    PubMed

    Tang, Jianbo; Dai, Xianjin; Jiang, Huabei

    2016-06-01

    A wearable scanning photoacoustic imaging (wPAI) system is presented for noninvasive brain study in behaving rats. This miniaturized wPAI system consists of four pico linear servos and a single transducer-based PAI probe. It has a dimension of 50 mm × 35 mm × 40 mm, and a weight of 26 g excluding cablings. Phantom evaluation shows that wPAI achieves a lateral resolution of ∼0.5 mm and an axial resolution of ∼0.1 mm at a depth of up to 11 mm. Its imaging ability is also tested in a behaving rat, and the results indicate that wPAI is able to image blood vessels at a depth of up to 5 mm with intact scalp and skull. With its noninvasive, deep penetration, and functional imaging ability in behaving animals, wPAI can be used for behavior, cognition, and preclinical brain disease studies. PMID:26777064

  7. Optimization of three-dimensional angiographic data obtained by self-calibration of multiview imaging

    SciTech Connect

    Noeel, Peter B.; Hoffmann, Kenneth R.; Kasodekar, Snehal; Walczak, Alan M.; Schafer, Sebastian

    2006-10-15

    Stroke is one of the leading causes of death in the U.S. The treatment of stroke often involves vascular interventions in which devices are guided to the intervention site often through tortuous vessels based on two-dimensional (2-D) angiographic images. Three dimensional (3-D) vascular information may facilitate these procedures. Methods have been proposed for the self-calibrating determination of 3-D vessel trees from biplane and multiple plane images and the geometric relationships between the views (imaging geometries). For the biplane analysis, four or more corresponding points must be identified in the biplane images. For the multiple view technique, multiple vessels must be indicated and only the translation vectors relating the geometries are calculated. We have developed methods for the calculation of the 3-D vessel data and the full transformations relating the multiple views (rotations and translations) obtained during interventional procedures, and the technique does not require indication of corresponding points, but only the indication of a single vessel, e.g., the vessel of interest. Multiple projection views of vessel trees are obtained and transferred to the analysis computer. The vessel or vessels of interest are indicated by the user. Using the initial imaging geometry determined from the gantry information, 3-D vessel centerlines are calculated using the indicated centerlines in pairs of images. The imaging geometries are then iteratively adjusted and 3-D centerlines recalculated until the root-mean-square (rms) difference between the calculated 3-D centerlines is minimized. Simulations indicate that the 3-D centerlines can be accurately determined (to within 1 mm) even for errors in indication of the vessel endpoints as large as 5 mm. In phantom studies, the average rms difference between the pairwise calculated 3-D centerlines is approximately 7.5 mm prior to refinement (i.e., using the gantry information alone), whereas the average rms

  8. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  9. Diagnostic and quality-assurance tools for low-contrast images obtained from array detectors

    NASA Technical Reports Server (NTRS)

    Hatfield, D. B.; Sandel, Bill R.

    1993-01-01

    We investigate methods of estimating a background image frame for subtraction from a data frame for use when a more suitable measured background frame is not available. We define background as any signal component that is not attributable to the phenomenon currently under investigation. We describe a technique that is based on pixel-by-pixel least-squares regression of images for computing a background frame from available data. We argue that the same technique can be a useful quality-assurance tool for evaluating instrument performance. For example, it can help to separate image structure resulting from the reading process from structure resulting from the characteristics of the detector itself. We demonstrate that background estimation can be nontrivial by comparing the results of different background estimation procedures by using data obtained from a CCD array detector. We investigate the temperature-dependent contributions of the detector and readout electronics to the total signal as a demonstration of the diagnostic capabilities of least-squares image regression.

  10. Obtaining breathing patterns from any sequential thoracic x-ray image set.

    PubMed

    Kavanagh, Anthony; Evans, Philip M; Hansen, Vibeke N; Webb, Steve

    2009-08-21

    A technique is presented to allow a breathing pattern to be obtained from any multi-slice CT, cone-beam or other series of sequential chest x-ray image sets. The technique requires no extra signals to be recorded and does not need specific external or internal oscillating structures to be visible in the field of view. The breathing pattern is instead acquired from analysing the variation in pixel values between projection images. For cone-beam image sets, slowly varying changes, due to an angular attenuation dependence, must be corrected before the breathing trace analysis can begin. All the results of the new technique were checked visually and were in good agreement. If the studied image set could be analysed using the existing 'Amsterdam shroud' technique, then the results it provided were also used for comparison. In cases that allowed comparison by both techniques, the results were in agreement. The new technique was also shown to provide a usable signal when applied to cardiac motion.

  11. Anatomical and functional brain imaging using high-resolution echo-planar spectroscopic imaging at 1.5 Tesla.

    PubMed

    Du, Weiliang; Karczmar, Gregory S; Uftring, Stephen J; Du, Yiping P

    2005-06-01

    High-resolution echo-planar spectroscopic imaging (EPSI) of water resonance (i.e. without water suppression) is proposed for anatomic and functional imaging of the human brain at 1.5 T. Water spectra with a resolution of 2.6 Hz and a bandwidth of 333 Hz were obtained in small voxels (1.7 x 1.7 x 3 mm3) across a single slice. Although water spectra appeared Lorentzian in most of the voxels in the brain, non-Lorentzian broadening of the water resonance was observed in voxels containing blood vessels. In functional experiments with a motor task, robust activation in motor cortices was observed in high-resolution T2* maps generated from the EPSI data. Shift of the water resonance frequency occurred during neuronal activation in motor cortices. The activation areas appeared to be more localized after excluding the voxels in which the lineshape of the water resonance had elevated T2* and became more non-Lorentzian during the motor task. These preliminary results suggest that high-resolution EPSI is a promising tool to study susceptibility-related effects, such as BOLD contrast, for improved anatomical and functional imaging of the brain.

  12. Imaging of sodium in the brain: a brief review.

    PubMed

    Shah, N Jon; Worthoff, Wieland A; Langen, Karl-Josef

    2016-02-01

    Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.

  13. Brain Imaging Using T-Rays Instrumentation Advances

    NASA Astrophysics Data System (ADS)

    Treviño-Palacios, C. G.; Celis-López, M. A.; Lárraga-Gutiérrez, J. M.; García-Garduño, A.; Zapata-Nava, O. J.; Díaz, A. Orduña; Torres-Jácome, A.; de-la-Hidalga-Wade, J.; Iturbe-Castillo, M. D.

    2010-12-01

    We present the advances on a brain imaging setup using submillimeter detectors and terahertz laser source. Terahertz radiation, known as T-rays, falls in the far infrared region of the electromagnetic spectrum close to the microwaves and fraction of millimeter wavelengths. These T-rays are ideal candidates for medical imaging because the wavelength is long enough to be dispersed by molecular structures and sufficient small to produce images with a reasonable resolution, in a non-ionizing way. The millimeter detectors used in this proposal are being developed in parallel to the detectors used in the large Millimeter Telescope (LMT/GTM). Using the non-ionizing water absorption to terahertz radiation by different tissues we study the absorption difference between healthy and tumors in spite of the large absorption by water present in the body.

  14. Live Imaging of the Ependymal Cilia in the Lateral Ventricles of the Mouse Brain.

    PubMed

    Al Omran, Alzahra J; Saternos, Hannah C; Liu, Tongyu; Nauli, Surya M; AbouAlaiwi, Wissam A

    2015-01-01

    Multiciliated ependymal cells line the ventricles in the adult brain. Abnormal function or structure of ependymal cilia is associated with various neurological deficits. The current ex vivo live imaging of motile ependymal cilia technique allows for a detailed study of ciliary dynamics following several steps. These steps include: mice euthanasia with carbon dioxide according to protocols of The University of Toledo's Institutional Animal Care and Use Committee (IACUC); craniectomy followed by brain removal and sagittal brain dissection with a vibratome or sharp blade to obtain very thin sections through the brain lateral ventricles, where the ependymal cilia can be visualized. Incubation of the brain's slices in a customized glass-bottom plate containing Dulbecco's Modified Eagle's Medium (DMEM)/High-Glucose at 37 °C in the presence of 95%/5% O2/CO2 mixture is essential to keep the tissue alive during the experiment. A video of the cilia beating is then recorded using a high-resolution differential interference contrast microscope. The video is then analyzed frame by frame to calculate the ciliary beating frequency. This allows distinct classification of the ependymal cells into three categories or types based on their ciliary beating frequency and angle. Furthermore, this technique allows the use of high-speed fluorescence imaging analysis to characterize the unique intracellular calcium oscillation properties of ependymal cells as well as the effect of pharmacological agents on the calcium oscillations and the ciliary beating frequency. In addition, this technique is suitable for immunofluorescence imaging for ciliary structure and ciliary protein localization studies. This is particularly important in disease diagnosis and phenotype studies. The main limitation of the technique is attributed to the decrease in live motile cilia movement as the brain tissue starts to die. PMID:26067390

  15. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid.

    PubMed

    Vallabhajosula, Shankar

    2011-07-01

    Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.

  16. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  17. Pros and cons of current brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Wen, Patrick Y.; van den Bent, Martin J.; Cloughesy, Timothy F.

    2014-01-01

    Over the past 20 years, very few agents have been approved for the treatment of brain tumors. Recent studies have highlighted some of the challenges in assessing activity in novel agents for the treatment of brain tumors. This paper reviews some of the key challenges related to assessment of tumor response to therapy in adult high-grade gliomas and discusses the strengths and limitations of imaging-based endpoints. Although overall survival is considered the “gold standard” endpoint in the field of oncology, progression-free survival and response rate are endpoints that hold great value in neuro-oncology. Particular focus is given to advancements made since the January 2006 Brain Tumor Endpoints Workshop, including the development of Response Assessment in Neuro-Oncology criteria, the value of T2/fluid-attenuated inversion recovery, use of objective response rates and progression-free survival in clinical trials, and the evaluation of pseudoprogression, pseudoresponse, and inflammatory response in radiographic images. PMID:25313235

  18. Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters.

    PubMed

    Tyo, J S

    2000-08-15

    An imaging variable retardance polarimeter was developed and tested by Tyo and Turner [Proc. SPIE 3753, 214 (1999)]. The signal-to-noise ratio (SNR) in the reconstructed polarization images obtained with this system varied for the four Stokes parameters. The difference in SNR is determined to be due to differences in the Euclidean lengths of the rows of the synthesis matrix used to reconstruct the Stokes parameters from the measured intensity data. I equalize (and minimize) the lengths of the rows of this matrix by minimizing the condition number of the synthesis matrix, thereby maximizing the relative importance of each of the polarimeter measurements. The performance of the optimized system is demonstrated with simulated data, and the SNR is shown to increase from a worst case of -3.1 dB for the original settings to a worst case of +5.0 dB for the optimized system. PMID:18066166

  19. Identification of microorganisms for the analysis of images obtained by neutron radiography

    NASA Astrophysics Data System (ADS)

    Lopes, J. D. R.; Crispim, V. R.; Lage, C.

    2001-06-01

    The main difficulty in identifying infectious microorganisms is the time required to obtain a reliable result, a minimum of 72 h. We propose a reduction to about 5 h through the technique of neutron radiography. Samples containing the bacillus Escherichia coli and the cocci Staphylococcus epidermidis were incubated with B 10, layered on SSNTD (CR-39) surface and irradiated in the J-9 channel from the Argonauta Reactor (IEN/CNEN) with a flux of thermal neutrons at a rate of 2.2×10 5 n/cm 2 s. Images were observed in an optical microscope after exposure of the plates to chemical development of the latent alpha-tracks. Analysis of the images revealed morphological differences between the species, conferring the technique the perspective to use in microbial diagnosis.

  20. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are

  1. Meta-analysis of functional brain imaging in specific phobia.

    PubMed

    Ipser, Jonathan C; Singh, Leesha; Stein, Dan J

    2013-07-01

    Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry.

  2. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  3. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy.

    PubMed

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research

  4. First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system

    SciTech Connect

    Fallone, B. G.; Murray, B.; Rathee, S.; Stanescu, T.; Steciw, S.; Vidakovic, S.; Blosser, E.; Tymofichuk, D.

    2009-06-15

    permanent magnet; however, other types of magnets and field strengths could also be incorporated. Usable MR images were obtained during linac irradiation from the linac-MR prototype. The authors' prototype design can be used as the functional starting point in developing real-time MR guidance offering soft-tissue contrast that can be coupled with tumor tracking for real-time adaptive radiotherapy.

  5. Grid Computing Application for Brain Magnetic Resonance Image Processing

    NASA Astrophysics Data System (ADS)

    Valdivia, F.; Crépeault, B.; Duchesne, S.

    2012-02-01

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  6. Baseline brain perfusion and brain structure in patients with major depression: a multimodal magnetic resonance imaging study

    PubMed Central

    Vasic, Nenad; Wolf, Nadine D.; Grön, Georg; Sosic-Vasic, Zrinka; Connemann, Bernhard J.; Sambataro, Fabio; von Strombeck, Anna; Lang, Dirk; Otte, Stefanie; Dudek, Manuela; Wolf, Robert C.

    2015-01-01

    Background Abnormal regional cerebral blood flow (rCBF) and grey matter volume have been frequently reported in patients with major depressive disorder (MDD). However, it is unclear to what extent structural and functional change co-occurs in patients with MDD and whether markers of neural activity, such as rCBF, can be predicted by structural change. Methods Using MRI, we investigated resting-state rCBF and brain structure in patients with MDD and healthy controls between July 2008 and January 2013. We acquired perfusion images obtained with continuous arterial spin labelling, used voxel-based morphometry to assess grey matter volume and integrated biological parametric mapping analyses to investigate the impact of brain atrophy on rCBF. Results We included 43 patients and 29 controls in our study. Frontotemporal grey matter volume was reduced in patients compared with controls. In patients, rCBF was reduced in the anterior cingulate and bilateral parahippocampal areas and increased in frontoparietal and striatal regions. These abnormalities were confirmed by analyses with brain volume as a covariate. In patients with MDD there were significant negative correlations between the extent of depressive symptoms and bilateral parahippocampal rCBF. We found a positive correlation between depressive symptoms and rCBF for right middle frontal cortical blood flow. Limitations Medication use in patients has to be considered as a limitation of our study. Conclusion Our data suggest that while changes of cerebral blood flow and brain volume co-occur in patients with MDD, structural change is not sufficient to explain altered neural activity in patients at rest. Abnormal brain structure and function in patients with MDD appear to reflect distinct levels of neuropathology. PMID:26125119

  7. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  8. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. PMID:25239478

  9. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging.

  10. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques.

    PubMed

    Urbanski, Marika; Coubard, Olivier A; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  11. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    PubMed Central

    Urbanski, Marika; Coubard, Olivier A.; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques. PMID:25324739

  12. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  13. Emerging Imaging Tools for Use with Traumatic Brain Injury Research

    PubMed Central

    Wilde, Elisabeth A.; Tong, Karen A.; Holshouser, Barbara A.

    2012-01-01

    Abstract This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children. PMID:21787167

  14. The Possibility of Using Images Obtained from the Uas in Cadastral Works

    NASA Astrophysics Data System (ADS)

    Kurczynski, Z.; Bakuła, K.; Karabin, M.; Kowalczyk, M.; Markiewicz, J. S.; Ostrowski, W.; Podlasiak, P.; Zawieska, D.

    2016-06-01

    Updating the cadastre requires much work carried out by surveying companies in countries that have still not solved the problem of updating the cadastral data. In terms of the required precision, these works are among the most accurate. This raises the question: to what extent may modern digital photogrammetric methods be useful in this process? The capabilities of photogrammetry have increased significantly after the introduction of digital aerial cameras and digital technologies. For the registration of cadastral objects, i.e., land parcels' boundaries and the outlines of buildings, very high-resolution aerial photographs can be used. The paper relates an attempt to use an alternative source of data for this task - the development of images acquired from UAS platforms. Multivariate mapping of cadastral parcels was implemented to determine the scope of the suitability of low altitude photos for the cadastre. In this study, images obtained from UAS with the GSD of 3 cm were collected for an area of a few square kilometres. Bundle adjustment of these data was processed with sub-pixel accuracy. This led to photogrammetric measurements being carried out and the provision of an orthophotomap (orthogonalized with a digital surface model from dense image matching of UAS images). Geometric data related to buildings were collected with two methods: stereoscopic and multi-photo measurements. Data related to parcels' boundaries were measured with monoplotting on an orthophotomap from low-altitude images. As reference field surveying data were used. The paper shows the potential and limits of the use of UAS in a process of updating cadastral data. It also gives recommendations when performing photogrammetric missions and presents the possible accuracy of this type of work.

  15. Methods for obtaining 3D training images for multiple-point statistics simulations: a comparative study

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Comunian, A.; Mariethoz, G.; Kelly, B. F.

    2013-12-01

    In recent years, multiple-point statistics (MPS) has been used in several studies for characterizing facies heterogeneity in geological formations. MPS uses a conceptual representation of the expected facies distribution, called a Training image (TI), to generate patterns of facies heterogeneity. In two-dimensional (2D) simulations the TI can be a hand-drawn image, an analogue outcrop image, or derived from geological reconstructions using a combination of geological analogues and geophysical data. However, obtaining suitable TI in three-dimensions (3D) from geological analogues or geophysical data is harder and has limited the use of MPS for simulating facies heterogeneity in 3D. There have been attempts to generate 3D training images using object-based simulation (OBS). However, determining suitable values for the large number of parameters required by OBS is often challenging. In this study, we compare two approaches for generating three-dimensional training images to model a valley filling sequence deposited by meandering rivers. The first approach is based on deriving statistical information from two-dimensional TIs. The 3D domain is simulated with a sequence of 2D MPS simulation steps, performed along different directions on slices of the 3D domain. At each 2D simulation step, the facies simulated at the previous steps that lie on the current 2D slice are used as conditioning data. The second approach uses hand-drawn two-dimensional TIs and produces complex patterns resembling the geological structures by applying rotation and affinity transformations in the facies simulation. The two techniques are compared using transition probabilities, facies proportions, and connectivity metrics. In the presentation we discuss the benefits of each approach for generating three-dimensional facies models.

  16. Causal Markov random field for brain MR image segmentation.

    PubMed

    Razlighi, Qolamreza R; Orekhov, Aleksey; Laine, Andrew; Stern, Yaakov

    2012-01-01

    We propose a new Bayesian classifier, based on the recently introduced causal Markov random field (MRF) model, Quadrilateral MRF (QMRF). We use a second order inhomogeneous anisotropic QMRF to model the prior and likelihood probabilities in the maximum a posteriori (MAP) classifier, named here as MAP-QMRF. The joint distribution of QMRF is given in terms of the product of two dimensional clique distributions existing in its neighboring structure. 20 manually labeled human brain MR images are used to train and assess the MAP-QMRF classifier using the jackknife validation method. Comparing the results of the proposed classifier and FreeSurfer on the Dice overlap measure shows an average gain of 1.8%. We have performed a power analysis to demonstrate that this increase in segmentation accuracy substantially reduces the number of samples required to detect a 5% change in volume of a brain region.

  17. CAUSAL MARKOV RANDOM FIELD FOR BRAIN MR IMAGE SEGMENTATION

    PubMed Central

    Razlighi, Qolamreza R.; Orekhov, Aleksey; Laine, Andrew; Stern, Yaakov

    2013-01-01

    We propose a new Bayesian classifier, based on the recently introduced causal Markov random field (MRF) model, Quadrilateral MRF (QMRF). We use a second order inhomogeneous anisotropic QMRF to model the prior and likelihood probabilities in the maximum a posteriori (MAP) classifier, named here as MAP-QMRF. The joint distribution of QMRF is given in terms of the product of two dimensional clique distributions existing in its neighboring structure. 20 manually labeled human brain MR images are used to train and assess the MAP-QMRF classifier using the jackknife validation method. Comparing the results of the proposed classifier and FreeSurfer on the Dice overlap measure shows an average gain of 1.8%. We have performed a power analysis to demonstrate that this increase in segmentation accuracy substantially reduces the number of samples required to detect a 5% change in volume of a brain region. PMID:23366607

  18. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  19. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. PMID:24112886

  20. Autoradiographic imaging of phosphoinositide turnover in the brain

    SciTech Connect

    Hwang, P.M.; Bredt, D.S.; Snyder, S.H. )

    1990-08-17

    With ({sup 3}H)cytidine as a precursor, phosphoinositide turnover can be localized in brain slices by selective autoradiography of the product ({sup 3}H)cytidine diphosphate diacylglycerol, which is membrane-bound. In the cerebellum, glutamatergic stimulation elicits an increase of phosphoinositide turnover only in Purkinje cells and the molecular layer. In the hippocampus, both glutamatergic and muscarinic cholinergic stimulation increase phosphoinositide turnover, but with distinct localizations. Cholinergic stimulation affects CA1, CA3, CA4, and subiculum, whereas glutamatergic effects are restricted to the subiculum and CA3. Imaging phosphoinositide turnover in brain slices, which are amenable to electrophysiologic studies, will permit a dynamic localized analysis of regulation of this second messenger in response to synaptic stimulation of specific neuronal pathways.

  1. Functional connectivity of the rodent brain using optical imaging

    NASA Astrophysics Data System (ADS)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  2. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.

  3. Automatic brain MR image denoising based on texture feature-based artificial neural networks.

    PubMed

    Chang, Yu-Ning; Chang, Herng-Hua

    2015-01-01

    Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time. PMID:26405887

  4. Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging.

    PubMed

    Liu, Xiaohui; Ide, Jennifer L; Norton, Isaiah; Marchionni, Mark A; Ebling, Maritza C; Wang, Lan Y; Davis, Erin; Sauvageot, Claire M; Kesari, Santosh; Kellersberger, Katherine A; Easterling, Michael L; Santagata, Sandro; Stuart, Darrin D; Alberta, John; Agar, Jeffrey N; Stiles, Charles D; Agar, Nathalie Y R

    2013-10-04

    Drug transit through the blood-brain barrier (BBB) is essential for therapeutic responses in malignant glioma. Conventional methods for assessment of BBB penetrance require synthesis of isotopically labeled drug derivatives. Here, we report a new methodology using matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) to visualize drug penetration in brain tissue without molecular labeling. In studies summarized here, we first validate heme as a simple and robust MALDI MSI marker for the lumen of blood vessels in the brain. We go on to provide three examples of how MALDI MSI can provide chemical and biological insights into BBB penetrance and metabolism of small molecule signal transduction inhibitors in the brain - insights that would be difficult or impossible to extract by use of radiolabeled compounds.

  5. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    SciTech Connect

    Yang, J.; Huang, S.C.; Lin, K.P.; Small, G.; Phelps, M.E.

    1996-12-31

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer`s disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects.

  6. Imaging of rat brain using short graded-index multimode fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Kanno, Takahiro; Ishihara, Syoutarou; Suto, Hiroshi; Takahashi, Toshihiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2014-03-01

    Clinically it is important to image structures of brain at deeper areas with low invasions, for example, the pathological information is not obtained enough from the white matter. Preliminarily we have measured transmission images of rat brain using the short graded-index multimode fiber (SMMF) with the diameter of 140μm and length of 5mm. SMMF (core diameter, 100μm) was cut using a fiber cleaver and was fixed in a jig. Fiber lengths inside and outside jig were 3mm and 2mm, respectively. The jig was attached at the 20x objective lens. The conventional optical microscope was used to measure images. In basic characteristics, it was confirmed that the imaging conditions almost corresponded to calculations with the ray-transfer matrix and the spatial resolution was evaluated at about 4.4μm by measuring the test pattern. After euthanasia the rat parietal brain was excised with thickness around 1.5mm and was set on the slide glass. The tissue was illuminated through the slide glass by the bundle fiber with Halogen lamp. The tip of SMMF was inserted into the tissue by lifting the sample stage. The transmission image at each depth from 0.1mm to 1.53mm was measured. Around the depth of 1.45mm, granular structures with sizes of 4-5μm were recognized and corresponded to images by HE stained tissue. Total measurement time was within 2 hours. The feasibilities to image the depth of 5 mm with SMMF have been shown.

  7. Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images

    NASA Astrophysics Data System (ADS)

    Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.

    2015-12-01

    Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.

  8. Precise attitude rate estimation using star images obtained by mission telescope for satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Hosonuma, Takayuki; Ikari, Satoshi; Saisutjarit, Phongsatorn; Sako, Nobutada; Nakasuka, Shinichi

    2015-02-01

    Recently, small satellites have been employed in various satellite missions such as astronomical observation and remote sensing. During these missions, the attitudes of small satellites should be stabilized to a higher accuracy to obtain accurate science data and images. To achieve precise attitude stabilization, these small satellites should estimate their attitude rate under the strict constraints of mass, space, and cost. This research presents a new method for small satellites to precisely estimate angular rate using star blurred images by employing a mission telescope to achieve precise attitude stabilization. In this method, the angular velocity is estimated by assessing the quality of a star image, based on how blurred it appears to be. Because the proposed method utilizes existing mission devices, a satellite does not require additional precise rate sensors, which makes it easier to achieve precise stabilization given the strict constraints possessed by small satellites. The research studied the relationship between estimation accuracy and parameters used to achieve an attitude rate estimation, which has a precision greater than 1 × 10-6 rad/s. The method can be applied to all attitude sensors, which use optics systems such as sun sensors and star trackers (STTs). Finally, the method is applied to the nano astrometry satellite Nano-JASMINE, and we investigate the problems that are expected to arise with real small satellites by performing numerical simulations.

  9. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    ERIC Educational Resources Information Center

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  10. Medical Imaging and the Human Brain: Being Warped is Not Always a Bad Thing

    SciTech Connect

    Patterson, James C. II

    2005-03-31

    The capacity to look inside the living human brain and image its function has been present since the early 1980s. There are some clinicians who use functional brain imaging for diagnostic or prognostic purposes, but much of the work done still relates to research evaluation of brain function. There is a striking dichotomy in the use of functional brain imaging between these two fields. Clinical evaluation of a brain PET or SPECT scan is subjective; that is, a Nuclear Medicine physician examines the brain image, and states whether the brain image looks normal or abnormal. On the other hand, modern research evaluation of functional brain images is almost always objective. Brain images are processed and analyzed with advanced software tools, and a mathematical result that relates to regional changes in brain activity is provided. The potential for this research methodology to provide a more accurate and reliable answer to clinical questions about brain function and pathology are immense, but there are still obstacles to overcome. Foremost in this regard is the use of a standardized normal control database for comparison of patient scan data. The tools and methods used in objective analysis of functional imaging data, as well as potential clinical applications will be the focus of my presentation.

  11. Functional magnetic resonance imaging of the brain: a quick review.

    PubMed

    Vaghela, Viratsinh; Kesavadas, Chandrasekharan; Thomas, Bejoy

    2010-01-01

    Ability to non-invasively map the hemodynamic changes occurring focally in areas of brain involved in various motor, sensory and cognitive functions by functional magnetic resonance imaging (fMRI) has revolutionized research in neuroscience in the last two decades. This technique has already gained clinical use especially in pre-surgical evaluation of epilepsy and neurosurgical planning of resection of mass lesions adjacent to eloquent cortex. In this review we attempt to illustrate basic principles and techniques of fMRI, its applications, practical points to consider while performing and evaluating clinical fMRI and its limitations.

  12. Feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content with changing postures.

    PubMed

    Nazari, Jalil; Pope, Malcolm H; Graveling, Richard A

    2015-05-01

    Opportunities to evaluate spinal loading in vivo are limited and a large majority of studies on the mechanical functions of the spine have been in vitro cadaveric studies and/or models based on many assumptions that are difficult to validate. The purpose of this study was to investigate the feasibility of magnetic resonance imaging (MRI) in obtaining nucleus pulposus (NP) water content measurements with changing postures. MRI studies were conducted on 25 healthy males with no history of low back pain (age 20-38). The L1 to S1 intradiscal levels were imaged in supine, sitting and standing postures using an upright 0.6 Tesla magnet, where a set of H2O: D2O7 phantoms were mounted on the back of the subjects. A calibration curve, provided from these phantoms, was applied to the absolute proton density image, yielding a pixel-by-pixel map of the water content of the NP. The NP at all levels showed a highly significant water loss (p<0.001) in sitting and standing postures compared with the supine posture. A trend towards higher levels of water was observed at all levels in the standing posture relative to sitting postures, however statistically significant differences were found only at L4-L5 and L5-S1 levels. This study demonstrates that variations in water content of the NP in different postures are in agreement with those determined from published invasive disc pressure measurements. The result of study demonstrates the feasibility of using MRI to determine the water content of the NP with changing postures and to use these data to evaluate spinal loading in these postures. This measurement method of water content by quantitative MR imaging could become a powerful tool for both clinical and ergonomic applications. The proposed methodology does not require invasive pressure measurement techniques.

  13. A diagnostic approach for neurodegeneration with brain iron accumulation: clinical features, genetics and brain imaging.

    PubMed

    Salomão, Rubens Paulo Araújo; Pedroso, José Luiz; Gama, Maria Thereza Drumond; Dutra, Lívia Almeida; Maciel, Ricardo Horta; Godeiro-Junior, Clécio; Chien, Hsin Fen; Teive, Hélio A G; Cardoso, Francisco; Barsottini, Orlando G P

    2016-07-01

    Neurodegeneration with brain iron accumulation (NBIA) represents a heterogeneous and complex group of inherited neurodegenerative diseases, characterized by excessive iron accumulation, particularly in the basal ganglia. Common clinical features of NBIA include movement disorders, particularly parkinsonism and dystonia, cognitive dysfunction, pyramidal signs, and retinal abnormalities. The forms of NBIA described to date include pantothenase kinase-associated neurodegeneration (PKAN), phospholipase A2 associated neurodegeneration (PLAN), neuroferritinopathy, aceruloplasminemia, beta-propeller protein-associated neurodegeneration (BPAN), Kufor-Rakeb syndrome, mitochondrial membrane protein-associated neurodegeneration (MPAN), fatty acid hydroxylase-associated neurodegeneration (FAHN), coenzyme A synthase protein-associated neurodegeneration (CoPAN) and Woodhouse-Sakati syndrome. This review is a diagnostic approach for NBIA cases, from clinical features and brain imaging findings to the genetic etiology.

  14. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  15. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  16. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know.

    PubMed

    Kim, Minjae; Kim, Ho Sung

    2016-01-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response.

  17. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know.

    PubMed

    Kim, Minjae; Kim, Ho Sung

    2016-01-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response. PMID:27587949

  18. Emerging Techniques in Brain Tumor Imaging: What Radiologists Need to Know

    PubMed Central

    Kim, Minjae

    2016-01-01

    Among the currently available brain tumor imaging, advanced MR imaging techniques, such as diffusion-weighted MR imaging and perfusion MR imaging, have been used for solving diagnostic challenges associated with conventional imaging and for monitoring the brain tumor treatment response. Further development of advanced MR imaging techniques and postprocessing methods may contribute to predicting the treatment response to a specific therapeutic regimen, particularly using multi-modality and multiparametric imaging. Over the next few years, new imaging techniques, such as amide proton transfer imaging, will be studied regarding their potential use in quantitative brain tumor imaging. In this review, the pathophysiologic considerations and clinical validations of these promising techniques are discussed in the context of brain tumor characterization and treatment response. PMID:27587949

  19. Quantitative iodine-123 IMP imaging of brain perfusion in schizophrenia

    SciTech Connect

    Cohen, M.B.; Lake, R.R.; Graham, L.S.; King, M.A.; Kling, A.S.; Fitten, L.J.; O'Rear, J.; Bronca, G.A.; Gan, M.; Servrin, R. )

    1989-10-01

    Decreased perfusion in the frontal lobes of patients with chronic schizophrenia has been reported by multiple observes using a variety of techniques. Other observers have been unable to confirm this finding using similar techniques. In this study quantitative single photon emission computed tomography brain imaging was performed using p,5n ({sup 123}I)IMP in five normal subjects and ten chronically medicated patients with schizophrenia. The acquisition data were preprocessed with an image dependent Metz filter and reconstructed using a ramp filtered back projection technique. The uptake in each of 50 regions of interest in each subject was normalized to the uptake in the cerebellum. There were no significant confirmed differences in the comparable ratios of normal subjects and patients with schizophrenia even at the p = 0.15 level. Hypofrontality was not observed.

  20. Detection of normal aging effects on human brain metabolite concentrations and microstructure with whole brain MR spectroscopic imaging and quantitative MR imaging

    PubMed Central

    Eylers, Vanessa V.; Maudsley, Andrew A.; Bronzlik, Paul; Dellani, Paulo R.; Lanfermann, Heinrich; Ding, Xiao-Qi

    2015-01-01

    Background and purpose Whole brain 1H-MR spectroscopic imaging (wbMRSI) was used in combination with quantitative MRI (qMRI) to study the effects of normal aging on healthy human brain metabolites and microstructure. Materials and Methods Sixty healthy volunteers aged 21 to 70 years were studied. Brain maps of the metabolites NAA, Cr, and Cho, and the tissue irreversible and reversible transverse relaxation times, T2 and T2′, were derived from the datasets. The relative metabolite concentrations [NAA], [tCr] and [Cho] as well as the values of relaxation times were measured with ROIs placed within frontal and parietal WM, centrum semiovale (CSO), splenium of the corpus callosum (SCC), hand motor area (HK), occipital GM, putamen, thalamus, pons ventral/dorsal (BSv/BSd), cerebellar white matter (CbWM) and posterior lobe (CbGM). Linear regression analysis and Pearson’s correlation tests were used to analyze the data. Results Aging resulted in decreased [NAA] in occipital GM, putamen, SCC, and BSv, and decreased [tCr] in BSd and putamen. [Cho] did not change significantly in selected brain regions. T2 increased in CbWM and decreased in SCC with aging, while the T2′ decreased in the occipital GM, HK, putamen, and increased in the SCC. Correlations were found between [NAA] and T2′ in occipital GM and putamen and between [tCr] and T2′ in the putamen. Conclusion The effects of normal aging on brain metabolites and microstructure are regional dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. PMID:26564440

  1. Fetal Brain Magnetic Resonance Imaging Findings In Congenital Cytomegalovirus Infection With Postnatal Imaging Correlation.

    PubMed

    Averill, Lauren W; Kandula, Vinay V R; Akyol, Yakup; Epelman, Monica

    2015-12-01

    Fetal brain magnetic resonance imaging (MRI) is a powerful tool in the diagnosis of symptomatic congenital cytomegalovirus infection, requiring a detailed search for specific features. A combination of anterior temporal lobe abnormalities, white matter lesions, and polymicrogyria is especially predictive. Fetal MRI may provide a unique opportunity to detect anterior temporal cysts and occipital horn septations, as dilation of these areas may decrease later in development. Cortical migration abnormalities, white matter abnormalities, cerebellar dysplasia, and periventricular calcifications are often better depicted on postnatal imaging but can also be detected on fetal MRI. We present the prenatal brain MRI findings seen in congenital cytomegalovirus infection and provide postnatal imaging correlation, highlighting the evolution of findings at different times in prenatal and postnatal developments. PMID:26614131

  2. Magnetic Resonance Imaging And Brain Histopathology In Neuropsychiatric Systemic Lupus Erythematosus

    PubMed Central

    Sibbitt, Wilmer L.; Brooks, William M.; Kornfeld, Mario; Hart, Blaine L.; Bankhurst, Arthur D.; Roldan, Carlos A.

    2013-01-01

    Objective Magnetic resonance imaging (MRI) often demonstrates brain lesions in neuropsychiatric systemic lupus erythematosus (NPSL). The present study compared post-mortem histopathology with pre-mortem MRI in NPSL. Methods 200 subjects with NPSLE were studied prospectively with MRI over a 10-year period during which 22 subjects died. In 14 subjects, a brain autopsy with histopathology that permitted direct comparison with pre mortem MRI was successfully obtained. Surface anatomy was used to determine the approximate location of individual lesions. Results Pre mortem MRI findings in fatal NPSLE were small focal white matter lesions (100%), cortical atrophy (64%), ventricular dilation (57%), cerebral edema (50%), diffuse white matter abnormalities (43%), focal atrophy (36%), cerebral infarction (29%), acute leukoencephalopathy (25%), intracranial hemorrhage (21%), and calcifications (7%). Microscopic findings in fatal NPSLE included global ischemic changes (57%), parenchymal edema (50%), microhemorrhages (43%), glial hyperplasia (43%), diffuse neuronal/axonal loss (36%), resolved cerebral infarction (33%), microthomboemboli (29%), blood vessel remodeling (29%), acute cerebral infarction (14%), acute macrohemorrhages (14%), and resolved intracranial hemorrhages (7%). Cortical atrophy and ventricular dilation seen by MRI predicted brain mass at autopsy (r = -0.72, p = 0.01, and r = -0.77, p =0.01, respectively). Cerebral autopsy findings, including infarction, cerebral edema, intracranial hemorrhage, calcifications, cysts, and focal atrophy were also predicted accurately by pre mortem MRI. Conclusion Brain lesions in NPSLE detected by MRI accurately represent serious underlying cerebrovascular and parenchymal brain injury on pathology. PMID:19880162

  3. Optimising rigid motion compensation for small animal brain PET imaging

    NASA Astrophysics Data System (ADS)

    Spangler-Bickell, Matthew G.; Zhou, Lin; Kyme, Andre Z.; De Laat, Bart; Fulton, Roger R.; Nuyts, Johan

    2016-10-01

    Motion compensation (MC) in PET brain imaging of awake small animals is attracting increased attention in preclinical studies since it avoids the confounding effects of anaesthesia and enables behavioural tests during the scan. A popular MC technique is to use multiple external cameras to track the motion of the animal’s head, which is assumed to be represented by the motion of a marker attached to its forehead. In this study we have explored several methods to improve the experimental setup and the reconstruction procedures of this method: optimising the camera-marker separation; improving the temporal synchronisation between the motion tracker measurements and the list-mode stream; post-acquisition smoothing and interpolation of the motion data; and list-mode reconstruction with appropriately selected subsets. These techniques have been tested and verified on measurements of a moving resolution phantom and brain scans of an awake rat. The proposed techniques improved the reconstructed spatial resolution of the phantom by 27% and of the rat brain by 14%. We suggest a set of optimal parameter values to use for awake animal PET studies and discuss the relative significance of each parameter choice.

  4. Imaging brain activity in conscious monkeys following oral MDMA ("ecstasy").

    PubMed

    Brevard, Mathew E; Meyer, Jerrold S; Harder, Josie A; Ferris, Craig F

    2006-07-01

    Recreational use of 3,4-methylenedioxymethamphetamine (MDMA;"ecstasy") poses worldwide potential health problems. Clinical studies show that repeated exposure to low oral doses of MDMA has toxic effects on the brain, altering cognitive and psychosocial behavior. Functional magnetic resonance imaging in conscious marmoset monkeys was used to evaluate the sensitivity of the brain to an oral dose of MDMA (1 mg/kg). Following MDMA administration, the midbrain raphe nuclei and substantia nigra, major sources of serotonin and dopamine, were activated as were the hippocampus, hypothalamus and amygdala. The corticostriatal circuit of dorsal thalamus, sensorimotor cortex and basal ganglia showed a robust, coherent activation pattern. Two key reward areas, the nucleus accumbens and prefrontal cortex, and most other cortical regions showed little activation. The visual cortex, however, showed intense activation without applied visual stimuli. These data identify brain areas and functional circuits sensitive to a recreational dose of MDMA, some of which may be vulnerable to long-term intermittent exposure to this drug.

  5. Comparative mouse brain tractography of diffusion magnetic resonance imaging

    PubMed Central

    Moldrich, Randal X.; Pannek, Kerstin; Hoch, Renee; Rubenstein, John L.; Kurniawan, Nyoman D.; Richards, Linda J.

    2010-01-01

    Diffusion magnetic resonance imaging (dMRI) tractography can be employed to simultaneously analyse three-dimensional white matter tracts in the brain. Numerous methods have been proposed to model diffusion-weighted magnetic resonance data for tractography, and we have explored the functionality of some of these for studying white and grey matter pathways in ex vivo mouse brain. Using various deterministic and probabilistic algorithms across a range of regions of interest we found that probabilistic tractography provides a more robust means of visualizing both white and grey matter pathways than deterministic tractography. Importantly, we demonstrate the sensitivity of probabilistic tractography profiles to streamline number, step size, curvature, fiber orientation distribution, and whole-brain versus region of interest seeding. Using anatomically well-defined cortico-thalamic pathways, we show how density maps can permit the topographical assessment of probabilistic tractography. Finally, we show how different tractography approaches can impact on dMRI assessment of tract changes in a mouse deficient for the frontal cortex morphogen, fibroblast growth factor 17. In conclusion, probabilistic tractography can elucidate the phenotypes of mice with neurodegenerative or neurodevelopmental disorders in a quantitative manner. PMID:20303410

  6. Imaging emotional brain functions: conceptual and methodological issues.

    PubMed

    Peper, Martin

    2006-06-01

    This article reviews the psychophysiological and brain imaging literature on emotional brain function from a methodological point of view. The difficulties in defining, operationalising and measuring emotional activation and, in particular, aversive learning will be considered. Emotion is a response of the organism during an episode of major significance and involves physiological activation, motivational, perceptual, evaluative and learning processes, motor expression, action tendencies and monitoring/subjective feelings. Despite the advances in assessing the physiological correlates of emotional perception and learning processes, a critical appraisal shows that functional neuroimaging approaches encounter methodological difficulties regarding measurement precision (e.g., response scaling and reproducibility) and validity (e.g., response specificity, generalisation to other paradigms, subjects or settings). Since emotional processes are not only the result of localised but also of widely distributed activation, a more representative model of assessment is needed that systematically relates the hierarchy of high- and low-level emotion constructs with the corresponding patterns of activity and functional connectivity of the brain.

  7. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging

    PubMed Central

    Koffie, Robert M.; Farrar, Christian T.; Saidi, Laiq-Jan; William, Christopher M.; Hyman, Bradley T.; Spires-Jones, Tara L.

    2011-01-01

    Several imaging modalities are suitable for in vivo molecular neuroimaging, but the blood–brain barrier (BBB) limits their utility by preventing brain delivery of most targeted molecular probes. We prepared biodegradable nanocarrier systems made up of poly(n-butyl cyanoacrylate) dextran polymers coated with polysorbate 80 (PBCA nanoparticles) to deliver BBB-impermeable molecular imaging probes into the brain for targeted molecular neuroimaging. We demonstrate that PBCA nanoparticles allow in vivo targeting of BBB-impermeable contrast agents and staining reagents for electron microscopy, optical imaging (multiphoton), and whole brain magnetic resonance imaging (MRI), facilitating molecular studies ranging from individual synapses to the entire brain. PBCA nanoparticles can deliver BBB-impermeable targeted fluorophores of a wide range of sizes: from 500-Da targeted polar molecules to 150,000-Da tagged immunoglobulins into the brain of living mice. The utility of this approach is demonstrated by (i) development of a “Nissl stain” contrast agent for cellular imaging, (ii) visualization of amyloid plaques in vivo in a mouse model of Alzheimer's disease using (traditionally) non–BBB-permeable reagents that detect plaques, and (iii) delivery of gadolinium-based contrast agents into the brain of mice for in vivo whole brain MRI. Four-dimensional real-time two-photon and MR imaging reveal that brain penetration of PBCA nanoparticles occurs rapidly with a time constant of ∼18 min. PBCA nanoparticles do not induce nonspecific BBB disruption, but collaborate with plasma apolipoprotein E to facilitate BBB crossing. Collectively, these findings highlight the potential of using biodegradable nanocarrier systems to deliver BBB-impermeable targeted molecular probes into the brain for diagnostic neuroimaging. PMID:22065785

  8. Random sets technique for information fusion applied to estimation of brain functional images

    NASA Astrophysics Data System (ADS)

    Smith, Therese M.; Kelly, Patrick A.

    1999-05-01

    A new mathematical technique for information fusion based on random sets, developed and described by Goodman, Mahler and Nguyen (The Mathematics of Data Fusion, Kluwer, 1997) can be useful for estimation of functional brian images. Many image estimation algorithms employ prior models that incorporate general knowledge about sizes, shapes and locations of brain regions. Recently, algorithms have been proposed using specific prior knowledge obtained from other imaging modalities (for example, Bowsher, et al., IEEE Trans. Medical Imaging, 1996). However, there is more relevant information than is presently used. A technique that permits use of additional prior information about activity levels would improve the quality of prior models, and hence, of the resulting image estimate. The use of random sets provides this capability because it allows seemingly non-statistical (or ambiguous) information such as that contained in inference rules to be represented and combined with observations in a single statistical model, corresponding to a global joint density. This paper illustrates the use of this approach by constructing an example global joint density function for brain functional activity from measurements of functional activity, anatomical information, clinical observations and inference rules. The estimation procedure is tested on a data phantom with Poisson noise.

  9. A Factor-Image Framework to Quantification of Brain Receptor Dynamic PET Studies

    PubMed Central

    Wang, Z. Jane; Szabo, Zsolt; Lei, Peng; Varga, József; Liu, K. J. Ray

    2007-01-01

    The positron emission tomography (PET) imaging technique enables the measurement of receptor distribution or neurotransmitter release in the living brain and the changes of the distribution with time and thus allows quantification of binding sites as well as the affinity of a radioligand. However, quantification of receptor binding studies obtained with PET is complicated by tissue heterogeneity in the sampling image elements (i.e., voxels, pixels). This effect is caused by a limited spatial resolution of the PET scanner. Spatial heterogeneity is often essential in understanding the underlying receptor binding process. Tracer kinetic modeling also often requires an intrusive collection of arterial blood samples. In this paper, we propose a likelihood-based framework in the voxel domain for quantitative imaging with or without the blood sampling of the input function. Radioligand kinetic parameters are estimated together with the input function. The parameters are initialized by a subspace-based algorithm and further refined by an iterative likelihood-based estimation procedure. The performance of the proposed scheme is examined by simulations. The results show that the proposed scheme provides reliable estimation of factor time-activity curves (TACs) and the underlying parametric images. A good match is noted between the result of the proposed approach and that of the Logan plot. Real brain PET data are also examined, and good performance is observed in determining the TACs and the underlying factor images. PMID:18769527

  10. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging.

    PubMed

    Singh-Moon, Rajinder P; Roblyer, Darren M; Bigio, Irving J; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a crosscorrelation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  11. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  12. Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol.

    PubMed

    Wabnitz, Heidrun; Jelzow, Alexander; Mazurenka, Mikhail; Steinkellner, Oliver; Macdonald, Rainer; Milej, Daniel; Żołek, Norbert; Kacprzak, Michal; Sawosz, Piotr; Maniewski, Roman; Liebert, Adam; Magazov, Salavat; Hebden, Jeremy; Martelli, Fabrizio; Di Ninni, Paola; Zaccanti, Giovanni; Torricelli, Alessandro; Contini, Davide; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo; Cubeddu, Rinaldo; Pifferi, Antonio

    2014-08-01

    The nEUROPt protocol is one of two new protocols developed within the European project nEUROPt to characterize the performances of time-domain systems for optical imaging of the brain. It was applied in joint measurement campaigns to compare the various instruments and to assess the impact of technical improvements. This protocol addresses the characteristic of optical brain imaging to detect, localize, and quantify absorption changes in the brain. It was implemented with two types of inhomogeneous liquid phantoms based on Intralipid and India ink with well-defined optical properties. First, small black inclusions were used to mimic localized changes of the absorption coefficient. The position of the inclusions was varied in depth and lateral direction to investigate contrast and spatial resolution. Second, two-layered liquid phantoms with variable absorption coefficients were employed to study the quantification of layer-wide changes and, in particular, to determine depth selectivity, i.e., the ratio of sensitivities for deep and superficial absorption changes. We introduce the tests of the nEUROPt protocol and present examples of results obtained with different instruments and methods of data analysis. This protocol could be a useful step toward performance tests for future standards in diffuse optical imaging.

  13. ESR imaging of the rat brain with a nitroxide radical perfused by in vivo microdialysis.

    PubMed

    Ueda, Y; Yokoyama, H; Ohya-Nishiguchi, H; Kamada, H

    1997-01-01

    We report here our investigation of the spatial distribution of free radicals using an electron spin resonance (ESR)-imaging system combined with an in vivo brain microdialysis method, which was performed in the resonator of the ESR-imaging system. A nonmagnetic cannula, newly developed in this study, was used for the perfusion of the exogenous free radicals agent. A nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl PROYXL), was used as the imaging agent in saline solution at a concentration of 0.3 M, which was perfused into the right caudate putamen of the rat at 2 microliters/min by a microinfusion pump. Two-dimensional ESR projection of the Z-X plane, which was clearly distinguished (about phi 10 mm) from the nonperfused brain area, was obtained 6 h after the beginning of perfusion of carbamoyl PROXYL. The present method is considered to be a useful tool to introduce stable free radicals into a specific area of the brain.

  14. Current Clinical Applications and Future Potential of Diffusion Tensor Imaging in Traumatic Brain Injury.

    PubMed

    Strauss, Sara; Hulkower, Miriam; Gulko, Edwin; Zampolin, Richard L; Gutman, David; Chitkara, Munish; Zughaft, Malka; Lipton, Michael L

    2015-12-01

    In the setting of acute central nervous system (CNS) emergencies, computed tomography (CT) and conventional magnetic resonance imaging (MRI) play an important role in the identification of life-threatening intracranial injury. However, the full extent or even presence of brain damage frequently escapes detection by conventional CT and MRI. Advanced MRI techniques such as diffusion tensor imaging (DTI) are emerging as important adjuncts in the diagnosis of microstructural white matter injury in the acute and postacute brain-injured patient. Although DTI aids in detection of brain injury pathology, which has been repeatedly associated with typical adverse clinical outcomes, the evolution of acute changes and their long-term prognostic implications are less clear and the subject of much active research. A major aim of current research is to identify imaging-based biomarkers that can identify the subset of TBI patients who are at risk for adverse outcome and can therefore most benefit from ongoing care and rehabilitation as well as future therapeutic interventions.The aim of this study is to introduce the current methods used to obtain DTI in the clinical setting, describe a set of common interpretation strategies with their associated advantages and pitfalls, as well as illustrate the clinical utility of DTI through a set of specific patient scenarios. We conclude with a discussion of future potential for the management of TBI.

  15. Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol.

    PubMed

    Wabnitz, Heidrun; Jelzow, Alexander; Mazurenka, Mikhail; Steinkellner, Oliver; Macdonald, Rainer; Milej, Daniel; Żołek, Norbert; Kacprzak, Michal; Sawosz, Piotr; Maniewski, Roman; Liebert, Adam; Magazov, Salavat; Hebden, Jeremy; Martelli, Fabrizio; Di Ninni, Paola; Zaccanti, Giovanni; Torricelli, Alessandro; Contini, Davide; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo; Cubeddu, Rinaldo; Pifferi, Antonio

    2014-08-01

    The nEUROPt protocol is one of two new protocols developed within the European project nEUROPt to characterize the performances of time-domain systems for optical imaging of the brain. It was applied in joint measurement campaigns to compare the various instruments and to assess the impact of technical improvements. This protocol addresses the characteristic of optical brain imaging to detect, localize, and quantify absorption changes in the brain. It was implemented with two types of inhomogeneous liquid phantoms based on Intralipid and India ink with well-defined optical properties. First, small black inclusions were used to mimic localized changes of the absorption coefficient. The position of the inclusions was varied in depth and lateral direction to investigate contrast and spatial resolution. Second, two-layered liquid phantoms with variable absorption coefficients were employed to study the quantification of layer-wide changes and, in particular, to determine depth selectivity, i.e., the ratio of sensitivities for deep and superficial absorption changes. We introduce the tests of the nEUROPt protocol and present examples of results obtained with different instruments and methods of data analysis. This protocol could be a useful step toward performance tests for future standards in diffuse optical imaging. PMID:25121480

  16. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation

    SciTech Connect

    Kaplan, W.D.; Takvorian, T.; Morris, J.H.; Rumbaugh, C.L.; Connolly, B.T.; Atkins, H.L.

    1987-01-01

    In patients with gliomas who were stable or improving, we noted a disparity between clinical status and computed tomography (CT) brain scan results. To elucidate this finding, 29 patients were sequentially scanned with 2.0 mCi of /sup 201/Tl (5-30 min), 20 mCi (/sup 99m/Tc)gluceptate (GH) (3-4 hr) and 7-10 mCi 67Ga (48-72 hr). A total of 198 images were obtained. A set of three scans at a midpoint in follow up was selected for analysis. Seven patients who died had neuropathologic data available; brain sections were reconstructed to match radionuclide views without knowledge of image results. In the seven patients with autopsy data, /sup 201/Tl offered the most accurate correlation with viable tumor. Gallium-67 gave similar results in patients not receiving steroids. Technetium-99m GH scans could not allow differentiation between tumor, necrosis, and edema. Similarly, the CT scan could not routinely differentiate between fibrotic, nonfibrotic, necrotic, and neoplastic tissue. In the 22 patients without autopsy data, /sup 201/Tl scans commonly showed smaller and more focal abnormal uptake when compared with (/sup 99m/Tc)GH and /sup 67/Ga scans. Thallium-201 scans more accurately reflect viable tumor burden than other radionuclide studies of primary brain tumors, are minimally affected by concomitant steroid administration, can be performed immediately following tracer administration, and complement the anatomic data obtained from CT scans.

  17. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    PubMed

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies. PMID:27075850

  18. [Imaging the brain, from the cell to the organ].

    PubMed

    Cabanis, Emmanuel Alain; Iba-Zizen, Marie-Thérèse; Habas, Christophe; Istoc, Adrian; Stievenart, Jean-Louis; Yoshida, Masaki; Nguyen, Thien Huong; Goepel, Roland

    2009-04-01

    Brain imaging has progressed over the centuries, from prehistory (surgical and sculptural empiricism), through the Middle Ages (dissection and drawings), the Renaissance (printing) and the 18th century (Spallanzani and ultrasounds), to the 19th century and the discovery of piezoelectricity by the Curie brothers and X-rays by Röntgen in 1895. The head had finally become transparent! The microscope was used by Ramon Y Cajal for histological and neuropathological brain studies. Marie Curie's discovery of radioisotopes paved the way for advances in in vivo neurophysiology. In the 20th century, technical progress accelerated with the advent of computed tomography. Injected contrast products were initially negative (air for ventriculography and pneumo-encephalography), and subsequently positive (intraventricular then intraarterial iodine, cerebral arteriography, increasingly hyperselective). Neurology and neurosurgery were followed by neuroradiology, stereotaxy, and interventional neuroradiology. G.N. Hounsfield's EMI CT scanner replaced silver salts crystals with computed pixels and voxels. Magnetic resonance imaging (MRI, 1981), which dispenses with the need for X-rays, is evolving at the same pace as computer science itself (Moore's Law) in the form of nanometric biophotonics for example. Diffusion MRI is providing precious information on neuroanatomy (axonal organization of the white matter and neuro-tractography, vascular anatomy), neurochemistry (MRS) and neurophysiology. Functional MRI of sensory activation and resting connectivity, the substrate of thought, is giving fascinating results. Functional stereotactic neurosurgery (for epilepsy, abnormal movements, etc.), stereotactic radiosurgery and endovascular interventional neuroradiology are among the latest approaches.

  19. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging.

    PubMed

    Yan, Chao-Gan; Wang, Xin-Di; Zuo, Xi-Nian; Zang, Yu-Feng

    2016-07-01

    Brain imaging efforts are being increasingly devoted to decode the functioning of the human brain. Among neuroimaging techniques, resting-state fMRI (R-fMRI) is currently expanding exponentially. Beyond the general neuroimaging analysis packages (e.g., SPM, AFNI and FSL), REST and DPARSF were developed to meet the increasing need of user-friendly toolboxes for R-fMRI data processing. To address recently identified methodological challenges of R-fMRI, we introduce the newly developed toolbox, DPABI, which was evolved from REST and DPARSF. DPABI incorporates recent research advances on head motion control and measurement standardization, thus allowing users to evaluate results using stringent control strategies. DPABI also emphasizes test-retest reliability and quality control of data processing. Furthermore, DPABI provides a user-friendly pipeline analysis toolkit for rat/monkey R-fMRI data analysis to reflect the rapid advances in animal imaging. In addition, DPABI includes preprocessing modules for task-based fMRI, voxel-based morphometry analysis, statistical analysis and results viewing. DPABI is designed to make data analysis require fewer manual operations, be less time-consuming, have a lower skill requirement, a smaller risk of inadvertent mistakes, and be more comparable across studies. We anticipate this open-source toolbox will assist novices and expert users alike and continue to support advancing R-fMRI methodology and its application to clinical translational studies.

  20. The cerebral imaging using vessel-around method in the perfusion CT of the human brain

    NASA Astrophysics Data System (ADS)

    Ahn, Choong-Il; Choi, Seung-Wook; Park, Seung-Chul; Shin, Yeong-Gil; Kim, Jae-Hyoung; Chong, Gi-Bong

    2005-04-01

    Perfusion CT has been successfully used as a functional imaging technique for diagnosis of patients with hyperacute stroke. However, the commonly used methods based on curve-fitting are time consuming. Numerous researchers have investigated to what extent Perfusion CT can be used for the quantitative assessment of cerebral ischemia and to rapidly obtain comprehensive information regarding the extent of ischemic damage in acute stroke patients. The aim of this study is to propose an alternative approach to rapidly obtain the brain perfusion mapping and to show the proposed cerebral flow imaging of the vessel and tissue in human brain be reliable and useful. Our main design concern was algorithmic speed, robustness and automation in order to allow its potential use in the emergency situation of acute stroke. To obtain a more effective mapping, we analyzed the signal characteristics of Perfusion CT and defined the vessel-around model which includes the vessel and tissue. We proposed a nonparametric vessel-around approach which automatically discriminates the vessel and tissue around vessel from non-interested brain matter stratifying the level of maximum enhancement of pixel-based TAC. The stratification of pixel-based TAC was executed using the mean and standard deviation of the signal intensity of each pixel and mapped to the cerebral flow imaging. The defined vessel-around model was used to show the cerebral flow imaging and to specify the area of markedly reduced perfusion with loss of function of still viable neurons. Perfusion CT is a fast and practical technique for routine clinical application. It provides substantial and important additional information for the selection of the optimal treatment strategy for patients with hyperacute stroke. The vessel-around approach reduces the computation time significantly when compared with the perfusion imaging using the GVF. The proposed cerebral imaging shows reliable results which are validated by physicians and

  1. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574313

  2. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  3. Optimizing brain tumor resection. Midfield interventional MR imaging.

    PubMed

    Alexander, E

    2001-11-01

    The development of the intraoperative MR imager represents an important example of creative vision and interdisciplinary teamwork. The result is a remarkable tool for neurosurgical applications. MRT allows surgical manipulation under direct visualization of the intracranial contents through the eye of the surgeon and through the volumetric images of the MR imaging system. This technology can be applied to cranial and spinal cases, and forseeably can encompass application to the entire gamut of neurosurgical efforts. The author's experience has been that this device is easy and comfortable for the surgeon to use. Image acquisition, giving views in the plane of choice, lasts no more than 2 to 60 seconds (depending on the imaging method), and does not increase the duration of a given procedure substantially. The author believes that the information received through intraoperative MR imaging scanning ultimately will contribute to decreasing the duration of surgery. Future possibilities include combining the intraoperative MR imager with other technologies, such as the endoscope, focused ultrasound, robotics, and the evaluation of brain function intraoperatively. The development of the intraoperative MR imager marks a significant advance in neurosurgery, an advance that will revolutionize intraoperative visualization as fully as the operating microscope. The combination of intraoperative visualization and precise surgical navigation is unparalleled, and its enhancement of surgical applications will be widespread. Considering the remarkable potential of the intraoperative MR imager for neurosurgical applications, optimal magnet design, image quality, and navigational methods are necessary to capitalize on the advantages of this revolutionary tool. The intraoperative MR imaging system that the author's team has developed and used has combined these features, and allows the performance of open surgical procedures without the need of patient or magnet repositioning. By

  4. Comparison between methods of assessing lumbosacral curve obtained by radiographic image

    PubMed Central

    Vacari, Daiane Aparecida; Neves, Eduardo Borba; Ulbricht, Leandra

    2015-01-01

    OBJECTIVE: To investigate the correlation between different radiographic methods in the evaluation of the lumbosacral concavity. METHODS: The sample consisted of 52 individuals with ages ranging from 18 to 28 years old. The procedures related to radiographic image collection were carried out in collaboration with a diagnostic imaging center of a hospital in Curitiba, PR, Brazil. The angles of the lumbosacral concavity were evaluated by the following methods: Centroid, Cobb1L1-S1, Cobb2L1-L5, Cobb3L2-S1 Cobb4T12-S1, Posterior Tangent and Trall. RESULTS: High correlation coefficients (r ranging from 0.77 to 0.89) were found among variations of the Cobb method. Additionally, we propose a categorical classification of angle values obtained by each method. We also analyzed the influence of the level of the inflection point between the lumbar lordosis and thoracic kyphosis in determining the evaluation method to be used. The inflection point had a higher incidence in the region between the twelfth thoracic vertebra and the first lumbar vertebra (63.5%). CONCLUSION: The correlation and agreement between methods vary considerably. Moreover, the thoracolumbar inflection point should be considered when choosing the method of assessing patients. Level of Evidence I, Diagnostic Study. PMID:27069403

  5. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    PubMed

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  6. Designing Image Operators for MRI-PET Image Fusion of the Brain

    SciTech Connect

    Marquez, Jorge; Gastelum, Alfonso; Padilla, Miguel A.

    2006-09-08

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  7. Designing Image Operators for MRI-PET Image Fusion of the Brain

    NASA Astrophysics Data System (ADS)

    Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.

    2006-09-01

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  8. Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization.

    PubMed

    Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A

    2013-01-01

    A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.

  9. Does obtaining an initial magnetic resonance imaging decrease the reamputation rates in the diabetic foot?

    PubMed Central

    Jbara, Marlena; Gokli, Ami; Beshai, Sally; Lesser, Martin L.; Hanna, Shirley; Lin, Cheryl; Zeb, Annie

    2016-01-01

    Objective Diabetes mellitus (DM) through its over glycosylation of neurovascular structures and resultant peripheral neuropathy continues to be the major risk factor for pedal amputation. Repetitive trauma to the insensate foot results in diabetic foot ulcers, which are at high risk to develop osteomyelitis. Many patients who present with diabetic foot complications will undergo one or more pedal amputations during the course of their disease. The purpose of this study was to determine if obtaining an initial magnetic resonance imaging (MRI), prior to the first amputation, is associated with a decreased rate of reamputation in the diabetic foot. Our hypothesis was that the rate of reamputation may be associated with underutilization of obtaining an initial MRI, useful in presurgical planning. This study was designed to determine whether there was an association between the reamputation rate in diabetic patients and utilization of MRI in the presurgical planning and prior to initial forefoot amputations. Methods Following approval by our institutional review board, our study design consisted of a retrospective cohort analysis of 413 patients at Staten Island University Hospital, a 700-bed tertiary referral center between 2008 and 2013 who underwent an initial great toe (hallux) amputation. Of the 413 patients with a hallux amputation, there were 368 eligible patients who had a history of DM with documented hemoglobin A1c (HbA1c) within 3 months of the initial first ray (hallux and first metatarsal) amputation and available radiographic data. Statistical analysis compared the incidence rates of reamputation between patients who underwent initial MRI and those who did not obtain an initial MRI prior to their first amputation. The reamputation rate was compared after adjustment for age, gender, ethnicity, HbA1c, cardiovascular disease, hypoalbuminemia, smoking, body mass index, and prior antibiotic treatment. Results The results of our statistical analysis failed to

  10. Anatomical-Functional Correlative Analysis Of The Human Brain Using Three Dimensional Imaging Systems

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Marrett, Sean; Collins, D. L.; Peters, Terence M.

    1989-05-01

    Quantitative interpretation of functional images (PET or SPECT) is hampered by poor spatial resolution, low counting statistics and, for many tracers, low contrast between different brain structures of interest. Further, normal tracer distributions can be severely distorted by such gross pathologies as stroke, tumor and dementia. Hence, the complementary anatomical information provided by CT or MRI is essential for accurate and reproducible regional analysis of functional data. We have developed methods for the three-dimensional integration and simultaneous display of image volumes from MRI and PET. PET data was collected from an older Therascan 3-slice scanner with 12 mm resolution and a 15-slice Scanditronix PC-2048 system having 5-6 mm resolution in each dimension. MRI data was obtained from a Philips 1.5 Tesla Gyroscan scanner. The image volumes were loaded into a PIXAR 3-D image computer for simultaneous display. A general algorithm for finding the optimal transformation between two ensembles of equivalent points was implemented and investigated through simulation studies. Using a locally-developed 3-D image/graphics analysis package, equivalent points in the two image volumes were identified, either manually or via an adjustable computerized volume-of-interest (VOI) atlas. The MRI data were then re-sampled along planes parallel to the PET planes and the two volumes overlaid using opacity-weighted composition. Arbitrary oblique planes through the two volumes were obtained in interactive sessions.

  11. In vivo imaging of endogenous neural stem cells in the adult brain

    PubMed Central

    Rueger, Maria Adele; Schroeter, Michael

    2015-01-01

    The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting. PMID:25621107

  12. A Quantitative MRI Method for Imaging Blood-Brain Barrier Leakage in Experimental Traumatic Brain Injury

    PubMed Central

    Watts, Lora Talley; Jiang, Zhao; Shen, Qiang; Li, Yunxia; Duong, Timothy Q.

    2014-01-01

    Blood-brain barrier (BBB) disruption is common following traumatic brain injury (TBI). Dynamic contrast enhanced (DCE) MRI can longitudinally measure the transport coefficient Ktrans which reflects BBB permeability. Ktrans measurements however are not widely used in TBI research because it is generally considered to be noisy and possesses low spatial resolution. We improved spatiotemporal resolution and signal sensitivity of Ktrans MRI in rats by using a high-sensitivity surface transceiver coil. To overcome the signal drop off profile of the surface coil, a pre-scan module was used to map the flip angle (B1 field) and magnetization (M0) distributions. A series of T1-weighted gradient echo images were acquired and fitted to the extended Kety model with reversible or irreversible leakage, and the best model was selected using F-statistics. We applied this method to study the rat brain one hour following controlled cortical impact (mild to moderate TBI), and observed clear depiction of the BBB damage around the impact regions, which matched that outlined by Evans Blue extravasation. Unlike the relatively uniform T2 contrast showing cerebral edema, Ktrans shows a pronounced heterogeneous spatial profile in and around the impact regions, displaying a nonlinear relationship with T2. This improved Ktrans MRI method is also compatible with the use of high-sensitivity surface coil and the high-contrast two-coil arterial spin-labeling method for cerebral blood flow measurement, enabling more comprehensive investigation of the pathophysiology in TBI. PMID:25478693

  13. Comet Halley passes the halfway mark. Very distant image obtained with the ESO NTT.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    Eight years after the passage of Comet Halley in early 1986, astronomers at the European Southern Observatory have succeeded in obtaining an image [1] of this famous object at a distance of no less than 2,820 million km from the Sun. The comet is now about as far away as giant planet Uranus. It recently passed the halfway mark towards the most distant point of its very elongated 76-year orbit. The image shows the 6 x 15 km avocado-shaped nucleus as an extremely faint point of light without any surrounding dust cloud. It appears that the surface is now completely frozen and the comet has ceased to emit dust and gas. This observation was made with the ESO 3.58 metre New Technology Telescope (NTT). It is by far the faintest and most distant image ever recorded of this comet. A DIFFICULT OBSERVATION The new Halley image was obtained in the course of an observational programme by a small group of astronomers [2], aimed at the investigation of distant solar system objects. The observation was difficult to perform and is close to the limit of what is possible, even with the NTT, one of the technologically most advanced astronomical telescopes. In fact, this observation may be compared to viewing a black golfball, used during a late evening game, from a distance of 12,000 km. At Halley's present, very large distance from the Sun, the intensity of the solar light is over 350 times fainter than here on Earth. The surface of the cometary nucleus is very dark; it reflects only 4 % of the infalling sunlight. The amount of light received from Halley is therefore extremely small: the recorded star-like image of the nucleus is about 160 million times fainter than the faintest star that can be seen with the unaided eye. A long exposure was needed to catch enough light to show the object; even with the very sensitive SuSI CCD camera at the NTT, the shutter had to be kept open for a total of 3 hours 45 minutes. During this time, of the order of 9000 photons from Comet Halley were

  14. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm

    PubMed Central

    Yang, Zhang; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  15. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.

    PubMed

    Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  16. Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model

    PubMed Central

    2012-01-01

    Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222

  17. Image analysis of sludge aggregates obtained at preliminary treatment of sewage.

    PubMed

    Smoczyński, L; Ratnaweera, H; Kosobucka, M; Kvaal, K; Smoczyński, M

    2014-01-01

    The results of wastewater treatment by Al and Fe salts and by electrocoagulation with aluminum electrodes are discussed and interpreted. Those processes used alone or combined with biological treatment, were analyzed for 50 and 90% removal of phosphates. Scanning electron microscopy (SEM) of the resulting sludge from three coagulation processes defined the perimeter P and area A of 129-142 differently sized objects in each contrast-enhanced image. Plots of lg A against lg P revealed that the analyzed sludge samples were made of self-similar aggregates-flocs with fractal characteristics. The slope of 'log plots' was used to determine surface fractal dimension Da, which was extrapolated to volumetric fractal dimension Dv. Dv was applied in a quantitative description of sludge aggregates-flocs. Aggregates-flocs of sludge obtained by Al ions (pre-polymerized Al and electrocoagulation) were characterized by higher values of Dv in comparison with sludge obtained by iron salts. The structure of {Al(OH)(3)} and {Fe(OH)(3)} aggregate-flocs was graphically simulated to determine the effect of size distribution and Dv on sweep flocculation and sludge separation and dehydration. Phosphate removal efficiency of 50% occurred at low ratios of Al:P and Fe:P. Adsorption-charge neutralization was suggested during coagulation with pre-polymerized coagulants, and sweep flow mechanism during electrocoagulation. PMID:25259494

  18. Multicentre imaging measurements for oncology and in the brain

    PubMed Central

    Tofts, P S; Collins, D J

    2011-01-01

    Multicentre imaging studies of brain tumours (and other tumour and brain studies) can enable a large group of patients to be studied, yet they present challenging technical problems. Differences between centres can be characterised, understood and minimised by use of phantoms (test objects) and normal control subjects. Normal white matter forms an excellent standard for some MRI parameters (e.g. diffusion or magnetisation transfer) because the normal biological range is low (<2–3%) and the measurements will reflect this, provided the acquisition sequence is controlled. MR phantoms have benefits and they are necessary for some parameters (e.g. tumour volume). Techniques for temperature monitoring and control are given. In a multicentre study or treatment trial, between-centre variation should be minimised. In a cross-sectional study, all groups should be represented at each centre and the effect of centre added as a covariate in the statistical analysis. In a serial study of disease progression or treatment effect, individual patients should receive all of their scans at the same centre; the power is then limited by the within-subject reproducibility. Sources of variation that are generic to any imaging method and analysis parameters include MR sequence mismatch, B1 errors, CT effective tube potential, region of interest generation and segmentation procedure. Specific tissue parameters are analysed in detail to identify the major sources of variation and the most appropriate phantoms or normal studies. These include dynamic contrast-enhanced and dynamic susceptibility contrast gadolinium imaging, T1, diffusion, magnetisation transfer, spectroscopy, tumour volume, arterial spin labelling and CT perfusion. PMID:22433831

  19. Comet Halley passes the halfway mark. Very distant image obtained with the ESO NTT.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    Eight years after the passage of Comet Halley in early 1986, astronomers at the European Southern Observatory have succeeded in obtaining an image [1] of this famous object at a distance of no less than 2,820 million km from the Sun. The comet is now about as far away as giant planet Uranus. It recently passed the halfway mark towards the most distant point of its very elongated 76-year orbit. The image shows the 6 x 15 km avocado-shaped nucleus as an extremely faint point of light without any surrounding dust cloud. It appears that the surface is now completely frozen and the comet has ceased to emit dust and gas. This observation was made with the ESO 3.58 metre New Technology Telescope (NTT). It is by far the faintest and most distant image ever recorded of this comet. A DIFFICULT OBSERVATION The new Halley image was obtained in the course of an observational programme by a small group of astronomers [2], aimed at the investigation of distant solar system objects. The observation was difficult to perform and is close to the limit of what is possible, even with the NTT, one of the technologically most advanced astronomical telescopes. In fact, this observation may be compared to viewing a black golfball, used during a late evening game, from a distance of 12,000 km. At Halley's present, very large distance from the Sun, the intensity of the solar light is over 350 times fainter than here on Earth. The surface of the cometary nucleus is very dark; it reflects only 4 % of the infalling sunlight. The amount of light received from Halley is therefore extremely small: the recorded star-like image of the nucleus is about 160 million times fainter than the faintest star that can be seen with the unaided eye. A long exposure was needed to catch enough light to show the object; even with the very sensitive SuSI CCD camera at the NTT, the shutter had to be kept open for a total of 3 hours 45 minutes. During this time, of the order of 9000 photons from Comet Halley were

  20. Combination strategies in multi-atlas image segmentation: application to brain MR data.

    PubMed

    Artaechevarria, Xabier; Munoz-Barrutia, Arrate; Ortiz-de-Solorzano, Carlos

    2009-08-01

    It has been shown that employing multiple atlas images improves segmentation accuracy in atlas-based medical image segmentation. Each atlas image is registered to the target image independently and the calculated transformation is applied to the segmentation of the atlas image to obtain a segmented version of the target image. Several independent candidate segmentations result from the process, which must be somehow combined into a single final segmentation. Majority voting is the generally used rule to fuse the segmentations, but more sophisticated methods have also been proposed. In this paper, we show that the use of global weights to ponderate candidate segmentations has a major limitation. As a means to improve segmentation accuracy, we propose the generalized local weighting voting method. Namely, the fusion weights adapt voxel-by-voxel according to a local estimation of segmentation performance. Using digital phantoms and MR images of the human brain, we demonstrate that the performance of each combination technique depends on the gray level contrast characteristics of the segmented region, and that no fusion method yields better results than the others for all the regions. In particular, we show that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low. We conclude that, in order to achieve the highest overall segmentation accuracy, the best combination method for each particular structure must be selected. PMID:19228554

  1. The iconographic brain. A critical philosophical inquiry into (the resistance of) the image

    PubMed Central

    De Vos, Jan

    2014-01-01

    The brain image plays a central role in contemporary image culture and, in turn, (co)constructs contemporary forms of subjectivity. The central aim of this paper is to probe the unmistakably potent interpellative power of brain images by delving into the power of imaging and the power of the image itself. This is not without relevance for the neurosciences, inasmuch as these do not take place in a vacuum; hence the importance of inquiring into the status of the image within scientific culture and science itself. I will mount a critical philosophical investigation of the brain qua image, focusing on the issue of mapping the mental onto the brain and how, in turn, the brain image plays a pivotal role in processes of subjectivation. Hereto, I draw upon Science & Technology Studies, juxtaposed with culture and ideology critique and theories of image culture. The first section sets out from Althusser's concept of interpellation, linking ideology to subjectivity. Doing so allows to spell out the central question of the paper: what could serve as the basis for a critical approach, or, where can a locus of resistance be found? In the second section, drawing predominantly on Baudrillard, I delve into the dimension of virtuality as this is opened up by brain image culture. This leads to the question of whether the digital brain must be opposed to old analog psychology: is it the psyche which resists? This issue is taken up in the third section which, ultimately, concludes that the psychological is not the requisite locus of resistance. The fourth section proceeds to delineate how the brain image is constructed from what I call the data-gaze (the claim that brain data are always already visual). In the final section, I discuss how an engagement with theories of iconology affords a critical understanding of the interpellative force of the brain image, which culminates in the somewhat unexpected claim that the sought after resistance lies in the very status of the image itself

  2. Magnetic-resonance imaging of the human brain with an atomic magnetometer.

    PubMed

    Savukov, I; Karaulanov, T

    2013-07-22

    Magnetic resonance imaging (MRI) is conventionally performed in very high fields, and this leads to some restrictions in applications. To remove such restrictions, the ultra-low field MRI approach has been proposed. Because of the loss of sensitivity, the detection methods based on superconducting quantum interference devices (SQUIDs) in a shielded room were used. Atomic magnetometers have similar sensitivity as SQUIDs and can also be used for MRI, but there are some technical difficulties to overcome. We demonstrate that MRI of the human brain can be obtained with an atomic magnetometer with in-plane resolution of 3 mm in 13 min.

  3. Magnetic-resonance imaging of the human brain with an atomic magnetometer

    NASA Astrophysics Data System (ADS)

    Savukov, I.; Karaulanov, T.

    2013-07-01

    Magnetic resonance imaging (MRI) is conventionally performed in very high fields, and this leads to some restrictions in applications. To remove such restrictions, the ultra-low field MRI approach has been proposed. Because of the loss of sensitivity, the detection methods based on superconducting quantum interference devices (SQUIDs) in a shielded room were used. Atomic magnetometers have similar sensitivity as SQUIDs and can also be used for MRI, but there are some technical difficulties to overcome. We demonstrate that MRI of the human brain can be obtained with an atomic magnetometer with in-plane resolution of 3 mm in 13 min.

  4. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    PubMed Central

    Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2016-01-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501

  5. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).

    PubMed

    Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen

    2015-10-01

    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.

  6. Analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging

    SciTech Connect

    Ding, J.; Lyczkowski, R.W.; Sha, W.T. ); Altobelli, S.A.; Fukushima, E. )

    1992-09-01

    COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been developed by Argonne National Laboratory. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. This computer program is in its early stages of development for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. COMMIX-M contains preliminary constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and shear lift forces from the literature. Also included is a solids partial slip boundary condition to allow non-zero tangential velocity at the tube walls. Analyses of some of the steady-state, fully-developed isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow are presented. These experimental data obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques were carefully performed and represent some of the best available open literature data of their kind. NMR imaging offers powerful techniques to non-intrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. Analyses of these NMR data, together with comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for future research are given. To the authors' knowledge, these are the first such comparisons of theory and experiment.

  7. Analysis of liquid-solids suspension velocities and concentrations obtained by NMR imaging

    SciTech Connect

    Ding, J.; Lyczkowski, R.W.; Sha, W.T.; Altobelli, S.A.; Fukushima, E.

    1992-09-01

    COMMIX-M, a three-dimensional transient and steady-state computer program written in Cartesian and cylindrical coordinates, has been developed by Argonne National Laboratory. This computer program is capable of analyzing multiphase flow and heat transfer and utilizes the separate phases model wherein each phase has its own mass, momentum, and energy equations. This computer program is in its early stages of development for application to test various interphase interaction models and to predict design and processing of dense fluid-solids suspension systems. COMMIX-M contains preliminary constitutive relationships for interfacial drag, solids viscosities and stresses to describe the solids rheology, and shear lift forces from the literature. Also included is a solids partial slip boundary condition to allow non-zero tangential velocity at the tube walls. Analyses of some of the steady-state, fully-developed isothermal carrier fluid velocity and solids concentration data of Altobelli et al. and Sinton and Chow are presented. These experimental data obtained using three-dimensional time-of-flight nuclear magnetic (NMR) imaging techniques were carefully performed and represent some of the best available open literature data of their kind. NMR imaging offers powerful techniques to non-intrusively determine three-dimensional time-dependent velocity and concentration fields to assist development and validation of the constitutive models and the computer programs describing concentrated suspensions. Analyses of these NMR data, together with comparisons of computed and measured concentration and velocity profiles provide some insights into the mechanisms governing the observed phenomena. Recommendations for future research are given. To the authors` knowledge, these are the first such comparisons of theory and experiment.

  8. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  9. Comparative assessments of the effects of alcohol exposure on fetal brain development using optical coherence tomography and ultrasound imaging.

    PubMed

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C; Larin, Kirill V

    2013-02-01

    The developing fetal brain is vulnerable to a variety of environmental agents including maternal ethanol consumption. Preclinical studies on the development and amelioration of fetal teratology would be significantly facilitated by the application of high resolution imaging technologies like optical coherence tomography (OCT) and high-frequency ultrasound (US). This study investigates the ability of these imaging technologies to measure the effects of maternal ethanol exposure on brain development, ex vivo, in fetal mice. Pregnant mice at gestational day 12.5 were administered ethanol (3 g/Kg b.wt.) or water by intragastric gavage, twice daily for three consecutive days. On gestational day 14.5, fetuses were collected and imaged. Three-dimensional images of the mice fetus brains were obtained by OCT and high-resolution US, and the volumes of the left and right ventricles of the brain were measured. Ethanol-exposed fetuses exhibited a statistically significant, 2-fold increase in average left and right ventricular volumes compared with the ventricular volume of control fetuses, with OCT-derived measures of 0.38 and 0.18 mm3, respectively, whereas the boundaries of the fetal mouse lateral ventricles were not clearly definable with US imaging. Our results indicate that OCT is a useful technology for assessing ventriculomegaly accompanying alcohol-induced developmental delay. This study clearly demonstrated advantages of using OCT for quantitative assessment of embryonic development compared with US imaging.

  10. Visual image reconstruction from human brain activity: A modular decoding approach

    NASA Astrophysics Data System (ADS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Morito, Yusuke; Tanabe, Hiroki C.; Sadato, Norihiro; Kamitani, Yukiyasu

    2009-12-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  11. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain

    PubMed Central

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-01-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  12. Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain.

    PubMed

    Wu, Xue; Eggebrecht, Adam T; Ferradal, Silvina L; Culver, Joseph P; Dehghani, Hamid

    2015-11-01

    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery. PMID:26601019

  13. Deploying swarm intelligence in medical imaging identifying metastasis, micro-calcifications and brain image segmentation.

    PubMed

    al-Rifaie, Mohammad Majid; Aber, Ahmed; Hemanth, Duraiswamy Jude

    2015-12-01

    This study proposes an umbrella deployment of swarm intelligence algorithm, such as stochastic diffusion search for medical imaging applications. After summarising the results of some previous works which shows how the algorithm assists in the identification of metastasis in bone scans and microcalcifications on mammographs, for the first time, the use of the algorithm in assessing the CT images of the aorta is demonstrated along with its performance in detecting the nasogastric tube in chest X-ray. The swarm intelligence algorithm presented in this study is adapted to address these particular tasks and its functionality is investigated by running the swarms on sample CT images and X-rays whose status have been determined by senior radiologists. In addition, a hybrid swarm intelligence-learning vector quantisation (LVQ) approach is proposed in the context of magnetic resonance (MR) brain image segmentation. The particle swarm optimisation is used to train the LVQ which eliminates the iteration-dependent nature of LVQ. The proposed methodology is used to detect the tumour regions in the abnormal MR brain images. PMID:26577158

  14. Multimodal imaging of the self-regulating developing brain.

    PubMed

    Fjell, Anders M; Walhovd, Kristine Beate; Brown, Timothy T; Kuperman, Joshua M; Chung, Yoonho; Hagler, Donald J; Venkatraman, Vijay; Roddey, J Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G; Bloss, Cinnamon S; Libiger, Ondrej; Darst, Burcu F; Schork, Nicholas J; Casey, B J; Chang, Linda; Ernst, Thomas M; Gruen, Jeffrey R; Kaufmann, Walter E; Kenet, Tal; Frazier, Jean; Murray, Sarah S; Sowell, Elizabeth R; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L; Dale, Anders M

    2012-11-27

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4-21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  15. Multimodal imaging of the self-regulating developing brain

    PubMed Central

    Fjell, Anders M.; Walhovd, Kristine Beate; Brown, Timothy T.; Kuperman, Joshua M.; Chung, Yoonho; Hagler, Donald J.; Venkatraman, Vijay; Roddey, J. Cooper; Erhart, Matthew; McCabe, Connor; Akshoomoff, Natacha; Amaral, David G.; Bloss, Cinnamon S.; Libiger, Ondrej; Darst, Burcu F.; Schork, Nicholas J.; Casey, B. J.; Chang, Linda; Ernst, Thomas M.; Gruen, Jeffrey R.; Kaufmann, Walter E.; Kenet, Tal; Frazier, Jean; Murray, Sarah S.; Sowell, Elizabeth R.; van Zijl, Peter; Mostofsky, Stewart; Jernigan, Terry L.; Dale, Anders M.; Jernigan, Terry L.; McCabe, Connor; Chang, Linda; Akshoomoff, Natacha; Newman, Erik; Dale, Anders M.; Ernst, Thomas; Dale, Anders M.; Van Zijl, Peter; Kuperman, Joshua; Murray, Sarah; Bloss, Cinnamon; Schork, Nicholas J.; Appelbaum, Mark; Gamst, Anthony; Thompson, Wesley; Bartsch, Hauke; Jernigan, Terry L.; Dale, Anders M.; Akshoomoff, Natacha; Chang, Linda; Ernst, Thomas; Keating, Brian; Amaral, David; Sowell, Elizabeth; Kaufmann, Walter; Van Zijl, Peter; Mostofsky, Stewart; Casey, B.J.; Ruberry, Erika J.; Powers, Alisa; Rosen, Bruce; Kenet, Tal; Frazier, Jean; Kennedy, David; Gruen, Jeffrey

    2012-01-01

    Self-regulation refers to the ability to control behavior, cognition, and emotions, and self-regulation failure is related to a range of neuropsychiatric problems. It is poorly understood how structural maturation of the brain brings about the gradual improvement in self-regulation during childhood. In a large-scale multicenter effort, 735 children (4–21 y) underwent structural MRI for quantification of cortical thickness and surface area and diffusion tensor imaging for quantification of the quality of major fiber connections. Brain development was related to a standardized measure of cognitive control (the flanker task from the National Institutes of Health Toolbox), a critical component of self-regulation. Ability to inhibit responses and impose cognitive control increased rapidly during preteen years. Surface area of the anterior cingulate cortex accounted for a significant proportion of the variance in cognitive performance. This finding is intriguing, because characteristics of the anterior cingulum are shown to be related to impulse, attention, and executive problems in neurodevelopmental disorders, indicating a neural foundation for self-regulation abilities along a continuum from normality to pathology. The relationship was strongest in the younger children. Properties of large-fiber connections added to the picture by explaining additional variance in cognitive control. Although cognitive control was related to surface area of the anterior cingulate independently of basic processes of mental speed, the relationship between white matter quality and cognitive control could be fully accounted for by speed. The results underscore the need for integration of different aspects of brain maturation to understand the foundations of cognitive development. PMID:23150548

  16. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects.

    PubMed

    Vallabhajosula, S; Zimmerman, R E; Picard, M; Stritzke, P; Mena, I; Hellman, R S; Tikofsky, R S; Stabin, M G; Morgan, R A; Goldsmith, S J

    1989-05-01

    Lipophilic neutral 99mTc complexes of diaminedithiol (DADT) ligands cross the brain-blood barrier. A new derivative of DADT family, 99mTc ethyl cysteinate dimer (ECD) showed high brain uptake in nonhuman primates. We report here the in vivo kinetics and biodistribution results in 16 normal human subjects. Dynamic images of brain obtained for 10 min following an i.v. administration of [99mTc]ECD showed that the maximum 99mTc brain activity reached within 1 min and remained near that level for the next 10 min. The blood clearance of the tracer was very rapid and the activity remaining in blood after 5 min was less than 10%. Within 2 hr 50% of 99mTc activity was excreted in urine. Anterior and posterior total-body images were obtained at 5, 30, 60 min, 2, 4, 24, and 48 hr using a moving table at 20 cm/min. Percent injected dose was calculated for different organs and tissues. The brain uptake was 6.5 +/- 1.9% at 5 min postinjection and remained relatively constant over several hours. Two-compartment analysis of brain time-activity curve showed that 40% of brain activity washed out faster (T 1/2 = 1.3 hr) while the remaining 60% had a slower clearance rate (T 1/2 = 42.3 hr). Some of the tracer was excreted through the hepatobiliary system. Lung uptake and retention of [99mTc]ECD was negligible. Radiation dosimetry is favorable for the administration of up to 20-40 mCi of [99mTc]ECD. These results show that [99mTc]ECD is rapidly extracted and retained by the brain providing favorable conditions for single photon emission computed tomography imaging.

  17. Technetium-99m ECD: a new brain imaging agent: in vivo kinetics and biodistribution studies in normal human subjects

    SciTech Connect

    Vallabhajosula, S.; Zimmerman, R.E.; Picard, M.; Stritzke, P.; Mena, I.; Hellman, R.S.; Tikofsky, R.S.; Stabin, M.G.; Morgan, R.A.; Goldsmith, S.J.

    1989-05-01

    Lipophilic neutral /sup 99m/Tc complexes of diaminedithiol (DADT) ligands cross the brain-blood barrier. A new derivative of DADT family, /sup 99m/Tc ethyl cysteinate dimer (ECD) showed high brain uptake in nonhuman primates. We report here the in vivo kinetics and biodistribution results in 16 normal human subjects. Dynamic images of brain obtained for 10 min following an i.v. administration of (/sup 99m/Tc)ECD showed that the maximum /sup 99m/Tc brain activity reached within 1 min and remained near that level for the next 10 min. The blood clearance of the tracer was very rapid and the activity remaining in blood after 5 min was less than 10%. Within 2 hr 50% of /sup 99m/Tc activity was excreted in urine. Anterior and posterior total-body images were obtained at 5, 30, 60 min, 2, 4, 24, and 48 hr using a moving table at 20 cm/min. Percent injected dose was calculated for different organs and tissues. The brain uptake was 6.5 +/- 1.9% at 5 min postinjection and remained relatively constant over several hours. Two-compartment analysis of brain time-activity curve showed that 40% of brain activity washed out faster (T 1/2 = 1.3 hr) while the remaining 60% had a slower clearance rate (T 1/2 = 42.3 hr). Some of the tracer was excreted through the hepatobiliary system. Lung uptake and retention of (/sup 99m/Tc)ECD was negligible. Radiation dosimetry is favorable for the administration of up to 20-40 mCi of (/sup 99m/Tc)ECD. These results show that (/sup 99m/Tc)ECD is rapidly extracted and retained by the brain providing favorable conditions for single photon emission computed tomography imaging.

  18. Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors.

    PubMed

    Astrakas, Loukas G; Zurakowski, David; Tzika, A Aria; Zarifi, Maria K; Anthony, Douglas C; De Girolami, Umberto; Tarbell, Nancy J; Black, Peter McLaren

    2004-12-15

    The diagnosis and therapy of childhood brain tumors, most of which are low grade, can be complicated because of their frequent adjacent location to crucial structures, which limits diagnostic biopsy. Also, although new prognostic biomarkers identified by molecular analysis or DNA microarray gene profiling are promising, they too depend on invasive biopsy. Here, we test the hypothesis that combining information from biologically important intracellular molecules (biomarkers), noninvasively obtained by proton magnetic resonance spectroscopic imaging, will increase the diagnostic accuracy in determining the clinical grade of pediatric brain tumors. We evaluate the proton magnetic resonance spectroscopic imaging exams for 66 children with brain tumors. The intracellular biomarkers for choline-containing compounds (Cho), N-acetylaspartate, total creatine, and lipids and/or lactate were measured at the highest Cho region and normalized to the surrounding healthy tissue total creatine. Neuropathological grading was done with WHO criteria. Normalized Cho and lipids and/or lactate were elevated in high-grade (n = 23) versus low-grade (n = 43) tumors, which multiple logistic regression confirmed are independent predictors of tumor grade (for Cho, odds ratio 24.8, P < 0.001; and for lipids and/or lactate, odds ratio 4.4, P < 0.001). A linear combination of normalized Cho and lipids and/or lactate that maximizes diagnostic accuracy was calculated by maximizing the area under the receiver operating characteristic curve. Proton magnetic resonance spectroscopic imaging, although not a proxy for histology, provides noninvasive, in vivo biomarkers for predicting clinical grades of pediatric brain tumors. PMID:15623597

  19. Distributed representations in memory: insights from functional brain imaging.

    PubMed

    Rissman, Jesse; Wagner, Anthony D

    2012-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses.

  20. Imaging Plasmodium Immunobiology in Liver, Brain, and Lung

    PubMed Central

    Frevert, Ute; Nacer, Adéla; Cabrera, Mynthia; Movila, Alexandru; Leberl, Maike

    2013-01-01

    Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite. PMID:24076429

  1. Distributed representations in memory: insights from functional brain imaging.

    PubMed

    Rissman, Jesse; Wagner, Anthony D

    2012-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly utilized powerful analytical tools (e.g., multivoxel pattern analysis) to decode the information represented within distributed functional magnetic resonance imaging activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  2. Multislice CT brain image registration for perfusion studies

    NASA Astrophysics Data System (ADS)

    Lin, Zhong Min; Pohlman, Scott; Chandra, Shalabh

    2002-04-01

    During the last several years perfusion CT techniques have been developed as an effective technique for clinically evaluating cerebral hemodynamics. Perfusion CT techniques are capable of measurings functional parameters such as tissue perfusion, blood flow, blood volume, and mean transit time and are commonly used to evaluate stroke patients. However, the quality of functional images of the brain frequently suffers from patient head motion. Because the time window for an effective treatment of stroke patient is narrow, a fast motion correction is required. The purpose of the paper is to present a fast and accurate registration technique for motion correction of multi-slice CT and to demonstrate the effects of the registration on perfusion calculation.

  3. Hypnosis and imaging of the living human brain.

    PubMed

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  4. Memory Networks in Tinnitus: A Functional Brain Image Study

    PubMed Central

    Laureano, Maura Regina; Onishi, Ektor Tsuneo; Bressan, Rodrigo Affonseca; Castiglioni, Mario Luiz Vieira; Batista, Ilza Rosa; Reis, Marilia Alves; Garcia, Michele Vargas; de Andrade, Adriana Neves; de Almeida, Roberta Ribeiro; Garrido, Griselda J.; Jackowski, Andrea Parolin

    2014-01-01

    Tinnitus is characterized by the perception of sound in the absence of an external auditory stimulus. The network connectivity of auditory and non-auditory brain structures associated with emotion, memory and attention are functionally altered in debilitating tinnitus. Current studies suggest that tinnitus results from neuroplastic changes in the frontal and limbic temporal regions. The objective of this study was to use Single-Photon Emission Computed Tomography (SPECT) to evaluate changes in the cerebral blood flow in tinnitus patients with normal hearing compared with healthy controls. Methods: Twenty tinnitus patients with normal hearing and 17 healthy controls, matched for sex, age and years of education, were subjected to Single Photon Emission Computed Tomography using the radiotracer ethylenedicysteine diethyl ester, labeled with Technetium 99 m (99 mTc-ECD SPECT). The severity of tinnitus was assessed using the “Tinnitus Handicap Inventory” (THI). The images were processed and analyzed using “Statistical Parametric Mapping” (SPM8). Results: A significant increase in cerebral perfusion in the left parahippocampal gyrus (pFWE <0.05) was observed in patients with tinnitus compared with healthy controls. The average total THI score was 50.8+18.24, classified as moderate tinnitus. Conclusion: It was possible to identify significant changes in the limbic system of the brain perfusion in tinnitus patients with normal hearing, suggesting that central mechanisms, not specific to the auditory pathway, are involved in the pathophysiology of symptoms, even in the absence of clinically diagnosed peripheral changes. PMID:24516567

  5. Functional brain imaging predicts public health campaign success.

    PubMed

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns.

  6. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Kyung, Eun Jung; Kim, Hyun Bum; Oh, Tong In; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2016-06-01

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  7. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Zhang, Ruiying; Wang, Lihong V.

    2015-03-01

    We demonstrate, by means of internal light delivery, photoacoustic imaging of the deep brain of rats in vivo. With fiber illumination via the oral cavity, we delivered light directly into the bottom of the brain, much more than can be delivered by external illumination. The study was performed using a photoacoustic computed tomography (PACT) system equipped with a 512-element full-ring transducer array, providing a full two-dimensional view aperture. Using internal illumination, the PACT system provided clear cross sectional photoacoustic images from the palate to the middle brain of live rats, revealing deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  8. In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Lin, Li; Xia, Jun; Wong, Terence T. W.; Li, Lei; Wang, Lihong V.

    2015-01-01

    Using internal illumination with an optical fiber in the oral cavity, we demonstrate, for the first time, photoacoustic computed tomography (PACT) of the deep brain of rats in vivo. The experiment was performed on a full-ring-array PACT system, with the capability of providing high-speed cross-sectional imaging of the brain. Compared with external illumination through the cranial skull, internal illumination delivers more light to the base of the brain. Consequently, in vivo photoacoustic images clearly reveal deep brain structures such as the hypothalamus, brain stem, and cerebral medulla.

  9. Partial-volume effect correction in positron emission tomography brain scan image using super-resolution image reconstruction

    PubMed Central

    Meechai, T; Tepmongkol, S

    2015-01-01

    Objective: The partial-volume effect (PVE) is a consequence of limited (i.e. finite) spatial resolution. PVE can lead to quantitative underestimation of activity concentrations in reconstructed images, which may result in misinterpretation of positron emission tomography (PET) scan images, especially in the brain. The PVE becomes significant when the dimensions of a source region are less than two to three times the full width at half maximum spatial resolution of the imaging system. In the present study, the ability of super-resolution (SR) image reconstruction to compensate for PVE in PET was characterized. Methods: The ability of SR image reconstruction technique to recover activity concentrations in small structures was evaluated by comparing images before and after image reconstruction in the NEMA/IEC phantom (Washington, DC), in the Hoffman brain phantom and in four human brain subjects (three normal subjects and one atrophic brain subject) in terms of apparent recovery coefficient (ARC) and percentage yield. Results: Both the ARC and percentage yield are improved after SR implementation in NEMA/IEC phantom and Hoffman brain phantom. When tested in normal subjects, SR implementation can improve the intensity and justify SR efficiency to correct PVE. Conclusion: SR algorithm can be used to effectively correct PVE in PET images. Advances in knowledge: The current research focused on brain PET scanning exclusively; future work will extend to whole-body imaging. PMID:25492553

  10. Detectability of early brain meningitis with magnetic resonance imaging

    SciTech Connect

    Runge, V.M.; Wells, J.W.; Williams, N.M.

    1995-08-01

    The ability of high-field (1.5 T) magnetic resonance imaging (MRI) to detect early brain meningitis was evaluated in a canine model. Contrast dose, timing postinjection, and imaging technique (specifically the use of magnetization transfer) were assessed. Imaging of five canines was performed at 1.5 T 24 hours after injection of Cowans staphylococcus into the cisterna magna. Two control animals also were imaged using the same protocol. Contrast doses of 0.1, 0.3, and 0.8 mmol/kg gadoteridol were compared. Scans were performed at 2, 13, and 22 minutes after an initial injection of 0.1 mmol/kg. Thirty minutes after the initial injection of contrast, a supplemental dose of 0.2 mmol/kg was given. Scans were then repeated at 2, 12, and 22 minutes after this dose was administered. A second supplemental contrast injection of 0.5 mmol/kg was given at 70 minutes, and immediate postinjection scans with and without MT were acquired. Results. In the animals receiving a cisternal injection of bacteria, the degree of meningeal enhancement was greatest at 0.8 mmol/kg, intermediate at 0.3 mmol/kg, and least at 0.1 mmol/kg. Scans in control studies did not demonstrate abnormal meningeal enhancement. High-contrast dose, MT, and acquisition of immediate postcontrast scans all resulted in statistically significant improvement. On masked film review, abnormal meningeal enhancement was noted in only 2 of 5 experimental dogs at a dose of 0.1 mmol/kg (regardless of the use of MT) compared with all animals at a dose of 0.3 mmol/kg. In 18 of 37 dogs (paired scans with and without MT), when abnormal enhancement was noted, the use of MT improved the visualization of abnormal meningeal enhancement. In early brain meningitis, high-contrast dose (0.3 mmol/kg), MT, and scanning immediately after injection improve detection of abnormal meningeal enhancement, thus facilitating the diagnosis of meningitis. Of these factors, contrast dose is the most important. 14 refs., 9 figs., 2 tabs.

  11. Ex vivo confocal microscopy imaging to identify tumor tissue on freshly removed brain sample.

    PubMed

    Forest, Fabien; Cinotti, Elisa; Yvorel, Violaine; Habougit, Cyril; Vassal, François; Nuti, Christophe; Perrot, Jean-Luc; Labeille, Bruno; Péoc'h, Michel

    2015-09-01

    Confocal microscopy is a technique able to realize "optic sections" of a tissue with increasing applications. We wondered if we could apply an ex vivo confocal microscope designed for dermatological purpose in a routine use for the most frequent brain tumors. The aim of this work was to identify tumor tissue and its histopathological hallmarks, and to assess grading criteria used in neuropathological practice without tissue loss on freshly removed brain tissue. Seven infiltrating gliomas, nine meningiomas and three metastases of carcinomas were included. We compared imaging results obtained with the confocal microscope to frozen sections, smears and tissue sections of formalin-fixed tissue. Our results show that ex vivo confocal microscopy imaging can be applied to brain tumors in order to quickly identify tumor tissue without tissue loss. It can differentiate tumors and can assess most of grading criteria. Confocal microscopy could represent a new tool to identify tumor tissue on freshly removed sample and could help in selecting areas for biobanking of tumor tissue.

  12. Hybrid atlas-based and image-based approach for segmenting 3D brain MRIs

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2001-07-01

    This work is a contribution to the problem of localizing key cerebral structures in 3D MRIs and its quantitative evaluation. In pursuing it, the cooperation between an image-based segmentation method and a hierarchical deformable registration approach has been considered. The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions of an image, I(s), from the data set are identified. These regions, M(I), are obtained combining information from deformable atlas, achieved by the warping of eight previous labeled maps on I(s). Then, the goal of the decision stage is to precisely locate the contours of the 3D regions set by the markers. This contour decision is performed by a 3D extension of the watershed transform. The anatomical structures taken into consideration and embedded into the atlas are brain, ventricles, corpus callosum, cerebellum, right and left hippocampus, medulla and midbrain. The hybrid method operates fully automatically and in 3D, successfully providing segmented brain structures. The quality of the segmentation has been studied in terms of the detected volume ratio by using kappa statistic and ROC analysis. Results of the method are shown and validated on a 3D MRI phantom. This study forms part of an on-going long term research aiming at the creation of a 3D probabilistic multi-purpose anatomical brain atlas.

  13. MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny.

    PubMed

    Pratavieira, Marcel; da Silva Menegasso, Anally Ribeiro; Garcia, Ana Maria Caviquioli; Dos Santos, Diego Simões; Gomes, Paulo Cesar; Malaspina, Osmar; Palma, Mario Sergio

    2014-06-01

    The occurrence and spatial distribution of the neuropeptides AmTRP-5 and AST-1 in the honeybee brain were monitored via MALDI spectral imaging according to the ontogeny of Africanized Apis mellifera. The levels of these peptides increased in the brains of 0-15 day old honeybees, and this increase was accompanied by an increase in the number of in-hive activities performed by the nurse bees, followed by a decrease in the period from 15 to 25 days of age, in which the workers began to perform activities outside the nest (guarding and foraging). The results obtained in the present investigation suggest that AmTRP-5 acts in the upper region of both pedunculi of young workers, possibly regulating the cell cleaning and brood capping activities. Meanwhile, the localized occurrence of AmTRP-5 and AST-1 in the antennal lobes, subesophageal ganglion, upper region of the medulla, both lobula, and α- and β-lobes of both brain hemispheres in 20 to 25 day old workers suggest that the action of both neuropeptides in these regions may be related to their localized actions in these regions, regulating foraging and guarding activities. Thus, these neuropeptides appear to have some functions in the honeybee brain that are specifically related to the age-related division of labor.

  14. Spontaneous brain activity observed with functional magnetic resonance imaging as a potential biomarker in neuropsychiatric disorders

    PubMed Central

    Zhou, Yuan; Wang, Kun; Liu, Yong; Song, Ming; Song, Sonya W.

    2010-01-01

    As functional magnetic resonance imaging (fMRI) studies have yielded increasing amounts of information about the brain’s spontaneous activity, they have revealed fMRI’s potential to locate changes in brain hemodynamics that are associated with neuropsychiatric disorders. In this paper, we review studies that support the notion that changes in brain spontaneous activity observed by fMRI can be used as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric disorders. We first review the methods used to study spontaneous activity from the perspectives of (1) the properties of local spontaneous activity, (2) the spatial pattern of spontaneous activity, and (3) the topological properties of brain networks. We also summarize the major findings associated with major neuropsychiatric disorders obtained using these methods. Then we review the pilot studies that have used spontaneous activity to discriminate patients from normal controls. Finally, we discuss current challenges and potential research directions to further elucidate the clinical use of spontaneous brain activity in neuropsychiatric disorders. PMID:22132039

  15. [Magnetic resonance imaging postprocessing techniques in the study of brain connectivity].

    PubMed

    de la Iglesia-Vayá, M; Molina-Mateo, J; Escarti-Fabra, M J; Martí-Bonmatí, L; Robles, M; Meneu, T; Aguilar, E J; Sanjuán, J

    2011-01-01

    Brain connectivity is a key concept for understanding brain function. Current methods to detect and quantify different types of connectivity with neuroimaging techniques are fundamental for understanding the pathophysiology of many neurologic and psychiatric disorders. This article aims to present a critical review of the magnetic resonance imaging techniques used to measure brain connectivity within the context of the Human Connectome Project. We review techniques used to measure: a) structural connectivity b) functional connectivity (main component analysis, independent component analysis, seed voxel, meta-analysis), and c) effective connectivity (psychophysiological interactions, causal dynamic models, multivariate autoregressive models, and structural equation models). These three approaches make it possible to combine and use different statistical techniques to elaborate mathematical models in the attempt to understand the functioning of the brain. The findings obtained with these techniques must be validated by other techniques for analyzing structural and functional connectivity. This information is integrated in the Human Connectome Project where all these approaches converge to provide a representation of all the different models of connectivity. PMID:21477826

  16. Segmentation-based method incorporating fractional volume analysis for quantification of brain atrophy on magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Wang, Deming; Doddrell, David M.

    2001-07-01

    Partial volume effect is a major problem in brain tissue segmentation on digital images such as magnetic resonance (MR) images. In this paper, special attention has been paid to partial volume effect when developing a method for quantifying brain atrophy. Specifically, partial volume effect is minimized in the process of parameter estimation prior to segmentation by identifying and excluding those voxels with possible partial volume effect. A quantitative measure for partial volume effect was also introduced through developing a model that calculates fractional volumes for voxels with mixtures of two different tissues. For quantifying cerebrospinal fluid (CSF) volumes, fractional volumes are calculated for two classes of mixture involving gray matter and CSF, and white matter and CSF. Tissue segmentation is carried out using 1D and 2D thresholding techniques after images are intensity- corrected. Threshold values are estimated using the minimum error method. Morphological processing and region identification analysis are used extensively in the algorithm. As an application, the method was employed for evaluating rates of brain atrophy based on serially acquired structural brain MR images. Consistent and accurate rates of brain atrophy have been obtained for patients with Alzheimer's disease as well as for elderly subjects due to normal aging process.

  17. COMPARISON OF SEISMIC SIGNATURES OF FLARES OBTAINED BY SOHO/MICHELSON DOPPLER IMAGER AND GONG INSTRUMENTS

    SciTech Connect

    Zharkov, S.; Matthews, S. A.; Zharkova, V. V.

    2011-10-01

    The first observations of seismic responses to solar flares were carried out using time-distance (TD) and holography techniques applied to SOHO/Michelson Doppler Imager (MDI) Dopplergrams obtained from space and unaffected by terrestrial atmospheric disturbances. However, the ground-based network GONG is potentially a very valuable source of sunquake observations, especially in cases where space observations are unavailable. In this paper, we present an updated technique for pre-processing of GONG observations for the application of subjacent vantage holography. Using this method and TD diagrams, we investigate several sunquakes observed in association with M- and X-class solar flares and compare the outcomes with those reported earlier using MDI data. In both GONG and MDI data sets, for the first time, we also detect the TD ridge associated with the 2001 September 9 flare. Our results show reassuringly positive identification of sunquakes from GONG data that can provide further information about the physics of seismic processes associated with solar flares.

  18. 18F-NaF PET/CT Imaging of Brain Metastases.

    PubMed

    Salgarello, Matteo; Lunardi, Gianluigi; Inno, Alessandro; Pasetto, Stefano; Severi, Fabrizia; Gorgoni, Giancarlo; Gori, Stefania

    2016-07-01

    F-NaF is a radiopharmaceutical widely used in PET imaging to detect bone metastases. Several cases of F-NaF uptake from brain metastases have been described, but a specific protocol for the evaluation of brain metastases with F-NaF has not been developed yet. Here we report images of F-NaF PET/CT, standard CT, and MRI of a brain metastasis in a patient with non-small lung cancer. Through a dynamic acquisition procedure, we have identified the first minutes after injection as the preferable time point of imaging acquisition for the study of brain metastases with F-NaF.

  19. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene

    PubMed Central

    Stefaniuk, Marzena; Gualda, Emilio J.; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  20. Light-sheet microscopy imaging of a whole cleared rat brain with Thy1-GFP transgene.

    PubMed

    Stefaniuk, Marzena; Gualda, Emilio J; Pawlowska, Monika; Legutko, Diana; Matryba, Paweł; Koza, Paulina; Konopka, Witold; Owczarek, Dorota; Wawrzyniak, Marcin; Loza-Alvarez, Pablo; Kaczmarek, Leszek

    2016-01-01

    Whole-brain imaging with light-sheet fluorescence microscopy and optically cleared tissue is a new, rapidly developing research field. Whereas successful attempts to clear and image mouse brain have been reported, a similar result for rats has proven difficult to achieve. Herein, we report on creating novel transgenic rat harboring fluorescent reporter GFP under control of neuronal gene promoter. We then present data on clearing the rat brain, showing that FluoClearBABB was found superior over passive CLARITY and CUBIC methods. Finally, we demonstrate efficient imaging of the rat brain using light-sheet fluorescence microscopy. PMID:27312902

  1. Comparison of Drug Distribution Images from Thin Tissue Sections Obtained Using Desorption Electrospray Ionization Tandem Mass Spectrometry and Whole-Body Autoradiography

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J; Vavek, Marissa; Koeplinger, Kenneth A.; Schneider, Bradley B; Covey, Thomas R.

    2008-01-01

    Desorption electrospray ionization tandem mass spectrometry (DESI-MS/MS) and whole-body autoradiography (WBA) were used for chemical imaging of whole-body thin tissue sections of mice intravenously dosed with propranolol (7.5 mg/kg). DESI-MS/MS imaging utilized selected reaction monitoring detection performed on an AB/MDS SCIEX 4000 QTRAP mass spectrometer equipped with a prototype extended length particle discriminator interface. Propranolol images of the tissue sections using DESI-MS/MS were obtained at surface scan rates of 0.1, 0.5, 2 and 7 mm/s. Although signal decreased with increasing scan rate, useful whole-body images for propranolol were obtained from the tissues even at 7 mm/s, which required just 79 min of analysis time. Attempts to detect and image the distribution of the known propranolol metabolites were unsuccessful. Regions of the tissue sections showing the most radioactivity from WBA sections were excised and analyzed by HPLC with radiochemical detection to determine relative levels of propranolol and metabolites present. Comparison of the DESI-MS/MS signal for propranolol and the radioactivity attributed to propranolol from WBA sections indicated nominal agreement between the two techniques for the amount of propranolol in the brain, lung, and liver. Data from the kidney showed an unexplained disparity between the two techniques. The results of this study show the feasibility of using DESI-MS/MS to obtain useful chemical images of a drug in whole-body thin tissue sections following drug administration at a pharmacologically relevant level. Further optimization to improve sensitivity and enable detection of the drug metabolites will be among the requirements necessary to move DESI-MS/MS chemical imaging forward as a practical tool in drug discovery.

  2. Brain redox imaging in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy by using in vivo electron paramagnetic resonance and a nitroxide imaging probe.

    PubMed

    Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G

    2015-11-01

    Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy.

  3. Automatic brain matter segmentation of computed tomography images using a statistical model: A tool to gain working time!

    PubMed

    Bertè, Francesco; Lamponi, Giuseppe; Bramanti, Placido; Calabrò, Rocco S

    2015-10-01

    Brain computed tomography (CT) is useful diagnostic tool for the evaluation of several neurological disorders due to its accuracy, reliability, safety and wide availability. In this field, a potentially interesting research topic is the automatic segmentation and recognition of medical regions of interest (ROIs). Herein, we propose a novel automated method, based on the use of the active appearance model (AAM) for the segmentation of brain matter in CT images to assist radiologists in the evaluation of the images. The method described, that was applied to 54 CT images coming from a sample of outpatients affected by cognitive impairment, enabled us to obtain the generation of a model overlapping with the original image with quite good precision. Since CT neuroimaging is in widespread use for detecting neurological disease, including neurodegenerative conditions, the development of automated tools enabling technicians and physicians to reduce working time and reach a more accurate diagnosis is needed. PMID:26427894

  4. Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue.

    PubMed

    Jacak, Jaroslaw; Schaller, Susanne; Borgmann, Daniela; Winkler, Stephan M

    2015-08-01

    We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment. PMID:26173412

  5. Seeing Is Believing: The Effect of Brain Images on Judgments of Scientific Reasoning

    ERIC Educational Resources Information Center

    McCabe, David P.; Castel, Alan D.

    2008-01-01

    Brain images are believed to have a particularly persuasive influence on the public perception of research on cognition. Three experiments are reported showing that presenting brain images with articles summarizing cognitive neuroscience research resulted in higher ratings of scientific reasoning for arguments made in those articles, as compared…

  6. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    ERIC Educational Resources Information Center

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  7. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    PubMed Central

    Jung, Rex E.; Flores, Ranee A.; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors (“Implementation” and “Learning”) were significantly related to measures of Creative Achievement (Scientific—r = 0.26 and Writing—r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination

  8. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates.

    PubMed

    Jung, Rex E; Flores, Ranee A; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors ("Implementation" and "Learning") were significantly related to measures of Creative Achievement (Scientific-r = 0.26 and Writing-r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability

  9. Applications of phosphorescent materials for in-vivo imaging of brain structure and function

    NASA Astrophysics Data System (ADS)

    Boverman, Gregory; Shi, Xiaolei; Cotero, Victoria E.; Filkins, Robert J.; Srivastava, Alok M.; Lorraine, Peter W.; Neculaes, Vasile B.; Ishaque, A. N.

    2016-03-01

    A number of approaches have been developed for in-vivo imaging of neural function at the time scale of action potentials and at the spatial resolution of individual neurons. Remarkable results have been obtained with optogenetics, although the need for genetic modification is an important limitation of these approaches. Similarly, voltage and ion-sensitive dyes allow for optical imaging of action potentials but toxicity remains a problem. Additionally, optical techniques are often only able to be used up to a limited depth. Our preliminary work has shown that nanoparticles of common phosphorescent materials, believed to be generally non-toxic, specifically lutetium oxide and strontium aluminate, can be utilized for cellular imaging, for tomographic imaging, and that the particles can be designed to adhere to neurons. Additionally, lutetium oxide has been shown to be highly X-ray luminescent, potentially allowing for imaging deep within the brain, if the particles can be targeted properly. In ex vivo experiments, we have shown that the phosphorescence of strontium aluminate particles is significantly affected by electric fields similar in strength to those found in the vicinity of the cellular membrane of a neuron. This phenomenon is consistent with early published reports in the electroluminescence literature, namely the Gudden-Pohl effect. We will show results of the ex vivo imaging and dynamic electrical stimulation experiments. We will also show some preliminary ex vivo cell culture results, and will describe plans for future research, focusing on potential in both cell cultures and in vivo for animal models.

  10. Brain Magnetic Resonance Imaging After High-Dose Chemotherapy and Radiotherapy for Childhood Brain Tumors

    SciTech Connect

    Spreafico, Filippo Gandola, Lorenza; Marchiano, Alfonso; Simonetti, Fabio; Poggi, Geraldina; Adduci, Anna; Clerici, Carlo Alfredo; Luksch, Roberto; Biassoni, Veronica; Meazza, Cristina; Catania, Serena; Terenziani, Monica; Musumeci, Renato; Fossati-Bellani, Franca; Massimino, Maura

    2008-03-15

    Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitive neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T{sub 1}-weighted unevenly enhancing, and T{sub 2}-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% {+-} 6% at 1 year and 57% {+-} 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation.

  11. Murine cardiac images obtained with focusing pinhole SPECT are barely influenced by extra-cardiac activity

    NASA Astrophysics Data System (ADS)

    Branderhorst, Woutjan; van der Have, Frans; Vastenhouw, Brendan; Viergever, Max A.; Beekman, Freek J.

    2012-02-01

    Ultra-high-resolution SPECT images can be obtained with focused multipinhole collimators. Here we investigate the influence of unwanted high tracer uptake outside the scan volume on reconstructed tracer distributions inside the scan volume, for 99mTc-tetrofosmin myocardial perfusion scanning in mice. Simulated projections of a digital mouse phantom (MOBY) in a focusing multipinhole SPECT system (U-SPECT-II, MILabs, The Netherlands) were generated. With this system differently sized user-defined scan volumes can be selected, by translating the animal in 3D through the focusing collimators. Scan volume selections were set to (i) a minimal volume containing just the heart, acquired without translating the animal during scanning, (ii) a slightly larger scan volume as is typically applied for the heart, requiring only small XYZ translations during scanning, (iii) same as (ii), but extended further transaxially, and (iv) same as (ii), but extended transaxially to cover the full thorax width (gold standard). Despite an overall negative bias that is significant for the minimal scan volume, all selected volumes resulted in visually similar images. Quantitative differences in the reconstructed myocardium between gold standard and the results from the smaller scan volume selections were small; the 17 standardized myocardial segments of a bull's eye plot, normalized to the myocardial mean of the gold standard, deviated on average 6.0%, 2.5% and 1.9% for respectively the minimal, the typical and the extended scan volume, while maximum absolute deviations were respectively 18.6%, 9.0% and 5.2%. Averaged over ten low-count noisy simulations, the mean absolute deviations were respectively 7.9%, 3.2% and 1.9%. In low-count noisy simulations, the mean and maximum absolute deviations for the minimal scan volume could be reduced to respectively 4.2% and 12.5% by performing a short survey scan of the exterior activity and focusing the remaining scan time at the organ of interest. We

  12. A review of multivariate methods in brain imaging data fusion

    NASA Astrophysics Data System (ADS)

    Sui, Jing; Adali, Tülay; Li, Yi-Ou; Yang, Honghui; Calhoun, Vince D.

    2010-03-01

    On joint analysis of multi-task brain imaging data sets, a variety of multivariate methods have shown their strengths and been applied to achieve different purposes based on their respective assumptions. In this paper, we provide a comprehensive review on optimization assumptions of six data fusion models, including 1) four blind methods: joint independent component analysis (jICA), multimodal canonical correlation analysis (mCCA), CCA on blind source separation (sCCA) and partial least squares (PLS); 2) two semi-blind methods: parallel ICA and coefficient-constrained ICA (CC-ICA). We also propose a novel model for joint blind source separation (BSS) of two datasets using a combination of sCCA and jICA, i.e., 'CCA+ICA', which, compared with other joint BSS methods, can achieve higher decomposition accuracy as well as the correct automatic source link. Applications of the proposed model to real multitask fMRI data are compared to joint ICA and mCCA; CCA+ICA further shows its advantages in capturing both shared and distinct information, differentiating groups, and interpreting duration of illness in schizophrenia patients, hence promising applicability to a wide variety of medical imaging problems.

  13. A Principal Component Analysis of global images of Jupiter obtained by Cassini ISS

    NASA Astrophysics Data System (ADS)

    Ordóñez Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.

    2014-04-01

    The Cassini spacecraft flybied Jupiter in December 2000. The Imaging Science Subsystem (ISS) cameras acquired a large number of images at different spatial resolution in several filters sensitive to different altitudes and to cloud color. We have used these images to build high-resolution multi-wavelength nearly full maps of the planet in cylindrical and polar projections. The images have been analyzed by means of a principal component analysis technique (PCA) which looks for spatial covariances in different filtered images and proposes a new set of images (Principal Components, PC) which contains most of the spatial variability. The goal of this research is triple since we: 1) explore correlations between the ammonia cloud layer observed in most filters and the upper hazes observed in methane band images and UV, 2) we explore the spatial distribution of chromophores similarly to previous studies using HST images [1, 2]; 3) we look for image combinations that could be useful for cloud features sharpening. Furthermore, we study a global characterization of reletive altimetry of clouds and hazes from synthetic indexes between images with different contributions from the methane absorption bands (CB1, CB2, CB3, MT1, MT2, MT3).

  14. Multi-region labeling and segmentation using a graph topology prior and atlas information in brain images.

    PubMed

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2014-12-01

    Medical image segmentation and anatomical structure labeling according to the types of the tissues are important for accurate diagnosis and therapy. In this paper, we propose a novel approach for multi-region labeling and segmentation, which is based on a topological graph prior and the topological information of an atlas, using a modified multi-level set energy minimization method in brain images. We consider a topological graph prior and atlas information to evolve the contour based on a topological relationship presented via a graph relation. This novel method is capable of segmenting adjacent objects with very close gray level in low resolution brain image that would be difficult to segment correctly using standard methods. The topological information of an atlas are transformed to the topological graph of a low resolution (noisy) brain image to obtain region labeling. We explain our algorithm and show the topological graph prior and label transformation techniques to explain how it gives precise multi-region segmentation and labeling. The proposed algorithm is capable of segmenting and labeling different regions in noisy or low resolution MRI brain images of different modalities. We compare our approaches with other state-of-the-art approaches for multi-region labeling and segmentation.

  15. Implantable imaging device for brain functional imaging system using flavoprotein fluorescence

    NASA Astrophysics Data System (ADS)

    Sunaga, Yoshinori; Yamaura, Hiroshi; Haruta, Makito; Yamaguchi, Takahiro; Motoyama, Mayumi; Ohta, Yasumi; Takehara, Hiroaki; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Yoshimura, Yumiko; Ohta, Jun

    2016-03-01

    The autofluorescence of mitochondrial flavoprotein is very useful for functional brain imaging because the fluorescence intensity of flavoprotein changes as per neural activities. In this study, we developed an implantable imaging device for green fluorescence imaging and detected fluorescence changes of flavoprotein associated with visual stimulation using the device. We examined the device performance using anesthetized mice. We set the device on the visual cortex and measured fluorescence changes of flavoprotein in response to visual stimulation. A full-field sinusoidal grating with a vertical orientation was used for applying to activate the visual cortex. We successfully observed visually evoked fluorescence changes in the mouse visual cortex using our implantable device. This result suggests that we can observe the fluorescence changes of flavoprotein associated with visual stimulation in a freely moving mouse by using this technology.

  16. Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.

    PubMed

    Kim, Minsoo; Woo, Sang-Keun; Yu, Jung Woo; Lee, Yong Jin; Kim, Kyeong Min; Kang, Joo Hyun; Eom, Kidong; Nahm, Sang-Soep

    2014-01-01

    Positron emission tomography (PET) using 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.

  17. Magnetic resonance imaging (MRI) detection of the murine brain response to light: Temporal differentiation and negative functional MRI changes

    SciTech Connect

    Huang, Wei ||; Palyka, I. |; Li, HaiFang

    1996-06-11

    Using a 9.4 T MRI instrument, we have obtained images of the mouse brain response to photic stimulation during a period between deep anesthesia and the early stages of arousal. The large image enhancements we observe (often >30%) are consistent with literature results extrapolated to 9.4 T. However, there are also two unusual aspects to our findings. (i) The visual area of the brain responds only to changes in stimulus intensity, suggesting that we directly detect operations of the M visual system pathway. Such a channel has been observed in mice by invasive electrophysiology, and described in detail for primates. (ii) Along with the typical positive response in the area of the occipital portion of the brain containing the visual cortex; another area displays decreased signal intensity upon stimulation. 41 refs., 4 figs.

  18. Effect of using different cover image quality to obtain robust selective embedding in steganography

    NASA Astrophysics Data System (ADS)

    Abdullah, Karwan Asaad; Al-Jawad, Naseer; Abdulla, Alan Anwer

    2014-05-01

    One of the common types of steganography is to conceal an image as a secret message in another image which normally called a cover image; the resulting image is called a stego image. The aim of this paper is to investigate the effect of using different cover image quality, and also analyse the use of different bit-plane in term of robustness against well-known active attacks such as gamma, statistical filters, and linear spatial filters. The secret messages are embedded in higher bit-plane, i.e. in other than Least Significant Bit (LSB), in order to resist active attacks. The embedding process is performed in three major steps: First, the embedding algorithm is selectively identifying useful areas (blocks) for embedding based on its lighting condition. Second, is to nominate the most useful blocks for embedding based on their entropy and average. Third, is to select the right bit-plane for embedding. This kind of block selection made the embedding process scatters the secret message(s) randomly around the cover image. Different tests have been performed for selecting a proper block size and this is related to the nature of the used cover image. Our proposed method suggests a suitable embedding bit-plane as well as the right blocks for the embedding. Experimental results demonstrate that different image quality used for the cover images will have an effect when the stego image is attacked by different active attacks. Although the secret messages are embedded in higher bit-plane, but they cannot be recognised visually within the stegos image.

  19. Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation

    PubMed Central

    Azmi, Reza; Pishgoo, Boshra; Norozi, Narges; Yeganeh, Samira

    2013-01-01

    Brain magnetic resonance images (MRIs) tissue segmentation is one of the most important parts of the clinical diagnostic tools. Pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to obtain. Moreover, they cannot use unlabeled data to train classifiers. On the other hand, unsupervised segmentation methods have no prior knowledge and lead to low level of performance. However, semi-supervised learning which uses a few labeled data together with a large amount of unlabeled data causes higher accuracy with less trouble. In this paper, we propose an ensemble semi-supervised frame-work for segmenting of brain magnetic resonance imaging (MRI) tissues that it has been used results of several semi-supervised classifiers simultaneously. Selecting appropriate classifiers has a significant role in the performance of this frame-work. Hence, in this paper, we present two semi-supervised algorithms expectation filtering maximization and MCo_Training that are improved versions of semi-supervised methods expectation maximization and Co_Training and increase segmentation accuracy. Afterward, we use these improved classifiers together with graph-based semi-supervised classifier as components of the ensemble frame-work. Experimental results show that performance of segmentation in this approach is higher than both supervised methods and the individual semi-supervised classifiers. PMID:24098863

  20. Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain.

    PubMed

    Lizarbe, Blanca; Benítez, Ania; Sánchez-Montañés, Manuel; Lago-Fernández, Luis F; Garcia-Martin, María L; López-Larrubia, Pilar; Cerdán, Sebastián

    2013-01-01

    Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non-invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5 Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non-invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies.

  1. Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain.

    PubMed

    Lizarbe, Blanca; Benítez, Ania; Sánchez-Montañés, Manuel; Lago-Fernández, Luis F; Garcia-Martin, María L; López-La