Science.gov

Sample records for brain imaging correlates

  1. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  2. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation.

    PubMed

    Stanescu, Luana; Ishak, Gisele E; Khanna, Paritosh C; Biyyam, Deepa R; Shaw, Dennis W; Parisi, Marguerite T

    2013-01-01

    Positron emission tomography (PET) of the brain is an important problem-solving tool in pediatric neuroimaging, neurology, and neurosurgery. Fluorine 18 fluorodeoxyglucose (FDG) PET or dual-modality PET and computed tomographic (CT) imaging (PET/CT), with magnetic resonance (MR) imaging correlation, can be used to evaluate childhood epilepsy and pediatric brain tumors, areas in which PET adds value in patient management. FDG PET has been widely used in pediatric temporal lobe epilepsy, most commonly manifesting as mesial temporal sclerosis, which demonstrates hypometabolism at interictal PET and hypermetabolism during seizures. Recently, FDG PET has shown added value for patients with extratemporal epilepsy, in whom FDG PET can help identify cortical foci of interictal hypometabolism that are undetectable or difficult to detect with MR imaging. These findings can then guide additional investigations and surgery. FDG PET also enhances medical decision making in children with brain tumors, in whom FDG PET can be used to (a) improve the diagnostic yield of stereotactic biopsies by detecting metabolically active areas of tumor, (b) help guide the surgeon in achieving total tumor resection, and (c) increase detection of residual or recurrent tumor. Technologic advances in the past decade have allowed fusion of PET and MR images, combining the high resolution of MR imaging with the low-resolution functional capability of PET. As dual-modality integrated PET/MR imaging systems become available, CT coregistration for PET can be eliminated, thus reducing patient radiation exposure. Increasing familiarity with normal and abnormal appearances of FDG PET brain images correlated with MR images can enhance diagnostic yield and improve the care of children with epilepsy and brain tumors.

  3. Fetal Brain Magnetic Resonance Imaging Findings In Congenital Cytomegalovirus Infection With Postnatal Imaging Correlation.

    PubMed

    Averill, Lauren W; Kandula, Vinay V R; Akyol, Yakup; Epelman, Monica

    2015-12-01

    Fetal brain magnetic resonance imaging (MRI) is a powerful tool in the diagnosis of symptomatic congenital cytomegalovirus infection, requiring a detailed search for specific features. A combination of anterior temporal lobe abnormalities, white matter lesions, and polymicrogyria is especially predictive. Fetal MRI may provide a unique opportunity to detect anterior temporal cysts and occipital horn septations, as dilation of these areas may decrease later in development. Cortical migration abnormalities, white matter abnormalities, cerebellar dysplasia, and periventricular calcifications are often better depicted on postnatal imaging but can also be detected on fetal MRI. We present the prenatal brain MRI findings seen in congenital cytomegalovirus infection and provide postnatal imaging correlation, highlighting the evolution of findings at different times in prenatal and postnatal developments. PMID:26614131

  4. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    PubMed Central

    Jung, Rex E.; Flores, Ranee A.; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors (“Implementation” and “Learning”) were significantly related to measures of Creative Achievement (Scientific—r = 0.26 and Writing—r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination

  5. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates.

    PubMed

    Jung, Rex E; Flores, Ranee A; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors ("Implementation" and "Learning") were significantly related to measures of Creative Achievement (Scientific-r = 0.26 and Writing-r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination ability

  6. Brain responses strongly correlate with Weibull image statistics when processing natural images.

    PubMed

    Scholte, H Steven; Ghebreab, Sennay; Waldorp, Lourens; Smeulders, Arnold W M; Lamme, Victor A F

    2009-01-01

    The visual appearance of natural scenes is governed by a surprisingly simple hidden structure. The distributions of contrast values in natural images generally follow a Weibull distribution, with beta and gamma as free parameters. Beta and gamma seem to structure the space of natural images in an ecologically meaningful way, in particular with respect to the fragmentation and texture similarity within an image. Since it is often assumed that the brain exploits structural regularities in natural image statistics to efficiently encode and analyze visual input, we here ask ourselves whether the brain approximates the beta and gamma values underlying the contrast distributions of natural images. We present a model that shows that beta and gamma can be easily estimated from the outputs of X-cells and Y-cells. In addition, we covaried the EEG responses of subjects viewing natural images with the beta and gamma values of those images. We show that beta and gamma explain up to 71% of the variance of the early ERP signal, substantially outperforming other tested contrast measurements. This suggests that the brain is strongly tuned to the image's beta and gamma values, potentially providing the visual system with an efficient way to rapidly classify incoming images on the basis of omnipresent low-level natural image statistics. PMID:19757938

  7. Visualizing Functional Pathways in the Human Brain Using Correlation Tensors and Magnetic Resonance Imaging

    PubMed Central

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K.; Wu, Tung-Lin; Morgan, Victoria L.; Cutting, Laurie E.; Anderson, Adam W.; Gore, John C.

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. PMID:26477562

  8. Diffusion tensor imaging and proton magnetic resonance spectroscopy in brain tumor: Correlation between structure and metabolism☆

    PubMed Central

    Min, Zhigang; Niu, Chen; Rana, Netra; Ji, Huanmei; Zhang, Ming

    2013-01-01

    Proton magnetic resonance spectroscopy and diffusion tensor imaging are non-invasive techniques used to detect metabolites and water diffusion in vivo. Previous studies have confirmed a positive correlation of individual fractional anisotropy values with N-acetylaspartate/creatine and N-acetylaspartate/choline ratios in tumors, edema, and normal white matter. This study divided the brain parenchyma into tumor, peritumoral edema, and normal-appearing white matter according to MRI data, and analyzed the correlation of metabolites with water molecular diffusion. Results demonstrated that in normal-appearing white matter, N-acetylaspartate/creatine ratios were positively correlated with fractional anisotropy values, negatively correlated with radial diffusivities, and positively correlated with maximum eigenvalues. Maximum eigenvalues and radial diffusivities in peritumoral edema showed a negative correlation with choline, N-acetylaspartate, and creatine. Radial diffusivities in tumor demonstrated a negative correlation with choline. These data suggest that the relationship between metabolism and structure is markedly changed from normal white matter to peritumoral edema and tumor. Neural metabolism in the peritumoral edema area decreased with expanding extracellular space. The normal relationship of neural function and microstructure disappeared in the tumor region. PMID:25206385

  9. Fast nosological imaging using canonical correlation analysis of brain data obtained by two-dimensional turbo spectroscopic imaging.

    PubMed

    Laudadio, Teresa; Martínez-Bisbal, M Carmen; Celda, Bernardo; Van Huffel, Sabine

    2008-05-01

    A new fast and accurate tissue typing technique has recently been successfully applied to prostate MR spectroscopic imaging (MRSI) data. This technique is based on canonical correlation analysis (CCA), a statistical method able to simultaneously exploit the spectral and spatial information characterizing the MRSI data. Here, the performance of CCA is further investigated by using brain data obtained by two-dimensional turbo spectroscopic imaging (2DTSI) from patients affected by glioblastoma. The purpose of this study is to investigate the applicability of CCA when typing tissues of heterogeneous tumors. The performance of CCA is also compared with that of ordinary correlation analysis on simulated as well as in vivo data. The results show that CCA outperforms ordinary correlation analysis in terms of robustness and accuracy.

  10. Thallium-201 brain tumor imaging: a comparative study with pathologic correlation

    SciTech Connect

    Kaplan, W.D.; Takvorian, T.; Morris, J.H.; Rumbaugh, C.L.; Connolly, B.T.; Atkins, H.L.

    1987-01-01

    In patients with gliomas who were stable or improving, we noted a disparity between clinical status and computed tomography (CT) brain scan results. To elucidate this finding, 29 patients were sequentially scanned with 2.0 mCi of /sup 201/Tl (5-30 min), 20 mCi (/sup 99m/Tc)gluceptate (GH) (3-4 hr) and 7-10 mCi 67Ga (48-72 hr). A total of 198 images were obtained. A set of three scans at a midpoint in follow up was selected for analysis. Seven patients who died had neuropathologic data available; brain sections were reconstructed to match radionuclide views without knowledge of image results. In the seven patients with autopsy data, /sup 201/Tl offered the most accurate correlation with viable tumor. Gallium-67 gave similar results in patients not receiving steroids. Technetium-99m GH scans could not allow differentiation between tumor, necrosis, and edema. Similarly, the CT scan could not routinely differentiate between fibrotic, nonfibrotic, necrotic, and neoplastic tissue. In the 22 patients without autopsy data, /sup 201/Tl scans commonly showed smaller and more focal abnormal uptake when compared with (/sup 99m/Tc)GH and /sup 67/Ga scans. Thallium-201 scans more accurately reflect viable tumor burden than other radionuclide studies of primary brain tumors, are minimally affected by concomitant steroid administration, can be performed immediately following tracer administration, and complement the anatomic data obtained from CT scans.

  11. GN-SCCA: GraphNet based Sparse Canonical Correlation Analysis for Brain Imaging Genetics

    PubMed Central

    Du, Lei; Yan, Jingwen; Kim, Sungeun; Risacher, Shannon L.; Huang, Heng; Inlow, Mark; Moore, Jason H.; Saykin, Andrew J.; Shen, Li

    2015-01-01

    Identifying associations between genetic variants and neuroimaging quantitative traits (QTs) is a popular research topic in brain imaging genetics. Sparse canonical correlation analysis (SCCA) has been widely used to reveal complex multi-SNP-multi-QT associations. Several SCCA methods explicitly incorporate prior knowledge into the model and intend to uncover the hidden structure informed by the prior knowledge. We propose a novel structured SCCA method using Graph constrained Elastic-Net (GraphNet) regularizer to not only discover important associations, but also induce smoothness between coefficients that are adjacent in the graph. In addition, the proposed method incorporates the covariance structure information usually ignored by most SCCA methods. Experiments on simulated and real imaging genetic data show that, the proposed method not only outperforms a widely used SCCA method but also yields an easy-to-interpret biological findings. PMID:26636135

  12. Brain imaging

    SciTech Connect

    Bradshaw, J.R.

    1989-01-01

    This book presents a survey of the various imaging tools with examples of the different diseases shown best with each modality. It includes 100 case presentations covering the gamut of brain diseases. These examples are grouped according to the clinical presentation of the patient: headache, acute headache, sudden unilateral weakness, unilateral weakness of gradual onset, speech disorders, seizures, pituitary and parasellar lesions, sensory disorders, posterior fossa and cranial nerve disorders, dementia, and congenital lesions.

  13. Brain Imaging

    PubMed Central

    Racine, Eric; Bar-Ilan, Ofek; Illes, Judy

    2007-01-01

    Advances in neuroscience are increasingly intersecting with issues of ethical, legal, and social interest. This study is an analysis of press coverage of an advanced technology for brain imaging, functional magnetic resonance imaging, that has gained significant public visibility over the past ten years. Discussion of issues of scientific validity and interpretation dominated over ethical content in both the popular and specialized press. Coverage of research on higher order cognitive phenomena specifically attributed broad personal and societal meaning to neuroimages. The authors conclude that neuroscience provides an ideal model for exploring science communication and ethics in a multicultural context. PMID:17330151

  14. Structural and functional imaging correlates for age-related changes in the brain.

    PubMed

    Tumeh, Paul C; Alavi, Abass; Houseni, Mohamed; Greenfield, Antje; Chryssikos, Timothy; Newberg, Andrew; Torigian, Drew A; Moonis, Gul

    2007-03-01

    In recent years, investigators have made significant progress in documenting brain structure and function as it relates to aging by using positron emission tomography, conventional magnetic resonance (MR) imaging, advanced MR techniques, and functional MR imaging. This review summarizes the latest advances in understanding physiologic maturation and aging as detected by these neuroimaging modalities. We also present our experience with MR volumetric and positron emission tomography analysis in separate cohorts of healthy subjects in the pediatric and adult age groups respectively. Our results are consistent with previous studies and include the following: total brain volume was found to increase with age (up to 20 years of age). Whole brain metabolism and frontal lobe metabolism both decrease significantly with age (38% and 42%, respectively), whereas cerebellar metabolism does not show a significant decline with age. Defining normal alterations in brain function and structure allows early detection of disorders such as Alzheimer's and Parkinson's diseases, which are commonly associated with normal aging. PMID:17289456

  15. [Using functional brain imaging technique to study central mechanism of acupuncture therapy for chronic stable angina pectoris in view of heart-brain correlation].

    PubMed

    Li, Zheng-Jie; Zeng, Fang; Lan, Lei; Yang, Jie; Zhang, Di; Liang, Fan-Rong

    2014-08-01

    Heart-brain correlation is an important component of Chinese medicine about the theory of zang-fu organs, which is still valuable for acupuncture clinical practice. Nowadays, increasing evidence supports the close association between the heart-brain axis, central autonomic nerve network and cardiovascular diseases, as well as the extensive regulative effects of acupuncture intervention on the heart-brain axis, functional connectivity of the brain, automatic nerve activities and cardiac functions. Therefore, the authors of the present paper hold that from the viewpoint of the heart-brain relationship, and by combining non-invasive functional brain imaging techniques with the patients' subjective and objective clinical indexes, our researchers will possibly and systematically reveal the underlying central mechanisms of acupuncture therapy in the treatment of chronic stable angina pectoris. However, the concrete biochemical mechanism should be proved via other advanced biological techniques.

  16. Anatomical-Functional Correlative Analysis Of The Human Brain Using Three Dimensional Imaging Systems

    NASA Astrophysics Data System (ADS)

    Evans, Alan C.; Marrett, Sean; Collins, D. L.; Peters, Terence M.

    1989-05-01

    Quantitative interpretation of functional images (PET or SPECT) is hampered by poor spatial resolution, low counting statistics and, for many tracers, low contrast between different brain structures of interest. Further, normal tracer distributions can be severely distorted by such gross pathologies as stroke, tumor and dementia. Hence, the complementary anatomical information provided by CT or MRI is essential for accurate and reproducible regional analysis of functional data. We have developed methods for the three-dimensional integration and simultaneous display of image volumes from MRI and PET. PET data was collected from an older Therascan 3-slice scanner with 12 mm resolution and a 15-slice Scanditronix PC-2048 system having 5-6 mm resolution in each dimension. MRI data was obtained from a Philips 1.5 Tesla Gyroscan scanner. The image volumes were loaded into a PIXAR 3-D image computer for simultaneous display. A general algorithm for finding the optimal transformation between two ensembles of equivalent points was implemented and investigated through simulation studies. Using a locally-developed 3-D image/graphics analysis package, equivalent points in the two image volumes were identified, either manually or via an adjustable computerized volume-of-interest (VOI) atlas. The MRI data were then re-sampled along planes parallel to the PET planes and the two volumes overlaid using opacity-weighted composition. Arbitrary oblique planes through the two volumes were obtained in interactive sessions.

  17. Brain imaging and brain function

    SciTech Connect

    Sokoloff, L.

    1985-01-01

    This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.

  18. Correlation of brain Magnetic Resonance Imaging of spontaneously lead poisoned bald eagles (Haliaeetus leucocephalus) with histological lesions: A pilot study.

    PubMed

    de Francisco, Olga Nicolas; Feeney, Daniel; Armién, Anibal G; Wuenschmann, Arno; Redig, Patrick T

    2016-04-01

    Six bald eagles with severe, acute lead poisoning based on blood lead values were analyzed by Magnetic Resonance Imaging (MRI) of the brain and histopathology. The aims of the study were to use MRI to locate brain lesions and correlate the changes in MRI signal with the histological character of the lesions at necropsy. All of the bald eagles presented with neurologic and non-neurologic signs suggestive of severe lead poisoning and had blood lead levels in excess of 1.0 ppm. Areas of change in image intensity in the brainstem, midbrain and cerebellum were detected in the MRI scans. Histopathology confirmed the presence of all suspected lesions. The character of the lesions suggested vascular damage as the primary insult. MRI was useful for detecting lesions and defining their three-dimensional distribution and extent. Future studies are needed to evaluate the utility of MRI for detection of lesions in less severely lead poisoned eagles and determining prognosis for treatment.

  19. Adverse effects of brain irradiation correlated with MR and CT imaging

    SciTech Connect

    Constine, L.S.; Konski, A.; Ekholm, S.; McDonald, S.; Rubin, P.

    1988-08-01

    Forty-one patients treated for primary malignancies of the brain at the University of Rochester Cancer Center since 1970 were assessed for adverse effects of irradiation clinically, and by computerized tomography (CT) and magnetic resonance (MR) imaging. At diagnosis, patients ranged in age from 1-65 years (median 19 years) and the most common tumor (in 30) was astrocytoma. Radiation doses ranged from 45 to 81.3 Gy (median 56.8 Gy). White matter changes visible on MR were graded on a scale of 1-4, with grades 1-2 known to occur in some normal patients. Areas of increased signal intensity not associated with the tumor or surgery were visible in all patients (gr 1 = 37%, gr 2 = 32%, gr 3 = 17%, gr 4 = 15%) whereas only 35% had regions of abnormality (hypodensity) on CT. Sulci enlargement and ventricular abnormalities (asymmetry or dilatation) were present in approximately 50% of patients by each technique. Higher grade MR lesions were associated with radiation to large volumes and high doses. For the 36 patients treated with 1.5-2.0 Gy daily fractions, the mean radiation dose by grade was as follows: gr 1 = 55.1 Gy, gr 2 = 58.8 Gy, gr 3 = 60.0 Gy, gr 4 = 63.5 Gy. All 5 patients treated on a hyperfractionated schedule had gr 1-2 changes despite receiving greater than 70 Gy. Fifty percent of patients treated to the whole brain (+/- boost) had gr 3-4 changes, compared with 14% treated with local fields (peak dose regions similar in both groups). Among the children (less than or equal to 13 years), 20% had gr 3-4 changes compared with 56% of adults (excluding hyperfractionated patients). This finding may be due entirely or in part to the lower radiation doses used for children (mean 54.4 Gy vs. 63.7 Gy in adults). Clinical abnormalities attributable to irradiation included an impairment in mental functioning in 7 adults, and learning disabilities in 5 children.

  20. Modern Brain Tumor Imaging

    PubMed Central

    Barajas, Ramon F.; Cha, Soonmee

    2015-01-01

    The imaging and clinical management of patients with brain tumor continue to evolve over time and now heavily rely on physiologic imaging in addition to high-resolution structural imaging. Imaging remains a powerful noninvasive tool to positively impact the management of patients with brain tumor. This article provides an overview of the current state-of-the art clinical brain tumor imaging. In this review, we discuss general magnetic resonance (MR) imaging methods and their application to the diagnosis of, treatment planning and navigation, and disease monitoring in patients with brain tumor. We review the strengths, limitations, and pitfalls of structural imaging, diffusion-weighted imaging techniques, MR spectroscopy, perfusion imaging, positron emission tomography/MR, and functional imaging. Overall this review provides a basis for understudying the role of modern imaging in the care of brain tumor patients. PMID:25977902

  1. Brain imaging investigation of the neural correlates of observing virtual social interactions.

    PubMed

    Sung, Keen; Dolcos, Sanda; Flor-Henry, Sophie; Zhou, Crystal; Gasior, Claudia; Argo, Jennifer; Dolcos, Florin

    2011-01-01

    The ability to gauge social interactions is crucial in the assessment of others' intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike (1). These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli (2). Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism (3). PMID:21775952

  2. Correlation of brain Magnetic Resonance Imaging of spontaneously lead poisoned bald eagles (Haliaeetus leucocephalus) with histological lesions: A pilot study.

    PubMed

    de Francisco, Olga Nicolas; Feeney, Daniel; Armién, Anibal G; Wuenschmann, Arno; Redig, Patrick T

    2016-04-01

    Six bald eagles with severe, acute lead poisoning based on blood lead values were analyzed by Magnetic Resonance Imaging (MRI) of the brain and histopathology. The aims of the study were to use MRI to locate brain lesions and correlate the changes in MRI signal with the histological character of the lesions at necropsy. All of the bald eagles presented with neurologic and non-neurologic signs suggestive of severe lead poisoning and had blood lead levels in excess of 1.0 ppm. Areas of change in image intensity in the brainstem, midbrain and cerebellum were detected in the MRI scans. Histopathology confirmed the presence of all suspected lesions. The character of the lesions suggested vascular damage as the primary insult. MRI was useful for detecting lesions and defining their three-dimensional distribution and extent. Future studies are needed to evaluate the utility of MRI for detection of lesions in less severely lead poisoned eagles and determining prognosis for treatment. PMID:27033939

  3. Evidence for correlations between distant intentionality and brain function in recipients: a functional magnetic resonance imaging analysis.

    PubMed

    Achterberg, Jeanne; Cooke, Karin; Richards, Todd; Standish, Leanna J; Kozak, Leila; Lake, James

    2005-12-01

    This study, using functional magnetic resonance imaging (fMRI) technology, demonstrated that distant intentionality (DI), defined as sending thoughts at a distance, is correlated with an activation of certain brain functions in the recipients. Eleven healers who espoused some form for connecting or healing at a distance were recruited from the island of Hawaii. Each healer selected a person with whom they felt a special connection as a recipient for DI. The recipient was placed in the MRI scanner and isolated from all forms of sensory contact from the healer. The healers sent forms of DI that related to their own healing practices at random 2-minute intervals that were unknown to the recipient. Significant differences between experimental (send) and control (no send) procedures were found (p = 0.000127). Areas activated during the experimental procedures included the anterior and middle cingulate area, precuneus, and frontal area. It was concluded that instructions to a healer to make an intentional connection with a sensory isolated person can be correlated to changes in brain function of that individual.

  4. General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies.

    PubMed

    Hobeika, Lucie; Diard-Detoeuf, Capucine; Garcin, Béatrice; Levy, Richard; Volle, Emmanuelle

    2016-05-01

    Reasoning by analogy allows us to link distinct domains of knowledge and to transfer solutions from one domain to another. Analogical reasoning has been studied using various tasks that have generally required the consideration of the relationships between objects and their integration to infer an analogy schema. However, these tasks varied in terms of the level and the nature of the relationships to consider (e.g., semantic, visuospatial). The aim of this study was to identify the cerebral network involved in analogical reasoning and its specialization based on the domains of information and task specificity. We conducted a coordinate-based meta-analysis of 27 experiments that used analogical reasoning tasks. The left rostrolateral prefrontal cortex was one of the regions most consistently activated across the studies. A comparison between semantic and visuospatial analogy tasks showed both domain-oriented regions in the inferior and middle frontal gyri and a domain-general region, the left rostrolateral prefrontal cortex, which was specialized for analogy tasks. A comparison of visuospatial analogy to matrix problem tasks revealed that these two relational reasoning tasks engage, at least in part, distinct right and left cerebral networks, particularly separate areas within the left rostrolateral prefrontal cortex. These findings highlight several cognitive and cerebral differences between relational reasoning tasks that can allow us to make predictions about the respective roles of distinct brain regions or networks. These results also provide new, testable anatomical hypotheses about reasoning disorders that are induced by brain damage. Hum Brain Mapp 37:1953-1969, 2016. © 2016 Wiley Periodicals, Inc. PMID:27012301

  5. The neuronal correlates of intranasal trigeminal function-an ALE meta-analysis of human functional brain imaging data.

    PubMed

    Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N

    2010-03-01

    Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO(2)), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices-a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO(2) stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing.

  6. Imaging the Working Brain.

    ERIC Educational Resources Information Center

    Swithenby, S. J.

    1996-01-01

    Very sensitive SQUID (superconducting quantum interference device) detectors are used in the technique known as magnetoencephalography to provide dynamic images of the brain. This can help our fundamental understanding of the way the brain works and may be of particular use in treating disorders such as epilepsy. (Author/MKR)

  7. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging. PMID:27314718

  8. Correlation Plenoptic Imaging.

    PubMed

    D'Angelo, Milena; Pepe, Francesco V; Garuccio, Augusto; Scarcelli, Giuliano

    2016-06-01

    Plenoptic imaging is a promising optical modality that simultaneously captures the location and the propagation direction of light in order to enable three-dimensional imaging in a single shot. However, in standard plenoptic imaging systems, the maximum spatial and angular resolutions are fundamentally linked; thereby, the maximum achievable depth of field is inversely proportional to the spatial resolution. We propose to take advantage of the second-order correlation properties of light to overcome this fundamental limitation. In this Letter, we demonstrate that the correlation in both momentum and position of chaotic light leads to the enhanced refocusing power of correlation plenoptic imaging with respect to standard plenoptic imaging.

  9. MRI of the brain (image)

    MedlinePlus

    An MRI (magnetic resonance imaging) of the brain creates a detailed image of the complex structures in the brain. An MRI can give a three-dimensional depiction of the brain, making location of problems such ...

  10. Computer tomographic imaging and anatomic correlation of the human brain: A comparative atlas of thin CT-scan sections and correlated neuro-anatomic preparations

    SciTech Connect

    Plets, C.; Baert, A.L.; Nijs, G.L.; Wilms, G.

    1986-01-01

    It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and the vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.

  11. MRI brain imaging.

    PubMed

    Skinner, Sarah

    2013-11-01

    General practitioners (GPs) are expected to be allowed to request MRI scans for adults for selected clinically appropriate indications from November 2013 as part of the expansion of Medicare-funded MRI services announced by the Federal Government in 2011. This article aims to give a brief overview of MRI brain imaging relevant to GPs, which will facilitate explanation of scan findings and management planning with their patients. Basic imaging techniques, common findings and terminology are presented using some illustrative case examples.

  12. Brain Imaging: Applications in Psychiatry.

    ERIC Educational Resources Information Center

    Andreasen, Nancy C.

    1988-01-01

    Discusses various brain imaging techniques, including computed tomography, magnetic resonance imaging, measurement of regional cerebral blood flow, single photo emission tomography, and position emission tomography. Describes the uses of these techniques in helping to understand brain functioning. (TW)

  13. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study

    PubMed Central

    Narayanan, Vairavan; Kuo, Tan Li; Delano-Wood, Lisa; Chinna, Karuthan; Bondi, Mark William; Waran, Vicknes; Ganesan, Dharmendra; Ramli, Norlisah

    2015-01-01

    Abstract We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations. PMID:25952562

  14. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study.

    PubMed

    Veeramuthu, Vigneswaran; Narayanan, Vairavan; Kuo, Tan Li; Delano-Wood, Lisa; Chinna, Karuthan; Bondi, Mark William; Waran, Vicknes; Ganesan, Dharmendra; Ramli, Norlisah

    2015-10-01

    We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations.

  15. Perimetric visual field and functional MRI correlation: implications for image-guided surgery in occipital brain tumours

    PubMed Central

    Roux, F; Ibarrola, D; Lotterie, J; Chollet, F; Berry, I

    2001-01-01

    OBJECTIVE—To compare the results of visual functional MRI with those of perimetric evaluation in patients with visual field defects and retrochiasmastic tumours and in normal subjects without visual field defect. The potential clinical usefulness of visual functional MRI data during resective surgery was evaluated in patients with occipital lobe tumours.
METHODS—Eleven patients with various tumours and visual field defects and 12 normal subjects were studied by fMRI using bimonocular or monocular repetitive photic stimulation (8 Hz). The data obtained were analyzed with the statistical parametric maps software (p<10-8) and were compared with the results of Goldmann visual field perimetric evaluation. In patients with occipital brain tumours undergoing surgery, the functional data were registered in a frameless stereotactic device and the images fused into anatomical three standard planes and three dimensional reconstructions of the brain surface.
RESULTS—Two studies of patients were discarded, one because of head motion and the other because of badly followed instructions. On the remaining patients the functional activations found in the visual cortex were consistent with the results of perimetric evaluation in all but one of the patients and all the normal subjects although the results of fMRI were highly dependent on the choices of the analysis thresholds. Visual functional MRI image guided data were used in five patients with occipital brain tumours. No added postoperative functional field defect was detected.
CONCLUSIONS—There was a good correspondence between fMRI data and the results of perimetric evaluation although dependent on the analysis thresholds. Visual fMRI data registered into a frameless stereotactic device may be useful in surgical planning and tumour removal.

 PMID:11561035

  16. Imaging the Alzheimer Brain

    PubMed Central

    Ashford, J. Wesson; Salehi, Ahmad; Furst, Ansgar; Bayley, Peter; Frisoni, Giovanni B.; Jack, Clifford R.; Sabri, Osama; Adamson, Maheen M.; Coburn, Kerry L.; Olichney, John; Schuff, Norbert; Spielman, Daniel; Edland, Steven D.; Black, Sandra; Rosen, Allyson; Kennedy, David; Weiner, Michael; Perry, George

    2013-01-01

    This supplement to the Journal of Alzheimer's Disease contains more than half of the chapters from The Handbook of Imaging the Alzheimer Brain, which was first presented at the International Conference on Alzheimer's Disease in Paris, in July, 2011. While the Handbook contains 27 chapters that are modified articles from 2009, 2010, and 2011 issues of the Journal of Alzheimer's Disease, this supplement contains the 31 new chapters of that book and an introductory article drawn from the introductions to each section of the book. The Handbook was designed to provide a multilevel overview of the full field of brain imaging related to Alzheimer's disease (AD). The Handbook, as well as this supplement, contains both reviews of the basic concepts of imaging, the latest developments in imaging, and various discussions and perspectives of the problems of the field and promising directions. The Handbook was designed to be useful for students and clinicians interested in AD as well as scientists studying the brain and pathology related to AD. PMID:21971448

  17. Functional Brain Imaging

    PubMed Central

    2006-01-01

    Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be

  18. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  19. Structural brain correlates of human sleep oscillations.

    PubMed

    Saletin, Jared M; van der Helm, Els; Walker, Matthew P

    2013-12-01

    Sleep is strongly conserved within species, yet marked and perplexing inter-individual differences in sleep physiology are observed. Combining EEG sleep recordings and high-resolution structural brain imaging, here we demonstrate that the morphology of the human brain offers one explanatory factor of such inter-individual variability. Gray matter volume in interoceptive and exteroceptive cortices correlated with the expression of slower NREM sleep spindle frequencies, supporting their proposed role in sleep protection against conscious perception. Conversely, and consistent with an involvement in declarative memory processing, gray matter volume in bilateral hippocampus was associated with faster NREM sleep spindle frequencies. In contrast to spindles, gray matter volume in the homeostatic sleep-regulating center of the basal forebrain/hypothalamus, together with the medial prefrontal cortex, accounted for individual differences in NREM slow wave oscillations. Together, such findings indicate that the qualitative and quantitative expression of human sleep physiology is significantly related to anatomically specific differences in macroscopic brain structure.

  20. Diffusion tensor imaging reveals adolescent binge ethanol-induced brain structural integrity alterations in adult rats that correlate with behavioral dysfunction.

    PubMed

    Vetreno, Ryan P; Yaxley, Richard; Paniagua, Beatriz; Crews, Fulton T

    2016-07-01

    Adolescence is characterized by considerable brain maturation that coincides with the development of adult behavior. Binge drinking is common during adolescence and can have deleterious effects on brain maturation because of the heightened neuroplasticity of the adolescent brain. Using an animal model of adolescent intermittent ethanol [AIE; 5.0 g/kg, intragastric, 20 percent EtOH w/v; 2 days on/2 days off from postnatal day (P)25 to P55], we assessed the adult brain structural volumes and integrity on P80 and P220 using diffusion tensor imaging (DTI). While we did not observe a long-term effect of AIE on structural volumes, AIE did reduce axial diffusivity (AD) in the cerebellum, hippocampus and neocortex. Radial diffusivity (RD) was reduced in the hippocampus and neocortex of AIE-treated animals. Prior AIE treatment did not affect fractional anisotropy (FA), but did lead to long-term reductions of mean diffusivity (MD) in both the cerebellum and corpus callosum. AIE resulted in increased anxiety-like behavior and diminished object recognition memory, the latter of which was positively correlated with DTI measures. Across aging, whole brain volumes increased, as did volumes of the corpus callosum and neocortex. This was accompanied by age-associated AD reductions in the cerebellum and neocortex as well as RD and MD reductions in the cerebellum. Further, we found that FA increased in both the cerebellum and corpus callosum as rats aged from P80 to P220. Thus, both age and AIE treatment caused long-term changes to brain structural integrity that could contribute to cognitive dysfunction.

  1. Digital Image Correlation Engine

    SciTech Connect

    Turner, Dan; Crozier, Paul; Reu, Phil

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and can be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.

  2. Imaging the Gambling Brain.

    PubMed

    Balodis, I M; Potenza, M N

    2016-01-01

    Neuroimaging studies examining the neurobiological basis of gambling disorder (GD) have increased over the past decade. Functional magnetic resonance imaging studies during appetitive cue and reward processing tasks demonstrate altered functioning in frontostriatal brain areas, including the ventral striatum and the ventromedial prefrontal cortex. Findings suggest differences in how the anticipation and outcome of rewards are processed in individuals with GD. Future research requires larger sample sizes and should include appropriate clinical reference groups. Overall, studies to date highlight a common pathophysiology between substance-based addictions and GD, the latter offering a unique condition in which to examine nonchemical factors in addiction. PMID:27503450

  3. Image correlation and sampling study

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.

    1972-01-01

    The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.

  4. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  5. Brain tumor (image)

    MedlinePlus

    Brain tumors are classified depending on the exact site of the tumor, the type of tissue involved, benign ... tendencies of the tumor, and other factors. Primary brain tumors can arise from the brain cells, the meninges ( ...

  6. Digital Image Correlation Engine

    2015-10-06

    DICe is an open source digital image correlation (DIC) tool intended for use as a module in an external application or as a standalone analysis code. It's primary capability is computing full –field displacements and strains from sequences of digital These images are typically of a material sample undergoing a materials characterization experiment, but DICe is also useful for other applications (for example, trajectory tracking). DICe is machine portable (Windows, Linux and Mac) and canmore » be effectively deployed on a high performance computing platform. Capabilities from DICe can be invoked through a library interface, via source code integration of DICe classes or through a graphical user interface.« less

  7. Correlation between clinical severity of central nervous system (CNS) lupus and findings on single photon emission computed tomographic (SPECT) images of the brain; preliminary results

    SciTech Connect

    Silverman, I.E.; Zeit, R.M.; Von Feldt, J.M.

    1994-05-01

    Systemic Lupus Erythematosis (SLE) commonly causes significant neuropsychiatric disorders. The purpose of this study was to review the brain SPECT studies of SLE patients with clinical evidence of CNS involvement and determine whether there is a correlation between the findings on SPECT images and the clinical manifestations of this serious phase of the disease. We enrolled 19 SLE patients and 12 normal controls in this study. The level of each patient`s disease activity was determined by the SLE Disease Activity Index (SLEDAI), an established method of scoring disease severity which is heavily weighted toward neuropsychiatric symptomatology, for 15 of the 19 SLE patients. The SLEDAI was calculated within a 10 day window of the date when the SPECT scan was obtained. SPECT scans were performed 30 minutes following the intravenous administration of 99mTc-HMPAO. Results are discussed.

  8. Imaging of Traumatic Brain Injury.

    PubMed

    Bodanapally, Uttam K; Sours, Chandler; Zhuo, Jiachen; Shanmuganathan, Kathirkamanathan

    2015-07-01

    Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome.

  9. Correlated imaging through atmospheric turbulence

    SciTech Connect

    Zhang Pengli; Gong Wenlin; Shen Xia; Han Shensheng

    2010-09-15

    Correlated imaging through atmospheric turbulence is studied, and the analytical expressions describing turbulence effects on image resolution are derived. Compared with direct imaging, correlated imaging can reduce the influence of turbulence to a certain extent and reconstruct high-resolution images. The result is backed up by numerical simulations, in which turbulence-induced phase perturbations are simulated by random-phase screens inserted into propagation paths.

  10. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  11. Advances in electromagnetic brain imaging

    NASA Astrophysics Data System (ADS)

    Nagarajan, Srikantan S.

    2010-02-01

    Non-invasive and dynamic imaging of brain activity in the sub-millisecond time-scale is enabled by measurements on or near the scalp surface using an array of sensors that measure magnetic fields (magnetoencephalography (MEG)) or electric potentials (electroencephalography (EEG)). Algorithmic reconstruction of brain activity from MEG and EEG data is referred to as electromagnetic brain imaging (EBI). Reconstructing the actual brain response to external events and distinguishing unrelated brain activity has been a challenge for many existing algorithms in this field. Furthermore, even under conditions where there is very little interference, accurately determining the spatial locations and timing of brain sources from MEG and EEG data is challenging problem because it involves solving for unknown brain activity across thousands of voxels from just a few sensors (~300). In recent years, my research group has developed a suite of novel and powerful algorithms for EBI that we have shown to be considerably superior to existing benchmark algorithms. Specifically, these algorithms can solve for many brain sources, including sources located far from the sensors, in the presence of large interference from unrelated brain sources. Our algorithms efficiently model interference contributions to sensors, accurately estimate sparse brain source activity using fast and robust probabilistic inference techniques. Here, we review some of these algorithms and illustrate their performance in simulations and real MEG/EEG data.

  12. Temporal Lobe Cortical Thickness Correlations Differentiate the Migraine Brain from the Healthy Brain

    PubMed Central

    Schwedt, Todd J.; Berisha, Visar; Chong, Catherine D.

    2015-01-01

    Background Interregional cortical thickness correlations reflect underlying brain structural connectivity and functional connectivity. A few prior studies have shown that migraine is associated with atypical cortical brain structure and atypical functional connectivity amongst cortical regions that participate in sensory processing. However, the specific brain regions that most accurately differentiate the migraine brain from the healthy brain have yet to be determined. The aim of this study was to identify the brain regions that comprised interregional cortical thickness correlations that most differed between migraineurs and healthy controls. Methods This was a cross-sectional brain magnetic resonance imaging (MRI) investigation of 64 adults with migraine and 39 healthy control subjects recruited from tertiary-care medical centers and their surrounding communities. All subjects underwent structural brain MRI imaging on a 3T scanner. Cortical thickness was determined for 70 brain regions that cover the cerebral cortex and cortical thickness correlations amongst these regions were calculated. Cortical thickness correlations that best differentiated groups of six migraineurs from controls and vice versa were identified. Results A model containing 15 interregional cortical thickness correlations differentiated groups of migraineurs from healthy controls with high accuracy. The right temporal pole was involved in 13 of the 15 interregional correlations while the right middle temporal cortex was involved in the other two. Conclusions A model consisting of 15 interregional cortical thickness correlations accurately differentiates the brains of small groups of migraineurs from those of healthy controls. Correlations with the right temporal pole were highly represented in this classifier, suggesting that this region plays an important role in migraine pathophysiology. PMID:25679805

  13. Imaging the Addicted Human Brain

    PubMed Central

    Fowler, Joanna S.; Volkow, Nora D.; Kassed, Cheryl A.; Chang, Linda

    2007-01-01

    Modern imaging techniques enable researchers to observe drug actions and consequences as they occur and persist in the brains of abusing and addicted individuals. This article presents the five most commonly used techniques, explains how each produces images, and describes how researchers interpret them. The authors give examples of key findings illustrating how each technique has extended and deepened our knowledge of the neurobiological bases of drug abuse and addiction, and they address potential clinical and therapeutic applications. PMID:17514067

  14. Using brain stimulation to disentangle neural correlates of conscious vision.

    PubMed

    de Graaf, Tom A; Sack, Alexander T

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs.

  15. Using brain stimulation to disentangle neural correlates of conscious vision

    PubMed Central

    de Graaf, Tom A.; Sack, Alexander T.

    2014-01-01

    Research into the neural correlates of consciousness (NCCs) has blossomed, due to the advent of new and increasingly sophisticated brain research tools. Neuroimaging has uncovered a variety of brain processes that relate to conscious perception, obtained in a range of experimental paradigms. But methods such as functional magnetic resonance imaging or electroencephalography do not always afford inference on the functional role these brain processes play in conscious vision. Such empirical NCCs could reflect neural prerequisites, neural consequences, or neural substrates of a conscious experience. Here, we take a closer look at the use of non-invasive brain stimulation (NIBS) techniques in this context. We discuss and review how NIBS methodology can enlighten our understanding of brain mechanisms underlying conscious vision by disentangling the empirical NCCs. PMID:25295015

  16. Fiducial marker for correlating images

    DOEpatents

    Miller, Lisa Marie; Smith, Randy J.; Warren, John B.; Elliott, Donald

    2011-06-21

    The invention relates to a fiducial marker having a marking grid that is used to correlate and view images produced by different imaging modalities or different imaging and viewing modalities. More specifically, the invention relates to the fiducial marking grid that has a grid pattern for producing either a viewing image and/or a first analytical image that can be overlaid with at least one other second analytical image in order to view a light path or to image different imaging modalities. Depending on the analysis, the grid pattern has a single layer of a certain thickness or at least two layers of certain thicknesses. In either case, the grid pattern is imageable by each imaging or viewing modality used in the analysis. Further, when viewing a light path, the light path of the analytical modality cannot be visualized by viewing modality (e.g., a light microscope objective). By correlating these images, the ability to analyze a thin sample that is, for example, biological in nature but yet contains trace metal ions is enhanced. Specifically, it is desired to analyze both the organic matter of the biological sample and the trace metal ions contained within the biological sample without adding or using extrinsic labels or stains.

  17. Evolution of brain imaging instrumentation.

    PubMed

    Abraham, Tony; Feng, Janine

    2011-05-01

    Computed tomography (CT) and static magnetic resonance imaging (MRI) are now the most common imaging modalities used for anatomic evaluation of pathologic processes affecting the brain. By contrast, radionuclide-based methods, including planar imaging, single-photon emission computed tomography (SPECT), and positron emission tomography (PET), are the most widely used methods for evaluating brain function. SPECT and PET have been evolving for a longer time than CT and MRI and have made significant contributions to understanding brain function. The pioneering work on cerebral flow early in the last century laid the foundation of measurement with radioactive gases. This was initially performed with scintillation counters, which gave way to single, then multiple scintillation and multiprobe detectors. The invention of rectilinear scanners, MARK series, Anger cameras, and SPECT imaging further advanced nuclear medicine's role in brain imaging. Measurement of regional cerebral blood flow by SPECT provides pathophysiologic information that directs patient management in a variety of central nervous disorders (CNS), with the greatest clinical impact found in cerebrovascular disease and seizure disorder. In the former, SPECT not only provides means of early detection and localization of acute strokes but can also direct thrombolysis and determine prognosis in the postcerebrovascular accident period. With respect to the latter, ictal SPECT can localize seizure foci so that patients with refractory disease can potentially undergo surgical resection of the affected area. In contrast to brain SPECT, brain PET images reflect regional cerebral metabolism. Because of neurovascular coupling, findings on SPECT and PET images are often comparable. PET, however, still has improved spatial resolution and is therefore more sensitive than SPECT, particularly in the evaluation of dementias. Brain PET instrumentation has greatly evolved from its infancy, when it was used in regional

  18. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo.

  19. Clinical Correlation between Perverted Nystagmus and Brain MRI Abnormal Findings

    PubMed Central

    Han, Won-Gue; Yoon, Hee-Chul; Kim, Tae-Min; Rah, Yoon Chan

    2016-01-01

    Background and Objectives To analyze the clinical correlation between perverted nystagmus and brain magnetic resonance imaging (MRI) abnormal findings and to evaluate whether perverted nystagmus is clinically significant results of brain abnormal lesions or not. Subjects and Methods We performed medical charts review from January 2008 to July 2014, retrospectively. Patients who were suspected central originated vertigo at Frenzel goggles test were included among patients who visited our hospital. To investigate the correlation with nystagmus suspected central originated vertigo and brain MRI abnormal findings, we confirmed whether performing brain MRI or not. Then we exclude that patients not performed brain MRI. Results The number of patients with perverted nystagmus was 15, upbeating was 1 and down-beating was 14. Among these patients, 5 patients have brain MRI abnormal findings. However, 2 patients with MRI abnormal findings were not associated correctly with perverted nystagmus and only 3 patients with perverted nystagmus were considered central originated vertigo and further evaluation and treatment was performed by the department of neurology. Conclusions Perverted nystagmus was considered to the abnormalities at brain lesions, especially cerebellum, but neurologic symptoms and further evaluation were needed for exact diagnosis of central originated vertigo. PMID:27626081

  20. Imaging the Addicted Brain: Alcohol.

    PubMed

    Dupuy, M; Chanraud, S

    2016-01-01

    Alcohol use disorder (AUD) represents a major public health issue due to its prevalence and severe health consequences. It may affect several aspects of an individual's life including work and relationships, and it also increases risk for additional problems such as brain injury. The causes and outcomes of AUD are varied; thus, attempting to understand this complex phenomenon requires investigation from multiple perspectives. Magnetic resonance imaging (MRI) is a powerful means to investigate brain anatomical and functional alterations related to AUD. Recent advances in MRI methods allow better investigation of the alterations to structural and functional brain networks in AUD. Here, we focus on findings from studies using multiple MRI techniques, which converge to support the considerable vulnerability of frontal systems. Indeed, MRI studies provide evidence for a "disconnection syndrome" which could be involved in the poor behavioral control observed in AUD. PMID:27503446

  1. Fueling and imaging brain activation.

    PubMed

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron-astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  2. Fueling and imaging brain activation

    PubMed Central

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  3. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  4. Rodent brain imaging with SPECT/CT.

    PubMed

    Seo, Youngho; Gao, Dong-Wei; Hasegawa, Bruce H; Dae, Michael W; Franc, Benjamin L

    2007-04-01

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of 99mTc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with 99mTc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of 99mTc-exametazime. Time activity curve of 99mTc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  5. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function.

  6. BRAIN NETWORKS. Correlated gene expression supports synchronous activity in brain networks.

    PubMed

    Richiardi, Jonas; Altmann, Andre; Milazzo, Anna-Clare; Chang, Catie; Chakravarty, M Mallar; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Lemaître, Hervé; Mann, Karl F; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomáš; Pausova, Zdenka; Rietschel, Marcella; Robbins, Trevor W; Smolka, Michael N; Spanagel, Rainer; Ströhle, Andreas; Schumann, Gunter; Hawrylycz, Mike; Poline, Jean-Baptiste; Greicius, Michael D

    2015-06-12

    During rest, brain activity is synchronized between different regions widely distributed throughout the brain, forming functional networks. However, the molecular mechanisms supporting functional connectivity remain undefined. We show that functional brain networks defined with resting-state functional magnetic resonance imaging can be recapitulated by using measures of correlated gene expression in a post mortem brain tissue data set. The set of 136 genes we identify is significantly enriched for ion channels. Polymorphisms in this set of genes significantly affect resting-state functional connectivity in a large sample of healthy adolescents. Expression levels of these genes are also significantly associated with axonal connectivity in the mouse. The results provide convergent, multimodal evidence that resting-state functional networks correlate with the orchestrated activity of dozens of genes linked to ion channel activity and synaptic function. PMID:26068849

  7. Dynamic imaging of brain function

    PubMed Central

    Hyder, Fahmeed

    2013-01-01

    In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neuronal activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used as a model to reveal activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with specified spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Because the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques. PMID:18839085

  8. Edge-based correlation image registration for multispectral imaging

    DOEpatents

    Nandy, Prabal

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  9. Ultrasound, normal fetus- ventricles of brain (image)

    MedlinePlus

    ... of brain ventricles. Ventricles are spaces in the brain that are filled with fluid. In this early ultrasound, the ventricles can be seen as light lines extending through the skull, seen in the upper right side of the image.

  10. Identifying brain neoplasms using dye-enhanced multimodal confocal imaging

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Kwon, Churl-Su; Frosch, Matthew P.; Curry, William; Yaroslavsky, Anna N.

    2012-02-01

    Brain tumors cause significant morbidity and mortality even when benign. Completeness of resection of brain tumors improves quality of life and survival; however, that is often difficult to accomplish. The goal of this study was to evaluate the feasibility of using multimodal confocal imaging for intraoperative detection of brain neoplasms. We have imaged different types of benign and malignant, primary and metastatic brain tumors. We correlated optical images with histopathology and evaluated the possibility of interpreting confocal images in a manner similar to pathology. Surgical specimens were briefly stained in 0.05 mg/ml aqueous solution of methylene blue (MB) and imaged using a multimodal confocal microscope. Reflectance and fluorescence signals of MB were excited at 642 nm. Fluorescence emission of MB was registered between 670 and 710 nm. After imaging, tissues were processed for hematoxylin and eosin (H&E) histopathology. The results of comparison demonstrate good correlation between fluorescence images and histopathology. Reflectance images provide information about morphology and vascularity of the specimens, complementary to that provided by fluorescence images. Multimodal confocal imaging has the potential to aid in the intraoperative detection of microscopic deposits of brain neoplasms. The application of this technique may improve completeness of resection and increase patient survival.

  11. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy-based brain imaging

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zeng, Li; Lin, Zi-Jing; Cazzell, Mary; Liu, Hanli

    2015-05-01

    Test-retest reliability of neuroimaging measurements is an important concern in the investigation of cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in inter-rater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess intertest reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk decision-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed and solutions are suggested.

  12. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy-based brain imaging.

    PubMed

    Li, Lin; Zeng, Li; Lin, Zi-Jing; Cazzell, Mary; Liu, Hanli

    2015-05-01

    Test-retest reliability of neuroimaging measurements is an important concern in the investigation of cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in interrater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess interest reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk decision-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed and solutions are suggested. PMID:25992845

  13. Automated in situ brain imaging for mapping the Drosophila connectome.

    PubMed

    Lin, Chi-Wen; Lin, Hsuan-Wen; Chiu, Mei-Tzu; Shih, Yung-Hsin; Wang, Ting-Yuan; Chang, Hsiu-Ming; Chiang, Ann-Shyn

    2015-01-01

    Mapping the connectome, a wiring diagram of the entire brain, requires large-scale imaging of numerous single neurons with diverse morphology. It is a formidable challenge to reassemble these neurons into a virtual brain and correlate their structural networks with neuronal activities, which are measured in different experiments to analyze the informational flow in the brain. Here, we report an in situ brain imaging technique called Fly Head Array Slice Tomography (FHAST), which permits the reconstruction of structural and functional data to generate an integrative connectome in Drosophila. Using FHAST, the head capsules of an array of flies can be opened with a single vibratome sectioning to expose the brains, replacing the painstaking and inconsistent brain dissection process. FHAST can reveal in situ brain neuroanatomy with minimal distortion to neuronal morphology and maintain intact neuronal connections to peripheral sensory organs. Most importantly, it enables the automated 3D imaging of 100 intact fly brains in each experiment. The established head model with in situ brain neuroanatomy allows functional data to be accurately registered and associated with 3D images of single neurons. These integrative data can then be shared, searched, visualized, and analyzed for understanding how brain-wide activities in different neurons within the same circuit function together to control complex behaviors.

  14. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.

    PubMed

    Fox, P T; Ingham, R J; Ingham, J C; Zamarripa, F; Xiong, J H; Lancaster, J L

    2000-10-01

    To distinguish the neural systems of normal speech from those of stuttering, PET images of brain blood flow were probed (correlated voxel-wise) with per-trial speech-behaviour scores obtained during PET imaging. Two cohorts were studied: 10 right-handed men who stuttered and 10 right-handed, age- and sex-matched non-stuttering controls. Ninety PET blood flow images were obtained in each cohort (nine per subject as three trials of each of three conditions) from which r-value statistical parametric images (SPI¿r¿) were computed. Brain correlates of stutter rate and syllable rate showed striking differences in both laterality and sign (i.e. positive or negative correlations). Stutter-rate correlates, both positive and negative, were strongly lateralized to the right cerebral and left cerebellar hemispheres. Syllable correlates in both cohorts were bilateral, with a bias towards the left cerebral and right cerebellar hemispheres, in keeping with the left-cerebral dominance for language and motor skills typical of right-handed subjects. For both stutters and syllables, the brain regions that were correlated positively were those of speech production: the mouth representation in the primary motor cortex; the supplementary motor area; the inferior lateral premotor cortex (Broca's area); the anterior insula; and the cerebellum. The principal difference between syllable-rate and stutter-rate positive correlates was hemispheric laterality. A notable exception to this rule was that cerebellar positive correlates for syllable rate were far more extensive in the stuttering cohort than in the control cohort, which suggests a specific role for the cerebellum in enabling fluent utterances in persons who stutter. Stutters were negatively correlated with right-cerebral regions (superior and middle temporal gyrus) associated with auditory perception and processing, regions which were positively correlated with syllables in both the stuttering and control cohorts. These findings

  15. [Head and brain injuries. Place of imaging].

    PubMed

    Braun, M; Cordoliani, Y S; Dosch, J C

    2000-04-01

    This article considers the various mechanisms of brain injury and specifies the most efficient radiologic technique for assessing patients, depending on clinical presentation. The brain injuries include either extracerebral and intracerebral lesions. The former require rapid diagnosis and therapy and the latter determine management in an intensive therapy, unit and outcome. Standard X-rays are obsolete. The CT, rapidly performed, is the most relevant imaging procedure for surgical lesions. Cortical contusions and diffuse axonal injuries are underestimated by CT and best depicted by MRI. Only late MRI has a strong correlation with neuropsychological outcome. In terms of prognosis, MRI needs to be evaluated. The indications include: a) unstable neurological status: CT; b) moderate head injury: CT may help to decide hospital admission; c) severe head injury: initial CT may be followed by MRI; d) long-term consequences: MRI. Special Indications: a) angio-MRI: suspicion of vascular lesion; b) CT with thin slices and bone window: depressed skull fracture; c) teleradiology (image transfer): to decide a patient transport from a peripheral hospital to a neurosurgical centre. In conclusion, CT remains the first-line examination to detect immediately life-threatening lesions. MRI is the examination of choice for full assessment of brain lesions.

  16. Imaging Brain Mechanisms in Chronic Visceral Pain

    PubMed Central

    Mayer, Emeran A.; Gupta, Arpana; Kilpatrick, Lisa A.; Hong, Jui-Yang

    2015-01-01

    Chronic visceral pain syndromes are important clinical problems with largely unmet medical needs. Based on the common overlap with other chronic disorders of visceral or somatic pain, mood and affect, and their responsiveness to centrally targeted treatments, an important role of central nervous system in their pathophysiology is likely. A growing number of brain imaging studies in irritable bowel syndrome, functional dyspepsia and bladder pain syndrome/interstitial cystitis has identified abnormalities in evoked brain responses, resting state activity and connectivity, as well as in grey and white matter properties. Structural and functional alterations in brain regions of the salience, emotional arousal, and sensorimotor networks, as well as in prefrontal regions, are the most consistently reported findings. Some of these changes show moderate correlations with behavioral and clinical measures. Most recently, data driven machine-learning approaches to larger data sets have been able to classify visceral pain syndromes from healthy control subjects. Future studies need to identify the mechanisms underlying the altered brain signatures of chronic visceral pain and identify targets for therapeutic interventions. PMID:25789437

  17. Image correlates of crowding in natural scenes.

    PubMed

    Wallis, Thomas S A; Bex, Peter J

    2012-07-13

    Visual crowding is the inability to identify visible features when they are surrounded by other structure in the peripheral field. Since natural environments are replete with structure and most of our visual field is peripheral, crowding represents the primary limit on vision in the real world. However, little is known about the characteristics of crowding under natural conditions. Here we examine where crowding occurs in natural images. Observers were required to identify which of four locations contained a patch of "dead leaves'' (synthetic, naturalistic contour structure) embedded into natural images. Threshold size for the dead leaves patch scaled with eccentricity in a manner consistent with crowding. Reverse correlation at multiple scales was used to determine local image statistics that correlated with task performance. Stepwise model selection revealed that local RMS contrast and edge density at the site of the dead leaves patch were of primary importance in predicting the occurrence of crowding once patch size and eccentricity had been considered. The absolute magnitudes of the regression weights for RMS contrast at different spatial scales varied in a manner consistent with receptive field sizes measured in striate cortex of primate brains. Our results are consistent with crowding models that are based on spatial averaging of features in the early stages of the visual system, and allow the prediction of where crowding is likely to occur in natural images.

  18. Brain correlates of music-evoked emotions.

    PubMed

    Koelsch, Stefan

    2014-03-01

    Music is a universal feature of human societies, partly owing to its power to evoke strong emotions and influence moods. During the past decade, the investigation of the neural correlates of music-evoked emotions has been invaluable for the understanding of human emotion. Functional neuroimaging studies on music and emotion show that music can modulate activity in brain structures that are known to be crucially involved in emotion, such as the amygdala, nucleus accumbens, hypothalamus, hippocampus, insula, cingulate cortex and orbitofrontal cortex. The potential of music to modulate activity in these structures has important implications for the use of music in the treatment of psychiatric and neurological disorders.

  19. An architecture for a brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.

    2000-01-01

    The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.

  20. Brain structural correlates of complex sentence comprehension in children

    PubMed Central

    Fengler, Anja; Meyer, Lars; Friederici, Angela D.

    2015-01-01

    Prior structural imaging studies found initial evidence for the link between structural gray matter changes and the development of language performance in children. However, previous studies generally only focused on sentence comprehension. Therefore, little is known about the relationship between structural properties of brain regions relevant to sentence processing and more specific cognitive abilities underlying complex sentence comprehension. In this study, whole-brain magnetic resonance images from 59 children between 5 and 8 years were assessed. Scores on a standardized sentence comprehension test determined grammatical proficiency of our participants. A confirmatory factory analysis corroborated a grammar-relevant and a verbal working memory-relevant factor underlying the measured performance. Voxel-based morphometry of gray matter revealed that while children's ability to assign thematic roles is positively correlated with gray matter probability (GMP) in the left inferior temporal gyrus and the left inferior frontal gyrus, verbal working memory-related performance is positively correlated with GMP in the left parietal operculum extending into the posterior superior temporal gyrus. Since these areas are known to be differentially engaged in adults’ complex sentence processing, our data suggest a specific correspondence between children's GMP in language-relevant brain regions and differential cognitive abilities that guide their sentence comprehension. PMID:26468613

  1. Brain structure and function correlates of cognitive subtypes in schizophrenia.

    PubMed

    Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan

    2015-10-30

    Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.

  2. Animal imaging studies of potential brain damage

    NASA Astrophysics Data System (ADS)

    Gatley, S. J.; Vazquez, M. E.; Rice, O.

    To date, animal studies have not been able to predict the likelihood of problems in human neurological health due to HZE particle exposure during space missions outside the Earth's magnetosphere. In ongoing studies in mice, we have demonstrated that cocaine stimulated locomotor activity is reduced by a moderate dose (120 cGy) of 1 GeV 56Fe particles. We postulate that imaging experiments in animals may provide more sensitive and earlier indicators of damage due to HZE particles than behavioral tests. Since the small size of the mouse brain is not well suited to the spatial resolution offered by microPET, we are now repeating some of our studies in a rat model. We anticipate that this will enable us to identify imaging correlates of behavioral endpoints. A specific hypothesis of our studies is that changes in the metabolic rate for glucose in striatum of animals will be correlated with alterations in locomotor activity. We will also evaluate whether the neuroprotective drug L-deprenyl reduces the effect of radiation on locomotor activity. In addition, we will conduct microPET studies of brain monoamine oxidase A and monoamine oxidase B in rats before and at various times after irradiation with HZE particles. The hypothesis is that monoamine oxidase A, which is located in nerve terminals, will be unchanged or decreased after irradiation, while monoamine oxidase B, which is located in glial cells, will be increased after irradiation. Neurochemical effects that could be measured using PET could in principle be applied in astronauts, in terms of detecting and monitoring subtle neurological damage that might have occurred during long space missions. More speculative uses of PET are in screening candidates for prolonged space missions (for example, for adequate reserve in critical brain circuits) and in optimizing medications to treat impairments after missions.

  3. Linking brain imaging signals to visual perception.

    PubMed

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  4. Rapid and automatic detection of brain tumors in MR images

    NASA Astrophysics Data System (ADS)

    Wang, Zhengjia; Hu, Qingmao; Loe, KiaFock; Aziz, Aamer; Nowinski, Wieslaw L.

    2004-04-01

    An algorithm to automatically detect brain tumors in MR images is presented. The key concern is speed in order to process efficiently large brain image databases and provide quick outcomes in clinical setting. The method is based on study of asymmetry of the brain. Tumors cause asymmetry of the brain, so we detect brain tumors in 3D MR images using symmetry analysis of image grey levels with respect to the midsagittal plane (MSP). The MSP, separating the brain into two hemispheres, is extracted using our previously developed algorithm. By removing the background pixels, the normalized grey level histograms are calculated for both hemispheres. The similarity between these two histograms manifests the symmetry of the brain, and it is quantified by using four symmetry measures: correlation coefficient, root mean square error, integral of absolute difference (IAD), and integral of normalized absolute difference (INAD). A quantitative analysis of brain normality based on 42 patients with tumors and 55 normals is presented. The sensitivity and specificity of IAD and INAD were 83.3% and 89.1%, and 85.7% and 83.6%, respectively. The running time for each symmetry measure for a 3D 8bit MR data was between 0.1 - 0.3 seconds on a 2.4GHz CPU PC.

  5. Evaluating Similarity Measures for Brain Image Registration

    PubMed Central

    Razlighi, Q. R.; Kehtarnavaz, N.; Yousefi, S.

    2013-01-01

    Evaluation of similarity measures for image registration is a challenging problem due to its complex interaction with the underlying optimization, regularization, image type and modality. We propose a single performance metric, named robustness, as part of a new evaluation method which quantifies the effectiveness of similarity measures for brain image registration while eliminating the effects of the other parts of the registration process. We show empirically that similarity measures with higher robustness are more effective in registering degraded images and are also more successful in performing intermodal image registration. Further, we introduce a new similarity measure, called normalized spatial mutual information, for 3D brain image registration whose robustness is shown to be much higher than the existing ones. Consequently, it tolerates greater image degradation and provides more consistent outcomes for intermodal brain image registration. PMID:24039378

  6. [Brain development of infant and MRI by diffusion tensor imaging].

    PubMed

    Dubois, J; Dehaene-Lambertz, G; Mangin, J-F; Le Bihan, D; Hüppi, P S; Hertz-Pannier, L

    2012-01-01

    Studying how the brain develops and becomes functional is important to understand how the man has been able to develop specific cognitive abilities, and to comprehend the complexity of some developmental pathologies. Thanks to magnetic resonance imaging (MRI), it is now possible to image the baby's immature brain and to consider subtle correlations between the brain anatomical development and the early acquisition of cognitive functions. Dedicated methodologies for image acquisition and post-treatment must then be used because the size of cerebral structures and the image contrast are very different in comparison with the adult brain, and because the examination length is a major constraint. Two recent studies have evaluated the developing brain under an original perspective. The first one has focused on cortical folding in preterm newborns, from 6 to 8 months of gestational age, assessed with T2-weighted conventional MRI. The second study has mapped the organization and maturation of white matter fiber bundles in 1- to 4-month-old healthy infants with diffusion tensor imaging (DTI). Both studies have enabled to highlight spatio-temporal differences in the brain regions' maturation, as well as early anatomical asymmetries between cerebral hemispheres. These studies emphasize the potential of MRI to evaluate brain development compared with the infant's psychomotor acquisitions after birth.

  7. FASTSPECT: A four-dimensional brain imager

    SciTech Connect

    Patton, D.D.; Barrett, H.H.; Chen, J.C. |

    1994-05-01

    The exact location of a lesion in the brain is most critical. High-resolution quantitative 4-dimensional brain imaging would offer improvement in detecting and characterizing brain lesions over state-of-the-art SPECT systems. We report the first clinical brain images on FASTSPECT (Four-dimensional Arizona Stationary SPECT), a fixed imaging system based on 24 modular 10 cm x 10 cm gamma cameras in 2 rings (13+11) about the bead. Each module views the entire brain continuously from a different perspective through one or more pinhole apertures. The system gathers true 3-dimensional whole-brain data it 1-2 frame/sec, fully adequate for vascular dynamics, and is therefore a 4-dimensional imaging system (dynamic SPECT). To calibrate the system a (3.3 mm){sup 3} point source of Tc-99m is stepped through each voxel in the object space. We measure the response of each detector element on each modular camera to the source at each position. The resulting system matrix (dimensions approximately 100,000 x 160,000) is compressed, stored and used in the iterative reconstruction algorithm. Three volunteers, blindfolded for 20 min to suppress visual cortical uptake, were imaged after bolus IV injection of 30 mCi (1.11 GBq) Tc-99m HMPAO. Dynamic images at 2 sec/frame clearly showed common and internal carotid arteries, and anterior and middle cerebral artery groups. Static images (11 million counts in 20 min imaging time) clearly showed the cerebral cortex and white matter, cerebellar cortex and white matter, thalami, caudate, lentiform nuclei, cingulate gyrus, brain stem, and brachium pontis. Distinguishable only with difficulty were putamen from globus pallidus, ventral from dorsal thalamus, and cerebrospinal fluid from white matter. Comparison with concurrent conventional single-headed SPECT images in the same subjects showed significantly better anatomic definition in the FASTSPECT images. Conventional SPECT is incapable of full-brain dynamic imaging.

  8. Neuroanatomical correlates of brain-computer interface performance.

    PubMed

    Kasahara, Kazumi; DaSalla, Charles Sayo; Honda, Manabu; Hanakawa, Takashi

    2015-04-15

    Brain-computer interfaces (BCIs) offer a potential means to replace or restore lost motor function. However, BCI performance varies considerably between users, the reasons for which are poorly understood. Here we investigated the relationship between sensorimotor rhythm (SMR)-based BCI performance and brain structure. Participants were instructed to control a computer cursor using right- and left-hand motor imagery, which primarily modulated their left- and right-hemispheric SMR powers, respectively. Although most participants were able to control the BCI with success rates significantly above chance level even at the first encounter, they also showed substantial inter-individual variability in BCI success rate. Participants also underwent T1-weighted three-dimensional structural magnetic resonance imaging (MRI). The MRI data were subjected to voxel-based morphometry using BCI success rate as an independent variable. We found that BCI performance correlated with gray matter volume of the supplementary motor area, supplementary somatosensory area, and dorsal premotor cortex. We suggest that SMR-based BCI performance is associated with development of non-primary somatosensory and motor areas. Advancing our understanding of BCI performance in relation to its neuroanatomical correlates may lead to better customization of BCIs based on individual brain structure.

  9. Brain imaging in type 2 diabetes.

    PubMed

    Brundel, Manon; Kappelle, L Jaap; Biessels, Geert Jan

    2014-12-01

    Type 2 diabetes mellitus (T2DM) is associated with cognitive dysfunction and dementia. Brain imaging may provide important clues about underlying processes. This review focuses on the relationship between T2DM and brain abnormalities assessed with different imaging techniques: both structural and functional magnetic resonance imaging (MRI), including diffusion tensor imaging and magnetic resonance spectroscopy, as well as positron emission tomography and single-photon emission computed tomography. Compared to people without diabetes, people with T2DM show slightly more global brain atrophy, which increases gradually over time compared with normal aging. Moreover, vascular lesions are seen more often, particularly lacunar infarcts. The association between T2DM and white matter hyperintensities and microbleeds is less clear. T2DM has been related to diminished cerebral blood flow and cerebrovascular reactivity, particularly in more advanced disease. Diffusion tensor imaging is a promising technique with respect to subtle white matter involvement. Thus, brain imaging studies show that T2DM is associated with both degenerative and vascular brain damage, which develops slowly over the course of many years. The challenge for future studies will be to further unravel the etiology of brain damage in T2DM, and to identify subgroups of patients that will develop distinct progressive brain damage and cognitive decline.

  10. Incidental 11C-choline PET/CT brain uptake due to meningioma in a patient studied for prostate cancer: correlation with MRI and imaging fusion.

    PubMed

    Bertagna, Francesco; Bosio, Giovanni; Pinelli, Lorenzo; Treglia, Giorgio; Giubbini, Raffaele

    2013-11-01

    We report a case of a 75-year-old male patient treated with radiotherapy in 1999 for prostate cancer. Due to a rise in prostate-specific antigen, he underwent (11)C-choline PET/CT. The study was negative for secondary lesions but revealed an incidental pathologic focal brain uptake. A subsequent magnetic resonance examination confirmed the presence of a brain lesion typical for meningioma.

  11. Spatial organization and correlations of cell nuclei in brain tumors.

    PubMed

    Jiao, Yang; Berman, Hal; Kiehl, Tim-Rasmus; Torquato, Salvatore

    2011-01-01

    Accepting the hypothesis that cancers are self-organizing, opportunistic systems, it is crucial to understand the collective behavior of cancer cells in their tumorous heterogeneous environment. In the present paper, we ask the following basic question: Is this self-organization of tumor evolution reflected in the manner in which malignant cells are spatially distributed in their heterogeneous environment? We employ a variety of nontrivial statistical microstructural descriptors that arise in the theory of heterogeneous media to characterize the spatial distributions of the nuclei of both benign brain white matter cells and brain glioma cells as obtained from histological images. These descriptors, which include the pair correlation function, structure factor and various nearest neighbor functions, quantify how pairs of cell nuclei are correlated in space in various ways. We map the centroids of the cell nuclei into point distributions to show that while commonly used local spatial statistics (e.g., cell areas and number of neighboring cells) cannot clearly distinguish spatial correlations in distributions of normal and abnormal cell nuclei, their salient structural features are captured very well by the aforementioned microstructural descriptors. We show that the tumorous cells pack more densely than normal cells and exhibit stronger effective repulsions between any pair of cells. Moreover, we demonstrate that brain gliomas are organized in a collective way rather than randomly on intermediate and large length scales. The existence of nontrivial spatial correlations between the abnormal cells strongly supports the view that cancer is not an unorganized collection of malignant cells but rather a complex emergent integrated system.

  12. Imaging Brain Development: Benefiting from Individual Variability

    PubMed Central

    Sharda, Megha; Foster, Nicholas E.V.; Hyde, Krista L.

    2015-01-01

    Human brain development is a complex process that evolves from early childhood to young adulthood. Major advances in brain imaging are increasingly being used to characterize the developing brain. These advances have further helped to elucidate the dynamic maturational processes that lead to the emergence of complex cognitive abilities in both typical and atypical development. However, conventional approaches involve categorical group comparison models and tend to disregard the role of widespread interindividual variability in brain development. This review highlights how this variability can inform our understanding of developmental processes. The latest studies in the field of brain development are reviewed, with a particular focus on the role of individual variability and the consequent heterogeneity in brain structural and functional development. This review also highlights how such heterogeneity might be utilized to inform our understanding of complex neuropsychiatric disorders and recommends the use of more dimensional approaches to study brain development. PMID:26648753

  13. Novel optical system for neonatal brain imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zhou, Shuoming; Nioka, Shoko; Chance, Britton; Anday, Endla; Ravishankar, Sudha; Delivoria-Papadopoulos, Maria

    1999-03-01

    A highly portable, fast, safe and affordable imaging system that provides interpretable images of brain function in full- and pre-term neonates within a few seconds has been applied to neonates with normal and pathological states. We have used a uniquely sensitive optical tomography system, termed phased array, which has revealed significant functional responses, particularly to parietal stimulation in neonate brain. This system can indicate the blood concentration and oxygenation change during the parietal brain activation in full- and pre-term neonates. The preliminary clinical results, especially a longitudinal study of a cardiac arrest neonate, suggest a variety of future applications.

  14. Brain-thyroid link (image)

    MedlinePlus

    Although the thyroid gland releases the hormones which govern growth and metabolism, the brain (the pituitary and the hypothalamus) manages the release and the balance of the amount of hormones circulated.

  15. Lesion detection in magnetic resonance brain images by hyperspectral imaging algorithms

    NASA Astrophysics Data System (ADS)

    Xue, Bai; Wang, Lin; Li, Hsiao-Chi; Chen, Hsian Min; Chang, Chein-I.

    2016-05-01

    Magnetic Resonance (MR) images can be considered as multispectral images so that MR imaging can be processed by multispectral imaging techniques such as maximum likelihood classification. Unfortunately, most multispectral imaging techniques are not particularly designed for target detection. On the other hand, hyperspectral imaging is primarily developed to address subpixel detection, mixed pixel classification for which multispectral imaging is generally not effective. This paper takes advantages of hyperspectral imaging techniques to develop target detection algorithms to find lesions in MR brain images. Since MR images are collected by only three image sequences, T1, T2 and PD, if a hyperspectral imaging technique is used to process MR images it suffers from the issue of insufficient dimensionality. To address this issue, two approaches to nonlinear dimensionality expansion are proposed, nonlinear correlation expansion and nonlinear band ratio expansion. Once dimensionality is expanded hyperspectral imaging algorithms are readily applied. The hyperspectral detection algorithm to be investigated for lesion detection in MR brain is the well-known subpixel target detection algorithm, called Constrained Energy Minimization (CEM). In order to demonstrate the effectiveness of proposed CEM in lesion detection, synthetic images provided by BrainWeb are used for experiments.

  16. NIH Conference. Brain imaging: aging and dementia

    SciTech Connect

    Cutler, N.R.; Duara, R.; Creasey, H.; Grady, C.L.; Haxby, J.V.; Schapiro, M.B.; Rapoport, S.I.

    1984-09-01

    The brain imaging techniques of positron emission tomography using (18F)-fluoro-2-deoxy-D-glucose, and computed tomography, together with neuropsychological tests, were used to examine overall brain function and anatomy in three study populations: healthy men at different ages, patients with presumptive Alzheimer's disease, and adults with Down's syndrome. Brain glucose use did not differ with age, whereas an age-related decrement in gray matter volume was found on computed tomographic assessment in healthy subjects. Memory deficits were found to precede significant reductions in brain glucose utilization in mild to moderate Alzheimer's dementia. Furthermore, differences between language and visuoconstructive impairments in patients with mild to moderate Alzheimer's disease were related to hemispheric asymmetry of brain metabolism. Brain glucose utilization was found to be significantly elevated in young adults with Down's syndrome, compared with controls. The importance of establishing strict criteria for selecting control subjects and patients is explained in relation to the findings.

  17. Hemorrhage detection in MRI brain images using images features

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Moldovanu, Simona; Bibicu, Dorin; Stratulat (Visan), Mirela

    2013-11-01

    The abnormalities appear frequently on Magnetic Resonance Images (MRI) of brain in elderly patients presenting either stroke or cognitive impairment. Detection of brain hemorrhage lesions in MRI is an important but very time-consuming task. This research aims to develop a method to extract brain tissue features from T2-weighted MR images of the brain using a selection of the most valuable texture features in order to discriminate between normal and affected areas of the brain. Due to textural similarity between normal and affected areas in brain MR images these operation are very challenging. A trauma may cause microstructural changes, which are not necessarily perceptible by visual inspection, but they could be detected by using a texture analysis. The proposed analysis is developed in five steps: i) in the pre-processing step: the de-noising operation is performed using the Daubechies wavelets; ii) the original images were transformed in image features using the first order descriptors; iii) the regions of interest (ROIs) were cropped from images feature following up the axial symmetry properties with respect to the mid - sagittal plan; iv) the variation in the measurement of features was quantified using the two descriptors of the co-occurrence matrix, namely energy and homogeneity; v) finally, the meaningful of the image features is analyzed by using the t-test method. P-value has been applied to the pair of features in order to measure they efficacy.

  18. In-vivo human brain molecular imaging with a brain-dedicated PET/MRI system.

    PubMed

    Cho, Zang Hee; Son, Young Don; Choi, Eun Jung; Kim, Hang Keun; Kim, Jeong Hee; Lee, Sang Yoon; Ogawa, Seiji; Kim, Young Bo

    2013-02-01

    Advances in the new-generation of ultra-high-resolution, brain-dedicated positron emission tomography-magnetic resonance imaging (PET/MRI) systems have begun to provide many interesting insights into the molecular dynamics of the brain. First, the finely delineated structural information from ultra-high-field MRI can help us to identify accurate landmark structures, thereby making it easier to locate PET activation sites that are anatomically well-correlated with metabolic or ligand-specific organs in the neural structures in the brain. This synergistic potential of PET/MRI imaging is discussed in terms of neuroscience and neurological research from both translational and basic research perspectives. Experimental results from the hippocampus, thalamus, and brainstem obtained with (18)F-fluorodeoxyglucose and (11)C-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile are used to demonstrate the potential of this new brain PET/MRI system.

  19. Brain Structural Correlates of Emotion Recognition in Psychopaths.

    PubMed

    Pera-Guardiola, Vanessa; Contreras-Rodríguez, Oren; Batalla, Iolanda; Kosson, David; Menchón, José M; Pifarré, Josep; Bosque, Javier; Cardoner, Narcís; Soriano-Mas, Carles

    2016-01-01

    Individuals with psychopathy present deficits in the recognition of facial emotional expressions. However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results. In this context, emotional face morphing tasks may be suitable for clarifying mild and emotion-specific impairments in psychopaths. Likewise, studies exploring corresponding anatomical correlates may be useful for disentangling available neurofunctional evidence based on the alleged neurodevelopmental roots of psychopathic traits. We used Voxel-Based Morphometry and a morphed emotional face expression recognition task to evaluate the relationship between regional gray matter (GM) volumes and facial emotion recognition deficits in male psychopaths. In comparison to male healthy controls, psychopaths showed deficits in the recognition of sad, happy and fear emotional expressions. In subsequent brain imaging analyses psychopaths with better recognition of facial emotional expressions showed higher volume in the prefrontal cortex (orbitofrontal, inferior frontal and dorsomedial prefrontal cortices), somatosensory cortex, anterior insula, cingulate cortex and the posterior lobe of the cerebellum. Amygdala and temporal lobe volumes contributed to better emotional face recognition in controls only. These findings provide evidence suggesting that variability in brain morphometry plays a role in accounting for psychopaths' impaired ability to recognize emotional face expressions, and may have implications for comprehensively characterizing the empathy and social cognition dysfunctions typically observed in this population of subjects.

  20. Brain Structural Correlates of Emotion Recognition in Psychopaths.

    PubMed

    Pera-Guardiola, Vanessa; Contreras-Rodríguez, Oren; Batalla, Iolanda; Kosson, David; Menchón, José M; Pifarré, Josep; Bosque, Javier; Cardoner, Narcís; Soriano-Mas, Carles

    2016-01-01

    Individuals with psychopathy present deficits in the recognition of facial emotional expressions. However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results. In this context, emotional face morphing tasks may be suitable for clarifying mild and emotion-specific impairments in psychopaths. Likewise, studies exploring corresponding anatomical correlates may be useful for disentangling available neurofunctional evidence based on the alleged neurodevelopmental roots of psychopathic traits. We used Voxel-Based Morphometry and a morphed emotional face expression recognition task to evaluate the relationship between regional gray matter (GM) volumes and facial emotion recognition deficits in male psychopaths. In comparison to male healthy controls, psychopaths showed deficits in the recognition of sad, happy and fear emotional expressions. In subsequent brain imaging analyses psychopaths with better recognition of facial emotional expressions showed higher volume in the prefrontal cortex (orbitofrontal, inferior frontal and dorsomedial prefrontal cortices), somatosensory cortex, anterior insula, cingulate cortex and the posterior lobe of the cerebellum. Amygdala and temporal lobe volumes contributed to better emotional face recognition in controls only. These findings provide evidence suggesting that variability in brain morphometry plays a role in accounting for psychopaths' impaired ability to recognize emotional face expressions, and may have implications for comprehensively characterizing the empathy and social cognition dysfunctions typically observed in this population of subjects. PMID:27175777

  1. Brain Structural Correlates of Emotion Recognition in Psychopaths

    PubMed Central

    Batalla, Iolanda; Kosson, David; Menchón, José M; Pifarré, Josep; Bosque, Javier; Cardoner, Narcís; Soriano-Mas, Carles

    2016-01-01

    Individuals with psychopathy present deficits in the recognition of facial emotional expressions. However, the nature and extent of these alterations are not fully understood. Furthermore, available data on the functional neural correlates of emotional face recognition deficits in adult psychopaths have provided mixed results. In this context, emotional face morphing tasks may be suitable for clarifying mild and emotion-specific impairments in psychopaths. Likewise, studies exploring corresponding anatomical correlates may be useful for disentangling available neurofunctional evidence based on the alleged neurodevelopmental roots of psychopathic traits. We used Voxel-Based Morphometry and a morphed emotional face expression recognition task to evaluate the relationship between regional gray matter (GM) volumes and facial emotion recognition deficits in male psychopaths. In comparison to male healthy controls, psychopaths showed deficits in the recognition of sad, happy and fear emotional expressions. In subsequent brain imaging analyses psychopaths with better recognition of facial emotional expressions showed higher volume in the prefrontal cortex (orbitofrontal, inferior frontal and dorsomedial prefrontal cortices), somatosensory cortex, anterior insula, cingulate cortex and the posterior lobe of the cerebellum. Amygdala and temporal lobe volumes contributed to better emotional face recognition in controls only. These findings provide evidence suggesting that variability in brain morphometry plays a role in accounting for psychopaths’ impaired ability to recognize emotional face expressions, and may have implications for comprehensively characterizing the empathy and social cognition dysfunctions typically observed in this population of subjects. PMID:27175777

  2. See the brain at work: intraoperative laser Doppler functional brain imaging

    NASA Astrophysics Data System (ADS)

    Martin-Williams, E. J.; Raabe, A.; Van De Ville, D.; Leutenegger, M.; Szelényi, A.; Hattingen, E.; Gerlach, R.; Seifert, V.; Hauger, C.; Lopez, A.; Leitgeb, R.; Unser, M.; Lasser, T.

    2009-07-01

    During open brain surgery we acquire perfusion images non-invasively using laser Doppler imaging. The regions of brain activity show a distinct signal in response to stimulation providing intraoperative functional brain maps of remarkably strong contrast.

  3. Perfusion harmonic imaging of the human brain

    NASA Astrophysics Data System (ADS)

    Metzler, Volker H.; Seidel, Guenter; Wiesmann, Martin; Meyer, Karsten; Aach, Til

    2003-05-01

    The fast visualisation of cerebral microcirculation supports diagnosis of acute cerebrovascular diseases. However, the commonly used CT/MRI-based methods are time consuming and, moreover, costly. Therefore we propose an alternative approach to brain perfusion imaging by means of ultrasonography. In spite of the low signal/noise-ratio of transcranial ultrasound and the high impedance of the skull, flow images of cerebral blood flow can be derived by capturing the kinetics of appropriate contrast agents by harmonic ultrasound image sequences. In this paper we propose three different methods for human brain perfusion imaging, each of which yielding flow images indicating the status of the patient's cerebral microcirculation by visualising local flow parameters. Bolus harmonic imaging (BHI) displays the flow kinetics of bolus injections, while replenishment (RHI) and diminution harmonic imaging (DHI) compute flow characteristics from contrast agent continuous infusions. RHI measures the contrast agents kinetics in the influx phase and DHI displays the diminution kinetics of the contrast agent acquired from the decay phase. In clinical studies, BHI- and RHI-parameter images were found to represent comprehensive and reproducible distributions of physiological cerebral blood flow. For DHI it is shown, that bubble destruction and hence perfusion phenomena principally can be displayed. Generally, perfusion harmonic imaging enables reliable and fast bedside imaging of human brain perfusion. Due to its cost efficiency it complements cerebrovascular diagnostics by established CT/MRI-based methods.

  4. Multiparametric MR Imaging of Brain Disorders

    PubMed Central

    Wu, Ona; Dijkhuizen, Rick M; Sorensen, Alma Gregory

    2012-01-01

    Magnetic resonance imaging (MRI) has been shown to improve the diagnosis and management of patients with brain disorders. Multiparametric MRI offers the possibility of noninvasively assessing multiple facets of pathophysiological processes that exist simultaneously, thereby further assisting in patient treatment management. Voxel-based analysis approaches, such as tissue theme mapping, have the benefit over volumetric approaches in being able to identify spatially heterogeneous co-localized changes on multiple parametric MR images that are not readily discernible. Tissue theme maps appear to be a promising tool for integrating the plethora of novel imaging contrasts that are being developed for the non-invasive investigation of the different stages of disease progression into easily interpretable maps of brain injury. We describe here various implementations for combining multiparametric imaging and their merits in the evaluation of brain diseases. PMID:21613877

  5. Potential brain imaging using near field radiomety

    NASA Astrophysics Data System (ADS)

    Oikonomou, A.; Karanasiou, I. S.; Uzunoglu, N. K.

    2009-05-01

    During the past decades there has been a tremendous increase throughout the scientific community for developing methods of understanding human brain functionality, as diagnosis and treatment of diseases and malfunctions could be effectively developed through understanding of how the brain works. In parallel, research effort is driven on minimizing drawbacks of existing imaging techniques including potential risks from radiation and invasive attributes of the imaging methodologies. Towards that direction, we are proposing a near filed radiometry imaging system for intracranial applications. The methodology is based on the fact that human tissues emit chaotic thermal type radiation at temperatures above the absolute zero. Using a phase shifted antenna array system, resolution, detection depth and sensitivity are increased. Several different setups are theoretically investigated and compared, so as to make the proposed system useful for clinical applications. Combining previous research as well as new findings, the possibility of using the proposed system as a complementary method for brain imaging is discussed in the present paper.

  6. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut

    2006-02-01

    Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.

  7. Imaging Evaluation of Acute Traumatic Brain Injury.

    PubMed

    Mutch, Christopher A; Talbott, Jason F; Gean, Alisa

    2016-10-01

    Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it also helps predict patient outcomes. TBI consists of multiple pathoanatomic entities. This article reviews the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each of these pathoanatomic entities. Also briefly surveyed are advanced imaging techniques, which include several promising areas of TBI research. PMID:27637393

  8. Magnetic Resonance Imaging of Cerebral Aspergillosis: Imaging and Pathological Correlations

    PubMed Central

    Sabou, Marcela; Lannes, Béatrice; Cotton, François; Meyronet, David; Galanaud, Damien; Cottier, Jean-Philippe; Grand, Sylvie; Desal, Hubert; Kreutz, Julie; Schenck, Maleka; Meyer, Nicolas; Schneider, Francis; Dietemann, Jean-Louis; Koob, Meriam

    2016-01-01

    Cerebral aspergillosis is associated with a significant morbidity and mortality rate. The imaging data present different patterns and no full consensus exists on typical imaging characteristics of the cerebral lesions. We reviewed MRI findings in 21 patients with cerebral aspergillosis and correlated them to the immune status of the patients and to neuropathological findings when tissue was available. The lesions were characterized by their number, topography, and MRI signal. Dissemination to the brain resulted from direct spread from paranasal sinuses in 8 patients, 6 of them being immunocompetent. Hematogenous dissemination was observed in 13 patients, all were immunosuppressed. In this later group we identified a total of 329 parenchymal abscesses involving the whole brain with a predilection for the corticomedullary junction. More than half the patients had a corpus callosum lesion. Hemorrhagic lesions accounted for 13% and contrast enhancement was observed in 61% of the lesions. Patients with hematogenous dissemination were younger (p = 0.003), had more intracranial lesions (p = 0.0004) and had a higher 12-week mortality rate (p = 0.046) than patients with direct spread from paranasal sinuses. Analysis of 12 aneurysms allowed us to highlight two distinct situations. In case of direct spread from the paranasal sinuses, aneurysms are saccular and located on the proximal artery portions, while the hematogenous dissemination in immunocompromised patients is more frequently associated with distal and fusiform aneurysms. MRI is the exam of choice for cerebral aspergillosis. Number and type of lesions are different according to the mode of dissemination of the infection. PMID:27097323

  9. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  10. Trigeminal nerve: Anatomic correlation with MR imaging

    SciTech Connect

    Daniels, D.L.; Pech, P.; Pojunas, K.W.; Kilgore, D.P.; Williams, A.L.; Haughton, V.M.

    1986-06-01

    Through correlation with cryomicrotic sections, the appearance of the trigeminal nerve and its branches on magnetic resonance images is described in healthy individuals and in patients with tumors involving this nerve. Coronal images are best for defining the different parts of the nerve and for making a side-to-side comparison. Sagittal images are useful to demonstrate tumors involving the Gasserian ganglion.

  11. Proton MRS imaging in pediatric brain tumors.

    PubMed

    Zarifi, Maria; Tzika, A Aria

    2016-06-01

    Magnetic resonance (MR) techniques offer a noninvasive, non-irradiating yet sensitive approach to diagnosing and monitoring pediatric brain tumors. Proton MR spectroscopy (MRS), as an adjunct to MRI, is being more widely applied to monitor the metabolic aspects of brain cancer. In vivo MRS biomarkers represent a promising advance and may influence treatment choice at both initial diagnosis and follow-up, given the inherent difficulties of sequential biopsies to monitor therapeutic response. When combined with anatomical or other types of imaging, MRS provides unique information regarding biochemistry in inoperable brain tumors and can complement neuropathological data, guide biopsies and enhance insight into therapeutic options. The combination of noninvasively acquired prognostic information and the high-resolution anatomical imaging provided by conventional MRI is expected to surpass molecular analysis and DNA microarray gene profiling, both of which, although promising, depend on invasive biopsy. This review focuses on recent data in the field of MRS in children with brain tumors. PMID:27233788

  12. Generating Text from Functional Brain Images

    PubMed Central

    Pereira, Francisco; Detre, Greg; Botvinick, Matthew

    2011-01-01

    Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602

  13. IMAGING THE BRAIN AS SCHIZOPHRENIA DEVELOPS: DYNAMIC & GENETIC BRAIN MAPS.

    PubMed

    Thompson, Paul; Rapoport, Judith L; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    Schizophrenia is a chronic, debilitating psychiatric disorder that affects 0.2-2% of the population worldwide. Often striking without warning in the late teens or early twenties, its symptoms include auditory and visual hallucinations, psychotic outbreaks, bizarre or disordered thinking, depression and social withdrawal. To combat the disease, new antipsychotic drugs are emerging; these atypical neuroleptics target dopamine and serotonin pathways in the brain, offering increased therapeutic efficacy with fewer side effects. Despite their moderate success in controlling some patients' symptoms, little is known about the causes of schizophrenia, and what triggers the disease. Its peculiar age of onset raises key questions: What physical changes occur in the brain as a patient develops schizophrenia? Do these deficits spread in the brain, and can they be opposed? How do they relate to psychotic symptoms? As risk for the disease is genetically transmitted, do a patient's relatives exhibit similar brain changes? Recent advances in brain imaging and genetics provide exciting insight on these questions. Neuroimaging can now chart the emergence and progression of deficits in the brain, providing an exceptionally sharp scalpel to dissect the effects of genetic risk, environmental triggers, and susceptibility genes. Visualizing the dynamics of the disease, these techniques also offer new strategies to evaluate drugs that combat the unrelenting symptoms of schizophrenia.

  14. Laser Doppler imaging for intraoperative human brain mapping.

    PubMed

    Raabe, A; Van De Ville, D; Leutenegger, M; Szelényi, A; Hattingen, E; Gerlach, R; Seifert, V; Hauger, C; Lopez, A; Leitgeb, R; Unser, M; Martin-Williams, E J; Lasser, T

    2009-02-15

    The identification and accurate location of centers of brain activity are vital both in neuro-surgery and brain research. This study aimed to provide a non-invasive, non-contact, accurate, rapid and user-friendly means of producing functional images intraoperatively. To this end a full field Laser Doppler imager was developed and integrated within the surgical microscope and perfusion images of the cortical surface were acquired during awake surgery whilst the patient performed a predetermined task. The regions of brain activity showed a clear signal (10-20% with respect to the baseline) related to the stimulation protocol which lead to intraoperative functional brain maps of strong statistical significance and which correlate well with the preoperative fMRI and intraoperative cortical electro-stimulation. These initial results achieved with a prototype device and wavelet based regressor analysis (the hemodynamic response function being derived from MRI applications) demonstrate the feasibility of LDI as an appropriate technique for intraoperative functional brain imaging.

  15. Electromagnetic inverse applications for functional brain imaging

    SciTech Connect

    Wood, C.C.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.

  16. Brain 'imaging' in the Renaissance.

    PubMed

    Paluzzi, Alessandro; Belli, Antonio; Bain, Peter; Viva, Laura

    2007-12-01

    During the Renaissance, a period of 'rebirth' for humanities and science, new knowledge and speculation began to emerge about the function of the human body, replacing ancient religious and philosophical dogma. The brain must have been a fascinating mystery to a Renaissance artist, but some speculation existed at that time on the function of its parts. Here we show how revived interest in anatomy and life sciences may have influenced the figurative work of Italian and Flemish masters, such as Rafael, Michelangelo and David. We present a historical perspective on the artists and the period in which they lived, their fascination for human anatomy and its symbolic use in their art. Prior to the 16th century, knowledge of the brain was limited and influenced in a dogmatic way by the teachings of Galen(1) who, as we now know, conducted his anatomical studies not on humans but on animals.(2) Nemesus, Bishop of Emesa, in around the year 400 was one of the first to attribute mental faculties to the brain, specifically to the ventricles. He identified two anterior (lateral) ventricles, to which he assigned perception, a middle ventricle responsible for cognition and a posterior ventricle for memory.(2,3) After a long period of stasis in the Middle Ages, Renaissance scholars realized the importance of making direct observations on dissected cadavers. Between 1504 and 1507, Leonardo da Vinci conducted experiments to reveal the anatomy of the ventricular system in the brain. He injected hot wax through a tube thrust into the ventricular cavities of an ox and then scraped the overlying brain off, thus obtaining, in a simple but ingenious way, an accurate cast of the ventricles.(2,4) Leonardo shared the belief promoted by scholarly Christians that the ventricles were the abode of rational soul. We have several examples of hidden symbolism in Renaissance paintings, but the influence of phrenology and this rudimentary knowledge of neuroanatomy on artists of that period is under

  17. Correlative imaging in gallbladder carcinoma.

    PubMed

    Willekens, I; Goethals, L R; Brussaard, C; Verdries, D; de Mey, J

    2014-01-01

    Gallbladder carcinoma is a relatively rare malignant epithelial neoplasm, arising from gallbladder mucosa. It is the fifth most common gastrointestinal malignancy and the most common biliary tract cancer. Early diagnosis remains difficult, because clinical symptoms are sparse and non-specific, often resulting in advanced stage disease at the time of diagnosis. The most common feature of gallbladder carcinoma on different imaging modalities is focal wall thickening, associated with a large eccentric tumor mass. In this case we report the imaging characteristics of gallbladder carcinoma on ultrasound, MDCT and 18F-FDG PET/CT.

  18. Content based retrieval of lesioned brain images

    NASA Astrophysics Data System (ADS)

    Batty, Stephen; Blandford, Ann; Clark, John; Fryer, Tim; Gao, Xiaohong

    2002-05-01

    HI-PACS enable more efficient data-management leading to increased operating efficiency and therefore better patient care, a content based pet image retrieval system would contribute to the development of a HI-PACS. A database of PET neuro-images has been created with a facility for retrieving via visual content. The adaptation of algorithms developed for alternate imaging modalities (eg-MRI) formed the basis of feature detection and measurement algorithms. The application of these algorithms to greyscale PET images results in data that is employed as database indices and similarity metrics. The feature detection and measurement algorithms can be split into two different methods. The first uses the extracted ideal mid sagittal symmetry line to detect differences between the two hemisphere of the brain, while the second utilizes Gabor filters to measure the texture of the whole brain.

  19. Genetic correlates of the evolving primate brain

    PubMed Central

    Vallender, Eric J.

    2012-01-01

    The tremendous shifts in the size, structure, and function of the brain during primate evolution are ultimately caused by changes at the genetic level. Understanding what these changes are and how they effect the phenotypic changes observed lies at the heart of understanding evolutionary change. This chapter focuses on understanding the genetic basis of primate brain evolution, considering the substrates and mechanisms through which genetic change occurs. It also discusses the implications that our current understandings and tools have for what we have already discovered and where our studies will head in the future. While genetic and genomic studies have identified many regions undergoing positive selection during primate evolution, the findings are certainly not exhaustive and functional relevance remains to be confirmed. Nevertheless, a strong foundation has been built upon which future studies will emerge. PMID:22230621

  20. Modeling of functional brain imaging data

    NASA Astrophysics Data System (ADS)

    Horwitz, Barry

    1999-03-01

    The richness and complexity of data sets obtained from functional neuroimaging studies of human cognitive behavior, using techniques such as positron emission tomography and functional magnetic resonance imaging, have until recently not been exploited by computational neural modeling methods. In this article, following a brief introduction to functional neuroimaging methodology, two neural modeling approaches for use with functional brain imaging data are described. One, which uses structural equation modeling, examines the effective functional connections between various brain regions during specific cognitive tasks. The second employs large-scale neural modeling to relate functional neuroimaging signals in multiple, interconnected brain regions to the underlying neurobiological time-varying activities in each region. These two modeling procedures are illustrated using a visual processing paradigm.

  1. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  2. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  3. Brain mapping: new wave optical imaging.

    PubMed

    Mrsic-Flogel, Thomas; Hübener, Mark; Bonhoeffer, Tobias

    2003-09-30

    Optical imaging of intrinsic signals is widely used for high-resolution brain mapping in various animal species. A new approach using continuous data acquisition and Fourier decomposition of the signal allows for much faster mapping, opening up the possibility of applying this method to new experimental questions. PMID:14521859

  4. Biophotonics: Through-skull brain imaging

    NASA Astrophysics Data System (ADS)

    Madsen, Steen J.

    2014-09-01

    The use of carbon nanotubes makes it possible to perform fluorescent imaging of cerebral vasculature of mice through their intact skulls. The high spatial and temporal resolution of the non-invasive technique may prove useful for studies of stroke and other brain disorders.

  5. Brain Imaging Studies of Developmental Stuttering.

    ERIC Educational Resources Information Center

    Ingham, Roger J.

    2001-01-01

    A review of research on brain imaging of developmental stuttering concludes that findings increasingly point to a failure of normal temporal lobe activation during speech that may either contribute to (or is the result of) a breakdown in the sequencing of processing among premotor regions implicated in phonologic planning. (Contains references.)…

  6. Factor Analysis of the Image Correlation Matrix.

    ERIC Educational Resources Information Center

    Kaiser, Henry F.; Cerny, Barbara A.

    1979-01-01

    Whether to factor the image correlation matrix or to use a new model with an alpha factor analysis of it is mentioned, with particular reference to the determinacy problem. It is pointed out that the distribution of the images is sensibly multivariate normal, making for "better" factor analyses. (Author/CTM)

  7. Neural correlates of establishing, maintaining, and switching brain states.

    PubMed

    Tang, Yi-Yuan; Rothbart, Mary K; Posner, Michael I

    2012-06-01

    Although the study of brain states is an old one in neuroscience, there has been growing interest in brain state specification owing to MRI studies tracing brain connectivity at rest. In this review, we summarize recent research on three relatively well-described brain states: the resting, alert, and meditation states. We explore the neural correlates of maintaining a state or switching between states, and argue that the anterior cingulate cortex and striatum play a critical role in state maintenance, whereas the insula has a major role in switching between states. Brain state may serve as a predictor of performance in a variety of perceptual, memory, and problem solving tasks. Thus, understanding brain states is critical for understanding human performance.

  8. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    NASA Astrophysics Data System (ADS)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  9. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox

    PubMed Central

    Lacerda, Luis Miguel; Ferreira, Hugo Alexandre

    2015-01-01

    Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19–73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results. It was observed both a high inter-hemispheric symmetry

  10. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox.

    PubMed

    Ribeiro, Andre Santos; Lacerda, Luis Miguel; Ferreira, Hugo Alexandre

    2015-01-01

    Aim. In recent years, connectivity studies using neuroimaging data have increased the understanding of the organization of large-scale structural and functional brain networks. However, data analysis is time consuming as rigorous procedures must be assured, from structuring data and pre-processing to modality specific data procedures. Until now, no single toolbox was able to perform such investigations on truly multimodal image data from beginning to end, including the combination of different connectivity analyses. Thus, we have developed the Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox with the goal of diminishing time waste in data processing and to allow an innovative and comprehensive approach to brain connectivity. Materials and Methods. The MIBCA toolbox is a fully automated all-in-one connectivity toolbox that offers pre-processing, connectivity and graph theoretical analyses of multimodal image data such as diffusion-weighted imaging, functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). It was developed in MATLAB environment and pipelines well-known neuroimaging softwares such as Freesurfer, SPM, FSL, and Diffusion Toolkit. It further implements routines for the construction of structural, functional and effective or combined connectivity matrices, as well as, routines for the extraction and calculation of imaging and graph-theory metrics, the latter using also functions from the Brain Connectivity Toolbox. Finally, the toolbox performs group statistical analysis and enables data visualization in the form of matrices, 3D brain graphs and connectograms. In this paper the MIBCA toolbox is presented by illustrating its capabilities using multimodal image data from a group of 35 healthy subjects (19-73 years old) with volumetric T1-weighted, diffusion tensor imaging, and resting state fMRI data, and 10 subjets with 18F-Altanserin PET data also. Results. It was observed both a high inter-hemispheric symmetry and

  11. Study of freshly excised brain tissues using terahertz imaging

    PubMed Central

    Oh, Seung Jae; Kim, Sang-Hoon; Ji, Young Bin; Jeong, Kiyoung; Park, Yeonji; Yang, Jaemoon; Park, Dong Woo; Noh, Sam Kyu; Kang, Seok-Gu; Huh, Yong-Min; Son, Joo-Hiuk; Suh, Jin-Suck

    2014-01-01

    We demonstrated that tumors in freshly excised whole brain tissue could be differentiated clearly from normal brain tissue using a reflection-type terahertz (THz) imaging system. THz binary images of brain tissues with tumors indicated that the tumor boundaries in the THz images corresponded well to those in visible images. Grey and white-matter regions were distinguishable owing to the different distribution of myelin in the brain tissue. THz images corresponded closely with magnetic resonance imaging (MRI) results. The MRI and hematoxylin and eosin-stained microscopic images were investigated to account for the intensity differences in the THz images for fresh and paraffin-embedded brain tissue. Our results indicated that the THz signals corresponded to the cell density when water was removed. Thus, THz imaging could be used as a tool for label-free and real-time imaging of brain tumors, which would be helpful for physicians to determine tumor margins during brain surgery. PMID:25136506

  12. Forthergillian Lecture. Imaging human brain function.

    PubMed

    Frackowiak, R S

    The non-invasive brain scanning techniques introduced a quarter of a century ago have become crucial for diagnosis in clinical neurology. They have also been used to investigate brain function and have provided information about normal activity and pathogenesis. They have been used to investigate functional specialization in the brain and how specialized areas communicate to generate complex integrated functions such as speech, memory, the emotions and so on. The phenomenon of brain plasticity is poorly understood and yet clinical neurologists are aware, from everyday observations, that spontaneous recovery from brain lesions is common. An improved understanding of the mechanisms of recovery may generate new therapeutic strategies and indicate ways of modulating mechanisms that promote plastic compensation for loss of function. The main methods used to investigate these issues are positron emission tomography and magnetic resonance imaging (M.R.I.). M.R.I. is also used to map brain structure. The techniques of functional brain mapping and computational morphometrics depend on high performance scanners and a validated set of analytic statistical procedures that generate reproducible data and meaningful inferences from brain scanning data. The motor system presents a good paradigm to illustrate advances made by scanning towards an understanding of plasticity at the level of brain areas. The normal motor system is organized in a nested hierarchy. Recovery from paralysis caused by internal capsule strokes involves functional reorganization manifesting itself as changed patterns of activity in the component brain areas of the normal motor system. The pattern of plastic modification depends in part on patterns of residual or disturbed connectivity after brain injury. Therapeutic manipulations in patients with Parkinson's disease using deep brain stimulation, dopaminergic agents or fetal mesencephalic transplantation provide a means to examine mechanisms underpinning

  13. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  14. Imaging visual function of the human brain

    SciTech Connect

    Marg, E.

    1988-10-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references.

  15. Optical Coherence Tomography for Brain Imaging

    NASA Astrophysics Data System (ADS)

    Liu, Gangjun; Chen, Zhongping

    Recently, there has been growing interest in using OCT for brain imaging. A feasibility study of OCT for guiding deep brain probes has found that OCT can differentiate the white matter and gray matter because the white matter tends to have a higher peak reflectivity and steeper attenuation rate compared to gray matter. In vivo 3D visualization of the layered organization of a rat olfactory bulb with OCT has been demonstrated. OCT has been used for single myelin fiber imaging in living rodents without labeling. The refractive index in the rat somatosensory cortex has also been measured with OCT. In addition, functional extension of OCT, such as Doppler-OCT (D-OCT), polarization sensitive-OCT (PS-OCT), and phase-resolved-OCT (PR-OCT), can image and quantify physiological parameters in addition to the morphological structure image. Based on the scattering changes during neural activity, OCT has been used to measure the functional activation in neuronal tissues. PS-OCT, which combines polarization sensitive detection with OCT to determine tissue birefringence, has been used for the localization of nerve fiber bundles and the mapping of micrometer-scale fiber pathways in the brain. D-OCT, also named optical Doppler tomography (ODT), combines the Doppler principle with OCT to obtain high resolution tomographic images of moving constituents in highly scattering biological tissues. D-OCT has been successfully used to image cortical blood flow and map the blood vessel network for brain research. In this chapter, the principle and technology of OCT and D-OCT are reviewed and examples of potential applications are described.

  16. Structural and functional brain imaging in schizophrenia.

    PubMed Central

    Cleghorn, J M; Zipursky, R B; List, S J

    1991-01-01

    We present an evaluation of the contribution of structural and functional brain imaging to our understanding of schizophrenia. Methodological influences on the validity of the data generated by these new technologies include problems with measurement and clinical and anatomic heterogeneity. These considerations greatly affect the interpretation of the data generated by these technologies. Work in these fields to date, however, has produced strong evidence which suggests that schizophrenia is a disease which involves abnormalities in the structure and function of many brain areas. Structural brain imaging studies of schizophrenia using computed tomography (CT) and magnetic resonance imaging (MRI) are reviewed and their contribution to current theories of the pathogenesis of schizophrenia are discussed. Positron emission tomography (PET) studies of brain metabolic activity and dopamine receptor binding in schizophrenia are summarized and the critical questions raised by these studies are outlined. Future studies in these fields have the potential to yield critical insights into the pathophysiology of schizophrenia; new directions for studies of schizophrenia using these technologies are identified. PMID:1911736

  17. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R. . Dept. of Electrical Engineering); Lewis, P.; Lewine, J.; George, J. ); Singh, M. . Dept. of Radiology)

    1991-01-01

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  18. Electromagnetic imaging of dynamic brain activity

    SciTech Connect

    Mosher, J.; Leahy, R.; Lewis, P.; Lewine, J.; George, J.; Singh, M.

    1991-12-31

    Neural activity in the brain produces weak dynamic electromagnetic fields that can be measured by an array of sensors. Using a spatio-temporal modeling framework, we have developed a new approach to localization of multiple neural sources. This approach is based on the MUSIC algorithm originally developed for estimating the direction of arrival of signals impinging on a sensor array. We present applications of this technique to magnetic field measurements of a phantom and of a human evoked somatosensory response. The results of the somatosensory localization are mapped onto the brain anatomy obtained from magnetic resonance images.

  19. Ghost imaging with thermal light by third-order correlation

    SciTech Connect

    Bai Yanfeng; Han Shensheng

    2007-10-15

    Ghost imaging with classical incoherent light by third-order correlation is investigated. We discuss the similarities and the differences between ghost imaging by third-order correlation and by second-order correlation, and analyze the effect from each correlation part of the third-order correlation function on the imaging process. It is shown that the third-order correlated imaging includes richer correlated imaging effects than the second-order correlated one, while the imaging information originates mainly from the correlation of the intensity fluctuations between the test detector and each reference detector, as does ghost imaging by second-order correlation.

  20. Visual image reconstruction from human brain activity: A modular decoding approach

    NASA Astrophysics Data System (ADS)

    Miyawaki, Yoichi; Uchida, Hajime; Yamashita, Okito; Sato, Masa-aki; Morito, Yusuke; Tanabe, Hiroki C.; Sadato, Norihiro; Kamitani, Yukiyasu

    2009-12-01

    Brain activity represents our perceptual experience. But the potential for reading out perceptual contents from human brain activity has not been fully explored. In this study, we demonstrate constraint-free reconstruction of visual images perceived by a subject, from the brain activity pattern. We reconstructed visual images by combining local image bases with multiple scales, whose contrasts were independently decoded from fMRI activity by automatically selecting relevant voxels and exploiting their correlated patterns. Binary-contrast, 10 x 10-patch images (2100 possible states), were accurately reconstructed without any image prior by measuring brain activity only for several hundred random images. The results suggest that our approach provides an effective means to read out complex perceptual states from brain activity while discovering information representation in multi-voxel patterns.

  1. Introduction to machine learning for brain imaging.

    PubMed

    Lemm, Steven; Blankertz, Benjamin; Dickhaus, Thorsten; Müller, Klaus-Robert

    2011-05-15

    Machine learning and pattern recognition algorithms have in the past years developed to become a working horse in brain imaging and the computational neurosciences, as they are instrumental for mining vast amounts of neural data of ever increasing measurement precision and detecting minuscule signals from an overwhelming noise floor. They provide the means to decode and characterize task relevant brain states and to distinguish them from non-informative brain signals. While undoubtedly this machinery has helped to gain novel biological insights, it also holds the danger of potential unintentional abuse. Ideally machine learning techniques should be usable for any non-expert, however, unfortunately they are typically not. Overfitting and other pitfalls may occur and lead to spurious and nonsensical interpretation. The goal of this review is therefore to provide an accessible and clear introduction to the strengths and also the inherent dangers of machine learning usage in the neurosciences. PMID:21172442

  2. Sub-Millimeter Imaging of Brain-Free Water for Rapid Volume Assessment in Atrophic Brains

    PubMed Central

    Gao, Katherine C.; Nair, Govind; Cortese, Irene C. M.; Koretsky, Alan; Reich, Daniel S.

    2016-01-01

    Introduction Cerebral atrophy occurs in healthy aging, and in disease processes such as multiple sclerosis (MS), it correlates with disability accumulation. Imaging measurements of brain atrophy are commonly based on tissue segmentation, which is susceptible to classification errors and inconsistencies. High-resolution imaging techniques with strong contrast between brain parenchyma and cerebrospinal fluid (CSF) might allow fully automated, rapid, threshold-based determination of the free water in the brain. We hypothesized that total brain-free-water (BFW) volume and BFW volume expressed as a normalized fraction of the intracranial volume (“BFW fraction”), determined from heavily T2-weighted images, would be useful surrogates for cerebral atrophy and therefore would correlate with clinical measures of disability in MS. Methods Whole brains of 83 MS cases and 7 healthy volunteers were imaged with a 4.7-min, heavily T2-weighted sequence on a 3T MRI scanner, acquiring 650-μm isotropic voxels. MS cases were clinically assessed on Expanded Disability Status Scale (EDSS), Scripps Neurological Rating Scale (SNRS), Paced Auditory Serial Addition Test (PASAT), 9-Hole Peg Test (9HP), Symbol Digit Modalities Test (SDMT), and 25-Foot Walk. Twelve of the MS cases were rescanned within an average of 1.8 months to assess reproducibility. Automated calculations of BFW volume and BFW fraction were correlated with clinical measures of disability upon adjusting for age and sex. Results were compared to data from T1-based approaches (SIENAX and Lesion-TOADS). Results and Discussion BFW volume was automatically derived from heavily T2-weighted images with no need for separate skull stripping. BFW volume and fraction had mean scan-rescan coefficients of variation of 1.5% and 1.9%, respectively, similar to the T1-based approaches tested here. BFW fraction more strongly correlated with clinical measures than T1-derived results. Among those clinical measures, modality

  3. Thermoacoustic tomography arising in brain imaging

    NASA Astrophysics Data System (ADS)

    Stefanov, Plamen; Uhlmann, Gunther

    2011-04-01

    We study the mathematical model of thermoacoustic and photoacoustic tomography when the sound speed has a jump across a smooth surface. This models the change of the sound speed in the skull when trying to image the human brain. We derive an explicit inversion formula in the form of a convergent Neumann series under the assumptions that all singularities from the support of the source reach the boundary.

  4. Photoacoustic brain imaging: from microscopic to macroscopic scales

    PubMed Central

    Yao, Junjie; Wang, Lihong V.

    2014-01-01

    Abstract. Human brain mapping has become one of the most exciting contemporary research areas, with major breakthroughs expected in the coming decades. Modern brain imaging techniques have allowed neuroscientists to gather a wealth of anatomic and functional information about the brain. Among these techniques, by virtue of its rich optical absorption contrast, high spatial and temporal resolutions, and deep penetration, photoacoustic tomography (PAT) has attracted more and more attention, and is playing an increasingly important role in brain studies. In particular, PAT complements other brain imaging modalities by providing high-resolution functional and metabolic imaging. More importantly, PAT’s unique scalability enables scrutinizing the brain at both microscopic and macroscopic scales, using the same imaging contrast. In this review, we present the state-of-the-art PAT techniques for brain imaging, summarize representative neuroscience applications, outline the technical challenges in translating PAT to human brain imaging, and envision potential technological deliverables. PMID:25401121

  5. [F-18]FDDNP microPET imaging correlates with brain Aβ burden in a transgenic rat model of Alzheimer disease: effects of aging, in vivo blockade, and anti-Aβ antibody treatment.

    PubMed

    Teng, Edmond; Kepe, Vladimir; Frautschy, Sally A; Liu, Jie; Satyamurthy, Nagichettiar; Yang, Fusheng; Chen, Ping-Ping; Cole, Graham B; Jones, Mychica R; Huang, Sung-Cheng; Flood, Dorothy G; Trusko, Stephen P; Small, Gary W; Cole, Gregory M; Barrio, Jorge R

    2011-09-01

    In vivo detection of Alzheimer's disease (AD) neuropathology in living patients using positron emission tomography (PET) in conjunction with high affinity molecular imaging probes for β-amyloid (Aβ) and tau has the potential to assist with early diagnosis, evaluation of disease progression, and assessment of therapeutic interventions. Animal models of AD are valuable for exploring the in vivo binding of these probes, particularly their selectivity for specific neuropathologies, but prior PET experiments in transgenic mice have yielded conflicting results. In this work, we utilized microPET imaging in a transgenic rat model of brain Aβ deposition to assess [F-18]FDDNP binding profiles in relation to age-associated accumulation of neuropathology. Cross-sectional and longitudinal imaging demonstrated that [F-18]FDDNP binding in the hippocampus and frontal cortex progressively increases from 9 to 18months of age and parallels age-associated Aβ accumulation. Specificity of in vivo [F-18]FDDNP binding was assessed by naproxen pretreatment, which reversibly blocked [F-18]FDDNP binding to Aβ aggregrates. Both [F-18]FDDNP microPET imaging and neuropathological analyses revealed decreased Aβ burden after intracranial anti-Aβ antibody administration. The combination of this non-invasive imaging method and robust animal model of brain Aβ accumulation allows for future longitudinal in vivo assessments of potential therapeutics for AD that target Aβ production, aggregation, and/or clearance. These results corroborate previous analyses of [F-18]FDDNP PET imaging in clinical populations.

  6. Brain activity associated with illusory correlations in animal phobia.

    PubMed

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear.

  7. Brain activity associated with illusory correlations in animal phobia.

    PubMed

    Wiemer, Julian; Schulz, Stefan M; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta; Pauli, Paul

    2015-07-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. PMID:25411452

  8. Brain activity associated with illusory correlations in animal phobia

    PubMed Central

    Wiemer, Julian; Schulz, Stefan M.; Reicherts, Philipp; Glotzbach-Schoon, Evelyn; Andreatta, Marta

    2015-01-01

    Anxiety disorder patients were repeatedly found to overestimate the association between disorder-relevant stimuli and aversive outcomes despite random contingencies. Such an illusory correlation (IC) might play an important role in the return of fear after extinction learning; yet, little is known about how this cognitive bias emerges in the brain. In a functional magnetic resonance imaging study, 18 female patients with spider phobia and 18 healthy controls were exposed to pictures of spiders, mushrooms and puppies followed randomly by either a painful electrical shock or nothing. In advance, both patients and healthy controls expected more shocks after spider pictures. Importantly, only patients with spider phobia continued to overestimate this association after the experiment. The strength of this IC was predicted by increased outcome aversiveness ratings and primary sensory motor cortex activity in response to the shock after spider pictures. Moreover, increased activation of the left dorsolateral prefrontal cortex (dlPFC) to spider pictures predicted the IC. These results support the theory that phobia-relevant stimuli amplify unpleasantness and sensory motor representations of aversive stimuli, which in turn may promote their overestimation. Hyper-activity in dlPFC possibly reflects a pre-occupation of executive resources with phobia-relevant stimuli, thus complicating the accurate monitoring of objective contingencies and the unlearning of fear. PMID:25411452

  9. New perspectives on using brain imaging to study CNS stimulants.

    PubMed

    Lukas, Scott E

    2014-12-01

    While the recent application of brain imaging to study CNS stimulants has offered new insights into the fundamental factors that contribute to their use and abuse, many gaps remain. Brain circuits that mediate pleasure, dependence, craving and relapse are anatomically, neurophysiologically and neurochemically distinct from one another, which has guided the search for correlates of stimulant-seeking and taking behavior. However, unlike other drugs of abuse, metrics for tolerance and physical dependence on stimulants are not obvious. The dopamine theory of stimulant abuse does not sufficiently explain this disorder as serotonergic, GABAergic and glutamagergic circuits are clearly involved in stimulant pharmacology and so tracking the source of the "addictive" processes must adopt a more multimodal, multidisciplinary approach. To this end, both anatomical and functional magnetic resonance imaging (MRI), MR spectroscopy (MRS) and positron emission tomography (PET) are complementary and have equally contributed to our understanding of how stimulants affect the brain and behavior. New vistas in this area include nanotechnology approaches to deliver small molecules to receptors and use MRI to resolve receptor dynamics. Anatomical and blood flow imaging has yielded data showing that cognitive enhancers might be useful adjuncts in treating CNS stimulant dependence, while MRS has opened opportunities to examine the brain's readiness to accept treatment as GABA tone normalizes after detoxification. A desired outcome of the above approaches is being able to offer evidence-based rationales for treatment approaches that can be implemented in a more broad geographic area, where access to brain imaging facilities may be limited. This article is part of the Special Issue entitled 'CNS Stimulants'.

  10. MR to CT registration of brains using image synthesis

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; Carass, Aaron; Jog, Amod; Prince, Jerry L.; Lee, Junghoon

    2014-03-01

    Computed tomography (CT) is the preferred imaging modality for patient dose calculation for radiation therapy. Magnetic resonance (MR) imaging (MRI) is used along with CT to identify brain structures due to its superior soft tissue contrast. Registration of MR and CT is necessary for accurate delineation of the tumor and other structures, and is critical in radiotherapy planning. Mutual information (MI) or its variants are typically used as a similarity metric to register MRI to CT. However, unlike CT, MRI intensity does not have an accepted calibrated intensity scale. Therefore, MI-based MR-CT registration may vary from scan to scan as MI depends on the joint histogram of the images. In this paper, we propose a fully automatic framework for MR-CT registration by synthesizing a synthetic CT image from MRI using a co-registered pair of MR and CT images as an atlas. Patches of the subject MRI are matched to the atlas and the synthetic CT patches are estimated in a probabilistic framework. The synthetic CT is registered to the original CT using a deformable registration and the computed deformation is applied to the MRI. In contrast to most existing methods, we do not need any manual intervention such as picking landmarks or regions of interests. The proposed method was validated on ten brain cancer patient cases, showing 25% improvement in MI and correlation between MR and CT images after registration compared to state-of-the-art registration methods.

  11. Reliability-guided digital image correlation for image deformation measurement

    SciTech Connect

    Pan Bing

    2009-03-10

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

  12. Brain correlates of aesthetic judgment of beauty.

    PubMed

    Jacobsen, Thomas; Schubotz, Ricarda I; Höfel, Lea; Cramon, D Yves V

    2006-01-01

    Functional MRI was used to investigate the neural correlates of aesthetic judgments of beauty of geometrical shapes. Participants performed evaluative aesthetic judgments (beautiful or not?) and descriptive symmetry judgments (symmetric or not?) on the same stimulus material. Symmetry was employed because aesthetic judgments are known to be often guided by criteria of symmetry. Novel, abstract graphic patterns were presented to minimize influences of attitudes or memory-related processes and to test effects of stimulus symmetry and complexity. Behavioral results confirmed the influence of stimulus symmetry and complexity on aesthetic judgments. Direct contrasts showed specific activations for aesthetic judgments in the frontomedian cortex (BA 9/10), bilateral prefrontal BA 45/47, and posterior cingulate, left temporal pole, and the temporoparietal junction. In contrast, symmetry judgments elicited specific activations in parietal and premotor areas subserving spatial processing. Interestingly, beautiful judgments enhanced BOLD signals not only in the frontomedian cortex, but also in the left intraparietal sulcus of the symmetry network. Moreover, stimulus complexity caused differential effects for each of the two judgment types. Findings indicate aesthetic judgments of beauty to rely on a network partially overlapping with that underlying evaluative judgments on social and moral cues and substantiate the significance of symmetry and complexity for our judgment of beauty.

  13. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test. PMID:26463968

  14. Multimodality Brain Tumor Imaging: MR Imaging, PET, and PET/MR Imaging.

    PubMed

    Fink, James R; Muzi, Mark; Peck, Melinda; Krohn, Kenneth A

    2015-10-01

    Standard MR imaging and CT are routinely used for anatomic diagnosis in brain tumors. Pretherapy planning and posttreatment response assessments rely heavily on gadolinium-enhanced MR imaging. Advanced MR imaging techniques and PET imaging offer physiologic, metabolic, or functional information about tumor biology that goes beyond the diagnostic yield of standard anatomic imaging. With the advent of combined PET/MR imaging scanners, we are entering an era wherein the relationships among different elements of tumor metabolism can be simultaneously explored through multimodality MR imaging and PET imaging. The purpose of this review is to provide a practical and clinically relevant overview of current anatomic and physiologic imaging of brain tumors as a foundation for further investigations, with a primary focus on MR imaging and PET techniques that have demonstrated utility in the current care of brain tumor patients.

  15. Analysis of dynamic brain imaging data.

    PubMed Central

    Mitra, P P; Pesaran, B

    1999-01-01

    Modern imaging techniques for probing brain function, including functional magnetic resonance imaging, intrinsic and extrinsic contrast optical imaging, and magnetoencephalography, generate large data sets with complex content. In this paper we develop appropriate techniques for analysis and visualization of such imaging data to separate the signal from the noise and characterize the signal. The techniques developed fall into the general category of multivariate time series analysis, and in particular we extensively use the multitaper framework of spectral analysis. We develop specific protocols for the analysis of fMRI, optical imaging, and MEG data, and illustrate the techniques by applications to real data sets generated by these imaging modalities. In general, the analysis protocols involve two distinct stages: "noise" characterization and suppression, and "signal" characterization and visualization. An important general conclusion of our study is the utility of a frequency-based representation, with short, moving analysis windows to account for nonstationarity in the data. Of particular note are 1) the development of a decomposition technique (space-frequency singular value decomposition) that is shown to be a useful means of characterizing the image data, and 2) the development of an algorithm, based on multitaper methods, for the removal of approximately periodic physiological artifacts arising from cardiac and respiratory sources. PMID:9929474

  16. Sex, ecology and the brain: evolutionary correlates of brain structure volumes in Tanganyikan cichlids.

    PubMed

    Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2010-12-17

    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes.

  17. Sex, Ecology and the Brain: Evolutionary Correlates of Brain Structure Volumes in Tanganyikan Cichlids

    PubMed Central

    Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2010-01-01

    Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes. PMID:21179407

  18. Middle cerebellar peduncles: Magnetic resonance imaging and pathophysiologic correlate

    PubMed Central

    Morales, Humberto; Tomsick, Thomas

    2015-01-01

    We describe common and less common diseases that can cause magnetic resonance signal abnormalities of middle cerebellar peduncles (MCP), offering a systematic approach correlating imaging findings with clinical clues and pathologic mechanisms. Myelin abnormalities, different types of edema or neurodegenerative processes, can cause areas of abnormal T2 signal, variable enhancement, and patterns of diffusivity of MCP. Pathologies such as demyelinating disorders or certain neurodegenerative entities (e.g., multiple system atrophy or fragile X-associated tremor-ataxia syndrome) appear to have predilection for MCP. Careful evaluation of concomitant imaging findings in the brain or brainstem; and focused correlation with key clinical findings such as immunosuppression for progressive multifocal leukoencephalopahty; hypertension, post-transplant status or high dose chemotherapy for posterior reversible encephalopathy; electrolyte disorders for myelinolysis or suspected toxic-drug related encephalopathy; would yield an appropriate and accurate differential diagnosis in the majority of cases. PMID:26751508

  19. Brain tumor resection guided by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Leblond, Frederic; Fontaine, Kathryn M.; Valdes, Pablo; Ji, Songbai; Pogue, Brian W.; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2009-02-01

    We present the methods that are being used in the scope of an on-going clinical trial designed to assess the usefulness of ALA-PpIX fluorescence imaging when used in conjunction with pre-operative MRI. The overall objective is to develop imaging-based neuronavigation approaches to aid in maximizing the completeness of brain tumor resection, thereby improving patient survival rate. In this paper we present the imaging methods that are used, emphasizing technical aspects relating to the fluorescence optical microscope, including initial validation approaches based on phantom and small-animal experiments. The surgical workflow is then described in detail based on a high-grade glioma resection we performed.

  20. Hierarchical Image Segmentation Using Correlation Clustering.

    PubMed

    Alush, Amir; Goldberger, Jacob

    2016-06-01

    In this paper, we apply efficient implementations of integer linear programming to the problem of image segmentation. The image is first grouped into superpixels and then local information is extracted for each pair of spatially adjacent superpixels. Given local scores on a map of several hundred superpixels, we use correlation clustering to find the global segmentation that is most consistent with the local evidence. We show that, although correlation clustering is known to be NP-hard, finding the exact global solution is still feasible by breaking the segmentation problem down into subproblems. Each such sub-problem can be viewed as an automatically detected image part. We can further accelerate the process by using the cutting-plane method, which provides a hierarchical structure of the segmentations. The efficiency and improved performance of the proposed method is compared to several state-of-the-art methods and demonstrated on several standard segmentation data sets.

  1. Spatial normalization of brain images and beyond.

    PubMed

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images.

  2. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  3. Spatial normalization of brain images and beyond.

    PubMed

    Mangin, J-F; Lebenberg, J; Lefranc, S; Labra, N; Auzias, G; Labit, M; Guevara, M; Mohlberg, H; Roca, P; Guevara, P; Dubois, J; Leroy, F; Dehaene-Lambertz, G; Cachia, A; Dickscheid, T; Coulon, O; Poupon, C; Rivière, D; Amunts, K; Sun, Z Y

    2016-10-01

    The deformable atlas paradigm has been at the core of computational anatomy during the last two decades. Spatial normalization is the variant endowing the atlas with a coordinate system used for voxel-based aggregation of images across subjects and studies. This framework has largely contributed to the success of brain mapping. Brain spatial normalization, however, is still ill-posed because of the complexity of the human brain architecture and the lack of architectural landmarks in standard morphological MRI. Multi-atlas strategies have been developed during the last decade to overcome some difficulties in the context of segmentation. A new generation of registration algorithms embedding architectural features inferred for instance from diffusion or functional MRI is on the verge to improve the architectural value of spatial normalization. A better understanding of the architectural meaning of the cortical folding pattern will lead to use some sulci as complementary constraints. Improving the architectural compliance of spatial normalization may impose to relax the diffeomorphic constraint usually underlying atlas warping. A two-level strategy could be designed: in each region, a dictionary of templates of incompatible folding patterns would be collected and matched in a way or another using rare architectural information, while individual subjects would be aligned using diffeomorphisms to the closest template. Manifold learning could help to aggregate subjects according to their morphology. Connectivity-based strategies could emerge as an alternative to deformation-based alignment leading to match the connectomes of the subjects rather than images. PMID:27344104

  4. Electroencephalographic imaging of higher brain function.

    PubMed Central

    Gevins, A; Smith, M E; McEvoy, L K; Leong, H; Le, J

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities. PMID:10466140

  5. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  6. Digital Image Correlation with Dynamic Subset Selection

    NASA Astrophysics Data System (ADS)

    Hassan, Ghulam Mubashar; MacNish, Cara; Dyskin, Arcady; Shufrin, Igor

    2016-09-01

    The quality of the surface pattern and selection of subset size play a critical role in achieving high accuracy in Digital Image Correlation (DIC). The subset size in DIC is normally selected by testing different subset sizes across the entire image, which is a laborious procedure. This also leads to the problem that the worst region of the surface pattern influences the performance of DIC across the entire image. In order to avoid these limitations, a Dynamic Subset Selection (DSS) algorithm is proposed in this paper to optimize the subset size for each point in an image before optimizing the correlation parameters. The proposed DSS algorithm uses the local pattern around the point of interest to calculate a parameter called the Intensity Variation Ratio (Λ), which is used to optimize the subset size. The performance of the DSS algorithm is analyzed using numerically generated images and is compared with the results of traditional DIC. Images obtained from laboratory experiments are also used to demonstrate the utility of the DSS algorithm. Results illustrate that the DSS algorithm provides a better alternative to subset size "guessing" and finds an appropriate subset size for each point of interest according to the local pattern.

  7. Diffuse Optical Tomography for Brain Imaging: Theory

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.

  8. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats.

    PubMed

    McBride, Devin W; Wang, Yuechun; Sherchan, Prativa; Tang, Jiping; Zhang, John H

    2015-09-01

    Brain edema is a major contributor to poor outcome and reduced quality of life after surgical brain injury (SBI). Although SBI pathophysiology is well-known, the correlation between cerebral edema and neurological deficits has not been thoroughly examined in the rat model of SBI. Thus, the purpose of this study was to determine the correlation between brain edema and deficits in standard sensorimotor neurobehavior tests for rats subjected to SBI. Sixty male Sprague-Dawley rats were subjected to either sham surgery or surgical brain injury via partial frontal lobectomy. All animals were tested for neurological deficits 24 post-SBI and fourteen were also tested 72 h after surgery using seven common behavior tests: modified Garcia neuroscore (Neuroscore), beam walking, corner turn test, forelimb placement test, adhesive removal test, beam balance test, and foot fault test. After assessing the functional outcome, animals were euthanized for brain water content measurement. Surgical brain injury resulted in significantly elevated frontal lobe brain water content 24 and 72 h after surgery compared to that of sham animals. In all behavior tests, significance was observed between sham and SBI animals. However, a correlation between brain water content and functional outcome was observed for all tests except Neuroscore. The selection of behavior tests is critical to determine the effectiveness of therapeutics. Based on this study's results, we recommend using beam walking, the corner turn test, the beam balance test, and the foot fault test since correlations with brain water content were observed at both 24 and 72 h post-SBI. PMID:25975171

  9. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders.

    PubMed

    Burhan, Amer M; Marlatt, Nicole M; Palaniyappan, Lena; Anazodo, Udunna C; Prato, Frank S

    2015-01-01

    This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder. PMID:26854172

  10. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders

    PubMed Central

    Burhan, Amer M.; Marlatt, Nicole M.; Palaniyappan, Lena; Anazodo, Udunna C.; Prato, Frank S.

    2015-01-01

    This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder. PMID:26854172

  11. Quantitative magnetization transfer imaging of human brain at 7 T☆

    PubMed Central

    Dortch, Richard D.; Moore, Jay; Li, Ke; Jankiewicz, Marcin; Gochberg, Daniel F.; Hirtle, Jane A.; Gore, John C.; Smith, Seth A.

    2013-01-01

    Quantitative magnetization transfer (qMT) imaging yields indices describing the interactions between free water protons and immobile macromolecular protons. These indices include the macromolecular to free pool size ratio (PSR), which has been shown to be correlated with myelin content in white matter. Because of the long scan times required for whole-brain imaging (≈20–30 min), qMT studies of the human brain have not found widespread application. Herein, we investigated whether the increased signal-to-noise ratio available at 7.0 T could be used to reduce qMT scan times. More specifically, we developed a selective inversion recovery (SIR) qMT imaging protocol with a i) novel transmit radiofrequency (B1+) and static field (B0) insensitive inversion pulse, ii) turbo field-echo readout, and iii) reduced TR. In vivo qMT data were obtained in the brains of healthy volunteers at 7.0 T using the resulting protocol (scan time≈40 s/slice, resolution=2×2×3 mm3). Reliability was also assessed in repeated acquisitions. The results of this study demonstrate that SIR qMT imaging can be reliably performed within the radiofrequency power restrictions present at 7.0 T, even in the presence of large B1+ and B0 inhomogeneities. Consistent with qMT studies at lower field strengths, the observed PSR values were higher in white matter (mean±SD=17.6±1.3%) relative to gray matter (10.3±1.6%) at 7.0 T. In addition, regional variations in PSR were observed in white matter. Together, these results suggest that qMT measurements are feasible at 7.0 T and may eventually allow for the high-resolution assessment of changes in composition throughout the normal and diseased human brain in vivo. PMID:22940589

  12. The psychopath magnetized: insights from brain imaging

    PubMed Central

    Anderson, Nathaniel E.; Kiehl, Kent A.

    2014-01-01

    Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and posterior cingulate and adjacent (para)limbic structures. We discuss these findings in the context of extant theories of psychopathy and highlight the potential legal and policy implications of this body of work. PMID:22177031

  13. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    PubMed

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role. PMID:27344937

  14. MR brain image analysis in dementia: From quantitative imaging biomarkers to ageing brain models and imaging genetics.

    PubMed

    Niessen, Wiro J

    2016-10-01

    MR brain image analysis has constantly been a hot topic research area in medical image analysis over the past two decades. In this article, it is discussed how the field developed from the construction of tools for automatic quantification of brain morphology, function, connectivity and pathology, to creating models of the ageing brain in normal ageing and disease, and tools for integrated analysis of imaging and genetic data. The current and future role of the field in improved understanding of the development of neurodegenerative disease is discussed, and its potential for aiding in early and differential diagnosis and prognosis of different types of dementia. For the latter, the use of reference imaging data and reference models derived from large clinical and population imaging studies, and the application of machine learning techniques on these reference data, are expected to play a key role.

  15. Olfaction evaluation and correlation with brain atrophy in Bardet-Biedl syndrome.

    PubMed

    Braun, J-J; Noblet, V; Durand, M; Scheidecker, S; Zinetti-Bertschy, A; Foucher, J; Marion, V; Muller, J; Riehm, S; Dollfus, H; Kremer, S

    2014-12-01

    Bardet-Biedl syndrome (BBS) is a well-recognized ciliopathy characterized by cardinal features namely: early onset retinitis pigmentosa, polydactyly, obesity, hypogonadism, renal and cognitive impairment. Recently, disorders of olfaction (anosmia, hyposmia) have been also described in BBS patients. Moreover, morphological brain anomalies have been reported and prompt for further investigations to determine whether they are primary or secondary to peripheral organ involvement (i.e. visual or olfactory neuronal tissue). The objective of this article is to evaluate olfactory disorders in BBS patients and to investigate putative correlation with morphological cerebral anomalies. To this end, 20 BBS patients were recruited and evaluated for olfaction using the University of Pennsylvania Smell Identification Test (UPSIT). All of them underwent a structural magnetic resonance imaging (MRI) scan. We first investigated brain morphological differences between BBS subjects and 14 healthy volunteers. Then, we showed objective olfaction disorders in BBS patients and highlight correlation between gray matter volume reduction and olfaction dysfunction in several brain areas.

  16. Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging.

    PubMed

    Costanzo, Michelle E; Chou, Yi-Yu; Leaman, Suzanne; Pham, Dzung L; Keyser, David; Nathan, Dominic E; Coughlin, Mary; Rapp, Paul; Roy, Michael J

    2014-08-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) may share common symptom and neuropsychological profiles in military service members (SMs) following deployment; while a connection between the two conditions is plausible, the relationship between them has been difficult to discern. The intent of this report is to enhance our understanding of the relationship between findings on structural and functional brain imaging and symptoms of PTSD. Within a cohort of SMs who did not meet criteria for PTSD but were willing to complete a comprehensive assessment within 2 months of their return from combat deployment, we conducted a nested case-control analysis comparing those with combat-related mTBI to age/gender-matched controls with diffusion tensor imaging, resting state functional magnetic resonance imaging and a range of psychological measures. We report degraded white matter integrity in those with a history of combat mTBI, and a positive correlation between the white matter microstructure and default mode network (DMN) connectivity. Higher clinician-administered and self-reported subthreshold PTSD symptoms were reported in those with combat mTBI. Our findings offer a potential mechanism through which mTBI may alter brain function, and in turn, contribute to PTSD symptoms.

  17. Structural brain correlates of unconstrained motor activity in people with schizophrenia.

    PubMed

    Farrow, Tom F D; Hunter, Michael D; Wilkinson, Iain D; Green, Russell D J; Spence, Sean A

    2005-11-01

    Avolition affects quality of life in chronic schizophrenia. We investigated the relationship between unconstrained motor activity and the volume of key executive brain regions in 16 male patients with schizophrenia. Wristworn actigraphy monitors were used to record motor activity over a 20 h period. Structural magnetic resonance imaging brain scans were parcellated and individual volumes for anterior cingulate cortex and dorsolateral prefrontal cortex extracted. Patients'total activity was positively correlated with volume of left anterior cingulate cortex. These data suggest that the volume of specific executive structures may affect (quantifiable) motor behaviours, having further implications for models of the 'will' and avolition.

  18. Neurolight -astonishing advances in brain imaging.

    PubMed

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining. PMID:24730999

  19. Neurolight -astonishing advances in brain imaging.

    PubMed

    Rojczyk-Gołębiewska, Ewa; Pałasz, Artur; Worthington, John J; Markowski, Grzegorz; Wiaderkiewicz, Ryszard

    2015-02-01

    In recent years, significant advances in basic neuroanatomical studies have taken place. Moreover, such classical, clinically-oriented human brain imaging methods such as MRI, PET and DTI have been applied to small laboratory animals allowing improvement in current experimental neuroscience. Contemporary structural neurobiology also uses various technologies based on fluorescent proteins. One of these is optogenetics, which integrates physics, genetics and bioengineering to enable temporal precise control of electrical activity of specific neurons. Another important challenge in the field is the accurate imaging of complicated neural networks. To address this problem, three-dimensional reconstruction techniques and retrograde labeling with modified viruses has been developed. However, a revolutionary step was the invention of the "Brainbow" system, utilizing gene constructs including the sequences of fluorescent proteins and the usage of Cre recombinase to create dozens of colour combinations, enabling visualization of neurons and their connections in extremely high resolution. Furthermore, the newly- introduced CLARITY method should make it possible to visualize three-dimensionally the structure of translucent brain tissue using the hydrogel polymeric network. This original technique is a big advance in neuroscience creating novel viewpoints completely different than standard glass slide immunostaining.

  20. Demosaicing images from colour cameras for digital image correlation

    NASA Astrophysics Data System (ADS)

    Forsey, A.; Gungor, S.

    2016-11-01

    Digital image correlation is not the intended use for consumer colour cameras, but with care they can be successfully employed in such a role. The main obstacle is the sparsely sampled colour data caused by the use of a colour filter array (CFA) to separate the colour channels. It is shown that the method used to convert consumer camera raw files into a monochrome image suitable for digital image correlation (DIC) can have a significant effect on the DIC output. A number of widely available software packages and two in-house methods are evaluated in terms of their performance when used with DIC. Using an in-plane rotating disc to produce a highly constrained displacement field, it was found that the bicubic spline based in-house demosaicing method outperformed the other methods in terms of accuracy and aliasing suppression.

  1. A miniature acousto-optic image correlator

    SciTech Connect

    Molley, P.A.; Sweatt, W.C.; Strong, D.S.

    1991-01-01

    An acousto-optic (AO) image correlator architecture will be presented that minimizes the overall system size while maintaining excellent image quality for large input scenes. The correlator can accommodate grayscale input scenes with dimensions of 512 {times} 244 pixels and grayscale reference templates of size 64 {times} 64 pixels. The size of the optical system, however is less than ten cubic inches, 1in. {times} 1in. {times} 9in. This design incorporates a surface emitting laser diode array that has a center-to-center spacing of the laser elements matched to the row spacing on the CCD. Furthermore, the space-bandwidth and center frequency of the AO cell are chosen to match the length of the input image information in the cell to the width of the CCD. These two design decisions allow close to one-to-one imaging through the entire optical system producing the shortest possible path length. The optics were then designed with a goal of producing nearly diffraction-limited quality. 8 refs., 3 figs., 1 tab.

  2. Uncovering cortico-striatal correlates of cognitive fatigue in pediatric acquired brain disorder: Evidence from traumatic brain injury.

    PubMed

    Ryan, Nicholas P; Beauchamp, Miriam H; Beare, Richard; Coleman, Lee; Ditchfield, Michael; Kean, Michael; Silk, Timothy J; Genc, Sila; Catroppa, Cathy; Anderson, Vicki A

    2016-10-01

    Cognitive fatigue is among the most profound and disabling sequelae of pediatric acquired brain disorders, however the neural correlates of these symptoms in children remains unexplored. One hypothesis suggests that cognitive fatigue may arise from dysfunction of cortico-striatal networks (CSNs) implicated in effort output and outcome valuation. Using pediatric traumatic brain injury (TBI) as a model, this study investigated (i) the sub-acute effect of brain injury on CSN volume; and (ii) potential relationships between cognitive fatigue and sub-acute volumetric abnormalities of the CSN. 3D T1 weighted magnetic resonance imaging sequences were acquired sub-acutely in 137 children (TBI: n = 103; typically developing - TD children: n = 34). 67 of the original 137 participants (49%) completed measures of cognitive fatigue and psychological functioning at 24-months post-injury. Results showed that compared to TD controls and children with milder injuries, children with severe TBI showed volumetric reductions in the overall CSN package, as well as regional gray matter volumetric change in cortical and subcortical regions of the CSN. Significantly greater cognitive fatigue in the TBI patients was associated with volumetric reductions in the CSN and its putative hub regions, even after adjusting for injury severity, socioeconomic status (SES) and depression. In the first study to evaluate prospective neuroanatomical correlates of cognitive fatigue in pediatric acquired brain disorder, these findings suggest that post-injury cognitive fatigue is related to structural abnormalities of cortico-striatal brain networks implicated in effort output and outcome valuation. Morphometric magnetic resonance imaging (MRI) may have potential to unlock early prognostic markers that may assist to identify children at elevated risk for cognitive fatigue post-TBI.

  3. Cluster-based statistics for brain connectivity in correlation with behavioral measures.

    PubMed

    Han, Cheol E; Yoo, Sang Wook; Seo, Sang Won; Na, Duk L; Seong, Joon-Kyung

    2013-01-01

    Graph theoretical approaches have successfully revealed abnormality in brain connectivity, in particular, for contrasting patients from healthy controls. Besides the group comparison analysis, a correlational study is also challenging. In studies with patients, for example, finding brain connections that indeed deepen specific symptoms is interesting. The correlational study is also beneficial since it does not require controls, which are often difficult to find, especially for old-age patients with cognitive impairment where controls could also have cognitive deficits due to normal ageing. However, one of the major difficulties in such correlational studies is too conservative multiple comparison correction. In this paper, we propose a novel method for identifying brain connections that are correlated with a specific cognitive behavior by employing cluster-based statistics, which is less conservative than other methods, such as Bonferroni correction, false discovery rate procedure, and extreme statistics. Our method is based on the insight that multiple brain connections, rather than a single connection, are responsible for abnormal behaviors. Given brain connectivity data, we first compute a partial correlation coefficient between every edge and the behavioral measure. Then we group together neighboring connections with strong correlation into clusters and calculate their maximum sizes. This procedure is repeated for randomly permuted assignments of behavioral measures. Significance levels of the identified sub-networks are estimated from the null distribution of the cluster sizes. This method is independent of network construction methods: either structural or functional network can be used in association with any behavioral measures. We further demonstrated the efficacy of our method using patients with subcortical vascular cognitive impairment. We identified sub-networks that are correlated with the disease severity by exploiting diffusion tensor imaging

  4. Compact and mobile high resolution PET brain imager

    DOEpatents

    Majewski, Stanislaw; Proffitt, James

    2011-02-08

    A brain imager includes a compact ring-like static PET imager mounted in a helmet-like structure. When attached to a patient's head, the helmet-like brain imager maintains the relative head-to-imager geometry fixed through the whole imaging procedure. The brain imaging helmet contains radiation sensors and minimal front-end electronics. A flexible mechanical suspension/harness system supports the weight of the helmet thereby allowing for patient to have limited movements of the head during imaging scans. The compact ring-like PET imager enables very high resolution imaging of neurological brain functions, cancer, and effects of trauma using a rather simple mobile scanner with limited space needs for use and storage.

  5. Infrared Imaging System for Studying Brain Function

    NASA Technical Reports Server (NTRS)

    Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath

    2007-01-01

    A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be

  6. Functional connectivity of the rodent brain using optical imaging

    NASA Astrophysics Data System (ADS)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis

  7. Positron emission tomography radiopharmaceuticals for imaging brain Beta-amyloid.

    PubMed

    Vallabhajosula, Shankar

    2011-07-01

    Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.

  8. Cluster imaging of multi-brain networks (CIMBN): a general framework for hyperscanning and modeling a group of interacting brains

    PubMed Central

    Duan, Lian; Dai, Rui-Na; Xiao, Xiang; Sun, Pei-Pei; Li, Zheng; Zhu, Chao-Zhe

    2015-01-01

    Studying the neural basis of human social interactions is a key topic in the field of social neuroscience. Brain imaging studies in this field usually focus on the neural correlates of the social interactions between two participants. However, as the participant number further increases, even by a small amount, great difficulties raise. One challenge is how to concurrently scan all the interacting brains with high ecological validity, especially for a large number of participants. The other challenge is how to effectively model the complex group interaction behaviors emerging from the intricate neural information exchange among a group of socially organized people. Confronting these challenges, we propose a new approach called “Cluster Imaging of Multi-brain Networks” (CIMBN). CIMBN consists of two parts. The first part is a cluster imaging technique with high ecological validity based on multiple functional near-infrared spectroscopy (fNIRS) systems. Using this technique, we can easily extend the simultaneous imaging capacity of social neuroscience studies up to dozens of participants. The second part of CIMBN is a multi-brain network (MBN) modeling method based on graph theory. By taking each brain as a network node and the relationship between any two brains as a network edge, one can construct a network model for a group of interacting brains. The emergent group social behaviors can then be studied using the network's properties, such as its topological structure and information exchange efficiency. Although there is still much work to do, as a general framework for hyperscanning and modeling a group of interacting brains, CIMBN can provide new insights into the neural correlates of group social interactions, and advance social neuroscience and social psychology. PMID:26283906

  9. Brain activity correlates with emotional perception induced by dynamic avatars.

    PubMed

    Goldberg, Hagar; Christensen, Andrea; Flash, Tamar; Giese, Martin A; Malach, Rafael

    2015-11-15

    An accurate judgment of the emotional state of others is a prerequisite for successful social interaction and hence survival. Thus, it is not surprising that we are highly skilled at recognizing the emotions of others. Here we aimed to examine the neuronal correlates of emotion recognition from gait. To this end we created highly controlled dynamic body-movement stimuli based on real human motion-capture data (Roether et al., 2009). These animated avatars displayed gait in four emotional (happy, angry, fearful, and sad) and speed-matched neutral styles. For each emotional gait and its equivalent neutral gait, avatars were displayed at five morphing levels between the two. Subjects underwent fMRI scanning while classifying the emotions and the emotional intensity levels expressed by the avatars. Our results revealed robust brain selectivity to emotional compared to neutral gait stimuli in brain regions which are involved in emotion and biological motion processing, such as the extrastriate body area (EBA), fusiform body area (FBA), superior temporal sulcus (STS), and the amygdala (AMG). Brain activity in the amygdala reflected emotional awareness: for visually identical stimuli it showed amplified stronger response when the stimulus was perceived as emotional. Notably, in avatars gradually morphed along an emotional expression axis there was a parametric correlation between amygdala activity and emotional intensity. This study extends the mapping of emotional decoding in the human brain to the domain of highly controlled dynamic biological motion. Our results highlight an extensive level of brain processing of emotional information related to body language, which relies mostly on body kinematics. PMID:26220746

  10. Imaging the D″ reflector with noise correlations

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Thomas, Christine; Campillo, Michel; Pedersen, Helle A.

    2015-01-01

    lowermost mantle of the Earth is characterized by seismic structures that range from a few tens to thousands of kilometers. At present, it is difficult to test hypotheses put forward to explain seismic observations due to poor seismic coverage, as particular earthquake-station geometries are needed. We demonstrate here that seismic noise correlations can be used to robustly image deep-mantle reflections with larger stacked amplitudes of reflected waves compared with earthquake data. In a comparison between noise and earthquake data, we find that the arrival times and the slowness of reflected waves, both sampling a region beneath Siberia, agree with those for a reflector at 2530 km depth, and the small amplitude reflections are sufficiently clear in the noise correlations to compare them reliably with synthetic data. Our data open exciting prospects for illuminating new target zones in the deep mantle to further constrain the dynamics and mineralogy of the deep Earth.

  11. Tl-201 brain scans: A comparative study with pathologic correlation

    SciTech Connect

    Kaplan, W.D.; Takvorian, R.W.; Morris, J.H.; Rumbaugh, C.L.; Atkins, H.L.

    1985-05-01

    Since the clinical expression of brain tumors is dependent on anatomic location, following the response to therapy can be difficult. In patients (pts.) with gliomas who were stable or improving, the authors noted a disparity between an improving clinical status and stable CT scans. To elucidate this finding, 29 pts. were sequentially scanned with 2.0 mCi Tl-201 (at 5-30 min), 20 mCi Tc-99m glucoheptonate (GH) (at 3-4 h) and 7-10 mCi Ga-67 (at 48-72 h). A total of 198 images (300K each) were obtained. A set of 3 scans at a midpoint in follow-up was selected for analysis. Seven pts. who died had neuropathologic data available; brain sections were reconstructed to match radionuclide (RN) views without knowledge of image results. The authors conclude that Tl-201 scans; more accurately reflect viable tumor burden than other RN studies of brain tumors; are not effected by concommitant steroid administration; can be performed immediately following tracer administration; and compliment the anatomic data obtained from CT scans.

  12. Correlation-Based Image Reconstruction Methods for Magnetic Particle Imaging

    NASA Astrophysics Data System (ADS)

    Ishihara, Yasutoshi; Kuwabara, Tsuyoshi; Honma, Takumi; Nakagawa, Yohei

    Magnetic particle imaging (MPI), in which the nonlinear interaction between internally administered magnetic nanoparticles (MNPs) and electromagnetic waves irradiated from outside of the body is utilized, has attracted attention for its potential to achieve early diagnosis of diseases such as cancer. In MPI, the local magnetic field distribution is scanned, and the magnetization signal from MNPs within a selected region is detected. However, the signal sensitivity and image resolution are degraded by interference from magnetization signals generated by MNPs outside of the selected region, mainly because of imperfections (limited gradients) in the local magnetic field distribution. Here, we propose new methods based on correlation information between the observed signal and the system function—defined as the interaction between the magnetic field distribution and the magnetizing properties of MNPs. We performed numerical analyses and found that, although the images were somewhat blurred, image artifacts could be significantly reduced and accurate images could be reconstructed without the inverse-matrix operation used in conventional image reconstruction methods.

  13. Partial correlation analyses of global diffusion tensor imaging-derived metrics in glioblastoma multiforme: Pilot study

    PubMed Central

    Cortez-Conradis, David; Rios, Camilo; Moreno-Jimenez, Sergio; Roldan-Valadez, Ernesto

    2015-01-01

    AIM: To determine existing correlates among diffusion tensor imaging (DTI)-derived metrics in healthy brains and brains with glioblastoma multiforme (GBM). METHODS: Case-control study using DTI data from brain magnetic resonance imaging of 34 controls (mean, 41.47; SD, ± 21.94 years; range, 21-80 years) and 27 patients with GBM (mean, SD; 48.41 ± 15.18 years; range, 18-78 years). Image postprocessing using FSL software calculated eleven tensor metrics: fractional (FA) and relative anisotropy; pure isotropic (p) and anisotropic diffusions (q), total magnitude of diffusion (L); linear (Cl), planar (Cp) and spherical tensors (Cs); mean (MD), axial (AD) and radial diffusivities (RD). Partial correlation analyses (controlling the effect of age and gender) and multivariate Mancova were performed. RESULTS: There was a normal distribution for all metrics. Comparing healthy brains vs brains with GBM, there were significant very strong bivariate correlations only depicted in GBM: [FA↔Cl (+)], [FA↔q (+)], [p↔AD (+)], [AD↔MD (+)], and [MD↔RD (+)]. Among 56 pairs of bivariate correlations, only seven were significantly different. The diagnosis variable depicted a main effect [F-value (11, 23) = 11.842, P ≤ 0.001], with partial eta squared = 0.850, meaning a large effect size; age showed a similar result. The age also had a significant influence as a covariate [F (11, 23) = 10.523, P < 0.001], with a large effect size (partial eta squared = 0.834). CONCLUSION: DTI-derived metrics depict significant differences between healthy brains and brains with GBM, with specific magnitudes and correlations. This study provides reference data and makes a contribution to decrease the underlying empiricism in the use of DTI parameters in brain imaging. PMID:26644826

  14. Whole Mouse Brain Image Reconstruction from Serial Coronal Sections Using FIJI (ImageJ).

    PubMed

    Paletzki, Ronald; Gerfen, Charles R

    2015-10-01

    Whole-brain reconstruction of the mouse enables comprehensive analysis of the distribution of neurochemical markers, the distribution of anterogradely labeled axonal projections or retrogradely labeled neurons projecting to a specific brain site, or the distribution of neurons displaying activity-related markers in behavioral paradigms. This unit describes a method to produce whole-brain reconstruction image sets from coronal brain sections with up to four fluorescent markers using the freely available image-processing program FIJI (ImageJ).

  15. Structural Brain Correlates Associated with Professional Handball Playing

    PubMed Central

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  16. Quantifying the reliability of image replication studies: the image intra-class correlation coefficient (I2C2)

    PubMed Central

    Shou, H.; Eloyan, A.; Lee, S.; Zipunnikov, V.; Crainiceanu, A.N.; Nebel, M.B.; Caffo, B.; Lindquist, M.A.; Crainiceanu, C.M.

    2013-01-01

    This manuscript proposes the image intra-class correlation (I2C2) coefficient as a global measure of reliability for imaging studies. The I2C2 generalizes the classic intra-class correlation (ICC) coefficient to the case when the data of interest are images, thereby providing a measure that is both intuitive and convenient. Drawing a connection with classical measurement error models for replication experiments, the I2C2 can be computed quickly, even in high-dimensional imaging studies. A nonparametric bootstrap procedure is introduced to quantify the variability of the I2C2 estimator. Furthermore, a Monte Carlo permutation is utilized to test reproducibility versus a zero I2C2, representing complete lack of reproducibility. Methodologies are applied to three replication studies arising from different brain imaging modalities and settings: Regional Analysis of VolumEs in Normalized Space (RAVENS) imaging for characterizing brain morphology, seed-voxel brain activation maps based on resting state functional MRI (fMRI), and fractional anisotropy (FA) in an area surrounding the corpus callosum via diffusion tensor imaging (DTI). Software and data are provided to ensure rapid dissemination of methods. Resting state functional MRI (fMRI) brain activation maps are found to have low reliability ranging between 0.2 to 0.4. PMID:24022791

  17. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  18. Phase correlation imaging of unlabeled cell dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-09-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function.

  19. Phase correlation imaging of unlabeled cell dynamics.

    PubMed

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U; Popescu, Gabriel

    2016-01-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function. PMID:27615512

  20. Phase correlation imaging of unlabeled cell dynamics

    PubMed Central

    Ma, Lihong; Rajshekhar, Gannavarpu; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa; Chakraborty, Arindam; Iyer, Rajashekar; Prasanth, Supriya; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-01-01

    We present phase correlation imaging (PCI) as a novel approach to study cell dynamics in a spatially-resolved manner. PCI relies on quantitative phase imaging time-lapse data and, as such, functions in label-free mode, without the limitations associated with exogenous markers. The correlation time map outputted in PCI informs on the dynamics of the intracellular mass transport. Specifically, we show that PCI can extract quantitatively the diffusion coefficient map associated with live cells, as well as standard Brownian particles. Due to its high sensitivity to mass transport, PCI can be applied to studying the integrity of actin polymerization dynamics. Our results indicate that the cyto-D treatment blocking the actin polymerization has a dominant effect at the large spatial scales, in the region surrounding the cell. We found that PCI can distinguish between senescent and quiescent cells, which is extremely difficult without using specific markers currently. We anticipate that PCI will be used alongside established, fluorescence-based techniques to enable valuable new studies of cell function. PMID:27615512

  1. Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals.

    PubMed

    Taki, Yasuyuki; Thyreau, Benjamin; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Kawashima, Ryuta; Fukuda, Hiroshi

    2011-01-01

    To determine the relationship between age and gray matter structure and how interactions between gender and hemisphere impact this relationship, we examined correlations between global or regional gray matter volume and age, including interactions of gender and hemisphere, using a general linear model with voxel-based and region-of-interest analyses. Brain magnetic resonance images were collected from 1460 healthy individuals aged 20-69 years; the images were linearly normalized and segmented and restored to native space for analysis of global gray matter volume. Linearly normalized images were then non-linearly normalized and smoothed for analysis of regional gray matter volume. Analysis of global gray matter volume revealed a significant negative correlation between gray matter ratio (gray matter volume divided by intracranial volume) and age in both genders, and a significant interaction effect of age × gender on the gray matter ratio. In analyzing regional gray matter volume, the gray matter volume of all regions showed significant main effects of age, and most regions, with the exception of several including the inferior parietal lobule, showed a significant age × gender interaction. Additionally, the inferior temporal gyrus showed a significant age × gender × hemisphere interaction. No regional volumes showed significant age × hemisphere interactions. Our study may contribute to clarifying the mechanism(s) of normal brain aging in each brain region.

  2. [Correlations between risk gene variants for schizophrenia and brain structure anomalies].

    PubMed

    Nickl-Jockschat, T; Rietschel, M; Kircher, T

    2009-01-01

    The specific etiologies of schizophrenia are largely unknown. Genetic predisposition constitutes an important, however, not exclusive risk factor for the development of schizophrenia. In recent years, a number of candidate genes were identified and have been consistently replicated. Magnetic resonance imaging studies have characterized structural changes in brain morphology, such as ventricular enlargement or volume reduction of the medial temporal structures and the superior temporal gyrus. Several studies have found correlations between gene variants and changes of brain morphology in schizophrenia patients and healthy controls. In this review, publications examining correlations of schizophrenia susceptibility gene polymorphisms and structural brain anomalies in patients and healthy controls are described. An overview and a critical reflection of the current research are outlined. The results of genome-wide studies will soon provide a multitude of additional schizophrenia susceptibility genes. If and to what extent these genes exert an influence on the brain structure in the healthy and the diseased, can be clarified by gene structure correlations. Given the many possible gene-gene and gene-environment interactions, most variants will probably not show simple interactions with sizable effects.

  3. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  4. Intersubject coregistration of brain images: a phantom study

    NASA Astrophysics Data System (ADS)

    Rusinek, Henry; Tsui, Wai-Hon; Sanfilipo, Michael; Wolkin, Adam

    1998-06-01

    Inter-subject coregistration is a powerful neuroimaging technique that enables comparison and detection of morphological differences across groups of subjects. The present study uses digital phantoms to evaluate errors in two widely employed approaches to inter-subject coregistration of structural MR images of the brain: the manual step-wise approach and the automated method provided with the software package SPM96. Phantoms were constructed by deforming a high resolution T1-weighted MR image in which we have embedded 12 landmarks. For the manual method the accuracy ranged from 0.8 mm in quadrigeminal plate to 2.4 mm in superior central sulcus and occipital lobe. The average error was 1.5 mm. For the automated SPM96 method and the 9 parameter model, the accuracy ranged from 0.8 mm to 2.1 mm and averaged 1.1 mm. Error of the manual method correlated strongly with the distance from the center of the image (r equals 0.77, slope equals .020, p equals .003). The linear correlation of the error obtained with the automated method with the distance was poor (r equals 0.39, slope equals .008, p > 0.2). The results suggest that the inferior performance of the manual method is due to its step-wise approach and to a relatively large rotational error.

  5. Brain correlates of sentence translation in Finnish-Norwegian bilinguals.

    PubMed

    Lehtonen, Minna H; Laine, Matti; Niemi, Jussi; Thomsen, Tormod; Vorobyev, Victor A; Hugdahl, Kenneth

    2005-04-25

    We measured brain activation with functional magnetic resonance imaging (fMRI) while Finnish-Norwegian bilinguals silently translated sentences from Finnish into Norwegian and decided whether a later presented probe sentence was a correct translation of the original sentence. The control task included silent sentence reading and probe sentence decision within a single language, Finnish. The translation minus control task contrast activated the left inferior frontal gyrus (Brodmann's area 47) and the left basal ganglia. The left inferior frontal activation appears to be related to active semantic retrieval and the basal ganglia activation to a general action control function that works by suppressing competing responses.

  6. Imaging emotional brain functions: conceptual and methodological issues.

    PubMed

    Peper, Martin

    2006-06-01

    This article reviews the psychophysiological and brain imaging literature on emotional brain function from a methodological point of view. The difficulties in defining, operationalising and measuring emotional activation and, in particular, aversive learning will be considered. Emotion is a response of the organism during an episode of major significance and involves physiological activation, motivational, perceptual, evaluative and learning processes, motor expression, action tendencies and monitoring/subjective feelings. Despite the advances in assessing the physiological correlates of emotional perception and learning processes, a critical appraisal shows that functional neuroimaging approaches encounter methodological difficulties regarding measurement precision (e.g., response scaling and reproducibility) and validity (e.g., response specificity, generalisation to other paradigms, subjects or settings). Since emotional processes are not only the result of localised but also of widely distributed activation, a more representative model of assessment is needed that systematically relates the hierarchy of high- and low-level emotion constructs with the corresponding patterns of activity and functional connectivity of the brain.

  7. Correlations between brain structures and study time at home in healthy children: a longitudinal analysis

    PubMed Central

    Asano, Michiko; Taki, Yasuyuki; Hashizume, Hiroshi; Takeuchi, Hikaru; Thyreau, Benjamin; Sassa, Yuko; Asano, Kohei; Kawashima, Ryuta

    2014-01-01

    Introduction Like sleeping and eating habits, the study habits adopted by children when they are at home are important contributors to lifestyle and they affect cognitive ability. It has recently been reported that sleeping and eating habits change the brain structure of children. However, no research on the effect of study habits at home on the brain structure of children has been conducted thus far. We investigated the effects of study habits at home on the brain structures of healthy children by examining correlations between study time at home and changes in brain structure over the course of 3 years. Methods We used the brain magnetic resonance images of 229 healthy children aged 5.6–18.4 years and computed the changes (time 2–time 1) in regional gray matter and white matter volume (rWMV) using voxel-based morphometry. Whole-brain multiple regression analysis revealed a significant positive correlation between study time at home and changes in rWMV in the right superior frontal gyrus (SFG). Behaviorally, we found a significant positive correlation between study time at home and change in the verbal comprehension index (VCI), one of the subscales of the Wechsler Intelligence Scale for Children–third edition (WISC–III). Results and Conclusions Given that the SFG is involved in memory control and that the VCI measures abilities related to vocabulary, our results indicate that greater SFG involvement in the memorization component of longer study times may result in greater increases in the number of axons and more axon branching and myelination, causing plastic changes in the neural network involved in memory processes. PMID:25365804

  8. Novel Nanotechnologies for Brain Cancer Therapeutics and Imaging.

    PubMed

    Ferroni, Letizia; Gardin, Chiara; Della Puppa, Alessandro; Sivolella, Stefano; Brunello, Giulia; Scienza, Renato; Bressan, Eriberto; D'Avella, Domenico; Zavan, Barbara

    2015-11-01

    Despite progress in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of brain cancer, specifically malignant gliomas, does not yet exist. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood-brain barrier. Nanotechnology today offers a unique opportunity to develop more effective brain cancer imaging and therapeutics. In particular, the development of nanocarriers that can be conjugated with several functional molecules including tumor-specific ligands, anticancer drugs, and imaging probes, can provide new devices which are able to overcome the difficulties of the classical strategies. Nanotechnology-based approaches hold great promise for revolutionizing brain cancer medical treatments, imaging, and diagnosis.

  9. Eeg Imaging Of Brain Activity: Methods And Potentials

    NASA Astrophysics Data System (ADS)

    Coppola, Richard

    1984-08-01

    Currently there are several methods for creating images that relate to either the anatomy or function of the human brain. Static pictures of anatomical structures are produced by computerized axial tomography (CAT) and the presently evolving methods of nuclear magnetic resonance (NM P). These images give excellent resolution of various degrees of structures but do not reveal any aspects of function. A variety of radioactive labeling and detection techniques are available that produce images related to brain activity.

  10. Hypnosis and imaging of the living human brain.

    PubMed

    Landry, Mathieu; Raz, Amir

    2015-01-01

    Over more than two decades, studies using imaging techniques of the living human brain have begun to explore the neural correlates of hypnosis. The collective findings provide a gripping, albeit preliminary, account of the underlying neurobiological mechanisms involved in hypnotic phenomena. While substantial advances lend support to different hypotheses pertaining to hypnotic modulation of attention, control, and monitoring processes, the complex interactions among the many mediating variables largely hinder our ability to isolate robust commonalities across studies. The present account presents a critical integrative synthesis of neuroimaging studies targeting hypnosis as a function of suggestion. Specifically, hypnotic induction without task-specific suggestion is examined, as well as suggestions concerning sensation and perception, memory, and ideomotor response. The importance of carefully designed experiments is highlighted to better tease apart the neural correlates that subserve hypnotic phenomena. Moreover, converging findings intimate that hypnotic suggestions seem to induce specific neural patterns. These observations propose that suggestions may have the ability to target focal brain networks. Drawing on evidence spanning several technological modalities, neuroimaging studies of hypnosis pave the road to a more scientific understanding of a dramatic, yet largely evasive, domain of human behavior.

  11. Magnetic resonance imaging of the canine brain at 7 T.

    PubMed

    Kang, Byeong-Teck; Ko, Ki-Jin; Jang, Dong-Pyo; Han, Jae-Yong; Lim, Chae-Young; Park, Chul; Yoo, Jong-Hyun; Kim, Ju-Won; Jung, Dong-In; Kim, Young-Bo; Woo, Eung-Je; Cho, Zang-Hee; Park, Hee-Myung

    2009-01-01

    The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.

  12. Brain Magnetic Resonance Imaging After High-Dose Chemotherapy and Radiotherapy for Childhood Brain Tumors

    SciTech Connect

    Spreafico, Filippo Gandola, Lorenza; Marchiano, Alfonso; Simonetti, Fabio; Poggi, Geraldina; Adduci, Anna; Clerici, Carlo Alfredo; Luksch, Roberto; Biassoni, Veronica; Meazza, Cristina; Catania, Serena; Terenziani, Monica; Musumeci, Renato; Fossati-Bellani, Franca; Massimino, Maura

    2008-03-15

    Purpose: Brain necrosis or other subacute iatrogenic reactions has been recognized as a potential complication of radiotherapy (RT), although the possible synergistic effects of high-dose chemotherapy and RT might have been underestimated. Methods and Materials: We reviewed the clinical and radiologic data of 49 consecutive children with malignant brain tumors treated with high-dose thiotepa and autologous hematopoietic stem cell rescue, preceded or followed by RT. The patients were assessed for neurocognitive tests to identify any correlation with magnetic resonance imaging (MRI) anomalies. Results: Of the 49 children, 18 (6 of 25 with high-grade gliomas and 12 of 24 with primitive neuroectodermal tumors) had abnormal brain MRI findings occurring a median of 8 months (range, 2-39 months) after RT and beginning to regress a median of 13 months (range, 2-26 months) after onset. The most common lesion pattern involved multiple pseudonodular, millimeter-size, T{sub 1}-weighted unevenly enhancing, and T{sub 2}-weighted hyperintense foci. Four patients with primitive neuroectodermal tumors also had subdural fluid leaks, with meningeal enhancement over the effusion. One-half of the patients had symptoms relating to the new radiographic findings. The MRI lesion-free survival rate was 74% {+-} 6% at 1 year and 57% {+-} 8% at 2 years. The number of marrow ablative courses correlated significantly to the incidence of radiographic anomalies. No significant difference was found in intelligent quotient scores between children with and without radiographic changes. Conclusion: Multiple enhancing cerebral lesions were frequently seen on MRI scans soon after high-dose chemotherapy and RT. Such findings pose a major diagnostic challenge in terms of their differential diagnosis vis-a-vis recurrent tumor. Their correlation with neurocognitive results deserves further investigation.

  13. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness.

    PubMed

    Coleman, M R; Davis, M H; Rodd, J M; Robson, T; Ali, A; Owen, A M; Pickard, J D

    2009-09-01

    Clinical audits have highlighted the many challenges and dilemmas faced by clinicians assessing persons with disorders of consciousness (vegetative state and minimally conscious state). The diagnostic decision-making process is highly subjective, dependent upon the skills of the examiner and invariably dictated by the patients' ability to move or speak. Whilst a considerable amount has been learnt since Jennett and Plum coined the term 'vegetative state', the assessment process remains largely unchanged; conducted at the bedside, using behavioural assessment tools, which are susceptible to environmental and physiological factors. This has created a situation where the rate of misdiagnosis is unacceptably high (up to 43%). In order to address these problems, various functional brain imaging paradigms, which do not rely upon the patient's ability to move or speak, have been proposed as a source of additional information to inform the diagnostic decision making process. Although accumulated evidence from brain imaging, particularly functional magnetic resonance imaging (fMRI), has been encouraging, the empirical evidence is still based on relatively small numbers of patients. It remains unclear whether brain imaging is capable of informing the diagnosis beyond the behavioural assessment and whether brain imaging has any prognostic utility. In this study, we describe the functional brain imaging findings from a group of 41 patients with disorders of consciousness, who undertook a hierarchical speech processing task. We found, contrary to the clinical impression of a specialist team using behavioural assessment tools, that two patients referred to the study with a diagnosis of vegetative state did in fact demonstrate neural correlates of speech comprehension when assessed using functional brain imaging. These fMRI findings were found to have no association with the patient's behavioural presentation at the time of investigation and thus provided additional diagnostic

  14. Child and adolescent traumatic brain injury: correlates of injury severity.

    PubMed

    Max, J E; Lindgren, S D; Knutson, C; Pearson, C S; Ihrig, D; Welborn, A

    1998-01-01

    A record review focused on children and adolescents, with a history of traumatic brain injury, who were consecutively admitted to a brain injury clinic in which all new patients are psychiatrically evaluated. Significant correlates of severity of injury in the cognitive, education and communication domains of functioning included Performance IQ but not Verbal IQ nor standardized ratings of language or learning disability. Current organic personality syndrome (OPS) but not attention deficit hyperactivity disorder or oppositional defiant disorder/conduct disorder diagnostic status was significantly related to severity. In conclusion, the findings in this referred sample are similar to prospective studies indicating that Performance IQ appears sensitive in reflecting brain damage. The finding linking OPS to severity of injury is not surprising. This is because OPS is a diagnosis which is dependent on the clinician's judgment of the likelihood that the organic factor is etiologically related to a defined behavioural syndrome. The diagnosis therefore requires a clinical judgment that the threshold of severity of a presumed organic etiological factor has been reached.

  15. The role of image registration in brain mapping.

    PubMed

    Toga, A W; Thompson, P M

    2001-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  16. Structural brain correlates of delay of gratification in the elderly.

    PubMed

    Drobetz, Reinhard; Hänggi, Jürgen; Maercker, Andreas; Kaufmann, Karin; Jäncke, Lutz; Forstmeier, Simon

    2014-04-01

    Delay of gratification (DoG) refers to the ability to postpone immediate rewards in favor of later and better rewards. A successful DoG in children/adolescents is subject to the maturation of the lateral and medial prefrontal cortex, which is more prone to normal age-related atrophy compared with other brain regions. Therefore, we investigated morphological brain correlates of DoG using structural MRI surface-based morphometry as well as determined whether dorsolateral prefrontal cortex (DLPFC) atrophy is related to DoG in the elderly. We used the behavioral Delay of Gratification Test for Adults to measure DoG in 40 healthy older adults aged between 63 and 93 years. When simultaneously controlling for age and intracranial volume, high DoG significantly positively correlated with cortical surface area of the left DLPFC. At a more liberal statistical threshold, we found positive correlations between DoG and cortical thickness of the left and right DLPFC, left and right ventrolateral prefrontal cortex, and left midanterior cingulate cortex. Additionally, cortical surface area in the left DLPFC correlated positively with DoG as well as with the volume of the left caudate nucleus. The results suggest that the DLPFC, medial prefrontal cortex, and the caudate nucleus play a crucial role in DoG in the elderly supporting studies in related constructs such as delay discounting and impulsivity. Further, the study shows that age-related prefrontal atrophy is associated with DoG performance. The findings are in line with concepts of "willpower" that postulate a central role of frontostriatal connectivity in self-regulation and self-control.

  17. Correlation of proton MR spectroscopy and diffusion tensor imaging.

    PubMed

    Irwan, Roy; Sijens, Paul E; Potze, Jan-Hendrik; Oudkerk, Matthijs

    2005-10-01

    Proton magnetic resonance spectroscopy ((1)H-MRS) provides indices of neuronal damage. Diffusion tensor imaging (DTI) relates to water diffusivity and fiber tract orientation. A method to compare (1)H-MRS and DTI findings was developed, tested on phantom and applied on normal brain. Point-resolved spectroscopy (T(R)/T(E)=1500/135) was used for chemical shift imaging of a supraventricular volume of interest of 8 x 8 x 2 cm(3) (64 voxels). In DTI, a segmental spin-echo sequence (T(R)/T(E)=5500/91) was used and slices were stacked to reproduce the slab used in MRS. The spatial distributions of choline and N-acetylaspartate (NAA) correlated to mean fractional anisotropy and apparent diffusion coefficient (ADC) for the inner 6 x 6=36 voxels defined in MRS, most notably NAA and ADC value (r=-.70, P<.00001; correlation across four subjects, 144 data pairs). This is the first association of neuron metabolite contents in volunteers with structure as indicated by DTI.

  18. Novel Magnetic Resonance Imaging Techniques in Brain Tumors.

    PubMed

    Nechifor, Ruben E; Harris, Robert J; Ellingson, Benjamin M

    2015-06-01

    Magnetic resonance imaging is a powerful, noninvasive imaging technique with exquisite sensitivity to soft tissue composition. Magnetic resonance imaging is primary tool for brain tumor diagnosis, evaluation of drug response assessment, and clinical monitoring of the patient during the course of their disease. The flexibility of magnetic resonance imaging pulse sequence design allows for a variety of image contrasts to be acquired, including information about magnetic resonance-specific tissue characteristics, molecular dynamics, microstructural organization, vascular composition, and biochemical status. The current review highlights recent advancements and novel approaches in MR characterization of brain tumors.

  19. Fuzzy object models for newborn brain MR image segmentation

    NASA Astrophysics Data System (ADS)

    Kobashi, Syoji; Udupa, Jayaram K.

    2013-03-01

    Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.

  20. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.

    PubMed

    Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn

    2016-06-01

    A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a "gold standard" for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197

  1. Design of brain imaging agents for positron emission tomography: do large bioconjugates provide an opportunity for in vivo brain imaging?

    PubMed

    Schirrmacher, Ralf; Bernard-Gauthier, Vadim; Reader, Andrew; Soucy, Jean-Paul; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen

    2013-09-01

    The development of brain imaging agents for positron emission tomography and other in vivo imaging modalities mostly relies on small compounds of low MW as a result of the restricted transport of larger molecules, such as peptides and proteins, across the blood-brain barrier. Besides passive transport, only a few active carrier mechanisms, such as glucose transporters and amino acid transporters, have so far been exploited to mediate the accumulation of imaging probes in the brain. An important question for the future is whether some of the abundant active carrier systems located at the blood-brain barrier can be used to shuttle potential, but non-crossing, imaging agents into the brain. What are the biological and chemical constrictions toward such bioconjugates and is it worthwhile to persue such a delivery strategy?

  2. Stereotactic PET atlas of the human brain: Aid for visual interpretation of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, A.; Ishihara, M.; Kuhl, D.E.

    1994-06-01

    In the routine analysis of functional brain images obtained by PET, subjective visual interpretation is often used for anatomic localization. To enhance the accuracy and consistency of the anatomic interpretation, a PET stereotactic atlas and localization approach was designed for functional brain images. The PET atlas was constructed from a high-resolution [{sup 18}F]fluorodeoxyglucose (FDG) image set of a normal volunteer (a 41-yr-ld woman). The image set was reoriented stereotactically, according to the intercommissural (anterior and posterior commissures) line and transformed to the standard stereotactic atlas coordinates. Cerebral structures were annotated on the transaxial planes using a proportional grid system and surface-rendered images. The stereotactic localization technique was applied to image sets from patients with Alzheimer`s disease, and areas of functional alteration were localized visually by referring to the PET atlas. Major brain structures were identified on both transaxial planes and surface-rendered images. In the stereotactic system, anatomic correspondence between the PET atlas and stereotactically reoriented individual image sets of patients with Alzheimer`s disease facilitated both indirect and direct localization of the cerebral structures. Because rapid stereotactic alignment methods for PET images are now available for routine use, the PET atlas will serve as an aid for visual interpretation of functional brain images in the stereotactic system. Widespread application of stereotactic localization may be used in functional brain images, not only in the research setting, but also in routine clinical situations. 41 refs., 3 figs.

  3. Mechanism of Chronic Pain in Rodent Brain Imaging

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Ching

    Chronic pain is a significant health problem that greatly impacts the quality of life of individuals and imparts high costs to society. Despite intense research effort in understanding of the mechanism of pain, chronic pain remains a clinical problem that has few effective therapies. The advent of human brain imaging research in recent years has changed the way that chronic pain is viewed. To further extend the use of human brain imaging techniques for better therapies, the adoption of imaging technique onto the animal pain models is essential, in which underlying brain mechanisms can be systematically studied using various combination of imaging and invasive techniques. The general goal of this thesis is to addresses how brain develops and maintains chronic pain in an animal model using fMRI. We demonstrate that nucleus accumbens, the central component of mesolimbic circuitry, is essential in development of chronic pain. To advance our imaging technique, we develop an innovative methodology to carry out fMRI in awake, conscious rat. Using this cutting-edge technique, we show that allodynia is assoicated with shift brain response toward neural circuits associated nucleus accumbens and prefrontal cortex that regulate affective and cognitive component of pain. Taken together, this thesis provides a deeper understanding of how brain mediates pain. It builds on the existing body of knowledge through maximizing the depth of insight into brain imaging of chronic pain.

  4. Brain Structural Correlates of Reward Sensitivity and Impulsivity in Adolescents with Normal and Excess Weight

    PubMed Central

    Moreno-López, Laura; Soriano-Mas, Carles; Delgado-Rico, Elena; Rio-Valle, Jacqueline S.; Verdejo-García, Antonio

    2012-01-01

    Introduction Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups. Methods Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex). Results Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents. Conclusion Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation. PMID:23185306

  5. Brain imaging of pain: state of the art.

    PubMed

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony Kp

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain's role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  6. Brain imaging and human nutrition: which measures to use in intervention studies?

    PubMed

    Sizonenko, Stéphane V; Babiloni, Claudio; de Bruin, Eveline A; Isaacs, Elizabeth B; Jönsson, Lena S; Kennedy, David O; Latulippe, Marie E; Mohajeri, M Hasan; Moreines, Judith; Pietrini, Pietro; Walhovd, Kristine B; Winwood, Robert J; Sijben, John W

    2013-08-01

    The present review describes brain imaging technologies that can be used to assess the effects of nutritional interventions in human subjects. Specifically, we summarise the biological relevance of their outcome measures, practical use and feasibility, and recommended use in short- and long-term nutritional studies. The brain imaging technologies described consist of MRI, including diffusion tensor imaging, magnetic resonance spectroscopy and functional MRI, as well as electroencephalography/magnetoencephalography, near-IR spectroscopy, positron emission tomography and single-photon emission computerised tomography. In nutritional interventions and across the lifespan, brain imaging can detect macro- and microstructural, functional, electrophysiological and metabolic changes linked to broader functional outcomes, such as cognition. Imaging markers can be considered as specific for one or several brain processes and as surrogate instrumental endpoints that may provide sensitive measures of short- and long-term effects. For the majority of imaging measures, little information is available regarding their correlation with functional endpoints in healthy subjects; therefore, imaging markers generally cannot replace clinical endpoints that reflect the overall capacity of the brain to behaviourally respond to specific situations and stimuli. The principal added value of brain imaging measures for human nutritional intervention studies is their ability to provide unique in vivo information on the working mechanism of an intervention in hypothesis-driven research. Selection of brain imaging techniques and target markers within a given technique should mainly depend on the hypothesis regarding the mechanism of action of the intervention, level (structural, metabolic or functional) and anticipated timescale of the intervention's effects, target population, availability and costs of the techniques.

  7. Correlation of neurocognitive function and brain parenchyma volumes in children surviving cancer

    NASA Astrophysics Data System (ADS)

    Reddick, Wilburn E.; White, Holly A.; Glass, John O.; Mulhern, Raymond K.

    2002-04-01

    This research builds on our hypothesis that white matter damage and associated neurocognitive symptoms, in children treated for cancer with cranial spinal irradiation, spans a continuum of severity that can be reliably probed using non-invasive MR technology. Quantitative volumetric assessments of MR imaging and psychological assessments were obtained in 40 long-term survivors of malignant brain tumors treated with cranial irradiation. Neurocognitive assessments included a test of intellect (Wechsler Intelligence Test for Children, Wechsler Adult Intelligence Scale), attention (Conner's Continuous Performance Test), and memory (California Verbal Learning Test). One-sample t-tests were conducted to evaluate test performance of survivors against age-adjusted scores from the test norms; these analyses revealed significant impairments in all apriori selected measures of intelligence, attention, and memory. Partial correlation analyses were performed to assess the relationships between brain tissues volumes (normal appearing white matter (NAWM), gray matter, and CSF) and neurocognitive function. Global intelligence (r = 0.32, p = 0.05) and global attentional (r = 0.49, p < 0.01) were significantly positively correlated with NAWM volumes, whereas global memory was significantly positively correlated with overall brain parenchyma (r = 0.38, p = 0.04). We conclude that quantitative assessment of MR examinations in survivors of childhood cancer treated with cranial irradiation reveal that loss of NAWM is associated with decreased intellectual and attentional deficits, whereas overall parenchyma loss, as reflected by increased CSF and decreased white matter, is associated with memory-related deficits.

  8. Structural Imaging Changes and Behavioral Correlates in Patients with Crohn’s Disease in Remission

    PubMed Central

    Nair, Veena A.; Beniwal-Patel, Poonam; Mbah, Ifeanyi; Young, Brittany M.; Prabhakaran, Vivek; Saha, Sumona

    2016-01-01

    Background: Crohn’s disease (CD) is a subtype of inflammatory bowel disease caused by immune-mediated inflammation in the gastrointestinal tract. The extent of morphologic brain alterations and their associated cognitive and affective impairments remain poorly characterized. Aims: We used magnetic resonance imaging to identify structural brain differences between patients with Crohn’s disease in remission compared to age-matched healthy controls and evaluated for structural-behavioral correlates. Methods: Nineteen patients and 20 healthy, age-matched controls were recruited in the study. Group differences in brain morphometric measures and correlations between brain measures and performance on a cognitive task, the verbal fluency (VF) task, were examined. Correlations between brain measures and cognitive measures as well as self-reported measures of depression, personality, and affective scales were examined. Results: Patients showed significant cortical thickening in the left superior frontal region compared to controls. Significant group differences were observed in sub-cortical volume measures in both hemispheres. Investigation of brain-behavior correlations revealed significant group differences in the correlation between cortical surface area and VF performance, although behavioral performance was equivalent between the two groups. The left middle temporal surface area was a significant predictor of VF performance with controls showing a significant positive correlation between these measures, and patients showing the opposite effect. Conclusion: Our results indicate key differences in structural brain measures in patients with CD compared to controls. Additionally, correlation between brain measures and behavioral responses suggest there may be a neural basis to the alterations in patients’ cognitive and affective responses. PMID:27695405

  9. Structural Imaging Changes and Behavioral Correlates in Patients with Crohn’s Disease in Remission

    PubMed Central

    Nair, Veena A.; Beniwal-Patel, Poonam; Mbah, Ifeanyi; Young, Brittany M.; Prabhakaran, Vivek; Saha, Sumona

    2016-01-01

    Background: Crohn’s disease (CD) is a subtype of inflammatory bowel disease caused by immune-mediated inflammation in the gastrointestinal tract. The extent of morphologic brain alterations and their associated cognitive and affective impairments remain poorly characterized. Aims: We used magnetic resonance imaging to identify structural brain differences between patients with Crohn’s disease in remission compared to age-matched healthy controls and evaluated for structural-behavioral correlates. Methods: Nineteen patients and 20 healthy, age-matched controls were recruited in the study. Group differences in brain morphometric measures and correlations between brain measures and performance on a cognitive task, the verbal fluency (VF) task, were examined. Correlations between brain measures and cognitive measures as well as self-reported measures of depression, personality, and affective scales were examined. Results: Patients showed significant cortical thickening in the left superior frontal region compared to controls. Significant group differences were observed in sub-cortical volume measures in both hemispheres. Investigation of brain-behavior correlations revealed significant group differences in the correlation between cortical surface area and VF performance, although behavioral performance was equivalent between the two groups. The left middle temporal surface area was a significant predictor of VF performance with controls showing a significant positive correlation between these measures, and patients showing the opposite effect. Conclusion: Our results indicate key differences in structural brain measures in patients with CD compared to controls. Additionally, correlation between brain measures and behavioral responses suggest there may be a neural basis to the alterations in patients’ cognitive and affective responses.

  10. Correlation of the gallbladder stone and tissue fluorescent images

    NASA Astrophysics Data System (ADS)

    Kokaj, Jahja O.; Marafi, Mustafa A.; Makdisi, Yacob; Bhatia, Kuldip S.

    2001-11-01

    Fluorescent images of gallbladder stones, tissue and bile are obtained using a streak camera. A Match Spatial Filer (MSF) is made using a stone fluorescent image. The MSF is used to perform correlations with fluorescent tissue and bile image. A method for recognition of the stone and rejection of the tissue during the laser lithotripsy is proposed using the correlation outputs.

  11. Brain and behavioral correlates of action semantic deficits in autism

    PubMed Central

    Moseley, Rachel L.; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Hauk, Olaf; Pulvermüller, Friedemann

    2013-01-01

    Action-perception circuits containing neurons in the motor system have been proposed as the building blocks of higher cognition; accordingly, motor dysfunction should entail cognitive deficits. Autism spectrum conditions (ASC) are marked by motor impairments but the implications of such motor dysfunction for higher cognition remain unclear. We here used word reading and semantic judgment tasks to investigate action-related motor cognition and its corresponding fMRI brain activation in high-functioning adults with ASC. These participants exhibited hypoactivity of motor cortex in language processing relative to typically developing controls. Crucially, we also found a deficit in semantic processing of action-related words, which, intriguingly, significantly correlated with this underactivation of motor cortex to these items. Furthermore, the word-induced hypoactivity in the motor system also predicted the severity of ASC as expressed by the number of autistic symptoms measured by the Autism-Spectrum Quotient (Baron-Cohen etal., 2001). These significant correlations between word-induced activation of the motor system and a newly discovered semantic deficit in a condition known to be characterized by motor impairments, along with the correlation of such activation with general autistic traits, confirm critical predictions of causal theories linking cognitive and semantic deficits in ASC, in part, to dysfunctional action-perception circuits and resultant reduction of motor system activation. PMID:24265609

  12. Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    PubMed Central

    Chen, Shengyong; Li, Xiaoli

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area. PMID:22319550

  13. Functional magnetic resonance imaging for imaging neural activity in the human brain: the annual progress.

    PubMed

    Chen, Shengyong; Li, Xiaoli

    2012-01-01

    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area.

  14. Toward brain correlates of natural behavior: fMRI during violent video games.

    PubMed

    Mathiak, Klaus; Weber, René

    2006-12-01

    Modern video games represent highly advanced virtual reality simulations and often contain virtual violence. In a significant amount of young males, playing video games is a quotidian activity, making it an almost natural behavior. Recordings of brain activation with functional magnetic resonance imaging (fMRI) during gameplay may reflect neuronal correlates of real-life behavior. We recorded 13 experienced gamers (18-26 years; average 14 hrs/week playing) while playing a violent first-person shooter game (a violent computer game played in self-perspective) by means of distortion and dephasing reduced fMRI (3 T; single-shot triple-echo echo-planar imaging [EPI]). Content analysis of the video and sound with 100 ms time resolution achieved relevant behavioral variables. These variables explained significant signal variance across large distributed networks. Occurrence of violent scenes revealed significant neuronal correlates in an event-related design. Activation of dorsal and deactivation of rostral anterior cingulate and amygdala characterized the mid-frontal pattern related to virtual violence. Statistics and effect sizes can be considered large at these areas. Optimized imaging strategies allowed for single-subject and for single-trial analysis with good image quality at basal brain structures. We propose that virtual environments can be used to study neuronal processes involved in semi-naturalistic behavior as determined by content analysis. Importantly, the activation pattern reflects brain-environment interactions rather than stimulus responses as observed in classical experimental designs. We relate our findings to the general discussion on social effects of playing first-person shooter games.

  15. Brain MR diffusion tensor imaging in Kennedy’s disease

    PubMed Central

    Garaci, Francesco; Lanzafame, Simona; Marfia, Girolama A; Marziali, Simone; Meschini, Alessandro; Di Giuliano, Francesca; Simonetti, Giovanni; Guerrisi, Maria; Massa, Roberto; Floris, Roberto

    2015-01-01

    Introduction Kennedy’s disease (KD) is a progressive degenerative disorder affecting lower motor neurons. We investigated the correlation between disease severity and whole brain white matter microstructure, including upper motor neuron tracts, by using diffusion-tensor imaging (DTI) in eight patients with KD in whom disease severity was evaluated using the Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS). Methods From DTI acquisitions we obtained maps of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (L1) and radial diffusivities (L2, L3). We then employed tract-based spatial statistics (TBSS) to investigate within-patient correlations of DTI invariants with ALSFRS and disease duration (DD). Results We found a significant correlation between low ALSFRS and 1) low FA values in association commissural and projection fibers, and 2) high L3 values in commissural tracts and fronto-parietal white matter. Additionally, we found a significant association between longer DD and 1) low FA in the genu and body of corpus callosum, association fibers and midbrain and 2) high L1 in projection and association tracts. Conclusions The associations between clinical variables and white matter microstructural changes in areas thought to be spared by the disease process support the hypothesis of a multisystem involvement in the complex pathogenic mechanisms responsible for the clinical disability of these patients. PMID:25963157

  16. A Unified Framework for Brain Segmentation in MR Images

    PubMed Central

    Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.

    2015-01-01

    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978

  17. Physical and technical aspects of ultrasonic brain imaging through thick skull bones: 2. Experimental studies

    NASA Astrophysics Data System (ADS)

    Baykov, S. V.; Babin, L. V.; Molotilov, A. M.; Neiman, S. I.; Riman, V. V.; Svet, V. D.; Selyanin, A. I.

    2003-07-01

    Experimental results of the ultrasonic imaging of brain structures through thick skull bones are presented. The model imaging system and the ultrasonic images of blood vessel models and images obtained in vivo for some brain structures are described.

  18. Play it again, Sam: brain correlates of emotional music recognition

    PubMed Central

    Altenmüller, Eckart; Siggel, Susann; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F.

    2014-01-01

    Background: Music can elicit strong emotions and can be remembered in connection with these emotions even decades later. Yet, the brain correlates of episodic memory for highly emotional music compared with less emotional music have not been examined. We therefore used fMRI to investigate brain structures activated by emotional processing of short excerpts of film music successfully retrieved from episodic long-term memory. Methods: Eighteen non-musicians volunteers were exposed to 60 structurally similar pieces of film music of 10 s length with high arousal ratings and either less positive or very positive valence ratings. Two similar sets of 30 pieces were created. Each of these was presented to half of the participants during the encoding session outside of the scanner, while all stimuli were used during the second recognition session inside the MRI-scanner. During fMRI each stimulation period (10 s) was followed by a 20 s resting period during which participants pressed either the “old” or the “new” button to indicate whether they had heard the piece before. Results: Musical stimuli vs. silence activated the bilateral superior temporal gyrus, right insula, right middle frontal gyrus, bilateral medial frontal gyrus and the left anterior cerebellum. Old pieces led to activation in the left medial dorsal thalamus and left midbrain compared to new pieces. For recognized vs. not recognized old pieces a focused activation in the right inferior frontal gyrus and the left cerebellum was found. Positive pieces activated the left medial frontal gyrus, the left precuneus, the right superior frontal gyrus, the left posterior cingulate, the bilateral middle temporal gyrus, and the left thalamus compared to less positive pieces. Conclusion: Specific brain networks related to memory retrieval and emotional processing of symphonic film music were identified. The results imply that the valence of a music piece is important for memory performance and is recognized very

  19. Brain activation during visual working memory correlates with behavioral mobility performance in older adults.

    PubMed

    Kawagoe, Toshikazu; Suzuki, Maki; Nishiguchi, Shu; Abe, Nobuhito; Otsuka, Yuki; Nakai, Ryusuke; Yamada, Minoru; Yoshikawa, Sakiko; Sekiyama, Kaoru

    2015-01-01

    Functional mobility and cognitive function often decline with age. We previously found that functional mobility as measured by the Timed Up and Go Test (TUG) was associated with cognitive performance for visually-encoded (i.e., for location and face) working memory (WM) in older adults. This suggests a common neural basis between TUG and visual WM. To elucidate this relationship further, the present study aimed to examine the neural basis for the WM-mobility association. In accordance with the well-known neural compensation model in aging, we hypothesized that "attentional" brain activation for easy WM would increase in participants with lower mobility. The data from 32 healthy older adults were analyzed, including brain activation during easy WM tasks via functional Magnetic Resonance Imaging (fMRI) and mobility performance via both TUG and a simple walking test. WM performance was significantly correlated with TUG but not with simple walking. Some prefrontal brain activations during WM were negatively correlated with TUG performance, while positive correlations were found in subcortical structures including the thalamus, putamen and cerebellum. Moreover, activation of the subcortical regions was significantly correlated with WM performance, with less activation for lower WM performers. These results indicate that older adults with lower mobility used more cortical (frontal) and fewer subcortical resources for easy WM tasks. To date, the frontal compensation has been proposed separately in the motor and cognitive domains, which have been assumed to compensate for dysfunction of the other brain areas; however, such dysfunction was less clear in previous studies. The present study observed such dysfunction as degraded activation associated with lower performance, which was found in the subcortical regions. We conclude that a common dysfunction-compensation activation pattern is likely the neural basis for the association between visual WM and functional mobility.

  20. Brain size is correlated with endangerment status in mammals.

    PubMed

    Abelson, Eric S

    2016-02-24

    Increases in relative encephalization (RE), brain size after controlling for body size, comes at a great metabolic cost and is correlated with a host of cognitive traits, from the ability to count objects to higher rates of innovation. Despite many studies examining the implications and trade-offs accompanying increased RE, the relationship between mammalian extinction risk and RE is unknown. I examine whether mammals with larger levels of RE are more or less likely to be at risk of endangerment than less-encephalized species. I find that extant species with large levels of encephalization are at greater risk of endangerment, with this effect being strongest in species with small body sizes. These results suggest that RE could be a valuable asset in estimating extinction vulnerability. Additionally, these findings suggest that the cost-benefit trade-off of RE is different in large-bodied species when compared with small-bodied species. PMID:26888034

  1. Digital Image Correlation for Performance Monitoring

    NASA Technical Reports Server (NTRS)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  2. The Potential of Using Brain Images for Authentication

    PubMed Central

    Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  3. The potential of using brain images for authentication.

    PubMed

    Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen

    2014-01-01

    Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604

  4. The brains in Brain: the coevolution of localization and its images.

    PubMed

    Gross, Alan G

    2008-01-01

    Images of brain localization from Brain's inception to the present are analyzed. Textual representations and their accompanying images are shown to coevolve; that is, the technological and conceptual development of the research program of localization is shown to evolve simultaneously with the exploitation of visual resources that support these developments. The semiotics of Peirce, the social semiotics of Kress and van Leeuwen, and the insights of Gestalt psychology provide a critical vocabulary with which to describe and to analyze these visual resources. I conclude that brain images evolve in a manner that reflects the uniformity in measuring instruments and the increase in their precision in the localization of brain functions; at the same time, they draw attention away from a persistent constraint: the brain functions so precisely localized are just those that are not constitutive of our humanity.

  5. Interspecies activity correlations reveal functional correspondence between monkey and human brain areas.

    PubMed

    Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim

    2012-02-05

    Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.

  6. Natural image classification driven by human brain activity

    NASA Astrophysics Data System (ADS)

    Zhang, Dai; Peng, Hanyang; Wang, Jinqiao; Tang, Ming; Xue, Rong; Zuo, Zhentao

    2016-03-01

    Natural image classification has been a hot topic in computer vision and pattern recognition research field. Since the performance of an image classification system can be improved by feature selection, many image feature selection methods have been developed. However, the existing supervised feature selection methods are typically driven by the class label information that are identical for different samples from the same class, ignoring with-in class image variability and therefore degrading the feature selection performance. In this study, we propose a novel feature selection method, driven by human brain activity signals collected using fMRI technique when human subjects were viewing natural images of different categories. The fMRI signals associated with subjects viewing different images encode the human perception of natural images, and therefore may capture image variability within- and cross- categories. We then select image features with the guidance of fMRI signals from brain regions with active response to image viewing. Particularly, bag of words features based on GIST descriptor are extracted from natural images for classification, and a sparse regression base feature selection method is adapted to select image features that can best predict fMRI signals. Finally, a classification model is built on the select image features to classify images without fMRI signals. The validation experiments for classifying images from 4 categories of two subjects have demonstrated that our method could achieve much better classification performance than the classifiers built on image feature selected by traditional feature selection methods.

  7. Noninvasive Imaging of Head-Brain Conductivity Profiles Using Magnetic Resonance Electrical Impedance Imaging

    PubMed Central

    Zhang, Xiaotong; Yan, Dandan; Zhu, Shanan; He, Bin

    2008-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a recently introduced non-invasive conductivity imaging modality, which combines the magnetic resonance current density imaging (CDI) and the traditional electrical impedance tomography (EIT) techniques. MREIT is aimed at providing high spatial resolution images of electrical conductivity, by avoiding solving the well-known ill-posed problem in the traditional EIT. In this paper, we review our research activities in MREIT imaging of head-brain tissue conductivity profiles. We have developed several imaging algorithms and conducted a series of computer simulations for MREIT imaging of the head and brain tissues. Our work suggests MREIT brain imaging may become a useful tool in imaging conductivity distributions of the brain and head. PMID:18799394

  8. Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2008-02-01

    We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.

  9. Atypical pyogenic brain abscess evaluation by diffusion-weighted imaging: diagnosis with multimodality MR imaging.

    PubMed

    Ozbayrak, Mustafa; Ulus, Ozden Sila; Berkman, Mehmet Zafer; Kocagoz, Sesin; Karaarslan, Ercan

    2015-10-01

    Whether a brain abscess is apparent by imaging depends on the stage of the abscess at the time of imaging, as well as the etiology of the infection. Because conventional magnetic resonance imaging (MRI) is limited in its ability to distinguish brain abscesses from necrotic tumors, advanced techniques are required. The management of these two disease entities differs and can potentially affect the clinical outcome. We report a case having atypical imaging features of a pyogenic brain abscess on advanced MRI, in particular, on diffusion-weighted and perfusion imaging, in a patient with osteosarcoma undergoing chemotherapy.

  10. A Novel Quantitative Simple Brain Metric Using MR Imaging for Preterm Infants

    PubMed Central

    Nguyen The Tich, S; Anderson, PJ; Shimony, JS; Hunt, RW; Doyle, LW; Inder, TE

    2009-01-01

    Background and Purpose The application of volumetric techniques to preterm infants has revealed brain volume reductions. Such quantitative data are not available in routine neonatal radiological care. The objective of this study was to develop simple brain metrics to compare brain size in preterm and term infants, and correlate these metrics with brain volumes from volumetric MR techniques. Methods MR images from 189 preterm infants <30 weeks’ gestational age or <1250 g birthweight scanned at term-equivalent age and 36 term infants were studied. Fifteen tissue and fluid measures were systematically evaluated on 4 selected slices. The results were correlated with total brain, grey matter, white matter and CSF volumes. Results The mean bifrontal, biparietal and transverse cerebellar diameters were reduced (−11.6 %; CI= −13.8 to −9.3%; −12%, −14 to −9.8% and −8.7%, −10.5 to −7% respectively) and the mean left ventricle diameter was increased (+22.3%; 2.9 to 41.6%) in preterm infants (p<0.01). Strong correlations were found between the bifrontal and biparietal measures with total brain tissue volume, while the size of the ventricles and the interhemispheric measure correlated with CSF volume. Intra-observer reliability was high (ICC >0.7), while inter-observer agreement was acceptable for tissue measures (ICC >0.6) but lower for fluid measures (ICC <0.4) Conclusions Simple brain metrics at term-equivalent age showed smaller brain diameters and increased ventricle size in preterm infants compared with full term infants. These measures represent a reliable and easily applicable method to quantify brain growth and assess brain atrophy in this at-risk population. PMID:18832662

  11. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats. PMID:27604743

  12. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls.

    PubMed

    Batalla, A; Bargalló, N; Gassó, P; Molina, O; Pareto, D; Mas, S; Roca, J M; Bernardo, M; Lafuente, A; Parellada, E

    2015-08-25

    Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r = -0.90; P = 0.001; STS 0.25 μM: r = -0.73; P = 0.003), and between NAA and cells with CC (STS 0.5 μM induction r = -0.76; P = 0.002; STS 0.25 μM r = -0.62; P = 0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P < 0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness.

  13. Numerical simulations of MREIT conductivity imaging for brain tumor detection.

    PubMed

    Meng, Zi Jun; Sajib, Saurav Z K; Chauhan, Munish; Sadleir, Rosalind J; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862

  14. Numerical Simulations of MREIT Conductivity Imaging for Brain Tumor Detection

    PubMed Central

    Meng, Zi Jun; Sajib, Saurav Z. K.; Chauhan, Munish; Sadleir, Rosalind J.; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2013-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is a new modality capable of imaging the electrical properties of human body using MRI phase information in conjunction with external current injection. Recent in vivo animal and human MREIT studies have revealed unique conductivity contrasts related to different physiological and pathological conditions of tissues or organs. When performing in vivo brain imaging, small imaging currents must be injected so as not to stimulate peripheral nerves in the skin, while delivery of imaging currents to the brain is relatively small due to the skull's low conductivity. As a result, injected imaging currents may induce small phase signals and the overall low phase SNR in brain tissues. In this study, we present numerical simulation results of the use of head MREIT for brain tumor detection. We used a realistic three-dimensional head model to compute signal levels produced as a consequence of a predicted doubling of conductivity occurring within simulated tumorous brain tissues. We determined the feasibility of measuring these changes in a time acceptable to human subjects by adding realistic noise levels measured from a candidate 3 T system. We also reconstructed conductivity contrast images, showing that such conductivity differences can be both detected and imaged. PMID:23737862

  15. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    PubMed

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  16. Brain structure correlates of emotion-based rash impulsivity

    PubMed Central

    Muhlert, N.; Lawrence, A.D.

    2015-01-01

    Negative urgency (the tendency to engage in rash, ill-considered action in response to intense negative emotions), is a personality trait that has been linked to problematic involvement in several risky and impulsive behaviours, and to various forms of disinhibitory psychopathology, but its neurobiological correlates are poorly understood. Here, we explored whether inter-individual variation in levels of trait negative urgency was associated with inter-individual variation in regional grey matter volumes. Using voxel-based morphometry (VBM) in a sample (n = 152) of healthy participants, we found that smaller volumes of the dorsomedial prefrontal cortex and right temporal pole, regions previously linked to emotion appraisal, emotion regulation and emotion-based decision-making, were associated with higher levels of trait negative urgency. When controlling for other impulsivity linked personality traits (sensation seeking, lack of planning/perseverance) and negative emotionality per se (neuroticism), these associations remained, and an additional relationship was found between higher levels of trait negative urgency and smaller volumes of the left ventral striatum. This latter finding mirrors recent VBM findings in an animal model of impulsivity. Our findings offer novel insight into the brain structure correlates of one key source of inter-individual differences in impulsivity. PMID:25957991

  17. Optical imaging to map blood-brain barrier leakage

    NASA Astrophysics Data System (ADS)

    Jaffer, Hayder; Adjei, Isaac M.; Labhasetwar, Vinod

    2013-11-01

    Vascular leakage in the brain is a major complication associated with brain injuries and certain pathological conditions due to disruption of the blood-brain barrier (BBB). We have developed an optical imaging method, based on excitation and emission spectra of Evans Blue dye, that is >1000-fold more sensitive than conventional ultraviolet spectrophotometry. We used a rat thromboembolic stroke model to validate the usefulness of our method for vascular leakage. Optical imaging data show that vascular leakage varies in different areas of the post-stroke brain and that administering tissue plasminogen activator causes further leakage. The new method is quantitative, simple to use, requires no tissue processing, and can map the degree of vascular leakage in different brain locations. The high sensitivity of our method could potentially provide new opportunities to study BBB leakage in different pathological conditions and to test the efficacy of various therapeutic strategies to protect the BBB.

  18. Brain imaging of pain: state of the art

    PubMed Central

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained. PMID:27660488

  19. Brain imaging of pain: state of the art

    PubMed Central

    Morton, Debbie L; Sandhu, Javin S; Jones, Anthony KP

    2016-01-01

    Pain is a complex sensory and emotional experience that is heavily influenced by prior experience and expectations of pain. Before the development of noninvasive human brain imaging, our grasp of the brain’s role in pain processing was limited to data from postmortem studies, direct recording of brain activity, patient experience and stimulation during neurosurgical procedures, and animal models of pain. Advances made in neuroimaging have bridged the gap between brain activity and the subjective experience of pain and allowed us to better understand the changes in the brain that are associated with both acute and chronic pain. Additionally, cognitive influences on pain such as attention, anticipation, and fear can now be directly observed, allowing for the interpretation of the neural basis of the psychological modulation of pain. The use of functional brain imaging to measure changes in endogenous neurochemistry has increased our understanding of how states of increased resilience and vulnerability to pain are maintained.

  20. Cornelia de Lange syndrome: Correlation of brain MRI findings with behavioral assessment.

    PubMed

    Roshan Lal, Tamanna R; Kliewer, Mark A; Lopes, Thelma; Rebsamen, Susan L; O'Connor, Julia; Grados, Marco A; Kimball, Amy; Clemens, Julia; Kline, Antonie D

    2016-06-01

    Neurobehavioral and developmental issues with a broad range of deficits are prominent features of Cornelia de Lange syndrome (CdLS), a disorder due to disruption of the cohesin protein complex. The etiologic relationship of these clinical findings to anatomic abnormalities on neuro-imaging studies has not, however, been established. Anatomic abnormalities in the brain and central nervous system specific to CdLS have been observed, including changes in the white matter, brainstem, and cerebellum. We hypothesize that location and severity of brain abnormalities correlate with clinical phenotype in CdLS, as seen in other developmental disorders. In this study, we retrospectively evaluated brain MRI studies of 15 individuals with CdLS and compared these findings to behavior at the time of the scan. Behavior was assessed using the Aberrant Behavior Checklist (ABC), a validated behavioral assessment tool with several clinical features. Ten of fifteen (67%) of CdLS patients had abnormal findings on brain MRI, including cerebral atrophy, white matter changes, cerebellar hypoplasia, and enlarged ventricles. Other findings included pituitary tumors or cysts, Chiari I malformation and gliosis. Abnormal behavioral scores in more than one behavioral area were seen in all but one patient. All 5 of the 15 (33%) patients with normal structural MRI studies had abnormal ABC scores. All normal ABC scores were noted in only one patient and this was correlated with moderately abnormal MRI changes. Although our cohort is small, our results suggest that abnormal behaviors can exist in individuals with CdLS in the setting of relatively normal structural brain findings. © 2016 Wiley Periodicals, Inc.

  1. Nanoparticles for imaging and treating brain cancer

    PubMed Central

    Meyers, Joseph D; Doane, Tennyson; Burda, Clemens; Basilion, James P

    2013-01-01

    Brain cancer tumors cause disruption of the selective properties of vascular endothelia, even causing disruptions in the very selective blood–brain barrier, which are collectively referred to as the blood–brain–tumor barrier. Nanoparticles (NPs) have previously shown great promise in taking advantage of this increased vascular permeability in other cancers, which results in increased accumulation in these cancers over time due to the accompanying loss of an effective lymph system. NPs have therefore attracted increased attention for treating brain cancer. While this research is just beginning, there have been many successes demonstrated thus far in both the laboratory and clinical setting. This review serves to present the reader with an overview of NPs for treating brain cancer and to provide an outlook on what may come in the future. For NPs, just like the blood–brain–tumor barrier, the future is wide open. PMID:23256496

  2. Whole Brain Imaging with Serial Two-Photon Tomography

    PubMed Central

    Amato, Stephen P.; Pan, Feng; Schwartz, Joel; Ragan, Timothy M.

    2016-01-01

    Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. This has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this article, we describe in detail Serial Two-Photon (STP) tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as Optical Coherence Tomography (OCT), in order to provide unique contrast mechanisms. Furthermore, we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches. PMID:27047350

  3. Diffusion tensor imaging for understanding brain development in early life.

    PubMed

    Qiu, Anqi; Mori, Susumu; Miller, Michael I

    2015-01-01

    The human brain rapidly develops during the final weeks of gestation and in the first two years following birth. Diffusion tensor imaging (DTI) is a unique in vivo imaging technique that allows three-dimensional visualization of the white matter anatomy in the brain. It has been considered to be a valuable tool for studying brain development in early life. In this review, we first introduce the DTI technique. We then review DTI findings on white matter development at the fetal stage and in infancy as well as DTI applications for understanding neurocognitive development and brain abnormalities in preterm infants. Finally, we discuss limitations of DTI and potential valuable imaging techniques for studying white matter myelination.

  4. Photoacoustic imaging for transvascular drug delivery to the rat brain

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryota; Sato, Shunichi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Takemura, Toshiya; Terakawa, Mitsuhiro

    2015-03-01

    Transvascular drug delivery to the brain is difficult due to the blood-brain barrier (BBB). Thus, various methods for safely opening the BBB have been investigated, for which real-time imaging methods are desired both for the blood vessels and distribution of a drug. Photoacoustic (PA) imaging, which enables depth-resolved visualization of chromophores in tissue, would be useful for this purpose. In this study, we performed in vivo PA imaging of the blood vessels and distribution of a drug in the rat brain by using an originally developed compact PA imaging system with fiber-based illumination. As a test drug, Evans blue (EB) was injected to the tail vein, and a photomechanical wave was applied to the targeted brain tissue to increase the permeability of the blood vessel walls. For PA imaging of blood vessels and EB distribution, nanosecond pulses at 532 nm and 670 nm were used, respectively. We clearly visualized blood vessels with diameters larger than 50 μm and the distribution of EB in the brain, showing spatiotemporal characteristics of EB that was transvascularly delivered to the target tissue in the brain.

  5. Unified Framework for Robust Estimation of Brain Networks From fMRI Using Temporal and Spatial Correlation Analyses

    PubMed Central

    Wang, Yongmei Michelle; Xia, Jing

    2011-01-01

    There is a rapidly growing interest in the neuroimaging field to use functional magnetic resonance imaging (fMRI) to explore brain networks, i.e., how regions of the brain communicate with one another. This paper presents a general and novel statistical framework for robust and more complete estimation of brain functional connectivity from fMRI based on correlation analyses and hypothesis testing. In addition to the ability of examining the correlations with each individual seed as in the standard and existing methods, the proposed framework can detect functional interactions by simultaneously examining multiseed correlations via multiple correlation coefficients. Spatially structured noise in fMRI is also taken into account during the identification of functional interconnection networks through noncentral F hypothesis tests. The associated issues for the multiple testing and the effective degrees-of-freedom are considered as well. Furthermore, partial multiple correlations are introduced and formulated to measure any additional task-induced but not stimulus-locked relation over brain regions so that we can take the analysis of functional connectivity closer to the characterization of direct functional interactions of the brain. Evaluation for accuracy and advantages, and comparisons of the new approaches in the presented general framework are performed using both realistic synthetic data and in vivo fMRI data. PMID:19237342

  6. Can we evaluate cranial aneurysms on conventional brain magnetic resonance imaging?

    PubMed Central

    Caliskan, Emine; Pekcevik, Yeliz; Kaya, Adnan

    2016-01-01

    Purpose: To evaluate the contribution of conventional brain magnetic resonance imaging (MRI) for the determination of intracranial aneurysms. Materials and Methods: Brain MRI and computed tomography angiography (CTA) of 45 patients (29 women and 16 men; age range, 32–80 years) with aneurysm were analyzed. A comparison was made between brain MRI and CTA based on size and presence of aneurysm. The comparisons between MRI and CTA were investigated through Bland-Altman graphics, receiver operating characteristic curve, and Kappa statistics. Results: Fifty-seven aneurysms were evaluated. Forty-five percent of 57 aneurysms on CTA were detected on conventional brain MRI. A significant correlation was found between CTA and brain MRI in the diagnosis of aneurysm (P < 0.05). In an analysis of the size measurement, a significant correlation was observed between CTA and brain MRI. Seventy-seven percent of aneurysms <4 mm was not detected and the efficiency of MRI in the detection of aneurysms <4 mm was found to be low. Conclusion: Aneurysms can also be appreciated on conventional brain MRI, and vascular structures should be reviewed carefully while analyzing brain MRI. PMID:26933351

  7. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury.

    PubMed

    Bardin, Jonathan C; Fins, Joseph J; Katz, Douglas I; Hersh, Jennifer; Heier, Linda A; Tabelow, Karsten; Dyke, Jonathan P; Ballon, Douglas J; Schiff, Nicholas D; Voss, Henning U

    2011-03-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects.

  8. Neurobiological basis of head motion in brain imaging.

    PubMed

    Zeng, Ling-Li; Wang, Danhong; Fox, Michael D; Sabuncu, Mert; Hu, Dewen; Ge, Manling; Buckner, Randy L; Liu, Hesheng

    2014-04-22

    Individual differences in brain metrics, especially connectivity measured with functional MRI, can correlate with differences in motion during data collection. The assumption has been that motion causes artifactual differences in brain connectivity that must and can be corrected. Here we propose that differences in brain connectivity can also represent a neurobiological trait that predisposes to differences in motion. We support this possibility with an analysis of intra- versus intersubject differences in connectivity comparing high- to low-motion subgroups. Intersubject analysis identified a correlate of head motion consisting of reduced distant functional connectivity primarily in the default network in individuals with high head motion. Similar connectivity differences were not found in analysis of intrasubject data. Instead, this correlate of head motion was a stable property in individuals across time. These findings suggest that motion-associated differences in brain connectivity cannot fully be attributed to motion artifacts but rather also reflect individual variability in functional organization.

  9. Imaging Phenotypes of Major Depressive Disorder: Genetic Correlates

    PubMed Central

    Savitz, Jonathan B; Drevets, Wayne C

    2009-01-01

    Imaging techniques are a potentially powerful method of identifying phenotypes that are associated with, or are indicative of a vulnerability to developing major depressive disorder (MDD). Here we identify seven promising MDD-associated traits identified by magnetic resonance imaging (MRI) or positron emission tomography (PET). We evaluate whether these traits are state-independent, heritable endophenotypes, or state-dependent phenotypes that may be useful markers of treatment efficacy. In MDD, increased activity of the amygdala in response to negative stimuli appears to be a mood-congruent phenomenon, and is likely moderated by the serotonin transporter gene (SLC6A4) promoter polymorphism (5-HTTLPR). Hippocampal volume loss is characteristic of elderly or chronically-ill samples and may be impacted by the val66met brain-derived neurotrophic factor (BDNF) gene variant and the 5-HTTLPR SLC6A4 polymorphism. White matter pathology is salient in elderly MDD cohorts but is associated with cerebrovascular disease, and is unlikely to be a useful marker of a latent MDD diathesis. Increased blood flow or metabolism of the subgenual anterior cingulate cortex (sgACC), together with gray matter volume loss in this region, is a well-replicated finding in MDD. An attenuation of the usual pattern of fronto-limbic connectivity, particularly a decreased temporal correlation in amygdala-anterior cingulate cortex (ACC) activity, is another MDD-associated trait. Concerning neuroreceptor PET imaging, decreased 5-HT1A binding potential in the raphe, medial temporal lobe, and medial prefrontal cortex (mPFC) has been strongly associated with MDD, and may be impacted by a functional single nucleotide polymorphism in the promoter region of the 5-HT1A gene (HTR1A: –1019C/G; rs6295). Potentially indicative of inter-study variation in MDD etiology or mood state, both increased and decreased binding potential of the serotonin transporter has been reported. Challenges facing the field include

  10. {sup 99m}Tc radiopharmaceuticals for brain perfusion imaging

    SciTech Connect

    Deutsch, E.; Volkert, W.A.

    1991-12-31

    It is well established that small, neutral, lipophilic technetium complexes can diffuse into the brain and then be trapped intracellularly by a variety of mechanisms. A more detailed understanding of the structural and chemical parameters which promote efficient diffusion into the brain, and which underlie the trapping mechanisms, will be necessary to delineate the clinical relevance of current agents, and to design improved technetium 99 pharmaceuticals. Current technetium 99 brain-perfusion imaging agents do not show ideal characteristics of brain uptake and retention. Furthermore, significant fractions of the technetium 99 complexes are lost between site of injection and the brain. Thus, it is difficult to use these current agents to quantitate regional cerebral blood flow. Nevertheless, these agents are proving extremely valuable for the SPECT evaluation of abnormalities in brain perfusion patients with neurological disorders.

  11. Correlation between subjective and objective assessment of magnetic resonance (MR) images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini; Paramesran, Raveendran

    2016-07-01

    Medical Image Quality Assessment (IQA) plays an important role in assisting and evaluating the development of any new hardware, imaging sequences, pre-processing or post-processing algorithms. We have performed a quantitative analysis of the correlation between subjective and objective Full Reference - IQA (FR-IQA) on Magnetic Resonance (MR) images of the human brain, spine, knee and abdomen. We have created a MR image database that consists of 25 original reference images and 750 distorted images. The reference images were distorted with six types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur, DCT compression, JPEG compression and JPEG2000 compression, at various levels of distortion. Twenty eight subjects were chosen to evaluate the images resulting in a total of 21,700 human evaluations. The raw scores were then converted to Difference Mean Opinion Score (DMOS). Thirteen objective FR-IQA metrics were used to determine the validity of the subjective DMOS. The results indicate a high correlation between the subjective and objective assessment of the MR images. The Noise Quality Measurement (NQM) has the highest correlation with DMOS, where the mean Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are 0.936 and 0.938 respectively. The Universal Quality Index (UQI) has the lowest correlation with DMOS, where the mean PLCC and SROCC are 0.807 and 0.815 respectively. Student's T-test was used to find the difference in performance of FR-IQA across different types of distortion. The superior IQAs tested statistically are UQI for Rician noise images, Visual Information Fidelity (VIF) for Gaussian blur images, NQM for both DCT and JPEG compressed images, Peak Signal-to-Noise Ratio (PSNR) for JPEG2000 compressed images. PMID:26969762

  12. Correlation between subjective and objective assessment of magnetic resonance (MR) images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini; Paramesran, Raveendran

    2016-07-01

    Medical Image Quality Assessment (IQA) plays an important role in assisting and evaluating the development of any new hardware, imaging sequences, pre-processing or post-processing algorithms. We have performed a quantitative analysis of the correlation between subjective and objective Full Reference - IQA (FR-IQA) on Magnetic Resonance (MR) images of the human brain, spine, knee and abdomen. We have created a MR image database that consists of 25 original reference images and 750 distorted images. The reference images were distorted with six types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur, DCT compression, JPEG compression and JPEG2000 compression, at various levels of distortion. Twenty eight subjects were chosen to evaluate the images resulting in a total of 21,700 human evaluations. The raw scores were then converted to Difference Mean Opinion Score (DMOS). Thirteen objective FR-IQA metrics were used to determine the validity of the subjective DMOS. The results indicate a high correlation between the subjective and objective assessment of the MR images. The Noise Quality Measurement (NQM) has the highest correlation with DMOS, where the mean Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are 0.936 and 0.938 respectively. The Universal Quality Index (UQI) has the lowest correlation with DMOS, where the mean PLCC and SROCC are 0.807 and 0.815 respectively. Student's T-test was used to find the difference in performance of FR-IQA across different types of distortion. The superior IQAs tested statistically are UQI for Rician noise images, Visual Information Fidelity (VIF) for Gaussian blur images, NQM for both DCT and JPEG compressed images, Peak Signal-to-Noise Ratio (PSNR) for JPEG2000 compressed images.

  13. Ethical issues of brain functional imaging: reading your mind.

    PubMed

    Karanasiou, Irene S; Biniaris, Christos G; Marsh, Andrew J

    2008-01-01

    Neuroimaging practice and research are overviewed in this paper through an ethics lens. The main ethical implications in biomedical research concerning functional brain imaging are discussed with the focus on issues related to imaging of personal information and privacy. Specific norms and guidelines will be eventually formed in the future under the umbrella of the new discipline of Neuroethics.

  14. A review of multivariate methods in brain imaging data fusion

    NASA Astrophysics Data System (ADS)

    Sui, Jing; Adali, Tülay; Li, Yi-Ou; Yang, Honghui; Calhoun, Vince D.

    2010-03-01

    On joint analysis of multi-task brain imaging data sets, a variety of multivariate methods have shown their strengths and been applied to achieve different purposes based on their respective assumptions. In this paper, we provide a comprehensive review on optimization assumptions of six data fusion models, including 1) four blind methods: joint independent component analysis (jICA), multimodal canonical correlation analysis (mCCA), CCA on blind source separation (sCCA) and partial least squares (PLS); 2) two semi-blind methods: parallel ICA and coefficient-constrained ICA (CC-ICA). We also propose a novel model for joint blind source separation (BSS) of two datasets using a combination of sCCA and jICA, i.e., 'CCA+ICA', which, compared with other joint BSS methods, can achieve higher decomposition accuracy as well as the correct automatic source link. Applications of the proposed model to real multitask fMRI data are compared to joint ICA and mCCA; CCA+ICA further shows its advantages in capturing both shared and distinct information, differentiating groups, and interpreting duration of illness in schizophrenia patients, hence promising applicability to a wide variety of medical imaging problems.

  15. Fuzzy local Gaussian mixture model for brain MR image segmentation.

    PubMed

    Ji, Zexuan; Xia, Yong; Sun, Quansen; Chen, Qiang; Xia, Deshen; Feng, David Dagan

    2012-05-01

    Accurate brain tissue segmentation from magnetic resonance (MR) images is an essential step in quantitative brain image analysis. However, due to the existence of noise and intensity inhomogeneity in brain MR images, many segmentation algorithms suffer from limited accuracy. In this paper, we assume that the local image data within each voxel's neighborhood satisfy the Gaussian mixture model (GMM), and thus propose the fuzzy local GMM (FLGMM) algorithm for automated brain MR image segmentation. This algorithm estimates the segmentation result that maximizes the posterior probability by minimizing an objective energy function, in which a truncated Gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM. We compared our algorithm to state-of-the-art segmentation approaches in both synthetic and clinical data. Our results show that the proposed algorithm can largely overcome the difficulties raised by noise, low contrast, and bias field, and substantially improve the accuracy of brain MR image segmentation.

  16. Potential for photoacoustic imaging of the neonatal brain

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Kosik, Ivan; Chamson-Reig, Astrid; St. Lawrence, Keith; Carson, Jeffrey J. L.

    2013-03-01

    Photoacoustic imaging (PAI) has been proposed as a non-invasive technique for imaging neonatal brain injury. Since PAI combines many of the merits of both optical and ultrasound imaging, images with high contrast, high resolution, and a greater penetration depth can be obtained when compared to more traditional optical methods. However, due to the strong attenuation and reflection of photoacoustic pressure waves at the skull bone, PAI of the brain is much more challenging than traditional methods (e.g. near infrared spectroscopy) for optical interrogation of the neonatal brain. To evaluate the potential limits the skull places on 3D PAI of the neonatal brain, we constructed a neonatal skull phantom (1.4-mm thick) with a mixture of epoxy and titanium dioxide powder that provided acoustic insertion loss (1-5MHz) similar to human infant skull bone. The phantom was molded into a realistic infant skull shape by means of a CNCmachined mold that was based upon a 3D CAD model. To evaluate the effect of the skull bone on PAI, a photoacoustic point source was raster scanned within the phantom brain cavity to capture the imaging operator of the 3D PAI system (128 ultrasound transducers in a hemispherical arrangement) with and without the intervening skull phantom. The resultant imaging operators were compared to determine the effect of the skull layer on the PA signals in terms of amplitude loss and time delay.

  17. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  18. Brain connectivity study of joint attention using frequency-domain optical imaging technique

    NASA Astrophysics Data System (ADS)

    Chaudhary, Ujwal; Zhu, Banghe; Godavarty, Anuradha

    2010-02-01

    Autism is a socio-communication brain development disorder. It is marked by degeneration in the ability to respond to joint attention skill task, from as early as 12 to 18 months of age. This trait is used to distinguish autistic from nonautistic populations. In this study, diffuse optical imaging is being used to study brain connectivity for the first time in response to joint attention experience in normal adults. The prefrontal region of the brain was non-invasively imaged using a frequency-domain based optical imager. The imaging studies were performed on 11 normal right-handed adults and optical measurements were acquired in response to joint-attention based video clips. While the intensity-based optical data provides information about the hemodynamic response of the underlying neural process, the time-dependent phase-based optical data has the potential to explicate the directional information on the activation of the brain. Thus brain connectivity studies are performed by computing covariance/correlations between spatial units using this frequency-domain based optical measurements. The preliminary results indicate that the extent of synchrony and directional variation in the pattern of activation varies in the left and right frontal cortex. The results have significant implication for research in neural pathways associated with autism that can be mapped using diffuse optical imaging tools in the future.

  19. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  20. Impact of metal artefacts due to EEG electrodes in brain PET/CT imaging.

    PubMed

    Lemmens, Catherine; Montandon, Marie-Louise; Nuyts, Johan; Ratib, Osman; Dupont, Patrick; Zaidi, Habib

    2008-08-21

    The goal of this study is to investigate the impact of electroencephalogram (EEG) electrodes on the visual quality and quantification of (18)F-FDG PET images in neurological PET/CT examinations. For this purpose, the scans of 20 epilepsy patients with EEG monitoring were used. The CT data were reconstructed with filtered backprojection (FBP) and with a metal artefact reduction (MAR) algorithm. Both data sets were used for CT-based attenuation correction (AC) of the PET data. Also, a calculated AC (CALC) technique was considered. A volume of interest (VOI)-based analysis and a voxel-based quantitative analysis were performed to compare the different AC methods. Images were also evaluated visually by two observers. It was shown with simulations and phantom measurements that from the considered AC methods, the MAR-AC can be used as the reference in this setting. The visual assessment of PET images showed local hot spots outside the brain corresponding to the locations of the electrodes when using FBP-AC. In the brain, no abnormalities were observed. The quantitative analysis showed a very good correlation between PET-FBP-AC and PET-MAR-AC, with a statistically significant positive bias in the PET-FBP-AC images of about 5-7% in most brain voxels. There was also good correlation between PET-CALC-AC and PET-MAR-AC, but in the PET-CALC-AC images, regions with both a significant positive and negative bias were observed. EEG electrodes give rise to local hot spots outside the brain and a positive quantification bias in the brain. However, when diagnosis is made by mere visual assessment, the presence of EEG electrodes does not seem to alter the diagnosis. When quantification is performed, the bias becomes an issue especially when comparing brain images with and without EEG monitoring.

  1. Brain Imaging and Brain Privacy: A Realistic Concern?

    ERIC Educational Resources Information Center

    Farah, Martha J.; Smith, M. Elizabeth; Gawuga, Cyrena; Lindsell, Dennis; Foster, Dean

    2009-01-01

    Functional neuroimaging has been used to study a wide array of psychological traits, including aspects of personality and intelligence. Progress in identifying the neural correlates of individual differences in such traits, for the sake of basic science, has moved us closer to the applied science goal of measuring them and thereby raised ethical…

  2. Look again: effects of brain images and mind-brain dualism on lay evaluations of research.

    PubMed

    Hook, Cayce J; Farah, Martha J

    2013-09-01

    Brain scans have frequently been credited with uniquely seductive and persuasive qualities, leading to claims that fMRI research receives a disproportionate share of public attention and funding. It has been suggested that functional brain images are fascinating because they contradict dualist beliefs regarding the relationship between the body and the mind. Although previous research has indicated that brain images can increase judgments of an article's scientific reasoning, the hypotheses that brain scans make research appear more interesting, surprising, or worthy of funding have not been tested. Neither has the relation between the allure of brain imaging and dualism. In the following three studies, laypersons rated both fictional research descriptions and real science news articles accompanied by brain scans, bar charts, or photographs. Across 988 participants, we found little evidence of neuroimaging's seductive allure or of its relation to self-professed dualistic beliefs. These results, taken together with other recent null findings, suggest that brain images are less powerful than has been argued.

  3. ANALYZING IMAGING BIOMARKERS FOR TRAUMATIC BRAIN INJURY USING 4D MODELING OF LONGITUDINAL MRI

    PubMed Central

    Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Chambers, Micah C.; Sadeghi, Neda; Vespa, Paul M.; van Horn, John D.; Gerig, Guido

    2013-01-01

    Quantitative imaging biomarkers are important for assessment of impact, recovery and treatment efficacy in patients with traumatic brain injury (TBI). To our knowledge, the identification of such biomarkers characterizing disease progress and recovery has been insufficiently explored in TBI due to difficulties in registration of baseline and follow-up data and automatic segmentation of tissue and lesions from multimodal, longitudinal MR image data. We propose a new methodology for computing imaging biomarkers in TBI by extending a recently proposed spatiotemporal 4D modeling approach in order to compute quantitative features of tissue change. The proposed method computes surface-based and voxel-based measurements such as cortical thickness, volume changes, and geometric deformation. We analyze the potential for clinical use of these biomarkers by correlating them with TBI-specific patient scores at the level of the whole brain and of individual regions. Our preliminary results indicate that the proposed voxel-based biomarkers are correlated with clinical outcomes. PMID:24443697

  4. Reading vascular changes in brain imaging: is dendritic calcium the key?

    PubMed

    Lauritzen, Martin

    2005-01-01

    A key goal in functional neuroimaging is to use signals that are related to local changes in metabolism and blood flow to track the neuronal correlates of mental activity. Recent findings indicate that the dendritic processing of excitatory synaptic inputs correlates more closely than the generation of spikes with brain imaging signals. The correlation is often nonlinear and context-sensitive, and cannot be generalized for every condition or brain region. The vascular signals are mainly produced by increases in intracellular calcium in neurons and possibly astrocytes, which activate important enzymes that produce vasodilators to generate increments in flow and the positive blood oxygen level dependent signal. Our understanding of the cellular mechanisms of functional imaging signals places constraints on the interpretation of the data.

  5. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  6. Images of the brain: past as prologue

    SciTech Connect

    Wagner, H.N. Jr.

    1986-12-01

    The invention of the Anger scintillation camera and the development of /sup 99m/Tc tracers brought about a tenfold increase in nuclear brain scanning between 1963 and 1973, an increase that plateaued with the introduction of x-ray computed tomography. A second growth curve began in 1976 at which time there were four PET centers in the United States, a number that grew to 60 worldwide over the next decade. PET, SPECT, MRI, and MRS are leading us into a new era of in vivo brain chemistry, based on regional bioenergetics and neurotransmission. The immediate impact is in epilepsy, stroke, brain tumors and the dementias, with psychiatric diseases becoming a major focus of research. Receptivity has become a biochemical as well as a psychological approach to mental functions. The finding of elevated D2 dopamine receptors in schizophrenia in living patients may be the forerunner of a new biochemical approach to psychiatry.

  7. Recent Developments in Diffusion Tensor Imaging of Brain

    PubMed Central

    Parekh, Mansi Bharat; Gurjarpadhye, Abhijit Achyut; Manoukian, Martin A.C.; Dubnika, Arita; Rajadas, Jayakumar; Inayathullah, Mohammed

    2015-01-01

    Magnetic resonance imaging (MRI) has come to be known as a unique radiological imaging modality because of its ability to perform tomographic imaging of body without the use of any harmful ionizing radiation. The radiologists use MRI to gain insight into the anatomy of organs, including the brain, while biomedical researchers explore the modality to gain better understanding of the brain structure and function. However, due to limited resolution and contrast, the conventional MRI fails to show the brain microstructure. Diffusion tensor imaging (DTI) harnesses the power of conventional MRI to deduce the diffusion dynamics of water molecules within the tissue and indirectly create a three-dimensional sketch of the brain anatomy. DTI enables visualization of brain tissue microstructure, which is extremely helpful in understanding various neuropathologies and neurodegenerative disorders. In this review, we briefly discuss the background and operating principles of DTI, followed by current trends in DTI applications for biomedical and clinical investigation of various brain diseases and disorders. PMID:27077135

  8. Osmotic blood-brain barrier disruption: CT and radionuclide imaging

    SciTech Connect

    Roman-Goldstein, S.; Clunie, D.A.; Stevens, J.; Hogan, R.; Monard, J.; Ramsey, F.; Neuwelt, E.A.

    1994-03-01

    The purpose of this study was to compare CT and radionuclide imaging of osmotic blood-brain barrier disruption, and to develop a quantitative method for imaging osmotic blood-brain barrier disruption and to see if iopamidol could be safety given intravenously in conjunction with blood-brain barrier disruption. Forty-five blood-brain barrier disruption procedures were imaged with CT and radionuclide scans. The scans were evaluated with visual and quantitative scales. Patients were observed for adverse effects after blood-brain barrier disruption. There was a 4% rate of seizures in this study. There was good agreement between visual CT and radionuclide grading systems. Quantitative disruption did not add useful information to visual interpretations. Nonionic iodine-based contrast medium has a lower incidence of seizures when injected intravenously in conjunction with osmotic blood-brain barrier disruption than ionic contrast material. Contrast-enhanced CT is the preferred method to image disruption because it has better spatial resolution than radionuclide techniques. 34 refs., 4 figs., 6 tabs.

  9. Image guided constitutive modeling of the silicone brain phantom

    NASA Astrophysics Data System (ADS)

    Puzrin, Alexander; Skrinjar, Oskar; Ozan, Cem; Kim, Sihyun; Mukundan, Srinivasan

    2005-04-01

    The goal of this work is to develop reliable constitutive models of the mechanical behavior of the in-vivo human brain tissue for applications in neurosurgery. We propose to define the mechanical properties of the brain tissue in-vivo, by taking the global MR or CT images of a brain response to ventriculostomy - the relief of the elevated intracranial pressure. 3D image analysis translates these images into displacement fields, which by using inverse analysis allow for the constitutive models of the brain tissue to be developed. We term this approach Image Guided Constitutive Modeling (IGCM). The presented paper demonstrates performance of the IGCM in the controlled environment: on the silicone brain phantoms closely simulating the in-vivo brain geometry, mechanical properties and boundary conditions. The phantom of the left hemisphere of human brain was cast using silicon gel. An inflatable rubber membrane was placed inside the phantom to model the lateral ventricle. The experiments were carried out in a specially designed setup in a CT scanner with submillimeter isotropic voxels. The non-communicative hydrocephalus and ventriculostomy were simulated by consequently inflating and deflating the internal rubber membrane. The obtained images were analyzed to derive displacement fields, meshed, and incorporated into ABAQUS. The subsequent Inverse Finite Element Analysis (based on Levenberg-Marquardt algorithm) allowed for optimization of the parameters of the Mooney-Rivlin non-linear elastic model for the phantom material. The calculated mechanical properties were consistent with those obtained from the element tests, providing justification for the future application of the IGCM to in-vivo brain tissue.

  10. Correlation of brain levels of progesterone and dehydroepiandrosterone with neurological recovery after traumatic brain injury in female mice.

    PubMed

    Lopez-Rodriguez, Ana Belen; Acaz-Fonseca, Estefania; Giatti, Silvia; Caruso, Donatella; Viveros, Maria-Paz; Melcangi, Roberto C; Garcia-Segura, Luis M

    2015-06-01

    Traumatic brain injury (TBI) is an important cause of disability in humans. Neuroactive steroids, such as progesterone and dehydroepiandrosterone (DHEA), are neuroprotective in TBI models. However in order to design potential neuroprotective strategies based on neuroactive steroids it is important to determine whether its brain levels are altered by TBI. In this study we have used a weight-drop model of TBI in young adult female mice to determine the levels of neuroactive steroids in the brain and plasma at 24h, 72 h and 2 weeks after injury. We have also analyzed whether the levels of neuroactive steroids after TBI correlated with the neurological score of the animals. TBI caused neurological deficit detectable at 24 and 72 h, which recovered by 2 weeks after injury. Brain levels of progesterone, tetrahydroprogesterone (THP), isopregnanolone and 17β-estradiol were decreased 24h, 72 h and 2 weeks after TBI. DHEA and brain testosterone levels presented a transient decrease at 24h after lesion. Brain levels of progesterone and DHEA showed a positive correlation with neurological recovery. Plasma analyses showed that progesterone was decreased 72 h after lesion but, in contrast with brain progesterone, its levels did not correlate with neurological deficit. These findings indicate that TBI alters the levels of neuroactive steroids in the brain with independence of its plasma levels and suggest that the pharmacological increase in the brain of the levels of progesterone and DHEA may result in the improvement of neurological recovery after TBI.

  11. Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size.

    PubMed

    Kotrschal, A; Corral-Lopez, A; Zajitschek, S; Immler, S; Maklakov, A A; Kolm, N

    2015-04-01

    Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade-offs between brain size and sexual traits. Instead, larger-brained males had higher expression of several primary and precopulatory sexual traits--they had longer genitalia, were more colourful and developed longer tails than smaller-brained males. Larger-brained males were also in better body condition when housed in single-sex groups. There was no difference in post-copulatory sexual traits between males from the large- and small-brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated. PMID:25705852

  12. Positive genetic correlation between brain size and sexual traits in male guppies artificially selected for brain size.

    PubMed

    Kotrschal, A; Corral-Lopez, A; Zajitschek, S; Immler, S; Maklakov, A A; Kolm, N

    2015-04-01

    Brain size is an energetically costly trait to develop and maintain. Investments into other costly aspects of an organism's biology may therefore place important constraints on brain size evolution. Sexual traits are often costly and could therefore be traded off against neural investment. However, brain size may itself be under sexual selection through mate choice on cognitive ability. Here, we use guppy (Poecilia reticulata) lines selected for large and small brain size relative to body size to investigate the relationship between brain size, a large suite of male primary and secondary sexual traits, and body condition index. We found no evidence for trade-offs between brain size and sexual traits. Instead, larger-brained males had higher expression of several primary and precopulatory sexual traits--they had longer genitalia, were more colourful and developed longer tails than smaller-brained males. Larger-brained males were also in better body condition when housed in single-sex groups. There was no difference in post-copulatory sexual traits between males from the large- and small-brained lines. Our data do not support the hypothesis that investment into sexual traits is an important limiting factor to brain size evolution, but instead suggest that brain size and several sexual traits are positively genetically correlated.

  13. Anatomic standardization: Linear scaling and nonlinear warping of functional brain images

    SciTech Connect

    Minoshima, S.; Koeppe, R.A.; Frey, K.A.

    1994-09-01

    An automated method was proposed for anatomic standardization of PET scans in three dimensions, which enabled objective intersubject and cross-group comparisons of functional brain images. The method involved linear scaling to correct for individual brain size and nonlinear warping to minimize regional anatomic variations among subjects. In the linear-scaling step, the anteroposterior length and width of the brain were measured on the PET images, and the brain height was estimated by a contour-matching procedure using the midsagittal plane. In the nonlinear warping step, individual gray matter locations were matched with those of a standard brain by maximizing correlation coefficients of regional profile curves determined between predefined stretching centers (predominantly in white matter) and the gray matter landmarks. The accuracy of the brain height estimation was compared with skull x-ray estimations, showing comparable accuracy and better reproducibility. Linear-scaling and nonlinear warping methods were validated using ({sup 18}F)fluorodeoxyglucose and ({sup 15}O)water images. Regional anatomic variability on the glucose images was reduced markedly. The statistical significance of activation foci in paired water images was improved in both vibratory and visual activation paradigms. A group versus group comparison following the proposed anatomic standardization revealed highly significant glucose metabolic alterations in the brains of patients with Alzheimer`s disease compared with those of a normal control group. These results suggested that the method is well suited to both research and clinical settings and can facilitate pixel-by-pixel comparisons of PET images. 26 refs., 9 figs., 1 tab.

  14. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context.

    PubMed

    Westbury, Chris F; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  15. Imaging Imageability: Behavioral Effects and Neural Correlates of Its Interaction with Affect and Context

    PubMed Central

    Westbury, Chris F.; Cribben, Ivor; Cummine, Jacqueline

    2016-01-01

    The construct of imageability refers to the extent to which a word evokes a tangible sensation. Previous research (Westbury et al., 2013) suggests that the behavioral effects attributed to a word's imageability can be largely or wholly explained by two objective constructs, contextual density and estimated affect. Here, we extend these previous findings in two ways. First, we show that closely matched stimuli on the three measures of contextual density, estimated affect, and human-judged imageability show a three-way interaction in explaining variance in LD RTs, but that imagebility accounts for no additional variance after contextual density and estimated affect are entered first. Secondly, we demonstrate that the loci and functional connectivity (via graphical models) of the brain regions implicated in processing the three variables during that task are largely over-lapping and similar. These two lines of evidence support the conclusion that the effect usually attributed to human-judged imageability is largely or entirely due to the effects of other correlated measures that are directly computable. PMID:27471455

  16. Adaptive Intuitionistic Fuzzy Enhancement of Brain Tumor MR Images

    PubMed Central

    Deng, He; Deng, Wankai; Sun, Xianping; Ye, Chaohui; Zhou, Xin

    2016-01-01

    Image enhancement techniques are able to improve the contrast and visual quality of magnetic resonance (MR) images. However, conventional methods cannot make up some deficiencies encountered by respective brain tumor MR imaging modes. In this paper, we propose an adaptive intuitionistic fuzzy sets-based scheme, called as AIFE, which takes information provided from different MR acquisitions and tries to enhance the normal and abnormal structural regions of the brain while displaying the enhanced results as a single image. The AIFE scheme firstly separates an input image into several sub images, then divides each sub image into object and background areas. After that, different novel fuzzification, hyperbolization and defuzzification operations are implemented on each object/background area, and finally an enhanced result is achieved via nonlinear fusion operators. The fuzzy implementations can be processed in parallel. Real data experiments demonstrate that the AIFE scheme is not only effectively useful to have information from images acquired with different MR sequences fused in a single image, but also has better enhancement performance when compared to conventional baseline algorithms. This indicates that the proposed AIFE scheme has potential for improving the detection and diagnosis of brain tumors. PMID:27786240

  17. Image reconstruction in transcranial photoacoustic computed tomography of the brain

    NASA Astrophysics Data System (ADS)

    Mitsuhashi, Kenji; Wang, Lihong V.; Anastasio, Mark A.

    2015-03-01

    Photoacoustic computed tomography (PACT) holds great promise for transcranial brain imaging. However, the strong reflection, scattering, attenuation, and mode-conversion of photoacoustic waves in the skull pose serious challenges to establishing the method. The lack of an appropriate model of solid media in conventional PACT imaging models, which are based on the canonical scalar wave equation, causes a significant model mismatch in the presence of the skull and thus results in deteriorated reconstructed images. The goal of this study was to develop an image reconstruction algorithm that accurately models the skull and thereby ameliorates the quality of reconstructed images. The propagation of photoacoustic waves through the skull was modeled by a viscoelastic stress tensor wave equation, which was subsequently discretized by use of a staggered grid fourth-order finite-difference time-domain (FDTD) method. The matched adjoint of the FDTD-based wave propagation operator was derived for implementing a back-projection operator. Systematic computer simulations were conducted to demonstrate the effectiveness of the back-projection operator for reconstructing images in a realistic three-dimensional PACT brain imaging system. The results suggest that the proposed algorithm can successfully reconstruct images from transcranially-measured pressure data and readily be translated to clinical PACT brain imaging applications.

  18. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome

    PubMed Central

    Chaput, Geneviève; Lajoie, Susanne P.; Naismith, Laura M.; Lavigne, Gilles

    2016-01-01

    Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI) is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1) and 8 weeks (Time 2) after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r = .31 to .44), number of postconcussion symptoms reported (r = .35 to .45), psychological distress (r = .57 to .67), and level of functionality (r = −.43 to −.29). Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2). Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms. PMID:27445604

  19. Cognitive correlates of narrative impairment in moderate traumatic brain injury.

    PubMed

    Marini, Andrea; Zettin, Marina; Galetto, Valentina

    2014-11-01

    Traumatic brain injuries (TBIs) are often associated with communicative deficits. The incoherent and impoverished language observed in non-aphasic individuals with severe TBI has been linked to a problem in the global organization of information at the text level. The present study aimed to analyze the features of narrative discourse impairment in a group of adults with moderate TBI (modTBI). 10 non-aphasic speakers with modTBI and 20 neurologically intact participants were recruited for the experiment. Their cognitive, linguistic and narrative skills were thoroughly assessed. The persons with modTBI exhibited normal phonological, lexical and grammatical skills. However, their narratives were characterized by lower levels of Lexical Informativeness and more errors of both Local and Global Coherence that, at times, made their narratives vague and ambiguous. Significant correlations were found between these narrative difficulties and the production of both perseverative and non-perseverative errors on the WCST. These disturbances confirm previous findings which suggest a deficit at the interface between cognitive and linguistic processing rather than a specific linguistic disturbance in these patients. PMID:25281884

  20. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome.

    PubMed

    Chaput, Geneviève; Lajoie, Susanne P; Naismith, Laura M; Lavigne, Gilles

    2016-01-01

    Background. Identifying which patients are most likely to be at risk of chronic pain and other postconcussion symptoms following mild traumatic brain injury (MTBI) is a difficult clinical challenge. Objectives. To examine the relationship between pain catastrophizing, defined as the exaggerated negative appraisal of a pain experience, and early MTBI outcome. Methods. This cross-sectional design included 58 patients diagnosed with a MTBI. In addition to medical chart review, postconcussion symptoms were assessed by self-report at 1 month (Time 1) and 8 weeks (Time 2) after MTBI. Pain severity, psychological distress, level of functionality, and pain catastrophizing were measured by self-report at Time 2. Results. The pain catastrophizing subscales of rumination, magnification, and helplessness were significantly correlated with pain severity (r = .31 to .44), number of postconcussion symptoms reported (r = .35 to .45), psychological distress (r = .57 to .67), and level of functionality (r = -.43 to -.29). Pain catastrophizing scores were significantly higher for patients deemed to be at high risk of postconcussion syndrome (6 or more symptoms reported at both Time 1 and Time 2). Conclusions. Higher levels of pain catastrophizing were related to adverse early MTBI outcomes. The early detection of pain catastrophizing may facilitate goal-oriented interventions to prevent or minimize the development of chronic pain and other postconcussion symptoms. PMID:27445604

  1. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    SciTech Connect

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help.

  2. Correlations between Brain Cortical Thickness and Cutaneous Pain Thresholds Are Atypical in Adults with Migraine

    PubMed Central

    Schwedt, Todd J.; Chong, Catherine D.

    2014-01-01

    Background/Objective Migraineurs have atypical pain processing, increased expectations for pain, and hypervigilance for pain. Recent studies identified correlations between brain structure and pain sensation in healthy adults. The objective of this study was to compare cortical thickness-to-pain threshold correlations in migraineurs to healthy controls. We hypothesized that migraineurs would have aberrant relationships between the anatomical neurocorrelates of pain processing and pain thresholds. Methods Pain thresholds to cutaneously applied heat were determined for 31 adult migraineurs and 32 healthy controls. Cortical thickness was determined from magnetic resonance imaging T1-weighted sequences. Regional cortical thickness-to-pain threshold correlations were determined for migraineurs and controls separately using a general linear model whole brain vertex-wise analysis. A pain threshold-by-group interaction analysis was then conducted to estimate regions where migraineurs show alterations in the pain threshold-to-cortical thickness correlations relative to healthy controls. Results Controls had negative correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left posterior cingulate/precuneus, right superior temporal, right inferior parietal, and left inferior temporal regions, and a negative correlation (p<0.01 Monte Carlo corrected) with a left superior temporal/inferior parietal region. Migraineurs had positive correlations (p<0.01 uncorrected) between pain thresholds and cortical thickness in left superior temporal/inferior parietal, right precuneus, right superior temporal/inferior parietal, and left inferior parietal regions. Cortical thickness-to-pain threshold correlations differed between migraine and control groups (p<0.01 uncorrected) for right superior temporal/inferior parietal, right precentral, left posterior cingulate/precuneus, and right inferior parietal regions and (p<0.01 Monte Carlo corrected) for a left superior

  3. Neuromagnetic correlates of developmental changes in endogenous high-frequency brain oscillations in children: a wavelet-based beamformer study.

    PubMed

    Xiang, Jing; Liu, Yang; Wang, Yingying; Kotecha, Rupesh; Kirtman, Elijah G; Chen, Yangmei; Huo, Xiaolin; Fujiwara, Hisako; Hemasilpin, Nat; DeGrauw, Ton; Rose, Douglas

    2009-06-01

    Recent studies have found that the brain generates very fast oscillations. The objective of the present study was to investigate the spectral, spatial and coherent features of high-frequency brain oscillations in the developing brain. Sixty healthy children and 20 healthy adults were studied using a 275-channel magnetoencephalography (MEG) system. MEG data were digitized at 12,000 Hz. The frequency characteristics of neuromagnetic signals in 0.5-2000 Hz were quantitatively determined with Morlet wavelet transform. The magnetic sources were volumetrically estimated with wavelet-based beamformer at 2.5 mm resolution. The neural networks of endogenous brain oscillations were analyzed with coherent imaging. Neuromagnetic activities in 8-12 Hz and 800-900 Hz were found to be the most reliable frequency bands in healthy children. The neuromagnetic signals were localized in the occipital, temporal and frontal cortices. The activities in the occipital and temporal cortices were strongly correlated in 8-12 Hz but not in 800-900 Hz. In comparison to adults, children had brain oscillations in intermingled frequency bands. Developmental changes in children were identified for both low- and high-frequency brain activities. The results of the present study suggest that the development of the brain is associated with spatial and coherent changes of endogenous brain activities in both low- and high-frequency ranges. Analysis of high-frequency neuromagnetic oscillation may provide novel insights into cerebral mechanisms of brain function. The noninvasive measurement of neuromagnetic brain oscillations in the developing brain may open a new window for analysis of brain function. PMID:19362072

  4. Physical exercise and brain responses to images of high-calorie food.

    PubMed

    Killgore, William D S; Kipman, Maia; Schwab, Zachary J; Tkachenko, Olga; Preer, Lily; Gogel, Hannah; Bark, John S; Mundy, Elizabeth A; Olson, Elizabeth A; Weber, Mareen

    2013-12-01

    Physical exercise has many health benefits, including improved cardiovascular fitness, lean muscle development, increased metabolism, and weight loss, as well as positive effects on brain functioning and cognition. Recent evidence suggests that regular physical exercise may also affect the responsiveness of reward regions of the brain to food stimuli. We examined whether the total number of minutes of self-reported weekly physical exercise was related to the responsiveness of appetite and food reward-related brain regions to visual presentations of high-calorie and low-calorie food images during functional MRI. Second, we examined whether such responses would correlate with self-reported food preferences. While undergoing scanning, 37 healthy adults (22 men) viewed images of high-calorie and low-calorie foods and provided desirability ratings for each food image. The correlation between exercise minutes per week and brain responses to the primary condition contrast (high-calorie>low-calorie) was evaluated within the amygdala, insula, and medial orbitofrontal cortex, brain regions previously implicated in responses to food images. Higher levels of exercise were significantly correlated with lower responsiveness within the medial orbitofrontal cortex and left insula to high-calorie foods. Furthermore, activation of these regions was positively correlated with preference ratings for high-calorie foods, particularly those with a savory flavor. These findings suggest that physical exercise may be associated with reduced activation in food-responsive reward regions, which are in turn associated with reduced preferences for unhealthy high-calorie foods. Physical exercise may confer secondary health benefits beyond its primary effects on cardiovascular fitness and energy expenditure.

  5. Intrinsic signal imaging of brain function using a small implantable CMOS imaging device

    NASA Astrophysics Data System (ADS)

    Haruta, Makito; Sunaga, Yoshinori; Yamaguchi, Takahiro; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2015-04-01

    A brain functional imaging technique over a long period is important to understand brain functions related to animal behavior. We have developed a small implantable CMOS imaging device for measuring brain activity in freely moving animals. This device is composed of a CMOS image sensor chip and LEDs for illumination. In this study, we demonstrated intrinsic signal imaging of blood flow using the device with a green LED light source at a peak wavelength of 535 nm, which corresponds to one of the absorption spectral peaks of blood cells. Brain activity increases regional blood flow. The device light weight of about 0.02 g makes it possible to stably measure brain activity through blood flow over a long period. The device has successfully measured the intrinsic signal related to sensory stimulation on the primary somatosensory cortex.

  6. Functional magnetic resonance imaging reflects changes in brain functioning with sedation.

    PubMed

    Starbuck, Victoria N; Kay, Gary G; Platenberg, R. Craig; Lin, Chin-Shoou; Zielinski, Brandon A

    2000-12-01

    Functional magnetic resonance imaging (fMRI) studies have demonstrated localized brain activation during cognitive tasks. Brain activation increases with task complexity and decreases with familiarity. This study investigates how sleepiness alters the relationship between brain activation and task familiarity. We hypothesize that sleepiness prevents the reduction in activation associated with practice. Twenty-nine individuals rated their sleepiness using the Stanford Sleepiness Scale before fMRI. During imaging, subjects performed the Paced Auditory Serial Addition Test, a continuous mental arithmetic task. A positive correlation was observed between self-rated sleepiness and frontal brain activation. Fourteen subjects participated in phase 2. Sleepiness was induced by evening dosing with chlorpheniramine (CP) (8 mg or 12 mg) and terfenadine (60 mg) in the morning for 3 days before the second fMRI scan. The Multiple Sleep Latency Test (MSLT) was also performed. Results revealed a significant increase in fMRI activation in proportion to the dose of CP. In contrast, for all subjects receiving placebo there was a reduction in brain activation. MSLT revealed significant daytime sleepiness for subjects receiving CP. These findings suggest that sleepiness interferes with efficiency of brain functioning. The sleepy or sedated brain shows increased oxygen utilization during performance of a familiar cognitive task. Thus, the beneficial effect of prior task exposure is lost under conditions of sedation. Copyright 2000 John Wiley & Sons, Ltd. PMID:12404614

  7. Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT.

    PubMed

    Calabria, Ferdinando; Chiaravalloti, Agostino; Di Pietro, Barbara; Grasso, Cristina; Schillaci, Orazio

    2012-06-01

    The objective of this study was to give an overview of the potential clinical utility of [18F]-L-dihydroxyphenylalanine (18F-DOPA) PET and PET/CT for imaging of brain tumors. Review articles and reference lists were used to supplement the search findings. 18F-DOPA has been investigated as a PET tracer for primary brain tumors, metastases of somatic cancer, and evaluation of relapse of pathology in patients with brain tumor after surgery and/or radiotherapy on the basis of enhanced cell proliferation. Available studies have provided encouraging preliminary results for diagnosis of brain tumors and relapse after surgery/radiotherapy. In the brain, excellent discrimination between tumor and normal tissue can be achieved because of the low physiological uptake of 18F-DOPA and the high ratio between tumor and normal hemispheric tissue. Information on evaluation of brain metastases is limited but encouraging. PET and PET/CT with 18F-DOPA are useful in diagnosing primary brain tumors and should be recommended in the diagnosis of relapse of disease after surgical treatment and/or radiotherapy. Semiquantitative analysis could improve diagnosis while correlative imaging with MRI is essential. Limits are due to low knowledge of potential pitfalls.

  8. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    PubMed

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  9. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    SciTech Connect

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-11-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF.

  10. Automated segmentation of MR images of brain tumors.

    PubMed

    Kaus, M R; Warfield, S K; Nabavi, A; Black, P M; Jolesz, F A; Kikinis, R

    2001-02-01

    An automated brain tumor segmentation method was developed and validated against manual segmentation with three-dimensional magnetic resonance images in 20 patients with meningiomas and low-grade gliomas. The automated method (operator time, 5-10 minutes) allowed rapid identification of brain and tumor tissue with an accuracy and reproducibility comparable to those of manual segmentation (operator time, 3-5 hours), making automated segmentation practical for low-grade gliomas and meningiomas. PMID:11161183

  11. Brains online: structural and functional correlates of habitual Internet use.

    PubMed

    Kühn, Simone; Gallinat, Jürgen

    2015-03-01

    In the past decades, the Internet has become one of the most important tools to gather information and communicate with other people. Excessive use is a growing concern of health practitioners. Based on the assumption that excessive Internet use bears resemblance with addictive behaviour, we hypothesized alterations of the fronto-striatal network in frequent users. On magnetic resonance imaging scans of 62 healthy male adults, we computed voxel-based morphometry to identify grey matter (GM) correlates of excessive Internet use, assessed by means of the Internet Addiction Test (IAT) and functional connectivity analysis and amplitude of low-frequency fluctuation (ALFF) measures on resting state data to explore the functional networks associated with structural alterations. We found a significant negative association between the IAT score and right frontal pole GM volume (P < 0.001, family wise error corrected). Functional connectivity of right frontal pole to left ventral striatum was positively associated with higher IAT scores. Furthermore, the IAT score was positively correlated to ALFF in bilateral ventral striatum. The alterations in the fronto-striatal circuitry associated with growing IAT scores could reflect a reduction of top-down modulation of prefrontal areas, in particular, the ability to maintain long-term goals in face of distraction. The higher activation of ventral striatum at rest may indicate a constant activation in the context of a diminished prefrontal control. The results demonstrate that excessive Internet use may be driven by neuronal circuits relevant for addictive behaviour.

  12. Imaging diagnosis of congenital brain anomalies and injuries.

    PubMed

    Pooh, Ritsuko K

    2012-12-01

    Fetal brain is rapidly developing and changing its appearance week by week during pregnancy. The brain is the most important organ but it is quite hard to observe detailed structure of this organ by conventional transabdominal sonography. Transvaginal high-resolution ultrasound and three-dimensional (3D) ultrasound has been a great diagnostic tool for evaluation of three-dimensional structure of fetal central nervous system (CNS). This method has contributed to the prenatal assessment of congenital CNS anomalies, intracranial vascular anomalies and acquired brain damage in utero. It is possible to observe the whole brain structure by magnetic resonance imaging in the post half of pregnancy but transvaginal high-resolution 3D ultrasound is certainly powerful modality as well for understanding brain anatomy. Longitudinally and carefully evaluation of neurological short- or long-term prognosis should be required according to precise prenatal diagnosis, for proper counseling and management based on precise evidence.

  13. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  14. Cerenkov and radioluminescence imaging of brain tumor specimens during neurosurgery

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello Enrico; Schiariti, Marco P.; Grana, Chiara M.; Ferrari, Mahila; Cremonesi, Marta; Boschi, Federico

    2016-05-01

    We presented the first example of Cerenkov luminescence imaging (CLI) and radioluminescence imaging (RLI) of human tumor specimens. A patient with a brain meningioma localized in the left parietal region was injected with 166 MBq of Y90-DOTATOC the day before neurosurgery. The specimens of the tumor removed during surgery were imaged using both CLI and RLI using an optical imager prototype developed in our laboratory. The system is based on a cooled electron multiplied charge coupled device coupled with an f/0.95 17-mm C-mount lens. We showed for the first time the possibility of obtaining CLI and RLI images of fresh human brain tumor specimens removed during neurosurgery.

  15. Advances in imaging explosive blast mild traumatic brain injury.

    PubMed

    Hetherington, H; Bandak, A; Ling, G; Bandak, F A

    2015-01-01

    In the past, direct physical evidence of mild traumatic brain injury (mTBI) from explosive blast has been difficult to obtain through conventional imaging modalities such as T1- and T2-weighted magnetic resonance imaging (MRI) and computed tomography (CT). Here, we review current progress in detecting evidence of brain injury from explosive blast using advanced imaging, including diffusion tensor imaging (DTI), functional MRI (fMRI), and the metabolic imaging methods such as positron emission tomography (PET) and magnetic resonance spectroscopic imaging (MRSI), where each targets different aspects of the pathology involved in mTBI. DTI provides a highly sensitive measure to detect primary changes in the microstructure of white matter tracts. fMRI enables the measurement of changes in brain activity in response to different stimuli or tasks. Remarkably, all three of these paradigms have found significant success in conventional mTBI where conventional clinical imaging frequently fails to provide definitive differences. Additionally, although used less frequently for conventional mTBI, PET has the potential to characterize a variety of neurotransmitter systems using target agents and will undoubtedly play a larger role, once the basic mechanisms of injury are better understood and techniques to identify the injury are more common. Finally, our MRSI imaging studies, although acquired at much lower spatial resolution, have demonstrated selectivity to different metabolic and physiologic processes, uncovering some of the most profound differences on an individual by individual basis, suggesting the potential for utility in the management of individual patients.

  16. Alzheimer Disease: Quantitative H-1 MR Spectroscopic Imaging of Frontoparietal Brain1

    PubMed Central

    Schuff, Norbert; Amend, Diane L.; Meyerhoff, Dieter J.; Tanabe, Jody L.; Norman, David; Fein, George; Weiner, Michael W.

    2009-01-01

    PURPOSE To replicate previous hydrogen-1 magnetic resonance (MR) spectroscopic imaging findings of metabolic abnormalities in patients with Alzheimer disease (AD), to verify that metabolic abnormalities are not an artifact of structural variations measured at MR imaging, to determine whether metabolic changes correlate with dementia severity, and to test whether MR imaging and MR spectroscopic imaging findings together improve ability to differentiate AD. MATERIALS AND METHODS MR spectroscopic imaging and MR imaging were performed in 28 patients with AD and 22 healthy elderly subjects. Spectroscopic imaging data were coregistered with MR imaging segmentation data to obtain volume-corrected metabolite concentrations. RESULTS Consistent with previous results, N-acetyl aspartate (NAA) levels were statistically significantly reduced in frontal and posterior mesial cortex of AD patients, presumably due to neuronal loss. NAA level reductions were independent of structural variations measured at MR imaging and, in parietal mesial cortex, were correlated mildly with dementia severity. Spectroscopic imaging findings of NAA level combined with MR imaging measures did not improve discrimination power for AD relative to that of MR imaging alone. CONCLUSION Reduced NAA levels in frontoparietal brain are of limited use for diagnosis of AD. However, they are not an artifact of structural variations and thus may provide useful information for the understanding of the pathologic processes underlying AD. PMID:9530304

  17. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    PubMed

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.

  18. Imaging Monoamine Oxidase in the Human Brain

    SciTech Connect

    Fowler, J. S.; Volkow, N. D.; Wang, G-J.; Logan, Jean

    1999-11-10

    Positron emission tomography (PET) studies mapping monoamine oxidase in the human brain have been used to measure the turnover rate for MAO B; to determine the minimum effective dose of a new MAO inhibitor drug lazabemide and to document MAO inhibition by cigarette smoke. These studies illustrate the power of PET and radiotracer chemistry to measure normal biochemical processes and to provide information on the effect of drug exposure on specific molecular targets.

  19. Hybrid PET/MR Imaging and Brain Connectivity

    PubMed Central

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity. PMID:26973446

  20. Hybrid PET/MR Imaging and Brain Connectivity.

    PubMed

    Aiello, Marco; Cavaliere, Carlo; Salvatore, Marco

    2016-01-01

    In recent years, brain connectivity is gaining ever-increasing interest from the interdisciplinary research community. The study of brain connectivity is characterized by a multifaceted approach providing both structural and functional evidence of the relationship between cerebral regions at different scales. Although magnetic resonance (MR) is the most established imaging modality for investigating connectivity in vivo, the recent advent of hybrid positron emission tomography (PET)/MR scanners paved the way for more comprehensive investigation of brain organization and physiology. Due to the high sensitivity and biochemical specificity of radiotracers, combining MR with PET imaging may enrich our ability to investigate connectivity by introducing the concept of metabolic connectivity and cometomics and promoting new insights on the physiological and molecular bases underlying high-level neural organization. This review aims to describe and summarize the main methods of analysis of brain connectivity employed in MR imaging and nuclear medicine. Moreover, it will discuss practical aspects and state-of-the-art techniques for exploiting hybrid PET/MR imaging to investigate the relationship of physiological processes and brain connectivity. PMID:26973446

  1. S-values calculated from a tomographic head/brain model for brain imaging

    NASA Astrophysics Data System (ADS)

    Chao, Tsi-chian; Xu, X. George

    2004-11-01

    A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.

  2. Brain tumor resection guided by fluorescence imaging and MRI image guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo; Harris, Brent T.; Leblond, Frederic; Fontaine, Kathryn M.; Ji, Songbai; Pogue, Brian W.; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2009-02-01

    Recent evidence suggests a correlation between extent of tumor resection and patient prognosis, making maximal tumor resection a clinical ideal for neurosurgeons. Our group is currently undertaking a clinical study using fluorescence-based detection of tumor coupled with a standard 3-D image guidance system to study the effectiveness of fluorescence-based detection in the neurosurgical operating room. For fluorescence-based detection, we used 5-aminolevulinic acid to induce accumulation of protoporphyrin IX in malignant tissues. In this paper, we chose one prototypical, highly fluorescent case of glioblastoma multiforme, a high-grade glioma, to highlight some of the key findings and methodology used in our study of fluorescence-based detection and resection of brain tumors.

  3. Neuroelectrical decomposition of spontaneous brain activity measured with functional magnetic resonance imaging.

    PubMed

    Liu, Zhongming; de Zwart, Jacco A; Chang, Catie; Duan, Qi; van Gelderen, Peter; Duyn, Jeff H

    2014-11-01

    Spontaneous activity in the human brain occurs in complex spatiotemporal patterns that may reflect functionally specialized neural networks. Here, we propose a subspace analysis method to elucidate large-scale networks by the joint analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data. The new approach is based on the notion that the neuroelectrical activity underlying the fMRI signal may have EEG spectral features that report on regional neuronal dynamics and interregional interactions. Applying this approach to resting healthy adults, we indeed found characteristic spectral signatures in the EEG correlates of spontaneous fMRI signals at individual brain regions as well as the temporal synchronization among widely distributed regions. These spectral signatures not only allowed us to parcel the brain into clusters that resembled the brain's established functional subdivision, but also offered important clues for disentangling the involvement of individual regions in fMRI network activity.

  4. Brain-behavior relationships in young traumatic brain injury patients: DTI metrics are highly correlated with postural control.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Geurts, Monique; Taymans, Tom; Linden, Catharine Vander; Smits-Engelsman, Bouwien C M; Sunaert, Stefan; Swinnen, Stephan P

    2010-07-01

    Traumatic brain injury (TBI) is a major cause of impairment and functional disability in children and adolescents, including deterioration in fine as well as gross motor skills. The aim of this study was to assess deficits in sensory organization and postural ability in a young group of TBI patients versus controls by using quantitative force-platform recordings, and to test whether balance deficits are related to variation in structural properties of the motor and sensory white matter pathways. Twelve patients with TBI and 14 controls (aged 8-20 years) performed the Sensory Organisation Test (SOT) protocol of the EquiTest (Neurocom). All participants were scanned using Diffusion Tensor Imaging (DTI) along with standard anatomical scans. Quantitative comparisons of DTI parameters (fractional anisotropy, axial and radial diffusivity) between TBI patients and controls were performed. Correlations between DTI parameters and SOT balance scores were determined. Findings revealed that the TBI group scored generally lower than the control group on the SOT, indicative of deficits in postural control. In the TBI group, reductions in fractional anisotropy were noted in the cerebellum, posterior thalamic radiation, and corticospinal tract. Degree of white matter deterioration was highly correlated with balance deficits. This study supports the view that DTI is a valuable tool for assessing the integrity of white matter structures and for selectively predicting functional motor deficits in TBI patients. PMID:19998364

  5. Diffusion tensor imaging correlates of reading ability in dysfluent and non-impaired readers.

    PubMed

    Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian

    2013-05-01

    Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and voxel-based analysis were used to examine correlations between reading ability and tissue structure in healthy adolescents and young adults (n=136) with a range of reading ability. Three complementary reading scores (word reading, decoding, and reading fluency) yielded positive correlations with fractional anisotropy (FA) that spanned bilateral brain regions, particularly in the frontal lobes, but also included the thalamus and parietal and temporal areas. An analysis of the unique effects of each reading assessment revealed that most of the variance in FA values could be attributed to sight word reading ability. PMID:23290366

  6. Event-Related Brain Potential Correlates of Emotional Face Processing

    ERIC Educational Resources Information Center

    Eimer, Martin; Holmes, Amanda

    2007-01-01

    Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…

  7. Midsagittal Brain Shape Correlation with Intelligence and Cognitive Performance

    ERIC Educational Resources Information Center

    Bruner, Emiliano; Martin-Loeches, Manuel; Burgaleta, Miguel; Colom, Roberto

    2011-01-01

    Brain shape might influence cognitive performance because of the relationships between functions, spatial organization, and differential volumetric development of cortical areas. Here we analyze the relationships between midsagittal brain shape variation and a set of basic psychological measures. Coordinates in 2D from 102 MRI-scanned young adult…

  8. The Correlation between Brain Development, Language Acquisition, and Cognition

    ERIC Educational Resources Information Center

    Wasserman, Leslie Haley

    2007-01-01

    There continues to be a debate whether educators should use brain research to their advantage in the classroom. This debate should not prevent educators from using their new found knowledge toward enhancing their students' learning. By understanding how the brain learns, educators are able to determine what developmental level the child is…

  9. Structural Brain Imaging in Children and Adolescents Following Prenatal Cocaine Exposure

    PubMed Central

    Akyuz, Nurunisa; Kekatpure, Minal V.; Liu, Jie; Sheinkopf, Stephen J.; Quinn, Brian T.; Lala, Meenakshi D.; Kennedy, David; Makris, Nikos; Lester, Barry M.; Kosofsky, Barry E.

    2014-01-01

    Brain morphometry of 21 children, who were followed from birth and underwent structural brain magnetic resonance imaging (MRI) at 8–10 years, were studied. This cohort included 11 children with prenatal cocaine exposure (CE) and 10 non-cocaine exposed children (NCE). We compared the CE versus NCE groups using FreeSurfer to automatically segment and quantify the volume of individual brain structures. In addition, we created a pediatric atlas specifically for this population and demonstrate the enhanced accuracy of this approach. We found an overall trend towards smaller brain volumes among CE children. The volume differences were significant for cortical gray matter, thalamus and putamen. Here, reductions in thalamic and putaminal volumes showed a robust inverse-correlation with exposure levels, thus highlighting effects on dopamine rich brain regions that form key components of brain circuitry known to play important roles in behavior and attention. Interestingly, head circumferences (HCs) at birth as well as at the time of imaging showed a tendency for smaller size among CE children. HCs at the time of imaging correlated well with the cortical volumes, for all subjects. In contrast, HCs at birth were predictive of the cortical volume only for the CE group. A subgroup of these subjects (6 CE and 4 NCE) was also scanned at 13–15 years old. In subjects who were scanned twice, we found that the trend for smaller structures continues into 13–15 years of age. We found that the differences in structural volumes between CE and NCE groups are largely diminished when the HCs are matched by study design or controlled for. Participants in this study were drawn from a unique longitudinal cohort, and while the small sample size precludes strong conclusions, the results point to reductions in HCs and in specific brain structures that persist through teenage years in children who were exposed to cocaine in utero. PMID:24994509

  10. Structural brain imaging in children and adolescents following prenatal cocaine exposure: preliminary longitudinal findings.

    PubMed

    Akyuz, Nurunisa; Kekatpure, Minal V; Liu, Jie; Sheinkopf, Stephen J; Quinn, Brian T; Lala, Meenakshi D; Kennedy, David; Makris, Nikos; Lester, Barry M; Kosofsky, Barry E

    2014-01-01

    The brain morphometry of 21 children, who were followed from birth and underwent structural brain magnetic resonance imaging at 8-10 years, was studied. This cohort included 11 children with prenatal cocaine exposure (CE) and 10 noncocaine-exposed children (NCE). We compared the CE versus NCE groups using FreeSurfer to automatically segment and quantify the volume of individual brain structures. In addition, we created a pediatric atlas specifically for this population and demonstrate the enhanced accuracy of this approach. We found an overall trend towards smaller brain volumes among CE children. The volume differences were significant for cortical gray matter, the thalamus and the putamen. Here, reductions in thalamic and putaminal volumes showed a robust inverse correlation with exposure levels, thus highlighting effects on dopamine-rich brain regions that form key components of brain circuitry known to play important roles in behavior and attention. Interestingly, head circumferences (HCs) at birth as well as at the time of imaging showed a tendency for smaller size among CE children. HCs at the time of imaging correlated well with the cortical volumes for all subjects. In contrast, HCs at birth were predictive of the cortical volume only for the CE group. A subgroup of these subjects (6 CE, 4 NCE) was also scanned at 13-15 years of age. In subjects who were scanned twice, we found that the trend for smaller structures continued into teenage years. We found that the differences in structural volumes between the CE and NCE groups are largely diminished when the HCs are controlled for or matched by study design. Participants in this study were drawn from a unique longitudinal cohort and, while the small sample size precludes strong conclusions regarding the longitudinal findings reported, the results point to reductions in HCs and in specific brain structures that persist through teenage years in children who were exposed to cocaine in utero. PMID:24994509

  11. Automated Brain Extraction from T2-weighted Magnetic Resonance Images

    PubMed Central

    Datta, Sushmita; Narayana, Ponnada A.

    2011-01-01

    Purpose To develop and implement an automated and robust technique to extract brain from T2-weighted images. Materials and Methods Magnetic resonance imaging (MRI) was performed on 75 adult volunteers to acquire dual fast spin echo (FSE) images with fat-saturation technique on a 3T Philips scanner. Histogram-derived thresholds were derived directly from the original images followed by the application of regional labeling, regional connectivity, and mathematical morphological operations to extract brain from axial late-echo FSE (T2-weighted) images. The proposed technique was evaluated subjectively by an expert and quantitatively using Bland-Altman plot and Jaccard and Dice similarity measures. Results Excellent agreement between the extracted brain volumes with the proposed technique and manual stripping by an expert was observed based on Bland-Altman plot and also as assessed by high similarity indices (Jaccard: 0.9825± 0.0045; Dice: 0.9912 ±0.0023). Conclusion Brain extraction using proposed automated methodology is robust and the results are reproducible. PMID:21448946

  12. Changing image of correlation optics: introduction.

    PubMed

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  13. White matter microstructure throughout the brain correlates with visual imagery in grapheme-color synesthesia.

    PubMed

    Whitaker, Kirstie J; Kang, Xiaojian; Herron, Timothy J; Woods, David L; Robertson, Lynn C; Alvarez, Bryan D

    2014-04-15

    In this study we show, for the first time, a correlation between the neuroanatomy of the synesthetic brain and a metric that measures behavior not exclusive to the synesthetic experience. Grapheme-color synesthetes (n=20), who experience colors triggered by viewing or thinking of specific letters or numbers, showed altered white matter microstructure, as measured using diffusion tensor imaging, compared with carefully matched non-synesthetic controls. Synesthetes had lower fractional anisotropy and higher perpendicular diffusivity when compared to non-synesthetic controls. An analysis of the mode of anisotropy suggested that these differences were likely due to the presence of more crossing pathways in the brains of synesthetes. Additionally, these differences in white matter microstructure correlated negatively, and only for synesthetes, with a measure of the vividness of their visual imagery. Synesthetes who reported the most vivid visual imagery had the lowest fractional anisotropy and highest perpendicular diffusivity. We conclude that synesthetes as a population vary along a continuum while showing categorical differences in neuroanatomy and behavior compared to non-synesthetes.

  14. Surface coil spectroscopic imaging: Time and spatial evolution of lactate production following fluid percussion brain injury

    SciTech Connect

    Cohen, Y.; Sanada, T.; Pitts, L.H.; Chang, L.H.; Nishimura, M.C.; Weinstein, P.R.; Litt, L.; James, T.L. )

    1991-01-01

    Detailed temporal and spatial distributions of lactate production are presented for graded fluid-percussion brain injury in the rat. A one-dimensional proton spin-echo spectroscopic imaging (1D SESI) technique, performed with a surface coil, is presented and evaluated. This technique, which represents a practical compromise, provides spatially localized proton nuclear magnetic resonance (NMR) brain spectra from a series of small voxels (less than 0.15 cm3) in less than 10 min, thus enabling both spatial and temporal monitoring of lactate production. These high-resolution lactate maps are correlated with hyperintense regions observed in T2-weighted images taken 10 h after impact, which, in turn, correlate with histology. The data demonstrate that, following severe trauma there is delayed production and propagation of lactate to regions of the brain that are remote from the trauma site. The extent of lactate production depends on the severity of impact. More significantly, the data show that following severe trauma, local lactate concentrations exceed 15 mumol/g, the concentration that has been claimed as the threshold for brain injury. Therefore high lactate levels cannot be ruled out a priori as a possible factor in brain injury following severe head trauma.

  15. Synchrotron radiation imaging is a powerful tool to image brain microvasculature

    SciTech Connect

    Zhang, Mengqi; Sun, Danni; Xie, Yuanyuan; Xia, Jian; Long, Hongyu; Hu, Kai; Xiao, Bo; Peng, Guanyun

    2014-03-15

    Synchrotron radiation (SR) imaging is a powerful experimental tool for micrometer-scale imaging of microcirculation in vivo. This review discusses recent methodological advances and findings from morphological investigations of cerebral vascular networks during several neurovascular pathologies. In particular, it describes recent developments in SR microangiography for real-time assessment of the brain microvasculature under various pathological conditions in small animal models. It also covers studies that employed SR-based phase-contrast imaging to acquire 3D brain images and provide detailed maps of brain vasculature. In addition, a brief introduction of SR technology and current limitations of SR sources are described in this review. In the near future, SR imaging could transform into a common and informative imaging modality to resolve subtle details of cerebrovascular function.

  16. Identifying radiotherapy target volumes in brain cancer by image analysis

    PubMed Central

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B.; Erridge, Sara C.; McLaughlin, Stephen

    2015-01-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required. PMID:26609418

  17. Registration, segmentation, and visualization of multimodal brain images.

    PubMed

    Viergever, M A; Maintz, J B; Niessen, W J; Noordmans, H J; Pluim, J P; Stokking, R; Vincken, K L

    2001-01-01

    This paper gives an overview of the studies performed at our institute over the last decade on the processing and visualization of brain images, in the context of international developments in the field. The focus is on multimodal image registration and multimodal visualization, while segmentation is touched upon as a preprocessing step for visualization. The state-of-the-art in these areas is discussed and suggestions for future research are given. PMID:11137791

  18. Flyception: imaging brain activity in freely walking fruit flies.

    PubMed

    Grover, Dhruv; Katsuki, Takeo; Greenspan, Ralph J

    2016-07-01

    Genetically encoded calcium sensors have enabled monitoring of neural activity in vivo using optical imaging techniques. Linking neural activity to complex behavior remains challenging, however, as most imaging systems require tethering the animal, which can impact the animal's behavioral repertoire. Here, we report a method for monitoring the brain activity of untethered, freely walking Drosophila melanogaster during sensorially and socially evoked behaviors to facilitate the study of neural mechanisms that underlie naturalistic behaviors. PMID:27183441

  19. Clinical applications of modern imaging technology: stereo image formation and location of brain cancer

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-05-01

    It is very important to locate the tumor for a patient, who has cancer in his brain. If he only gets X-CT or MRI pictures, the doctor does not know the size, shape location of the tumor and the relation between the tumor and other organs. This paper presents the formation of stereo images of cancer. On the basis of color code and color 3D reconstruction. The stereo images of tumor, brain and encephalic truncus are formed. The stereo image of cancer can be round on X, Y, Z-coordinates to show the shape from different directions. In order to show the location of tumor, stereo image of tumor and encephalic truncus are provided on different angles. The cross section pictures are also offered to indicate the relation of brain, tumor and encephalic truncus on cross sections. In this paper the calculating of areas, volume and the space between cancer and the side of the brain are also described.

  20. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    PubMed

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  1. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    PubMed

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification.

  2. Connectome and Maturation Profiles of the Developing Mouse Brain Using Diffusion Tensor Imaging.

    PubMed

    Ingalhalikar, Madhura; Parker, Drew; Ghanbari, Yasser; Smith, Alex; Hua, Kegang; Mori, Susumu; Abel, Ted; Davatzikos, Christos; Verma, Ragini

    2015-09-01

    This paper presents a comprehensive effort to establish a structural mouse connectome using diffusion tensor magnetic resonance imaging coupled with connectivity analysis tools. This work lays the foundation for imaging-based structural connectomics of the mouse brain, potentially facilitating a whole-brain network analysis to quantify brain changes in connectivity during development, as well as deviations from it related to genetic effects. A connectomic trajectory of maturation during postnatal ages 2-80 days is presented in the C57BL/6J mouse strain, using a whole-brain connectivity analysis, followed by investigations based on local and global network features. The global network measures of density, global efficiency, and modularity demonstrated a nonlinear relationship with age. The regional network metrics, namely degree and local efficiency, displayed a differential change in the major subcortical structures such as the thalamus and hippocampus, and cortical regions such as visual and motor cortex. Finally, the connectomes were used to derive an index of "brain connectivity index," which demonstrated a high correlation (r = 0.95) with the chronological age, indicating that brain connectivity is a good marker of normal age progression, hence valuable in detecting subtle deviations from normality caused by genetic, environmental, or pharmacological manipulations.

  3. Segmentation of confocal microscopic image of insect brain

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Jin; Lin, Chih-Yang; Ching, Yu-Tai

    2002-05-01

    Accurate analysis of insect brain structures in digital confocal microscopic images is valuable and important to biology research needs. The first step is to segment meaningful structures from images. Active contour model, known as snakes, is widely used for segmentation of medical images. A new class of active contour model called gradient vector flow snake has been introduced in 1998 to overcome some critical problems encountered in the traditional snake. In this paper, we use gradient vector flow snake to segment the mushroom body and the central body from the confocal microscopic insect brain images. First, an edge map is created from images by some edge filters. Second, a gradient vector flow field is calculated from the edge map using a computational diffusion process. Finally, a traditional snake deformation process starts until it reaches a stable configuration. User interface is also provided here, allowing users to edit the snake during deformation process, if desired. Using the gradient vector flow snake as the main segmentation method and assist with user interface, we can properly segment the confocal microscopic insect brain image for most of the cases. The identified mushroom and central body can then be used as the preliminary results toward a 3-D reconstruction process for further biology researches.

  4. Brain Imaging in Children with Neurodevelopmental Disorders.

    ERIC Educational Resources Information Center

    Mantovani, John F.

    1994-01-01

    This article reviews neuroimaging techniques such as cranial ultrasound, computed tomography scanning, and magnetic resonance imaging. Their roles in the care of children with neurodevelopmental disabilities include identification of high-risk infants, establishment of the diagnosis and prognosis in affected children, and enhancement of discussion…

  5. Iron in Chronic Brain Disorders: Imaging and Neurotherapeutic Implications

    PubMed Central

    Stankiewicz, James; Panter, Scott S; Neema, Mohit; Arora, Ashish; Batt, Courtney; Bakshi, Rohit

    2007-01-01

    Summary Iron is important for brain oxygen transport, electron transfer, neurotransmitter synthesis, and myelin production. Though iron deposition has been observed in the brain with normal aging, increased iron has also been shown in many chronic neurologic disorders including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. In vitro studies have demonstrated that excessive iron can lead to free radical production, which can promote neurotoxicity. However, the link between observed iron deposition and pathologic processes underlying various diseases of the brain is not well understood. It is not known whether excessive in vivo iron directly contributes to tissue damage or is solely an epiphenomenon. In this article we focus on the imaging of brain iron and the underlying physiology and metabolism relating to iron deposition. We conclude with a discussion of the potential implications of iron-related toxicity to neurotherapeutic development. PMID:17599703

  6. Correlation of images: technique for mandible biomechanics analysis.

    PubMed

    Yachouh, Jacques; Domergue, Sophie; Loosli, Yannick; Goudot, Patrick

    2011-09-01

    Various experimental or physicomathematical methods can be used to calculate the biomechanical behavior of the mandible. In this study, we tested a new tool for the analysis of mandibular surface strain based on the correlation of images. Five fresh explanted human mandibles were placed in a loading device allowing replication of a physiologic biting exercise. Surfaces of the mandibles were prepared with white and black lacquer. Images were recorded by 2 cameras and analyzed with an algorithm to correlate those images. With the Limess Measurement & Software system and VIC 3D software, we obtained data output concerning deformations, strains, and principal strains. This allowed us to confirm strain distribution on the mandibular corpus and to focus on weak points. Image correlation is a new technique to study mandible biomechanics, which provides accurate measurements on a wide bone surface, with high-definition images and without modification of the structure.

  7. Power of the metaphor: forty signs on brain imaging.

    PubMed

    Gocmen, Rahsan; Guler, Ezgi; Kose, Ilgaz Cagatay; Oguz, Kader K

    2015-01-01

    We retrospectively reviewed neuroradiology database at our tertiary-care hospital to search for patients with metaphoric or descriptive signs on brain computed tomography or magnetic resonance imaging. Only patients who had clinical or pathological definitive diagnosis were included in this review.

  8. Imaging brain morphology with ultrahigh-resolution optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Bizheva, Kostadinka K.; Unterhuber, Angelika; Hermann, Boris; Povazay, Boris; Sattmann, Harald; Mei, Michael; Holzwarth, Ronald; Preusser, Matthias; Reitsamer, Herbert; Seefeldt, Michael; Menzel, Ralf; Budka, Herbert; Fercher, Adolf F.; Drexler, Wolfgang

    2003-10-01

    The morphology of healthy and pathological human brain tissue, as well as the brain structural organization of various animal models has been imaged in-vitro using ultrahigh resolution optical coherence tomography (UHR OCT). Micrometer-scale OCT resolution (< 2 μm axial resolution) was achieved at different central wavelengths by interfacing three state-of-the-art broad bandwidth light sources (Ti:Al2O3, λc = 790 nm, Δλ = 260 nm and Pout = 50 mW; PCF based laser, λc = 1150 nm, Δλ = 350 nm and Pout = 2 W; Fiber laser based light source, λc = 1350 nm, Δλ = 470 nm and Pout = 4 mW) to a modular free-space OCT system, utilizing a dynamic focusing and designed for optimal performance in the appropriate wavelength regions. Images acquired from a fixed honeybee brain demonstrated the ability of UHR OCT to image the globular structure of the brain, some fine morphological details such as the nerve fiber bundles connecting the medulla (visual center) to the honeybee eyes, and the interfaces between different tissue layers in the medulla. Tomograms of various human neuropathologies demonstrated the feasibility of UHR OCT to visualize morphological details such as small (~20 μm) calcifications typical for fibrous meningioma, and enlarged nuclei of cancer cells (~10-15 μm) characteristic for many other neuropathologies. In addition UHR OCT was used to image cellular morphology in living ganglion cells.

  9. Image fusion for enhanced visualization of brain imaging

    NASA Astrophysics Data System (ADS)

    Socolinsky, Diego A.; Wolff, Lawrence B.

    1999-05-01

    We present a new formalism for the treatment and understanding of multispectral imags and multisensor fusion based on first order contrast information. Although little attention has been paid to the utility of multispectral contrast, we develop a theory for multispectral contrast that enables us to produce an optimal grayscale visualization of the first order contrast of an image with an arbitrary number of bands. In particular, we consider multiple registered visualization of multi-modal medical imaging. We demonstrate how our methodology can reveal significantly more interpretive information to a radiologist or image analyst, who can use it in a number of image understanding algorithms. Existing grayscale visualization strategies are reviewed and a discussion is given as to why our algorithm performs better. A variety of experimental results from medical imagin and remotely sensed data are presented.

  10. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  11. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    NASA Astrophysics Data System (ADS)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  12. Cartridge case image matching using effective correlation area based method.

    PubMed

    Yammen, S; Muneesawang, P

    2013-06-10

    A firearm leaves a unique impression on fired cartridge cases. The cross-correlation function plays an important role in matching the characteristic features on the cartridge case found at the crime scene with a specific firearm, for accurate firearm identification. This paper proposes that the computational forensic techniques of alignment and effective correlation area-based approaches to image matching are essential to firearm identification. Specifically, the reference and the corresponding cartridge cases are aligned according to the phase-correlation criterion on the transform domain. The informative segments of the breech face marks are identified by a cross-covariance coefficient using the coefficient value in a window located locally in the image space. The segments are then passed to the measurement of edge density for computing effective correlation areas. Experimental results on a new dataset show that the correlation system can make use of the best properties of alignment and effective correlation area-based approaches, and can attain significant improvement of image-correlation results, compared with the traditional image-matching methods for firearm identification, which employ cartridge-case samples. An analysis of image-alignment score matrices suggests that all translation and scaling parameters are estimated correctly, and contribute to the successful extraction of effective correlation areas. It was found that the proposed method has a high discriminant power, compared with the conventional correlator. This paper advocates that this method will enable forensic science to compile a large-scale image database to perform correlation of cartridge case bases, in order to identify firearms that involve pairwise alignments and comparisons.

  13. Assessment of vessel diameters for MR brain angiography processed images

    NASA Astrophysics Data System (ADS)

    Moraru, Luminita; Obreja, Cristian-Dragos; Moldovanu, Simona

    2015-12-01

    The motivation was to develop an assessment method to measure (in)visible differences between the original and the processed images in MR brain angiography as a method of evaluation of the status of the vessel segments (i.e. the existence of the occlusion or intracerebral vessels damaged as aneurysms). Generally, the image quality is limited, so we improve the performance of the evaluation through digital image processing. The goal is to determine the best processing method that allows an accurate assessment of patients with cerebrovascular diseases. A total of 10 MR brain angiography images were processed by the following techniques: histogram equalization, Wiener filter, linear contrast adjustment, contrastlimited adaptive histogram equalization, bias correction and Marr-Hildreth filter. Each original image and their processed images were analyzed into the stacking procedure so that the same vessel and its corresponding diameter have been measured. Original and processed images were evaluated by measuring the vessel diameter (in pixels) on an established direction and for the precise anatomic location. The vessel diameter is calculated using the plugin ImageJ. Mean diameter measurements differ significantly across the same segment and for different processing techniques. The best results are provided by the Wiener filter and linear contrast adjustment methods and the worst by Marr-Hildreth filter.

  14. Window classification of brain CT images in biomedical articles.

    PubMed

    Xue, Zhiyun; Antani, Sameer; Long, L Rodney; Demner-Fushman, Dina; Thoma, George R

    2012-01-01

    Effective capability to search biomedical articles based on visual properties of article images may significantly augment information retrieval in the future. In this paper, we present a new method to classify the window setting types of brain CT images. Windowing is a technique frequently used in the evaluation of CT scans, and is used to enhance contrast for the particular tissue or abnormality type being evaluated. In particular, it provides radiologists with an enhanced view of certain types of cranial abnormalities, such as the skull lesions and bone dysplasia which are usually examined using the " bone window" setting and illustrated in biomedical articles using "bone window images". Due to the inherent large variations of images among articles, it is important that the proposed method is robust. Our algorithm attained 90% accuracy in classifying images as bone window or non-bone window in a 210 image data set.

  15. Image-guided drug delivery to the brain using nanotechnology

    PubMed Central

    Ding, Hong; Wu, Fang; Nair, Madhavan P.

    2013-01-01

    Targeting across the blood--brain barrier (BBB) for treatment of central nervous system (CNS) diseases represents the most challenging aspect of, as well as one of the largest growing fields in, neuropharmaceutics. Combining nanotechnology with multiple imaging techniques has a unique role in the diagnosis and treatment (theranostics) of CNS disease. Such imaging techniques include anatomical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound (US), X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), electron microscopy, autoradiography and optical imaging as well as thermal images. In this review, we summarize and discuss recent advances in formulations, current challenges and possible hypotheses concerning the use of such theranostics across the BBB.[LM1] PMID:23817076

  16. Image updating for brain deformation compensation in tumor resection

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Olson, Jonathan D.; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2016-03-01

    Preoperative magnetic resonance images (pMR) are typically used for intraoperative guidance in image-guided neurosurgery, the accuracy of which can be significantly compromised by brain deformation. Biomechanical finite element models (FEM) have been developed to estimate whole-brain deformation and produce model-updated MR (uMR) that compensates for brain deformation at different surgical stages. Early stages of surgery, such as after craniotomy and after dural opening, have been well studied, whereas later stages after tumor resection begins remain challenging. In this paper, we present a method to simulate tumor resection by incorporating data from intraoperative stereovision (iSV). The amount of tissue resection was estimated from iSV using a "trial-and-error" approach, and the cortical shift was measured from iSV through a surface registration method using projected images and an optical flow (OF) motion tracking algorithm. The measured displacements were employed to drive the biomechanical brain deformation model, and the estimated whole-brain deformation was subsequently used to deform pMR and produce uMR. We illustrate the method using one patient example. The results show that the uMR aligned well with iSV and the overall misfit between model estimates and measured displacements was 1.46 mm. The overall computational time was ~5 min, including iSV image acquisition after resection, surface registration, modeling, and image warping, with minimal interruption to the surgical flow. Furthermore, we compare uMR against intraoperative MR (iMR) that was acquired following iSV acquisition.

  17. Intraoperative magnetic resonance imaging findings during deep brain stimulation surgery

    PubMed Central

    Huston, Olivia O.; Watson, Robert E.; Bernstein, Matt A.; McGee, Kiaran P.; Stead, S. Matt; Gorman, Debb A.; Lee, Kendall H.; Huston, John

    2012-01-01

    Object Deep brain stimulation (DBS) is an established neurosurgical technique used to treat a variety of neurological disorders, including Parkinson disease, essential tremor, dystonia, epilepsy, depression, and obsessive-compulsive disorder. This study reports on the use of intraoperative MR imaging during DBS surgery to evaluate acute hemorrhage, intracranial air, brain shift, and accuracy of lead placement. Methods During a 46-month period, 143 patients underwent 152 DBS surgeries including 289 lead placements utilizing intraoperative 1.5-T MR imaging. Imaging was supervised by an MR imaging physicist to maintain the specific absorption rate below the required level of 0.1 W/kg and always included T1 magnetization-prepared rapid gradient echo and T2* gradient echo sequences with selected use of T2 fluid attenuated inversion recovery (FLAIR) and T2 fast spin echo (FSE). Retrospective review of the intraoperative MR imaging examinations was performed to quantify the amount of hemorrhage and the amount of air introduced during the DBS surgery. Results Intraoperative MR imaging revealed 5 subdural hematomas, 3 subarachnoid hemorrhages, and 1 intra-parenchymal hemorrhage in 9 of the 143 patients. Only 1 patient experiencing a subarachnoid hemorrhage developed clinically apparent symptoms, which included transient severe headache and mild confusion. Brain shift due to intracranial air was identified in 144 separate instances. Conclusions Intraoperative MR imaging can be safely performed and may assist in demonstrating acute changes involving intracranial hemorrhage and air during DBS surgery. These findings are rarely clinically significant and typically resolve prior to follow-up imaging. Selective use of T2 FLAIR and T2 FSE imaging can confirm the presence of hemorrhage or air and preclude the need for CT examinations. PMID:21699482

  18. Detection of normal aging effects on human brain metabolite concentrations and microstructure with whole brain MR spectroscopic imaging and quantitative MR imaging

    PubMed Central

    Eylers, Vanessa V.; Maudsley, Andrew A.; Bronzlik, Paul; Dellani, Paulo R.; Lanfermann, Heinrich; Ding, Xiao-Qi

    2015-01-01

    Background and purpose Whole brain 1H-MR spectroscopic imaging (wbMRSI) was used in combination with quantitative MRI (qMRI) to study the effects of normal aging on healthy human brain metabolites and microstructure. Materials and Methods Sixty healthy volunteers aged 21 to 70 years were studied. Brain maps of the metabolites NAA, Cr, and Cho, and the tissue irreversible and reversible transverse relaxation times, T2 and T2′, were derived from the datasets. The relative metabolite concentrations [NAA], [tCr] and [Cho] as well as the values of relaxation times were measured with ROIs placed within frontal and parietal WM, centrum semiovale (CSO), splenium of the corpus callosum (SCC), hand motor area (HK), occipital GM, putamen, thalamus, pons ventral/dorsal (BSv/BSd), cerebellar white matter (CbWM) and posterior lobe (CbGM). Linear regression analysis and Pearson’s correlation tests were used to analyze the data. Results Aging resulted in decreased [NAA] in occipital GM, putamen, SCC, and BSv, and decreased [tCr] in BSd and putamen. [Cho] did not change significantly in selected brain regions. T2 increased in CbWM and decreased in SCC with aging, while the T2′ decreased in the occipital GM, HK, putamen, and increased in the SCC. Correlations were found between [NAA] and T2′ in occipital GM and putamen and between [tCr] and T2′ in the putamen. Conclusion The effects of normal aging on brain metabolites and microstructure are regional dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. PMID:26564440

  19. Brain imaging of mild cognitive impairment and Alzheimer's disease☆

    PubMed Central

    Yin, Changhao; Li, Siou; Zhao, Weina; Feng, Jiachun

    2013-01-01

    The rapidly increasing prevalence of cognitive impairment and Alzheimer's disease has the potential to create a major worldwide healthcare crisis. Structural MRI studies in patients with Alzheimer's disease and mild cognitive impairment are currently attracting considerable interest. It is extremely important to study early structural and metabolic changes, such as those in the hippocampus, entorhinal cortex, and gray matter structures in the medial temporal lobe, to allow the early detection of mild cognitive impairment and Alzheimer's disease. The microstructural integrity of white matter can be studied with diffusion tensor imaging. Increased mean diffusivity and decreased fractional anisotropy are found in subjects with white matter damage. Functional imaging studies with positron emission tomography tracer compounds enable detection of amyloid plaques in the living brain in patients with Alzheimer's disease. In this review, we will focus on key findings from brain imaging studies in mild cognitive impairment and Alzheimer's disease, including structural brain changes studied with MRI and white matter changes seen with diffusion tensor imaging, and other specific imaging methodologies will also be discussed. PMID:25206685

  20. A versatile clearing agent for multi-modal brain imaging.

    PubMed

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-05-07

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2'-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue.

  1. A versatile clearing agent for multi-modal brain imaging

    PubMed Central

    Costantini, Irene; Ghobril, Jean-Pierre; Di Giovanna, Antonino Paolo; Mascaro, Anna Letizia Allegra; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Onofri, Leonardo; Conti, Valerio; Vanzi, Francesco; Sacconi, Leonardo; Guerrini, Renzo; Markram, Henry; Iannello, Giulio; Pavone, Francesco Saverio

    2015-01-01

    Extensive mapping of neuronal connections in the central nervous system requires high-throughput µm-scale imaging of large volumes. In recent years, different approaches have been developed to overcome the limitations due to tissue light scattering. These methods are generally developed to improve the performance of a specific imaging modality, thus limiting comprehensive neuroanatomical exploration by multi-modal optical techniques. Here, we introduce a versatile brain clearing agent (2,2′-thiodiethanol; TDE) suitable for various applications and imaging techniques. TDE is cost-efficient, water-soluble and low-viscous and, more importantly, it preserves fluorescence, is compatible with immunostaining and does not cause deformations at sub-cellular level. We demonstrate the effectiveness of this method in different applications: in fixed samples by imaging a whole mouse hippocampus with serial two-photon tomography; in combination with CLARITY by reconstructing an entire mouse brain with light sheet microscopy and in translational research by imaging immunostained human dysplastic brain tissue. PMID:25950610

  2. Optical correlation of spatial-frequency-shifted images in a photorefractive BSO correlator.

    PubMed

    Tavassoli, Abtine; Becker, Michael F

    2004-03-10

    The optical cross correlation of an image with another image that was spatial-frequency shifted in one dimension was demonstrated in a photorefractive VanderLugt correlator. The first image was stored as a Fourier-transform hologram in a photorefractive Bi12SiO20 crystal (BSO) and was successively correlated with different spatial-frequency-shifted versions of a second image. We implemented the spatial-frequency shift by rotating a galvanometer mirror in an image plane, causing the Fourier transform to be shifted laterally in the BSO. We verified that the resulting operation in the BSO was an accurate complex multiplication of the shifted and the stored Fourier transforms. As many as 20 successive readouts were conducted without measurable erasure of the stored hologram. The dynamic range, saturation behavior, and other performance parameters were measured and are discussed. PMID:15046173

  3. Spatial prior in SVM-based classification of brain images

    NASA Astrophysics Data System (ADS)

    Cuingnet, Rémi; Chupin, Marie; Benali, Habib; Colliot, Olivier

    2010-03-01

    This paper introduces a general framework for spatial prior in SVM-based classification of brain images based on Laplacian regularization. Most existing methods include spatial prior by adding a feature aggregation step before the SVM classification. The problem of the aggregation step is that the individual information of each feature is lost. Our framework enables to avoid this shortcoming by including the spatial prior directly in the SVM. We demonstrate that this framework can be used to derive embedded regularization corresponding to existing methods for classification of brain images and propose an efficient way to implement them. This framework is illustrated on the classification of MR images from 55 patients with Alzheimer's disease and 82 elderly controls selected from the ADNI database. The results demonstrate that the proposed algorithm enables introducing straightforward and anatomically consistent spatial prior into the classifier.

  4. Baseline brain perfusion and brain structure in patients with major depression: a multimodal magnetic resonance imaging study

    PubMed Central

    Vasic, Nenad; Wolf, Nadine D.; Grön, Georg; Sosic-Vasic, Zrinka; Connemann, Bernhard J.; Sambataro, Fabio; von Strombeck, Anna; Lang, Dirk; Otte, Stefanie; Dudek, Manuela; Wolf, Robert C.

    2015-01-01

    Background Abnormal regional cerebral blood flow (rCBF) and grey matter volume have been frequently reported in patients with major depressive disorder (MDD). However, it is unclear to what extent structural and functional change co-occurs in patients with MDD and whether markers of neural activity, such as rCBF, can be predicted by structural change. Methods Using MRI, we investigated resting-state rCBF and brain structure in patients with MDD and healthy controls between July 2008 and January 2013. We acquired perfusion images obtained with continuous arterial spin labelling, used voxel-based morphometry to assess grey matter volume and integrated biological parametric mapping analyses to investigate the impact of brain atrophy on rCBF. Results We included 43 patients and 29 controls in our study. Frontotemporal grey matter volume was reduced in patients compared with controls. In patients, rCBF was reduced in the anterior cingulate and bilateral parahippocampal areas and increased in frontoparietal and striatal regions. These abnormalities were confirmed by analyses with brain volume as a covariate. In patients with MDD there were significant negative correlations between the extent of depressive symptoms and bilateral parahippocampal rCBF. We found a positive correlation between depressive symptoms and rCBF for right middle frontal cortical blood flow. Limitations Medication use in patients has to be considered as a limitation of our study. Conclusion Our data suggest that while changes of cerebral blood flow and brain volume co-occur in patients with MDD, structural change is not sufficient to explain altered neural activity in patients at rest. Abnormal brain structure and function in patients with MDD appear to reflect distinct levels of neuropathology. PMID:26125119

  5. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury

    PubMed Central

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J.; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  6. Connectomic and Surface-Based Morphometric Correlates of Acute Mild Traumatic Brain Injury.

    PubMed

    Dall'Acqua, Patrizia; Johannes, Sönke; Mica, Ladislav; Simmen, Hans-Peter; Glaab, Richard; Fandino, Javier; Schwendinger, Markus; Meier, Christoph; Ulbrich, Erika J; Müller, Andreas; Jäncke, Lutz; Hänggi, Jürgen

    2016-01-01

    Reduced integrity of white matter (WM) pathways and subtle anomalies in gray matter (GM) morphology have been hypothesized as mechanisms in mild traumatic brain injury (mTBI). However, findings on structural brain changes in early stages after mTBI are inconsistent and findings related to early symptoms severity are rare. Fifty-one patients were assessed with multimodal neuroimaging and clinical methods exclusively within 7 days following mTBI and compared to 53 controls. Whole-brain connectivity based on diffusion tensor imaging was subjected to network-based statistics, whereas cortical surface area, thickness, and volume based on T1-weighted MRI scans were investigated using surface-based morphometric analysis. Reduced connectivity strength within a subnetwork of 59 edges located predominantly in bilateral frontal lobes was significantly associated with higher levels of self-reported symptoms. In addition, cortical surface area decreases were associated with stronger complaints in five clusters located in bilateral frontal and postcentral cortices, and in the right inferior temporal region. Alterations in WM and GM were localized in similar brain regions and moderately-to-strongly related to each other. Furthermore, the reduction of cortical surface area in the frontal regions was correlated with poorer attentive-executive performance in the mTBI group. Finally, group differences were detected in both the WM and GM, especially when focusing on a subgroup of patients with greater complaints, indicating the importance of classifying mTBI patients according to severity of symptoms. This study provides evidence that mTBI affects not only the integrity of WM networks by means of axonal damage but also the morphology of the cortex during the initial post-injury period. These anomalies might be greater in the acute period than previously believed and the involvement of frontal brain regions was consistently pronounced in both findings. The dysconnected subnetwork

  7. Imaging of Brain Tumors With Paramagnetic Vesicles Targeted to Phosphatidylserine

    PubMed Central

    Winter, Patrick M.; Pearce, John; Chu, Zhengtao; McPherson, Christopher M.; Takigiku, Ray; Lee, Jing-Huei; Qi, Xiaoyang

    2014-01-01

    Purpose To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. Materials and Methods Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/ SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. Results The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)−1 relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). Conclusion These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS. PMID:24797437

  8. Multiscale modeling for image analysis of brain tumor studies.

    PubMed

    Bauer, Stefan; May, Christian; Dionysiou, Dimitra; Stamatakos, Georgios; Büchler, Philippe; Reyes, Mauricio

    2012-01-01

    Image-based modeling of tumor growth combines methods from cancer simulation and medical imaging. In this context, we present a novel approach to adapt a healthy brain atlas to MR images of tumor patients. In order to establish correspondence between a healthy atlas and a pathologic patient image, tumor growth modeling in combination with registration algorithms is employed. In a first step, the tumor is grown in the atlas based on a new multiscale, multiphysics model including growth simulation from the cellular level up to the biomechanical level, accounting for cell proliferation and tissue deformations. Large-scale deformations are handled with an Eulerian approach for finite element computations, which can operate directly on the image voxel mesh. Subsequently, dense correspondence between the modified atlas and patient image is established using nonrigid registration. The method offers opportunities in atlas-based segmentation of tumor-bearing brain images as well as for improved patient-specific simulation and prognosis of tumor progression. PMID:21813362

  9. A new versatile clearing method for brain imaging

    NASA Astrophysics Data System (ADS)

    Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.

    2015-03-01

    Light scattering inside biological tissue is a limitation for large volumes imaging with microscopic resolution. Based on refractive index matching, different approaches have been developed to reduce scattering in fixed tissue. High refractive index organic solvents and water-based optical clearing agents, such as Sca/e, SeeDB and CUBIC have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability to large volumes. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging blocks of dysplastic human brain transformed with CLARITY, immunostained and cleared with the TDE. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.

  10. Reflection mode photoacoustic imaging through infant skull toward noninvasive imaging of neonatal brains

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Fowlkes, J. Brian; Chamberland, David L.; Xi, Guohua; Carson, Paul L.

    2009-02-01

    The feasibility of transcranial imaging of neonatal brains with reflection mode photoacoustic technology has been explored. By using unembalmed infant skulls and fresh canine brains, experiments have been conducted to examine the ultrasound and light attenuation in the skull bone as well as consequent photoacoustic images through the skull. Mapping of blood vessels in a transcranial manner has been successfully achieved by employing the raster scan of a single-element transducer or a 2D PVDF array transducer. Experimental results indicate that noninvasive photoacoustic imaging of neonatal brain with a depth of 2 cm or more beneath the skull is feasible when working with near-infrared light. This study suggests that the emerging photoacoustic technology may become a powerful tool in the future for noninvasive diagnosis, monitoring and prognosis of disorders in prenatal or neonatal brains.

  11. Phase correlation imaging (PCI) for cell dynamics investigation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ma, Lihong; Gannavarpu, Rajshekhar; Wang, Ru; Bhaduri, Basanta; Sridharan, Shamira; Mir, Mustafa A.; Chakraborty, Arindam; Prasanth, Supriya G.; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2016-03-01

    We present a new method, referred to as phase correlation imaging (PCI), to study cell dynamics and function through temporal phase correlation analysis. PCI offers label-free, high-performance, simple-design, as well as suitability for operation in a conventional microscopy setting. PCI works without the need for controlled or synchronized photoactivation and sophisticated acquisition schemes, and only involves taking a sequence of phase images. The PCI image incorporates information on the phase fluctuations induced by both Brownian motion and deterministic motion of intracellular transport across large scales. We employed spatial light interference microscopy (SLIM) recently developed in our laboratory to experimentally measure quantitative phase information which renders the thickness and refractive index of cellular components without adding contrast agents. The acquisition process is repeated to obtain time-lapse phase images. We calculate the correlation time at each pixel for acquired time-lapse phase images and obtain the correlation time map in space. By temporal correlation analysis, PCI reveals cell dynamics information, which is complementary to quantitative phase imaging itself.

  12. Correlation mapping method of OCT for visualization blood vessels in brain

    NASA Astrophysics Data System (ADS)

    Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.

    2013-11-01

    The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.

  13. Apoptotic markers in cultured fibroblasts correlate with brain metabolites and regional brain volume in antipsychotic-naive first-episode schizophrenia and healthy controls

    PubMed Central

    Batalla, A; Bargalló, N; Gassó, P; Molina, O; Pareto, D; Mas, S; Roca, J M; Bernardo, M; Lafuente, A; Parellada, E

    2015-01-01

    Cultured fibroblasts from first-episode schizophrenia patients (FES) have shown increased susceptibility to apoptosis, which may be related to glutamate dysfunction and progressive neuroanatomical changes. Here we determine whether apoptotic markers obtained from cultured fibroblasts in FES and controls correlate with changes in brain glutamate and N-acetylaspartate (NAA) and regional brain volumes. Eleven antipsychotic-naive FES and seven age- and gender-matched controls underwent 3-Tesla magnetic resonance imaging scanning. Glutamate plus glutamine (Glx) and NAA levels were measured in the anterior cingulate (AC) and the left thalamus (LT). Hallmarks of apoptotic susceptibility (caspase-3-baseline activity, phosphatidylserine externalization and chromatin condensation) were measured in fibroblast cultures obtained from skin biopsies after inducing apoptosis with staurosporine (STS) at doses of 0.25 and 0.5 μM. Apoptotic biomarkers were correlated to brain metabolites and regional brain volume. FES and controls showed a negative correlation in the AC between Glx levels and percentages of cells with condensed chromatin (CC) after both apoptosis inductions (STS 0.5 μM: r=−0.90; P=0.001; STS 0.25 μM: r=−0.73; P=0.003), and between NAA and cells with CC (STS 0.5 μM induction r=−0.76; P=0.002; STS 0.25 μM r=−0.62; P=0.01). In addition, we found a negative correlation between percentages of cells with CC and regional brain volume in the right supratemporal cortex and post-central region (STS 0.25 and 0.5 μM; P<0.05 family-wise error corrected (FWEc)). We reveal for the first time that peripheral markers of apoptotic susceptibility may correlate with brain metabolites, Glx and NAA, and regional brain volume in FES and controls, which is consistent with the neuroprogressive theories around the onset of the schizophrenia illness. PMID:26305477

  14. Emerging techniques and technologies in brain tumor imaging.

    PubMed

    Ellingson, Benjamin M; Bendszus, Martin; Sorensen, A Gregory; Pope, Whitney B

    2014-10-01

    The purpose of this report is to describe the state of imaging techniques and technologies for detecting response of brain tumors to treatment in the setting of multicenter clinical trials. Within currently used technologies, implementation of standardized image acquisition and the use of volumetric estimates and subtraction maps are likely to help to improve tumor visualization, delineation, and quantification. Upon further development, refinement, and standardization, imaging technologies such as diffusion and perfusion MRI and amino acid PET may contribute to the detection of tumor response to treatment, particularly in specific treatment settings. Over the next few years, new technologies such as 2(3)Na MRI and CEST imaging technologies will be explored for their use in expanding the ability to quantitatively image tumor response to therapies in a clinical trial setting.

  15. Optical imaging of neural activity: from neuron to brain

    NASA Astrophysics Data System (ADS)

    Luo, Qingming; Zeng, Shaoqun; Gong, Hui

    2003-12-01

    This paper introduces the optical imaging approaches at three levels in cognitive neuroscience in the Key Laboratory of Biomedical Photonics of Ministry of Education of China. In molecular and cellular level, the advances in microscopy, molecular optical marker, and sample preparations have made possible studies that characterize the form and function of neurons in unprecedented detail. The development of two-photon excitation has enabled fluorescent imaging of small structures in the midst of highly scattering media with little photodamage. The combination of MPE and multi-electrode array provides a powerful approach for neuronal networks imaging. Intrinsic signal imaging (ISI) and laser speckle imaging (LSI) are effective approaches for intrinsic signal imaging at a given cortical site. No alternative imaging technique for the visualization of functional organization in the living brain provides a comparable spatial resolution. It is this level of resolution that reveals where processing is performed - a necessary step for the understanding of the neural code at the population level. Completely noninvasive optical imaging through the intact human skull, such as functional near infrared imaging may provide an imaging tool offering both the spatial and the temporal resolutions required to expand our knowledge of the principles underlying the remarkable performance of the human cerebral cortex.

  16. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update.

    PubMed

    Wu, Xin; Kirov, Ivan I; Gonen, Oded; Ge, Yulin; Grossman, Robert I; Lui, Yvonne W

    2016-06-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016. PMID:27183405

  17. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update.

    PubMed

    Wu, Xin; Kirov, Ivan I; Gonen, Oded; Ge, Yulin; Grossman, Robert I; Lui, Yvonne W

    2016-06-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.

  18. Individual Differences in General Intelligence Correlate with Brain Function during Nonreasoning Tasks.

    ERIC Educational Resources Information Center

    Haier, Richard J.; White, Nathan S.; Alkire, Michael T.

    2003-01-01

    Administered Raven's Advanced Progressive Matrices to 22 adults and measured cerebral glucose activity as subjects viewed videos on 2 occasions. Data provide evidence that individual differences in intelligence correlate with brain function even when the brain is engaged in non-reasoning tasks. (SLD)

  19. Finding the "g"-Factor in Brain Structure Using the Method of Correlated Vectors

    ERIC Educational Resources Information Center

    Colom, Roberto; Jung, Rex E.; Haier, Richard J.

    2006-01-01

    It is unclear whether brain mechanisms underlying human intelligence are distributed throughout the brain or mainly concentrated in the frontal lobes. Data are inconsistent possibly due, at least in part, to the different ways the construct of intelligence is measured. Here we apply the method of correlated vectors to determine how the general…

  20. Memory Impairment in Korsakoff's Psychosis: A Correlation with Brain Noradrenergic Activity.

    ERIC Educational Resources Information Center

    McEntee, William J.; Mair, Robert G.

    1978-01-01

    The concentration of the primary brain metabolite of norepinephrine is diminished in the lumbar spinal fluid of patients with Korsakoff's syndrome. The extent of its reduction is correlated with measures of memory impairment. (BB)

  1. Quantitative Magnetization Transfer Imaging as a Biomarker for Effects of Systemic Inflammation on the Brain

    PubMed Central

    Harrison, Neil A.; Cooper, Ella; Dowell, Nicholas G.; Keramida, Georgia; Voon, Valerie; Critchley, Hugo D.; Cercignani, Mara

    2015-01-01

    Background Systemic inflammation impairs brain function and is increasingly implicated in the etiology of common mental illnesses, particularly depression and Alzheimer’s disease. Immunotherapies selectively targeting proinflammatory cytokines demonstrate efficacy in a subset of patients with depression. However, efforts to identify patients most vulnerable to the central effects of inflammation are hindered by insensitivity of conventional structural magnetic resonance imaging. Methods We used quantitative magnetization transfer (qMT) imaging, a magnetic resonance imaging technique that enables quantification of changes in brain macromolecular density, together with experimentally induced inflammation to investigate effects of systemic inflammatory challenge on human brain microstructure. Imaging with qMT was performed in 20 healthy participants after typhoid vaccination and saline control injection. An additional 20 participants underwent fluorodeoxyglucose positron emission tomography following the same inflammatory challenge. Results The qMT data demonstrated that inflammation induced a rapid change in brain microstructure, reflected in increased magnetization exchange from free (water) to macromolecular-bound protons, within a discrete region of insular cortex implicated in representing internal physiologic states including inflammation. The functional significance of this change in insular microstructure was demonstrated by correlation with inflammation-induced fatigue and fluorodeoxyglucose positron emission tomography imaging, which revealed increased resting glucose metabolism within this region following the same inflammatory challenge. Conclusions Together these observations highlight a novel structural biomarker of the central physiologic and behavioral effects of mild systemic inflammation. The widespread clinical availability of magnetic resonance imaging supports the viability of qMT imaging as a clinical biomarker in trials of immunotherapeutics

  2. Alpha oscillatory correlates of motor inhibition in the aged brain

    PubMed Central

    Bönstrup, Marlene; Hagemann, Julian; Gerloff, Christian; Sauseng, Paul; Hummel, Friedhelm C.

    2015-01-01

    Exerting inhibitory control is a cognitive ability mediated by functions known to decline with age. The goal of this study is to add to the mechanistic understanding of cortical inhibition during motor control in aged brains. Based on behavioral findings of impaired inhibitory control with age we hypothesized that elderly will show a reduced or a lack of EEG alpha-power increase during tasks that require motor inhibition. Since inhibitory control over movements has been shown to rely on prior motor memory formation, we investigated cortical inhibitory processes at two points in time—early after learning and after an overnight consolidation phase and hypothesized an overnight increase of inhibitory capacities. Young and elderly participants acquired a complex finger movement sequence and in each experimental session brain activity during execution and inhibition of the sequence was recorded with multi-channel EEG. We assessed cortical processes of sustained inhibition by means of task-induced changes of alpha oscillatory power. During inhibition of the learned movement, young participants showed a significant alpha power increase at the sensorimotor cortices whereas elderly did not. Interestingly, for both groups, the overnight consolidation phase improved up-regulation of alpha power during sustained inhibition. This points to deficits in the generation and enhancement of local inhibitory mechanisms at the sensorimotor cortices in aged brains. However, the alpha power increase in both groups implies neuroplastic changes that strengthen the network of alpha power generation over time in young as well as elderly brains. PMID:26528179

  3. Neural Correlates of Socioeconomic Status in the Developing Human Brain

    ERIC Educational Resources Information Center

    Noble, Kimberly G.; Houston, Suzanne M.; Kan, Eric; Sowell, Elizabeth R.

    2012-01-01

    Socioeconomic disparities in childhood are associated with remarkable differences in cognitive and socio-emotional development during a time when dramatic changes are occurring in the brain. Yet, the neurobiological pathways through which socioeconomic status (SES) shapes development remain poorly understood. Behavioral evidence suggests that…

  4. A Primer on Brain Imaging in Developmental Psychopathology: What Is It Good For?

    ERIC Educational Resources Information Center

    Pine, Daniel S.

    2006-01-01

    This primer introduces a Special Section on brain imaging, which includes a commentary and 10 data papers presenting applications of brain imaging to questions on developmental psychopathology. This primer serves two purposes. First, the article summarizes the strength and weaknesses of various brain-imaging techniques typically employed in…

  5. Functional transcranial brain imaging by optical-resolution photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hu, Song; Maslov, Konstantin; Tsytsarev, Vassiliy; Wang, Lihong V.

    2009-07-01

    Optical-resolution photoacoustic microscopy (OR-PAM) is applied to functional brain imaging in living mice. A near-diffraction-limited bright-field optical illumination is employed to achieve micrometer lateral resolution, and a dual-wavelength measurement is utilized to extract the blood oxygenation information. The variation in hemoglobin oxygen saturation (sO2) along vascular branching has been imaged in a precapillary arteriolar tree and a postcapillary venular tree, respectively. To the best of our knowledge, this is the first report on in vivo volumetric imaging of brain microvascular morphology and oxygenation down to single capillaries through intact mouse skulls. It is anticipated that: (i) chronic imaging enabled by this minimally invasive procedure will advance the study of cortical plasticity and neurological diseases; (ii) revealing the neuroactivity-dependent changes in hemoglobin concentration and oxygenation will facilitate the understanding of neurovascular coupling at the capillary level; and (iii) combining functional OR-PAM and high-resolution blood flowmetry will have the potential to explore cellular pathways of brain energy metabolism.

  6. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  7. Brain surface maps from 3-D medical images

    NASA Astrophysics Data System (ADS)

    Lu, Jiuhuai; Hansen, Eric W.; Gazzaniga, Michael S.

    1991-06-01

    The anatomic and functional localization of brain lesions for neurologic diagnosis and brain surgery is facilitated by labeling the cortical surface in 3D images. This paper presents a method which extracts cortical contours from magnetic resonance (MR) image series and then produces a planar surface map which preserves important anatomic features. The resultant map may be used for manual anatomic localization as well as for further automatic labeling. Outer contours are determined on MR cross-sectional images by following the clear boundaries between gray matter and cerebral-spinal fluid, skipping over sulci. Carrying this contour below the surface by shrinking it along its normal produces an inner contour that alternately intercepts gray matter (sulci) and white matter along its length. This procedure is applied to every section in the set, and the image (grayscale) values along the inner contours are radially projected and interpolated onto a semi-cylindrical surface with axis normal to the slices and large enough to cover the whole brain. A planar map of the cortical surface results by flattening this cylindrical surface. The projection from inner contour to cylindrical surface is unique in the sense that different points on the inner contour correspond to different points on the cylindrical surface. As the outer contours are readily obtained by automatic segmentation, cortical maps can be made directly from an MR series.

  8. Automatic segmentation of MR brain images in multiple sclerosis patients

    NASA Astrophysics Data System (ADS)

    Avula, Ramesh T. V.; Erickson, Bradley J.

    1996-04-01

    A totally automatic scheme for segmenting brain from extracranial tissues and to classify all intracranial voxels as CSF, gray matter (GM), white matter (WM), or abnormality such as multiple sclerosis (MS) lesions is presented in this paper. It is observed that in MR head images, if a tissue's intensity values are normalized, its relationship to the other tissues is essentially constant for a given type of image. Based on this approach, the subcutaneous fat surrounding the head is normalized to classify other tissues. Spatially registered 3 mm MR head image slices of T1 weighted, fast spin echo [dual echo T2 weighted and proton density (PD) weighted images] and fast fluid attenuated inversion recovery (FLAIR) sequences are used for segmentation. Subcutaneous fat surrounding the skull was identified based on intensity thresholding from T1 weighted images. A multiparametric space map was developed for CSF, GM and WM by normalizing each tissue with respect to the mean value of corresponding subcutaneous fat on each pulse sequence. To reduce the low frequency noise without blurring the fine morphological high frequency details an anisotropic diffusion filter was applied to all images before segmentation. An initial slice by slice classification was followed by morphological operations to delete any brides connecting extracranial segments. Finally 3-dimensional region growing of the segmented brain extracts GM, WM and pathology. The algorithm was tested on sequential scans of 10 patients with MS lesions. For well registered sequences, tissues and pathology have been accurately classified. This procedure does not require user input or image training data sets, and shows promise for automatic classification of brain and pathology.

  9. Automatic segmentation of brain images: selection of region extraction methods

    NASA Astrophysics Data System (ADS)

    Gong, Leiguang; Kulikowski, Casimir A.; Mezrich, Reuben S.

    1991-07-01

    In automatically analyzing brain structures from a MR image, the choice of low level region extraction methods depends on the characteristics of both the target object and the surrounding anatomical structures in the image. The authors have experimented with local thresholding, global thresholding, and other techniques, using various types of MR images for extracting the major brian landmarks and different types of lesions. This paper describes specifically a local- binary thresholding method and a new global-multiple thresholding technique developed for MR image segmentation and analysis. The initial testing results on their segmentation performance are presented, followed by a comparative analysis of the two methods and their ability to extract different types of normal and abnormal brain structures -- the brain matter itself, tumors, regions of edema surrounding lesions, multiple sclerosis lesions, and the ventricles of the brain. The analysis and experimental results show that the global multiple thresholding techniques are more than adequate for extracting regions that correspond to the major brian structures, while local binary thresholding is helpful for more accurate delineation of small lesions such as those produced by MS, and for the precise refinement of lesion boundaries. The detection of other landmarks, such as the interhemispheric fissure, may require other techniques, such as line-fitting. These experiments have led to the formulation of a set of generic computer-based rules for selecting the appropriate segmentation packages for particular types of problems, based on which further development of an innovative knowledge- based, goal directed biomedical image analysis framework is being made. The system will carry out the selection automatically for a given specific analysis task.

  10. Software for Verifying Image-Correlation Tie Points

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Yagi, Gary

    2008-01-01

    A computer program enables assessment of the quality of tie points in the image-correlation processes of the software described in the immediately preceding article. Tie points are computed in mappings between corresponding pixels in the left and right images of a stereoscopic pair. The mappings are sometimes not perfect because image data can be noisy and parallax can cause some points to appear in one image but not the other. The present computer program relies on the availability of a left- right correlation map in addition to the usual right left correlation map. The additional map must be generated, which doubles the processing time. Such increased time can now be afforded in the data-processing pipeline, since the time for map generation is now reduced from about 60 to 3 minutes by the parallelization discussed in the previous article. Parallel cluster processing time, therefore, enabled this better science result. The first mapping is typically from a point (denoted by coordinates x,y) in the left image to a point (x',y') in the right image. The second mapping is from (x',y') in the right image to some point (x",y") in the left image. If (x,y) and(x",y") are identical, then the mapping is considered perfect. The perfect-match criterion can be relaxed by introducing an error window that admits of round-off error and a small amount of noise. The mapping procedure can be repeated until all points in each image not connected to points in the other image are eliminated, so that what remains are verified correlation data.

  11. Brain CT and MRI: differential diagnosis of imaging findings.

    PubMed

    Masdeu, Joseph C; Gadhia, Rajan; Faridar, Alireza

    2016-01-01

    Following a traditional approach, in Chapters 5 and 14-29 in the previous volume, diverse brain diseases are listed and their imaging findings described in detail. In this chapter the approach is from the imaging finding to the disease: for instance, what list of diseases can give rise to a contrast-enhancing mass in the cerebellopontine angle? Imaging findings that are reviewed in succession include the location of the lesion, its multiplicity and symmetry, its volume, ranging from atrophy to mass effect, its homogeneity, its density, measurable by computed tomography (CT), its appearance on T1, T2, and diffusion magnetic resonance imaging (MRI), and, finally, its characteristics after the infusion of intravenous contrast. A differential diagnosis for each finding is provided. While the approach adopted in this chapter is unconventional, we hope that it will be most helpful to anyone reading images. Furthermore, it could serve as the basis to create or complete image databases to guide in the interpretation of brain CT and MRI. PMID:27430457

  12. Elderly depression diagnostic of diabetic patients by brain tissue pulsatility imaging

    NASA Astrophysics Data System (ADS)

    Hachemi, Mélouka Elkateb; Remeniéras, Jean-pierre; Desmidt, Thomas; Camus, Vincent; Tranquart, François

    2010-01-01

    Pulsatile motion of brain parenchyma results from cardiac and breathing cycles and consists in a rapid displacement in systole, with slow diastolic recovery. Based on the vascular depression concept and recent studies where a correlation was found between cerebral haemodynamics and depression in the elderly, we emitted the hypothesis that tissue brain motion due to perfusion is correlated to elderly depression associated with cardiovascular risk factors. Tissue Pulsatlity Imaging (TPI) is a new ultrasound technique developed firstly at the University of Washington to assess the brain tissue motion. We used TPI technique to measure the brain displacement of two groups of elderly patients with diabetes as a vascular risk factor. The first group is composed of 11 depressed diabetic patients. The second group is composed of 12 diabetic patients without depressive symptoms. Transcranial acquisitions were performed with a 1.8 MHz ultrasound phased array probe through the right temporal bone window. The acquisition of six cardiac cycles was realized on each patient with a frame rate of 23 frames/s. Displacements estimation was performed by off-line analysis. A significant decrease in brain pulsatility was observed in the group of depressed patients compared to the group of non depressed patients. Mean displacement magnitude was about 44±7 μm in the first group and 68±13 μm in the second group.

  13. Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish

    PubMed Central

    Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui

    2015-01-01

    In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381

  14. The role of functional magnetic resonance imaging in the study of brain development, injury, and recovery in the newborn.

    PubMed

    Seghier, Mohamed L; Hüppi, Petra S

    2010-02-01

    Development of brain functions and the structural-functional correlates of brain injury remain difficult to evaluate in the young infant. Thus, new noninvasive methods capable of early functional diagnosis are needed. This review describes the use of functional magnetic resonance imaging (fMRI) for studying localization of brain function in the developing brain when standard clinical investigations are not available or conclusive. This promising neuroimaging technique has been successfully used in healthy newborns and in newborns with brain injury using different paradigms, including passive visual, somato-sensorial, and auditory stimulation. We summarize the major findings of previous fMRI studies in young infants, describe ongoing methodological challenges, and propose exciting future developments in using resting-state protocols and functional connectivity techniques to assist in evaluating early life brain function and its recovery from injury.

  15. Dopamine transporter SPECT/CT and perfusion brain SPECT imaging in idiopathic basal ganglia calcinosis.

    PubMed

    Paschali, Anna; Lakiotis, Velissarios; Messinis, Lambros; Markaki, Elli; Constantoyannis, Constantine; Ellul, John; Vassilakos, Pavlos

    2009-07-01

    A case of idiopathic basal ganglia calcification in a 56-year-old woman with parkinsonism and cognitive impairment is described. The nigrostriatal dopaminergic pathway and regional cerebral blood flow were evaluated using dopamine transporter (DAT) brain single photon emission tomography combined with a low-dose x-ray computerized tomography transmission (hybrid SPECT/CT) and Tc-99m HMPAO brain perfusion SPECT study, respectively. DAT SPECT/CT imaging revealed a reduction in DAT binding in both striatum regions coinciding with bilateral calcifications in the basal ganglia. Brain perfusion scan showed hypoperfusion in basal ganglia regions, posterior parietal cortex bilaterally, left frontopolar and dorsolateral prefrontal cortex, and left temporal lobe. These findings correlated well with the clinical condition of the patient. Mineralization may play a critical role in the pathogenesis of neuronal degeneration. Cortical perfusion changes in patients may better explain the patient's altered cognitive and motor functions.

  16. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    PubMed

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  17. Brain imaging during the transition from psychosis prodrome to schizophrenia.

    PubMed

    Chung, Yoonho; Cannon, Tyrone D

    2015-05-01

    Neuroimaging studies have identified patterns of brain abnormalities in various stages of schizophrenia, but whether these abnormalities reflect primary factors associated with the causes of illness or secondary phenomena such as medications has been unclear. Recent work conducted within the prodromal risk paradigm suggests that progressive change in brain structure and function occurs around the time when clinically high-risk individuals transition into full-blown psychosis, effects that cannot be explained by exposure to medications or illness chronicity. This article reviews recent work bearing on the question of the timing of onset and course of brain changes, focusing on structural MRI, diffusion tensor imaging, and resting state connectivity MRI, in association with the onset and course of psychosis. We conclude with a consideration of potential mechanisms underlying progressive tissue changes during the prodromal phase of schizophrenia and implications for prevention. PMID:25900551

  18. Probing the brain in autism using FMRI and diffusion tensor imaging.

    PubMed

    Kana, Rajesh K; Murdaugh, Donna L; Libero, Lauren E; Pennick, Mark R; Wadsworth, Heather M; Deshpande, Rishi; Hu, Christi P

    2011-09-12

    Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory, provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas, has now been relatively well established

  19. Bioluminescence imaging of invasive intracranial xenografts: implications for translational research and targeted therapeutics of brain tumors.

    PubMed

    Dinca, Eduard B; Voicu, Ramona V; Ciurea, Alexandru V

    2010-10-01

    Despite decades of study, the etiology of brain cancer remains elusive. However, extensive molecular characterization of primary brain tumors has been accomplished, outlining recurrent features that are proving useful for devising targeted therapies. There are far too few patients available for comparing the efficacy of therapeutic combinations, especially when variations in dosing, frequency, and sequencing are taken into account. Consequently, there is a substantial need for increasing preclinical testing throughput using clinically relevant models. We review luminescent optical imaging for its potential in facilitating in vivo assessment of intracranial tumor growth and response to therapy in rodent orthotopic xenograft models of primary brain malignancies. We review the rationale behind the need of an in vivo model, why orthotopic tumor models displaying an invasive phenotype may be a superior choice when compared to flank-implanted tumors, and what advantages may be drawn from the use of modified cells, suitable for sequential monitoring by in vivo optical imaging. Studies show that luminescent signal correlates highly both with tumor burden and Kaplan-Meier survival curves of rodents bearing intracranial xenografts. We conclude that bioluminescent imaging is a highly sensitive technique for assessment of tumor burden, response to therapy, tumor recurrence, and behavior to salvage therapy, making it a superior option for longitudinal monitoring in intracranial rodent models of primary brain tumors.

  20. Raman spectroscopic imaging as complementary tool for histopathologic assessment of brain tumors

    NASA Astrophysics Data System (ADS)

    Krafft, Christoph; Bergner, Norbert; Romeike, Bernd; Reichart, Rupert; Kalff, Rolf; Geiger, Kathrin; Kirsch, Matthias; Schackert, Gabriele; Popp, Jürgen

    2012-02-01

    Raman spectroscopy enables label-free assessment of brain tissues and tumors based on their biochemical composition. Combination of the Raman spectra with the lateral information allows grading of tumors, determining the primary tumor of brain metastases and delineating tumor margins - even during surgery after coupling with fiber optic probes. This contribution presents exemplary Raman spectra and images collected from low grade and high grade regions of astrocytic gliomas and brain metastases. A region of interest in dried tissue sections encompassed slightly increased cell density. Spectral unmixing by vertex component analysis (VCA) and N-FINDR resolved cell nuclei in score plots and revealed the spectral contributions of nucleic acids, cholesterol, cholesterol ester and proteins in endmember signatures. The results correlated with the histopathological analysis after staining the specimens by hematoxylin and eosin. For a region of interest in non-dried, buffer immersed tissue sections image processing was not affected by drying artifacts such as denaturation of biomolecules and crystallization of cholesterol. Consequently, the results correspond better to in vivo situations. Raman spectroscopic imaging of a brain metastases from renal cell carcinoma showed an endmember with spectral contributions of glycogen which can be considered as a marker for this primary tumor.

  1. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  2. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging

    NASA Astrophysics Data System (ADS)

    Singh-Moon, Rajinder P.; Roblyer, Darren M.; Bigio, Irving J.; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtained by a previously validated variation of diffuse reflectance spectroscopy, the method of optical pharmacokinetics (OP). We demonstrate a cross-correlation between the two methods for absorption extraction and drug concentration determination in both experimental tissue phantoms and freshly extracted rodent brain tissue. These methods were first used to assess intra-arterial (IA) delivery of cationic liposomes to brain tissue in Sprague Dawley rats under transient cerebral hypoperfusion. Results were found to be in agreement with previously published experimental data and pharmacokinetic models of IA drug delivery. We then applied the same scheme to evaluate IA mitoxantrone delivery to glioma-bearing rats. Good correlation was seen between OP and SFDI determined concentrations taken from normal and tumor averaged sites. This study shows the feasibility of mapping drug/tracer distributions and encourages the use of SFDI for spatial imaging of tissues for drug/tracer-tagged carrier deposition and pharmacokinetic studies.

  3. Robust Intensity Standardization in Brain Magnetic Resonance Images.

    PubMed

    De Nunzio, Giorgio; Cataldo, Rosella; Carlà, Alessandra

    2015-12-01

    The paper is focused on a tiSsue-Based Standardization Technique (SBST) of magnetic resonance (MR) brain images. Magnetic Resonance Imaging intensities have no fixed tissue-specific numeric meaning, even within the same MRI protocol, for the same body region, or even for images of the same patient obtained on the same scanner in different moments. This affects postprocessing tasks such as automatic segmentation or unsupervised/supervised classification methods, which strictly depend on the observed image intensities, compromising the accuracy and efficiency of many image analyses algorithms. A large number of MR images from public databases, belonging to healthy people and to patients with different degrees of neurodegenerative pathology, were employed together with synthetic MRIs. Combining both histogram and tissue-specific intensity information, a correspondence is obtained for each tissue across images. The novelty consists of computing three standardizing transformations for the three main brain tissues, for each tissue class separately. In order to create a continuous intensity mapping, spline smoothing of the overall slightly discontinuous piecewise-linear intensity transformation is performed. The robustness of the technique is assessed in a post hoc manner, by verifying that automatic segmentation of images before and after standardization gives a high overlapping (Dice index >0.9) for each tissue class, even across images coming from different sources. Furthermore, SBST efficacy is tested by evaluating if and how much it increases intertissue discrimination and by assessing gaussianity of tissue gray-level distributions before and after standardization. Some quantitative comparisons to already existing different approaches available in the literature are performed.

  4. Nuclear magnetic resonance imaging and spectroscopy of human brain function.

    PubMed Central

    Shulman, R G; Blamire, A M; Rothman, D L; McCarthy, G

    1993-01-01

    The techniques of in vivo magnetic resonance (MR) imaging and spectroscopy have been established over the past two decades. Recent applications of these methods to study human brain function have become a rapidly growing area of research. The development of methods using standard MR contrast agents within the cerebral vasculature has allowed measurements of regional cerebral blood volume (rCBV), which are activity dependent. Subsequent investigations linked the MR relaxation properties of brain tissue to blood oxygenation levels which are also modulated by consumption and blood flow (rCBF). These methods have allowed mapping of brain activity in human visual and motor cortex as well as in areas of the frontal lobe involved in language. The methods have high enough spatial and temporal sensitivity to be used in individual subjects. MR spectroscopy of proton and carbon-13 nuclei has been used to measure rates of glucose transport and metabolism in the human brain. The steady-state measurements of brain glucose concentrations can be used to monitor the glycolytic flux, whereas subsequent glucose metabolism--i.e., the flux into the cerebral glutamate pool--can be used to measure tricarboxylic acid cycle flux. Under visual stimulation the concentration of lactate in the visual cortex has been shown to increase by MR spectroscopy. This increase is compatible with an increase of anaerobic glycolysis under these conditions as earlier proposed from positron emission tomography studies. It is shown how MR spectroscopy can extend this understanding of brain metabolism. Images Fig. 1 Fig. 2 Fig. 3 PMID:8475050

  5. Decoding post-stroke motor function from structural brain imaging.

    PubMed

    Rondina, Jane M; Filippone, Maurizio; Girolami, Mark; Ward, Nick S

    2016-01-01

    Clinical research based on neuroimaging data has benefited from machine learning methods, which have the ability to provide individualized predictions and to account for the interaction among units of information in the brain. Application of machine learning in structural imaging to investigate diseases that involve brain injury presents an additional challenge, especially in conditions like stroke, due to the high variability across patients regarding characteristics of the lesions. Extracting data from anatomical images in a way that translates brain damage information into features to be used as input to learning algorithms is still an open question. One of the most common approaches to capture regional information from brain injury is to obtain the lesion load per region (i.e. the proportion of voxels in anatomical structures that are considered to be damaged). However, no systematic evaluation has yet been performed to compare this approach with using patterns of voxels (i.e. considering each voxel as a single feature). In this paper we compared both approaches applying Gaussian Process Regression to decode motor scores in 50 chronic stroke patients based solely on data derived from structural MRI. For both approaches we compared different ways to delimit anatomical areas: regions of interest from an anatomical atlas, the corticospinal tract, a mask obtained from fMRI analysis with a motor task in healthy controls and regions selected using lesion-symptom mapping. Our analysis showed that extracting features through patterns of voxels that represent lesion probability produced better results than quantifying the lesion load per region. In particular, from the different ways to delimit anatomical areas compared, the best performance was obtained with a combination of a range of cortical and subcortical motor areas as well as the corticospinal tract. These results will inform the appropriate methodology for predicting long term motor outcomes from early post

  6. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies.

    PubMed

    Higuchi, M; Tashiro, M; Arai, H; Okamura, N; Hara, S; Higuchi, S; Itoh, M; Shin, R W; Trojanowski, J Q; Sasaki, H

    2000-04-01

    Cerebral glucose metabolism using positron emission tomography (PET) with (18)F-fluorodeoxyglucose was examined in 11 patients with probable Alzheimer's disease (AD), 6 patients with probable, and 1 patient with autopsy-confirmed dementia with Lewy bodies (DLB) as well as in 10 age-matched normal control subjects. Among widespread cortical regions showing glucose hypometabolism in the DLB group, the metabolic reduction was most pronounced in the visual association cortex compared to that in the AD group. Using a metabolic ratio of 0.92 in the visual association cortex as a cutoff (mean-2 SD of normal control subjects), DLB could be distinguished from AD with a sensitivity of 86% and a specificity of 91%. In contrast, apolipoprotein E4 allele frequency and cerebrospinal fluid tau levels did not differ significantly between the two groups. In order to further dissect out neuropathological correlates of the dysfunctional occipital lobe, postmortem brains from 19 patients with AD and 17 with DLB as well as 11 brains from normal controls were examined. A distinct and extensive spongiform change with coexisting gliosis was variably noted throughout cerebral white matter with relative sparing of gray matter in DLB. Notably, the white matter spongiform change and gliosis was most prominently and consistently found in the occipital region of DLB, and the severity of the spongiform change in each brain region generally paralleled to the regional difference in reduced glucose metabolism between the living AD and DLB patients. These findings suggest that (1) among several potential antemortem biomarkers in the diagnosis of DLB, measures of the glucose metabolism in the occipital cortex may be an informative diagnostic aid to distinguish DLB from AD; and (2) a pathological process that generates widespread spongiform change and gliosis in long projection fibers may contribute, at least in part, to the characteristic imaging features of DLB.

  7. Brain Correlates of Self-Evaluation Deficits in Schizophrenia: A Combined Functional and Structural MRI Study.

    PubMed

    Tan, Shuping; Zhao, Yanli; Fan, Fengmei; Zou, Yizhuang; Jin, Zhen; Zen, Yawei; Zhu, Xiaolin; Yang, Fude; Tan, Yunlong; Zhou, Dongfeng

    2015-01-01

    Self-evaluation plays an important role in adaptive functioning and is a process that is typically impaired in patients with schizophrenia. Underlying neural mechanisms for this dysfunction may be associated with manifested psychosis. However, the brain substrates underlying this deficit are not well known. The present study used brain blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and gray matter voxel-based morphometry to explore the functional and structural brain correlates of self-evaluation deficits in schizophrenia. Eighteen patients with schizophrenia and 17 healthy controls were recruited and asked to judge whether a set of personality-trait adjectives were appropriate for describing themselves, a familiar other, or whether the adjectives were of positive or negative valence. Patients had slower response times for negative trait attributions than controls did; responses to positive trait attributions were faster than those for negative traits among the patient group, while no differences were observed in the control group. Control subjects showed greater activation within the dorsal medial prefrontal cortex (dMPFC) and the anterior cingulate cortex (ACC) than the patient group during the self-evaluation > semantic positivity-evaluation contrast. Patients showed greater activation mainly within the posterior cingulate gyrus (PCC) as compared to controls for the other-evaluation > semantic positivity-evaluation contrast. Furthermore, gray matter volume was reduced in the MPFC, temporal lobe, cuneus, and the dorsal lateral prefrontal cortex (DLPFC) among the patient group when compared to controls. The present study adds to previous findings regarding self- and other-referential processing in schizophrenia, providing support for neurobiological models of self-reflection impairment. PMID:26406464

  8. Functional brain imaging in 14 patients with dissociative amnesia reveals right inferolateral prefrontal hypometabolism.

    PubMed

    Brand, Matthias; Eggers, Carsten; Reinhold, Nadine; Fujiwara, Esther; Kessler, Josef; Heiss, Wolf-Dieter; Markowitsch, Hans J

    2009-10-30

    Dissociative amnesia is a condition usually characterized by severely impaired retrograde memory functioning in the absence of structural brain damage. Recent case studies nevertheless found functional brain changes in patients suffering from autobiographical-episodic memory loss in the cause of dissociative amnesia. Functional changes were demonstrated in both resting state and memory retrieval conditions. In addition, some but not all cases also showed other neuropsychological impairments beyond retrograde memory deficits. However, there is no group study available that examined potential functional brain abnormalities and accompanying neuropsychological deteriorations in larger samples of patients with dissociative retrograde amnesia. We report functional imaging and neuropsychological data acquired in 14 patients with dissociative amnesia following stressful or traumatic events. All patients suffered from autobiographical memory loss. In addition, approximately half of the patients had deficits in anterograde memory and executive functioning. Accompanying functional brain changes were measured by [18F]fluorodeoxyglucose positron emission tomography (FDG-PET). Regional glucose utilization of the patients was compared with that of 19 healthy subjects, matched for age and gender. We found significantly decreased glucose utilization in the right inferolateral prefrontal cortex in the patients. Hypometabolism in this brain region, known to be involved in retrieval of autobiographical memories and self-referential processing, may be a functional brain correlate of dissociative amnesia.

  9. Faster permutation inference in brain imaging.

    PubMed

    Winkler, Anderson M; Ridgway, Gerard R; Douaud, Gwenaëlle; Nichols, Thomas E; Smith, Stephen M

    2016-11-01

    Permutation tests are increasingly being used as a reliable method for inference in neuroimaging analysis. However, they are computationally intensive. For small, non-imaging datasets, recomputing a model thousands of times is seldom a problem, but for large, complex models this can be prohibitively slow, even with the availability of inexpensive computing power. Here we exploit properties of statistics used with the general linear model (GLM) and their distributions to obtain accelerations irrespective of generic software or hardware improvements. We compare the following approaches: (i) performing a small number of permutations; (ii) estimating the p-value as a parameter of a negative binomial distribution; (iii) fitting a generalised Pareto distribution to the tail of the permutation distribution; (iv) computing p-values based on the expected moments of the permutation distribution, approximated from a gamma distribution; (v) direct fitting of a gamma distribution to the empirical permutation distribution; and (vi) permuting a reduced number of voxels, with completion of the remainder using low rank matrix theory. Using synthetic data we assessed the different methods in terms of their error rates, power, agreement with a reference result, and the risk of taking a different decision regarding the rejection of the null hypotheses (known as the resampling risk). We also conducted a re-analysis of a voxel-based morphometry study as a real-data example. All methods yielded exact error rates. Likewise, power was similar across methods. Resampling risk was higher for methods (i), (iii) and (v). For comparable resampling risks, the method in which no permutations are done (iv) was the absolute fastest. All methods produced visually similar maps for the real data, with stronger effects being detected in the family-wise error rate corrected maps by (iii) and (v), and generally similar to the results seen in the reference set. Overall, for uncorrected p-values, method (iv

  10. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    S. Lee, B. Kross, D. Weisenberger, J. McKisson, J.S. Goddard, J.S. Baba, M.S. Smith

    2012-02-01

    Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  11. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    Lee, Seung Joon; Weisenberger, A G; McKisson, J; Goddard Jr, James Samuel; Baba, Justin S; Smith, M F

    2011-01-01

    Abstract- Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  12. Functional imaging of single synapses in brain slices.

    PubMed

    Oertner, Thomas G

    2002-11-01

    The strength of synaptic connections in the brain is not fixed, but can be modulated by numerous mechanisms. Traditionally, electrophysiology has been used to characterize connections between neurons. Electrophysiology typically reports the activity of populations of synapses, while most mechanisms of plasticity are thought to operate at the level of single synapses. Recently, two-photon laser scanning microscopy has enabled us to perform optical quantal analysis of individual synapses in intact brain tissue. Here we introduce the basic principle of the two-photon microscope and discuss its main differences compared to the confocal microscope. Using calcium imaging in dendritic spines as an example, we explain the advantages of simultaneous dual-dye imaging for quantitative calcium measurements and address two common problems, dye saturation and background fluorescence subtraction.

  13. Brain size and brain organization of the whale shark, Rhincodon typus, using magnetic resonance imaging.

    PubMed

    Yopak, Kara E; Frank, Lawrence R

    2009-01-01

    Very little is known about the brain organization of the suction filter feeder, Rhincodon typus, and how it compares to other orectolobiforms in light of its specialization as a plankton-feeder. Brain size and overall brain organization was assessed in two specimens of R. typus in relation to both phylogeny and ecology, using magnetic resonance imaging (MRI). In comparison to over 60 other chondrichthyan species, R. typus demonstrated a relatively small brain for its body size (expressed in terms of encephalization quotients and residuals), similar to the lamniforms Carcharodon carcharias, Cetorhinus maximus, and Carcharias taurus. R. typus possessed a relatively small telencephalon with some development of the dorsal pallium, which was suggestive of moderate social behavior, in addition to a relatively large diencephalon and a relatively reduced mesencephalon. The most notable characteristic of the brain of Rhincodon was a large and highly foliated cerebellum, one of the largest cerebellums within the chondrichthyan clade. Early development of the brain was qualitatively assessed using an in situ MRI scan of the brain and chondrocranium of a neonate specimen of R. typus. There was evidence that folding of the cerebellar corpus appeared in early development, although the depth and number of folds might vary ontogenetically in this species. Hierarchical cluster analysis and multidimensional scaling ordinations showed evidence of convergent evolution with the basking shark, Cetorhinus maximus, another large-bodied filter feeding elasmobranch, supporting the claim that organization of the brain is more similar in species with analogous but independently evolved lifestyles than those that share taxonomic classification. PMID:19729899

  14. Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain

    PubMed Central

    Rigosi, Elisa; Haase, Albrecht; Rath, Lisa; Anfora, Gianfranco; Vallortigara, Giorgio; Szyszka, Paul

    2015-01-01

    Left–right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left–right asymmetry in the honey bee's primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing. PMID:25673679

  15. Widefield lensless imaging through a fiber bundle via speckle correlations.

    PubMed

    Porat, Amir; Andresen, Esben Ravn; Rigneault, Hervé; Oron, Dan; Gigan, Sylvain; Katz, Ori

    2016-07-25

    Flexible fiber-optic endoscopes provide a solution for imaging at depths beyond the reach of conventional microscopes. Current endoscopes require focusing and/or scanning mechanisms at the distal end, which limit miniaturization, frame-rate, and field of view. Alternative wavefront-shaping based lensless solutions are extremely sensitive to fiber-bending. We present a lensless, bend-insensitive, single-shot imaging approach based on speckle-correlations in fiber bundles that does not require wavefront shaping. Our approach computationally retrieves the target image by analyzing a single camera frame, exploiting phase information that is inherently preserved in propagation through convnetional fiber bundles. Unlike conventional fiber-based imaging, planar objects can be imaged at variable working distances, the resulting image is unpixelated and diffraction-limited, and miniaturization is limited only by the fiber diameter. PMID:27464136

  16. PANDA: a pipeline toolbox for analyzing brain diffusion images.

    PubMed

    Cui, Zaixu; Zhong, Suyu; Xu, Pengfei; He, Yong; Gong, Gaolang

    2013-01-01

    Diffusion magnetic resonance imaging (dMRI) is widely used in both scientific research and clinical practice in in-vivo studies of the human brain. While a number of post-processing packages have been developed, fully automated processing of dMRI datasets remains challenging. Here, we developed a MATLAB toolbox named "Pipeline for Analyzing braiN Diffusion imAges" (PANDA) for fully automated processing of brain diffusion images. The processing modules of a few established packages, including FMRIB Software Library (FSL), Pipeline System for Octave and Matlab (PSOM), Diffusion Toolkit and MRIcron, were employed in PANDA. Using any number of raw dMRI datasets from different subjects, in either DICOM or NIfTI format, PANDA can automatically perform a series of steps to process DICOM/NIfTI to diffusion metrics [e.g., fractional anisotropy (FA) and mean diffusivity (MD)] that are ready for statistical analysis at the voxel-level, the atlas-level and the Tract-Based Spatial Statistics (TBSS)-level and can finish the construction of anatomical brain networks for all subjects. In particular, PANDA can process different subjects in parallel, using multiple cores either in a single computer or in a distributed computing environment, thus greatly reducing the time cost when dealing with a large number of datasets. In addition, PANDA has a friendly graphical user interface (GUI), allowing the user to be interactive and to adjust the input/output settings, as well as the processing parameters. As an open-source package, PANDA is freely available at http://www.nitrc.org/projects/panda/. This novel toolbox is expected to substantially simplify the image processing of dMRI datasets and facilitate human structural connectome studies. PMID:23439846

  17. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle.

    PubMed

    Kircher, Moritz F; de la Zerda, Adam; Jokerst, Jesse V; Zavaleta, Cristina L; Kempen, Paul J; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W; Mellinghoff, Ingo K; Holland, Eric C; Gambhir, Sanjiv S

    2012-04-15

    The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triple-modality magnetic resonance imaging-photoacoustic imaging-Raman imaging nanoparticle (termed here MPR nanoparticle) can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality-nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection.

  18. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle

    NASA Astrophysics Data System (ADS)

    de la Zerda, Adam; Kircher, Moritz F.; Jokerst, Jesse V.; Zavaleta, Cristina L.; Kempen, Paul J.; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W.; Mellinghoff, Ingo K.; Holland, Eric C.; Gambhir, Sanjiv S.

    2013-03-01

    The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triplemodality magnetic resonance imaging - photoacoustic imaging - Raman imaging nanoparticle (termed here MPR nanoparticles), can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality- nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection.

  19. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle.

    PubMed

    Kircher, Moritz F; de la Zerda, Adam; Jokerst, Jesse V; Zavaleta, Cristina L; Kempen, Paul J; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W; Mellinghoff, Ingo K; Holland, Eric C; Gambhir, Sanjiv S

    2012-05-01

    The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triple-modality magnetic resonance imaging-photoacoustic imaging-Raman imaging nanoparticle (termed here MPR nanoparticle) can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality-nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection. PMID:22504484

  20. [Functional magnetic resonance imaging of psychopharmacological brain effects: an update].

    PubMed

    Braus, D F; Brassen, S; Weimer, E; Tost, H

    2003-02-01

    Functional magnetic resonance imaging (fMRI) is well established for the examination of functional activity in the living brain. The method permits the development of functional activation maps during perceptual, cognitive and emotional efforts with a high temporal and spatial resolution. As of late there has been growing interest in using this technique to investigate regionally specific brain activity following the administration of drugs such as nicotine, cocaine, lorazepam, scopolamine, antipsychotics or antidepressants. Studies in experimental animals investigate signal changes associated with the administration of psychopharmacological substances in different brain areas using a high magnetising field (> 4 Tesla). FMRI-studies in healthy human volunteers and psychiatric patients focus on cerebral activity following acute drug administration (single challenge) and on adaptive effects of the CNS due to long- term medication. Their results provide insights into brain physiology and neuropharmacological mechanisms which are in turn relevant for preclinical pharmacological studies, responder analyses and for the investigation of pathogenetic models in psychiatric diseases. However, with these new opportunities, additional methodological considerations and limitations emerge. Besides the need of controlling motion artefacts, the influence of interfering psychological variables, an exact specification of the experimental design, a standardised analysis for data adjustment and technical limitations have to be considered. This article provides an overview of the underlying model of brain function, present applications, future possibilities and methodological limitations of fMRI for the understanding of human psychopharmacology. PMID:12579470

  1. Label-free dopamine imaging in live rat brain slices.

    PubMed

    Sarkar, Bidyut; Banerjee, Arkarup; Das, Anand Kant; Nag, Suman; Kaushalya, Sanjeev Kumar; Tripathy, Umakanta; Shameem, Mohammad; Shukla, Shubha; Maiti, Sudipta

    2014-05-21

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ~270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue.

  2. Label-Free Dopamine Imaging in Live Rat Brain Slices

    PubMed Central

    2014-01-01

    Dopaminergic neurotransmission has been investigated extensively, yet direct optical probing of dopamine has not been possible in live cells. Here we image intracellular dopamine with sub-micrometer three-dimensional resolution by harnessing its intrinsic mid-ultraviolet (UV) autofluorescence. Two-photon excitation with visible light (540 nm) in conjunction with a non-epifluorescent detection scheme is used to circumvent the UV toxicity and the UV transmission problems. The method is established by imaging dopamine in a dopaminergic cell line and in control cells (glia), and is validated by mass spectrometry. We further show that individual dopamine vesicles/vesicular clusters can be imaged in cultured rat brain slices, thereby providing a direct visualization of the intracellular events preceding dopamine release induced by depolarization or amphetamine exposure. Our technique opens up a previously inaccessible mid-ultraviolet spectral regime (excitation ∼ 270 nm, emission < 320 nm) for label-free imaging of native molecules in live tissue. PMID:24661118

  3. Imaging synaptic density in the living human brain.

    PubMed

    Finnema, Sjoerd J; Nabulsi, Nabeel B; Eid, Tore; Detyniecki, Kamil; Lin, Shu-Fei; Chen, Ming-Kai; Dhaher, Roni; Matuskey, David; Baum, Evan; Holden, Daniel; Spencer, Dennis D; Mercier, Joël; Hannestad, Jonas; Huang, Yiyun; Carson, Richard E

    2016-07-20

    Chemical synapses are the predominant neuron-to-neuron contact in the central nervous system. Presynaptic boutons of neurons contain hundreds of vesicles filled with neurotransmitters, the diffusible signaling chemicals. Changes in the number of synapses are associated with numerous brain disorders, including Alzheimer's disease and epilepsy. However, all current approaches for measuring synaptic density in humans require brain tissue from autopsy or surgical resection. We report the use of the synaptic vesicle glycoprotein 2A (SV2A) radioligand [(11)C]UCB-J combined with positron emission tomography (PET) to quantify synaptic density in the living human brain. Validation studies in a baboon confirmed that SV2A is an alternative synaptic density marker to synaptophysin. First-in-human PET studies demonstrated that [(11)C]UCB-J had excellent imaging properties. Finally, we confirmed that PET imaging of SV2A was sensitive to synaptic loss in patients with temporal lobe epilepsy. Thus, [(11)C]UCB-J PET imaging is a promising approach for in vivo quantification of synaptic density with several potential applications in diagnosis and therapeutic monitoring of neurological and psychiatric disorders. PMID:27440727

  4. Round Randomized Learning Vector Quantization for Brain Tumor Imaging.

    PubMed

    Sheikh Abdullah, Siti Norul Huda; Bohani, Farah Aqilah; Nayef, Baher H; Sahran, Shahnorbanun; Al Akash, Omar; Iqbal Hussain, Rizuana; Ismail, Fuad

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  5. Round Randomized Learning Vector Quantization for Brain Tumor Imaging

    PubMed Central

    2016-01-01

    Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807

  6. Neurovascular coupling: in vivo optical techniques for functional brain imaging

    PubMed Central

    2013-01-01

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

  7. Neurovascular coupling: in vivo optical techniques for functional brain imaging.

    PubMed

    Liao, Lun-De; Tsytsarev, Vassiliy; Delgado-Martínez, Ignacio; Li, Meng-Lin; Erzurumlu, Reha; Vipin, Ashwati; Orellana, Josue; Lin, Yan-Ren; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2013-04-30

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

  8. Baseline oxygenation in the brain: Correlation between respiratory-calibration and susceptibility methods.

    PubMed

    Fan, Audrey P; Schäfer, Andreas; Huber, Laurentius; Lampe, Leonie; von Smuda, Steffen; Möller, Harald E; Villringer, Arno; Gauthier, Claudine J

    2016-01-15

    New MRI methods for noninvasive imaging of baseline oxygen extraction fraction (OEF) in the brain show great promise. Quantitative O2 imaging (QUO2) applies a biophysical model to measure OEF in tissue from BOLD, cerebral blood flow (CBF), and end-tidal O2 (ETO2) signals acquired during two or more gas manipulations. Alternatively, quantitative susceptibility mapping (QSM) maps baseline OEF along cerebral vessels based on the deoxyhemoblogin (dHb) susceptibility shift between veins and water. However, these approaches have not been carefully compared to each other or to known physiological signals. The aims of this study were to compare OEF values by QUO2 and QSM; and to see if baseline OEF relates to BOLD and CBF changes during a visual task. Simultaneous BOLD and arterial spin labeling (ASL) scans were acquired at 7T in 11 healthy subjects continuously during hypercapnia (5% CO2, 21% O2), hyperoxia (100% O2), and carbogen (5% CO2, 95% O2) for QUO2 analysis. Separate BOLD-ASL scans were acquired during a checkerboard stimulus to identify functional changes in the visual cortex. Gradient echo phase images were also collected at rest for QSM reconstruction of OEF along cerebral veins draining the visual cortex. Mean baseline OEF was (43.5±14)% for QUO2 with two gases, (42.3±17)% for QUO2 with three gases, and (29.4±3)% for QSM across volunteers. Three-gas QUO2 values of OEF correlated with QSM values of OEF (P=0.03). However, Bland-Altman analysis revealed that QUO2 tended to measure higher baseline OEF with respect to QSM, which likely results from underestimation of the hyperoxic BOLD signal and low signal-to-noise ratio of the ASL acquisitions. Across subjects, the percent CBF change during the visual task correlated with OEF measured by 3-gas QUO2 (P<0.04); and by QSM (P=0.035), providing evidence that the new methods measure true variations in brain physiology across subjects.

  9. Three-dimensional brain metabolic imaging in patients with toxic encephalopathy

    SciTech Connect

    Callender, T.J.; Duhon, D.; Ristovv, M. ); Morrow, L. ); Subramanian, K. )

    1993-02-01

    Thirty-three workers, ages 24 to 63, developed clinical toxic encephalopathy after exposure to neurotoxins and were studied by SPECT brain scans. Five were exposed to pesticides, 13 were acutely exposed to mixtures of solvents, 8 were chronically exposed to mixtures of hazardous wastes that contained organic solvents, 2 were acutely exposed to phosgene and other toxins, and 5 had exposures to hydrogen sulfide. Twenty-nine had neuropsychological testing and all had a medical history and physical. Of the workers who had a clinical diagnosis of toxic encephalopathy, 31 (93.9%) had abnormal SPECT brain scans with the most frequent areas of abnormality being temporal lobes (67.7%), frontal lobes (61.3%), basal ganglia (45.2%), thalamus (29.0%), parietal lobes (12.9%), motorstrip (9.68%), cerebral hemisphere (6.45%), occipital lobes (3.23%), and caudate nucleus (3.23%). Twenty-three out of 29 (79.3%) neuropsychological evaluations were abnormal. Other modalities when performed included the following percentages of abnormals: NCV, 33.3%; CPT sensory nerve testing, 91.3%, vestibular function testing, 71.4%; olfactory testing, 89.2%; sleep EEG analysis, 85.7%; EEG, 8.33%; CT, 7.14%; and MRI brain scans, 28.6%. The complex of symptoms seen in toxic encephalopathy implies dysfunction involving several CNS regions. This series of patients adds to the previous experience of brain metabolic imaging and demonstrates that certain areas of the brain are typically affected despite differences in toxin structure, that these lesions can be globally defined by SPECT/PET brain scans, that these lesions correlate well with clinical and neuropsychological testing, and that such testing is a useful adjunct to previous methods. EEG and structural brain imaging such as CT and MRI are observed to have poor sensitivity in this type of patient. 32 refs., 5 tabs.

  10. Cross Correlation versus Normalized Mutual Information on Image Registration

    NASA Technical Reports Server (NTRS)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  11. Correlated Statistical Uncertainties in Coded-Aperture Imaging

    SciTech Connect

    Fleenor, Matthew C; Blackston, Matthew A; Ziock, Klaus-Peter

    2014-01-01

    In nuclear security applications, coded-aperture imagers provide the opportu- nity for a wealth of information regarding the attributes of both the radioac- tive and non-radioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be deter- mined in a quantitative and statistically meaningful manner. To address the deficiency of quantifiable errors in coded-aperture imaging, we present uncer- tainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti- mask data are included. Utilizing simulated point source data, we found that correlations (and inverse correlations) arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations (and their inverses) was heightened by the process of over-sampling, while correla- tions were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explore how statistics-based alarming in nuclear security is impacted.

  12. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  13. Tracking of electroencephalography signals across brain lobes using motion estimation and cross-correlation

    NASA Astrophysics Data System (ADS)

    Lim, Seng Hooi; Nisar, Humaira; Yap, Vooi Voon; Shim, Seong-O.

    2015-11-01

    Electroencephalography (EEG) is the signal generated by electrical activity in the human brain. EEG topographic maps (topo-maps) give an idea of brain activation. Functional connectivity helps to find functionally integrated relationship between spatially separated brain regions. Brain connectivity can be measured by several methods. The classical methods calculate the coherence and correlation of the signal. We have developed an algorithm to map functional neural connectivity in the brain by using a full search block matching motion estimation algorithm. We have used oddball paradigm to examine the flow of activation across brain lobes for a specific activity. In the first step, the EEG signal is converted into topo-maps. The flow of activation between consecutive frames is tracked using full search block motion estimation, which appears in the form of motion vectors. In the second step, vector median filtering is used to obtain a smooth motion field by removing the unwanted noise. For each topo-map, several activation paths are tracked across various brain lobes. We have also developed correlation activity maps by following the correlation coefficient paths between electrodes. These paths are selected when the correlation coefficient between electrodes is >70%. We have compared the motion estimation path with the correlation coefficient activation maps. The tracked paths obtained by using motion estimation and correlation give very similar results. The inter-subject comparison shows that four out of five subjects tracked path involves all four (occipital, temporal, parietal, frontal) brain lobes for the same stimuli. The intra-subject analysis shows that three out of five subjects show different tracked lobes for different stimuli.

  14. A novel measure to determine viewing priority and its neural correlates in the human brain.

    PubMed

    Marsman, Jan-Bernard C; Cornelissen, Frans W; Dorr, Michael; Vig, Eleonora; Barth, Erhardt; Renken, Remco J

    2016-01-01

    A key property of human visual behavior is the very frequent movement of our eyes to potentially relevant information in the environment. Observers thus continuously have to prioritize information for directing their eyes to. Research in this field has been hampered by a lack of appropriate measures and tools. Here, we propose and validate a novel measure of priority that takes advantage of the variability in the natural viewing behavior of individual observers. In short, our measure assumes that priority is low when observers' gaze behavior is inconsistent and high when it is very consistent. We calculated priority for gaze data obtained during an experiment in which participants viewed dynamic natural scenes while we simultaneously recorded their gaze position and brain activity using functional magnetic resonance imaging. Our priority measure shows only limited correlation with various saliency, surprise, and motion measures, indicating it is assessing a distinct property of visual behavior. Finally, we correlated our priority measure with the BOLD signal, thereby revealing activity in a select number of human occipital and parietal areas. This suggests the presence of a cortical network involved in computing and representing viewing priority. We conclude that our new analysis method allows for empirically establishing the priority of events in near-natural vision paradigms. PMID:27058271

  15. Brain morphology correlates of interindividual differences in conditioned fear acquisition and extinction learning.

    PubMed

    Winkelmann, Tobias; Grimm, Oliver; Pohlack, Sebastian T; Nees, Frauke; Cacciaglia, Raffaele; Dinu-Biringer, Ramona; Steiger, Frauke; Wicking, Manon; Ruttorf, Michaela; Schad, Lothar R; Flor, Herta

    2016-05-01

    The neural circuits underlying fear learning have been intensively investigated in pavlovian fear conditioning paradigms across species. These studies established a predominant role for the amygdala in fear acquisition, while the ventromedial prefrontal cortex (vmPFC) has been shown to be important in the extinction of conditioned fear. However, studies on morphological correlates of fear learning could not consistently confirm an association with these structures. The objective of the present study was to investigate if interindividual differences in morphology of the amygdala and the vmPFC are related to differences in fear acquisition and extinction learning in humans. We performed structural magnetic resonance imaging in 68 healthy participants who underwent a differential cued fear conditioning paradigm. Volumes of subcortical structures as well as cortical thickness were computed by the semi-automated segmentation software Freesurfer. Stronger acquisition of fear as indexed by skin conductance responses was associated with larger right amygdala volume, while the degree of extinction learning was positively correlated with cortical thickness of the right vmPFC. Both findings could be conceptually replicated in an independent sample of 53 subjects. The data complement our understanding of the role of human brain morphology in the mechanisms of the acquisition and extinction of conditioned fear. PMID:25716297

  16. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface.

    PubMed

    Young, Brittany M; Nigogosyan, Zack; Walton, Léo M; Song, Jie; Nair, Veena A; Grogan, Scott W; Tyler, Mitchell E; Edwards, Dorothy F; Caldera, Kristin; Sattin, Justin A; Williams, Justin C; Prabhakaran, Vivek

    2014-01-01

    This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.

  17. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface

    PubMed Central

    Young, Brittany M.; Nigogosyan, Zack; Walton, Léo M.; Song, Jie; Nair, Veena A.; Grogan, Scott W.; Tyler, Mitchell E.; Edwards, Dorothy F.; Caldera, Kristin; Sattin, Justin A.; Williams, Justin C.; Prabhakaran, Vivek

    2014-01-01

    This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions. PMID:25076886

  18. The Dynamic Dielectric at a Brain Functional Site and an EM Wave Approach to Functional Brain Imaging

    PubMed Central

    Li, X. P.; Xia, Q.; Qu, D.; Wu, T. C.; Yang, D. G.; Hao, W. D.; Jiang, X.; Li, X. M.

    2014-01-01

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging. PMID:25367217

  19. The dynamic dielectric at a brain functional site and an EM wave approach to functional brain imaging.

    PubMed

    Li, X P; Xia, Q; Qu, D; Wu, T C; Yang, D G; Hao, W D; Jiang, X; Li, X M

    2014-11-04

    Functional brain imaging has tremendous applications. The existing methods for functional brain imaging include functional Magnetic Resonant Imaging (fMRI), scalp electroencephalography (EEG), implanted EEG, magnetoencephalography (MEG) and Positron Emission Tomography (PET), which have been widely and successfully applied to various brain imaging studies. To develop a new method for functional brain imaging, here we show that the dielectric at a brain functional site has a dynamic nature, varying with local neuronal activation as the permittivity of the dielectric varies with the ion concentration of the extracellular fluid surrounding neurons in activation. Therefore, the neuronal activation can be sensed by a radiofrequency (RF) electromagnetic (EM) wave propagating through the site as the phase change of the EM wave varies with the permittivity. Such a dynamic nature of the dielectric at a brain functional site provides the basis for an RF EM wave approach to detecting and imaging neuronal activation at brain functional sites, leading to an RF EM wave approach to functional brain imaging.

  20. Volumetric and Correlational Implications of Brain Parcellation Method Selection: A 3-Way Comparison in the Frontal Lobes

    PubMed Central

    Cox, Simon R.; McKenzie, Tahlia I.; Aribisala, Benjamin S.; Royle, Natalie A.; MacPherson, Sarah E.; MacLullich, Alasdair M.J.; Bastin, Mark E.; Wardlaw, Joanna M.; Deary, Ian J.; Ferguson, Karen J.

    2016-01-01

    Objective The aims of this study were to compare distinct brain frontal lobe parcellation methods across 90 brain magnetic resonance imaging scans and examine their associations with cognition in older age. Methods Three parcellation methods (Manual, FreeSurfer, and Stereology) were applied to T1-weighted magnetic resonance imaging of 90 older men, aged ∼73 years. A measure of general fluid intelligence (gf) associated with dorsolateral frontal regions was also derived from a contemporaneous psychological test battery. Results Despite highly discordant raw volumes for the same nominal regions, Manual and FreeSurfer (but not Stereology) left dorsolateral measures were significantly correlated with gf (r > 0.22), whereas orbital and inferior lateral volumes were not, consistent with the hypothesized frontal localization of gf. Conclusions Individual differences in specific frontal lobe brain volumes—variously measured—show consistent associations with cognitive ability in older age. Importantly, differences in parcellation protocol for some regions that may impact the outcome of brain-cognition analyses are discussed. PMID:26466114

  1. Cognitive correlates of white matter lesion load and brain atrophy

    PubMed Central

    Dong, Chuanhui; Nabizadeh, Nooshin; Caunca, Michelle; Cheung, Ying Kuen; Rundek, Tatjana; Elkind, Mitchell S.V.; DeCarli, Charles; Sacco, Ralph L.; Stern, Yaakov

    2015-01-01

    Objective: We investigated white matter lesion load and global and regional brain volumes in relation to domain-specific cognitive performance in the stroke-free Northern Manhattan Study (NOMAS) population. Methods: We quantified white matter hyperintensity volume (WMHV), total cerebral volume (TCV), and total lateral ventricular (TLV) volume, as well as hippocampal and cortical gray matter (GM) lobar volumes in a subgroup. We used general linear models to examine MRI markers in relation to domain-specific cognitive performance, adjusting for key covariates. Results: MRI and cognitive data were available for 1,163 participants (mean age 70 ± 9 years; 60% women; 66% Hispanic, 17% black, 15% white). Across the entire sample, those with greater WMHV had worse processing speed. Those with larger TLV volume did worse on episodic memory, processing speed, and semantic memory tasks, and TCV did not explain domain-specific variability in cognitive performance independent of other measures. Age was an effect modifier, and stratified analysis showed that TCV and WMHV explained variability in some domains above age 70. Smaller hippocampal volume was associated with worse performance across domains, even after adjusting for APOE ε4 and vascular risk factors, whereas smaller frontal lobe volumes were only associated with worse executive function. Conclusions: In this racially/ethnically diverse, community-based sample, white matter lesion load was inversely associated with cognitive performance, independent of brain atrophy. Lateral ventricular, hippocampal, and lobar GM volumes explained domain-specific variability in cognitive performance. PMID:26156514

  2. Preliminary study of digital image correlation based optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Vuong, Barry; Wen, Xiao-Yan; Yang, Victor

    2013-06-01

    Optical coherence elastography (OCE) provides deformation or material properties mapping of soft tissue, which is important for morphological and pathological studies of the tissue. An OCE technique is developed based on digital image correlation. System calibration and measurement error evaluation are performed. The displacement measurement of 0.6 μm to over 100 μm was obtained through a phantom experiment. The capability of this OCE technique for differentiation of stiffness was evaluated by imaging a two-components phantom. OCE imaging of an aneurysm sample shows promising results for characterization of composites of aneurismal wall in the future.

  3. Pitfalls and Limitations of PET/CT in Brain Imaging.

    PubMed

    Salmon, Eric; Bernard Ir, Claire; Hustinx, Roland

    2015-11-01

    Neurologic applications were at the forefront of PET imaging when the technique was developed in the mid-1970s. Although oncologic indications have become prominent in terms of number of studies performed worldwide, neurology remains a major field in which functional imaging provides unique information, both for clinical and research purposes. The evaluation of glucose metabolism using FDG remains the most frequent exploration, but in recent years, alternative radiotracers have been developed, including fluorinated amino acid analogues for primary brain tumor imaging and fluorinated compounds for assessing the amyloid deposits in patients with suspected Alzheimer disease. As the brain is enclosed in the skull, which presents fixed landmarks, it is relatively easy to coregister images obtained with various cross-sectional imaging methods, either functional or anatomical, with a relatively high accuracy and robustness. Nevertheless, PET in neurology has fully benefited from the advent of hybrid imaging. Attenuation and scatter correction is now much faster and equally accurate, using CT as compared with the traditional transmission scan using an external radioactive source. The perfect coregistration with the CT data, which is now systematically performed, also provides its own set of valuable information, for instance regarding cerebral atrophy. However, hybrid imaging in neurology comes with pitfalls and limitations, in addition to those that are well known, for example, blood glucose levels or psychotropic drugs that greatly affect the physiological FDG uptake. Movements of the patient's head, either during the PET acquisition or between the PET and the CT acquisitions will generate artifacts that may be very subtle yet lead to erroneous interpretation of the study. Similarly, quantitative analysis, such as voxel-based analyses, may prove very helpful in improving the diagnostic accuracy and the reproducibility of the reading, but a wide variety of artifacts may

  4. Cross-correlation imaging of ambient noise sources

    NASA Astrophysics Data System (ADS)

    Ermert, Laura; Villaseñor, Antonio; Fichtner, Andreas

    2016-01-01

    We develop and apply a novel technique to image ambient seismic noise sources. It is based on measurements of cross-correlation asymmetry defined as the logarithmic energy ratio of the causal and anticausal branches of the cross-correlation function. A possible application of this technique is to account for the distribution of noise sources, a problem which currently poses obstacles to noise-based surface wave dispersion analysis and waveform inversion. The particular asymmetry measurement used is independent of absolute noise correlation amplitudes. It is shown how it can be forward-modelled and related to the noise source power-spectral density using adjoint methods. Simplified sensitivity kernels allow us to rapidly image variations in the power-spectral density of noise sources. This imaging method correctly accounts for viscoelastic attenuation and is to first order insensitive to unmodelled Earth structure. Furthermore, it operates directly on noise correlation data sets. No additional processing is required, which makes the method fast and computationally inexpensive. We apply the method to three vertical-component cross-correlation data sets of different spatial and temporal scales. Processing is deliberately minimal so as to keep observations consistent with the imaging concept. In accord with previous studies, we image seasonally changing sources of the Earth's hum in the Atlantic, Pacific and the Southern Ocean. The sources of noise in the microseismic band recorded at stations in Switzerland are predominantly located in the Atlantic and show a clear dependence on both season and frequency. Our developments are intended as a step towards full 3-D inversions for the sources of ambient noise in various frequency bands, which may ultimately lead to improvements of noise-based structural imaging.

  5. High-speed image matching with coaxial holographic optical correlator

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2016-09-01

    A computation speed of more than 100 Gbps is experimentally demonstrated using our developed ultrahigh-speed optical correlator. To verify this high computation speed practically, the computation speeds of our optical correlator and conventional digital image matching are quantitatively compared. We use a population count function that achieves the fastest calculation speed when calculating binary matching by a central processing unit (CPU). The calculation speed of the optical correlator is dramatically faster than that using a CPU (2.40 GHz × 4) and 16 GB of random access memory, especially when the calculation data are large-scale.

  6. Brain imaging in the assessment for epilepsy surgery.

    PubMed

    Duncan, John S; Winston, Gavin P; Koepp, Matthias J; Ourselin, Sebastien

    2016-04-01

    Brain imaging has a crucial role in the presurgical assessment of patients with epilepsy. Structural imaging reveals most cerebral lesions underlying focal epilepsy. Advances in MRI acquisitions including diffusion-weighted imaging, post-acquisition image processing techniques, and quantification of imaging data are increasing the accuracy of lesion detection. Functional MRI can be used to identify areas of the cortex that are essential for language, motor function, and memory, and tractography can reveal white matter tracts that are vital for these functions, thus reducing the risk of epilepsy surgery causing new morbidities. PET, SPECT, simultaneous EEG and functional MRI, and electrical and magnetic source imaging can be used to infer the localisation of epileptic foci and assist in the design of intracranial EEG recording strategies. Progress in semi-automated methods to register imaging data into a common space is enabling the creation of multimodal three-dimensional patient-specific datasets. These techniques show promise for the demonstration of the complex relations between normal and abnormal structural and functional data and could be used to direct precise intracranial navigation and surgery for individual patients.

  7. Imaged Document Optical Correlation and Conversion System (IDOCCS)

    NASA Astrophysics Data System (ADS)

    Stalcup, Bruce W.; Dennis, Phillip W.; Dydyk, Robert B.

    1999-03-01

    Today, the paper document is fast becoming a thing of the past. With the rapid development of fast, inexpensive computing and storage devices, many government and private organizations are archiving their documents in electronic form (e.g., personnel records, medical records, patents, etc.). In addition, many organizations are converting their paper archives to electronic images, which are stored in a computer database. Because of this, there is a need to efficiently organize this data into comprehensive and accessible information resources. The Imaged Document Optical Correlation and Conversion System (IDOCCS) provides a total solution to the problem of managing and retrieving textual and graphic information from imaged document archives. At the heart of IDOCCS, optical correlation technology provides the search and retrieval capability of document images. The IDOCCS can be used to rapidly search for key words or phrases within the imaged document archives and can even determine the types of languages contained within a document. In addition, IDOCCS can automatically compare an input document with the archived database to determine if it is a duplicate, thereby reducing the overall resources required to maintain and access the document database. Embedded graphics on imaged pages can also be exploited, e.g., imaged documents containing an agency's seal or logo, or documents with a particular individual's signature block, can be singled out. With this dual capability, IDOCCS outperforms systems that rely on optical character recognition as a basis for indexing and storing only the textual content of documents for later retrieval.

  8. Pin-Hole Array Correlation Imaging: Highly Parallel Fluorescence Correlation Spectroscopy

    PubMed Central

    Needleman, Daniel J.; Xu, Yangqing; Mitchison, Timothy J.

    2009-01-01

    Abstract In this work, we describe pin-hole array correlation imaging, a multipoint version of fluorescence correlation spectroscopy, based upon a stationary Nipkow disk and a high-speed electron multiplying charged coupled detector. We characterize the system and test its performance on a variety of samples, including 40 nm colloids, a fluorescent protein complex, a membrane dye, and a fluorescence fusion protein. Our results demonstrate that pin-hole array correlation imaging is capable of simultaneously performing tens or hundreds of fluorescence correlation spectroscopy-style measurements in cells, with sufficient sensitivity and temporal resolution to study the behaviors of membrane-bound and soluble molecules labeled with conventional chemical dyes or fluorescent proteins. PMID:19527665

  9. Signal transduction images in human brain by positron emission tomography

    SciTech Connect

    Imahori, Y.; Fujii, R.; Ueda, S.

    1994-05-01

    Analysis of changes in intracellular signal transduction will provide clear images of the projected target neurons. We have recently developed a technique which allows second-messenger imaging of changes in intracellular signal transduction which is activated in parallel with phosphoinositide (PI) turnover. Using carbon-11-labeled 1,2-diacylglycerol (DAG), we have recently succeeded in making an image of intracellular signal transduction during the course of synaptic transmission in human brains. When five healthy volunteers were examined by this technique, they had high activity in the associate field, in particular the prefrontal area. In the absence of paradigm loading, the associate field was unilaterally active, and human subjects showed predominant activity in the right prefrontal area. Activation of the ipsilateral supraorbital region and the superior temporal area was also seen at the same time. In conclusion, no previous study has directly demonstrated the unilateral predominance of the activity in the associate fields (projected target area) and the accompanying areas. Unlike the conventional positron-labeled compounds which did not permit visualization of activation of the associate fields, our technique can measure the PI turnover, as a postsynaptic response, and thus provide clear images of the projected target nerve cells in relation to higher cortical function in human brain.

  10. Wearable scanning photoacoustic brain imaging in behaving rats.

    PubMed

    Tang, Jianbo; Dai, Xianjin; Jiang, Huabei

    2016-06-01

    A wearable scanning photoacoustic imaging (wPAI) system is presented for noninvasive brain study in behaving rats. This miniaturized wPAI system consists of four pico linear servos and a single transducer-based PAI probe. It has a dimension of 50 mm × 35 mm × 40 mm, and a weight of 26 g excluding cablings. Phantom evaluation shows that wPAI achieves a lateral resolution of ∼0.5 mm and an axial resolution of ∼0.1 mm at a depth of up to 11 mm. Its imaging ability is also tested in a behaving rat, and the results indicate that wPAI is able to image blood vessels at a depth of up to 5 mm with intact scalp and skull. With its noninvasive, deep penetration, and functional imaging ability in behaving animals, wPAI can be used for behavior, cognition, and preclinical brain disease studies. PMID:26777064

  11. Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury.

    PubMed

    Castellanos, Nazareth P; Paúl, Nuria; Ordóñez, Victoria E; Demuynck, Olivier; Bajo, Ricardo; Campo, Pablo; Bilbao, Alvaro; Ortiz, Tomás; del-Pozo, Francisco; Maestú, Fernando

    2010-08-01

    Cognitive processes require a functional interaction between specialized multiple, local and remote brain regions. Although these interactions can be strongly altered by an acquired brain injury, brain plasticity allows network reorganization to be principally responsible for recovery. The present work evaluates the impact of brain injury on functional connectivity patterns. Networks were calculated from resting-state magnetoencephalographic recordings from 15 brain injured patients and 14 healthy controls by means of wavelet coherence in standard frequency bands. We compared the parameters defining the network, such as number and strength of interactions as well as their topology, in controls and patients for two conditions: following a traumatic brain injury and after a rehabilitation treatment. A loss of delta- and theta-based connectivity and conversely an increase in alpha- and beta-band-based connectivity were found. Furthermore, connectivity parameters approached controls in all frequency bands, especially in slow-wave bands. A correlation between network reorganization and cognitive recovery was found: the reduction of delta-band-based connections and the increment of those based on alpha band correlated with Verbal Fluency scores, as well as Perceptual Organization and Working Memory Indexes, respectively. Additionally, changes in connectivity values based on theta and beta bands correlated with the Patient Competency Rating Scale. The current study provides new evidence of the neurophysiological mechanisms underlying neuronal plasticity processes after brain injury, and suggests that these changes are related with observed changes at the behavioural level.

  12. Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases.

    PubMed

    Okazawa, H; Ikawa, M; Tsujikawa, T; Kiyono, Y; Yoneda, M

    2014-12-01

    Oxidative stress, one of the most probable molecular mechanisms for neuronal impairment, is reported to occur in the affected brain regions of various neurodegenerative diseases. Recently, many studies showed evidence of a link between oxidative stress or mitochondrial damage and neuronal degeneration. Basic in vitro experiments and postmortem studies demonstrated that biomarkers for oxidative damage can be observed in the pathogenic regions of the brain and the affected neurons. Model animal studies also showed oxidative damage associated with neuronal degeneration. The molecular imaging method with positron emission tomography (PET) is expected to delineate oxidatively stressed microenvironments to elucidate pathophysiological changes of the in vivo brain; however, only a few studies have successfully demonstrated enhanced stress in patients. Radioisotope copper labeled diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) may be the most promising candidate for this oxidative stress imaging. The tracer is usually known as a hypoxic tissue imaging PET probe, but the accumulation mechanism is based on the electron rich environment induced by mitochondrial impairment and/or microsomal over-reduction, and thus it is considered to represent the oxidative stress state correlated with the degree of disease severity. In this review, Cu-ATSM PET is introduced in detail from the basics to practical methods in clinical studies, as well as recent clinical studies on cerebrovascular diseases and neurodegenerative diseases. Several other PET probes are also introduced from the point of view of neuronal oxidative stress imaging. These molecular imaging methods should be promising tools to reveal oxidative injuries in various brain diseases.

  13. Composite pseudocolor images: a technique to enhance the visual correlation between ventilation-perfusion lung images

    NASA Astrophysics Data System (ADS)

    Vaz de Carvalho, Carlos; Costa, Antonio A.; Seixas, M.; Ferreira, F. N.; Guedes, M. A.; Amaral, I.

    1993-07-01

    Lung ventilation and perfusion raw nuclear medicine images obtained from a gamma camera can be difficult to analyze on a per si basis. A method to optimize the visual correlation between these images was established through the use of new combination images: Composite Pseudo-Color (CPC) images. The major topic of this study is the assessment of the usefulness of this method in the detection of lung malfunction.

  14. A Brain Tumor Molecular Imaging Strategy Using A New Triple-Modality MRI-Photoacoustic-Raman Nanoparticle

    PubMed Central

    Kircher, Moritz F; de la Zerda, Adam; Jokerst, Jesse V; Zavaleta, Cristina L; Kempen, Paul J; Mittra, Erik; Pitter, Ken; Huang, Ruimin; Campos, Carl; Habte, Frezghi; Sinclair, Robert; Brennan, Cameron W.; Mellinghoff, Ingo K; Holland, Eric C; Gambhir, Sanjiv S

    2011-01-01

    The vexing difficulty in delineating brain tumor margins represents a major obstacle toward better outcome of brain tumor patients. Current imaging methods are often limited by inadequate sensitivity, specificity, and spatial resolution. Here we show that a unique triple-modality Magnetic resonance imaging - Photoacoustic imaging – surface enhanced Raman scattering (SERS) nanoparticle (MPR) can accurately help delineate the margins of brain tumors in living mice both pre- and intra-operatively. The MPRs were detected by all three modalities with at least picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to specific MPR accumulation and retention by the tumors, allowing for non-invasive tumor delineation by all three modalities through the intact skull. Raman imaging allowed guidance of intra-operative tumor resection, and histological correlation validated that Raman imaging is accurately delineating brain tumor margins. This novel triple-modality nanoparticle approach holds promise to enable more accurate brain tumor imaging and resection. PMID:22504484

  15. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss. PMID:25613102

  16. Gallium scintigraphy in bone infarction. Correlation with bone imaging

    SciTech Connect

    Armas, R.R.; Goldsmith, S.J.

    1984-01-01

    The appearance of gallium-67 images in bone infarction was studied in nine patients with sickle cell disease and correlated with the bone scan findings. Gallium uptake in acute infarction was decreased or absent with a variable bone scan uptake, and normal in healing infarcts, which showed increased uptake on bone scan. The significance of these findings is discussed.

  17. Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder

    PubMed Central

    Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles

    2015-01-01

    Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753

  18. Imaging of sodium in the brain: a brief review.

    PubMed

    Shah, N Jon; Worthoff, Wieland A; Langen, Karl-Josef

    2016-02-01

    Sodium-based MRI plays a vital role in the study of metabolism and can unveil valuable information about emerging and existing pathology--in particular in the human brain. Sodium is the second most abundant MR active nucleus in living tissue and, due to its quadrupolar nature, has magnetic properties not common to conventional proton MRI, which can reveal further insights, such as information on the compartmental distribution of intra- and extracellular sodium. Nevertheless, the use of sodium nuclei for imaging comes at the expense of a lower sensitivity and significantly reduced relaxation times, making in vivo sodium studies feasible only at high magnetic field strength and by the use of dedicated pulse sequences. Hybrid imaging combining sodium MRI and positron emission tomography (PET) simultaneously is a novel and promising approach to access information on dynamic metabolism with much increased, PET-derived specificity. Application of this new methodology is demonstrated herein using examples from tumour imaging.

  19. Brain Imaging Using T-Rays Instrumentation Advances

    NASA Astrophysics Data System (ADS)

    Treviño-Palacios, C. G.; Celis-López, M. A.; Lárraga-Gutiérrez, J. M.; García-Garduño, A.; Zapata-Nava, O. J.; Díaz, A. Orduña; Torres-Jácome, A.; de-la-Hidalga-Wade, J.; Iturbe-Castillo, M. D.

    2010-12-01

    We present the advances on a brain imaging setup using submillimeter detectors and terahertz laser source. Terahertz radiation, known as T-rays, falls in the far infrared region of the electromagnetic spectrum close to the microwaves and fraction of millimeter wavelengths. These T-rays are ideal candidates for medical imaging because the wavelength is long enough to be dispersed by molecular structures and sufficient small to produce images with a reasonable resolution, in a non-ionizing way. The millimeter detectors used in this proposal are being developed in parallel to the detectors used in the large Millimeter Telescope (LMT/GTM). Using the non-ionizing water absorption to terahertz radiation by different tissues we study the absorption difference between healthy and tumors in spite of the large absorption by water present in the body.

  20. Pros and cons of current brain tumor imaging

    PubMed Central

    Ellingson, Benjamin M.; Wen, Patrick Y.; van den Bent, Martin J.; Cloughesy, Timothy F.

    2014-01-01

    Over the past 20 years, very few agents have been approved for the treatment of brain tumors. Recent studies have highlighted some of the challenges in assessing activity in novel agents for the treatment of brain tumors. This paper reviews some of the key challenges related to assessment of tumor response to therapy in adult high-grade gliomas and discusses the strengths and limitations of imaging-based endpoints. Although overall survival is considered the “gold standard” endpoint in the field of oncology, progression-free survival and response rate are endpoints that hold great value in neuro-oncology. Particular focus is given to advancements made since the January 2006 Brain Tumor Endpoints Workshop, including the development of Response Assessment in Neuro-Oncology criteria, the value of T2/fluid-attenuated inversion recovery, use of objective response rates and progression-free survival in clinical trials, and the evaluation of pseudoprogression, pseudoresponse, and inflammatory response in radiographic images. PMID:25313235

  1. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    PubMed

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  2. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    PubMed

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  3. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    PubMed Central

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  4. Meta-analysis of functional brain imaging in specific phobia.

    PubMed

    Ipser, Jonathan C; Singh, Leesha; Stein, Dan J

    2013-07-01

    Although specific phobia is a prevalent anxiety disorder, evidence regarding its underlying functional neuroanatomy is inconsistent. A meta-analysis was undertaken to identify brain regions that were consistently responsive to phobic stimuli, and to characterize changes in brain activation following cognitive behavioral therapy (CBT). We searched the PubMed, SCOPUS and PsycINFO databases to identify positron emission tomography and functional magnetic resonance imaging studies comparing brain activation in specific phobia patients and healthy controls. Two raters independently extracted study data from all the eligible studies, and pooled coordinates from these studies using activation likelihood estimation, a quantitative meta-analytic technique. Resulting statistical parametric maps were compared between patients and healthy controls, in response to phobic versus fear-evoking stimuli, and before and after therapy. Thirteen studies were included, comprising 327 participants. Regions that were consistently activated in response to phobic stimuli included the left insula, amygdala, and globus pallidus. Compared to healthy controls, phobic subjects had increased activation in response to phobic stimuli in the left amygdala/globus pallidus, left insula, right thalamus (pulvinar), and cerebellum. Following exposure-based therapy widespread deactivation was observed in the right frontal cortex, limbic cortex, basal ganglia and cerebellum, with increased activation detected in the thalamus. Exposure to phobia-specific stimuli elicits brain activation that is consistent with current understandings of the neuroanatomy of fear conditioning and extinction. There is evidence that the effects of CBT in specific phobia may be mediated through the same underlying neurocircuitry.

  5. Neuromorphometry of primary brain tumors by magnetic resonance imaging.

    PubMed

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I; Lamothe-Molina, Paul J; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A

    2015-04-01

    Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  6. Neuromorphometry of primary brain tumors by magnetic resonance imaging

    PubMed Central

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I.; Lamothe-Molina, Paul J.; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A.

    2015-01-01

    Abstract. Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of 973±14, whereas oligodendrogliomas exhibit a mean of 942±21. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of 919±43, and the necrotic region presented a mean of 869±66. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor. PMID:26158107

  7. Neuromorphometry of primary brain tumors by magnetic resonance imaging.

    PubMed

    Hevia-Montiel, Nidiyare; Rodriguez-Perez, Pedro I; Lamothe-Molina, Paul J; Arellano-Reynoso, Alfonso; Bribiesca, Ernesto; Alegria-Loyola, Marco A

    2015-04-01

    Magnetic resonance imaging is a technique for the diagnosis and classification of brain tumors. Discrete compactness is a morphological feature of two-dimensional and three-dimensional objects. This measure determines the compactness of a discretized object depending on the sum of the areas of the connected voxels and has been used for understanding the morphology of nonbrain tumors. We hypothesized that regarding brain tumors, we may improve the malignancy grade classification. We analyzed the values in 20 patients with different subtypes of primary brain tumors: astrocytoma, oligodendroglioma, and glioblastoma multiforme subdivided into the contrast-enhanced and the necrotic tumor regions. The preliminary results show an inverse relationship between the compactness value and the malignancy grade of gliomas. Astrocytomas exhibit a mean of [Formula: see text], whereas oligodendrogliomas exhibit a mean of [Formula: see text]. In contrast, the contrast-enhanced region of the glioblastoma presented a mean of [Formula: see text], and the necrotic region presented a mean of [Formula: see text]. However, the volume and area of the enclosing surface did not show a relationship with the malignancy grade of the gliomas. Discrete compactness appears to be a stable characteristic between primary brain tumors of different malignancy grades, because similar values were obtained from different patients with the same type of tumor.

  8. Grid Computing Application for Brain Magnetic Resonance Image Processing

    NASA Astrophysics Data System (ADS)

    Valdivia, F.; Crépeault, B.; Duchesne, S.

    2012-02-01

    This work emphasizes the use of grid computing and web technology for automatic post-processing of brain magnetic resonance images (MRI) in the context of neuropsychiatric (Alzheimer's disease) research. Post-acquisition image processing is achieved through the interconnection of several individual processes into pipelines. Each process has input and output data ports, options and execution parameters, and performs single tasks such as: a) extracting individual image attributes (e.g. dimensions, orientation, center of mass), b) performing image transformations (e.g. scaling, rotation, skewing, intensity standardization, linear and non-linear registration), c) performing image statistical analyses, and d) producing the necessary quality control images and/or files for user review. The pipelines are built to perform specific sequences of tasks on the alphanumeric data and MRIs contained in our database. The web application is coded in PHP and allows the creation of scripts to create, store and execute pipelines and their instances either on our local cluster or on high-performance computing platforms. To run an instance on an external cluster, the web application opens a communication tunnel through which it copies the necessary files, submits the execution commands and collects the results. We present result on system tests for the processing of a set of 821 brain MRIs from the Alzheimer's Disease Neuroimaging Initiative study via a nonlinear registration pipeline composed of 10 processes. Our results show successful execution on both local and external clusters, and a 4-fold increase in performance if using the external cluster. However, the latter's performance does not scale linearly as queue waiting times and execution overhead increase with the number of tasks to be executed.

  9. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  10. Brain Correlates of Stuttering and Syllable Production: Gender Comparison and Replication.

    ERIC Educational Resources Information Center

    Ingham, Roger J.; Fox, Peter T.; Ingham, Janis C.; Xiong, Jinhu; Zamarripa, Frank; Hardies, L. Jean; Lancaster, Jack L.

    2004-01-01

    This article reports a gender replication study of the P. T. Fox et a. (2000) performance correlation analysis of neural systems that distinguish between normal and stuttered speech in adult males. Positron-emission tomographic (PET) images of cerebral blood flow (CBF) were correlated with speech behavior scores obtained during PET imaging for 10…

  11. A reproducible evaluation of ANTs similarity metric performance in brain image registration.

    PubMed

    Avants, Brian B; Tustison, Nicholas J; Song, Gang; Cook, Philip A; Klein, Arno; Gee, James C

    2011-02-01

    The United States National Institutes of Health (NIH) commit significant support to open-source data and software resources in order to foment reproducibility in the biomedical imaging sciences. Here, we report and evaluate a recent product of this commitment: Advanced Neuroimaging Tools (ANTs), which is approaching its 2.0 release. The ANTs open source software library consists of a suite of state-of-the-art image registration, segmentation and template building tools for quantitative morphometric analysis. In this work, we use ANTs to quantify, for the first time, the impact of similarity metrics on the affine and deformable components of a template-based normalization study. We detail the ANTs implementation of three similarity metrics: squared intensity difference, a new and faster cross-correlation, and voxel-wise mutual information. We then use two-fold cross-validation to compare their performance on openly available, manually labeled, T1-weighted MRI brain image data of 40 subjects (UCLA's LPBA40 dataset). We report evaluation results on cortical and whole brain labels for both the affine and deformable components of the registration. Results indicate that the best ANTs methods are competitive with existing brain extraction results (Jaccard=0.958) and cortical labeling approaches. Mutual information affine mapping combined with cross-correlation diffeomorphic mapping gave the best cortical labeling results (Jaccard=0.669±0.022). Furthermore, our two-fold cross-validation allows us to quantify the similarity of templates derived from different subgroups. Our open code, data and evaluation scripts set performance benchmark parameters for this state-of-the-art toolkit. This is the first study to use a consistent transformation framework to provide a reproducible evaluation of the isolated effect of the similarity metric on optimal template construction and brain labeling.

  12. Adaptive codebook selection schemes for image classification in correlated channels

    NASA Astrophysics Data System (ADS)

    Hu, Chia Chang; Liu, Xiang Lian; Liu, Kuan-Fu

    2015-09-01

    The multiple-input multiple-output (MIMO) system with the use of transmit and receive antenna arrays achieves diversity and array gains via transmit beamforming. Due to the absence of full channel state information (CSI) at the transmitter, the transmit beamforming vector can be quantized at the receiver and sent back to the transmitter by a low-rate feedback channel, called limited feedback beamforming. One of the key roles of Vector Quantization (VQ) is how to generate a good codebook such that the distortion between the original image and the reconstructed image is the minimized. In this paper, a novel adaptive codebook selection scheme for image classification is proposed with taking both spatial and temporal correlation inherent in the channel into consideration. The new codebook selection algorithm is developed to select two codebooks from the discrete Fourier transform (DFT) codebook, the generalized Lloyd algorithm (GLA) codebook and the Grassmannian codebook to be combined and used as candidates of the original image and the reconstructed image for image transmission. The channel is estimated and divided into four regions based on the spatial and temporal correlation of the channel and an appropriate codebook is assigned to each region. The proposed method can efficiently reduce the required information of feedback under the spatially and temporally correlated channels, where each region is adaptively. Simulation results show that in the case of temporally and spatially correlated channels, the bit-error-rate (BER) performance can be improved substantially by the proposed algorithm compared to the one with only single codebook.

  13. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques.

    PubMed

    Urbanski, Marika; Coubard, Olivier A; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient's quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient's autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques.

  14. Visualizing the blind brain: brain imaging of visual field defects from early recovery to rehabilitation techniques

    PubMed Central

    Urbanski, Marika; Coubard, Olivier A.; Bourlon, Clémence

    2014-01-01

    Visual field defects (VFDs) are one of the most common consequences observed after brain injury, especially after a stroke in the posterior cerebral artery territory. Less frequently, tumors, traumatic brain injury, brain surgery or demyelination can also determine various visual disabilities, from a decrease in visual acuity to cerebral blindness. Visual field defects is a factor of bad functional prognosis as it compromises many daily life activities (e.g., obstacle avoidance, driving, and reading) and therefore the patient’s quality of life. Spontaneous recovery seems to be limited and restricted to the first 6 months, with the best chance of improvement at 1 month. The possible mechanisms at work could be partly due to cortical reorganization in the visual areas (plasticity) and/or partly to the use of intact alternative visual routes, first identified in animal studies and possibly underlying the phenomenon of blindsight. Despite processes of early recovery, which is rarely complete, and learning of compensatory strategies, the patient’s autonomy may still be compromised at more chronic stages. Therefore, various rehabilitation therapies based on neuroanatomical knowledge have been developed to improve VFDs. These use eye-movement training techniques (e.g., visual search, saccadic eye movements), reading training, visual field restitution (the Vision Restoration Therapy, VRT), or perceptual learning. In this review, we will focus on studies of human adults with acquired VFDs, which have used different imaging techniques (Positron Emission Tomography, PET; Diffusion Tensor Imaging, DTI; functional Magnetic Resonance Imaging, fMRI; Magneto Encephalography, MEG) or neurostimulation techniques (Transcranial Magnetic Stimulation, TMS; transcranial Direct Current Stimulation, tDCS) to show brain activations in the course of spontaneous recovery or after specific rehabilitation techniques. PMID:25324739

  15. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  16. Emerging Imaging Tools for Use with Traumatic Brain Injury Research

    PubMed Central

    Wilde, Elisabeth A.; Tong, Karen A.; Holshouser, Barbara A.

    2012-01-01

    Abstract This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children. PMID:21787167

  17. Framingham Coronary Heart Disease Risk Score Can be Predicted from Structural Brain Images in Elderly Subjects

    PubMed Central

    Rondina, Jane Maryam; Squarzoni, Paula; Souza-Duran, Fabio Luis; Tamashiro-Duran, Jaqueline Hatsuko; Scazufca, Marcia; Menezes, Paulo Rossi; Vallada, Homero; Lotufo, Paulo A.; de Toledo Ferraz Alves, Tania Correa; Busatto Filho, Geraldo

    2014-01-01

    Recent literature has presented evidence that cardiovascular risk factors (CVRF) play an important role on cognitive performance in elderly individuals, both those who are asymptomatic and those who suffer from symptoms of neurodegenerative disorders. Findings from studies applying neuroimaging methods have increasingly reinforced such notion. Studies addressing the impact of CVRF on brain anatomy changes have gained increasing importance, as recent papers have reported gray matter loss predominantly in regions traditionally affected in Alzheimer’s disease (AD) and vascular dementia in the presence of a high degree of cardiovascular risk. In the present paper, we explore the association between CVRF and brain changes using pattern recognition techniques applied to structural MRI and the Framingham score (a composite measure of cardiovascular risk largely used in epidemiological studies) in a sample of healthy elderly individuals. We aim to answer the following questions: is it possible to decode (i.e., to learn information regarding cardiovascular risk from structural brain images) enabling individual predictions? Among clinical measures comprising the Framingham score, are there particular risk factors that stand as more predictable from patterns of brain changes? Our main findings are threefold: (i) we verified that structural changes in spatially distributed patterns in the brain enable statistically significant prediction of Framingham scores. This result is still significant when controlling for the presence of the APOE 4 allele (an important genetic risk factor for both AD and cardiovascular disease). (ii) When considering each risk factor singly, we found different levels of correlation between real and predicted factors; however, single factors were not significantly predictable from brain images when considering APOE4 allele presence as covariate. (iii) We found important gender differences, and the possible causes of that finding are discussed. PMID

  18. Causal Markov random field for brain MR image segmentation.

    PubMed

    Razlighi, Qolamreza R; Orekhov, Aleksey; Laine, Andrew; Stern, Yaakov

    2012-01-01

    We propose a new Bayesian classifier, based on the recently introduced causal Markov random field (MRF) model, Quadrilateral MRF (QMRF). We use a second order inhomogeneous anisotropic QMRF to model the prior and likelihood probabilities in the maximum a posteriori (MAP) classifier, named here as MAP-QMRF. The joint distribution of QMRF is given in terms of the product of two dimensional clique distributions existing in its neighboring structure. 20 manually labeled human brain MR images are used to train and assess the MAP-QMRF classifier using the jackknife validation method. Comparing the results of the proposed classifier and FreeSurfer on the Dice overlap measure shows an average gain of 1.8%. We have performed a power analysis to demonstrate that this increase in segmentation accuracy substantially reduces the number of samples required to detect a 5% change in volume of a brain region.

  19. CAUSAL MARKOV RANDOM FIELD FOR BRAIN MR IMAGE SEGMENTATION

    PubMed Central

    Razlighi, Qolamreza R.; Orekhov, Aleksey; Laine, Andrew; Stern, Yaakov

    2013-01-01

    We propose a new Bayesian classifier, based on the recently introduced causal Markov random field (MRF) model, Quadrilateral MRF (QMRF). We use a second order inhomogeneous anisotropic QMRF to model the prior and likelihood probabilities in the maximum a posteriori (MAP) classifier, named here as MAP-QMRF. The joint distribution of QMRF is given in terms of the product of two dimensional clique distributions existing in its neighboring structure. 20 manually labeled human brain MR images are used to train and assess the MAP-QMRF classifier using the jackknife validation method. Comparing the results of the proposed classifier and FreeSurfer on the Dice overlap measure shows an average gain of 1.8%. We have performed a power analysis to demonstrate that this increase in segmentation accuracy substantially reduces the number of samples required to detect a 5% change in volume of a brain region. PMID:23366607

  20. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices.

  1. Magnetic resonance imaging safety of deep brain stimulator devices.

    PubMed

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. PMID:24112886

  2. Autoradiographic imaging of phosphoinositide turnover in the brain

    SciTech Connect

    Hwang, P.M.; Bredt, D.S.; Snyder, S.H. )

    1990-08-17

    With ({sup 3}H)cytidine as a precursor, phosphoinositide turnover can be localized in brain slices by selective autoradiography of the product ({sup 3}H)cytidine diphosphate diacylglycerol, which is membrane-bound. In the cerebellum, glutamatergic stimulation elicits an increase of phosphoinositide turnover only in Purkinje cells and the molecular layer. In the hippocampus, both glutamatergic and muscarinic cholinergic stimulation increase phosphoinositide turnover, but with distinct localizations. Cholinergic stimulation affects CA1, CA3, CA4, and subiculum, whereas glutamatergic effects are restricted to the subiculum and CA3. Imaging phosphoinositide turnover in brain slices, which are amenable to electrophysiologic studies, will permit a dynamic localized analysis of regulation of this second messenger in response to synaptic stimulation of specific neuronal pathways.

  3. Spatial mapping of drug delivery to brain tissue using hyperspectral spatial frequency-domain imaging.

    PubMed

    Singh-Moon, Rajinder P; Roblyer, Darren M; Bigio, Irving J; Joshi, Shailendra

    2014-09-01

    We present an application of spatial frequency-domain imaging (SFDI) to the wide-field imaging of drug delivery to brain tissue. Measurements were compared with values obtain