Science.gov

Sample records for brain injury ibi

  1. Mild Traumatic Brain Injury

    MedlinePlus

    ... Questions Glossary Contact Us Visitor Feedback mild Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity ... most common deployment injuries is a mild Traumatic Brain Injury (TBI). A mild TBI is an injury ...

  2. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  3. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  4. Brain injury - discharge

    MedlinePlus

    Head injury - discharge; Head trauma - discharge; Contusion - discharge; Shaken baby syndrome - discharge ... done to help them recover from the brain injury. The person may have stayed in a special ...

  5. Traumatic Brain Injuries. Guidelines Paper.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Special Education Services Unit.

    This paper on traumatic brain injuries begins with statistics on the incidence of the disorder, especially as they relate to Colorado. Traumatic brain injury is then defined, and problems caused by traumatic brain injury are discussed. The components of effective programming for students with traumatic brain injuries are described, followed by the…

  6. [Traumatic brain injury].

    PubMed

    Hackenberg, K; Unterberg, A

    2016-02-01

    Since traumatic brain injury is the most common cause of long-term disability and death among young adults, it represents an enormous socio-economic and healthcare burden. As a consequence of the primary lesion, a perifocal brain edema develops causing an elevation of the intracranial pressure due to the limited intracranial space. This entails a reduction of the cerebral perfusion pressure and the cerebral blood flow. A cerebral perfusion deficit below the threshold for ischemia leads to further ischemic lesions and to a progression of the contusion. As the irreversible primary lesion can only be inhibited by primary prevention, the therapy of traumatic brain injury focuses on the secondary injuries. The treatment consists of surgical therapy evacuating the space-occupying intracranial lesion and conservative intensive medical care. Due to the complex pathophysiology the therapy of traumatic brain injury should be rapidly performed in a neurosurgical unit.

  7. Brain injury in sports.

    PubMed

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  8. Brain injuries from blast.

    PubMed

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  9. Radiation Injury to the Brain

    MedlinePlus

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  10. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  11. Brain Injury Association of America

    MedlinePlus

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  12. PERSONALITY CHANGES IN BRAIN INJURY

    PubMed Central

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications. PMID:21677207

  13. Traumatic brain injuries.

    PubMed

    Blennow, Kaj; Brody, David L; Kochanek, Patrick M; Levin, Harvey; McKee, Ann; Ribbers, Gerard M; Yaffe, Kristine; Zetterberg, Henrik

    2016-11-17

    Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury - the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.

  14. Traumatic brain injury

    PubMed Central

    Risdall, Jane E.; Menon, David K.

    2011-01-01

    There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359

  15. NINDS Traumatic Brain Injury Information Page

    MedlinePlus

    ... Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury Stem Cells Traumatic Brain Injury Trans-Agency Activities Interagency Research ... Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury Stem Cells Traumatic Brain Injury Trans-Agency Activities Interagency Research ...

  16. Traumatic Brain Injury and Aggression.

    ERIC Educational Resources Information Center

    Miller, Laurence

    1994-01-01

    Persons who have suffered traumatic injury to the brain may subsequently display aggressive behavior. Three main syndromes of aggression following traumatic brain injury are described: (1) episodic dyscontrol; (2) frontal lobe disinhibition; and (3) exacerbation of premorbid antisociality. The neuropsychological substrates of these syndromes are…

  17. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  18. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  19. Brain Injury: A Manual For Educators.

    ERIC Educational Resources Information Center

    Connor, Karen; Dettmer, Judy; Dise-lewis, Jeanne E.; Murphy, Mary; Santistevan, Barbette; Seckinger, Barbara

    This manual provides Colorado educators with guidelines for serving students with brain injuries. Following an introductory chapter, chapter 2 provides basic information on the brain including definitions of brain injury and its severity, incidence of brain injury, and characteristics of students with brain injury. Chapter 3 considers…

  20. Endocrine response to brain injury.

    PubMed

    Chioléro, R; Berger, M

    1994-11-01

    The neuroendocrine response (NER) is an essential component of the adaptive process to trauma, brain injury, and major surgery. While receiving additive humoral and neural afferent inputs, the brain nuclei responsible for the NER act mainly by efferent pathways to the hypothalamic-pituitary-adrenal (HPA) axis and the sympathoadrenal system, the activations of which induce subsequent circulatory and metabolic responses. The NER to brain injury is similar to the response observed in patients with extracerebral injury, even if the response after brain injury is extremely variable. Generally, there is a biphasic pattern, with a sympathoadrenal storm associated with variable and altered stimulation of the HPA during the ebb phase. The first phase is followed by a decrease in both responses while other endocrine changes develop, involving mainly the counter-regulatory, gonadal, and thyroid hormones. The outcome after brain injury is closely correlated with the intensity of these changes, particularly with catecholamine plasma levels and the severity of the low triiodothyronine syndrome. Alterations of the thyroid hormones are largely related to a reduction in peripheral deiodination of thyroxin. Recent research shows that increased free-radical production and decreased selenium (an antioxidant) serum levels play an important role in thyroid metabolism. Two major issues remain unsolved: a) the precise definition of cerebral death, since endocrine brain function is not abolished in the state currently defined as brain death; and b) the question of whether substitutive hormone therapy should be applied in severe brain injury.

  1. Traumatic Brain Injury and Dystonia

    MedlinePlus

    ... Symptoms of dystonia associated with TBI may be chronic or occur in episodes. Dystonia symptoms associated with ... a multi- disciplinary team with experience treating traumatic brain injury and/or movement disorders. • Learn as much as ...

  2. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  3. Concussion and Traumatic Brain Injury

    MedlinePlus

    ... long stays in intensive care units. Read More "Concussion" Articles Sports and Concussion / NIH Research on Concussion and the Brain / Doug Flutie: "Be on the Safe Side." / Concussion and Traumatic Brain Injury Summer 2015 Issue: Volume 10 ... Viewers & Players Friends of the National Library of Medicine (FNLM)

  4. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  5. Dysautonomia after pediatric brain injury

    PubMed Central

    KIRK, KATHERINE A; SHOYKHET, MICHAEL; JEONG, JONG H; TYLER-KABARA, ELIZABETH C; HENDERSON, MARYANNE J; BELL, MICHAEL J; FINK, ERICKA L

    2012-01-01

    AIM Dysautonomia after brain injury is a diagnosis based on fever, tachypnea, hypertension, tachycardia, diaphoresis, and/or dystonia. It occurs in 8 to 33% of brain-injured adults and is associated with poor outcome. We hypothesized that brain-injured children with dysautonomia have worse outcomes and prolonged rehabilitation, and sought to determine the prevalence of dysautonomia in children and to characterize its clinical features. METHOD We developed a database of children (n=249, 154 males, 95 females; mean (SD) age 11y 10mo [5y 7mo]) with traumatic brain injury, cardiac arrest, stroke, infection of the central nervous system, or brain neoplasm admitted to The Children’s Institute of Pittsburgh for rehabilitation between 2002 and 2009. Dysautonomia diagnosis, injury type, clinical signs, length of stay, and Functional Independence Measure for Children (WeeFIM) testing were extracted from medical records, and analysed for differences between groups with and without dysautonomia. RESULTS Dysautonomia occurred in 13% of children with brain injury (95% confidence interval 9.3–18.0%), occurring in 10% after traumatic brain injury and 31% after cardiac arrest. The combination of hypertension, diaphoresis, and dystonia best predicted a diagnosis of dysautonomia (area under the curve=0.92). Children with dysautonomia had longer stays, worse WeeFIM scores, and improved less on the score’s motor component (all p≤0.001). INTERPRETATION Dysautonomia is common in children with brain injury and is associated with prolonged rehabilitation. Prospective study and standardized diagnostic approaches are needed to maximize outcomes. PMID:22712762

  6. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  7. The neurophysiology of brain injury.

    PubMed

    Gaetz, Michael

    2004-01-01

    This article reviews the mechanisms and pathophysiology of traumatic brain injury (TBI). Research on the pathophysiology of diffuse and focal TBI is reviewed with an emphasis on damage that occurs at the cellular level. The mechanisms of injury are discussed in detail including the factors and time course associated with mild to severe diffuse injury as well as the pathophysiology of focal injuries. Examples of electrophysiologic procedures consistent with recent theory and research evidence are presented. Acceleration/deceleration (A/D) forces rarely cause shearing of nervous tissue, but instead, initiate a pathophysiologic process with a well defined temporal progression. The injury foci are considered to be diffuse trauma to white matter with damage occurring at the superficial layers of the brain, and extending inward as A/D forces increase. Focal injuries result in primary injuries to neurons and the surrounding cerebrovasculature, with secondary damage occurring due to ischemia and a cytotoxic cascade. A subset of electrophysiologic procedures consistent with current TBI research is briefly reviewed. The pathophysiology of TBI occurs over time, in a pattern consistent with the physics of injury. The development of electrophysiologic procedures designed to detect specific patterns of change related to TBI may be of most use to the neurophysiologist. This article provides an up-to-date review of the mechanisms and pathophysiology of TBI and attempts to address misconceptions in the existing literature.

  8. Traumatic brain injury-induced sleep disorders

    PubMed Central

    Viola-Saltzman, Mari; Musleh, Camelia

    2016-01-01

    Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. PMID:26929626

  9. Brain Injury Alters Volatile Metabolome.

    PubMed

    Kimball, Bruce A; Cohen, Akiva S; Gordon, Amy R; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N; Beauchamp, Gary K

    2016-06-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function-which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. Published by Oxford University Press on behalf of US Government 2016.

  10. Brain Injury Alters Volatile Metabolome

    PubMed Central

    Cohen, Akiva S.; Gordon, Amy R.; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N.; Beauchamp, Gary K.

    2016-01-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function—which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  11. Defense and Veterans Brain Injury Center

    MedlinePlus

    Skip to main content Search form Search Basket Contact Us DVBIC Defense and Veterans Brain Injury Center About DVBIC Leadership History Newsroom Contact Us FAQs About Traumatic Brain Injury TBI & the Military DoD Worldwide Numbers for TBI ...

  12. Traumatic Brain Injury (TBI) Data and Statistics

    MedlinePlus

    ... Cancel Submit Search The CDC Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not supported ... this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and Symptoms ...

  13. Hypersomnia Following Traumatic Brain Injury

    PubMed Central

    Watson, Nathaniel F; Dikmen, Sureyya; Machamer, Joan; Doherty, Michael; Temkin, Nancy

    2007-01-01

    Study Objectives: To evaluate the prevalence and natural history of sleepiness following traumatic brain injury. Methods: This prospective cohort study used the Sickness Impact Profile to evaluate sleepiness in 514 consecutive subjects with traumatic brain injury (TBI), 132 non-cranial trauma controls, and 102 trauma-free controls 1 month and 1 year after injury. Results: Fifty-five percent of TBI subjects, 41% of non-cranial trauma controls, and 3% of trauma-free controls endorsed 1 or more sleepiness items 1 month following injury (p < .001). One year following injury, 27% of TBI subjects, 23% of non-cranial trauma controls, and 1% of trauma-free controls endorsed 1 or more sleepiness items (p < .001). Patients with TBI were sleepier than non-cranial trauma controls at 1 month (p < .02) but not 1 year after injury. Brain-injured subjects were divided into injury-severity groups based on time to follow commands (TFC). At 1 month, the non-cranial trauma controls were less sleepy than the 1- to 6-day (p < .05), 7- to 13-day (p < .01), and 14-day or longer (p < .01) TFC groups. In addition, the ≤ 24-hour group was less sleepy then the 7- to 13-day and 14-day or longer groups (each p < .05). At 1 year, the non-cranial trauma control group (p < .05) and the ≤ 24-hour TFC group (p < .01) were less sleepy than the 14-day or longer TFC group. Sleepiness improved in 84% to 100% of subjects in the TBI TFC groups, as compared with 78% of the non-cranial trauma control group (p < .01). Conclusions: Sleepiness is common following traumatic injury, particularly TBI, with more severe injuries resulting in greater sleepiness. Sleepiness improves in many patients, particularly those with TBI. However, about a quarter of TBI subjects and non-cranial trauma control subjects remained sleepy 1 year after injury. Citation: Watson NF; Dikmen S; Machamer J et al. Hypersomnia following traumatic brain injury. J Clin Sleep Med 2007;3(4):363-368. PMID:17694724

  14. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... head injury) or by an object penetrating the skull (called a penetrating injury). Some TBIs result in ... to) several types of injury to the brain: Skull fracture occurs when the skull cracks. Pieces of ...

  15. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI.

  16. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  17. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  18. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  19. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  20. Neurostimulation for traumatic brain injury.

    PubMed

    Shin, Samuel S; Dixon, C Edward; Okonkwo, David O; Richardson, R Mark

    2014-11-01

    Traumatic brain injury (TBI) remains a significant public health problem and is a leading cause of death and disability in many countries. Durable treatments for neurological function deficits following TBI have been elusive, as there are currently no FDA-approved therapeutic modalities for mitigating the consequences of TBI. Neurostimulation strategies using various forms of electrical stimulation have recently been applied to treat functional deficits in animal models and clinical stroke trials. The results from these studies suggest that neurostimulation may augment improvements in both motor and cognitive deficits after brain injury. Several studies have taken this approach in animal models of TBI, showing both behavioral enhancement and biological evidence of recovery. There have been only a few studies using deep brain stimulation (DBS) in human TBI patients, and future studies are warranted to validate the feasibility of this technique in the clinical treatment of TBI. In this review, the authors summarize insights from studies employing neurostimulation techniques in the setting of brain injury. Moreover, they relate these findings to the future prospect of using DBS to ameliorate motor and cognitive deficits following TBI.

  1. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  2. Preconditioning for traumatic brain injury.

    PubMed

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W Dalton; Bullock, M Ross

    2013-02-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury have been shown to induce consequent protection against post-TBI neuronal death. This concept termed "preconditioning" is achieved by exposure to different pre-injury stressors to achieve the induction of "tolerance" to the effect of the TBI. However, the precise mechanisms underlying this "tolerance" phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review, we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditioning studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible future clinical situations, in which pre-TBI preconditioning could be considered.

  3. Management of penetrating brain injury.

    PubMed

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-07-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients.

  4. Management of penetrating brain injury

    PubMed Central

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-01-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients. PMID:21887033

  5. Sleep and Traumatic Brain Injury.

    PubMed

    Baumann, Christian R

    2016-03-01

    Post-traumatic sleep-wake disturbances are frequent and often chronic complications after traumatic brain injury. The most prevalent sleep-wake disturbances are insomnia, excessive daytime sleepiness, and pleiosomnia, (i.e., increased sleep need). These disturbances are probably of multifactorial origin, but direct traumatic damage to key brain structures in sleep-wake regulation is likely to contribute. Diagnosis and treatment consist of standard approaches, but because of misperception of sleep-wake behavior in trauma patients, subjective testing alone may not always suffice.

  6. Sedation in Traumatic Brain Injury

    PubMed Central

    Flower, Oliver; Hellings, Simon

    2012-01-01

    Several different classes of sedative agents are used in the management of patients with traumatic brain injury (TBI). These agents are used at induction of anaesthesia, to maintain sedation, to reduce elevated intracranial pressure, to terminate seizure activity and facilitate ventilation. The intent of their use is to prevent secondary brain injury by facilitating and optimising ventilation, reducing cerebral metabolic rate and reducing intracranial pressure. There is limited evidence available as to the best choice of sedative agents in TBI, with each agent having specific advantages and disadvantages. This review discusses these agents and offers evidence-based guidance as to the appropriate context in which each agent may be used. Propofol, benzodiazepines, narcotics, barbiturates, etomidate, ketamine, and dexmedetomidine are reviewed and compared. PMID:23050154

  7. Brain injury requires lung protection

    PubMed Central

    Lopez-Aguilar, Josefina

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is one of the organs most vulnerable to the inflammatory cascade triggered by TBI. HMGB1 is an alarm in that can be released from activated immune cells in response to tissue injury. Increased systemic HMGB1 concentration correlates with poor lung function before and after lung transplant, confirming its role in acute ALI after TBI. HMGB1 exerts its influence by interacting with several receptors, including the RAGE receptor. RAGE also plays an important role in the onset of innate immune inflammatory responses, and systemic levels of RAGE are strongly associated with ALI and clinical outcomes in ventilator-induced lung injury. RAGE ligation to HMGB1 triggers the amplification of the inflammatory cascade involving nuclear factor-κB (NF-κB) activation. Identifying early biomarkers that mediate pulmonary dysfunction will improve outcomes not only in lung transplantation, but also in other scenarios. These novel findings show that upregulation of the HMGB1-RAGE axis plays an important role in brain-lung crosstalk. PMID:26046092

  8. Traumatic brain injury among Indiana state prisoners.

    PubMed

    Ray, Bradley; Sapp, Dona; Kincaid, Ashley

    2014-09-01

    Research on traumatic brain injury among inmates has focused on comparing the rate of traumatic brain injury among offenders to the general population, but also how best to screen for traumatic brain injury among this population. This study administered the short version of the Ohio State University Traumatic Brain Injury Identification Method to all male inmates admitted into Indiana state prisons were screened for a month (N = 831). Results indicate that 35.7% of the inmates reported experiencing a traumatic brain injury during their lifetime and that these inmates were more likely to have a psychiatric disorder and a prior period of incarceration than those without. Logistic regression analysis finds that a traumatic brain injury predicts the likelihood of prior incarceration net of age, race, education, and psychiatric disorder. This study suggests that brief instruments can be successfully implemented into prison screenings to help divert inmates into needed treatment.

  9. How woodpecker avoids brain injury?

    NASA Astrophysics Data System (ADS)

    Wu, C. W.; Zhu, Z. D.; Zhang, W.

    2015-07-01

    It has long been recognized that woodpecker is an excellent anti-shock organism, as its head and brain can bear high deceleration up to 1500 g under fast pecking. To investigate the mechanism of brain protection of woodpecker, we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling. Numerical results show that the periodical changing Young's modulus around the skull affects the stress wave propagation in head and makes the stress lowest at the position of the brain. Modal analysis reveals the application of pre-tension force to the hyoid bone can increase the natural frequency of woodpecker's head. The large gap between the natural and working frequencies enable the woodpecker to effectively protect its brain from the resonance injury. Energy analyses indicate the majority of the impact energy (99.7%) is stored in the bulk of body and is utilized in the next pecking. There is only a small fraction of it enters into the head (0.3%). The whole body of the woodpecker gets involved in the energy conversion and forms an efficient anti-shock protection system for the brain.

  10. Hypopituitarism after traumatic brain injury.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI.

  11. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  12. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  13. Brain Temperature: Physiology and Pathophysiology after Brain Injury

    PubMed Central

    Mrozek, Ségolène; Vardon, Fanny; Geeraerts, Thomas

    2012-01-01

    The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury. PMID:23326261

  14. A neuropsychiatric perspective on traumatic brain injury.

    PubMed

    Lux, Warren E

    2007-01-01

    Traumatic brain injury (TBI) due to closed mechanisms causes strain injuries to axons that increase in number and severity as injury severity increases. Axons that project up from the brain stem are vulnerable, even in milder concussive injuries, and include axons that participate in key monoaminergic pathways. Although called diffuse axonal injury, the supra-tentorial injury component typically shows an anterior preponderance in humans. As the injury forces increase, cerebral contusions may be superimposed on the axonal strain injuries, and these contusions show an anterior preponderance as well. The chronic neuropsychiatric manifestations of TBI reflect this injury distribution. In the cognitive sphere, these manifestations almost always include power function disturbances marked by difficulties with cognitive processing speed, multitasking, and cognitive endurance. These disturbances may then be followed by disturbances in executive function and self-awareness as injury severity increases. In the behavioral sphere, mood disturbances and disorders of behavioral control and regulation are particularly common.

  15. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  16. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  17. Surveillance of traumatic brain injuries in Utah.

    PubMed Central

    Thurman, D J; Jeppson, L; Burnett, C L; Beaudoin, D E; Rheinberger, M M; Sniezek, J E

    1996-01-01

    From 1990 through 1992 we conducted surveillance of cases requiring hospital admission and of fatal cases of traumatic brain injury among residents of Utah and found an annual incidence rate of 108.8 per 100,000 population. The greatest number of injuries occurred among men and persons aged 15 to 24 years. Motor vehicles were the leading cause of injury, followed by falls and assaults. The incidence rate we found is substantially lower than previously published rates of traumatic brain injury. This may be the result of a decrease in the incidence of these injuries in the decade since earlier studies were done, as well as changing hospital admission criteria that serve to exclude less severe cases of injury. Despite the apparent decline in rates, our findings indicate the continued importance of traumatic brain injury as a public health problem and the need to develop more effective prevention strategies that will address the major causes of these injuries. PMID:8987423

  18. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  19. Behavioral Considerations Associated with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Mayfield, Joan; Homack, Susan

    2005-01-01

    Children who sustain traumatic brain injury (TBI) can experience significant cognitive deficits. These deficits may significantly impair their functioning in the classroom, resulting in the need for academic and behavioral modifications. Behavior and social problems can be the direct or indirect result of brain injury. Difficulties in paying…

  20. Traumatic Brain Injury. Fact Sheet Number 18.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet describes traumatic brain injury (TBI), an injury of the brain caused by the head being hit by something or being shaken violently. It discusses the incidence of TBI, and describes its symptoms as changes in thinking and reasoning, understanding words, remembering things, paying attention, solving problems, thinking abstractly,…

  1. Behavioral Considerations Associated with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Mayfield, Joan; Homack, Susan

    2005-01-01

    Children who sustain traumatic brain injury (TBI) can experience significant cognitive deficits. These deficits may significantly impair their functioning in the classroom, resulting in the need for academic and behavioral modifications. Behavior and social problems can be the direct or indirect result of brain injury. Difficulties in paying…

  2. Resource Guide on Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Monfore, Dorothea

    2005-01-01

    The purpose of this resource guide on traumatic brain injury (TBI) is to provide assistance to educators, families, and professionals who may be striving to increase their knowledge and understanding of brain injury. This guide will hopefully become an initial resource. It provides: a glossary of TBI Terms; contact information for and brief…

  3. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  4. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  5. Anesthesia for Patients with Traumatic Brain Injuries.

    PubMed

    Bhattacharya, Bishwajit; Maung, Adrian A

    2016-12-01

    Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.

  6. Psychosis following traumatic brain injury.

    PubMed

    Arciniegas, David B; Harris, Susie N; Brousseau, Kristin M

    2003-11-01

    Psychosis is a relatively infrequent but potentially serious and debilitating consequence of traumatic brain injury (TBI), and one about which there is considerable scientific uncertainty and disagreement. There are several substantial clinical, epidemiological, and neurobiological differences between the post-traumatic psychoses and the primary psychotic disorders. The recognition of these differences may facilitate identification and treatment of patients whose psychosis is most appropriately regarded as post-traumatic. In the service of assisting psychiatrists and other mental health clinicians in the diagnosis and treatment of persons with post-traumatic psychoses, this article will review post-traumatic psychosis, including definitions relevant to describing the clinical syndrome, as well as epidemiologic, neurobiological, and neurogenetic factors attendant to it. An approach to evaluation and treatment will then be offered, emphasizing identification of the syndrome of post-traumatic psychosis, consideration of the differential diagnosis of this condition, and careful selection and administration of treatment interventions.

  7. Hypopituitarism following traumatic brain injury.

    PubMed

    Popovic, V; Aimaretti, G; Casanueva, F F; Ghigo, E

    2005-06-01

    Recent studies have demonstrated that hypopituitarism, and in particular growth hormone (GH) deficiency, is common among survivors of traumatic brain injury (TBI) tested several months or years following head trauma. In addition, it has been shown that post-traumatic neuroendocrine abnormalities occur early and with high frequency. These findings may have significant implications for the recovery and rehabilitation of patients with TBI. Although data emerging after 2000 demonstrate the relevance of the problem, in general there is a lack of awareness in the medical community about the incidence and clinical repercussions of the pathology. Most, but not all, head trauma associated with hypopituitarism is the result of motor accidents. The subjects at risk are those who have suffered moderate-to severe head trauma although mild intensity trauma may precede hypopituitarism also. Particular attention should be paid to this problem in children and adolescents. Onset of pituitary deficits can evolve over years following injury. For the assessment of the GH-IGF axis in TBI patients, plasma IGF-I concentrations, plus dynamic GH testing is indicated. Some degree of hypopituitarism is found in 35-40% of TBI patients. Among multiple pituitary deficits, the most common ones were GHD and gonadotrophin deficiency. In most series 10-15% presented with severe GHD and 15% with partial GHD after stimulating GH secretion confirming that the most common isolated deficit is GHD. Psychometric evaluation together with neurocognitive testing shows variability of disability and the possibility that untreated TBI induced hypopituitarism contributes to the chronic neurobehavioral problems seen in many head-injured patients warrants consideration. Preliminary data, from small pilot, open-label studies show that subjects treated with GH experience significant improvements in concentration, memory, depression, anxiety and fatigue. In conclusion, pituitary failure can occur even in minor head

  8. Fluid markers of traumatic brain injury.

    PubMed

    Zetterberg, Henrik; Blennow, Kaj

    2015-05-01

    Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain. Whereas severe TBI can be diagnosed using a combination of clinical signs and standard neuroimaging techniques, mild TBI (also called concussion) is more difficult to detect. This is where fluid markers of injury to different cell types and subcellular compartments in the central nervous system come into play. These markers are often proteins, peptides or other molecules with selective or high expression in the brain, which can be measured in the cerebrospinal fluid or blood as they leak out or get secreted in response to the injury. Here, we review the literature on fluid markers of neuronal, axonal and astroglial injury to diagnose mild TBI and to predict clinical outcome in patients with head trauma. We also discuss chronic traumatic encephalopathy, a progressive neurodegenerative disease in individuals with a history of multiple mild TBIs in a biomarker context. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  9. Traumatic brain injury associated coagulopathy.

    PubMed

    de Oliveira Manoel, Airton Leonardo; Neto, Antonio Capone; Veigas, Precilla V; Rizoli, Sandro

    2015-02-01

    The presence of coagulopathy is common after severe trauma. The aim of this study was to identify whether isolated severe traumatic brain injury (TBI) is an independent risk factor for coagulopathy. Prospective observational cohort of adult patients admitted to a Level I Trauma Center within 6 h of injury. Patients were categorized according to the abbreviated injury scale (AIS): Group 1-isolated severe TBI (AIS head ≥ 3 + AIS non-head < 3); Group 2-severe multisystem trauma associated with severe TBI (AIS head ≥ 3 + AIS non-head ≥ 3); Group 3-severe multisystem trauma without TBI (AIS head < 3 + AIS non-head ≥ 3). Primary outcome was the development of coagulopathy. Secondary outcome was in-hospital mortality. Three hundred and forty five patients were included (Group 1 = 48 patients, Group 2 = 137, and Group 3 = 160). Group 1 patients had the lowest incidence of coagulopathy and disseminated intravascular coagulopathy, and in general presented with better coagulation profile measured by either classic coagulation tests, thromboelastography or clotting factors. Isolated severe TBI was not an independent risk factor for the development of coagulopathy (OR 1.06; 0.35-3.22 CI, p = 0.92), however, isolated severe TBI patients who developed coagulopathy had higher mortality rates than isolated severe TBI patients without coagulopathy (66 vs. 16.6 %, p < 0.05). The presence of coagulopathy (OR 5.61; 2.65-11.86 CI, p < 0.0001) and isolated severe TBI (OR 11.51; 3.9-34.2 CI, p < 0.0001) were independent risk factors for in-hospital mortality. Isolated severe TBI is not an independent risk factor for the development of coagulopathy. However, severe TBI patients who develop coagulopathy have extremely high mortality rates.

  10. Traumatic brain injury and forensic neuropsychology.

    PubMed

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition.

  11. Sleep in traumatic brain injury.

    PubMed

    Mazwi, Nicole L; Fusco, Heidi; Zafonte, Ross

    2015-01-01

    Sleep disturbances affect more than half of survivors of traumatic brain injury (TBI) and have the potential to undermine rehabilitation, recovery, and outcomes. Normal sleep architecture has been well-described and the neurophysiology of sleep is becoming better understood in recent years, though this complex process continues to be dissected for better appreciation. There are numerous types of sleep disorder, most of which fall under two categories: dyssomnias and parasomnias. In more challenging scenarios patients may be plagued with more than one dyssomnia and/or parasomnia simultaneously, complicating the diagnostic and therapeutic approach. Objective and subjective methods are used to evaluate sleep disorders and help distinguish them from psychiatric and environmental contributors to poor sleep. There are several pharmacologic and nonpharmacologic treatments options for sleep disturbances after TBI, many of which have been particularly helpful in restoring adequate quantity and quality of sleep for survivors. However, to date no consensus has been established regarding how to treat this entity, and it may be that a multimodal approach is ultimately best.

  12. Hypothermia for traumatic brain injury.

    PubMed

    Lewis, Sharon R; Evans, David Jw; Butler, Andrew R; Schofield-Robinson, Oliver J; Alderson, Phil

    2017-09-21

    Hypothermia has been used in the treatment of brain injury for many years. Encouraging results from small trials and laboratory studies led to renewed interest in the area and some larger trials. To determine the effect of mild hypothermia for traumatic brain injury (TBI) on mortality, long-term functional outcomes and complications. We ran and incorporated studies from database searches to 21 March 2016. We searched the Cochrane Injuries Group's Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), MEDLINE (OvidSP), Embase Classic+Embase (OvidSP), PubMed, ISI Web of science (SCI-EXPANDED, SSCI, CPCI-S & CPSI-SSH), clinical trials registers, and screened reference lists. We also re-ran these searches pre-publication in June 2017; the result from this search is presented in 'Studies awaiting classification'. We included randomised controlled trials of participants with closed TBI requiring hospitalisation who were treated with hypothermia to a maximum of 35 ºC for at least 12 consecutive hours. Treatment with hypothermia was compared to maintenance with normothermia (36.5 to 38 ºC). Two review authors assessed data on mortality, unfavourable outcomes according to the Glasgow Outcome Scale, and pneumonia. We included 37 eligible trials with a total of 3110 randomised participants; nine of these were new studies since the last update (2009) and five studies had been previously excluded but were re-assessed and included during the 2017 update. We identified two ongoing studies from searches of clinical trials registers and database searches and two studies await classification.Studies included both adults and children with TBI. Most studies commenced treatment immediately on admission to hospital or after craniotomies and all treatment was maintained for at least 24 hours. Thirty-three studies reported data for mortality, 31 studies reported data for unfavourable outcomes (death, vegetative state or severe disability

  13. Reducing Secondary Insults in Traumatic Brain Injury

    DTIC Science & Technology

    2013-04-01

    persons, and leaves 99,000 persons permanently disabled [1]. The total cost for treatment and rehabilitation of patients with brain injuries is...registry based or retrospective or include only secondary insults that occur in the intensive care unit ( ICU ) setting. Most prior investigations have...in the surgical and neurosurgical ICU diagnosed with a traumatic brain injury requiring a diagnostic procedure were eligible for the study. The study

  14. Modeling premature brain injury and recovery

    PubMed Central

    Scafidi, Joey; Fagel, Devon M.; Ment, Laura R.; Vaccarino, Flora M.

    2009-01-01

    Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain. PMID:19482072

  15. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  16. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  17. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  18. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  19. [A man with severe traumatic brain injury].

    PubMed

    Oudeman, Eline A; Martins Jarnalo, Carine O; van Ouwerkerk, Willem J R

    2013-01-01

    We present a 41-year-old man with severe traumatic brain injury. Cranial imaging studies revealed cerebral contusion and a longitudinal fracture of the temporal bone. Several days later brain herniated into the left external auditory canal. Imaging studies showed the known skull fracture with a direct connection between the external acoustic meatus and the intracranial structures.

  20. Modeling Blast-Related Brain Injury

    DTIC Science & Technology

    2008-12-01

    02139 D. Moore Defense and Veterans Brain Injury Center (WRAMC) 6900 Georgia Ave. NW, Washington, DC 20307 L. Noels University of Liege Chemin des...chevreuils 1, B4000 Liege , Belgium ABSTRACT Recent military conflicts in Iraq and Afghanistan have highlighted the wartime effect of traumatic brain in

  1. [Effects of alcohol consumption on traumatic brain injury].

    PubMed

    Katada, Ryuichi

    2011-10-01

    It has been well known that alcohol consumption affects traumatic brain injury. The mechanism of detrimental effect of ethanol on traumatic brain injury has not been clarified. This review focused on the relationship among traumatic brain injury, ethanol and aquaporin-4. We have reported that ethanol increased brain edema after brain contusion and decreased survival rates in rats. It was suggested that increasing brain edema by ethanol after brain contusion may be caused by oxidative stress. Brain edema consists of cytotoxic brain edema, vasogenic brain edema, interstitial brain edema and osmotic edema. Ethanol mainly increases cytotoxic brain edema. Both alcohol consumption and brain contusion cause oxidative stress. Antioxidant treatment decreases cytotoxic brain edema. Aquaporin-4, an water channel, was increased by ethanol 24 hr after traumatic brain injury in rat. The aquaporin-4 inhibitor decreased brain edema after brain contusion and increased survival rates under ethanol consumption. Aquaporin-4 may have strict relation between ethanol and brain edema increasing after brain contusion.

  2. Catecholamines and cognition after traumatic brain injury.

    PubMed

    Jenkins, Peter O; Mehta, Mitul A; Sharp, David J

    2016-09-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person's catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain 'networks' that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  4. Traumatic Brain Injury and Sleep Disorders

    PubMed Central

    Viola-Saltzman, Mari; Watson, Nathaniel F.

    2012-01-01

    SYNOPSIS Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. Two types of TBI negatively impact sleep: contact injuries causing focal brain damage and acceleration/deceleration injuries causing more generalized brain damage. Diagnosis of sleep disorders after TBI may involve polysomnography, multiple sleep latency testing and/or actigraphy. Treatment is disorder specific and may include the use of medications, continuous positive airway pressure (or similar device) and/or behavioral modifications. Unfortunately, treatment of sleep disorders associated with TBI often does not improve sleepiness or neuropsychological function. PMID:23099139

  5. Stereotypic movement disorder after acquired brain injury.

    PubMed

    McGrath, Cynthia M; Kennedy, Richard E; Hoye, Wayne; Yablon, Stuart A

    2002-05-01

    Stereotypic movement disorder (SMD) consists of repetitive, non-functional motor behaviour that interferes with daily living or causes injury to the person. It is most often described in patients with mental retardation. However, recent evidence indicates that this condition is common among otherwise normal individuals. This case study describes a patient with new-onset SMD occurring after subdural haematoma and brain injury. SMD has rarely been reported after acquired brain injury, and none have documented successful treatment. The current psychiatric literature regarding neurochemistry, neuroanatomy, and treatment of SMD are reviewed with particular application to one patient. Treatment options include serotonin re-uptake inhibitors, opioid antagonists and dopamine antagonists. SMD has been under-appreciated in intellectually normal individuals, and may also be unrecognized after brain injury. Further investigation is needed in this area, which may benefit other individuals with SMD as well.

  6. Mapping the Connectome Following Traumatic Brain Injury.

    PubMed

    Hannawi, Yousef; Stevens, Robert D

    2016-05-01

    There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.

  7. Cognitive outcome following traumatic brain injury.

    PubMed

    Dikmen, Sureyya S; Corrigan, John D; Levin, Harvey S; Machamer, Joan; Stiers, William; Weisskopf, Marc G

    2009-01-01

    To determine whether an association exists between traumatic brain injury (TBI) sustained in adulthood and cognitive impairment 6 months or longer after injury. Systematic review of the published, peer-reviewed literature. From 430 articles, we identified 11 primary and 22 secondary studies that examined cognitive impairment by using performance measures for adults who were at least 6 months post-TBI. There was clear evidence of an association between penetrating brain injury and impaired cognitive function. Factors that modified this association included preinjury intelligence, volume of brain tissue lost, and brain region injured. There was also suggestive evidence that penetrating brain injury may exacerbate the cognitive effects of normal aging. We found clear evidence for long-term cognitive deficits associated with severe TBI. There was suggestive evidence that moderately severe brain injuries are associated with cognitive impairments. There was inadequate/insufficient evidence to determine whether an association exists between a single, mild TBI and cognitive deficits 6 months or longer postinjury. In adults, penetrating, moderate, and severe TBIs are associated with cognitive deficits 6 months or longer postinjury. There is insufficient evidence to determine whether mild TBI is associated with cognitive deficits 6 months or longer postinjury.

  8. Recovery after brain injury: mechanisms and principles

    PubMed Central

    Nudo, Randolph J.

    2013-01-01

    The past 20 years have represented an important period in the development of principles underlying neuroplasticity, especially as they apply to recovery from neurological injury. It is now generally accepted that acquired brain injuries, such as occur in stroke or trauma, initiate a cascade of regenerative events that last for at least several weeks, if not months. Many investigators have pointed out striking parallels between post-injury plasticity and the molecular and cellular events that take place during normal brain development. As evidence for the principles and mechanisms underlying post-injury neuroplasticity has been gleaned from both animal models and human populations, novel approaches to therapeutic intervention have been proposed. One important theme has persisted as the sophistication of clinicians and scientists in their knowledge of neuroplasticity mechanisms has grown: behavioral experience is the most potent modulator of brain plasticity. While there is substantial evidence for this principle in normal, healthy brains, the injured brain is particularly malleable. Based on the quantity and quality of motor experience, the brain can be reshaped after injury in either adaptive or maladaptive ways. This paper reviews selected studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes. In addition, recent studies using new and elegant techniques are providing novel perspectives on the events that take place in the injured brain, providing a real-time window into post-injury plasticity. These new approaches are likely to accelerate the pace of basic research, and provide a wealth of opportunities to translate basic principles into therapeutic methodologies. PMID:24399951

  9. Traumatic brain injury, neuroimaging, and neurodegeneration

    PubMed Central

    Bigler, Erin D.

    2012-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury. PMID:23964217

  10. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  11. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment.

  12. Driving, brain injury and assistive technology.

    PubMed

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  13. The neuropsychiatry of depression after brain injury.

    PubMed

    Fleminger, Simon; Oliver, Donna L; Williams, W Huw; Evans, Jonathan

    2003-01-01

    Biological aspects of depression after brain injury, in particular traumatic brain injury (TBI) and stroke, are reviewed. Symptoms of depression after brain injury are found to be rather non-specific with no good evidence of a clear pattern distinguishing it from depression in those without brain injury. Nevertheless symptoms of disturbances of interest and concentration are particularly prevalent, and guilt is less evident. Variabilitiy of mood is characteristic. The prevalence of depression is similar after both stroke and TBI with the order of 20-40% affected at any point in time in the first year, and about 50% of people experience depression at some stage. There is no good evidence for areas of specific vulnerability in terms of lesion location, and early suggestions of a specific association with injury to the left hemisphere have not been confirmed. Insight appears to be related to depressed mood with studies of TBI indicating that greater insight over time post-injury may be associated with greater depression. We consider that this relationship may be due to depression appearing as people gain more awareness of their disability, but also suggest that changes in mood may result in altered awareness. The risk of suicide after TBI is reviewed. There appears to be about a three to fourfold increased risk of suicide after TBI, although much of this increased risk may be due to pre-injury factors in terms of the characteristics of people who suffer TBI. About 1% of people who have suffered TBI will commit suicide over a 15-year follow-up. Drug management of depression is reviewed. There is little specific evidence to guide the choice of antidepressant medication and most psychiatrists would start with a selective serotonin reuptake inhibitor (SSRI). It is important that the drug management of depression after brain injury is part of a full package of care that can address biological as well as psychosocial factors in management.

  14. Assessing connectivity related injury burden in diffuse traumatic brain injury.

    PubMed

    Solmaz, Berkan; Tunç, Birkan; Parker, Drew; Whyte, John; Hart, Tessa; Rabinowitz, Amanda; Rohrbach, Morgan; Kim, Junghoon; Verma, Ragini

    2017-03-15

    Many of the clinical and behavioral manifestations of traumatic brain injury (TBI) are thought to arise from disruption to the structural network of the brain due to diffuse axonal injury (DAI). However, a principled way of summarizing diffuse connectivity alterations to quantify injury burden is lacking. In this study, we developed a connectome injury score, Disruption Index of the Structural Connectome (DISC), which summarizes the cumulative effects of TBI-induced connectivity abnormalities across the entire brain. Forty patients with moderate-to-severe TBI examined at 3 months postinjury and 35 uninjured healthy controls underwent magnetic resonance imaging with diffusion tensor imaging, and completed behavioral assessment including global clinical outcome measures and neuropsychological tests. TBI patients were selected to maximize the likelihood of DAI in the absence of large focal brain lesions. We found that hub-like regions, with high betweenness centrality, were most likely to be impaired as a result of diffuse TBI. Clustering of participants revealed a subgroup of TBI patients with similar connectivity abnormality profiles who exhibited relatively poor cognitive performance. Among TBI patients, DISC was significantly correlated with post-traumatic amnesia, verbal learning, executive function, and processing speed. Our experiments jointly demonstrated that assessing structural connectivity alterations may be useful in development of patient-oriented diagnostic and prognostic tools. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  15. The neuropathology of traumatic brain injury.

    PubMed

    Mckee, Ann C; Daneshvar, Daniel H

    2015-01-01

    Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at

  16. Long-term consumption of fermented rooibos herbal tea offers neuroprotection against ischemic brain injury in rats.

    PubMed

    Akinrinmade, Olusiji; Omoruyi, Sylvester; Dietrich, Daneel; Ekpo, Okobi

    2017-01-01

    Stroke is the second leading cause of death worldwide, affecting about 240 people a day in South Africa and leaving survivors with residual disabilities. At the moment, there is no clinically approved neuroprotective product for stroke but the consumption of plant polyphenols has been suggested to offer some protection against stroke. In this study, we investigated the effects of long-term consumption of fermented rooibos herbal tea (FRHT) on ischemia/reperfusion (I/R)-induced brain injury in adult male Wistar rats. FRHT was administered to the animals ad libitum for 7 weeks prior to the induction of ischemic injury via a 20-minute bilateral occlusion of the common carotid arteries (BCCAO) followed by reperfusion for 24, 96 and 168 hours respectively. Neurobehavioural deficits, brain oedema, blood-brain barrier (BBB) damage, apoptosis, lipid peroxidation and total antioxidant capacity were subsequently evaluated using standard methods. Our results showed that long-term consumption of FRHT by Wistar rats signi icantly reduced brain oedema and neuronal apoptosis, but did not attenuate BBB damage following cerebral ischemia. Analysis of whole-brain homogenates showed significantly reduced lipid peroxidation levels, increased total antioxidant capacity and resulted in improved neurobehavioural outcomes in FRHT-treated rats when compared with untreated animals. Taken together, our results tend to suggest that continuous consumption of FRHT could confer some protection against ischemic brain injury (IBI) and is therefore highly recommended for patients with stroke-predisposing conditions.

  17. Stem cell therapies for perinatal brain injuries.

    PubMed

    Vawda, Reaz; Woodbury, Jennifer; Covey, Matthew; Levison, Steven W; Mehmet, Huseyin

    2007-08-01

    This chapter reviews four groups of paediatric brain injury. The pathophysiology of these injuries is discussed to establish which cells are damaged and therefore which cells represent targets for cell replacement. Next, we review potential sources of cellular replacements, including embryonic stem cells, fetal and neonatal neural stem cells and a variety of mesenchymal stem cells. The advantages and disadvantages of each source are discussed. We review published studies to illustrate where stem cell therapies have been evaluated for therapeutic gain and discuss the hurdles that will need to be overcome to achieve therapeutic benefit. Overall, we conclude that children with paediatric brain injuries or inherited genetic disorders that affect the brain are worthy candidates for stem cell therapeutics.

  18. Public attitudes towards survivors of brain injury.

    PubMed

    Linden, M A; Rauch, R J; Crothers, I R

    2005-11-01

    To explore the effects of religious identity, gender and socioeconomic status (SES) on public attitudes towards survivors of brain injury. An independent groups design was used to compare the attitudes of Northern Irish participants. The participants were asked to complete a modified form of the Community Attitudes to Mental Illness scale. The new questionnaire replaced the original scales' emphasis on mental illness with that of brain injury. Complete data was available for 179 participants for the religious identity and gender analysis and 124 for gender and SES. Analyses of variance were conducted on these variables. Significant differences between male and female attitudes were found along with significant interactions between religious identity and gender and SES and gender. Religious, economic and gender-based divisions in society affect attitudes towards survivors of brain injury.

  19. Pediatric Rodent Models of Traumatic Brain Injury.

    PubMed

    Semple, Bridgette D; Carlson, Jaclyn; Noble-Haeusslein, Linda J

    2016-01-01

    Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.

  20. Emergency Neurological Life Support: Traumatic Brain Injury.

    PubMed

    Garvin, Rachel; Venkatasubramanian, Chitra; Lumba-Brown, Angela; Miller, Chad M

    2015-12-01

    Traumatic Brain Injury (TBI) was chosen as an Emergency Neurological Life Support topic due to its frequency, the impact of early intervention on outcomes for patients with TBI, and the need for an organized approach to the care of such patients within the emergency setting. This protocol was designed to enumerate the practice steps that should be considered within the first critical hour of neurological injury.

  1. Managing traumatic brain injury secondary to explosions

    PubMed Central

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-01-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined. PMID:20606794

  2. Brain Injury Risk from Primary Blast

    DTIC Science & Technology

    2012-02-29

    combined abdominal and thoracic protection that reduced blast levels to an order of magnitude below pulmonary injury threshold. The results were scaled to... contusions typically on or around the brainstem though there were no skull fractures for any blast intensity. Risk functions were developed that...primary blast exposure to the brain was found to be more than twice the pulmonary fatality injury risk. However, the blast level for 50% risk of mild

  3. Osmolar therapy in pediatric traumatic brain injury.

    PubMed

    Bennett, Tellen D; Statler, Kimberly D; Korgenski, E Kent; Bratton, Susan L

    2012-01-01

    To describe patterns of use for mannitol and hypertonic saline in children with traumatic brain injury, to evaluate any potential associations between hypertonic saline and mannitol use and patient demographic, injury, and treatment hospital characteristics, and to determine whether the 2003 guidelines for severe pediatric traumatic brain injury impacted clinical practice regarding osmolar therapy. Retrospective cohort study. Pediatric Health Information System database, January, 2001 to December, 2008. Children (age <18 yrs) with traumatic brain injury and head/neck Abbreviated Injury Scale score ≥ 3 who received mechanical ventilation and intensive care. : None. The primary outcome was hospital billing for parenteral hypertonic saline and mannitol use, by day of service. Overall, 33% (2,069 of 6,238) of the patients received hypertonic saline, and 40% (2,500 of 6,238) received mannitol. Of the 1,854 patients who received hypertonic saline or mannitol for ≥ 2 days in the first week of therapy, 29% did not have intracranial pressure monitoring. After adjustment for hospital-level variation, primary insurance payer, and overall injury severity, use of both drugs was independently associated with older patient age, intracranial hemorrhage (other than epidural), skull fracture, and higher head/neck injury severity. Hypertonic saline use increased and mannitol use decreased with publication of the 2003 guidelines, and these trends continued through 2008. Hypertonic saline and mannitol are used less in infants than in older children. The patient-level and hospital-level variation in osmolar therapy use and the substantial amount of sustained osmolar therapy without intracranial pressure monitoring suggest opportunities to improve the quality of pediatric traumatic brain injury care. With limited high-quality evidence available, published expert guidelines appear to significantly impact clinical practice in this area.

  4. MDCT imaging of traumatic brain injury

    PubMed Central

    Pezzullo, Martina; Delpierre, Isabelle; Sadeghi, Niloufar

    2016-01-01

    The aim of emergency imaging is to detect treatable lesions before secondary neurological damage occurs. CT plays a primary role in the acute setting of head trauma, allowing accurate detection of lesions requiring immediate neurosurgical treatment. CT is also accurate in detecting secondary injuries and is therefore essential in follow-up. This review discusses the main characteristics of primary and secondary brain injuries. PMID:26607650

  5. Paclitaxel improves outcome from traumatic brain injury

    PubMed Central

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2016-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2 mm3 for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury. PMID:26086366

  6. The prehospital management of traumatic brain injury.

    PubMed

    Goldberg, Scott A; Rojanasarntikul, Dhanadol; Jagoda, Andrew

    2015-01-01

    Traumatic brain injury (TBI) is an important cause of death and disability, particularly in younger populations. The prehospital evaluation and management of TBI is a vital link between insult and definitive care and can have dramatic implications for subsequent morbidity. Following a TBI the brain is at high risk for further ischemic injury, with prehospital interventions targeted at reducing this secondary injury while optimizing cerebral physiology. In the following chapter we discuss the prehospital assessment and management of the brain-injured patient. The initial evaluation and physical examination are discussed with a focus on interpretation of specific physical examination findings and interpretation of vital signs. We evaluate patient management strategies including indications for advanced airway management, oxygenation, ventilation, and fluid resuscitation, as well as prehospital strategies for the management of suspected or impending cerebral herniation including hyperventilation and brain-directed hyperosmolar therapy. Transport decisions including the role of triage models and trauma centers are discussed. Finally, future directions in the prehospital management of traumatic brain injury are explored. © 2015 Elsevier B.V. All rights reserved.

  7. Neurorestorative Treatments for Traumatic Brain Injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2011-01-01

    Traumatic brain injury (TBI) remains a major cause of death and permanent disability worldwide, especially in children and young adults. A total of 1.5 million people experience head trauma each year in the United States, with an annual economic cost exceeding $56 billion. Unfortunately, almost all Phase III TBI clinical trials have yet to yield a safe and effective neuroprotective treatment, raising questions regarding the use of neuroprotective strategies as the primary therapy for acute brain injuries. Recent preclinical data suggest that neurorestorative strategies that promote angiogenesis (formation of new blood vessels from pre-existing endothelial cells), axonal remodeling (axonal sprouting and pruning), neurogenesis (generation of new neurons) and synaptogenesis (formation of new synapses) provide promising opportunities for the treatment of TBI. This review discusses select cell-based and pharmacological therapies that activate and amplify these endogenous restorative brain plasticity processes to promote both repair and regeneration of injured brain tissue and functional recovery after TBI. PMID:21122475

  8. Neuropsychiatry of Pediatric Traumatic Brain Injury

    PubMed Central

    Max, Jeffrey E.

    2014-01-01

    Synopsis Pediatric traumatic brain injury (TBI) is a major public health problem. Psychiatric disorders with onset before the injury appear to be more common than population base rates. Novel (postinjury onset) psychiatric disorders (NPD) are also common and complicate child function after injury. Novel disorders include personality change due to TBI, secondary attention-deficit/hyperactivity disorder (SADHD), as well as other disruptive behavior disorders, and internalizing disorders. This article reviews preinjury psychiatric disorders as well as biopsychosocial risk factors and treatments for NPD. PMID:24529428

  9. Minor traumatic brain injury in sports.

    PubMed

    Schleimer, Jonathan A

    2002-12-01

    Mild traumatic brain injury (MTBI) is an all-too-frequent occurrence among amateur and professional athletes alike. The increased attention it has received in recent literature may suggest that incidence of this injury has risen. The frequency of MTBI in general may be rising with the increased interest in so-called noncontact sports such as soccer, snowboarding, skateboarding, and motocross. Despite significant improvements made in the quality of protective equipment, head injury remains common in football, soccer, and amateur boxing. The management of athletes who suffer traumatic head injury remains problematic for coaches, trainers, team physicians, primary care physicians, and neurologic specialists. This article addresses guidelines, and diagnostic and treatment protocols to help with the management of athletes with concussion and traumatic head injuries.

  10. Advanced monitoring in traumatic brain injury: microdialysis.

    PubMed

    Carpenter, Keri L H; Young, Adam M H; Hutchinson, Peter J

    2017-04-01

    Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdialysis into the complex, interlinked traumatic brain injury disorders of electrophysiological changes, white matter injury, inflammation and metabolism. Microdialysis has matured into being a standard clinical monitoring modality that takes its place alongside intracranial pressure and brain tissue oxygen tension measurement in specialist neurocritical care centres, as well as being a research tool able to shed light on brain metabolism, inflammation, therapeutic approaches, blood-brain barrier transit and drug effects on downstream targets. Recent consensus on microdialysis monitoring is paving the way for improved neurocritical care protocols. Furthermore, there is scope for future improvements both in terms of the catheters and microdialysate analyser technology, which may further enhance its applicability.

  11. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  12. Better Sleep May Signal Recovery from Brain Injury

    MedlinePlus

    ... 162672.html Better Sleep May Signal Recovery From Brain Injury New research suggests sleep-wake cycles are ... Dec. 21, 2016 (HealthDay News) -- Recovery from traumatic brain injury appears to go hand-in-hand with ...

  13. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... Cancel Submit Search The CDC Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not supported ... this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and Symptoms ...

  14. Fyn in Neurodevelopment and Ischemic Brain Injury

    PubMed Central

    Knox, Renatta; Jiang, Xiangning

    2016-01-01

    The Src Family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents, and with our work, in neonatal animals. An understanding of Fyn’s role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones. PMID:25720756

  15. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  16. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  17. Future directions in brain injury research.

    PubMed

    Gennarelli, Thomas A

    2014-01-01

    This paper reviews the potential future directions that are important for brain injury research, especially with regard to concussion. The avenues of proposed research are categorized according to current concepts of concussion, types of concussion, and a global schema for globally reducing the burden of concussion.

  18. Psychiatric disorders and traumatic brain injury

    PubMed Central

    Schwarzbold, Marcelo; Diaz, Alexandre; Martins, Evandro Tostes; Rufino, Armanda; Amante, Lúcia Nazareth; Thais, Maria Emília; Quevedo, João; Hohl, Alexandre; Linhares, Marcelo Neves; Walz, Roger

    2008-01-01

    Psychiatric disorders after traumatic brain injury (TBI) are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed. PMID:19043523

  19. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  20. Academic Placement after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Donders, Jacques

    The acadmic placement of 87 children (ages 6 to 16 years) who had sustained brain injuries was determined within 1 year after initial psychological assessment. Forty-five children had returned full time to regular academic programs, 21 children received special education support for less than half of their classes, and 21 children were enrolled in…

  1. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  2. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  3. Clinical review: ketones and brain injury.

    PubMed

    White, Hayden; Venkatesh, Balasubramanian

    2011-04-06

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury.

  4. Clinical review: Ketones and brain injury

    PubMed Central

    2011-01-01

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury. PMID:21489321

  5. Traumatic Brain Injury: A Guidebook for Educators.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office for Special Education Services.

    This guidebook is designed to help New York school staff better understand the specialized needs of students with traumatic brain injury (TBI) and appropriately apply educational interventions to improve special and general education services for these students. It provides information on the following areas: (1) the causes, incidence, and…

  6. Traumatic Brain Injury. Quick Turn Around (QTA).

    ERIC Educational Resources Information Center

    Markowitz, Joy; Linehan, Patrice

    This brief paper summarizes information concerning use of the traumatic brain injury (TBI) disability classification by states and the nature of state-level activities related to the education of children and youth with TBI. It notes addition of the TBI disability category to the Individuals with Disabilities Education Act in 1990 and provides the…

  7. Traumatic Brain Injury and Vocational Rehabilitation.

    ERIC Educational Resources Information Center

    Corthell, David W., Ed.

    Intended to serve as a resource guide on traumatic brain injury for rehabilitation practitioners, the book's 10 chapters are grouped into sections which provide an introduction and examine aspects of evaluation, treatment and placement planning, and unresolved issues. Chapters have the following titles and authors: "Scope of the Problem" (Marilyn…

  8. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  9. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  10. Reality Lessons in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Adams, Elaine Parker; Adams, Albert A., Jr.

    2008-01-01

    This article goes beyond the typical guidance on how to address the educational needs of students with traumatic brain injury (TBI). A survivor of TBI and his parent advocate describe real-life encounters in the education arena and offer ways to respond to the problems depicted in the situations. Their candor enhances educator awareness of the…

  11. Traumatic Brain Injury: Perspectives from Educational Professionals

    ERIC Educational Resources Information Center

    Mohr, J. Darrell; Bullock, Lyndal M.

    2005-01-01

    This article reports the outcomes from 2 focus groups conducted to ascertain professional educators' perceptions regarding their (a) level of preparedness for working with students with traumatic brain injury (TBI), (b) ideas regarding ways to improve support to students and families, and (c) concerns about meeting the diverse needs of children…

  12. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  13. Traumatic Brain Injury: Empirical Family Assessment Techniques.

    ERIC Educational Resources Information Center

    Bishop, Duane S.; Miller, Ivan W.

    1988-01-01

    Methods are described for quantifying and formalizing assessment of traumatic brain injury patient families. The advantages and disadvantages of empirical and clinical assessment are outlined, and four family assessment methods are reviewed: self-report, interview, observation, and laboratory. Specific assessment instruments are noted along with…

  14. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  15. Seizures Following Traumatic Brain Injury in Childhood.

    ERIC Educational Resources Information Center

    Williams, Dennis

    This guide provides information on seizures in students with traumatic brain injury (TBI) and offers guidelines for classroom management. First, a classification system for seizures is presented with specific types of seizures explained. Post-traumatic seizures are specifically addressed as is the importance of seizure prevention when possible.…

  16. Academic Placement after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Donders, Jacques

    The acadmic placement of 87 children (ages 6 to 16 years) who had sustained brain injuries was determined within 1 year after initial psychological assessment. Forty-five children had returned full time to regular academic programs, 21 children received special education support for less than half of their classes, and 21 children were enrolled in…

  17. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  18. Traumatic Brain Injury: Perspectives from Educational Professionals

    ERIC Educational Resources Information Center

    Mohr, J. Darrell; Bullock, Lyndal M.

    2005-01-01

    This article reports the outcomes from 2 focus groups conducted to ascertain professional educators' perceptions regarding their (a) level of preparedness for working with students with traumatic brain injury (TBI), (b) ideas regarding ways to improve support to students and families, and (c) concerns about meeting the diverse needs of children…

  19. Traumatic brain injury and posttraumatic stress disorder.

    PubMed

    Bahraini, Nazanin H; Breshears, Ryan E; Hernández, Theresa D; Schneider, Alexandra L; Forster, Jeri E; Brenner, Lisa A

    2014-03-01

    Given the upsurge of research in posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI), much of which has focused on military samples who served in Iraq and Afghanistan, the purpose of this article is to review the literature published after September 11th, 2001 that addresses the epidemiology, pathophysiology, evaluation, and treatment of PTSD in the context of TBI.

  20. Experimental models of repetitive brain injuries.

    PubMed

    Weber, John T

    2007-01-01

    Repetitive traumatic brain injury (TBI) occurs in a significant portion of trauma patients, especially in specific populations, such as child abuse victims or athletes involved in contact sports (e.g. boxing, football, hockey, and soccer). A continually emerging hypothesis is that repeated mild injuries may cause cumulative damage to the brain, resulting in long-term cognitive dysfunction. The growing attention to this hypothesis is reflected in several recent experimental studies of repeated mild TBI in vivo. These reports generally demonstrate cellular and cognitive dysfunction after repetitive injury using rodent TBI models. In some cases, data suggests that the effects of a second mild TBI may be synergistic, rather than additive. In addition, some studies have found increases in cellular markers associated with Alzheimer's disease after repeated mild injuries, which demonstrates a direct experimental link between repetitive TBI and neurodegenerative disease. To complement the findings from humans and in vivo experimentation, my laboratory group has investigated the effects of repeated trauma in cultured brain cells using a model of stretch-induced mechanical injury in vitro. In these studies, hippocampal cells exhibited cumulative damage when mild stretch injuries were repeated at either 1-h or 24-h intervals. Interestingly, the extent of damage to the cells was dependent on the time between repeated injuries. Also, a very low level of stretch, which produced no cell damage on its own, induced cell damage when it was repeated several times at a short interval (every 2 min). Although direct comparisons to the clinical situation are difficult, these types of repetitive, low-level, mechanical stresses may be similar to the insults received by certain athletes, such as boxers, or hockey and soccer players. This type of in vitro model could provide a reliable system in which to study the mechanisms underlying cellular dysfunction following repeated injuries. As

  1. Child and adolescent traumatic brain injury: correlates of injury severity.

    PubMed

    Max, J E; Lindgren, S D; Knutson, C; Pearson, C S; Ihrig, D; Welborn, A

    1998-01-01

    A record review focused on children and adolescents, with a history of traumatic brain injury, who were consecutively admitted to a brain injury clinic in which all new patients are psychiatrically evaluated. Significant correlates of severity of injury in the cognitive, education and communication domains of functioning included Performance IQ but not Verbal IQ nor standardized ratings of language or learning disability. Current organic personality syndrome (OPS) but not attention deficit hyperactivity disorder or oppositional defiant disorder/conduct disorder diagnostic status was significantly related to severity. In conclusion, the findings in this referred sample are similar to prospective studies indicating that Performance IQ appears sensitive in reflecting brain damage. The finding linking OPS to severity of injury is not surprising. This is because OPS is a diagnosis which is dependent on the clinician's judgment of the likelihood that the organic factor is etiologically related to a defined behavioural syndrome. The diagnosis therefore requires a clinical judgment that the threshold of severity of a presumed organic etiological factor has been reached.

  2. Imaging With the IBIS Mask

    NASA Astrophysics Data System (ADS)

    Berná, J. A.; Torrejón, J. M.; Bernabeu, G.

    2001-03-01

    We present very preliminary results on the imaging capabilities of the IBIS instrument, the gamma ray imager on board ESA's INTEGRAL satellite, regarding the coded mask subsystem. For this purpose we perform a simulation of a pointed observation to the Galactic Centre region and investigate the detection of the most prominent sources.

  3. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  4. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  5. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  6. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  7. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  8. Neuroprotection against Surgically-Induced Brain Injury

    PubMed Central

    Jadhav, Vikram; Solaroglu, Ihsan; Obenaus, Andre; Zhang, John H.

    2007-01-01

    Background Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself due to the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. Methods/Results In the present review we will elaborate upon this surgically-induced brain injury and also present a novel animal model to study it. Additionally, we will summarize preliminary results obtained by pretreatment with PP1, a src tyrosine kinase inhibitor reported to have neuroprotective properties in in-vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on the patient recovery. Conclusion This brief review is intended to raise the question of ‘neuroprotection against surgically-induced brain injury’ in the neurosurgical scientific community and stimulate discussions. PMID:17210286

  9. Traumatic brain injury imaging research roadmap.

    PubMed

    Wintermark, M; Coombs, L; Druzgal, T J; Field, A S; Filippi, C G; Hicks, R; Horton, R; Lui, Y W; Law, M; Mukherjee, P; Norbash, A; Riedy, G; Sanelli, P C; Stone, J R; Sze, G; Tilkin, M; Whitlow, C T; Wilde, E A; York, G; Provenzale, J M

    2015-03-01

    The past decade has seen impressive advances in the types of neuroimaging information that can be acquired in patients with traumatic brain injury. However, despite this increase in information, understanding of the contribution of this information to prognostic accuracy and treatment pathways for patients is limited. Available techniques often allow us to infer the presence of microscopic changes indicative of alterations in physiology and function in brain tissue. However, because histologic confirmation is typically lacking, conclusions reached by using these techniques remain solely inferential in almost all cases. Hence, a need exists for validation of these techniques by using data from large population samples that are obtained in a uniform manner, analyzed according to well-accepted procedures, and correlated with closely monitored clinical outcomes. At present, many of these approaches remain confined to population-based research rather than diagnosis at an individual level, particularly with regard to traumatic brain injury that is mild or moderate in degree. A need and a priority exist for patient-centered tools that will allow advanced neuroimaging tools to be brought into clinical settings. One barrier to developing these tools is a lack of an age-, sex-, and comorbidities-stratified, sequence-specific, reference imaging data base that could provide a clear understanding of normal variations across populations. Such a data base would provide researchers and clinicians with the information necessary to develop computational tools for the patient-based interpretation of advanced neuroimaging studies in the clinical setting. The recent "Joint ASNR-ACR HII-ASFNR TBI Workshop: Bringing Advanced Neuroimaging for Traumatic Brain Injury into the Clinic" on May 23, 2014, in Montreal, Quebec, Canada, brought together neuroradiologists, neurologists, psychiatrists, neuropsychologists, neuroimaging scientists, members of the National Institute of Neurologic

  10. Traumatic Brain Injury - Multiple Languages

    MedlinePlus

    ... this page, please enable JavaScript. Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (Af-Soomaali ) ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Japanese (日本語) Expand Section Brain Scan - 日本語 (Japanese) Bilingual ...

  11. Astrocyte roles in traumatic brain injury

    PubMed Central

    Burda, Joshua E.; Bernstein, Alexander M.; Sofroniew, Michael V.

    2015-01-01

    Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered. PMID:25828533

  12. Traumatic Brain Injury-Associated Coagulopathy

    PubMed Central

    Zhang, Jianning; Jiang, Rongcai; Liu, Li; Watkins, Timothy; Zhang, Fangyi

    2012-01-01

    Abstract Traumatic injury is a common cause of coagulopathy, primarily due to blood loss and hemodilution secondary to fluid resuscitation. Traumatic injury-associated coagulopathy often follows a course of transition from hyper- to hypocoagulable state exemplified in disseminated intravascular coagulation. The incidence of coagulopathy is significantly higher in patients with traumatic brain injury (TBI), especially those with penetrating trauma compared to injury to the trunk and limbs. This occurs despite the fact that patients with isolated TBI bleed less and receive restricted volume load of fluids. TBI-associated coagulopathy is extensively documented to associate with poor clinical outcomes, but its pathophysiology remains poorly understood. Studies in the past have shown that brain tissue is highly enriched in key procoagulant molecules. This review focuses on the biochemical and cellular characteristics of these molecules and pathways that could make brain uniquely procoagulant and prone to coagulopathy. Understanding this unique procoagulant environment will help to identify new therapeutic targets that could reverse a state of coagulopathy with minimal impacts on hemostasis, a critical requirement for neurosurgical treatments of TBI. PMID:23020190

  13. Traumatic Brain Injury and Neuropsychiatric Complications.

    PubMed

    Ahmed, Saeed; Venigalla, Hema; Mekala, Hema Madhuri; Dar, Sara; Hassan, Mudasar; Ayub, Shahana

    2017-01-01

    Traumatic brain injury (TBI) occurs when a blow or jolt to the head or a penetrating injury results in damage to the brain. It is the most frequent cause of hospitalization in young people with a higher prevalence in men. TBI is the leading cause of disability and mortality between the ages 1 and 45. TBI can be caused either by the direct result of trauma or due to a complication of the primary injury. The most common etiological factors for TBI are falls, road traffic accidents, violent physical assaults, and injuries associated with athletic activities. Following TBI, significant neurologic complications may occur which include seizures, dementia, Alzheimer's disease, and cranial nerve injuries. In addition, people may suffer from various psychiatric complications such as depression, posttraumatic stress disorder, generalized anxiety disorder, obsessive-compulsive disorder, and other cognitive and behavioral sequel that might significantly increase the comorbidity of the victims. Considering all of the above complications, TBI is one of the significant public health burdens. Literature has shown that only about 25% of people achieve long-term functional independence following TBI. In this paper, we focused not only on the epidemiology but also the etiology, complications following TBI and understanding their underlying pathogenesis. Further, we focused on analyzing the options to improve the treatment and rehabilitation following TBI in future.

  14. The gut reaction to traumatic brain injury

    PubMed Central

    Katzenberger, Rebeccah J; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries. We recently reported that TBI in flies, as in humans, increases permeability of the intestinal epithelial barrier resulting in hyperglycemia and a higher risk of death. Furthermore, we demonstrated that genetic variation in flies is also pertinent to the complexity of non-neurological injuries following TBI. The goals of this review are to place our findings in the context of what is known about TBI-induced intestinal permeability from studies of TBI patients and rodent TBI models and to draw attention to how studies of the fly TBI model can provide unique insights that may facilitate diagnosis and treatment of TBI. PMID:26291482

  15. Substance P mediates reduced pneumonia rates after traumatic brain injury.

    PubMed

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D; Pritts, Timothy A; Caldwell, Charles C; Remick, Daniel G; Lentsch, Alex B

    2014-09-01

    Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Academic medical centers in Cincinnati, OH, and Boston, MA. Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. Administration of a substance P receptor antagonist in mice. Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the

  16. Military traumatic brain injury: a review.

    PubMed

    Chapman, Julie C; Diaz-Arrastia, Ramon

    2014-06-01

    Military mild traumatic brain injury (mTBI) differs from civilian injury in important ways. Although mTBI sustained in both military and civilian settings are likely to be underreported, the combat theater presents additional obstacles to reporting and accessing care. The impact of blast forces on the nervous system may differ from nonblast mechanisms, mTBI although studies comparing the neurologic and cognitive sequelae in mTBI survivors have not provided such evidence. However, emotional distress appears to figure prominently in symptoms following military mTBI. This review evaluates the extant literature with an eye towards future research directions.

  17. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-08-2-0017 TITLE: " Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology...TITLE AND SUBTITLE 5a. CONTRACT NUMBER “ Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology...traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected

  18. Optic radiation injury in a patient with traumatic brain injury.

    PubMed

    Yeo, Sang Seok; Kim, Seong Ho; Kim, Oh Lyong; Kim, Min-Su; Jang, Sung Ho

    2012-01-01

    This study reports on a patient who showed an optic radiation (OR) injury on diffusion tensor imaging (DTI) following head trauma. The patient, who had suffered a traffic accident, underwent conservative management for diffuse axonal injury and contusions in the left midbrain, temporal lobe and anterior to mid-portion of left OR. He complained of right homonymous hemianopsia from the onset of TBI and right bilateral homonymous hemianopsia was detected at the 6-month Humphrey visual field test. A 20 year-old man with traumatic brain injury (TBI) and eight age-matched normal subjects were recruited for this study. The left OR of the patient showed a discontinuation around the mid-portion. The FA (fractional anisotropy) values of the posterior portions of left OR decreased over two standard deviations of normal controls, but the ADC (apparent diffusion coefficient) values of these sites increased over two standard deviations of normal controls. Consequently, it was assumed that the main injury site of the left OR was located around the posterior portion of the left OR. This results suggest that DTI may be a useful technique for detection of an OR injury in patients with TBI.

  19. Progesterone for neuroprotection in pediatric traumatic brain injury.

    PubMed

    Robertson, Courtney L; Fidan, Emin; Stanley, Rachel M; Noje, Corina; Bayir, Hülya

    2015-03-01

    To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. National Library of Medicine PubMed literature review. The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global

  20. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  1. Chronic Endocrinopathies in Traumatic Brain Injury Disease.

    PubMed

    Masel, Brent E; Urban, Randy

    2015-12-01

    The aim of this review was to explain the role played by pituitary hormonal deficiencies in the traumatic brain injury (TBI) disease process. Chronic dysfunction of the pituitary axis is observed in approximately 35% of individuals who sustain a moderate-to-severe TBI. The most common deficiency is that of growth hormone, followed by gonadotropin, cortisol, and thyroid. The medical, psychological, and psychiatric consequences of untreated hypopituitarism are extensive and can be devastating. Many of the consequences of a chronic symptomatic TBI have, in the past, been solely attributed to the brain injury per se. Analysis of the signs and symptoms of pituitary axis dysfunction suggests that many of these consequences can be attributed to post-traumatic hypopituitarism (PTH). PTH may well play a significant role in the progressive signs and symptoms that follow a chronic TBI.

  2. Traumatic Brain Injury in Sports: A Review

    PubMed Central

    Sahler, Christopher S.; Greenwald, Brian D.

    2012-01-01

    Traumatic brain injury (TBI) is a clinical diagnosis of neurological dysfunction following head trauma, typically presenting with acute symptoms of some degree of cognitive impairment. There are an estimated 1.7 to 3.8 million TBIs each year in the United States, approximately 10 percent of which are due to sports and recreational activities. Most brain injuries are self-limited with symptom resolution within one week, however, a growing amount of data is now establishing significant sequelae from even minor impacts such as headaches, prolonged cognitive impairments, or even death. Appropriate diagnosis and treatment according to standardized guidelines are crucial when treating athletes who may be subjected to future head trauma, possibly increasing their likelihood of long-term impairments. PMID:22848836

  3. [Diagnosis and treatment of traumatic brain injury].

    PubMed

    Rickels, E

    2009-02-01

    Traumatic brain injury (TBI) is still the major cause of death under 45 years of age and an important one for children under 15. Its incidence is 332/100,000 inhabitants. It results from an impact with the skull with/without lesion of the brain but at least a short-term neurological disorder. All other injuries to the skull should be called concussion. The duration of unconsciousness defines the severity of TBI. Patients with TBI should be admitted to a surgical ward. Those retaining consciousness and with GCS scores of 15 might be allowed to go home if under surveillance. With GCS of <15 or with risk factors, TBI requires a CT scan and in-hospital surveillance. Acutely life-threatening, i.e. space-occupying, bleeding must be operated on immediately. Epidural or subdural bleeding, especially in comatose patients, is still a vital risk and thus requires immediate surgery.

  4. The neuroethics and neurolaw of brain injury.

    PubMed

    Aggarwal, Neil Krishan; Ford, Elizabeth

    2013-01-01

    Neuroethics and neurolaw are fields of study that involve the interface of neuroscience with clinical and legal decision-making. The past two decades have seen increasing attention being paid to both fields, in large part because of the advances in neuroimaging techniques and improved ability to visualize and measure brain structure and function. Traumatic brain injury (TBI), along with its acute and chronic sequelae, has emerged as a focus of neuroethical issues, such as informed consent for treatment and research, diagnostic and prognostic uncertainties, and the subjectivity of interpretation of data. The law has also more frequently considered TBI in criminal settings for exculpation, mitigation and sentencing purposes and in tort and administrative law for personal injury, disability and worker's compensation cases. This article provides an overview of these topics with an emphasis on the current challenges that the neuroscience of TBI faces in the medicolegal arena.

  5. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  6. Mild Traumatic Brain Injury in Translation

    PubMed Central

    Robertson, Claudia S.

    2013-01-01

    Abstract This Introduction to a Special Issue on Mild Traumatic Brain Injury (mTBI) highlights the methodological challenges in outcome studies and clinical trials involving patients who sustain mTBI. Recent advances in brain imaging and portable, computerized cognitive tasks have contributed to protocols that are sensitive to the effects of mTBI and efficient in time for completion. Investigation of civilian mTBI has been extended to single and repeated injuries in athletes and blast-related mTBI in service members and veterans. Despite differences in mechanism of injury, there is evidence for similar effects of acceleration-deceleration and blast mechanisms of mTBI on cognition. Investigation of repetitive mTBI suggests that the effects may be cumulative and that repeated mTBI and repeated subconcussive head trauma may lead to neurodegenerative conditions. Although animal models of mTBI using cortical impact and fluid percussion injury in rodents have been able to reproduce some of the cognitive deficits frequently exhibited by patients after mTBI, modeling post-concussion symptoms is difficult. Recent use of closed head and blast injury animal models may more closely approximate clinical mTBI. Translation of interventions that are developed in animal models to patients with mTBI is a priority for the research agenda. This Special Issue on mTBI integrates basic neuroscience studies using animal models with studies of human mTBI, including the cognitive sequelae, persisting symptoms, brain imaging, and host factors that facilitate recovery. PMID:23046349

  7. Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    hemorrhagic lesions including intraparenchymal, subdural, and subarachnoid bleeding. Blast injury also induces a variety of histological effects...and microscopic intracerebral, subarachnoid and subdural hemorrhage , severity related to proximity of explosion to head Decreased rotarod and grip...tensor imaging study. J Neurosurg 2005;103:298-303. 66. Wilde EA, McCauley SR, Hunter JV, et al. Diffusion tensor imaging of acute mild traumatic brain

  8. Monitoring Brain Injury With TSALLIS Entropy

    DTIC Science & Technology

    2001-10-25

    significant but still remains to be studied. Literature has pointed to the role of q in the entropy computation for EEG studies [10]. In our study it is... EEG in the form of reduction during the bad physiological function outcome. The reduction level and recovery rate of TE are also consistent with...USA Abstract- Nonextensive entropy measure, Tsallis Entropy (TE), was undertaken to monitor the brain injury after cardiac arrest. EEG of human and

  9. Inflammatory neuroprotection following traumatic brain injury

    PubMed Central

    Russo, Matthew V.; McGavern, Dorian B.

    2017-01-01

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  10. [Decompressive craniectomy in traumatic brain injury and malignant brain infarction].

    PubMed

    Greiner, Christoph

    2008-10-01

    High intracranial pressure (ICP) is the most frequent cause of death and disability after severe traumatic brain injury and malignant cerebral infarction. After failure of general therapeutic maneuvers and first line therapies, "second tier" therapies have to be considered. Decompressive craniectomy is an advanced treatment option for controlling intracranial pressure (ICP). In this review indications and techniques of decompressive craniectomy are described and current literature is discussed. The author concludes that decompressive craniectomy is no routine, but should be considered in individual cases.

  11. Chronic neurodegenerative consequences of traumatic brain injury.

    PubMed

    Chauhan, Neelima B

    2014-01-01

    Traumatic brain injury (TBI) is a serious public health concern and a major cause of death and disability worldwide. Each year, an estimated 1.7 million Americans sustain TBI of which ~52,000 people die, ~275,000 people are hospitalized and 1,365,000 people are treated as emergency outpatients. Currently there are ~5.3 million Americans living with TBI. TBI is more of a disease process than of an event that is associated with immediate and long-term sensomotor, psychological and cognitive impairments. TBI is the best known established epigenetic risk factor for later development of neurodegenerative diseases and dementia. People sustaining TBI are ~4 times more likely to develop dementia at a later stage than people without TBI. Single brain injury is linked to later development of symptoms resembling Alzheimer's disease while repetitive brain injuries are linked to later development of chronic traumatic encephalopathy (CTE) and/or Dementia Pugilistica (DP). Furthermore, genetic background of ß-amyloid precursor protein (APP), Apolipoprotein E (ApoE), presenilin (PS) and neprilysin (NEP) genes is associated with exacerbation of neurodegenerative process after TBI. This review encompasses acute effects and chronic neurodegenerative consequences after TBI.

  12. Treatment window for hypothermia in brain injury.

    PubMed

    Markgraf, C G; Clifton, G L; Moody, M R

    2001-12-01

    The goal of this study was to evaluate the therapeutic window for hypothermia treatment following experimental brain injury by measuring edema formation and functional outcome. Traumatic brain injury (TBI) was produced in anesthetized rats by using cortical impact injury. Edema was measured in the ipsilateral and contralateral hemispheres by subtracting dry weight from wet weight, and neurological function was assessed using a battery of behavioral tests 24 hours after TBI. In injured rats, it was found that brain water levels were elevated at I hour postinjury, compared with those in sham-injured control animals, and that edema peaked at 24 hours and remained elevated for 4 days. Hypothermia (3 hours at 30 degrees C) induced either immediately after TBI or 60 minutes after TBI significantly reduced early neurological deficits. Delay of treatment by 90 or 120 minutes postinjury did not result in this neurological protection. Immediate administration of hypothermia also significantly decreased the peak magnitude of edema at 24 hours and 48 hours postinjury, compared with that in normothermic injured control animals. When delayed by 90 minutes, hypothermia did not affect the pattern of edema formation. When hypothermia was administered immediately or 60 minutes after TBI, injured rats showed an improvement in functional outcome and a decrease in edema. Delayed hypothermia treatment had no effect on functional outcome or on edema.

  13. Traumatic brain injury in modern war

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  14. Position statement: definition of traumatic brain injury.

    PubMed

    Menon, David K; Schwab, Karen; Wright, David W; Maas, Andrew I

    2010-11-01

    A clear, concise definition of traumatic brain injury (TBI) is fundamental for reporting, comparison, and interpretation of studies on TBI. Changing epidemiologic patterns, an increasing recognition of significance of mild TBI, and a better understanding of the subtler neurocognitive neuroaffective deficits that may result from these injuries make this need even more critical. The Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health has therefore formed an expert group that proposes the following definition: In this article, we discuss criteria for considering or establishing a diagnosis of TBI, with a particular focus on the problems how a diagnosis of TBI can be made when patients present late after injury and how mild TBI may be differentiated from non-TBI causes with similar symptoms. Technologic advances in magnetic resonance imaging and the development of biomarkers offer potential for improving diagnostic accuracy in these situations. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. The molecular pathophysiology of concussive brain injury.

    PubMed

    Barkhoudarian, Garni; Hovda, David A; Giza, Christopher C

    2011-01-01

    Concussion or mild traumatic brain injury (mTBI) is a condition that affects hundreds of thousands of patients worldwide. Understanding the pathophysiology of this disorder can help manage its acute and chronic repercussions. Immediately following mTBI, there are several metabolic, hemodynamic, structural, and electric changes that alter normal cerebral function. These alterations can increase the brain's vulnerability to repeat injury and long-term disability. This review evaluates current studies from the bench to the bedside of mTBI. Acute and chronic effects of concussion are measured in both animal and clinical studies. Also, the effect of repeat concussions is analyzed. Concussion-induced pathophysiology with regards to glucose metabolism changes, mitochondrial dysfunction, axonal injury, and structural damage are evaluated. Translational studies such as functional magnetic resonance imaging, magnetic resonance spectroscopy and diffusion tensor imaging prove to be effective clinical tools for both prognostic and treatment parameters. Understanding the neurobiology of concussion will lead to development and validation of physiological biomarkers of this common injury. These biomarkers (eg, laboratory tests, imaging, electrophysiology) will then allow for improved detection, better functional assessment and evidence-based return to play recommendations. Published by Elsevier Inc.

  16. Emerging Therapies in Traumatic Brain Injury

    PubMed Central

    Kochanek, Patrick M.; Jackson, Travis C.; Ferguson, Nikki Miller; Carlson, Shaun W.; Simon, Dennis W.; Brockman, Erik C.; Ji, Jing; Bayir, Hülya; Poloyac, Samuel M.; Wagner, Amy K.; Kline, Anthony E.; Empey, Philip E.; Clark, Robert S.B.; Jackson, Edwin K.; Dixon, C. Edward

    2015-01-01

    Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discuss TBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field. PMID:25714870

  17. Traumatic Brain Injury: A Guidebook for Idaho Educators.

    ERIC Educational Resources Information Center

    Carter, Susanne

    This guide is an introduction to head injury and to educational resources in the field. An introductory section describes traumatic brain injury (TBI) as a federally recognized disability category and provides its federal and Idaho definitions. The following section introduces the unique characteristics of students with brain injuries. A section…

  18. Pesticide mortality of young white-faced ibis in Texas

    USGS Publications Warehouse

    Flickinger, Edward L.; Meeker, D.L.

    1972-01-01

    The combination of the symptoms observed in sick and dying birds and the high brain residues in the three birds collected dying, as well as in two of the four collected dead, implicate dieldrin as at least one of the causes of mortality of young ibis at the Lavaca Bay colony. Mercury residues in the kidneys of all four dead young, including those with low brain residues of dieldrin, suggest that birds were exposed to mercury in rice fields and that mercury may also have contributed to the mortality. Since adult ibis normally feed their young on invertebrates collected in rice fields treated with aldrin and Ceresan L, the use of these rice pesticides appears to be a serious hazard to this species, and probably to other wild birds with similar habits.

  19. Large animal models of traumatic brain injury.

    PubMed

    Dai, Jun-Xi; Ma, Yan-Bin; Le, Nan-Yang; Cao, Jun; Wang, Yang

    2017-10-03

    Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. Mixed published articles and books associated with large animal models of TBI were researched and summarized. We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.

  20. Recent advances in imaging preterm brain injury.

    PubMed

    Boardman, J P; Dyet, L E

    2007-08-01

    Survivors of preterm birth are at high risk of neurocognitive impairment in childhood, but the disturbances to brain growth and function that underlie impairment are not completely understood. Improvements in perinatal care have led to a reduction in the major destructive parenchymal brain lesions that are associated with motor impairment, such as cystic periventricular leucomalacia and haemorrhagic parenchymal infarction. However, with the application of advanced magnetic resonance (MR) imaging and processing techniques in the neonatal period, subtle alterations in brain development have become apparent. These changes occur with similar frequency to long-term neurocognitive impairment, and may therefore represent candidate neural substrates for this group of disorders. Here we review the range of lesions and associated outcomes that are seen in the current era of perinatal care, and discuss how state of the art MR imaging techniques have helped to define the neural systems affected by preterm birth, and have provided insights into understanding mechanisms of injury.

  1. Inflammation and Neuroprotection in Traumatic Brain Injury

    PubMed Central

    Corps, Kara N.; Roth, Theodore L.; McGavern, Dorian B.

    2016-01-01

    IMPORTANCE Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. OBJECTIVES To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. EVIDENCE REVIEW We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. FINDINGS Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning

  2. Inflammation and neuroprotection in traumatic brain injury.

    PubMed

    Corps, Kara N; Roth, Theodore L; McGavern, Dorian B

    2015-03-01

    Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning as well as the local cues to which they are

  3. Perceived needs following traumatic brain injury.

    PubMed

    Corrigan, John D; Whiteneck, Gale; Mellick, Dave

    2004-01-01

    (1) Provide population-based estimates of perceived needs following traumatic brain injury (TBI) and the prevalence of unmet needs 1 year postinjury; (2) identify relations among needs that define unique clusters of individuals; and (3) identify risk factors for experiencing selected needs. Telephone survey 1 year after injury of a prospective cohort of all people hospitalized with TBI in the state of Colorado during 2000. Self-reported need for assistance in 13 areas of functioning. A total of 58.8% of persons hospitalized with TBI experienced at least 1 need during the year following injury; 40.2% will experience at least 1 unmet need 1 year after injury. Most frequently experienced needs were "improving your memory, solving problems better" (34.1%), "managing stress, emotional upsets" (27.9%), and "managing your money, paying bills" (23.3%). Cluster analysis revealed 8 distinctive groupings of subjects. If a need existed, those least likely to be met involved cognitive abilities, employment, and alcohol and/or drug use. Results were consistent with findings from previous assessments of need for services based on surveys of convenience samples; however, the prevalence of unmet needs 1 year after injury may be higher than previously suspected. More post-hospital services addressing cognitive and emotional problems appear needed. Risk factors for experiencing needs suggest potential avenues for clinical intervention.

  4. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  5. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  6. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  7. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  8. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  9. Mild Traumatic Brain Injury and Diffuse Axonal Injury in Swine

    PubMed Central

    Browne, Kevin D.; Chen, Xiao-Han; Meaney, David F.

    2011-01-01

    Abstract Until recently, mild traumatic brain injury (mTBI) or “concussion” was generally ignored as a major health issue. However, emerging evidence suggests that this injury is by no means mild, considering it induces persisting neurocognitive dysfunction in many individuals. Although little is known about the pathophysiological aspects of mTBI, there is growing opinion that diffuse axonal injury (DAI) may play a key role. To explore this possibility, we adapted a model of head rotational acceleration in swine to produce mTBI by scaling the mechanical loading conditions based on available biomechanical data on concussion thresholds in humans. Using these input parameters, head rotational acceleration was induced in either the axial plane (transverse to the brainstem; n=3), causing a 10- to 35-min loss of consciousness, or coronal plane (circumferential to the brainstem; n=2), which did not produce a sustained loss of consciousness. Seven days following injury, immunohistochemical analyses of the brains revealed that both planes of head rotation induced extensive axonal pathology throughout the white matter, characterized as swollen axonal bulbs or varicosities that were immunoreactive for accumulating neurofilament protein. However, the distribution of the axonal pathology was different between planes of head rotation. In particular, more swollen axonal profiles were observed in the brainstems of animals injured in the axial plane, suggesting an anatomic substrate for prolonged loss of consciousness in mTBI. Overall, these data support DAI as an important pathological feature of mTBI, and demonstrate that surprisingly overt axonal pathology may be present, even in cases without a sustained loss of consciousness. PMID:21740133

  10. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome.

    PubMed

    McDonald, Stuart J; Sun, Mujun; Agoston, Denes V; Shultz, Sandy R

    2016-04-26

    Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury

  11. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  12. Concussive brain injury from explosive blast.

    PubMed

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-09-01

    Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities - PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment.

  13. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury

    PubMed Central

    Andrews, Allison M.; Lutton, Evan M.; Merkel, Steven F.; Razmpour, Roshanak; Ramirez, Servio H.

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  14. Role of Thalamus in Recovery of Traumatic Brain Injury

    PubMed Central

    Munivenkatappa, Ashok; Agrawal, Amit

    2016-01-01

    Degree of recovery after traumatic brain injury is highly variable that lasts for many weeks to months. The evidence of brain structures involved in recovery mechanisms is limited. This review highlights evidence of the brain structure particularly thalamus in neuroplasticity mechanism. Thalamus with its complex global networking has potential role in refining the cortical and other brain structures. Thalamic nuclei activation both naturally or by neurorehabilitation in injured brain can enhance and facilitate the improvement of posttraumatic symptoms. This review provides evidence from literature that thalamus plays a key role in recovery mechanism after injury. The study also emphasize that thalamus should be specifically targeted in neurorehabilitation following brain injury. PMID:28163509

  15. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.

    PubMed

    Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi

    2017-01-01

    Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.

  16. Visual impairments in the first year after traumatic brain injury.

    PubMed

    Greenwald, Brian D; Kapoor, Neera; Singh, Adeepa D

    2012-01-01

    This article reviews literature regarding individuals with traumatic brain injury who have vision related impairments up to one year, post-injury. Such impairments may impact rehabilitation of activities of daily living and mobility since vision is integral in much of what one does on a daily basis. Search of Medline, Ovid, and PubMed was performed using terms including: traumatic brain injury, visual deficits after brain injury, vision and traumatic brain injury, and ADLs after brain injury. Eighteen studies were analyzed and reviewed. A range of visual and visual-motor impairments are seen across the severity of traumatic brain injury. Visual impairment negatively impacts independence in mobility and activities of daily living. Common sensorimotor visual symptoms reported by those with traumatic brain injury include blurred vision, reading problems, double vision or eyestrain, dizziness or disequilibrium in visually-crowded environments, visual field defects, light sensitivity, and color blindness. This review should alert the reader to common visual complaints and defects seen after traumatic brain injury. It is important to screen persons who have suffered traumatic brain injury for sensorimotor vision deficits early on in recovery so that these issues may be addressed and recovery of function and independence in the community are not delayed.

  17. Traumatic brain injury research priorities: the Conemaugh International Brain Injury Symposium.

    PubMed

    Zitnay, George A; Zitnay, Kevin M; Povlishock, John T; Hall, Edward D; Marion, Donald W; Trudel, Tina; Zafonte, Ross D; Zasler, Nathan; Nidiffer, F Don; DaVanzo, John; Barth, Jeffrey T

    2008-10-01

    In 2005, an international symposium was convened with over 100 neuroscientists from 13 countries and major research centers to review current research in traumatic brain injury (TBI) and develop a consensus document on research issues and priorities. Four levels of TBI research were the focus of the discussion: basic science, acute care, post-acute neurorehabilitation, and improving quality of life (QOL). Each working group or committee was charged with reviewing current research, discussion and prioritizing future research directions, identifying critical issues that impede research in brain injury, and establishing a research agenda that will drive research over the next five years, leading to significantly improved outcomes and QOL for individuals suffering brain injuries. This symposium was organized at the request of the Congressional Brain Injury Task Force, to follow up on the National Institutes of Health Consensus Conference on TBI as mandated by the TBI ACT of 1996. The goal was to review what progress had been made since the National Institutes of Health (NIH) Consensus Conference, and also to follow up on the 1990's Decade of the Brain Project. The major purpose of the symposium was to provide recommendations to the U.S. Congress on a priority basis for research, treatment, and training in TBI over the next five years.

  18. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  19. De novo artistic behaviour following brain injury.

    PubMed

    Pollak, Thomas A; Mulvenna, Catherine M; Lythgoe, Mark F

    2007-01-01

    The effect of brain injury and disease on the output of established artists is an object of much study and debate. The emergence of de novo artistic behaviour following such injury or disease, while very rare, has been recorded in cases of frontotemporal dementia, epilepsy, subarachnoid haemorrhage and Parkinson's disease. This may be an underdiagnosed phenomenon and may represent an opportunity to further understand the neural bases of creative thought and behaviour in man and those of cognitive change after brain injury. There is clearly an important role for hemispheric localization of pathology, which is usually within the temporal cortex, upon the medium of artistic expression, and a likely role for mild frontal cortical dysfunction in producing certain behavioural and cognitive characteristics that may be conducive to the production of art. Possible mechanisms of 'artistic drive' and 'creative idea generation' in these patients are also considered. The increased recognition and responsible nurturing of this behaviour in patients may serve as a source of great comfort to individuals and their families at an otherwise difficult time.

  20. Microglial Activation in Traumatic Brain Injury

    PubMed Central

    Donat, Cornelius K.; Scott, Gregory; Gentleman, Steve M.; Sastre, Magdalena

    2017-01-01

    Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI. PMID:28701948

  1. Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury.

    PubMed

    Watts, Ryan P; Thom, Ogilvie; Fraser, John F

    2013-01-01

    Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.

  2. Traumatic Brain Injury: Are We Conducting Enough Resarch

    DTIC Science & Technology

    2017-04-17

    FROM: 59 MDW/SGVU SUBJECT: Professional Presentation Approval 7 APR 2017 1. Your paper, entitled Traumatic Brain Injury: Are We Conducting Enough...review and approval.) NA - Pubmed searches w ere the only source of data 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Traumatic Brain Injury...Traumatic Brain Injury: Are We Conducting Enough Research? Capt Mariya Gusman MD, Lt Col Jonathan A Sosnov MD, Jeffrey T Howard PhD Background

  3. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    treating brain injuries is utilizing 16 an effective screening technique to target treatment for those individuals who need it most. Requirements for an...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS BASELINE ESTABLISHMENT USING VIRTUAL ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) by Casey...ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) 5. FUNDING NUMBERS 6. AUTHOR(S) Casey G. DeMunck 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  4. Hypersexuality or altered sexual preference following brain injury.

    PubMed Central

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  5. Hypersexuality or altered sexual preference following brain injury.

    PubMed

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-08-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury.

  6. Psychiatric disorders after traumatic brain injury.

    PubMed

    van Reekum, R; Bolago, I; Finlayson, M A; Garner, S; Links, P S

    1996-05-01

    Substantial psychological and neurobehavioural evidence is available to support the hypothesis that traumatic brain injury (TBI) is a risk factor for subsequent psychiatric disorders. However, studies utilizing established psychiatric diagnostic schemes to study these outcomes after TBI are scarce, and no studies have included an assessment of personality disorders in addition to the major psychiatric disorders. This study utilizes structured psychiatric interviews to measure the prevalence of DSM-III(R) disorders in a sample of 18 subjects derived from a TBI rehabilitation programme. Results revealed high rates for major depression, bipolar affective disorder, generalized anxiety disorder, borderline and avoidant personality disorders. Co-morbidity was also high. A preliminary study of postulated predictive factors revealed possible roles for sex and for initial severity of injury. The study supports the association between TBI and psychiatric disorder, and suggests the need for monitoring, for prevention, and for treatment of psychiatric disorders after TBI.

  7. Fear of falling after brain injury.

    PubMed

    Collicutt McGrath, Joanna

    2008-07-01

    To investigate the prevalence and nature of fear of falling in a sample of people with severe acquired brain injury. A descriptive study. A regional inpatient neurological rehabilitation unit. One hundred and five adults with acquired brain injury of mixed aetiology. All 105 participants were rated by observers who were asked to judge the degree to which fear behaviour interfered with rehabilitation therapy (activity limitation). Eighty-two participants also rated themselves. They were asked to report the degree of distress caused by fear. Both participants and observers were asked to describe the focus of any reported fear. Two stepwise logistic regression analyses were carried out to identify variables that predicted fear giving rise to significant activity limitation and fear giving rise to significant subjective distress. Self and observer rating scales designed and constructed specifically for the study. Raters reported significant fear-related activity limitation in 12-15% of participants. Significant fear-related subjective distress was reported by 40% of participants. Fear of falling, fear of physical harm and fear of not making sufficient rehabilitation progress dominated the reports of both observers and participants. The variables predicting significant activity limitation were premorbid alcohol misuse, low functional ability and the occurrence of a fall since onset. The variables predicting significant subjective distress were poor motor coordination and organization, and good verbal comprehension. Fear of falling is a clinically significant phenomenon in younger adults recovering from severe acquired brain injury. Fear sufficient to cause high degrees of subjective distress was often not evident to observers. Proactive questioning about fear of falling is therefore advisable when working clinically with this group.

  8. Brain Injury Vision Symptom Survey (BIVSS) Questionnaire.

    PubMed

    Laukkanen, Hannu; Scheiman, Mitchell; Hayes, John R

    2017-01-01

    Validation of the Brain Injury Vision Symptom Survey (BIVSS), a self-administered survey for vision symptoms related to traumatic brain injury (TBI). A 28-item vision symptom questionnaire was completed by 107 adult subjects (mean age 42.1, 16.2 SD, range 18-75) who self-reported as having sustained mild-to-moderate TBI and two groups of reference adult subjects (first-year optometry students: mean age 23.2, 2.8 SD, range 20-39; and 71 third-year optometry students: mean age 26.0, 2.9 SD, range 22-42) without TBI. Both a Likert-style method of analysis with factor analysis and a Rasch analysis were used. Logistic regression was used to determine sensitivity and specificity. At least 27 of 28 questions were completed by 93.5% of TBI subjects, and all 28 items were completed by all of the 157 reference subjects. BIVSS sensitivity was 82.2% for correctly predicting TBI and 90.4% for correctly predicting the optometry students. Factor analysis identified eight latent variables; six factors were positive in their risk for TBI. Other than dry eye and double vision, the TBI patients were significantly more symptomatic than either cohort of optometry students by at least one standard deviation (p < 0.001). Twenty-five of 28 questions were within limits for creating a single-dimension Rasch scale. Nearly all of the adult TBI subjects were able to self-complete the BIVSS, and there was significant mean score separation between TBI and non-TBI groups. The Rasch analysis revealed a single dimension associated with TBI. Using the Likert method with the BIVSS, it may be possible to identify different vision symptom profiles with TBI patients. The BIVSS seems to be a promising tool for better understanding the complex and diverse nature of vision symptoms that are associated with brain injury.

  9. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    PubMed

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effects of crystalloid-colloid solutions on traumatic brain injury.

    PubMed

    Elliott, Melanie B; Jallo, Jack J; Gaughan, John P; Tuma, Ronald F

    2007-01-01

    The purpose of this study was to compare the effects of crystalloid and crystalloid-colloid solutions administered at different times after isolated traumatic brain injury. Male Sprague-Dawley rats were randomized to receive one of three intravenous treatments (4 mL/kg body weight) at 10 min or 6 h after moderate traumatic brain injury. Treatments included hypertonic saline, hypertonic albumin, and normal albumin. Moderate injuries were produced using the controlled cortical impact injury model set at 2.0 mm, 4.0 m/sec, and 130 msec. Tissue damage and cerebral edema were measured to evaluate the effect of treatments for traumatic brain injury. Blood brain barrier permeability was assessed at different time points after injury to identify a mechanism for treatment effectiveness. Injury volume was the smallest for animals treated with hypertonic albumin at 6 h after injury compared to all other treatments and administration times. Ipsilateral brain water content was significantly attenuated with immediate normal saline-albumin treatment. The presence of colloid in the infusion solutions was associated with an improvement in tissue damage and edema following isolated head injury while hypertonic saline alone, when given immediately after injury, worsened tissue damage and edema. When hypertonic saline was administered at 6 h after injury, tissue damage and edema were not worsened. In conclusion, the presence of colloid in solutions used to treat traumatic brain injury and the timing of treatment have a significant impact on tissue damage and edema.

  11. Sports-related traumatic brain injury.

    PubMed

    Phillips, Shawn; Woessner, Derek

    2015-06-01

    Concussions have garnered more attention in the medical literature, media, and social media. As such, in the nomenclature according to the Centers for Disease Control and Prevention, the term concussion has been supplanted by the term mild traumatic brain injury. Current numbers indicate that 1.7 million TBIs are documented annually, with estimates around 3 million annually (173,285 sports- and recreation-related TBIs among children and adolescents). The Sideline Concussion Assessment Tool 3 and the NFL Sideline Concussion Assessment Tool are commonly used sideline tools.

  12. Severe Brain Injury in Massachusetts: Assessing the Continuum of Care.

    PubMed

    Lorenz, Laura; Katz, Gabrielle

    2015-12-10

    Acquired brain injury (ABI) is a major public health problem in Massachusetts (Hackman et al, 2014) and includes traumatic brain injury (TBI), stroke, ABI-related infectious diseases, metabolic disorders affecting the central nervous system (brain and spinal cord), and brain tumor. Advances in emergency medical care and neurosurgery mean that more people are surviving severe traumatic brain injury (Trexler et al, 2014). Yet many patients with severe TBI in particular, are not receiving inpatient services after initial treatment (Hackman et al, 2014; CDC, 2014) or later that are known to be effective (Malec & Kean, 2015; Lewis & Horn, 2015; BI Commission, 2011; Kolakowsky-Hayner et al, 2000; Interviews). These services include post-acute rehabilitation, case management, and brain injury-specific community programming (CDC, 2014; BI Commission, 2011; Interviews). Governance and data for decision-making are also major gaps in the continuum of care for severe brain injury in MA (Interviews; NASHIA, 2005). The last two decades saw a surge in interest in the brain, with advances in neuroscience, diagnosis and measurement of brain injury, rehabilitation services, and brain theory (Boyle, 2001). Severe brain injury however is the new "hidden epidemic" in our society. For many, an injury to the brain is not a short-term event that can be "cured" but the beginning of a life-long disability (CDC, 2014; Langlois et al, 2006). Fortunately, even after a severe brain injury, when the right rehabilitation is provided at the right time, the "rest of life" journey can be a positive one for many (Marquez de la Plata, 2015; Langlois et al, 2006). Severe brain injury can lead to a "new normal" as patients regain skills, find new meaning and in life, and take on new family, volunteer, and work roles. Throughout this brief, the term "severe brain injury" refers to "severe acquired brain injury," or any injury to the brain that occurs after birth. This definition does not include

  13. Why Some Kids Take Longer to Recover from Brain Injury

    MedlinePlus

    ... Why Some Kids Take Longer to Recover From Brain Injury Scans reveal white-matter decline after some ... 15, 2017 WEDNESDAY, March 15, 2017 (HealthDay News) -- Brain scans may reveal which children will take longer ...

  14. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  15. Early Systolic Dysfunction Following Traumatic Brain Injury: A Cohort Study.

    PubMed

    Krishnamoorthy, Vijay; Rowhani-Rahbar, Ali; Gibbons, Edward F; Rivara, Frederick P; Temkin, Nancy R; Pontius, Crystal; Luk, Kevin; Graves, Morgan; Lozier, Danielle; Chaikittisilpa, Nophanan; Kiatchai, Taniga; Vavilala, Monica S

    2017-06-01

    Prior studies have suggested that traumatic brain injury may affect cardiac function. Our study aims were to determine the frequency, longitudinal course, and admission risk factors for systolic dysfunction in patients with moderate-severe traumatic brain injury. Prospective cohort study. Level 1 trauma center. Transthoracic echocardiogram within 1 day and over the first week after moderate-severe traumatic brain injury; transthoracic echocardiogram within 1 day after mild traumatic brain injury (comparison group). Systolic function was assessed by transthoracic echocardiogram, and systolic dysfunction was defined as fractional shortening less than 25%. Multivariable Poisson regression models examined admission risk factors for systolic dysfunction. Systolic function in 32 patients with isolated moderate-severe traumatic brain injury and 32 patients with isolated mild traumatic brain injury (comparison group) was assessed with transthoracic echocardiogram. Seven (22%) moderate-severe traumatic brain injury and 0 (0%) mild traumatic brain injury patients had systolic dysfunction within the first day after injury (p < 0.01). All patients with early systolic dysfunction recovered in 1 week. Younger age (relative risk, 0.87; 95% CI, 0.79-0.94; for 1 yr increase in age) and lower admission Glasgow Coma Scale score (relative risk, 0.34; 95% CI, 0.20-0.58; for one unit increase in Glasgow Coma Scale) were independently associated with the development of systolic dysfunction among moderate-severe traumatic brain injury patients. Early systolic dysfunction can occur in previously healthy patients with moderate-severe traumatic brain injury, and it is reversible over the first week of hospitalization. Younger age and lower admission Glasgow Coma Scale score are independently associated with the development of systolic dysfunction after moderate-severe traumatic brain injury.

  16. Robust whole-brain segmentation: application to traumatic brain injury.

    PubMed

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  17. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care.

    PubMed

    Elder, Gregory A; Cristian, Adrian

    2009-04-01

    Mild traumatic brain injury has been called the signature injury of the wars in Iraq and Afghanistan. In both theaters of operation, traumatic brain injury has been a significant cause of mortality and morbidity, with blast-related injury the most common cause. Improvised explosive devices have been the major cause of blast injuries. It is estimated that 10% to 20% of veterans returning from these operations have suffered a traumatic brain injury, and there is concern that blast-related injury may produce adverse long-term health affects and affect the resilience and in-theater performance of troops. Blast-related injury occurs through several mechanisms related to the nature of the blast overpressure wave itself as well as secondary and tertiary injuries. Animal studies clearly show that blast overpressure waves are transmitted to the brain and can cause changes that neuropathologically are most similar to diffuse axonal injury. One striking feature of the mild traumatic brain injury cases being seen in veterans of the wars in Iraq and Afghanistan is the high association of mild traumatic brain injury with posttraumatic stress disorder. The overlap in symptoms between the disorders has made distinguishing them clinically challenging. The high rates of mild traumatic brain injury and posttraumatic stress disorder in the current operations are of significant concern for the long-term health of US veterans with associated economic implications.

  18. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    PubMed

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  19. Traumatic Brain Injury in the Workplace.

    PubMed

    Paci, Michael; Infante-Rivard, Claire; Marcoux, Judith

    2017-09-01

    Work-related traumatic brain injuries (TBIs) are not well documented in the literature. Published studies mostly rely on worker databases that fail to provide clinically relevant information. Our objective is to describe the characteristics of hospitalized patients and their work-related TBI. We used the Québec provincial trauma and TBI program databases to identify all patients with a diagnosis of work-related TBI admitted to the Montreal General Hospital, a level 1 trauma center, between 2000 and 2014. Data from their medical records were extracted using a predetermined information sheet. Simple descriptive statistics (means and percentages) were used to summarize the data. A total of 285 cases were analyzed. Workplace TBI patients were middle-aged (mean, 43.62 years), overwhelmingly male (male:female 18:1), mostly healthy, and had completed a high school level education. Most workers were from the construction industry; falling was the most common mechanism of injury. The majority of patients (76.8%) presented with a mild TBI; only a minority (14%) required neurosurgery. The most common finding on computed tomography was skull fracture. The median length of hospitalization was 7 days, after which most patients were discharged directly home. A total of 8.1% died of their injuries. Our study found that most hospitalized victims of work-related TBI had mild injury; however, some required neurosurgical intervention and a non-negligible proportion died of their injury. Improving fall prevention, accurately document helmet use and increasing the safety practice in the construction industry may help decrease work-related TBI burden.

  20. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2012-09-01

    not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT...of function after brain damage using a neural prosthesis (Complete main body of manuscript is included in the appendix.) Authors: David J. Guggenmos...feasible for brain repair strategies. This paper tests the hypothesis that recovery after brain injury can be facilitated by a neural prosthesis serving as

  1. IBIS detector performance during calibration - preliminary analysis

    NASA Astrophysics Data System (ADS)

    Bazzano, A.; Bird, A. J.; Laurent, P.; Malaguti, G.; Quadrini, E. M.; Segreto, A.; Volkmer, R.; del Santo, M.; Gabriele, M.; Tikkanen, T.

    2003-11-01

    The IBIS telescope is a high angular resolution gamma-ray imager due to be launched on the INTEGRAL satellite on October 17, 2002. The scientific goal of IBIS is to study astrophysical processes from celestial sources and diffuse regions in the hard X-ray and soft gamma-ray domains. IBIS features a coded aperture imaging system and a novel large area (~3000cm2) multilayer pixellated detector which utilises both cadmium telluride (16,384 detectors) and caesium iodide elements (4096 detectors) surrounded by a BGO active veto shield. We present an overview of, and preliminary analysis from, the IBIS calibration campaign. The performance of each pixel has been characterised, and hence the scientific performance of the IBIS detector system as a whole can now be established.

  2. Detrimental consequences of brain injury on peripheral cells.

    PubMed

    Catania, Anna; Lonati, Caterina; Sordi, Andrea; Gatti, Stefano

    2009-10-01

    Acute brain injury and brain death exert detrimental effects on peripheral host cells. Brain-induced impairment of immune function makes patients more vulnerable to infections that are a major cause of morbidity and mortality after stroke, trauma, or subarachnoid hemorrhage (SAH). Systemic inflammation and organ dysfunction are other harmful consequences of CNS injury. Brain death, the most severe consequence of brain injury, causes inflammatory changes in peripheral organs that can contribute to the inferior outcome of organs transplanted from brain-dead donors. Understanding of the mechanisms underlying the detrimental effects of brain injury on peripheral organs remains incomplete. However, it appears that sympathetic nervous system (SNS)-activation contributes to elicit both inflammation and immunodepression. Indeed, norepinephrine (NE)-induced production of chemokines in liver and other organs likely participates in local and systemic inflammatory changes. Conversely, catecholamine-stimulated interleukin-10 (IL-10) production by blood monocytes exerts immunosuppressive effects. Activation of the hypothalamic-pituitary-adrenal axis (HPA) by increased inflammatory cytokines within the brain is a significant component in the CNS-induced immune function inhibition. Non-neurologic consequences of brain injury show impressive similarities regardless of the brain insult and appear to depend on altered neuroimmune circuits. Modulation of these circuits could reduce extra-brain damage and improve patient outcome in both vascular and traumatic brain injury.

  3. Impaired Pituitary Axes Following Traumatic Brain Injury

    PubMed Central

    Scranton, Robert A.; Baskin, David S.

    2015-01-01

    Pituitary dysfunction following traumatic brain injury (TBI) is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed. PMID:26239686

  4. Update in mild traumatic brain injury.

    PubMed

    Freire-Aragón, María Dolores; Rodríguez-Rodríguez, Ana; Egea-Guerrero, Juan José

    2017-08-10

    There has been concern for many years regarding the identification of patients with mild traumatic brain injury (TBI) at high risk of developing an intracranial lesion (IL) that would require neurosurgical intervention. The small percentage of patients with these characteristics and the exceptional mortality associated with mild TBI with IL have led to the high use of resources such as computerised tomography (CT) being reconsidered. The various protocols developed for the management of mild TBI are based on the identification of risk factors for IL, which ultimately allows more selective indication or discarding both the CT application and the hospital stay for neurological monitoring. Finally, progress in the study of brain injury biomarkers with prognostic utility in different clinical categories of TBI has recently been incorporated by several clinical practice guidelines, which has allowed, together with clinical assessment, a more accurate prognostic approach for these patients to be established. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  5. Bridge Between Neuroimmunity and Traumatic Brain Injury

    PubMed Central

    Kelso, Matthew L.; Gendelman, Howard E.

    2014-01-01

    The pathophysiology of degenerative, infectious, inflammatory and traumatic diseases of the central nervous system includes a significant immune component. As to the latter, damage to the cerebral vasculature and neural cell bodies, caused by traumatic brain injury (TBI) activates innate immunity with concomitant infiltration of immunocytes into the damaged nervous system. This leads to pro-inflammatory cytokine and prostaglandin production and lost synaptic integrity and more generalized neurotoxicity. Engagement of adaptive immune responses follows including the production of antibodies and lymphocyte proliferation. These affect the tempo of disease along with tissue repair and as such provide a number of potential targets for pharmacological treatments for TBI. However, despite a large body of research, no such treatment intervention is currently available. In this review we will discuss the immune response initiated following brain injuries, drawing on knowledge gained from a broad array of experimental and clinical studies. Our discussion seeks to address potential therapeutic targets and propose ways in which the immune system can be controlled to promote neuroprotection. PMID:24025052

  6. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury

    PubMed Central

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Objectives: Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player’s life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users’ messages often reflects the prevailing culture related to a particular event or health issue. Methods: We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. Results: We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. Conclusion: While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies. PMID:28890783

  7. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    PubMed

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter(®) tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  8. Haemostatic drugs for traumatic brain injury.

    PubMed

    Perel, Pablo; Roberts, Ian; Shakur, Haleema; Thinkhamrop, Bandit; Phuenpathom, Nakornchai; Yutthakasemsunt, Surakrant

    2010-01-20

    Traumatic brain injury (TBI) is a leading cause of death and disability. Intracranial bleeding is a common complication of TBI, and intracranial bleeding can develop or worsen after hospital admission. Haemostatic drugs may reduce the occurrence or size of intracranial bleeds and consequently lower the morbidity and mortality associated with TBI. To assess the effects of haemostatic drugs on mortality, disability and thrombotic complications in patients with traumatic brain injury. We searched the electronic databases: Cochrane Injuries Group Specialised Register (3 February 2009), CENTRAL (The Cochrane Library 2009, Issue 1), MEDLINE (1950 to Week 3 2009), PubMed (searched 3 February 2009 (last 180 days)), EMBASE (1980 to Week 4 2009), CINAHL (1982 to January 2009), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2009), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2009). We included published and unpublished randomised controlled trials comparing haemostatic drugs (antifibrinolytics: aprotinin, tranexamic acid (TXA), aminocaproic acid or recombined activated factor VIIa (rFVIIa)) with placebo, no treatment, or other treatment in patients with acute traumatic brain injury. Two review authors independently examined all electronic records, and extracted the data. We judged that there was clinical heterogeneity between trials so we did not attempt to pool the results of the included trials. The results are reported separately. We included two trials. One was a post-hoc analysis of 30 TBI patients from a randomised controlled trial of rFVIIa in blunt trauma patients. The risk ratio for mortality at 30 days was 0.64 (95% CI 0.25 to 1.63) for rFVIIa compared to placebo. This result should be considered with caution as the subgroup analysis was not pre-specified for the trial. The other trial evaluated the effect of rFVIIa in 97 TBI patients with evidence of intracerebral bleeding in a

  9. Haemostatic drugs for traumatic brain injury

    PubMed Central

    Perel, Pablo; Roberts, Ian; Shakur, Haleema; Thinkhamrop, Bandit; Phuenpathom, Nakornchai; Yutthakasemsunt, Surakrant

    2014-01-01

    Background Traumatic brain injury (TBI) is a leading cause of death and disability. Intracranial bleeding is a common complication of TBI, and intracranial bleeding can develop or worsen after hospital admission. Haemostatic drugs may reduce the occurrence or size of intracranial bleeds and consequently lower the morbidity and mortality associated with TBI. Objectives To assess the effects of haemostatic drugs on mortality, disability and thrombotic complications in patients with traumatic brain injury. Search methods We searched the electronic databases: Cochrane Injuries Group Specialised Register (3 February 2009), CENTRAL (The Cochrane Library 2009, Issue 1), MEDLINE (1950 to Week 3 2009), PubMed (searched 3 February 2009 (last 180 days)), EMBASE (1980 to Week 4 2009), CINAHL (1982 to January 2009), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2009), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2009). Selection criteria We included published and unpublished randomised controlled trials comparing haemostatic drugs (antifibrinolytics: aprotinin, tranexamic acid (TXA), aminocaproic acid or recombined activated factor VIIa (rFVIIa)) with placebo, no treatment, or other treatment in patients with acute traumatic brain injury. Data collection and analysis Two review authors independently examined all electronic records, and extracted the data. We judged that there was clinical heterogeneity between trials so we did not attempt to pool the results of the included trials. The results are reported separately. Main results We included two trials. One was a post-hoc analysis of 30 TBI patients from a randomised controlled trial of rFVIIa in blunt trauma patients. The risk ratio for mortality at 30 days was 0.64 (95% CI 0.25 to 1.63) for rFVIIa compared to placebo. This result should be considered with caution as the subgroup analysis was not pre-specified for the trial. The other trial

  10. Ethics of neuroimaging after serious brain injury

    PubMed Central

    2014-01-01

    Background Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to “yes” or “no” answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Methods/Design Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients’ interests, and we

  11. Ethics of neuroimaging after serious brain injury.

    PubMed

    Weijer, Charles; Peterson, Andrew; Webster, Fiona; Graham, Mackenzie; Cruse, Damian; Fernández-Espejo, Davinia; Gofton, Teneille; Gonzalez-Lara, Laura E; Lazosky, Andrea; Naci, Lorina; Norton, Loretta; Speechley, Kathy; Young, Bryan; Owen, Adrian M

    2014-05-20

    Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to "yes" or "no" answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients' interests, and we explore conceptual issues in the

  12. Male body image following acquired brain injury.

    PubMed

    Howes, Hannah; Edwards, Stephen; Benton, David

    2005-02-01

    The purpose of this study was to investigate body image concerns and psycho-emotional health in males with acquired brain injury (ABI). Using a between subjects study of 25 males with ABI and 25 matched controls, variables were analysed using correlations and 2 x 2 analyses of variance (ANOVAs) with head injury and injury type as independent variables. Body image and psycho-emotional health were evaluated using self-report questionnaires. Disability and cognitive impairment were measured using a mixture of self-report, cognitive testing and clinical notes. Results indicated that males with ABI had significantly lower self-esteem and body dissatisfaction on a number of items relating to physical and sexual functioning. There were significant differences in body image between stroke and TBI, but there was no corresponding relationship with psycho-emotional health. These body image differences might be explained by age. The finding that ABI has a negative effect on body image and that this relates to psycho-emotional health should be investigated further, perhaps being included in future rehabilitation strategies.

  13. Brain injury, neuroinflammation and Alzheimer's disease

    PubMed Central

    Breunig, Joshua J.; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems. PMID:23874297

  14. Brain injury, neuroinflammation and Alzheimer's disease.

    PubMed

    Breunig, Joshua J; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and 'spreading' of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems.

  15. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  16. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  17. 77 FR 34363 - Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model Systems... Program--Disability Rehabilitation Research Project (DRRP)-- Traumatic Brain Injury Model Systems Centers... priority for Traumatic Brain Injury Model Systems (TBIMS) Centers. The Assistant Secretary may use...

  18. The neuroinflammatory response in humans after traumatic brain injury.

    PubMed

    Smith, C; Gentleman, S M; Leclercq, P D; Murray, L S; Griffin, W S T; Graham, D I; Nicoll, J A R

    2013-10-01

    Traumatic brain injury is a significant cause of morbidity and mortality worldwide. An epidemiological association between head injury and long-term cognitive decline has been described for many years and recent clinical studies have highlighted functional impairment within 12 months of a mild head injury. In addition chronic traumatic encephalopathy is a recently described condition in cases of repetitive head injury. There are shared mechanisms between traumatic brain injury and Alzheimer's disease, and it has been hypothesized that neuroinflammation, in the form of microglial activation, may be a mechanism underlying chronic neurodegenerative processes after traumatic brain injury. This study assessed the microglial reaction after head injury in a range of ages and survival periods, from <24-h survival through to 47-year survival. Immunohistochemistry for reactive microglia (CD68 and CR3/43) was performed on human autopsy brain tissue and assessed 'blind' by quantitative image analysis. Head injury cases were compared with age matched controls, and within the traumatic brain injury group cases with diffuse traumatic axonal injury were compared with cases without diffuse traumatic axonal injury. A major finding was a neuroinflammatory response that develops within the first week and persists for several months after traumatic brain injury, but has returned to control levels after several years. In cases with diffuse traumatic axonal injury the microglial reaction is particularly pronounced in the white matter. These results demonstrate that prolonged microglial activation is a feature of traumatic brain injury, but that the neuroinflammatory response returns to control levels after several years. © 2012 British Neuropathological Society.

  19. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  20. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  1. Brain Injury among Children and Adolescents. Tip Cards.

    ERIC Educational Resources Information Center

    Lash, Marilyn; Savage, Ron; DePompei, Roberta; Blosser, Jean

    These eight brochures for parents provide practical information and suggestions regarding various aspects of managing a child with a brain injury. The brochures are: (1) "Back to School after a Mild Brain Injury or Concussion," which covers helping the student in the classroom and changes that occur in school and knowing when extra help is needed…

  2. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  3. The Pediatric Test of Brain Injury: Development and Interpretation

    ERIC Educational Resources Information Center

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena

    2009-01-01

    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  4. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  5. The Pediatric Test of Brain Injury: Development and Interpretation

    ERIC Educational Resources Information Center

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena

    2009-01-01

    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  6. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    DTIC Science & Technology

    2009-06-01

    microglia as ’sensors’ of injury in the pineal gland of rats following a non-penetrative blast." Neurosci Res 27(4): 317-322. ...including blood brain barrier disruption, glia activation and neuronal alterations. 15. SUBJECT TERMS blast; brain injury; experimental models

  7. Telerehabilitation needs: a survey of persons with acquired brain injury.

    PubMed

    Ricker, Joseph H; Rosenthal, Mitchell; Garay, Edward; DeLuca, John; Germain, Anneliese; Abraham-Fuchs, Klaus; Schmidt, Kai-Uwe

    2002-06-01

    To survey individuals with acquired brain injury to assess multiple facets of interest, access, and familiarity necessary to implement new telerehabilitation technologies. Anonymous mail survey. Community. Seventy-one respondents to a survey. These individuals had experienced acquired brain injury (predominantly severe traumatic brain injury [TBI]) and were living in the community. Surveys were mailed by a state chapter of the Brain Injury Association to a random selection of members with acquired brain injury. Survey designed specifically for this investigation. The survey responses indicate that there is great interest in the possibility of accessing telerehabilitative services among individuals with acquired brain injury. In particular, there was strong interest expressed in services that could be used to assist with problems in memory, attention, problem-solving, and activities of daily living. Telemedicine, and more specifically telerehabilitation, holds great promise as an adjunct to traditional clinical service delivery. Little research in this area has been applied, however, to individuals with acquired brain injuries. Although on the surface, telerehabilitation seems to be an appropriate assessment and treatment modality for individuals with brain injury, it will only succeed if those individuals have the interest-and the access-necessary to use new and evolving technologies.

  8. Brain Injury among Children and Adolescents. Tip Cards.

    ERIC Educational Resources Information Center

    Lash, Marilyn; Savage, Ron; DePompei, Roberta; Blosser, Jean

    These eight brochures for parents provide practical information and suggestions regarding various aspects of managing a child with a brain injury. The brochures are: (1) "Back to School after a Mild Brain Injury or Concussion," which covers helping the student in the classroom and changes that occur in school and knowing when extra help is needed…

  9. Novel Nitroxide Resuscitation Strategies in Experimental Traumatic Brain Injury

    DTIC Science & Technology

    2010-03-01

    peroxidase activity after traumatic brain injury. J Neurotrauma 2003;20:437–445. 68. Mavelli I, Rigo A, Federico R, et al. Superoxide dismutase, glu... Engel , C.C., and Castro, C.A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. N. Engl. J. Med. 358, 453–463. Ling, G., Bandak

  10. Barbiturates for acute traumatic brain injury.

    PubMed

    Roberts, I

    2000-01-01

    Raised intracranial pressure (ICP) is an important complication of severe brain injury, and is associated with a high mortality rate. Barbiturates are believed to reduce intracranial pressure by suppressing cerebral metabolism, thus reducing cerebral metabolic demands and cerebral blood volume. However, barbiturates also reduce blood pressure and therefore may adversely effect cerebral perfusion pressure. To assess the effects of barbiturates in reducing raised intracranial pressure, mortality and morbidity in people with acute traumatic brain injury. To quantify any side effects resulting from the use of barbiturates. The review draws largely on the search strategy developed for the Cochrane Injuries Group as a whole. However, in addition the Cochrane Library was searched in December 1996 using the text terms "barbiturate*," "pentobarb*," "phenobarb*," "head," and "brain." An updated search was done in April 1999. Randomised or quasi randomised trials of any one or more of the barbiturate class of drugs (amobarbital, barbital, hexobarbital, mephobarbital, methohexital, murexide, pentobarbital, phenobarbital, secobarbital, thiobarbiturate) where study participants had a clinically diagnosed acute traumatic brain injury of any severity. The reviewer extracted the data and assessed the quality of allocation concealment in the trials. The pooled relative risk for death (barbiturate vs no barbiturate) was 1.09 (95%CI 0.81 to 1.47). The pooled effect of barbiturates on adverse neurological outcome, measured using the Glasgow Outcome Scale (death, persistent vegetative state or severe disability) was 1.15 (95% 0.81 to 1.64). Two studies examined the effect of barbiturate therapy on intracranial pressure. In the study by Eisenberger et al, a smaller proportion of patients in the barbiturate group had uncontrolled ICP (68% vs 83%). The relative risk for uncontrolled ICP was 0.81 (95%CI 0.62 to 1.06). Similarly, in the study by Ward et al, mean ICP was lower in the

  11. Surgical brain injury: prevention is better than cure.

    PubMed

    Jadhav, Vikram; Zhang, John H

    2008-05-01

    Neurosurgical procedures can cause inevitable brain damage resulting from the procedure itself. Unavoidable cortical and parenchymal incisions, intraoperative hemorrhage, brain lobe retraction and thermal injuries from electrocautery can cause brain injuries attributable exclusively to the neurosurgical operations and collectively referred to as surgical brain injury (SBI). This particular brain damage cannot be demarcated from the underlying brain pathology and has not been studied previously. Recently, we developed rat and mouse models to study SBI and the underlying cellular mechanisms. The animal modeling mimics a neurosurgical operation and causes commonly encountered postoperative complications such as brain edema following blood brain barrier (BBB) disruption, and neuronal cell death. Furthermore, the SBI animal model allows screening of known experimental neuroprotective agents and therapeutic agents being tried in clinical trials as possible pretreatments before neurosurgical procedures. In the present review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, and the importance of blanket neuroprotection before neurosurgical procedures.

  12. Training to Optimize Learning after Traumatic Brain Injury

    PubMed Central

    Skidmore, Elizabeth R.

    2015-01-01

    One of the major foci of rehabilitation after traumatic brain injury is the design and implementation of interventions to train individuals to learn new knowledge and skills or new ways to access and execute previously acquired knowledge and skills. To optimize these interventions, rehabilitation professionals require a clear understanding of how traumatic brain injury impacts learning, and how specific approaches may enhance learning after traumatic brain injury. This brief conceptual review provides an overview of learning, the impact of traumatic brain injury on explicit and implicit learning, and the current state of the science examining selected training approaches designed to advance learning after traumatic brain injury. Potential directions for future scientific inquiry are discussed throughout the review. PMID:26217546

  13. Missed diagnosis of traumatic brain injury in patients with traumatic spinal cord injury.

    PubMed

    Sharma, Bhanu; Bradbury, Cheryl; Mikulis, David; Green, Robin

    2014-04-01

    To determine the frequency of missed acute care traumatic brain injury diagnoses in patients with traumatic spinal cord injury, and to examine risk factors for missed traumatic brain injury diagnosis. Prospective magnetic resonance imaging and neuro-psychological assessment plus retrospective medical record review, including computed tomography. Ninety-two adults with traumatic spinal cord injury recruited from a large, tertiary spinal cord injury program, initially referred from urban teaching hospitals with neurotrauma facilities. Diagnosis of traumatic brain injury made with clinical neurological indices (i.e., Glasgow Coma Scale, post-traumatic amnesia, and loss of consciousness), neuroimaging (computed tomography and structural magnetic resonance imaging), and neuropsychological tests of attention and speed of processing, memory, and executive function; all measures were validated on a case-by-case basis to rule out confounds. Missed traumatic brain injury diagnoses were made via acute care medical record review and were corroborated by patient/family report where possible. The frequency of missed traumatic brain injury diagnoses in our sample was 58.5%. Missed traumatic brain injury diagnoses were more frequent in injuries sustained outside of a motor vehicle collision (MVC), with 75.0% of acute care traumatic brain injury diagnoses missed in non-MVC patients vs. 42.9% missed in MVC patients. Among patients with non-MVC injuries, a comparable percentage of missed traumatic brain injury diagnoses were observed in patients with cervical (79%) and sub-cervical injuries (80%). In more than half of the traumatic spinal cord injury patients referred for in-patient rehabilitation, acute care diagnoses of traumatic brain injury were missed. A risk factor for missed diagnosis was an injury caused by a mechanism other than an MVC (e.g., falls, assaults), perhaps due to reduced expectations of traumatic brain injury in non-MVC patients. In our research study, we

  14. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    PubMed Central

    Sun, Dong

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury. PMID:26981070

  15. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  16. The enigma of "hidden" traumatic brain injury.

    PubMed

    Gordon, W A; Brown, M; Sliwinski, M; Hibbard, M R; Patti, N; Weiss, M J; Kalinsky, R; Sheerer, M

    1998-12-01

    To examine individuals with "hidden" traumatic brain injury (TBI), defined in this study as those who sustained a blow to the head, with altered mental status, and experienced a substantial number of the cognitive, behavioral, and emotional sequelae typically associated with brain injury but did not make the causal connection between the injury and its consequences. Comparison of four groups of individuals matched for age, gender, years of education, and duration of loss of consciousness. This study of hidden TBI followed the identification of 143 individuals who, within a larger study of people with TBI who live in the community, identified themselves as "nondisabled" (they were to be part of the comparison sample) but who had experienced a blow to the head that left them at minimum dazed and confused. 21 of these 143 individuals also reported large numbers of symptoms (eg, headaches, memory problems) associated with TBI. This group (Hidden TBI-High Symptoms group) was compared to three other matched samples: one with known TBI (Known Mild TBI group) and one with no disability (No Disability group) (both of which were drawn from the larger study), and one group of individuals who identified themselves as having no disability but who had experienced a blow to the head that resulted in a few symptoms (Head Trauma-Low Symptoms group). All study participants were administered an interview that incorporated several existing instruments documenting levels of reported symptoms, emotional well-being/distress, and vocational/social handicaps. The Hidden TBI-High Symptoms group was found to be similar to the Known Mild TBI group in terms of the number and types of symptoms experienced, whereas the Head Trauma-Low Symptoms group was similar in this respect to the No Disability group. The two former groups also evidenced high levels of emotional distress, whereas the two latter groups did not. However, on measures of handicap, the Hidden TBI-High Symptoms and Head Trauma

  17. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Browning, Megan; Shear, Deborah A; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Schmid, Kara E; Poloyac, Samuel M; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.

  18. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  19. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: In compliance with.... Proposed Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System...

  20. Rehabilitation of persons with traumatic brain injury.

    PubMed

    The objective of this NIH Consensus Statement is to inform the biomedical research and clinical practice communities of the results of the NIH Consensus Development Conference on Rehabilitation of Persons with Traumatic Brain Injury. The statement provides state-of-the-art information regarding effective rehabilitation measures for persons who have suffered a traumatic brain injury (TBI) and presents the conclusions and recommendations of the consensus panel regarding these issues. In addition, the statement identifies those areas that deserve further investigation. Upon completion of this educational activity, the reader should possess a clear working clinical knowledge of the state of the art regarding this topic. The target audience for this statement includes, but is not limited to, pediatricians, family practitioners, internists, neurologists, physiatrists, psychologists, and behavioral medicine specialists. Participants were a non-Federal, nonadvocate, 16-member panel representing the fields of neuropsychology, neurology, psychiatry, behavioral medicine, family medicine, pediatrics, physical medicine and rehabilitation, speech and hearing, occupational therapy, nursing, epidemiology, biostatistics and the public. In addition, 23 experts from these same fields presented data to the panel and a conference audience of 883. The literature was searched through Medline and an extensive bibliography of references was provided to the panel and the conference audience. Experts prepared abstracts with relevant citations from the literature. A compendium of evidence was prepared by the panel which included a contribution from a patient with TBI, a report from an Evidence Based Practice Center of the Agency for Health Care Policy and Research, and a report from the National Center for Injury Prevention and Control at the Centers for Disease Control and Prevention. Scientific evidence was given precedence over clinical anecdotal experience. The panel, answering predefined

  1. Critical care management of traumatic brain injury.

    PubMed

    Menon, D K; Ercole, A

    2017-01-01

    Traumatic brain injury (TBI) is a growing global problem, which is responsible for a substantial burden of disability and death, and which generates substantial healthcare costs. High-quality intensive care can save lives and improve the quality of outcome. TBI is extremely heterogeneous in terms of clinical presentation, pathophysiology, and outcome. Current approaches to the critical care management of TBI are not underpinned by high-quality evidence, and many of the current therapies in use have not shown benefit in randomized control trials. However, observational studies have informed the development of authoritative international guidelines, and the use of multimodality monitoring may facilitate rational approaches to optimizing acute physiology, allowing clinicians to optimize the balance between benefit and risk from these interventions in individual patients. Such approaches, along with the emerging impact of advanced neuroimaging, genomics, and protein biomarkers, could lead to the development of precision medicine approaches to the intensive care management of TBI.

  2. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  3. Hippocampal head atrophy after traumatic brain injury.

    PubMed

    Ariza, Mar; Serra-Grabulosa, Josep M; Junqué, Carme; Ramírez, Blanca; Mataró, Maria; Poca, Antonia; Bargalló, Nuria; Sahuquillo, Juan

    2006-01-01

    Traumatic brain injury (TBI) causes hippocampal damage. The hippocampus can be macroscopically divided into the head, body and tail, which differ in terms of their sensitivity to excitability and also in terms of their cortical connections. We investigated whether damage also varies according to the hippocampal area involved, and studied the relationship of hippocampal reductions with memory performance. Twenty TBI patients and matched controls were examined. MRI measurements were performed separately for the hippocampal head, body and tail. Memory outcome was measured by Rey's auditory verbal learning test, Rey's complex figure test and a modified version of Warrington's facial recognition memory test. Group comparison showed that patients had bilateral hippocampal atrophy, mainly involving the hippocampal head. Moreover, TBI subjects showed verbal memory deficits which presented slight correlations with left hippocampal head atrophy.

  4. Cerebrovascular pathophysiology following mild traumatic brain injury.

    PubMed

    Len, T K; Neary, J P

    2011-03-01

    Mild traumatic brain injury (mTBI) or sport-induced concussion has recently become a prominent concern not only in the athletic setting (i.e. sports venue) but also in the general population. The majority of research to date has aimed at understanding the neurological and neuropsychological outcomes of injury as well as return-to-play guidelines. Remaining relatively unexamined has been the pathophysiological aspect of mTBI. Recent technological advances including transcranial Doppler ultrasound and near infrared spectroscopy have allowed researchers to examine the systemic effects of mTBI from rest to exercise, and during both asymptomatic and symptomatic conditions. In this review, we focus on the current research available from both human and experimental (animal) studies surrounding the pathophysiology of mTBI. First, the quest for a unified definition of mTBI, its historical development and implications for future research is discussed. Finally, the impact of mTBI on the control and regulation of cerebral blood flow, cerebrovascular reactivity, cerebral oxygenation and neuroautonomic cardiovascular regulation, all of which may be compromised with mTBI, is discussed. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  5. Iatrogenic traumatic brain injury during tooth extraction.

    PubMed

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  6. Diabetes Insipidus after Traumatic Brain Injury

    PubMed Central

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  7. Systemic manifestations of traumatic brain injury.

    PubMed

    Gaddam, Samson Sujit Kumar; Buell, Thomas; Robertson, Claudia S

    2015-01-01

    Traumatic brain injury (TBI) affects functioning of various organ systems in the absence of concomitant non-neurologic organ injury or systemic infection. The systemic manifestations of TBI can be mild or severe and can present in the acute phase or during the recovery phase. Non-neurologic organ dysfunction can manifest following mild TBI or severe TBI. The pathophysiology of systemic manifestations following TBI is multifactorial and involves an effect on the autonomic nervous system, involvement of the hypothalamic-pituitary axis, release of inflammatory mediators, and treatment modalities used for TBI. Endocrine dysfunction, electrolyte imbalance, and respiratory manifestations are common following TBI. The influence of TBI on systemic immune response, coagulation cascade, cardiovascular system, gastrointestinal system, and other systems is becoming more evident through animal studies and clinical trials. Systemic manifestations can independently act as risk factors for mortality and morbidity following TBI. Some conditions like neurogenic pulmonary edema and disseminated intravascular coagulation can adversely affect the outcome. Early recognition and treatment of systemic manifestations may improve the clinical outcome following TBI. Further studies are required especially in the field of neuroimmunology to establish the role of various biochemical cascades, not only in the pathophysiology of TBI but also in its systemic manifestations and outcome.

  8. Hypoaminoacidemia Characterizes Chronic Traumatic Brain Injury.

    PubMed

    Durham, William J; Foreman, Jack P; Randolph, Kathleen M; Danesi, Christopher P; Spratt, Heidi; Masel, Brian D; Summons, Jennifer R; Singh, Charan K; Morrison, Melissa; Robles, Claudia; Wolfram, Cindy; Kreber, Lisa A; Urban, Randall J; Sheffield-Moore, Melinda; Masel, Brent E

    2017-01-15

    Individuals with a history of traumatic brain injury (TBI) are at increased risk for a number of disorders, including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. However, mediators of the long-term morbidity are uncertain. We conducted a multi-site, prospective trial in chronic TBI patients (∼18 years post-TBI) living in long-term 24-h care environments and local controls without a history of head injury. Inability to give informed consent was exclusionary for participation. A total of 41 individuals (17 moderate-severe TBI, 24 controls) were studied before and after consumption of a standardized breakfast to determine if concentrations of amino acids, cytokines, C-reactive protein, and insulin are potential mediators of long-term TBI morbidity. Analyte concentrations were measured in serum drawn before (fasting) and 1 h after meal consumption. Mean ages were 44 ± 15 and 49 ± 11 years for controls and chronic TBI patients, respectively. Chronic TBI patients had significantly lower circulating concentrations of numerous individual amino acids, as well as essential amino acids (p = 0.03) and large neutral amino acids (p = 0.003) considered as groups, and displayed fundamentally altered cytokine-amino acid relationships. Many years after injury, TBI patients exhibit abnormal metabolic responses and altered relationships between circulating amino acids, cytokines, and hormones. This pattern is consistent with TBI, inducing a chronic disease state in patients. Understanding the mechanisms causing the chronic disease state could lead to new treatments for its prevention.

  9. Visual agnosia and focal brain injury.

    PubMed

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Microglia and Inflammation: Impact on Developmental Brain Injuries

    ERIC Educational Resources Information Center

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  11. Microglia and Inflammation: Impact on Developmental Brain Injuries

    ERIC Educational Resources Information Center

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  12. Memory functioning after traumatic brain injury in children.

    PubMed

    Donders, J

    1993-01-01

    Immediate and 45-minute delayed recall of a paragraph-length story and of a complex geometric figure were investigated in a sample of 30 children with traumatic brain injury. There was no significant difference between children with mild to moderate injuries and children with severe injuries with regard to general level of verbal recall. However, there was a trend for children with mild to moderate injuries to have better recall of visual information than children with severe injuries. Recall of verbally presented information deteriorated significantly over the 45-minute delay, regardless of injury severity. No such deterioration was found for recall of visually presented information. Clinical and research implications are discussed.

  13. Barbiturates for acute traumatic brain injury.

    PubMed

    Roberts, Ian; Sydenham, Emma

    2012-12-12

    Raised intracranial pressure (ICP) is an important complication of severe brain injury, and is associated with high mortality. Barbiturates are believed to reduce ICP by suppressing cerebral metabolism, thus reducing cerebral metabolic demands and cerebral blood volume. However, barbiturates also reduce blood pressure and may, therefore, adversely effect cerebral perfusion pressure. To assess the effects of barbiturates in reducing mortality, disability and raised ICP in people with acute traumatic brain injury. To quantify any side effects resulting from the use of barbiturates. The following electronic databases were searched on 26 September 2012: CENTRAL (The Cochrane Library), MEDLINE (Ovid SP), PubMed, EMBASE (Ovid SP), PsycINFO (Ovid SP), PsycEXTRA (Ovid SP), ISI Web of Science: Science Citation Index and Conference Proceedings Citation Index-Science. Searching was not restricted by date, language or publication status. We also searched the reference lists of the included trials and review articles. We contacted researchers for information on ongoing studies. Randomised controlled trials of one or more of the barbiturate class of drugs, where study participants had clinically diagnosed acute traumatic brain injury of any severity. Two review authors screened the search results, extracted data and assessed the risk of bias in the trials. Data from seven trials involving 341 people are included in this review.For barbiturates versus no barbiturate, the pooled risk ratio (RR) of death from three trials was 1.09 (95% confidence interval (CI) 0.81 to 1.47). Death or disability, measured using the Glasgow Outcome Scale was assessed in two trials, the RR with barbiturates was 1.15 (95% CI 0.81 to 1.64). Two trials examined the effect of barbiturate therapy on ICP. In one, a smaller proportion of patients in the barbiturate group had uncontrolled ICP (68% versus 83%); the RR for uncontrolled ICP was 0.81 (95% CI 0.62 to 1.06). In the other, mean ICP was also lower in

  14. Exercise preconditioning improves traumatic brain injury outcomes.

    PubMed

    Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J

    2015-10-05

    To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Exercise Preconditioning Improves Traumatic Brain Injury Outcomes

    PubMed Central

    Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.

    2015-01-01

    Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153

  16. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury.

    PubMed

    Hay, Jennifer; Johnson, Victoria E; Smith, Douglas H; Stewart, William

    2016-05-23

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.

  17. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  18. Imaging modalities in mild traumatic brain injury and sports concussion.

    PubMed

    Gonzalez, Peter G; Walker, Matthew T

    2011-10-01

    Mild traumatic brain injury is a significant public health issue that has been gaining considerable attention over the past few years. After injury, a large percentage of patients experience postconcussive symptoms that affect work and school performance and that carry significant medicolegal implications. Conventional imaging modalities (computed tomography and magnetic resonance imaging) are insensitive to microstructural changes and underestimate the degree of diffuse axonal injury and metabolic changes. Newer imaging techniques have attempted to better diagnose and characterize diffuse axonal injury and the metabolic and functional aspects of traumatic brain injury. The following review article summarizes the currently available imaging studies and describes the novel and more investigational techniques available for mild traumatic brain injury. A suggested algorithm is offered.

  19. Longitudinal Examination of Resilience after Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2017-07-19

    To evaluate the trajectory of resilience during the first year following a moderate-severe TBI, factors associated with resilience at 3, 6 and 12-months post-injury, and changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N = 195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3, 6, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year post-injury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to non-minority status, absence of pre-injury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017. Published by Elsevier Inc.

  20. Are neuropsychiatric symptoms associated with evidence of right brain injury in referrals to a neuropsychiatric brain injury unit?

    PubMed

    Borek, L L; Butler, R; Fleminger, S

    2001-01-01

    Studies suggest that neuropsychiatric symptoms are more common in patients with injury to the right side of the brain. However, most studies have examined patients with penetrating injuries because these allow more accurate localization of brain damage. This study investigates whether a similar association would be found in patients with non-penetrating brain injuries presenting to a neuropsychiatric unit. Over a 2 year period, 98 referrals were examined. Damage was localized using routine operation notes, EEG and neuroimaging. In total, 34 patients (35%) had a predominately right-sided injury, 33 (34%) had a left-sided injury and 31 (32%) had a diffuse or bilateral injury. Right-sided injuries were associated with hallucinations (p = 0.05), and left-sided injuries were associated with confabulation (p = 0.05) and lack of insight (p = 0.07). These results are consistent with findings from patients with penetrating head injuries. They suggest that evidence of the laterality of injury may be useful for planning the rehabilitation of patients seen in neuropsychiatric brain injury units.

  1. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  2. Traumatic brain injury is under-diagnosed in patients with spinal cord injury.

    PubMed

    Tolonen, Anu; Turkka, Jukka; Salonen, Oili; Ahoniemi, Eija; Alaranta, Hannu

    2007-10-01

    To investigate the occurrence and severity of traumatic brain injury in patients with traumatic spinal cord injury. Cross-sectional study with prospective neurological, neuropsychological and neuroradiological examinations and retrospective medical record review. Thirty-one consecutive, traumatic spinal cord injury patients on their first post-acute rehabilitation period in a national rehabilitation centre. The American Congress of Rehabilitation Medicine diagnostic criteria for mild traumatic brain injury were applied. Assessments were performed with neurological and neuropsychological examinations and magnetic resonance imaging 1.5T. Twenty-three of the 31 patients with spinal cord injury (74%) met the diagnostic criteria for traumatic brain injury. Nineteen patients had sustained a loss of consciousness or post-traumatic amnesia. Four patients had a focal neurological finding and 21 had neuropsychological findings apparently due to traumatic brain injury. Trauma-related magnetic resonance imaging abnormalities were detected in 10 patients. Traumatic brain injury was classified as moderate or severe in 17 patients and mild in 6 patients. The results suggest a high frequency of traumatic brain injury in patients with traumatic spinal cord injury, and stress a special diagnostic issue to be considered in this patient group.

  3. Motor Vehicle Crash Brain Injury in Infants and Toddlers: A Suitable Model for Inflicted Head Injury?

    ERIC Educational Resources Information Center

    Shah, Mahim; Vavilala, Monica S.; Feldman, Kenneth W.; Hallam, Daniel K.

    2005-01-01

    Objective: Children involved in motor vehicle crash (MVC) events might experience angular accelerations similar to those experienced by children with inflicted traumatic brain injury (iTBI). This is a pilot study to determine whether the progression of signs and symptoms and radiographic findings of MVC brain injury (mvcTBI) in children of the age…

  4. Motor Vehicle Crash Brain Injury in Infants and Toddlers: A Suitable Model for Inflicted Head Injury?

    ERIC Educational Resources Information Center

    Shah, Mahim; Vavilala, Monica S.; Feldman, Kenneth W.; Hallam, Daniel K.

    2005-01-01

    Objective: Children involved in motor vehicle crash (MVC) events might experience angular accelerations similar to those experienced by children with inflicted traumatic brain injury (iTBI). This is a pilot study to determine whether the progression of signs and symptoms and radiographic findings of MVC brain injury (mvcTBI) in children of the age…

  5. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury.

    PubMed

    Schober, Michelle Elena; Block, Benjamin; Requena, Daniela F; Hale, Merica A; Lane, Robert H

    2012-06-01

    Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.

  6. Diffuse Brain Injury Induces Acute Post-Traumatic Sleep

    PubMed Central

    Rowe, Rachel K.; Striz, Martin; Bachstetter, Adam D.; Van Eldik, Linda J.; Donohue, Kevin D.; O'Hara, Bruce F.; Lifshitz, Jonathan

    2014-01-01

    Objective Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. Methods Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry. Results Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (>50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury. Conclusion Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair. PMID:24416145

  7. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2011-09-01

    Reorganization of Motor Cortex after Controlled Cortical Impact in Rats and Implications for Functional Recovery Mariko Nishibe,1,2 Scott Barbay,2,3 David ...J.S., Matthews, M.A., Davidson, J.F., Tabor , S.L., and Carey, M.E. (1996). Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in

  8. What environmental factors irritate people with acquired brain injury?

    PubMed

    Pryor, Julie

    2004-08-19

    This study aims to determine the environmental factors nurses identify as being irritating to people with acquired brain injury. This was a qualitative study. An experienced interviewer used the Critical Decision Method to interview 28 nurses working in 10 inpatient brain injury rehabilitation units in Australia on a one to one basis for 1-1.5 h on two consecutive days. Transcripts of interviews were analysed using thematic analysis. Nurses identified five groups of irritants that acted as triggers for aggression: The nurses in this study identified many environmental factors that irritate people with acquired brain injury. Some irritants appeared unavoidable but others could be addressed by staff expertise.

  9. Fever of unknown origin following traumatic brain injury.

    PubMed

    Jackson, R D; Mysiw, W J

    1991-01-01

    Fever is a common complication of a traumatic brain injury, occurring during both the acute-care phase and the rehabilitation phase of recovery. The aetiology of fever in this population may remain obscure because of the presence of cognitive confusion associated with post-traumatic amnesia interfering with history taking and the difficult physical examination. We present a case where recovery from a traumatic brain injury was complicated by a fever of unknown origin that proved to be secondary to lateral sinus thrombophlebitis. This case emphasises the importance of a thorough knowledge of the differential diagnosis for fever that is unique to the traumatic brain injury population.

  10. Exercise to enhance neurocognitive function after traumatic brain injury.

    PubMed

    Fogelman, David; Zafonte, Ross

    2012-11-01

    Vigorous exercise has long been associated with improved health in many domains. Results of clinical observation have suggested that neurocognitive performance also is improved by vigorous exercise. Data derived from animal model-based research have been emerging that show molecular and neuroanatomic mechanisms that may explain how exercise improves cognition, particularly after traumatic brain injury. This article will summarize the current state of the basic science and clinical literature regarding exercise as an intervention, both independently and in conjunction with other modalities, for brain injury rehabilitation. A key principle is the factor of timing of the initiation of exercise after mild traumatic brain injury, balancing potentially favorable and detrimental effects on recovery.

  11. Pathophysiology of hypopituitarism in the setting of brain injury

    PubMed Central

    Dusick, Joshua R.; Wang, Christina; Cohan, Pejman; Swerdloff, Ronald

    2014-01-01

    The complex pathophysiology of traumatic brain injury (TBI) involves not only the primary mechanical event but also secondary insults such as hypotension, hypoxia, raised intracranial pressure and changes in cerebral blood flow and metabolism. It is increasingly evident that these initial insults as well as transient events and treatments during the early injury phase can impact hypothalamic-pituitary function both acutely and chronically after injury. In turn, untreated pituitary hormonal dysfunction itself can further hinder recovery from brain injury. Secondary adrenal insufficiency, although typically reversible, occurs in up to 50% of intubated TBI victims and is associated with lower systemic blood pressure. PMID:18481181

  12. Traumatic brain injury, axonal injury and shaking in New Zealand sea lion pups.

    PubMed

    Roe, W D; Mayhew, I G; Jolly, R D; Marshall, J; Chilvers, B L

    2014-04-01

    Trauma is a common cause of death in neonatal New Zealand sea lion pups, and subadult male sea lions have been observed picking up and violently shaking some pups. In humans, axonal injury is a common result of traumatic brain injury, and can be due to direct trauma to axons or to ischaemic damage secondary to trauma. 'Shaken baby syndrome', which has been described in human infants, is characterised by retinal and intracranial subdural haemorrhages, and has been associated with axonal injury to the brain, spinal cord and optic nerve. This study identifies mechanisms of traumatic brain injury in New Zealand sea lion pups, including impact injuries and shaking-type injuries, and identifies gross lesions of head trauma in 22/36 sea lion pups found dead at a breeding site in the Auckland Islands. Despite the high frequency of such gross lesions, only three of the pups had died of traumatic brain injury. Observational studies confirmed that shaking of pups occurred, but none were shown to die as a direct result of these shaking events. Axonal injury was evaluated in all 36 pup brains using β-amyloid precursor protein immunohistochemistry. Immunoreactive axons were present in the brains of all pups examined including seven with vascular axonal injury and two with diffuse axonal injury, but the severity and pattern of injury was not reliably associated with death due to traumatic brain injury. No dead pups had the typical combination of gross lesions and immunohistochemical findings that would conform to descriptions of 'shaken baby syndrome'. Axonal injury was present in the optic nerves of most pups, irrespective of cause of death, but was associated with ischaemia rather than trauma.

  13. Intensive Care Treatment in Traumatic Brain Injury

    PubMed Central

    Dilmen, Özlem Korkmaz; Akçıl, Eren Fatma; Tunalı, Yusuf

    2015-01-01

    Head injury remains a serious public problem, especially in the young population. The understanding of the mechanism of secondary injury and the development of appropriate monitoring and critical care treatment strategies reduced the mortality of head injury. The pathophysiology, monitoring and treatment principles of head injury are summarised in this article. PMID:27366456

  14. Dementia Resulting From Traumatic Brain Injury

    PubMed Central

    Shively, Sharon; Scher, Ann I.; Perl, Daniel P.; Diaz-Arrastia, Ramon

    2013-01-01

    Traumatic brain injury (TBI) is among the earliest illnesses described in human history and remains a major source of morbidity and mortality in the modern era. It is estimated that 2% of the US population lives with long-term disabilities due to a prior TBI, and incidence and prevalence rates are even higher in developing countries. One of the most feared long-term consequences of TBIs is dementia, as multiple epidemiologic studies show that experiencing a TBI in early or midlife is associated with an increased risk of dementia in late life. The best data indicate that moderate and severe TBIs increase risk of dementia between 2-and 4-fold. It is less clear whether mild TBIs such as brief concussions result in increased dementia risk, in part because mild head injuries are often not well documented and retrospective studies have recall bias. However, it has been observed for many years that multiple mild TBIs as experienced by professional boxers are associated with a high risk of chronic traumatic encephalopathy (CTE), a type of dementia with distinctive clinical and pathologic features. The recent recognition that CTE is common in retired professional football and hockey players has rekindled interest in this condition, as has the recognition that military personnel also experience high rates of mild TBIs and may have a similar syndrome. It is presently unknown whether dementia in TBI survivors is pathophysiologically similar to Alzheimer disease, CTE, or some other entity. Such information is critical for developing preventive and treatment strategies for a common cause of acquired dementia. Herein, we will review the epidemiologic data linking TBI and dementia, existing clinical and pathologic data, and will identify areas where future research is needed. PMID:22776913

  15. Return to school after brain injury

    PubMed Central

    Hawley, C; Ward, A; Magnay, A; Mychalkiw, W

    2004-01-01

    Aims: To examine return to school and classroom performance following traumatic brain injury (TBI). Methods: This cross-sectional study set in the community comprised a group of 67 school-age children with TBI (35 mild, 13 moderate, 19 severe) and 14 uninjured matched controls. Parents and children were interviewed and children assessed at a mean of 2 years post injury. Teachers reported on academic performance and educational needs. The main measures used were classroom performance, the Children's Memory Scale (CMS), the Wechsler Intelligence Scale for Children–third edition UK (WISC-III) and the Weschler Objective Reading Dimensions (WORD). Results: One third of teachers were unaware of the TBI. On return to school, special arrangements were made for 18 children (27%). Special educational needs were identified for 16 (24%), but only six children (9%) received specialist help. Two thirds of children with TBI had difficulties with school work, half had attention/concentration problems and 26 (39%) had memory problems. Compared to other pupils in the class, one third of children with TBI were performing below average. On the CMS, one third of the severe group were impaired/borderline for immediate and delayed recall of verbal material, and over one quarter were impaired/borderline for general memory. Children in the severe group had a mean full-scale IQ significantly lower than controls. Half the TBI group had a reading age ⩾1 year below their chronological age, one third were reading ⩾2 years below their chronological age. Conclusions: Schools rely on parents to inform them about a TBI, and rarely receive information on possible long-term sequelae. At hospital discharge, health professionals should provide schools with information about TBI and possible long-term impairments, so that children returning to school receive appropriate support. PMID:14736628

  16. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  17. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  18. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  19. Phosphodiesterase Inhibitors as Therapeutics for Traumatic Brain Injury

    PubMed Central

    Titus, David J.; Oliva, Anthony A.; Wilson, Nicole M.; Atkins, Coleen M.

    2014-01-01

    Developing therapeutics for traumatic brain injury remains a challenge for all stages of recovery. The pathological features of traumatic brain injury are diverse, and it remains an obstacle to be able to target the wide range of pathologies that vary between traumatic brain injured patients and that evolve during recovery. One promising therapeutic avenue is to target the second messengers cAMP and cGMP with phosphodiesterase inhibitors due to their broad effects within the nervous system. Phosphodiesterase inhibitors have the capability to target different injury mechanisms throughout the time course of recovery after brain injury. Inflammation and neuronal death are early targets of phosphodiesterase inhibitors, and synaptic dysfunction and circuitry remodeling are late potential targets of phosphodiesterase inhibitors. This review will discuss how signaling through cyclic nucleotides contributes to the pathology of traumatic brain injury in the acute and chronic stages of recovery. We will review our current knowledge of the successes and challenges of using phosphodiesterase inhibitors for the treatment of traumatic brain injury and conclude with important considerations in developing phosphodiesterase inhibitors as therapeutics for brain trauma. PMID:25159077

  20. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    PubMed Central

    Su, Enming J.; Fredriksson, Linda; Kanzawa, Mia; Moore, Shannon; Folestad, Erika; Stevenson, Tamara K.; Nilsson, Ingrid; Sashindranath, Maithili; Schielke, Gerald P.; Warnock, Mark; Ragsdale, Margaret; Mann, Kris; Lawrence, Anna-Lisa E.; Medcalf, Robert L.; Eriksson, Ulf; Murphy, Geoffrey G.; Lawrence, Daniel A.

    2015-01-01

    Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα. PMID:26500491

  1. Brain development in infants born preterm: looking beyond injury.

    PubMed

    Duerden, Emma G; Taylor, Margot J; Miller, Steven P

    2013-06-01

    Infants born very preterm are high risk for acquired brain injury and disturbances in brain maturation. Although survival rates for preterm infants have increased in the last decades owing to improved neonatal intensive care, motor disabilities including cerebral palsy persist, and impairments in cognitive, language, social, and executive functions have not decreased. Evidence from neuroimaging studies exploring brain structure, function, and metabolism has indicated abnormalities in the brain development trajectory of very preterm-born infants that persist through to adulthood. In this chapter, we review neuroimaging approaches for the identification of brain injury in the preterm neonate. Advances in medical imaging and availability of specialized equipment necessary to scan infants have facilitated the feasibility of conducting longitudinal studies to provide greater understanding of early brain injury and atypical brain development and their effects on neurodevelopmental outcome. Improved understanding of the risk factors for acquired brain injury and associated factors that affect brain development in this population is setting the stage for improving the brain health of children born preterm.

  2. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested that the downregulation of AQP4 was a result of vasogenic edema and that the upregulation of AQP4 may have induced cellular edema. PMID:26459070

  3. Persuasive Discourse Impairments in Traumatic Brain Injury

    PubMed Central

    Ghayoumi, Zahra; Yadegari, Fariba; Mahmoodi-Bakhtiari, Behrooz; Fakharian, Esmaeil; Rahgozar, Mehdi; Rasouli, Maryam

    2015-01-01

    Background: Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. Objectives: The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Patients and Methods: Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. Results: The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. Conclusions: As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI. PMID:25798418

  4. Controversies in the Management of Traumatic Brain Injury.

    PubMed

    Jinadasa, Sayuri; Boone, M Dustin

    2016-09-01

    Traumatic brain injury (TBI) is a physical insult (a bump, jolt, or blow) to the brain that results in temporary or permanent impairment of normal brain function. TBI describes a heterogeneous group of disorders. The resulting secondary injury, namely brain swelling and its sequelae, is the reason why patients with these vastly different initial insults are homogenously treated. Much of the evidence for the management of TBI is poor or conflicting, and thus definitive guidelines are largely unavailable for clinicians at this time. A substantial portion of this article focuses on discussing the controversies in the management of TBI.

  5. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury.

    PubMed

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  6. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    PubMed Central

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed. PMID:28265255

  7. Brain injury and altered brain growth in preterm infants: predictors and prognosis.

    PubMed

    Kidokoro, Hiroyuki; Anderson, Peter J; Doyle, Lex W; Woodward, Lianne J; Neil, Jeffrey J; Inder, Terrie E

    2014-08-01

    To define the nature and frequency of brain injury and brain growth impairment in very preterm (VPT) infants by using MRI at term-equivalent age and to relate these findings to perinatal risk factors and 2-year neurodevelopmental outcomes. MRI scans at term-equivalent age from 3 VPT cohorts (n = 325) were reviewed. The severity of brain injury, including periventricular leukomalacia and intraventricular and cerebellar hemorrhage, was graded. Brain growth was assessed by using measures of biparietal width (BPW) and interhemispheric distance. Neurodevelopmental outcome at age 2 years was assessed across all cohorts (n = 297) by using the Bayley Scales of Infant Development, Second Edition (BSID-II) or Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III), and evaluation for cerebral palsy. Of 325 infants, 107 (33%) had some grade of brain injury and 33 (10%) had severe injury. Severe brain injury was more common in infants with lower Apgar scores, necrotizing enterocolitis, inotropic support, and patent ductus arteriosus. Severe brain injury was associated with delayed cognitive and motor development and cerebral palsy. Decreased BPW was related to lower gestational age, inotropic support, patent ductus arteriosus, necrotizing enterocolitis, prolonged parenteral nutrition, and oxygen at 36 weeks and was associated with delayed cognitive development. In contrast, increased interhemispheric distance was related to male gender, dexamethasone use, and severe brain injury. It was also associated with reduced cognitive development, independent of BPW. At term-equivalent age, VPT infants showed both brain injury and impaired brain growth on MRI. Severe brain injury and impaired brain growth patterns were independently associated with perinatal risk factors and delayed cognitive development. Copyright © 2014 by the American Academy of Pediatrics.

  8. Patterns of Brain Injury in Inborn Errors of Metabolism

    PubMed Central

    Gropman, Andrea L.

    2013-01-01

    Many inborn errors of metabolism (IEMs) are associated with irreversible brain injury. For many, it is unclear how metabolite intoxication or substrate depletion accounts for the specific neurologic findings observed. IEM-associated brain injury patterns are characterized by whether the process involves gray matter, white matter, or both, and beyond that, whether subcortical or cortical gray matter nuclei are involved. Despite global insults, IEMs may result in selective injury to deep gray matter nuclei or white matter. This manuscript reviews the neuro-imaging patterns of neural injury in selected disorders of metabolism involving small molecule and macromolecular disorders (ie, Phenylketonuria, urea cycle disorders, and maple syrup urine disease) and discusses the contribution of diet and nutrition to the prevention or exacerbation of injury in selected inborn metabolic disorders. Where known, a review of the roles of individual differences in blood–brain permeability and transport mechanisms in the etiology of these disorders will be discussed. PMID:23245553

  9. Loss of Financial Management Independence After Brain Injury: Survivors' Experiences.

    PubMed

    Koller, Kathryn; Woods, Lindsay; Engel, Lisa; Bottari, Carolina; Dawson, Deirdre R; Nalder, Emily

    2016-01-01

    This pilot study explored the experiences of brain injury survivors after a change in financial management (FM) independence. Using a qualitative descriptive design, 6 participants with acquired brain injury were recruited from a community brain injury organization and participated in semistructured interviews. Data were analyzed using thematic analysis. Three themes emerged from the interviews: (1) trajectory of FM change, involving family members as key change agents; (2) current FM situation, involving FM strategies such as automatic deposits and restricted budgets; and (3) the struggle for control, in which survivors desired control while also accepting supports for FM. This study identifies some of the challenges brain injury survivors face in managing their finances and the adjustment associated with a loss of FM independence. Occupational therapists should be aware of clients' experiences when supporting them through a change in independence. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  10. How Do Health Care Providers Diagnose Traumatic Brain Injury (TBI)?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications How do health care providers diagnose traumatic brain injury (TBI)? Skip sharing ... links Share this: Page Content To diagnose TBI, health care providers may use one or more tests that ...

  11. Predicting outcome in traumatic brain injury: Sharing experience of pilot traumatic brain injury registry

    PubMed Central

    Pal, Ranabir; Munivenkatappa, Ashok; Agrawal, Amit; Menon, Geetha R.; Galwankar, Sagar; Mohan, P. Rama; Kumar, S. Satish; Subrahmanyam, B. V.

    2016-01-01

    Background: A reliable prediction of outcome for the victims of traumatic brain injury (TBI) on admission is possible from concurrent data analysis from any systematic real-time registry. Objective: To determine the clinical relevance of the findings from our TBI registry to develop prognostic futuristic models with readily available traditional and novel predictors. Materials and Methods: Prospectively collected data using predesigned pro forma were analyzed from the first phase of a trauma registry from a South Indian Trauma Centre, compatible with computerized management system at electronic data entry and web data entry interface on demographics, clinical, management, and discharge status. Statistical Analysis: On univariate analysis, the variables with P < 0.15 were chosen for binary logistic model. On regression model, variables were selected with test of coefficient 0.001 and with Nagelkerke R2 with alpha error of 5%. Results: From 337 cases, predominantly males from rural areas in their productive age, road traffic injuries accounted for two-thirds cases, one-fourths occurred during postmonsoon while two-wheeler was the most common prerequisite. Fifty percent of patients had moderate to severe brain injury; the most common finding was unconsciousness followed by vomiting, ear bleed, seizures, and traumatic amnesia. Fifteen percent required intracranial surgery. Patients with severe Glasgow coma scale score were 4.5 times likely to have the fatal outcome (P = 0.003). Other important clinical variables accountable for fatal outcomes were oral bleeds and cervical spine injury while imperative socio-demographic risk correlates were age and seasons. Conclusion: TBI registry helped us finding predictors of clinical relevance for the outcomes in victims of TBI in search of prognostic futuristic models in TBI victims. PMID:27722114

  12. Big for Small; Validating Brain Injury Guidelines in Pediatric Traumatic Brain Injury.

    PubMed

    Azim, Asad; Jehan, Faisal S; Rhee, Peter; O'Keeffe, Terence; Tang, Andrew; Vercruysse, Gary; Kulvatunyou, Narong; Latifi, Rifat; Joseph, Bellal

    2017-06-06

    Brain Injury Guidelines (BIG) were developed to reduce over utilization of Neurosurgical Consultation (NC) as well as CT imaging. Currently, BIG have been successfully applied to adult populations, but the value of implementing these guidelines among pediatric patients remains unassessed. Therefore, the aim of this study was to evaluate the established BIG (BIG-1 category) for managing pediatric traumatic brain injury (TBI) patients with intracranial hemorrhage (ICH) without neurosurgical consultation (No-NC). We prospectively implemented the BIG-1 category (normal neurological exam, ICH ≤ 4mm limited to 1 location, no skull fracture) to identify pediatric TBI patients (age ≤ 21years) that were to be managed No-NC. Propensity score matching was performed to match these No-NC patients to a similar cohort of patients managed with NC before the implementation of BIG in a 1:1 ratio for demographics, severity of injury, and type as well as size of ICH. Our primary outcome measure was need for neurosurgical intervention. A total of 405 pediatric TBI patients were enrolled, of which 160 (80: NC and 80: No-NC) were propensity score matched. The mean age was 9.03 ± 7.47 years, 62.1% (n=85) were male, the median Glasgow Coma Scale (GCS) was 15 [13-15], and the median head-abbreviated injury scale (AIS) was 2 [2-3]. A sub-analysis based on stratifying patients by age groups showed a decreased in the use of RHCT (p=0.02) in the No-NC group, with no difference in progression (p=0.34) and the need for neurosurgical intervention (p=0.9) compared to the NC group. The BIG can be safely and effectively implemented in pediatric TBI patients. Reducing repeat head CT in pediatric patients has long-term sequelae. Likewise, adhering to the guidelines helps in reducing radiation exposure across all age groups. Therapeutic/care management, level III.

  13. Behaviour and school performance after brain injury.

    PubMed

    Hawley, Carol A

    2004-07-01

    To examine the relationship between behavioural problems and school performance following traumatic brain injury (TBI). 67 school-age children with TBI (35 mild, 13 moderate, 19 severe) and 14 uninjured matched controls. Parents and children were interviewed at a mean of 2 years post-TBI. Teachers reported on academic performance and educational needs. Children were assessed using the Vineland Adaptive Behaviour Scales (VABS) and the Weschler Intelligence Scale for Children (WISC-III). Two-thirds of children with TBI exhibited significant behavioural problems, significantly more than controls (p = 0.02). Children with behavioural problems had a mean IQ aproximately 15 points lower than those without (p = 0.001, 95% CI: 7-26.7). At school, 76%(19) of children with behavioural problems also had difficulties with schoolwork. Behavioural problems were associated with social deprivation and parental marital status (p < or = 0.01). Children with TBI are at risk of developing behavioural problems which may affect school performance. Children with TBI should be screened to identify significant behavioural problems before they return to school.

  14. Erythropoietin Neuroprotection with Traumatic Brain Injury

    PubMed Central

    Ponce, Lucido L.; Navarro, Jovany Cruz; Ahmed, Osama; Robertson, Claudia S.

    2012-01-01

    Numerous experimental studies in recent years have suggested that erythropoietin (EPO) is an endogenous mediator of neuroprotection in various central nervous system disorders, including TBI. Many characteristics of EPO neuroprotection that have been defined in TBI experimental models suggest that it is an attractive candidate for a new treatment of TBI. EPO targets multiple mechanisms known to cause secondary injury after TBI, including anti-excitotoxic, antioxidant, anti-edematous, and anti-inflammatory mechanisms. EPO crosses the blood brain barrier. EPO has a known dose response and time window for neuroprotection and neurorestoration that would be practical in the clinical setting. However, EPO also stimulates erythropoiesis, which can result in thromboembolic complications. Derivatives of EPO which do not bind to the classical EPO receptor (carbamylated EPO) or that have such a brief half-life in the circulation that they do not stimulate erythropoiesis (asialo EPO and neuro EPO) have the neuroprotective activities of EPO without these potential thromboembolic adverse effects associated with EPO administration. Likewise, a peptide based on the structure of the Helix B segment of the EPO molecule that does not bind to the EPO receptor (pyruglutamate Helix B surface peptide) has promise as another alternative to EPO that may provide neuroprotection without stimulating erythropoiesis. PMID:22421507

  15. Cerebral Vasospasm in Traumatic Brain Injury

    PubMed Central

    Kramer, Daniel R.; Winer, Jesse L.; Pease, B. A. Matthew; Amar, Arun P.; Mack, William J.

    2013-01-01

    Vasospasm following traumatic brain injury (TBI) may dramatically affect the neurological and functional recovery of a vulnerable patient population. While the reported incidence of traumatic vasospasm ranges from 19%–68%, the true incidence remains unknown due to variability in protocols for its detection. Only 3.9%–16.6% of patients exhibit clinical deficits. Compared to vasospasm resulting from aneurysmal SAH (aSAH), the onset occurs earlier and the duration is shorter. Overall, the clinical course tends to be milder, although extreme cases may occur. Traumatic vasospasm can occur in the absence of subarachnoid hemorrhage. Surveillance transcranial Doppler ultrasonography (TCD) has been utilized to monitor for radiographic vasospasm following TBI. However, effective treatment modalities remain limited. Hypertension and hypervolemia, the mainstays of treatment of vasospasm associated with aSAH, must be used judiciously in TBI patients, and calcium-channel blockers have offered mixed clinical results. Currently, the paucity of large prospective cohort studies and level-one data limits the ability to form evidence-based recommendations regarding the diagnosis and management of vasospasm associated with TBI. PMID:23862062

  16. Cooking breakfast after a brain injury

    PubMed Central

    Tanguay, Annick N.; Davidson, Patrick S. R.; Guerrero Nuñez, Karla V.; Ferland, Mark B.

    2014-01-01

    Acquired brain injury (ABI) often compromises the ability to carry out instrumental activities of daily living such as cooking. ABI patients' difficulties with executive functions and memory result in less independent and efficient meal preparation. Accurately assessing safety and proficiency in cooking is essential for successful community reintegration following ABI, but in vivo assessment of cooking by clinicians is time-consuming, costly, and difficult to standardize. Accordingly, we examined the usefulness of a computerized meal preparation task (the Breakfast Task; Craik and Bialystok, 2006) as an indicator of real life meal preparation skills. Twenty-two ABI patients and 22 age-matched controls completed the Breakfast Task. Patients also completed the Rehabilitation Activities of Daily Living Survey (RADLS; Salmon, 2003) and prepared actual meals that were rated by members of the clinical team. As expected, the ABI patients had significant difficulty on all aspects of the Breakfast Task (failing to have all their foods ready at the same time, over- and under-cooking foods, setting fewer places at the table, and so on) relative to controls. Surprisingly, however, patients' Breakfast Task performance was not correlated with their in vivo meal preparation. These results indicate caution when endeavoring to replace traditional evaluation methods with computerized tasks for the sake of expediency. PMID:25228863

  17. Narrative language in traumatic brain injury.

    PubMed

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-08-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS<8) in the phase of neurological stability and 14 neurologically intact participants were recruited for the experiment. Their cognitive, linguistic and narrative skills were thoroughly assessed. The group of non-aphasic individuals with TBI had normal lexical and grammatical skills. However, they produced narratives with increased errors of cohesion and coherence due to the frequent interruption of ongoing utterances, derailments and extraneous utterances that made their discourse vague and ambiguous. They produced a normal amount of thematic units (i.e. concepts) in their narratives. However, this information was not correctly organized at micro- and macrolinguistic levels of processing. A Principal Component Analysis showed that a single factor accounted for the production of global coherence errors, and the reduction of both propositional density at the utterance level and proportion of words that conveyed information. It is hypothesized that the linguistic deficits observed in the participants with TBI may reflect a deficit at the interface between cognitive and linguistic processing rather than a specific linguistic disturbance.

  18. Standardizing data collection in traumatic brain injury.

    PubMed

    Maas, Andrew I R; Harrison-Felix, Cynthia L; Menon, David; Adelson, P David; Balkin, Tom; Bullock, Ross; Engel, Doortje C; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; Verfaellie, Mieke; Wainwright, Mark; Wright, David W; Schwab, Karen

    2011-02-01

    Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we "speak the same language." Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from different clinical studies and high-quality observational studies combined with comparative effectiveness research may provide excellent alternatives in a cost-efficient way. Standardization of data collection and coding is essential to this end. Common data elements (CDEs) are presented for demographics and clinical variables applicable across the broad spectrum of TBI. Most recommendations represent a consensus derived from clinical practice. Some recommendations concern novel approaches, for example assessment of the intensity of therapy in severely injured patients. Up to three levels of detail for coding data elements were developed: basic, intermediate, and advanced, with the greatest level of detail attained in the advanced version. More detailed codings can be collapsed into the basic version. Templates were produced to summarize coding formats, explanation of choices, and recommendations for procedures. Endorsement of the recommendations has been obtained from many authoritative organizations. The development of CDEs for TBI should be viewed as a continuing process; as more experience is gained, refinement and amendments will be required. This proposed process of standardization will facilitate comparative effectiveness research and encourage high-quality meta-analysis of individual patient data.

  19. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  20. Script knowledge after severe traumatic brain injury.

    PubMed

    Cazalis, F; Azouvi, P; Sirigu, A; Agar, N; Burnod, Y

    2001-11-01

    Severe diffuse traumatic brain injury (TBI) may impair the performance of daily-life complex activities. The aim of the present study was to assess whether these difficulties are related to a representational impairment of action knowledge. Two tasks requiring the manipulation of scripts were used. The first (script reconstitution) required subjects to sort cards describing actions belonging to 4 different scripts, presented in a random order. The second (script generation) required subjects to generate actions belonging to a given script. The results showed that TBI patients had preserved access to goal representation and action knowledge. However, they demonstrated (1) significant impairments when they had to deal with simultaneous competing sources of information and (2) a lack of inhibitory control on routine overlearned skills. Patients' performance was significantly correlated with behavioral modifications in everyday life. These data suggest that action impairment in severe TBI patients cannot be attributed to an impairment of action knowledge per se. As previously suggested by Schwartz et al., a restriction of limited-capacity processing resources may account for the observed deficits.

  1. [Pragmatic impairments following traumatic brain injury].

    PubMed

    Muñoz-Céspedes, J M; Melle, N

    To describe how cognitive impairments contribute to the loss of communicative competence after traumatic brain injury (TBI), what instruments can be used to evaluate the pragmatic skills and which therapeutic approaches may be used to improve or compensate for this deficit. We present a detailed bibliographic review on the topic that shows how certain functions (namely, memory, attention and executive functions) interact with communication skills, both expressive and comprehensive. The pragmatic approaches for cognitive-communicative TBI impairments are allow to count typical difficulties that are described (difficulty with topic selection, turn-taking initiation, ability to respond or give indirect requests, ability to meet the informational needs of the listener, appropriateness of utterances within conversation, etc). Next a general outline of the assessment and treatment of is provided, including several strategies based on recovery and functional adaptation and compensation. Given the huge influence of communicative skills on social and vocational integration, it is crucial to obtain a better understanding of the interaction between cognitive functions and communicative skills. Therefore, we need to devise assessment protocols specifically designed for Spanish speakers as well as new therapeutic approaches to increase the life quality of this population. The specific approaches to improve narrative, procedural and conversational discourse must divide from the components of the pragmatic competence and promote the cooperative participation of the teamwork who attend to the patient.

  2. Biomarkers in Silent Traumatic Brain Injury.

    PubMed

    Antonopoulos, Constantine N; Kadoglou, Nikolaos P E

    2016-01-01

    Traumatic brain injury (TBI) has been recognized among the leading causes of mortality and morbidity in young adults. Traditionally, the diagnosis of TBI has been based on neuroimaging. However, a significant portion of insulted patients appear to be apparently asymptomatic. As a result, more elaborate indices of silent TBI are required in order to immediately detect focal and diffuse asymptomatic TBI. Such valid indices will potentially increase the efficacy of therapeutic strategies in TBI patients. In this review of the literature, we present novel circulating biomolecules, as potential biomarkers of silent TBI, like neurofilaments, Cleaved-Tau (C-Tau), Microtubule-Associated Protein 2 (MAP2), Neuron-Specific Enolase, S100B and ferritin. In addition to this, assessment of white matter abnormalities and white matter integrity by diffusion tensor imaging (DTI) have emerged as promising sensitive neuroimaging methods of silent TBI. An integrated research is needed to fully understand the interplay between all the aforementioned indices and DTI. The potential diagnostic, therapeutic and prognostic values of the all aforementioned indices will be analyzed in the proposed review.

  3. Evaluation of Head and Brain Injury Risk Functions Using Sub-Injurious Human Volunteer Data.

    PubMed

    Sanchez, Erin J; Gabler, Lee F; McGhee, James S; Olszko, Ardyn V; Chancey, V Carol; Crandall, Jeff R; Panzer, Matthew B

    2017-08-15

    Risk assessment models are developed to estimate the probability of brain injury during head impact using mechanical response variables such as head kinematics and brain tissue deformation. Existing injury risk functions have been developed using different datasets based on human volunteer and scaled animal injury responses to impact. However, many of these functions have not been independently evaluated with respect to laboratory-controlled human response data. In this study, the specificity of 14 existing brain injury risk functions was assessed by evaluating their ability to correctly predict non-injurious response using previously conducted sled tests with well-instrumented human research volunteers. Six degrees-of-freedom head kinematics data were obtained for 335 sled tests involving subjects in frontal, lateral, and oblique sled conditions up to 16 Gs peak sled acceleration. A review of the medical reports associated with each individual test indicated no clinical diagnosis of mild or moderate brain injury in any of the cases evaluated. Kinematic-based head and brain injury risk probabilities were calculated directly from the kinematic data, while strain-based risks were determined through finite element model simulation of the 335 tests. Several injury risk functions substantially over predict the likelihood of concussion and diffuse axonal injury; proposed maximum principal strain-based injury risk functions predicted nearly 80 concussions and 14 cases of severe diffuse axonal injury out of the 335 non-injurious cases. This work is an important first step in assessing the efficacy of existing brain risk functions and highlights the need for more predictive injury assessment models.

  4. Opioid Abuse after Traumatic Brain Injury: Evaluation Using Rodent Models

    DTIC Science & Technology

    2015-09-01

    abuse disorders . 15. SUBJECT TERMS Traumatic brain injury, drug abuse, oxycodone, opioid, preclinical models, rat 16. SECURITY CLASSIFICATION OF: 17...suggest that brain-injured subjects are at higher risk for developing opioid abuse disorders . Body: The study has been finalized and the data... identical as illustrated by Figure 12 where the curves for the two injury conditions are almost superimposed. Overall, there was no difference in the

  5. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2012-07-01

    4.4.4 Laser Doppler Flow Laser Doppler is an inexpensive, noninvasive method of measuring the continu- ous circulation of blood flow on a microscopic...1991) Cerebral circulation and metabo- lism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75:585–593 Brandi G, Bechir M...microvessels and the micro- circulation in a rat model of traumatic brain injury: a correlative EM and laser Doppler flowmetry study. Neurol Res 29

  6. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage.

    PubMed

    Villapol, Sonia; Balarezo, María G; Affram, Kwame; Saavedra, Juan M; Symes, Aviva J

    2015-11-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article.Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan's blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking and

  7. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage

    PubMed Central

    Balarezo, María G.; Affram, Kwame; Saavedra, Juan M.; Symes, Aviva J.

    2015-01-01

    See Moon (doi:10.1093/awv239) for a scientific commentary on this article. Traumatic brain injury frequently leads to long-term cognitive problems and physical disability yet remains without effective therapeutics. Traumatic brain injury results in neuronal injury and death, acute and prolonged inflammation and decreased blood flow. Drugs that block angiotensin II type 1 receptors (AT1R, encoded by AGTR1) (ARBs or sartans) are strongly neuroprotective, neurorestorative and anti-inflammatory. To test whether these drugs may be effective in treating traumatic brain injury, we selected two sartans, candesartan and telmisartan, of proven therapeutic efficacy in animal models of brain inflammation, neurodegenerative disorders and stroke. Using a validated mouse model of controlled cortical impact injury, we determined effective doses for candesartan and telmisartan, their therapeutic window, mechanisms of action and effect on cognition and motor performance. Both candesartan and telmisartan ameliorated controlled cortical impact-induced injury with a therapeutic window up to 6 h at doses that did not affect blood pressure. Both drugs decreased lesion volume, neuronal injury and apoptosis, astrogliosis, microglial activation, pro-inflammatory signalling, and protected cerebral blood flow, when determined 1 to 3 days post-injury. Controlled cortical impact-induced cognitive impairment was ameliorated 30 days after injury only by candesartan. The neurorestorative effects of candesartan and telmisartan were reduced by concomitant administration of the peroxisome proliferator-activated receptor gamma (PPARγ, encoded by PPARG) antagonist T0070907, showing the importance of PPARγ activation for the neurorestorative effect of these sartans. AT1R knockout mice were less vulnerable to controlled cortical impact-induced injury suggesting that the sartan’s blockade of the AT1R also contributes to their efficacy. This study strongly suggests that sartans with dual AT1R blocking

  8. Chronic impairment of prospective memory after mild traumatic brain injury.

    PubMed

    Tay, Sze Yan; Ang, Beng Ti; Lau, Xin Yin; Meyyappan, Amutha; Collinson, Simon Lowes

    2010-01-01

    Prospective memory (PM), the ability to recall future intentions, is crucial for independent living. Impairment of PM is a common complaint following head injury and is a significant impediment to good recovery, yet no studies have explored PM in mild traumatic brain injury (mTBI). In this study, prospective memory was examined in 31 mTBI patients and matched controls within a month of injury and 3 months after. mTBI patients performed more poorly than controls on the MIST task (Raskin, 2004) within the first month following injury, indicating that PM impairment is part of the acute cognitive sequelae of mTBI. These problems persisted beyond 3 months post-injury, suggesting that PM may be a sensitive indicator of cerebral compromise in mild brain injuries.

  9. Autoantibodies in traumatic brain injury and central nervous system trauma.

    PubMed

    Raad, M; Nohra, E; Chams, N; Itani, M; Talih, F; Mondello, S; Kobeissy, F

    2014-12-05

    Despite the debilitating consequences and the widespread prevalence of brain trauma insults including spinal cord injury (SCI) and traumatic brain injury (TBI), there are currently few effective therapies for most of brain trauma sequelae. As a consequence, there has been a major quest for identifying better diagnostic tools, predictive models, and directed neurotherapeutic strategies in assessing brain trauma. Among the hallmark features of brain injury pathology is the central nervous systems' (CNS) abnormal activation of the immune response post-injury. Of interest, is the occurrence of autoantibodies which are produced following CNS trauma-induced disruption of the blood-brain barrier (BBB) and released into peripheral circulation mounted against self-brain-specific proteins acting as autoantigens. Recently, autoantibodies have been proposed as the new generation class of biomarkers due to their long-term presence in serum compared to their counterpart antigens. The diagnostic and prognostic value of several existing autoantibodies is currently being actively studied. Furthermore, the degree of direct and latent contribution of autoantibodies to CNS insult is still not fully characterized. It is being suggested that there may be an analogy of CNS autoantibodies secretion with the pathophysiology of autoimmune diseases, in which case, understanding and defining the role of autoantibodies in brain injury paradigm (SCI and TBI) may provide a realistic prospect for the development of effective neurotherapy. In this work, we will discuss the accumulating evidence about the appearance of autoantibodies following brain injury insults. Furthermore, we will provide perspectives on their potential roles as pathological components and as candidate markers for detecting and assessing CNS injury.

  10. Intravenous Fluid Therapy in Traumatic Brain Injury and Decompressive Craniectomy

    PubMed Central

    Alvis-Miranda, Hernando Raphael; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2014-01-01

    The patient with head trauma is a challenge for the emergency physician and for the neurosurgeon. Currently traumatic brain injury constitutes a public health problem. Knowledge of the various supportive therapeutic strategies in the pre-hospital and pre-operative stages is essential for optimal care. The immediate rapid infusion of large volumes of crystalloids to restore blood volume and blood pressure is now the standard treatment of patients with combined traumatic brain injury (TBI) and hemorrhagic shock (HS). The fluid in patients with brain trauma and especially in patients with brain injur y is a critical issue. In this context we present a review of the literature about the history, physiology of current fluid preparations, and a discussion regarding the use of fluid therapy in traumatic brain injury and decompressive craniectomy. PMID:27162857

  11. Transcranial amelioration of inflammation and cell death after brain injury

    NASA Astrophysics Data System (ADS)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  12. Severe traumatic head injury: prognostic value of brain stem injuries detected at MRI.

    PubMed

    Hilario, A; Ramos, A; Millan, J M; Salvador, E; Gomez, P A; Cicuendez, M; Diez-Lobato, R; Lagares, A

    2012-11-01

    Traumatic brain injuries represent an important cause of death for young people. The main objectives of this work are to correlate brain stem injuries detected at MR imaging with outcome at 6 months in patients with severe TBI, and to determine which MR imaging findings could be related to a worse prognosis. One hundred and eight patients with severe TBI were studied by MR imaging in the first 30 days after trauma. Brain stem injury was categorized as anterior or posterior, hemorrhagic or nonhemorrhagic, and unilateral or bilateral. Outcome measures were GOSE and Barthel Index 6 months postinjury. The relationship between MR imaging findings of brain stem injuries, outcome, and disability was explored by univariate analysis. Prognostic capability of MR imaging findings was also explored by calculation of sensitivity, specificity, and area under the ROC curve for poor and good outcome. Brain stem lesions were detected in 51 patients, of whom 66% showed a poor outcome, as expressed by the GOSE scale. Bilateral involvement was strongly associated with poor outcome (P < .05). Posterior location showed the best discriminatory capability in terms of outcome (OR 6.8, P < .05) and disability (OR 4.8, P < .01). The addition of nonhemorrhagic and anterior lesions or unilateral injuries showed the highest odds and best discriminatory capacity for good outcome. The prognosis worsens in direct relationship to the extent of traumatic injury. Posterior and bilateral brain stem injuries detected at MR imaging are poor prognostic signs. Nonhemorrhagic injuries showed the highest positive predictive value for good outcome.

  13. Neuroprotective effect of picroside II in brain injury in mice.

    PubMed

    Wang, Yida; Fang, Wei; Wu, Liang; Yao, Xueya; Wu, Suzhen; Wang, Jie; Xu, Zhen; Tian, Fubo; He, Zhenzhou; Dong, Bin

    2016-01-01

    Various types of brain injury which led to the damage of brain tissue structure and neurological dysfunction continues to be the major causes of disability and mortality. Picroside II (PII) possesses a wide range of pharmacological effects and has been proved to ameliorate ischemia and reperfusion injury of kidney and brain. However, critical questions remain about other brain injuries. We investigated the protective effect of PII in four well-characterized murine models of brain injury. Models showed a subsequent regional inflammatory response and oxidative stress in common, which might be improved by the administration of PII (20 mg/kg). Meanwhile, a series of morphological and histological analyses for reinforcement was performed. In traumatic, ischemic and infectious induced injuries, it was observed that the survival rate, apoptosis related proteins, Caspase-3, and the expression of acute inflammatory cytokines (IL-1β, IL-6 and TNF-α) were significantly alleviated after PII injection, but PII treatment alone showed no effect on them as well. The western blot results indicated that TLR4 and NF-κB were clearly downregulated with PII administration. In conclusion, our results suggested that PII with a recommended concentration of 20 mg/kg could provide neuroprotective effects against multi-cerebral injuries in mice by suppressing the over-reactive inflammatory responses and oxidative stress and attenuating the damage of brain tissue for further neurological recovery.

  14. [Value of computer tomography in the managment of brain injuries].

    PubMed

    Keita, A D; Toure, M; Sissako, A; Doumbia, S; Coulibaly, Y; Doumbia, D; Kane, M; Diallo, A K; Toure, A A; Traore, I

    2005-11-01

    The purpose of this prospective study conducted from January 2001 to December 2001 was to ascertain the value of computer tomography for evaluation of brain injuries. Computer tomography was performed using a Toshiba X VID system with contiguous 5 mm axial sections through the posterior fossa and 10 mm contiguous axial sections through the subtentorial region without contrast injection. A total of 107 patients with brain injuries were enrolled over the one-year study period. These patients accounted for 0.8% of all admissions to surgical emergency unit of Gabriel Toure Hospital in Bamako, Mali. The predominant age group for brain injuries was the 20- to 29-year-old group (35 cases). The male-to-female sex ratio was 5:1. Vehicular accident was the most frequent cause of brain injury (76 cases). Trauma was severe in 48 patients with a Glasgow score less than 8. Coma occurred immediately after injury in 90 cases. Ventricular hemorrhage led to coma in 100% of cases whereas brain hemorrhage and hematoma led to coma in 93.3% and 83.3% of cases respectively. Treatment was medical in 99 cases and neurosurgical in 8. The mortality rate was 34% and the morbidity rate (permanent sequels) was 36%. Computer tomography is a valuable tool for therapeutic decision-making in medico-surgical emergencies involving brain injuries.

  15. Neuroprotective effect of picroside II in brain injury in mice

    PubMed Central

    Wang, Yida; Fang, Wei; Wu, Liang; Yao, Xueya; Wu, Suzhen; Wang, Jie; Xu, Zhen; Tian, Fubo; He, Zhenzhou; Dong, Bin

    2016-01-01

    Various types of brain injury which led to the damage of brain tissue structure and neurological dysfunction continues to be the major causes of disability and mortality. Picroside II (PII) possesses a wide range of pharmacological effects and has been proved to ameliorate ischemia and reperfusion injury of kidney and brain. However, critical questions remain about other brain injuries. We investigated the protective effect of PII in four well-characterized murine models of brain injury. Models showed a subsequent regional inflammatory response and oxidative stress in common, which might be improved by the administration of PII (20 mg/kg). Meanwhile, a series of morphological and histological analyses for reinforcement was performed. In traumatic, ischemic and infectious induced injuries, it was observed that the survival rate, apoptosis related proteins, Caspase-3, and the expression of acute inflammatory cytokines (IL-1β, IL-6 and TNF-α) were significantly alleviated after PII injection, but PII treatment alone showed no effect on them as well. The western blot results indicated that TLR4 and NF-κB were clearly downregulated with PII administration. In conclusion, our results suggested that PII with a recommended concentration of 20 mg/kg could provide neuroprotective effects against multi-cerebral injuries in mice by suppressing the over-reactive inflammatory responses and oxidative stress and attenuating the damage of brain tissue for further neurological recovery. PMID:28078024

  16. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  17. Neuroprotective Strategies after Repetitive Mild Traumatic Brain Injury

    DTIC Science & Technology

    2011-06-01

    of nicotinamide (NAD). Scope: In rat model of a repetitive mild cortical controlled injury, we investigated the neuropathological profile of two...mild traumatic brain injury, HBO, nicotinamide , intranasal, MRI, rat 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...prophylactically or therapeutically in combination with intranasal delivery of nicotinamide would improve the outcomes in a rodent model subjected to

  18. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  19. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    ERIC Educational Resources Information Center

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  20. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    ERIC Educational Resources Information Center

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  1. Identity, grief and self-awareness after traumatic brain injury.

    PubMed

    Carroll, Emma; Coetzer, Rudi

    2011-06-01

    The objective of this study was to investigate perceived identity change in adults with traumatic brain injury (TBI) and explore associations between identity change, grief, depression, self-esteem and self-awareness. The participants were 29 adults with TBI who were being followed up by a community brain injury rehabilitation service. Participants were longer post-injury than those more commonly studied. Time since injury ranged from 2.25 to 40 years (mean = 11.17 years, SD = 11.4 years). Participants completed a battery of questionnaires. Significant others and clinicians completed a parallel version of one of these measures. Questionnaires included the Head Injury Semantic Differential Scale (HISDS-III), Brain Injury Grief Inventory (BIGI), Hospital Anxiety and Depression Scale - Depression, Rosenberg Self-Esteem Scale (RSES) and the Awareness Questionnaire (Self/Significant other/Clinician versions). The main findings were that participants reported significant changes in self-concept with current self being viewed negatively in comparison to pre-injury self. Perceived identity change was positively associated with depression and grief and negatively associated with self-esteem and awareness. Awareness was negatively associated with self-esteem and positively associated with depression. These findings were consistent with previous research, revealing changes in identity following TBI. Further research is needed to increase our understanding of the psychological factors involved in emotional adjustment after TBI and to inform brain injury rehabilitation interventions, including psychotherapy approaches.

  2. Memory Strategies to Use With Students Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Pershelli, Andi

    2007-01-01

    Following a traumatic brain injury, including a mild concussion, most students will have some degree of memory impairment. It can take 1-3 years for a child's memory to improve to its maximum capability following injury. Children cannot wait that long before returning to school. Teachers need to know how to diversify their instruction in order to…

  3. Rehabilitation of a person with severe traumatic brain injury.

    PubMed

    Burke, D; Alexander, K; Baxter, M; Baker, F; Connell, K; Diggles, S; Feldman, K; Horny, A; Kokinos, M; Moloney, D; Withers, J

    2000-05-01

    A case study report of a long and intensive rehabilitation programme for a young woman after she sustained a severe diffuse axonal injury in a motor vehicle accident is described in detail. The purpose of this paper is to encourage specialist brain injury rehabilitation services to offer extended rehabilitation programmes to patients, even with very severe injuries. Significant functional improvements and enhanced quality of life frequently reward the high cost and hard work involved.

  4. The neuroprotective roles of BDNF in hypoxic ischemic brain injury

    PubMed Central

    CHEN, AI; XIONG, LI-JING; TONG, YU; MAO, MENG

    2013-01-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  5. A clinical comparison of penetrating and blunt traumatic brain injuries.

    PubMed

    Santiago, Luis A; Oh, Bryan C; Dash, Pramod K; Holcomb, John B; Wade, Charles E

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of injury death and long-term disability in the USA. It commonly results from blunt (closed) or penetrating trauma. The majority of civilian TBI is caused by falls or motor vehicle collisions, whereas military TBI mainly results from explosions. Although penetrating injuries are less common than closed injuries in the civilian population, they are far more lethal. Unfortunately, the pathophysiologic differences between penetrating and closed TBI remain poorly understood due to the lack of studies on the subject. Many studies on the prognostic factors of mortality and functional outcome after TBI exclude penetrating brain injuries from their series because they are believed to have a different pathophysiology. 125 Articles regarding brain injury were reviewed and summarized for this report. Despite the absence of a clear delineation between penetrating and blunt TBI, the current guidelines for penetrating TBI suggest defaulting to management strategies used for closed TBI with limited supportive evidence. Thus, injuries that appear to have different pathophysiologies and outcomes are managed equally and perhaps not optimally. In view of the incomplete understanding of the impact of mechanism of injury on TBI outcomes, as demonstrated in the current review, new research studies are required to improve evidence-based TBI guidelines tailored especially for penetrating injuries.

  6. Classification of Traumatic Brain Injury for Targeted Therapies

    PubMed Central

    Saatman, Kathryn E.; Duhaime, Ann-Christine; Bullock, Ross; Maas, Andrew I.R.; Valadka, Alex

    2008-01-01

    Abstract The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barriers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neurological Disorders and Stroke, with support from the Brain Injury Association of America, the Defense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid classification system for TBI that could be used to link specific patterns of brain and neurovascular injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS) is the primary selection criterion for inclusion in most TBI clinical trials. While the GCS is extremely useful in the clinical management and prognosis of TBI, it does not provide specific information about the pathophysiologic mechanisms which are responsible for neurological deficits and targeted by interventions. On the premise that brain injuries with similar pathoanatomic features are likely to share common pathophysiologic mechanisms, participants proposed that a new, multidimensional classification system should be developed for TBI clinical trials. It was agreed that preclinical models were vital in establishing pathophysiologic mechanisms relevant to specific pathoanatomic types of TBI and verifying that a given therapeutic approach improves outcome in these targeted TBI types. In a clinical trial, patients with the targeted pathoanatomic injury type would be selected using an initial diagnostic entry criterion, including their severity of injury. Coexisting brain injury types would be identified and multivariate prognostic modeling used for refinement of inclusion/exclusion criteria and patient stratification. Outcome assessment would utilize endpoints relevant to the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitoring, and

  7. Adding insult to brain injury: young adults' experiences of residing in nursing homes following acquired brain injury.

    PubMed

    Dwyer, Aoife; Heary, Caroline; Ward, Marcia; MacNeela, Pádraig

    2017-08-28

    There is general consensus that adults under age 65 with acquired brain injury residing in nursing homes is inappropriate, however there is a limited evidence base on the issue. Previous research has relied heavily on third-party informants and qualitative studies have been of questionable methodological quality, with no known study adopting a phenomenological approach. This study explored the lived experiences of young adults with brain injury residing in aged care facilities. Interpretative phenomenological analysis was employed to collect and analyze data from six semi-structured interviews with participants regarding their experiences of living in nursing homes. Two themes were identified, including "Corporeal prison of acquired brain injury: broken selves" and "Existential prison of the nursing home: stagnated lives". Results illustrated that young adults with acquired brain injury can experience aged care as an existential prison in which their lives feel at a standstill. This experience was characterized by feelings of not belonging in a terminal environment, confinement, disempowerment, emptiness and hope for greater autonomy through rehabilitation. It is hoped that this study will provide relevant professionals, services and policy-makers with insight into the challenges and needs of young adults with brain injury facing these circumstances. Implications for rehabilitation This study supports the contention that more home-like and age-appropriate residential rehabilitation services for young adults with acquired brain injury are needed. As development of alternative accommodation is a lengthy process, the study findings suggest that the interim implementation of rehabilitative care in nursing homes should be considered. Taken together with existing research, it is proposed that nursing home staff may require training to deliver evidence-based rehabilitative interventions to those with brain injury. The present findings add support to the call for systemic

  8. Prooxidant-antioxidant balance in patients with traumatic brain injury.

    PubMed

    Ehsaei, Mohamadreza; Khajavi, Mehdi; Arjmand, Mohammad Hassan; Abuee, Mohammad Ali; Ghayour-Mobarhan, Majid; Hamidi Alamdari, Daryoush

    2015-03-01

    Brain trauma is an important cause of mortality and disability among young people worldwide. One of the mechanisms of post-traumatic secondary brain damage is related to free radical release and oxidative stress (OS). OS is the consequence of an imbalance between pro-oxidants and antioxidants in favor of pro-oxidants. This imbalance may lead to macromolecule damage including lipid peroxidation, protein crosslinking, DNA damage and changes in growth and function of cells in brain. Free radical release and subsequent lipid peroxidation are early events following neural tissues injury and are associated with hypo-perfusion, edema, and disruption of axonal guidance. In this study, we determined the prooxidant-antioxidant balance (PAB) in patients with brain injury, and its correlation with number of demographic and clinical parameters. Sera from 98 patients with traumatic brain and 100 healthy subjects were collected. The serum PAB was measured. Age, sex, GCS (Glasgow coma scale), mechanism of injury, brain lesions found on CT scan and lesions in other parts of the body, caused by trauma, were determined. A significantly higher PAB value was observed in the patient group (138.97 ± 15.9 HK unit) compared to the controls (60.82 ± 12.6 HK) (P = 0.001). In the patient group, there was no significant correlation of PAB with GCS, brain lesion characteristic, mechanism of injury, other accompanying traumatic injury, age and gender. When patients were classified into three groups according to GCS: group 1 (GCS>13, n = 28, PAB serum value = 138.51 ± 62.66 HK), group 2 (GCS between 8 and 12, n = 29, PAB serum value = 162.7 ± 50.6 HK) and group 3 (GCS <8, n = 41, PAB serum value = 155.56 ± 58.21 HK); there was no significant difference between groups. The serum PAB values were higher in patients with traumatic brain injury, although this was not associated with the extent of injury.

  9. Neurological consequences of traumatic brain injuries in sports.

    PubMed

    Ling, Helen; Hardy, John; Zetterberg, Henrik

    2015-05-01

    Traumatic brain injury (TBI) is common in boxing and other contact sports. The long term irreversible and progressive aftermath of TBI in boxers depicted as punch drunk syndrome was described almost a century ago and is now widely referred as chronic traumatic encephalopathy (CTE). The short term sequelae of acute brain injury including subdural haematoma and catastrophic brain injury may lead to death, whereas mild TBI, or concussion, causes functional disturbance and axonal injury rather than gross structural brain damage. Following concussion, symptoms such as dizziness, nausea, reduced attention, amnesia and headache tend to develop acutely but usually resolve within a week or two. Severe concussion can also lead to loss of consciousness. Despite the transient nature of the clinical symptoms, functional neuroimaging, electrophysiological, neuropsychological and neurochemical assessments indicate that the disturbance of concussion takes over a month to return to baseline and neuropathological evaluation shows that concussion-induced axonopathy may persist for years. The developing brains in children and adolescents are more susceptible to concussion than adult brain. The mechanism by which acute TBI may lead to the neurodegenerative process of CTE associated with tau hyperphosphorylation and the development of neurofibrillary tangles (NFTs) remains speculative. Focal tau-positive NFTs and neurites in close proximity to focal axonal injury and foci of microhaemorrhage and the predilection of CTE-tau pathology for perivascular and subcortical regions suggest that acute TBI-related axonal injury, loss of microvascular integrity, breach of the blood brain barrier, resulting inflammatory cascade and microglia and astrocyte activation are likely to be the basis of the mechanistic link of TBI and CTE. This article provides an overview of the acute and long-term neurological consequences of TBI in sports. Clinical, neuropathological and the possible pathophysiological

  10. Behavior Management for Children and Adolescents with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  11. IQ Decline Following Early Unilateral Brain Injury: A Longitudinal Study

    ERIC Educational Resources Information Center

    Levine, Susan C.; Kraus, Ruth; Alexander, Erin; Suriyakham, Linda Whealton; Huttenlocher, Peter R.

    2005-01-01

    We examine whether children with early unilateral brain injury show an IQ decline over the course of development. Fifteen brain injured children were administered an IQ test once before age 7 and again several years later. Post-7 IQ scores were significantly lower than pre-7 IQ scores. In addition, pre-7 IQ scores were lower for children with…

  12. Behavior Management for Children and Adolescents with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slifer, Keith J.; Amari, Adrianna

    2009-01-01

    Behavioral problems such as disinhibition, irritability, restlessness, distractibility, and aggression are common after acquired brain injury (ABI). The persistence and severity of these problems impair the brain-injured individual's reintegration into family, school, and community life. Since the early 1980s, behavior analysis and therapy have…

  13. Neuropsychological Consequences of Traumatic Brain Injury in Children and Adolescents.

    ERIC Educational Resources Information Center

    Lord-Maes, Janiece; Obrzut, John E.

    1996-01-01

    This article discusses recent findings concerning cognitive outcomes in traumatic brain injury (TBI) in children and adolescents, with a particular focus on age differences with TBI. It suggests a relationship between specific learning disorders and brain dysfunction, addresses differential hemispheric functioning with TBI, and outlines recent…

  14. Evaluating Categorization Skills in Children Following Severe Brain Injury.

    ERIC Educational Resources Information Center

    Josman, Naomi; Berney, Tikva; Jarus, Tal

    2000-01-01

    The Toglia Category Assessment was used to evaluate the cognitive categorization ability and the capacity to switch conceptual sets of 30 children with severe brain injuries and 30 without impairments. Brain-injured children had significantly lower scores; awareness scores were significantly correlated with performance scores. (Contains 33…

  15. IQ Decline Following Early Unilateral Brain Injury: A Longitudinal Study

    ERIC Educational Resources Information Center

    Levine, Susan C.; Kraus, Ruth; Alexander, Erin; Suriyakham, Linda Whealton; Huttenlocher, Peter R.

    2005-01-01

    We examine whether children with early unilateral brain injury show an IQ decline over the course of development. Fifteen brain injured children were administered an IQ test once before age 7 and again several years later. Post-7 IQ scores were significantly lower than pre-7 IQ scores. In addition, pre-7 IQ scores were lower for children with…

  16. Trial of Oral Metoclopramide on Diurnal Bruxism of Brain Injury

    PubMed Central

    Yi, Ho Sung; Seo, Mi Ri

    2013-01-01

    Bruxism is a diurnal or nocturnal parafunctional activity that includes tooth clenching, bracing, gnashing, and grinding. The dopaminergic system seems to be the key pathophysiology of bruxism and diminution of dopaminergic transmission at the prefrontal cortex seems to induce it. We report two patients with diurnal bruxism in whom a bilateral frontal lobe injury resulted from hemorrhagic stroke or traumatic brain injury. These patients' bruxism was refractory to bromocriptine but responded to low-dose metoclopramide therapy. We propose that administering low doses of metoclopramide is possibly a sound method for treating bruxism in a brain injury patient with frontal lobe hypoperfusion on positron emission tomography imaging. PMID:24466522

  17. Cumulative effects of repetitive mild traumatic brain injury.

    PubMed

    Bailes, Julian E; Dashnaw, Matthew L; Petraglia, Anthony L; Turner, Ryan C

    2014-01-01

    The majority of traumatic brain injuries (TBI) in the USA are mild in severity. Sports, particularly American football, and military experience are especially associated with repetitive, mild TBI (mTBI). The consequences of repetitive brain injury have garnered increasing scientific and public attention following reports of altered mood and behavior, as well as progressive neurological dysfunction many years after injury. This report provides an up-to-date review of the clinical, pathological, and pathophysiological changes associated with repetitive mTBI, and their potential for cumulative effects in certain individuals.

  18. Family Forward: Promoting Family Adaptation Following Pediatric Acquired Brain Injury.

    PubMed

    Hickey, Lyndal; Anderson, Vicki; Jordan, Brigid

    2016-08-15

    This article describes a new and innovative social work intervention, Family Forward, designed to promote early adaptation of the family system after the onset of a child's acquired brain injury. Family Forward is integrated into inpatient rehabilitation services provided to the injured child and recognizes the important role of family in child rehabilitation outcomes and the parallel process of recovery for the child and family following an injury. Family Forward is informed by clinical practice, existing research in family adaptation after pediatric acquired brain injury, the resiliency model of family adjustment and adaptation, and family therapy theories and approaches.

  19. Standardizing Data Collection in Traumatic Brain Injury

    PubMed Central

    Harrison-Felix, Cynthia L.; Menon, David; Adelson, P. David; Balkin, Tom; Bullock, Ross; Engel, Doortje C.; Gordon, Wayne; Langlois-Orman, Jean; Lew, Henry L.; Robertson, Claudia; Temkin, Nancy; Valadka, Alex; Verfaellie, Mieke; Wainwright, Mark; Wright, David W.; Schwab, Karen

    2011-01-01

    Abstract Collaboration among investigators, centers, countries, and disciplines is essential to advancing the care for traumatic brain injury (TBI). It is thus important that we “speak the same language.” Great variability, however, exists in data collection and coding of variables in TBI studies, confounding comparisons between and analysis across different studies. Randomized controlled trials can never address the many uncertainties concerning treatment approaches in TBI. Pooling data from different clinical studies and high-quality observational studies combined with comparative effectiveness research may provide excellent alternatives in a cost-efficient way. Standardization of data collection and coding is essential to this end. Common data elements (CDEs) are presented for demographics and clinical variables applicable across the broad spectrum of TBI. Most recommendations represent a consensus derived from clinical practice. Some recommendations concern novel approaches, for example assessment of the intensity of therapy in severely injured patients. Up to three levels of detail for coding data elements were developed: basic, intermediate, and advanced, with the greatest level of detail attained in the advanced version. More detailed codings can be collapsed into the basic version. Templates were produced to summarize coding formats, explanation of choices, and recommendations for procedures. Endorsement of the recommendations has been obtained from many authoritative organizations. The development of CDEs for TBI should be viewed as a continuing process; as more experience is gained, refinement and amendments will be required. This proposed process of standardization will facilitate comparative effectiveness research and encourage high-quality meta-analysis of individual patient data. PMID:21162610

  20. Cognitive Impairment Following Traumatic Brain Injury.

    PubMed

    Arciniegas, David B.; Held, Kerri; Wagner, Peter

    2002-01-01

    Cognitive impairments due to traumatic brain injury (TBI) are substantial sources of morbidity for affected individuals, their family members, and society. Disturbances of attention, memory, and executive functioning are the most common neurocognitive consequences of TBI at all levels of severity. Disturbances of attention and memory are particularly problematic, as disruption of these relatively basic cognitive functions may cause or exacerbate additional disturbances in executive function, communication, and other relatively more complex cognitive functions. Because of the high rate of other physical, neurologic, and psychiatric syndromes following TBI, a thorough neuropsychiatric assessment of the patient is a prerequisite to the prescription of any treatment for impaired cognition. Psychostimulants and other dopaminergically active agents (eg, methylphenidate, dextroamphetamine, amantadine, levodopa/carbidopa, bromocriptine) may modestly improve arousal and speed of information processing, reduce distractibility, and improve some aspects of executive function. Cautious dosing (start-low and go-slow), frequent standardized assessment of effects and side effects, and monitoring for drug-drug interactions are recommended. Cognitive rehabilitation is useful for the treatment of memory impairments following TBI. Cognitive rehabilitation may also be useful for the treatment of impaired attention, interpersonal communication skills, and executive function following TBI. This form of treatment is most useful for patients with mild to moderate cognitive impairments, and may be particularly useful for those who are still relatively functionally independent and motivated to engage in and rehearse these strategies. Psychotherapy (eg, supportive, individual, cognitive-behavioral, group, and family) is an important component of treatment. For patients with medication- and rehabilitation-refractory cognitive impairments, psychotherapy may be needed to assist both patients and

  1. Traumatic Brain Injury Epidemiology in Brazil.

    PubMed

    de Almeida, Carlos Eduardo Romeu; de Sousa Filho, José Lopes; Dourado, Jules Carlos; Gontijo, Pollyana Anício Magalhães; Dellaretti, Marcos Antônio; Costa, Bruno Silva

    2016-03-01

    Traumatic brain injury (TBI) stands out as a grave social and economic problem. Emerging countries possess few epidemiologic studies on the range and impact of TBI. Our study aimed to characterize the demographic, social, and economic profile of people suffering from TBI in Brazil. Data on TBI cases in Brazil between 2008 and 2012 were collected through the website of the Information Technology Department of the Unified Health System (DATASUS) maintained by the Brazilian Ministry of Health. This database is fed by public hospital admission authorization forms provided nationwide. There were around 125,000 hospital admissions due to TBI a year, an incidence of 65.7 admissions per 100,000 inhabitants per year. Hospital mortality was 5.1/100,000/year, and the case fatality rate was 7.7%. The average annual cost of hospital expenses was US$ 70,960,000, with an average cost per admission of US$ 568. The age group 20-29, frequently admitted to the hospital due to TBI, presented the largest number of hospital deaths; however, the population >80 years of age showed the highest admission rate per age group, around 138/100,000/year, followed by the age group 70-79. TBI should be recognized as an important public health problem in Brazil because it is responsible for considerable social and economic costs. Besides the young adult age group (20-29 years old), the geriatric age group is especially vulnerable to the frequent and devastating consequences of TBI. The implementation of a system of effective epidemiologic vigilance for neurotrauma is urgent in Brazil and other countries worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Monitoring of displacements with ground-based microwave interferometry: IBIS-S and IBIS-L

    NASA Astrophysics Data System (ADS)

    Rödelsperger, Sabine; Läufer, Gwendolyn; Gerstenecker, Carl; Becker, Matthias

    2010-06-01

    One fundamental component of early warning systems for natural hazards is displacement monitoring. Spaceborne SAR Interferometry has proven to be a powerful remote sensing tool for this task. Lately new ground-based SAR instruments are available. Their application field is wide and they combine high resolution and accuracy with the classical benefits of remote sensing techniques. Here, the principles of the microwave interferometer IBIS are presented, as well as its advantages and disadvantages compared to common monitoring techniques. IBIS can be operated in two modes: IBIS-S is a microwave interferometer capable of high frequency displacement monitoring of buildings and structures (up to 200 Hz); IBIS-L is a ground-based SAR for long-term displacement monitoring of buildings and natural phenomena as landslides, glaciers, etc. Exemplary three applications are presented: the use of IBIS-S for dynamic monitoring of a chimney; the use of IBIS-L for displacement monitoring in an active quarry and the long-term operation of IBIS-L as part of a “Volcano Fast Response System” (VFRS) on an active volcano.

  3. The efficacy of bicycle helmets against brain injury.

    PubMed

    Curnow, W J

    2003-03-01

    An examination is made of a meta-analysis by Attewell, Glase and McFadden which concludes that bicycle helmets prevent serious injury, to the brain in particular, and that there is mounting scientific evidence of this. The Australian Transport Safety Bureau (ATSB) initiated and directed the meta-analysis of 16 observational studies dated 1987-1998. This examination concentrates on injury to the brain and shows that the meta-analysis and its included studies take no account of scientific knowledge of its mechanisms. Consequently, the choice of studies for the meta-analysis and the collection, treatment and interpretation of their data lack the guidance needed to distinguish injuries caused through fracture of the skull and by angular acceleration. It is shown that the design of helmets reflects a discredited theory of brain injury. The conclusions are that the meta-analysis does not provide scientific evidence that such helmets reduce serious injury to the brain, and the Australian policy of compulsory wearing lacks a basis of verified efficacy against brain injury.

  4. Response of the cerebral vasculature following traumatic brain injury.

    PubMed

    Salehi, Arjang; Zhang, John H; Obenaus, Andre

    2017-01-01

    The critical role of the vasculature and its repair in neurological disease states is beginning to emerge particularly for stroke, dementia, epilepsy, Parkinson's disease, tumors and others. However, little attention has been focused on how the cerebral vasculature responds following traumatic brain injury (TBI). TBI often results in significant injury to the vasculature in the brain with subsequent cerebral hypoperfusion, ischemia, hypoxia, hemorrhage, blood-brain barrier disruption and edema. The sequalae that follow TBI result in neurological dysfunction across a host of physiological and psychological domains. Given the importance of restoring vascular function after injury, emerging research has focused on understanding the vascular response after TBI and the key cellular and molecular components of vascular repair. A more complete understanding of vascular repair mechanisms are needed and could lead to development of new vasculogenic therapies, not only for TBI but potentially vascular-related brain injuries. In this review, we delineate the vascular effects of TBI, its temporal response to injury and putative biomarkers for arterial and venous repair in TBI. We highlight several molecular pathways that may play a significant role in vascular repair after brain injury.

  5. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2014-09-01

    2004. He served as Guest Coeditor of a special issue on applied neurodynamics for the Journal of Neural Engineering with Dr. Peter Thomas in December...for the millions of individuals who are left with permanent motor and cognitive impairments after acquired brain injury, as occurs in stroke and...Other investigators have proposed a closed-loop approach for a cognitive prosthesis that has shown promise in animal models (40). Other potential

  6. Intranasal epidermal growth factor treatment rescues neonatal brain injury

    NASA Astrophysics Data System (ADS)

    Scafidi, Joseph; Hammond, Timothy R.; Scafidi, Susanna; Ritter, Jonathan; Jablonska, Beata; Roncal, Maria; Szigeti-Buck, Klara; Coman, Daniel; Huang, Yuegao; McCarter, Robert J.; Hyder, Fahmeed; Horvath, Tamas L.; Gallo, Vittorio

    2014-02-01

    There are no clinically relevant treatments available that improve function in the growing population of very preterm infants (less than 32 weeks' gestation) with neonatal brain injury. Diffuse white matter injury (DWMI) is a common finding in these children and results in chronic neurodevelopmental impairments. As shown recently, failure in oligodendrocyte progenitor cell maturation contributes to DWMI. We demonstrated previously that the epidermal growth factor receptor (EGFR) has an important role in oligodendrocyte development. Here we examine whether enhanced EGFR signalling stimulates the endogenous response of EGFR-expressing progenitor cells during a critical period after brain injury, and promotes cellular and behavioural recovery in the developing brain. Using an established mouse model of very preterm brain injury, we demonstrate that selective overexpression of human EGFR in oligodendrocyte lineage cells or the administration of intranasal heparin-binding EGF immediately after injury decreases oligodendroglia death, enhances generation of new oligodendrocytes from progenitor cells and promotes functional recovery. Furthermore, these interventions diminish ultrastructural abnormalities and alleviate behavioural deficits on white-matter-specific paradigms. Inhibition of EGFR signalling with a molecularly targeted agent used for cancer therapy demonstrates that EGFR activation is an important contributor to oligodendrocyte regeneration and functional recovery after DWMI. Thus, our study provides direct evidence that targeting EGFR in oligodendrocyte progenitor cells at a specific time after injury is clinically feasible and potentially applicable to the treatment of premature children with white matter injury.

  7. Imaging in the diagnosis and prognosis of traumatic brain injury.

    PubMed

    Carter, Eleanor; Coles, Jonathan P

    2012-11-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Improved understanding of the impact of head injury and the extent and development of neuronal loss and cognitive dysfunction could lead to improved therapy and outcome for patients. This paper reviews the currently available imaging techniques and defines their role in the diagnosis, management and prediction of outcome following traumatic brain injury. These imaging techniques provide delineation of the structural, physiological and functional derangements that result following acute injury, and map their development and association with late functional deficits. Imaging tools also have a role in defining the pathophysiological mechanisms responsible for further neuronal loss following the primary injury. Finally, this paper provides an overview of the role of functional imaging in classifying unresponsive coma and defining functional reorganisation of the brain following injury. Brain imaging is of key importance in TBI management, enabling efficient and accurate diagnoses to be made, informing management decisions and contributing to prognostication. Developments in imaging techniques promise to improve understanding of the structural and functional derangements, improve management and guide the development and implementation of novel neuroprotective strategies following head injury.

  8. Predicting unconsciousness from a pediatric brain injury threshold.

    PubMed

    Zhu, Qiliang; Prange, Michael; Margulies, Susan

    2006-01-01

    The objective of this study was to utilize tissue deformation thresholds associated with acute axonal injury in the immature brain to predict the duration of unconsciousness. Ten anesthetized 3- to 5-day-old piglets were subjected to nonimpact axial rotations (110-260 rad/s) producing graded injury, with periods of unconsciousness from 0 to 80 min. Coronal sections of the perfusion-fixed brain were immunostained with neurofilament antibody (NF-68) and examined microscopically to identify regions of swollen axons and terminal retraction balls. Each experiment was simulated with a finite element computational model of the piglet brain and the recorded head velocity traces to estimate the local tissue deformation (strain), the strain rate and their product. Using thresholds associated with 50, 80 and 90% probability of axonal injury, white matter regions experiencing suprathreshold responses were determined and expressed as a fraction of the total white matter volume. These volume fractions were then correlated with the duration of unconsciousness, assuming a linear relationship. The thresholds for 80 and 90% probability of predicting injury were found to correlate better with injury severity than those for 50%, and the product of strain and strain rate was the best predictor of injury severity (p=0.02). Predictive capacity of the linear relationship was confirmed with additional (n=13) animal experiments. We conclude that the suprathreshold injured volume can provide a satisfactory prediction of injury severity in the immature brain.

  9. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats.

  10. Performance of the IBIS Compton mode

    NASA Astrophysics Data System (ADS)

    Segreto, Alberto

    2004-10-01

    The IBIS instrument launched on board the ESA INTEGRAL observatory on October 2002 is a coded mask telescope composed by two position sensitive detection planes, one with 16384 Cadmium Telluride pixels (ISGRI) and the other with 4096 Caesium Iodide pixels (PICsIT). Events detected in coincidence in the two detector layers are flagged as generated by Compton scattered photons and can be then processed and filtered using the Compton kinematic equations. The analysis of these data is, however, quite complex, mainly due to the presence of a great number of fake events generated by random coincidences between uncorrelated ISGRI and PICsIT events; if this component is not subtracted with great accuracy, false source detections can be produced. In this work, we present the performance (spectral and imaging) obtainable from the IBIS Compton data, by analyzing ground calibration acquisitions. We also analyze the IBIS Compton flight data relative to the Crab observation, to determine its scientific capabilities.

  11. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    DTIC Science & Technology

    2010-06-01

    895–920. King, N.S. (2008). PTSD and traumatic brain injury: folklore and fact? Brain Inj. 22, 1–5. Kleindienst, A., Hesse , F., Bullock, M.R., and...to traumatic brain injury in nonhuman primates. J. Trauma 62, 199–206. Vinores, S.A., Herman , M.M., Rubinstein, L.J., and Marangos, P.J. (1984...trauma in children. Neurology. 2009;72:609–616. 23. Vinores SA, Herman MM, Rubinstein LJ, Marangos PJ. Electron mi- croscopic localization of neuron

  12. New Concepts in Treatment of Pediatric Traumatic Brain Injury

    PubMed Central

    Huh, Jimmy W.; Raghupathi, Ramesh

    2009-01-01

    Synopsis Emerging evidence suggests unique age-dependent responses following pediatric traumatic brain injury. As the anesthesiologist plays a pivotal role in the acute treatment of the head-injured pediatric patient, this review will provide important updates on the pathophysiology, diagnosis, and age-appropriate acute management of infants and children with severe traumatic brain injury. In addition, areas of important clinical and basic science investigations germane to the anesthesiologist, such as the role of anesthetics and apoptosis in the developing brain, will be discussed. PMID:19703674

  13. The Molecular Pathophysiology of Concussive Brain Injury - an Update.

    PubMed

    Barkhoudarian, Garni; Hovda, David A; Giza, Christopher C

    2016-05-01

    Concussion, or mild traumatic brain injury (TBI), affects millions of patients worldwide. Understanding the pathophysiology of TBI can help manage its repercussions. The brain is significantly altered immediately following mild TBI because of metabolic, hemodynamic, structural, and electrophysiologic changes. This process affects cognition and behavior and can leave the brain vulnerable for worse injury in the setting of repeat insult. This article is an update of our previously published review, reporting relevant and current studies from the bench to the bedside of mild TBI. Understanding the pathobiology can help prevent and treat mild TBI. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Philosophy of mind: coming to terms with traumatic brain injury.

    PubMed

    Buzan, Randall D; Kupfer, Jeff; Eastridge, Dixie; Lema-Hincapie, Andres

    2014-01-01

    Patients and their families struggle with accepting changes in personality after traumatic brain injury (TBI). A neuroanatomic understanding may assist with this process. We briefly review the history of the Western conceptualization of the Self, and discuss how neuroscience and changes in personality wrought by brain injuries modify and enrich our understanding of our selves and our patients. The sense of self, while conflated with the concept of a "soul" in Western thinking, is more rationally considered a construct derived from neurophysiologic structures. The self or personality therefore often changes when the brain changes. A neuroanatomic perspective can help patients, families, and clinicians accept and cope with the sequellae of TBI.

  15. Cell-based therapy for traumatic brain injury.

    PubMed

    Gennai, S; Monsel, A; Hao, Q; Liu, J; Gudapati, V; Barbier, E L; Lee, J W

    2015-08-01

    Traumatic brain injury is a major economic burden to hospitals in terms of emergency department visits, hospitalizations, and utilization of intensive care units. Current guidelines for the management of severe traumatic brain injuries are primarily supportive, with an emphasis on surveillance (i.e. intracranial pressure) and preventive measures to reduce morbidity and mortality. There are no direct effective therapies available. Over the last fifteen years, pre-clinical studies in regenerative medicine utilizing cell-based therapy have generated enthusiasm as a possible treatment option for traumatic brain injury. In these studies, stem cells and progenitor cells were shown to migrate into the injured brain and proliferate, exerting protective effects through possible cell replacement, gene and protein transfer, and release of anti-inflammatory and growth factors. In this work, we reviewed the pathophysiological mechanisms of traumatic brain injury, the biological rationale for using stem cells and progenitor cells, and the results of clinical trials using cell-based therapy for traumatic brain injury. Although the benefits of cell-based therapy have been clearly demonstrated in pre-clinical studies, some questions remain regarding the biological mechanisms of repair and safety, dose, route and timing of cell delivery, which ultimately will determine its optimal clinical use.

  16. Biomarkers and acute brain injuries: interest and limits

    PubMed Central

    2014-01-01

    For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied. PMID:25029344

  17. Interleukin-1 as a pharmacological target in acute brain injury.

    PubMed

    Brough, David; Rothwell, Nancy J; Allan, Stuart M

    2015-12-01

    What is the topic of this review? This review discusses the latest findings on the contribution of inflammation to brain injury, how inflammation is a therapeutic target, and details of recent and forthcoming clinical studies. What advances does it highlight? Here we highlight recent advances on the role and regulation of inflammasomes, and the latest clinical progress in targeting inflammation. Acute brain injury is one of the leading causes of mortality and disability worldwide. Despite this, treatments for acute brain injuries are limited, and there remains a massive unmet clinical need. Inflammation has emerged as a major contributor to non-communicable diseases, and there is now substantial and growing evidence that inflammation, driven by the cytokine interleukin-1 (IL-1), worsens acute brain injury. Interleukin-1 is regulated by large, multimolecular complexes called inflammasomes. Here, we discuss the latest research on the regulation of inflammasomes and IL-1 in the brain, preclinical efforts to establish the IL-1 system as a therapeutic target, and the promise of recent and future clinical studies on blocking the action of IL-1 for the treatment of brain injury. © 2015 The Authors. Experimental Physiology © 2015 The Physiological Society.

  18. Autophagy in Acute Brain Injury: Feast, Famine, or Folly?

    PubMed Central

    Smith, Craig M.; Chen, Yaming; Sullivan, Mara L.; Kochanek, Patrick M.; Clark, Robert S. B.

    2010-01-01

    In the central nervous system, increased autophagy has now been reported after traumatic brain and spinal cord injury, cerebral ischemia, intracerebral hemorrhage, and seizures. This increase in autophagy could be physiologic, converting damaged or dysfunctional proteins, lipids and/or organelles to their amino acid and fatty acid components for recycling. On the other hand, this increase in autophagy could be supraphysiologic, perhaps consuming and eliminating functional proteins, lipids and/or organelles as well. Whether an increase in autophagy is beneficial (feast) or detrimental (famine) in brain likely depends on both the burden of intracellular substrate targeted for autophagy and the capacity of the cell’s autophagic machinery. Of course, increased autophagy observed after brain injury could also simply be an epiphenomenon (folly). These divergent possibilities have clear ramifications for designing therapeutic strategies targeting autophagy after acute brain injury, and are the subject of this review. PMID:20883784

  19. [Animal models of injury and repair in developing brain].

    PubMed

    Cuestas, Eduardo; Caceres, Alfredo; Palacio, Santiago

    2007-01-01

    Animal models of injury and repair in developing brain. Brain injury is a major contributor to neonatal morbidity and mortality, a considerable group of these children will develop long term neurological sequels. Despite the great clinical and social significance and the advances in neonatal medicine, no therapy yet does exist that prevent or decrease detrimental effects in cases of neonatal brain injury. Our objective was to review recent research in relation to the hypothesis for repair mechanism in the developing brain, based in animal models that show developmental compensatory mechanisms that promote neural and functional plasticity. A better understanding of these adaptive mechanisms will help clinicians to apply knowledge derived from animals to human clinical situations.

  20. Emergency treatment options for pediatric traumatic brain injury

    PubMed Central

    Exo, J; Smith, C; Smith, R; Bell, MJ

    2010-01-01

    Traumatic brain injury is a leading killer of children and is a major public health problem around the world. Using general principles of neurocritical care, various treatment strategies have been developed to attempt to restore homeostasis to the brain and allow brain healing, including mechanical factors, cerebrospinal fluid diversion, hyperventilation, hyperosmolar therapies, barbiturates and hypothermia. Careful application of these therapies, normally in a step-wise fashion as intracranial injuries evolve, is necessary in order to attain maximal neurological outcome for these children. It is hopeful that new therapies, such as early hypothermia or others currently in preclinical trials, will ultimately improve outcome and quality of life for children after traumatic brain injury. PMID:20191093

  1. Recovery of consciousness after brain injury: a mesocircuit hypothesis

    PubMed Central

    Schiff, Nicholas D.

    2009-01-01

    Recovery of consciousness following severe brain injuries may occur over long time intervals. Importantly, evolving cognitive recovery can be strongly dissociated from motor recovery in some individuals, resulting in underestimation of cognitive capacities. Common mechanisms of cerebral dysfunction that arise at the neuronal population level may explain slow functional recoveries from severe brain injuries. This review proposes a “mesocircuit” model that predicts specific roles for different structural and dynamic changes that may occur gradually during recovery. Recent functional neuroimaging studies that operationally identify varying levels of awareness, memory and other higher brain functions in patients with no behavioral evidence of these cognitive capacities are discussed. Measuring evolving changes in underlying brain function and dynamics post-injury and post-treatment frames future investigative work. PMID:19954851

  2. Mechatronic assessment of arm impairment after chronic brain injury.

    PubMed

    Reinkensmeyer, D J; Schmit, B D; Rymer, W Z

    1999-01-01

    Significant potential exists for mechatronic devices to improve assessment and treatment of individuals with a movement disability following stroke, traumatic brain injury, or cerebral palsy. We report the use of a mechatronic device for evaluation of the arm after chronic brain injury. We performed a series of experiments with the device in order to identify the relative contribution of three different motor impairments to decreased active range of motion of reaching in five brain-injured subjects. Our findings were that passive tissue restraint and agonist weakness, rather than antagonist restraint, were the most common contributors to decreased active range of motion. These results demonstrate the feasibility of objective assessment of functional movement using a mechatronic device, and could provide the basis for improved, individualized treatment planning and monitoring following brain injury.

  3. Predictors for traumatic brain injuries evaluated through accident reconstructions.

    PubMed

    Kleiven, Svein

    2007-10-01

    The aim of this study is to evaluate all the 58 available NFL cases and compare various predictors for mild traumatic brain injuries using a detailed and extensively validated finite element model of the human head. Global injury measures such as magnitude in angular and translational acceleration, change in angular velocity, head impact power (HIP) and HIC were also investigated with regard to their ability to predict the intracranial pressure and strains associated with injury. The brain material properties were modeled using a hyperelastic and viscoelastic constitutive law. Also, three different stiffness parameters, encompassing a range of published brain tissue properties, were tested. 8 tissue injury predictors were evaluated for 6 different regions, covering the entire cerebrum, as well as for the whole brain. In addition, 10 head kinematics based predictors were evaluated both for correlation with injury as well as with strain and pressure. When evaluating the results, a statistical correlation between strain, strain rate, product of strain and strain rate, Cumulative Strain Damage Measure (CSDM), strain energy density, maximum pressure, magnitude of minimum pressure, as well as von Mises effective stress, with injury was found when looking into specific regions of the brain. However, the maximal pressure in the gray matter showed a higher correlation with injury than other evaluated measures. On the other hand, it was possible, through the reconstruction of a motocross accident, to re-create the injury pattern in the brain of the injured rider using maximal principal strain. It was also found that a simple linear combination of peak change in rotational velocity and HIC showed a high correlation (R=0.98) with the maximum principal strain in the brain, in addition to being a significant predictor of injury. When applying the rotational and translational kinematics separately for one of the cases, it was found that the translational kinematics contribute

  4. Military Traumatic Brain Injury and Blast

    DTIC Science & Technology

    2010-01-01

    cations compared to other mechanisms of injury such as acceleration -deceleration impact has become an im- portant question in the care of our service...injury. The above concepts lead to a frame of reference debate in relation to blast induced concussion or mTBI sug- gesting that lethal injury would...results in a 3D complex flow field that is altered by ambient conditions and envi- ronmental boundaries. This may result in multiple wave reflections and

  5. Translational Research for Blast-Induced Traumatic Brain Injury: Injury Mechanism to Development of Medical Instruments

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Arafune, T.; Washio, T.; Iwasaki, M.; Endo, T.; Ogawa, Y.; Kumabe, T.; Takayama, K.; Tominaga, T.

    1. Investigation of shock wave-induced phenomenon: blast-induced traumatic brain injury Blast wave (BW) is generated by explosion and is comprised of lead shock wave (SE) followed by subsequent supersonic flow.

  6. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID

  7. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  8. Progesterone for acute traumatic brain injury.

    PubMed

    Ma, Junpeng; Huang, Siqing; Qin, Shu; You, Chao; Zeng, Yunhui

    2016-12-22

    Traumatic brain injury (TBI) is a leading cause of death and disability, and the identification of effective, inexpensive and widely practicable treatments for brain injury is of great public health importance worldwide. Progesterone is a naturally produced hormone that has well-defined pharmacokinetics, is widely available, inexpensive, and has steroidal, neuroactive and neurosteroidal actions in the central nervous system. It is, therefore, a potential candidate for treating TBI patients. However, uncertainty exists regarding the efficacy of this treatment. This is an update of our previous review of the same title, published in 2012. To assess the effects of progesterone on neurologic outcome, mortality and disability in patients with acute TBI. To assess the safety of progesterone in patients with acute TBI. We updated our searches of the following databases: the Cochrane Injuries Group's Specialised Register (30 September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 9, 2016), MEDLINE (Ovid; 1950 to 30 September 2016), Embase (Ovid; 1980 to 30 September 2016), Web of Science Core Collection: Conference Proceedings Citation Index-Science (CPCI-S; 1990 to 30 September 2016); and trials registries: Clinicaltrials.gov (30 September 2016) and the World Health Organization (WHO) International Clinical Trials Registry Platform (30 September 2016). We included randomised controlled trials (RCTs) of progesterone versus no progesterone (or placebo) for the treatment of people with acute TBI. Two review authors screened search results independently to identify potentially relevant studies for inclusion. Independently, two review authors selected trials that met the inclusion criteria from the results of the screened searches, with no disagreement. We included five RCTs in the review, with a total of 2392 participants. We assessed one trial to be at low risk of bias; two at unclear risk of bias (in one multicentred trial the possibility of

  9. Traumatic Brain Injury by a Closed Head Injury Device Induces Cerebral Blood Flow Changes and Microhemorrhages

    PubMed Central

    Kallakuri, Srinivasu; Bandaru, Sharath; Zakaria, Nisrine; Shen, Yimin; Kou, Zhifeng; Zhang, Liying; Haacke, Ewart Mark; Cavanaugh, John M

    2015-01-01

    Objectives: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury. Materials and Methods: Cerebral blood flow changes and microhemorrhages in male Sprague Dawley rats at 4 h, 24 h, 3 days, and 7 days were assessed following a closed head injury induced by the Marmarou impact acceleration device (2 m height, 450 g brass weight). Cerebral blood flow was measured by arterial spin labeling. Microhemorrhages were assessed by susceptibility-weighted imaging and Prussian blue histology. Results: Traumatic brain injury rats showed reduced regional and global cerebral blood flow at 4 h and 7 days post-injury. Injured rats showed hemorrhagic lesions in the cortex, corpus callosum, hippocampus, and brainstem in susceptibility-weighted imaging. Injured rats also showed Prussian blue reaction products in both the white and gray matter regions up to 7 days after the injury. These lesions were observed in various areas of the cortex, corpus callosum, hippocampus, thalamus, and midbrain. Conclusions: These results suggest that changes in cerebral blood flow and hemorrhagic lesions can persist for sub-acute periods after the initial traumatic insult in an animal model. In addition, microhemorrhages otherwise not seen by susceptibility-weighted imaging are present in diverse regions of the brain. The combination of altered cerebral blood flow and microhemorrhages can potentially be a source of secondary injury changes following traumatic brain injury and may need to be taken into consideration in the long-term care of these cases. PMID:26605126

  10. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    PubMed Central

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  11. Social competence at 2 years following child traumatic brain injury.

    PubMed

    Anderson, Vicki; Beauchamp, Miriam Helen; Yeates, Keith Owen; Crossley, Louise; Ryan, Nicholas Peter; Hearps, Stephen J C; Catroppa, Cathy

    2017-02-08

    Children with traumatic brain injury (TBI) are at risk of social impairment, but research is yet to document the trajectory of these skills post-injury and factors that may predict social problems. The study addressed these gaps in knowledge, reporting on findings from a prospective, longitudinal follow-up study which investigated social outcomes post injury and explored factors contributing to these outcomes at 2 years post-injury. The sample included 113 children, 74 with TBI and 39 typically developing (TD) controls. TBI participants were recruited on presentation to hospital. Parents rated pre-injury function at that time and all children underwent magnetic resonance imaging (MRI) scan. Participants were followed up at 2 years post-injury. Outcomes were social adjustment, social participation, social relationships, and social cognition. Predictors of social outcomes examined included brain lesion characteristics, child cognition (6 months post-TBI) and behavior and environmental factors (pre-injury and 2 years). Reduced social adjustment (p=.011) and social participation (p<.001) were evident in children with TBI compared to TD controls. Poor social adjustment was predicted by externalizing behaviour problems and younger age at injury. Reduced social participation was linked to internalizing behavior problems. Greater lesion volume, lower socioeconomic status and family burden contributed to poorer social relationships, while age at injury predicted social cognition. Within the TBI group, 23% of children exhibited social impairment: younger age at injury, greater pre-injury and current behavior problems and family dysfunction, poorer IQ, processing speed, and empathy were linked to impairment. Further follow-up is required to track social recovery and the influences of cognition, brain, and environment over time.

  12. Post-Injury Treatment with Rolipram Increases Hemorrhage After Traumatic Brain Injury

    PubMed Central

    Atkins, C.M.; Kang, Y.; Furones, C.; Truettner, J.S.; Alonso, O.F.; Dietrich, W.D.

    2012-01-01

    The pathology caused by traumatic brain injury (TBI) is exacerbated by the inflammatory response of the injured brain. Two pro-inflammatory cytokines that contribute to inflammation after TBI are tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In previous studies using the parasagittal fluid-percussion brain injury model, we reported that the anti-inflammatory drug rolipram, a phosphodiesterase 4 inhibitor, reduced TNF-α and IL-1β levels and improved histopathological outcome when administered 30 min prior to injury. We now report that treatment with (±)-rolipram given 30 min after injury significantly reduced TNF-α levels in the cortex and hippocampus. However, post-injury administration of (±)-rolipram significantly increased cortical contusion volume and increased atrophy of the cortex as compared to vehicle-treated animals at 10 days post-injury. Thus, despite the reduction in pro-inflammatory cytokine levels, histopathological outcome was worsened with post-TBI (±)-rolipram treatment. Further histological analysis of (±)-rolipram-treated TBI animals revealed significant hemorrhage in the contused brain. Given the well known role of (±)-rolipram to increase vasodilation, it is likely that (±)-rolipram worsened outcome after fluid-percussion brain injury by causing increased bleeding. PMID:22535545

  13. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    PubMed

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  14. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    PubMed Central

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P.; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed

  15. Lateral fluid percussion: model of traumatic brain injury in mice.

    PubMed

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-08-22

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  16. Antagonism of purinergic signalling improves recovery from traumatic brain injury

    PubMed Central

    Miller, William J.; Chen, Yung-Chia; Nibley, Philip; Patel, Tapan P.; Goletiani, Cezar; Morrison, Barclay; Kutzing, Melinda K.; Firestein, Bonnie L.; Sul, Jai-Yoon; Haydon, Philip G.

    2013-01-01

    The recent public awareness of the incidence and possible long-term consequences of traumatic brain injury only heightens the need to develop effective approaches for treating this neurological disease. In this report, we identify a new therapeutic target for traumatic brain injury by studying the role of astrocytes, rather than neurons, after neurotrauma. We use in vivo multiphoton imaging and show that mechanical forces during trauma trigger intercellular calcium waves throughout the astrocytes, and these waves are mediated by purinergic signalling. Subsequent in vitro screening shows that astrocyte signalling through the ‘mechanical penumbra’ affects the activity of neural circuits distant from the injury epicentre, and a reduction in the intercellular calcium waves within astrocytes restores neural activity after injury. In turn, the targeting of different purinergic receptor populations leads to a reduction in hippocampal cell death in mechanically injured organotypic slice cultures. Finally, the most promising therapeutic candidate from our in vitro screen (MRS 2179, a P2Y1 receptor antagonist) also improves histological and cognitive outcomes in a preclinical model of traumatic brain injury. This work shows the potential of studying astrocyte signalling after trauma to yield new and effective therapeutic targets for treating traumatic brain injury. PMID:23293266

  17. Study of restorative processes in brain laceration in the first seven days after traumatic brain injury.

    PubMed

    Florou, Charoula; Cătălin, Bogdan; Badea, Oana; Bălşeanu, Tudor Adrian; Vasilescu, Cristina Eugenia; Mogoantă, LaurenŢiu; Grosu, Florin; Matei, Marius; Turculeanu, Adriana

    2015-01-01

    Traumatic brain injuries represent the main cause of death and invalidity all over the world. Persons surviving a severe traumatic brain injury often present long-term disabilities, sensitive and motor deficits, cognitive, vegetative or mental disorders. Brain injuries are directly caused by the traumatic agent, and indirectly caused by the action of cells involved in the restorative process. The main cells involved in the restorative process are microglias and astrocytes. By using an experimental model, we investigated the reaction of these cells in the first week after a severe brain injury, followed by brain laceration. Of the two cell types, the most rapid and intense reaction was held by the macroglias, also known as resident macrophages of the central nervous system. Alongside the activation of local microglias, in the restorative process there were also involved blood monocytes that turned into macrophages. 24 hours after the injury, the number of macrophage cells÷mm² at brain wound level increased 2-4 times, after three days - 10-12 times, and after seven days - over 20 times. The astrocyte reaction was slower, their activation being signaled no sooner than three days from injury, when their number in the perilesional brain parenchyma increased approximately two times, while after seven days - approximately 4-5 times. Both astrocytes and macrophages (microglias), besides their beneficial effects in restoring traumatic brain injuries, may have unfavorable effects upon the nervous cells in the immediate proximity of the injury. Destruction of vascular network by the traumatic agent, and the extremely slow restore of vascularization, partially explain brain neurons death on extend areas.

  18. Immediate neurological recovery following perispinal etanercept years after brain injury.

    PubMed

    Tobinick, Edward; Rodriguez-Romanacce, Helen; Levine, Arthur; Ignatowski, Tracey A; Spengler, Robert N

    2014-05-01

    Positron emission tomographic brain imaging and pathological examination have revealed that a chronic, intracerebral neuroinflammatory response lasting for years after a single brain injury may occur in humans. Evidence suggests the immune signaling molecule, tumor necrosis factor (TNF), is centrally involved in this pathology through its modulation of microglial activation, role in synaptic dysfunction, and induction of depressive symptoms and neuropathic pain. Etanercept is a recombinant TNF receptor fusion protein and potent TNF inhibitor that has been found to reduce microglial activation and neuropathic pain in multiple experimental models. We report that a single dose of perispinal etanercept produced an immediate, profound, and sustained improvement in expressive aphasia, speech apraxia, and left hemiparesis in a patient with chronic, intractable, debilitating neurological dysfunction present for more than 3 years after acute brain injury. These results indicate that acute brain injury-induced pathologic levels of TNF may provide a therapeutic target that can be addressed years after injury. Perispinal administration of etanercept is capable of producing immediate relief from brain injury-mediated neurological dysfunction.

  19. Spreading depolarization monitoring in neurocritical care of acute brain injury.

    PubMed

    Hartings, Jed A

    2017-04-01

    Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.

  20. Increased risk of brain injury in IVF babies.

    PubMed

    Bellieni, C V; Bagnoli, F; Tei, M; De Filippo, M; Perrone, S; Buonocore, G

    2011-12-01

    The aim of this paper was to assess brain injury occurrence among in vitro fertilization (IVF) babies. We examined all babies born in our hospital in the triennium 2004-2006, comparing the presence of brain injuries between IVF babies and the rest of the population. In IVF group (180 babies), brain injury was present in 4 babies, while in the rest of population (n=3602) it was present in 23 babies (P=0.042, RR: 3.18). IVF babies have a higher risk of being born with a birthweight less than 2 500 grams (P<0.0001; RR: 5.133). When we considered only babies born with a birth weight less than 2 500 grams, the difference of brain injury between the two groups was not significant. In IVF babies, brain injury occurred more frequently than in the rest of population. This is probably due to a higher rate of premature births and low birth weight in IVF population. Anyway, this data should be disclosed to future parents to make an informed decision.

  1. Calcium channel blockers for acute traumatic brain injury.

    PubMed

    Langham, J; Goldfrad, C; Teasdale, G; Shaw, D; Rowan, K

    2003-01-01

    Acute traumatic brain injury is a major cause of death and disability. Calcium channel blockers (calcium antagonists) have been used in an attempt to prevent cerebral vasospasm after injury, maintain blood flow to the brain, and so prevent further damage. To estimate the effects of calcium channel blockers in patients with acute traumatic brain injury, and in a subgroup of brain injury patients with traumatic subarachnoid haemorrhage. Handsearching and electronic searching for randomised controlled trials. Randomised controlled trials in patients with all levels of severity of clinically diagnosed acute traumatic brain injury. Two reviewers independently assessed the identified studies for eligibility and extracted data from each study. Summary odds ratios were calculated using the Mantel-Haenszel method. Six RCTs were identified as eligible for inclusion in the systematic review. The effect of calcium channel blockers on the risk of death was reported in five of the RCTs. The pooled odds ratio (OR) for the five studies was 0.91 (95% confidence interval [95%CI] 0.70-1.17). For the four RCTs that reported death and severe disability (unfavourable outcome), the pooled odds ratio was 0.85 (95%CI 0.68-1.07). In the two RCTs which reported the risk of death in a subgroup of traumatic subarachnoid haemorrhage patients, the pooled odds ratio was 0.59 (95%CI 0.37-0.94). Three RCTs reported death and severe disability as an outcome in this subgroup, and the pooled odds ratio was 0.67 (95%CI 0.46-0.98). This systematic review of randomised controlled trials of calcium channel blockers in acute traumatic head injury patients shows that considerable uncertainty remains over their effects. The effect of nimodipine in a subgroup of brain injury patients with subarachnoid haemorrhage shows a beneficial effect, though the increase in adverse reactions suffered by the intervention group may mean that the drug is harmful for some patients.

  2. The Importance of Early Brain Injury after Subarachnoid Hemorrhage

    PubMed Central

    Sehba, Fatima A.; Hou, Jack; Pluta, Ryszard M.; Zhang, John H.

    2012-01-01

    Aneurysmal subarachnoid hemorrhage (aSAH) is a medical emergency that accounts for 5% of all stroke cases. Individuals affected are typically in the prime of their lives (mean age 50 years). Approximately 12% of patients die before receiving medical attention, 33% within 48 hours and 50% within 30 days of aSAH. Of the survivors 50% suffer from permanent disability with an estimated lifetime cost more than double that of an ischemic stroke. Traditionally, spasm that develops in large cerebral arteries 3-7 days after aneurysm rupture is considered the most important determinant of brain injury and outcome after aSAH. However, recent studies show that prevention of delayed vasospasm does not improve outcome in aSAH patients. This finding has finally brought in focus the influence of early brain injury on outcome of aSAH. A substantial amount of evidence indicates that brain injury begins at the aneurysm rupture, evolves with time and plays an important role in patients’ outcome. In this manuscript we review early brain injury after aSAH. Due to the early nature, most of the information on this injury comes from animals and few only from autopsy of patients who died within days after aSAH. Consequently, we began with a review of animal models of early brain injury, next we review the mechanisms of brain injury according to the sequence of their temporal appearance and finally we discuss the failure of clinical translation of therapies successful in animal models of aSAH. PMID:22414893

  3. Fatal traumatic brain injury with electrical weapon falls.

    PubMed

    Kroll, Mark W; Adamec, Jiri; Wetli, Charles V; Williams, Howard E

    2016-10-01

    While generally reducing morbidity and mortality, electrical weapons have risks associated with their usage, including eye injuries and falls. With sufficient probe spread, an uncontrolled fall to the ground typically occurs along with the possibility of a fatal brain injury. We analyzed possible risk factors including running and elevated surfaces with established head-injury criteria to estimate the risk of brain injury. We searched for cases of arrest-related or in-custody death, with TASER(®) electrical weapon usage where fall-induced injuries might have contributed to the death. We found 24 cases meeting our initial inclusion criteria of a fatal fall involving electronic control. We then excluded 5 cases as intentional jumps, leaving 19 cases of forced falls. Autopsy reports and other records were analyzed to determine which of these deaths were from brain injury caused by the fall. We found 16 probable cases of fatal brain injuries induced by electronic control from electrical weapons. Out of 3 million field uses, this gives a risk of 5.3 ± 2.6 PPM which is higher than the theoretical risk of electrocution. The mean age was 46 ± 14 years which is significantly greater that the age of the typical ARD (36 ± 10). Probe shots to the subject's back may present a higher risk of a fatal fall. The use of electronic control presents a small but real risk of death from fatal traumatic brain injury. Increased age represents an independent risk factor for such fatalities. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Resilience Following Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Kreutzer, Jeffrey S; Marwitz, Jennifer H; Sima, Adam P; Bergquist, Thomas F; Johnson-Greene, Douglas; Felix, Elizabeth R; Whiteneck, Gale G; Dreer, Laura E

    2016-05-01

    To examine resilience at 3 months after traumatic brain injury (TBI). Cross-sectional analysis of an ongoing observational cohort. Five inpatient rehabilitation centers, with 3-month follow-up conducted primarily by telephone. Persons with TBI (N=160) enrolled in the resilience module of the TBI Model System study with 3-month follow-up completed. Not applicable. Connor-Davidson Resilience Scale. Resilience scores were lower than those of the general population. A multivariable regression model, adjusting for other predictors, showed that higher education, absence of preinjury substance abuse, and less anxiety at follow-up were significantly related to greater resilience. Analysis suggests that lack of resilience may be an issue for some individuals after moderate to severe TBI. Identifying persons most likely at risk for low resilience may be useful in planning clinical interventions. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Educating Students with Traumatic Brain Injuries: A Resource and Planning Guide.

    ERIC Educational Resources Information Center

    Corbett, Sandra L.; Ross-Thomson, Betty

    This resource and planning guide provides a framework for practitioners to create an effective educational program for students with traumatic brain injuries. Chapters 1 and 2 provide an overview of brain injuries including information on brain physiology, types of brain injuries, and differences by age. Chapter 3 discusses returning to school,…

  6. Traumatic brain injury and epilepsy: Underlying mechanisms leading to seizure.

    PubMed

    Lucke-Wold, Brandon P; Nguyen, Linda; Turner, Ryan C; Logsdon, Aric F; Chen, Yi-Wen; Smith, Kelly E; Huber, Jason D; Matsumoto, Rae; Rosen, Charles L; Tucker, Eric S; Richter, Erich

    2015-12-01

    Post-traumatic epilepsy continues to be a major concern for those experiencing traumatic brain injury. Post-traumatic epilepsy accounts for 10-20% of epilepsy cases in the general population. While seizure prophylaxis can prevent early onset seizures, no available treatments effectively prevent late-onset seizure. Little is known about the progression of neural injury over time and how this injury progression contributes to late onset seizure development. In this comprehensive review, we discuss the epidemiology and risk factors for post-traumatic epilepsy and the current pharmacologic agents used for treatment. We highlight limitations with the current approach and offer suggestions for remedying the knowledge gap. Critical to this pursuit is the design of pre-clinical models to investigate important mechanistic factors responsible for post-traumatic epilepsy development. We discuss what the current models have provided in terms of understanding acute injury and what is needed to advance understanding regarding late onset seizure. New model designs will be used to investigate novel pathways linking acute injury to chronic changes within the brain. Important components of this transition are likely mediated by toll-like receptors, neuroinflammation, and tauopathy. In the final section, we highlight current experimental therapies that may prove promising in preventing and treating post-traumatic epilepsy. By increasing understanding about post-traumatic epilepsy and injury expansion over time, it will be possible to design better treatments with specific molecular targets to prevent late-onset seizure occurrence following traumatic brain injury.

  7. The role of inflammation in perinatal brain injury

    PubMed Central

    Hagberg, Henrik; Mallard, Carina; Ferriero, Donna M.; Vannucci, Susan J.; Levison, Steven W.; Vexler, Zinaida S.; Gressens, Pierre

    2015-01-01

    Inflammation is increasingly recognized as being a critical contributor to both normal development and injury outcome in the immature brain. The focus of this Review is to highlight important differences in innate and adaptive immunity in immature versus adult brain, which support the notion that the consequences of inflammation will be entirely different depending on context and stage of CNS development. Perinatal brain injury can result from neonatal encephalopathy and perinatal arterial ischaemic stroke, usually at term, but also in preterm infants. Inflammation occurs before, during and after brain injury at term, and modulates vulnerability to and development of brain injury. Preterm birth, on the other hand, is often a result of exposure to inflammation at a very early developmental phase, which affects the brain not only during fetal life, but also over a protracted period of postnatal life in a neonatal intensive care setting, influencing critical phases of myelination and cortical plasticity. Neuroinflammation during the perinatal period can increase the risk of neurological and neuropsychiatric disease throughout childhood and adulthood, and is, therefore, of concern to the broader group of physicians who care for these individuals. PMID:25686754

  8. Central diabetes insipidus in pediatric severe traumatic brain injury.

    PubMed

    Alharfi, Ibrahim M; Stewart, Tanya Charyk; Foster, Jennifer; Morrison, Gavin C; Fraser, Douglas D

    2013-02-01

    To determine the occurrence rate of central diabetes insipidus in pediatric patients with severe traumatic brain injury and to describe the clinical, injury, biochemical, imaging, and intervention variables associated with mortality. Retrospective chart and imaging review. Children's Hospital, level 1 trauma center. Severely injured (Injury Severity Score ≥ 12) pediatric trauma patients (>1 month and <18 yr) with severe traumatic brain injury (presedation Glasgow Coma Scale ≤ 8 and head Maximum Abbreviated Injury Scale ≥ 4) that developed acute central diabetes insipidus between January 2000 and December 2011. Of 818 severely injured trauma patients, 180 had severe traumatic brain injury with an overall mortality rate of 27.2%. Thirty-two of the severe traumatic brain injury patients developed acute central diabetes insipidus that responded to desamino-8-D-arginine vasopressin and/or vasopressin infusion, providing an occurrence rate of 18%. At the time of central diabetes insipidus diagnosis, median urine output and serum sodium were 6.8 ml/kg/hr (interquartile range = 5-11) and 154 mmol/L (interquartile range = 149-159), respectively. The mortality rate of central diabetes insipidus patients was 87.5%, with 71.4% declared brain dead after central diabetes insipidus diagnosis. Early central diabetes insipidus onset, within the first 2 days of severe traumatic brain injury, was strongly associated with mortality (p < 0.001), as were a lower presedation Glasgow Coma Scale (p = 0.03), a lower motor Glasgow Coma Scale (p = 0.01), an occurrence of fixed pupils (p = 0.04), and a prolonged partial thromboplastin time (p = 0.04). Cerebral edema on the initial computed tomography, obtained in the first 24 hrs after injury, was the only imaging finding associated with death (p = 0.002). Survivors of central diabetes insipidus were more likely to have intracranial pressure monitoring (p = 0.03), have thiopental administered to induce coma (p = 0.04) and have received a

  9. Traumatic brain injury: improving functional recovery.

    PubMed Central

    Morgan, A. S.

    1989-01-01

    Most physical injuries in this country are the result of motorized vehicle accidents. Head trauma accounts for one fourth of all trauma deaths, and the cost to treat patients with head trauma is $83 billion. The author discusses injury patterns, methods of resuscitating patients with head injuries, surgical management and monitoring, and the clinical course and prospects for rehabilitation. An interdisciplinary approach to the management of such patients is encouraged, and the medical and surgical interventions undertaken at one institution are reviewed. PMID:2695652

  10. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury

    PubMed Central

    Yang, Tuo; Sun, Yang; Zhang, Feng

    2016-01-01

    Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury. PMID:28217295

  11. Synaptic Mechanisms of Blast-Induced Brain Injury

    PubMed Central

    Przekwas, Andrzej; Somayaji, Mahadevabharath R.; Gupta, Raj K.

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro–in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  12. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  13. Violent, caring, unpredictable: public views on survivors of brain injury.

    PubMed

    Linden, M A; Crothers, I R

    2006-12-01

    The purpose of the present work was to investigate how members of the public perceived survivors of brain injury. A 20-item list of attributes that could be used to describe characteristics of survivors of brain injury were given to 323 participants. One hundred and sixty-nine psychology students and 154 members of the public agreed to take part in the study. The effects of group (student and public), gender and socioeconomic status (low, moderate and high) on the attributes were assessed. Multivariate analysis of variance showed a statistically significant difference between the two groups with students holding more positive perceptions on 15 out of the 20 attributes. No effects of gender or socioeconomic status were found. The research suggests that members of the public hold less positive views on survivors of brain injury in respect to intellectual competency, ability to care and trustworthiness when compared to students.

  14. Post-cardiac arrest brain injury: pathophysiology and treatment.

    PubMed

    Chalkias, Athanasios; Xanthos, Theodoros

    2012-04-15

    Cardiac arrest is a leading cause of death that affects more than a million individuals worldwide every year. Despite the recent advancement in the field of cardiac arrest and resuscitation, the management and prognosis of post-cardiac arrest brain injury remain suboptimal. The pathophysiology of post-cardiac arrest brain injury involves a complex cascade of molecular events, most of which remain unknown. Considering that a potentially broad therapeutic window for neuroprotective drug therapy is offered in most successfully resuscitated patient after cardiac arrest, the need for further research is imperative. The aim of this article is to present the major pathophysiological disturbances leading to post-cardiac arrest brain injury, as well as to review the available pharmacological therapies.

  15. Intrafacility transportation of patients with acute brain injury.

    PubMed

    Tu, Hsinfen

    2014-06-01

    Patients with acute brain injury (ABI) frequently require diagnostic and therapeutic procedures in the areas located outside of the intensive care unit. Transports can be risky for critically ill patients with ABI. Secondary brain injury can occur during the transport from causes such as ischemia, hypotension, hypoxia, hypercapnia, and cerebral edema. Preparation and implementation of preventive procedures including pretransport assessment, monitoring during transport, and posttransport examination and documentation for transports of patients with ABI deem to be necessary. The purpose of this article is to review the typical risks associated with the transports of the patients with ABI out of the intensive care unit and to propose the strategies that can be used to minimize the risks of secondary brain injury.

  16. Endothelin and the neurovascular unit in pediatric traumatic brain injury

    PubMed Central

    Armstead, William M; Raghupathi, Ramesh

    2013-01-01

    Objective This study characterized the association between endothelin-1, cerebral hemodynamics, and histopathology after fluid percussion brain injury in the newborn pig. Methods Lateral fluid percussion injury was induced in newborn pigs equipped with a closed cranial window. Cerebral blood flow was determined with radiolabeled microspheres and cerebrospinal fluid endothelin-1 was measured by radioimmunoassay. Results Cerebrospinal fluid endothelin-1 was increased from 26 ± 4 to 296 ± 37 pg/ml (~10−10M) at 8 hours following fluid percussion injury. Post-injury treatment (30 minutes) with the endothelin-1 antagonist BQ-123 (1 mg/kg, intravenous) blocked pial artery vasoconstriction to topical endothelin-1 (~10−10M) and blunted fluid percussion injury-induced reductions in cerebral blood flow at 8 hours post-insult (56 ± 6 and 26±4 ml/minute versus 57 ± 6 and 40 ± 4 ml/minute; 100 g for cerebral blood flow before injury and 8 hours post-fluid percussion injury in vehicle and BQ-123 post-treated animals, respectively). Fluid percussion injury resulted in neuronal cell loss and decreased microtubule associated protein 2 immunoreactivity in the parietal cortex, which were blunted by BQ-123. Discussion These data indicate that fluid percussion injury-induced changes in cerebral hemodynamics are associated with neuronal damage and that endothelin-1 contributes to fluid percussion injury-induced histopathologic changes. PMID:21801587

  17. Predictors of outcome following traumatic brain injury in young children.

    PubMed

    Prasad, Mary R; Ewing-Cobbs, Linda; Swank, Paul R; Kramer, Larry

    2002-02-01

    The relationship between clinical and neuroimaging variables and multiple outcome measures was examined in a longitudinal, prospective study of 60 children less than 6 years of age who sustained either inflicted or noninflicted traumatic brain injury. Hierarchical multiple regression indicated that the modified Glasgow Coma Scale score, the duration of impaired consciousness and the number of intracranial lesions visualized on CT/MRI accounted for a significant amount of the variance in the Glasgow Outcome Scale (GOS), cognitive and motor scores at baseline, 3- and 12-month evaluations. Inflicted brain injury adversely affected both GOS and cognitive outcomes. Pupillary abnormalities were associated with poorer motor outcome. Neither age at injury nor the Injury Severity Score accounted for significant variability in outcomes. Copyright 2002 S. Karger AG, Basel

  18. Differences in Regional Brain Volumes Two Months and One Year after Mild Traumatic Brain Injury.

    PubMed

    Zagorchev, Lyubomir; Meyer, Carsten; Stehle, Thomas; Wenzel, Fabian; Young, Stewart; Peters, Jochen; Weese, Juergen; Paulsen, Keith; Garlinghouse, Matthew; Ford, James; Roth, Robert; Flashman, Laura; McAllister, Thomas

    2016-01-01

    Conventional structural imaging is often normal after mild traumatic brain injury (mTBI). There is a need for structural neuroimaging biomarkers that facilitate detection of milder injuries, allow recovery trajectory monitoring, and identify those at risk for poor functional outcome and disability. We present a novel approach to quantifying volumes of candidate brain regions at risk for injury. Compared to controls, patients with mTBI had significantly smaller volumes in several regions including the caudate, putamen, and thalamus when assessed 2 months after injury. These differences persisted but were reduced in magnitude 1 year after injury, suggesting the possibility of normalization over time in the affected regions. More pronounced differences, however, were found in the amygdala and hippocampus, suggesting the possibility of regionally specific responses to injury.

  19. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  20. Traumatic brain injury and obesity induce persistent central insulin resistance.

    PubMed

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI.

  1. Brain MRI volumetry in a single patient with mild traumatic brain injury.

    PubMed

    Ross, David E; Castelvecchi, Cody; Ochs, Alfred L

    2013-01-01

    This letter to the editor describes the case of a 42 year old man with mild traumatic brain injury and multiple neuropsychiatric symptoms which persisted for a few years after the injury. Initial CT scans and MRI scans of the brain showed no signs of atrophy. Brain volume was measured using NeuroQuant®, an FDA-approved, commercially available software method. Volumetric cross-sectional (one point in time) analysis also showed no atrophy. However, volumetric longitudinal (two points in time) analysis showed progressive atrophy in several brain regions. This case illustrated in a single patient the principle discovered in multiple previous group studies, namely that the longitudinal design is more powerful than the cross-sectional design for finding atrophy in patients with traumatic brain injury.

  2. Do metals that translocate to the brain exacerbate traumatic brain injury?

    PubMed

    Kalinich, John F; Kasper, Christine E

    2014-05-01

    Metal translocation to the brain is strictly controlled and often prevented by the blood-brain barrier. For the most part, only those metals required to maintain normal function are transported into the brain where they are under tight metabolic control. From the literature, there are reports that traumatic brain injury disrupts the blood-brain barrier. This could allow the influx of metals that would normally have been excluded from the brain. We also have preliminary data showing that metal pellets, surgically-implanted into the leg muscle of a rat to simulate a shrapnel wound, solubilize and the metals comprising the pellet can enter the brain. Surprisingly, rats implanted with a military-grade tungsten alloy composed of tungsten, nickel, and cobalt also showed significantly elevated uranium levels in their brains as early as 1 month after pellet implantation. The only source of uranium was low levels that are naturally found in food and water. Conversely, rats implanted with depleted uranium pellets demonstrated elevated uranium levels in brain resulting from degradation of the implanted pellets. However, when cobalt levels were measured, there were no significant increases in the brain until the rats had reached old age. The only source of cobalt for these rats was the low levels found in their food and water. These data suggest that some metals or metal mixtures (i.e., tungsten alloy), when embedded into muscle, can enhance the translocation of other, endogenous metals (e.g., uranium) across the blood-brain barrier. For other embedded metals (i.e., depleted uranium), this effect is not observed until the animal is of advanced age. This raises the possibility that metal body-burdens can affect blood-brain barrier permeability in a metal-specific and age-dependent manner. This possibility is disconcerting when traumatic brain injury is considered. Traumatic brain injury has been called the "signature" wound of the conflicts in Iraq and Afghanistan, often, an

  3. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury

    PubMed Central

    Hay, Jennifer; Johnson, Victoria E.; Smith, Douglas H.; Stewart, William

    2017-01-01

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of non-boxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article. PMID:26772317

  4. Nonspecific white matter degeneration following traumatic brain injury.

    PubMed

    Gale, S D; Johnson, S C; Bigler, E D; Blatter, D D

    1995-01-01

    Morphometric analysis of magnetic resonance (MR) scans in 88 traumatic brain injury (TBI) patients demonstrated significantly larger ventricle-to-brain ratios (VBR) and temporal horn volumes, and significantly smaller fornix-to-brain ratios (FBR) and corpus callosum (CC) area measurements, compared to 73 controls. Additionally, TBI patients were grouped according to Glasgow Coma Scale (GCS) for a within-TBI sample comparison so that severity of injury on brain morphology could be examined. The severe TBI group (GCS = 3-6) differed from the mild and moderate injury groups on measures of the internal capsule, VBR, temporal horn volume, and CC. In a separate analysis wherein the TBI subjects were grouped by degree of fornix atrophy, the group with the smallest fornix size demonstrated the lowest memory performance. Furthermore, anatomic measures correlated with severity of injury, and tests of memory and motor function. Results demonstrate the diffuse nature of degeneration in TBI with more severe injury, and that quantified MR identified morphologic changes relate to neuropsychological outcome.

  5. Sex offending as a psychosocial sequela of traumatic brain injury.

    PubMed

    Simpson, G; Blaszczynski, A; Hodgkinson, A

    1999-12-01

    To describe the nature and extent of sexual offending after traumatic brain injury (TBI). Retrospective file review. A brain injury unit providing inpatient and outpatient rehabilitation services. A review of five years of admissions to the Brain Injury Rehabilitation Unit (N = 477) identified a sample of 29 males who committed 128 incidents of sex offending. A protocol to record data on demographic, injury, radiological, and psychosocial variables and offending behaviors. Of the total population of 445 clients with TBI, 6.5% (n = 29) were identified as having committed some form of sexual offense. Alcohol was a factor in only three (2.3%) of the incidents, and only two clients had a preinjury history of sexual offending. The most common offenses were the "touching" offenses, followed by exhibitionism and overt sexual aggression. Staff members were the most common targets of the offenses, followed by members of the general public, other people with TBI, and family members. Sex offending is a significant clinical problem among a small minority of men after TBI. The absence of alcohol and preinjury histories of sexual offending suggest that the brain injury and contingent sequelae were a significant etiological factor underlying the offenses. A number of implications for the clinical management of clients with sexually aberrant behaviors is identified and discussed.

  6. Acute stress promotes post-injury brain regeneration in fish.

    PubMed

    Sinyakov, Michael S; Haimovich, Amihai; Avtalion, Ramy R

    2017-09-12

    The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in-vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Could cord blood cell therapy reduce preterm brain injury?

    PubMed

    Li, Jingang; McDonald, Courtney A; Fahey, Michael C; Jenkin, Graham; Miller, Suzanne L

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.

  8. Could Cord Blood Cell Therapy Reduce Preterm Brain Injury?

    PubMed Central

    Li, Jingang; McDonald, Courtney A.; Fahey, Michael C.; Jenkin, Graham; Miller, Suzanne L.

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications. PMID:25346720

  9. Neuroprotection in hypoxic-ischemic brain injury targeting glial cells.

    PubMed

    Herrera, María Inés; Mucci, Sofia; Barreto, George E; Kolliker-Frers, Rodolfo; Capani, Francisco

    2017-07-27

    Brain injury constitutes a disabling health condition of several etiologies. One of the major causes of brain injury is hypoxia-ischemia. Until recently, pharmacological treatments were solely focused on neurons. In the last decades, glial cells started to be considered as alternative targets for neuroprotection. Novel treatments for hypoxia-ischemia intend to modulate reactive forms of glial cells, and/or potentiate their recovery response. In this review, we summarize these neuroprotective strategies in hypoxia-ischemia and discuss their mechanisms of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The emergence of artistic ability following traumatic brain injury

    PubMed Central

    Midorikawa, Akira; Kawamura, Mitsuru

    2015-01-01

    In this study, the case of a patient who developed artistic ability following a traumatic brain injury is reported. The subject was a 49-year-old male who suffered brain injury at the age of 44 due to an accidental fall. At age 48, he began drawing with great enthusiasm and quickly developed a personal style with his own biomorphic iconography. At first, his drawing was restricted to realistic reproductions of photographs of buildings, but his style of drawing changed and became more personal and expressionistic over the following 6 months. PMID:24417345

  11. Marriage after brain injury: review, analysis, and research recommendations.

    PubMed

    Godwin, Emilie E; Kreutzer, Jeffrey S; Arango-Lasprilla, Juan Carlos; Lehan, Tara J

    2011-01-01

    This critical review of the literature examines marriage after traumatic brain injury. Studies reporting information on marital stability rates and studies examining the quality of marriages through the assessment of at least 1 relational domain have been included for review. Available findings are presented along with information on methodological limitations and knowledge gaps. A rationale for the adoption of a marriage and family therapy framework to clarify remaining inconsistencies is presented. Furthermore, specific marriage and family therapy relational models and corresponding measurement instruments are outlined. Finally, suggestions for future research and potential implications for brain injury rehabilitation outcomes are discussed.

  12. Glutamate and GABA imbalance following traumatic brain injury.

    PubMed

    Guerriero, Réjean M; Giza, Christopher C; Rotenberg, Alexander

    2015-05-01

    Traumatic brain injury (TBI) leads to multiple short- and long-term changes in neuronal circuits that ultimately conclude with an imbalance of cortical excitation and inhibition. Changes in neurotransmitter concentrations, receptor populations, and specific cell survival are important contributing factors. Many of these changes occur gradually, which may explain the vulnerability of the brain to multiple mild impacts, alterations in neuroplasticity, and delays in the presentation of posttraumatic epilepsy. In this review, we provide an overview of normal glutamate and GABA homeostasis and describe acute, subacute, and chronic changes that follow injury. We conclude by highlighting opportunities for therapeutic interventions in this paradigm.

  13. Remission of central fever with morphine post traumatic brain injury.

    PubMed

    Mendieta Zerón, Hugo; Arriaga García Rendon, Julio Cesar

    2014-01-01

    After a brain injury, raised temperature may be due to a regulated readjustment in the hypothalamic 'set-point' in response to inflammation. The purpose of this report is to mention possible implications related to temperature and homeostasis of morphine treatment in a patient with brain injury. During the month previous to her hospitalization in our city she was treated for fever with paracetamol and metamizol without results. After 31 days with similar results, we changed to morphine IV considering the possibility of treating pain and fever. This option was successful and afterwards we changed to fentanyl patches, keeping fever absent. After 100 days of hospitalization, the patient was discharged to her home.

  14. Neuroinflammation in animal models of traumatic brain injury

    PubMed Central

    Chiu, Chong-Chi; Liao, Yi-En; Yang, Ling-Yu; Wang, Jing-Ya; Tweedie, David; Karnati, Hanuma K.; Greig, Nigel H.; Wang, Jia-Yi

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI. PMID:27382003

  15. IBIS: an OR ready open-source platform for image-guided neurosurgery.

    PubMed

    Drouin, Simon; Kochanowska, Anna; Kersten-Oertel, Marta; Gerard, Ian J; Zelmann, Rina; De Nigris, Dante; Bériault, Silvain; Arbel, Tal; Sirhan, Denis; Sadikot, Abbas F; Hall, Jeffery A; Sinclair, David S; Petrecca, Kevin; DelMaestro, Rolando F; Collins, D Louis

    2017-03-01

    Navigation systems commonly used in neurosurgery suffer from two main drawbacks: (1) their accuracy degrades over the course of the operation and (2) they require the surgeon to mentally map images from the monitor to the patient. In this paper, we introduce the Intraoperative Brain Imaging System (IBIS), an open-source image-guided neurosurgery research platform that implements a novel workflow where navigation accuracy is improved using tracked intraoperative ultrasound (iUS) and the visualization of navigation information is facilitated through the use of augmented reality (AR). The IBIS platform allows a surgeon to capture tracked iUS images and use them to automatically update preoperative patient models and plans through fast GPU-based reconstruction and registration methods. Navigation, resection and iUS-based brain shift correction can all be performed using an AR view. IBIS has an intuitive graphical user interface for the calibration of a US probe, a surgical pointer as well as video devices used for AR (e.g., a surgical microscope). The components of IBIS have been validated in the laboratory and evaluated in the operating room. Image-to-patient registration accuracy is on the order of [Formula: see text] and can be improved with iUS to a median target registration error of 2.54 mm. The accuracy of the US probe calibration is between 0.49 and 0.82 mm. The average reprojection error of the AR system is [Formula: see text]. The system has been used in the operating room for various types of surgery, including brain tumor resection, vascular neurosurgery, spine surgery and DBS electrode implantation. The IBIS platform is a validated system that allows researchers to quickly bring the results of their work into the operating room for evaluation. It is the first open-source navigation system to provide a complete solution for AR visualization.

  16. Traumatic brain injury detection using electrophysiological methods.

    PubMed

    Rapp, Paul E; Keyser, David O; Albano, Alfonso; Hernandez, Rene; Gibson, Douglas B; Zambon, Robert A; Hairston, W David; Hughes, John D; Krystal, Andrew; Nichols, Andrew S

    2015-01-01

    Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in q

  17. Traumatic Brain Injury Detection Using Electrophysiological Methods

    PubMed Central

    Rapp, Paul E.; Keyser, David O.; Albano, Alfonso; Hernandez, Rene; Gibson, Douglas B.; Zambon, Robert A.; Hairston, W. David; Hughes, John D.; Krystal, Andrew; Nichols, Andrew S.

    2015-01-01

    Measuring neuronal activity with electrophysiological methods may be useful in detecting neurological dysfunctions, such as mild traumatic brain injury (mTBI). This approach may be particularly valuable for rapid detection in at-risk populations including military service members and athletes. Electrophysiological methods, such as quantitative electroencephalography (qEEG) and recording event-related potentials (ERPs) may be promising; however, the field is nascent and significant controversy exists on the efficacy and accuracy of the approaches as diagnostic tools. For example, the specific measures derived from an electroencephalogram (EEG) that are most suitable as markers of dysfunction have not been clearly established. A study was conducted to summarize and evaluate the statistical rigor of evidence on the overall utility of qEEG as an mTBI detection tool. The analysis evaluated qEEG measures/parameters that may be most suitable as fieldable diagnostic tools, identified other types of EEG measures and analysis methods of promise, recommended specific measures and analysis methods for further development as mTBI detection tools, identified research gaps in the field, and recommended future research and development thrust areas. The qEEG study group formed the following conclusions: (1) Individual qEEG measures provide limited diagnostic utility for mTBI. However, many measures can be important features of qEEG discriminant functions, which do show significant promise as mTBI detection tools. (2) ERPs offer utility in mTBI detection. In fact, evidence indicates that ERPs can identify abnormalities in cases where EEGs alone are non-disclosing. (3) The standard mathematical procedures used in the characterization of mTBI EEGs should be expanded to incorporate newer methods of analysis including non-linear dynamical analysis, complexity measures, analysis of causal interactions, graph theory, and information dynamics. (4) Reports of high specificity in q

  18. Apnoea and brain swelling in non-accidental head injury

    PubMed Central

    Kemp, A; Stoodley, N; Cobley, C; Coles, L; Kemp, K; Geddes, J

    2003-01-01

    Aims: (1) To identify whether infants and young children admitted to hospital with subdural haematomas (SDH) secondary to non-accidental head injury (NAHI), suffer from apnoea leading to radiological evidence of hypoxic ischaemic brain damage, and whether this is related to a poor prognosis; and (2) to determine what degree of trauma is associated with NAHI. Methods: Retrospective case series (1992–98) with case control analysis of 65 children under 2 years old, with an SDH secondary to NAHI. Outcome measures were presenting symptoms, associated injuries and apnoea at presentation, brain swelling or hypoxic ischaemic changes on neuroimaging, and clinical outcome (KOSCHI). Results: Twenty two children had a history of apnoea at presentation to hospital. Apnoea was significantly associated with hypoxic ischaemic brain damage. Severe symptoms at presentation, apnoea, and diffuse brain swelling/hypoxic ischaemic damage were significantly associated with a poor prognosis. Eighty five per cent of cases had associated injuries consistent with a diagnosis of non-accidental injury. Conclusions: Coma at presentation, apnoea, and diffuse brain swelling or hypoxic ischaemia all predict a poor outcome in an infant who has suffered from SDH after NAHI. There is evidence of associated violence in the majority of infants with NAHI. At this point in time we do not know the minimum forces necessary to cause NAHI. It is clear however that it is never acceptable to shake a baby. PMID:12765909

  19. Hyperbaric oxygen therapy improves cognitive functioning after brain injury.

    PubMed

    Liu, Su; Shen, Guangyu; Deng, Shukun; Wang, Xiubin; Wu, Qinfeng; Guo, Aisong

    2013-12-15

    Hyperbaric oxygen therapy has been widely applied and recognized in the treatment of brain injury; however, the correlation between the protective effect of hyperbaric oxygen therapy and changes of metabolites in the brain remains unclear. To investigate the effect and potential mechanism of hyperbaric oxygen therapy on cognitive functioning in rats, we established traumatic brain injury models using Feeney's free falling method. We treated rat models with hyperbaric oxygen therapy at 0.2 MPa for 60 minutes per day. The Morris water maze test for spatial navigation showed that the average escape latency was significantly prolonged and cognitive function decreased in rats with brain injury. After treatment with hyperbaric oxygen therapy for 1 and 2 weeks, the rats' spatial learning and memory abilities were improved. Hydrogen proton magnetic resonance spectroscopy analysis showed that the N-acetylaspartate/creatine ratio in the hippocampal CA3 region was significantly increased at 1 week, and the N-acetylaspartate/choline ratio was significantly increased at 2 weeks after hyperbaric oxygen therapy. Nissl staining and immunohistochemical staining showed that the number of nerve cells and Nissl bodies in the hippocampal CA3 region was significantly increased, and glial fibrillary acidic protein positive cells were decreased after a 2-week hyperbaric oxygen therapy treatment. Our findings indicate that hyperbaric oxygen therapy significantly improves cognitive functioning in rats with traumatic brain injury, and the potential mechanism is mediated by metabolic changes and nerve cell restoration in the hippocampal CA3 region.

  20. Moderate head injury: completing the clinical spectrum of brain trauma.

    PubMed

    Rimel, R W; Giordani, B; Barth, J T; Jane, J A

    1982-09-01

    predictors of outcome after moderate head injury are measures of the severity of injury; and (c) more attention should be directed to patients with moderate head injury than to those with the most severe injuries, in whom brain damage is probably irreversible and all forms of management have demonstrated little success.

  1. Brain-computer interface after nervous system injury.

    PubMed

    Burns, Alexis; Adeli, Hojjat; Buford, John A

    2014-12-01

    Brain-computer interface (BCI) has proven to be a useful tool for providing alternative communication and mobility to patients suffering from nervous system injury. BCI has been and will continue to be implemented into rehabilitation practices for more interactive and speedy neurological recovery. The most exciting BCI technology is evolving to provide therapeutic benefits by inducing cortical reorganization via neuronal plasticity. This article presents a state-of-the-art review of BCI technology used after nervous system injuries, specifically: amyotrophic lateral sclerosis, Parkinson's disease, spinal cord injury, stroke, and disorders of consciousness. Also presented is transcending, innovative research involving new treatment of neurological disorders.

  2. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2013-07-01

    of imaging may provide a means for monitor- ing longitudinal changes in iron content in dementia, multiple sclerosis , traumatic brain injury, and...developed in our lab, SWIM will be used to quantify iron in microbleeds and oxygen saturation in major veins throughout the brain. Our central...SWI technique, to quantify the amount of iron in microbleeds, to monitor any changes (evolution) of the microbleed over time and to monitor oxygen

  3. Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance

    DTIC Science & Technology

    2016-02-01

    USAARL Report No. 2016-16 Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance By Ben Lawson1, Bethany Ranes1, Amanda...Kelley1, Bradley Erickson1, Lana Milam1, Melody King1, Catherine Wrobel1, Jim Chiaramonte1, Timothy Cho1, Brain Laskowski1, John Campbell1,2, Linda... Human Use The USAARL Determination Official determined that the USAARL studies did not constitute research as defined under the human subjects

  4. Music interventions for acquired brain injury.

    PubMed

    Magee, Wendy L; Clark, Imogen; Tamplin, Jeanette; Bradt, Joke

    2017-01-20

    Acquired brain injury (ABI) can result in impairments in motor function, language, cognition, and sensory processing, and in emotional disturbances, which can severely reduce a survivor's quality of life. Music interventions have been used in rehabilitation to stimulate brain functions involved in movement, cognition, speech, emotions, and sensory perceptions. An update of the systematic review published in 2010 was needed to gauge the efficacy of music interventions in rehabilitation for people with ABI. To assess the effects of music interventions for functional outcomes in people with ABI. We expanded the criteria of our existing review to: 1) examine the efficacy of music interventions in addressing recovery in people with ABI including gait, upper extremity function, communication, mood and emotions, cognitive functioning, social skills, pain, behavioural outcomes, activities of daily living, and adverse events; 2) compare the efficacy of music interventions and standard care with a) standard care alone, b) standard care and placebo treatments, or c) standard care and other therapies; 3) compare the efficacy of different types of music interventions (music therapy delivered by trained music therapists versus music interventions delivered by other professionals). We searched the Cochrane Stroke Group Trials Register (January 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 6), MEDLINE (1946 to June 2015), Embase (1980 to June 2015), CINAHL (1982 to June 2015), PsycINFO (1806 to June 2015), LILACS (1982 to January 2016), and AMED (1985 to June 2015). We handsearched music therapy journals and conference proceedings, searched dissertation and specialist music databases, trials and research registers, reference lists, and contacted relevant experts and music therapy associations to identify unpublished research. We imposed no language restriction. We performed the original search in 2009. We included all randomised controlled trials

  5. Injury versus non-injury factors as predictors of post-concussive symptoms following mild traumatic brain injury in children

    PubMed Central

    McNally, Kelly A.; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H. Gerry; Yeates, Keith Owen

    2013-01-01

    Objective To examine the relative contributions of injury characteristics and non-injury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Methods Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months post-injury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) pre-morbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of pre-injury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI) Results Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Conclusions Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, non-injury factors are more consistently related to persistent PCS. PMID:23356592

  6. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  7. MRI-DTI Tractography to Quantify Brain Connectivity in Traumatic Brain Injury

    DTIC Science & Technology

    2009-04-01

    to Traumatic Brain Injury and Alzheimer Disease ”, 5-th International Annual Symposium of the Brain Mapping and Intraoperative Surgical Planning... Alzheimer Disease , Proc Intl Soc Mag Reson Med 15: 343, 2007. 9. Singh M and Jeong J-W, “ICA based multi-fiber tractography” Proceedings, 17-th

  8. Preventing Epilepsy After Traumatic Brain Injury

    DTIC Science & Technology

    2009-02-01

    patients with various risks, such as TBI, brain tumors, intracerebral hemorrhages, prolonged febrile seizures , etc to estimate the risk of developing...treatment of early seizures following TBI, and to compare the efficacy of topiramate to prevent early seizures to the standard of care (phenytoin). A...purpose of this study was to determine the safety and tolerability of topiramate (Topamax®) in the treatment of early seizures following traumatic brain

  9. Polyamine Catabolism Is Enhanced after Traumatic Brain Injury

    PubMed Central

    Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.

    2010-01-01

    Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally

  10. Brain stimulation: Neuromodulation as a potential treatment for motor recovery following traumatic brain injury.

    PubMed

    Clayton, E; Kinley-Cooper, S K; Weber, R A; Adkins, D L

    2016-06-01

    There is growing evidence that electrical and magnetic brain stimulation can improve motor function and motor learning following brain damage. Rodent and primate studies have strongly demonstrated that combining cortical stimulation (CS) with skilled motor rehabilitative training enhances functional motor recovery following stroke. Brain stimulation following traumatic brain injury (TBI) is less well studied, but early pre-clinical and human pilot studies suggest that it is a promising treatment for TBI-induced motor impairments as well. This review will first discuss the evidence supporting brain stimulation efficacy derived from the stroke research field as proof of principle and then will review the few studies exploring neuromodulation in experimental TBI studies. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016. Published by Elsevier B.V.

  11. Post-Traumatic Brain Injury: Genetic Susceptibility to Outcome.

    PubMed

    Davidson, Jennilee; Cusimano, Michael D; Bendena, William G

    2015-08-01

    It is estimated that 2% of the population from industrialized countries live with lifelong disabilities resulting from traumatic brain injury (TBI) and roughly one in four adults are unable to return to work 1 year after injury because of physical or mental disabilities. TBI is a significant public health issue that causes substantial physical and economical repercussions for the individual and society. Electronic databases (PubMed, Web of Science, Google Scholar) were searched with the keywords traumatic brain injury, TBI, genes and TBI, TBI outcome, head injury. Human studies on non-penetrating traumatic brain injuries reported in English were included. To provide health care workers with the basic information for clinical management we summarize and compare the data on post-TBI outcome with regard to the impact of genetic variation: apolipoprotein E (APOE), brain-derived neurotrophic factor (BDNF), calcium channel, voltage dependent P/Q type, catechol-O-methyltransferase (COMT), dopamine receptor D2 and ankyrin repeat and kinase domain containing 1 (DRD2 and ANKK1), interleukin-1 (IL-1), interleukin-6 (IL-6), kidney and brain expressed protein (KIBRA), neurofilament, heavy polypeptide (NEFH), endothelial nitric oxide synthase 3 (NOS3), poly (ADP-ribose) polymerase-1 (PARP-1), protein phosphatase 3, catalytic subunit, gamma isozyme (PPP3CC), the serotonin transporter (5-HTT) gene solute carrier family 6 member (SLC6A4) and tumor protein 53 (TP53). It is evident that contradicting results are attributable to the heterogeneity of studies, thus further researches are warranted to effectively assess a relation between genetic traits and clinical outcome following traumatic injuries. © The Author(s) 2014.

  12. Prevalence and predictors of personality change after severe brain injury.

    PubMed

    Norup, Anne; Mortensen, Erik Lykke

    2015-01-01

    To investigate the prevalence of personality change after severe brain injury; to identify predictors of personality change; and to investigate whether personality change is associated with distress in family members. A longitudinal study of personality change. Rehabilitation unit. The study sample was composed of 22 pairs of patients with traumatic brain injury or nontraumatic brain injury (N=22) and their significant others (SOs). Not applicable. An SO completed the observer version of the NEO Five Factor Inventory rating the patient at discharge from hospital and 1 year after injury. The SOs were also asked to complete the anxiety and depression scales of the Symptom Checklist-90-Revised, rating their own emotional condition and health-related quality of life (HRQOL) as assessed by the 4 mental scales of the Medical Outcomes Study 36-Item Short-Form Health Survey. Of the sample, 59.1% experienced personality change after acquired brain injury, and the most dominant changes were observed in the personality traits of neuroticism, extraversion, and conscientiousness. Changes in neuroticism were most often observed in patients with frontal or temporal lesions. Generally, personality changes in patients were not associated with more distress and lower HRQOL in family members; however, change in patient agreeableness was associated with lower HRQOL on the role limitations-emotional scale. Personality change was observed in most patients with severe brain injury. Change in neuroticism was associated with frontal and temporal lesions. Generally, personality change was not associated with more distress and lower HRQOL in SOs. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Neurodegeneration in the somatosensory cortex after experimental diffuse brain injury

    PubMed Central

    Lisembee, Amanda M.

    2012-01-01

    Disruption and consequent reorganization of central nervous system circuits following traumatic brain injury may manifest as functional deficits and behavioral morbidities. We previously reported axotomy and neuronal atrophy in the ventral basal (VB) complex of the thalamus, without gross degeneration after experimental diffuse brain injury in adult rats. Pathology in VB coincided with the development of late-onset aberrant behavioral responses to whisker stimulation, which lead to the current hypothesis that neurodegeneration after experimental diffuse brain injury includes the primary somatosensory barrel cortex (S1BF), which receives projection of VB neurons and mediates whisker somatosensation. Over 28 days after midline fluid percussion brain injury, argyrophilic reaction product within superficial layers and layer IV barrels at 1 day progresses into the cortex to subcortical white matter by 7 days, and selective inter-barrel septa and subcortical white matter labeling at 28 days. Cellular consequences were determined by stereological estimates of neuronal nuclear volumes and number. In all cortical layers, neuronal nuclear volumes significantly atrophied by 42–49% at 7 days compared to sham, which marginally attenuated by 28 days. Concomitantly, the number of healthy neurons was reduced by 34–45% at 7 days compared to sham, returning to control levels by 28 days. Progressive neurodegeneration, including argyrophilic reaction product and neuronal nuclear atrophy, indicates injury-induced damage and reorganization of the reciprocal thalamocortical projections that mediate whisker somatosensation. The rodent whisker barrel circuit may serve as a discrete model to evaluate the causes and consequences of circuit reorganization after diffuse brain injury. PMID:21597967

  14. White matter damage and cognitive impairment after traumatic brain injury

    PubMed Central

    Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury and white matter damage is likely to be complex. We applied a flexible technique—tract-based spatial statistics—to explore whether damage to specific white matter tracts is associated with particular patterns of cognitive impairment. The commonly affected domains of memory, executive function and information processing speed were investigated in 28 patients in the post-acute/chronic phase following traumatic brain injury and in 26 age-matched controls. Analysis of fractional anisotropy and diffusivity maps revealed widespread differences in white matter integrity between the groups. Patients showed large areas of reduced fractional anisotropy, as well as increased mean and axial diffusivities, compared with controls, despite the small amounts of cortical and white matter damage visible on standard imaging. A stratified analysis based on the presence or absence of microbleeds (a marker of diffuse axonal injury) revealed diffusion tensor imaging to be more sensitive than gradient-echo imaging to white matter damage. The location of white matter abnormality predicted cognitive function to some extent. The structure of the fornices was correlated with associative learning and memory across both patient and control groups, whilst the structure of frontal lobe connections showed relationships with executive function that differed in the two groups. These results highlight the complexity of the relationships between white matter structure and cognition. Although widespread and, sometimes, chronic abnormalities of white matter are identifiable following traumatic brain injury, the impact of these changes on cognitive function

  15. 78 FR 37834 - Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... HUMAN SERVICES National Institutes of Health Submission for OMB review; 30-Day Comment Request; Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: Under the... Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System Data...

  16. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    PubMed

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Role of Interleukin-10 in Acute Brain Injuries

    PubMed Central

    Garcia, Joshua M.; Stillings, Stephanie A.; Leclerc, Jenna L.; Phillips, Harrison; Edwards, Nancy J.; Robicsek, Steven A.; Hoh, Brian L.; Blackburn, Spiros; Doré, Sylvain

    2017-01-01

    Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation. PMID:28659854

  18. Acute Cortical Transhemispheric Diaschisis after Unilateral Traumatic Brain Injury.

    PubMed

    Le Prieult, Florie; Thal, Serge C; Engelhard, Kristin; Imbrosci, Barbara; Mittmann, Thomas

    2017-03-01

    Focal neocortical brain injuries lead to functional alterations, which can spread beyond lesion-neighboring brain areas. The undamaged hemisphere and its associated disturbances after a unilateral lesion, so-called transhemispheric diaschisis, have been progressively disclosed over the last decades; they are strongly involved in the pathophysiology and, potentially, recovery of brain injuries. Understanding the temporal dynamics of these transhemispheric functional changes is crucial to decipher the role of the undamaged cortex in the processes of functional reorganization at different stages post-lesion. In this regard, little is known about the acute-subacute processes after 24-48 h in the brain hemisphere contralateral to injury. In the present study, we performed a controlled cortical impact to produce a unilateral traumatic brain injury (TBI) in the motor and somatosensory cortex of mice. In vitro extracellular multi-unit recordings from large neuronal populations, together with single-cell patch-clamp recordings in the cortical network contralateral to the lesion, revealed a strong, but transient, neuronal hyperactivity as early as 24-48 h post-TBI. This abnormal excitable state in the intact hemisphere was not accompanied by alterations in neuronal intrinsic properties, but it was associated with an impairment of the phasic gamma aminobutyric acid (GABA)ergic transmission and an increased expression of GABAA receptor subunits related to tonic inhibition exclusively in the contralateral hemisphere. These data unravel a series of early transhemispheric functional alterations after diffuse unilateral cortical injury, which may compensate and stabilize the disrupted brain functions. Therefore, our findings support the hypothesis that the undamaged hemisphere could play a significant role in early functional reorganization processes after a TBI.

  19. Repeated Mild Traumatic Brain Injury: Mechanisms of Cerebral Vulnerability

    PubMed Central

    Alexander, Daya; Giza, Christopher C.; Hovda, David A.

    2013-01-01

    Abstract Among the 3.5 million annual new head injury cases is a subpopulation of children and young adults who experience repeated traumatic brain injury (TBI). The duration of vulnerability after a single TBI remains unknown, and biomarkers have yet to be determined. Decreases in glucose metabolism (cerebral metabolic rate of glucose [CMRglc]) are consistently observed after experimental and human TBI. In the current study, it is hypothesized that the duration of vulnerability is related to the duration of decreased CMRglc and that a single mild TBI (mTBI) increases the brain's vulnerability to a second insult for a period, during which a subsequent mTBI will worsen the outcome. Postnatal day 35 rats were given sham, single mTBI, or two mTBI at 24-h or 120-h intervals. 14C-2-deoxy-D-glucose autoradiography was conducted at 1 or 3 days post-injury to calculate CMRglc. At 24 h after a single mTBI, CMRglc is decreased by 19% in both the parietal cortex and hippocampus, but approached sham levels by 3 days post-injury. When a second mTBI is introduced during the CMRglc depression of the first injury, the consequent CMRglc is depressed (36.5%) at 24 h and remains depressed (25%) at 3 days. In contrast, when the second mTBI is introduced after the metabolic recovery of the first injury, the consequent CMRglc depression is similar to that seen with a single injury. Results suggest that the duration of metabolic depression reflects the time-course of vulnerability to second injury in the juvenile brain and could serve as a valuable biomarker in establishing window of vulnerability guidelines. PMID:23025820

  20. Blockade of Nociceptin Signaling Reduces Biochemical, Structural and Cognitive Deficits after Traumatic Brain Injury

    DTIC Science & Technology

    2010-07-01

    Blockade of Nociceptin Signaling Reduces Biochemical, Structural and Cognitive Deficits after Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Structural and Cognitive Deficits after Traumatic Brain I j 5b. GRANT NUMBER W81XWH-09-1-0443 Injury 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...blast-induced traumatic brain injury (TBI) has been a tremendous challenge. TBI results in hypoxia and ischemia reperfusion injury to the brain

  1. Research Contributing to Psychological Health and Traumatic Brain Injury Programs and Guidance

    DTIC Science & Technology

    2011-01-24

    and Traumatic Brain Injury Research Contributing to Psychological Health and Traumatic Brain Injury Programs and Guidance 24 January 2011 Michael E...TITLE AND SUBTITLE Research Contributing to Psychological Health and Traumatic Brain Injury Programs and Guidance 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Defense Centers of Excellence for Psychological Health & Traumatic Brain Injury,2345 Crystal Drive,Crystal park 4, Suite 120,Arlington,VA,22202 8

  2. Crash Simulator: Brain-and-Spine Injury Mechanics

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    Recently, the first author has proposed a new coupled loading-rate hypothesis as a unique cause of both brain and spinal injuries, which states that they are both caused by a Euclidean jolt, an impulsive loading that strikes head and spine (or, any other part of the human body)- in several coupled degrees-of-freedom simultaneously. Injury never happens in a single direction only, nor is it ever caused by a static force. It is always an impulsive translational plus rotational force. The Euclidean jolt causes two basic forms of brain, spine and other musculo-skeletal injuries: (i) localized translational dislocations; and (ii) localized rotational disclinations. In the present Chapter, we first review this unique mechanics of a general human mechanical injury, and then describe how it can be predicted and controlled by a crash simulator toolbox. This rigorous Matlab toolbox has been developed using an existing thirdparty toolbox DiffMan, for accurately solving differential equations on smooth manifolds and mechanical Lie groups. The present crash simulator toolbox performs prediction/control of brain and spinal injuries within the framework of the Euclidean group SE(3) of rigid motions in our natural 3-dimensional space.

  3. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Eligibility criteria: Traumatic brain injury. 1308.16 Section 1308.16 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH...

  4. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Eligibility criteria: Traumatic brain injury. 1308.16 Section 1308.16 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH...

  5. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Eligibility criteria: Traumatic brain injury. 1308.16 Section 1308.16 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH...

  6. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Eligibility criteria: Traumatic brain injury. 1308.16 Section 1308.16 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH...

  7. 45 CFR 1308.16 - Eligibility criteria: Traumatic brain injury.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Eligibility criteria: Traumatic brain injury. 1308.16 Section 1308.16 Public Welfare Regulations Relating to Public Welfare (Continued) OFFICE OF HUMAN DEVELOPMENT SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH...

  8. Injury Response of Resected Human Brain Tissue In Vitro.

    PubMed

    Verwer, Ronald W H; Sluiter, Arja A; Balesar, Rawien A; Baaijen, Johannes C; de Witt Hamer, Philip C; Speijer, Dave; Li, Yichen; Swaab, Dick F

    2015-07-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by resection (interruption of the circulation) and aggravated by the preparation of slices (severed neuronal and glial processes and blood vessels) reflect the reaction of human brain tissue to severe injury. We investigated this process using immunocytochemical markers, reverse transcriptase quantitative polymerase chain reaction and Western blot analysis. Essential features were rapid shrinkage of neurons, loss of neuronal marker expression and proliferation of reactive cells that expressed Nestin and Vimentin. Also, microglia generally responded strongly, whereas the response of glial fibrillary acidic protein-positive astrocytes appeared to be more variable. Importantly, some reactive cells also expressed both microglia and astrocytic markers, thus confounding their origin. Comparison with post-mortem human brain tissue obtained at rapid autopsies suggested that the reactive process is not a consequence of epilepsy. © 2014 International Society of Neuropathology.

  9. Communication and Traumatic Brain Injury: A Case Study.

    ERIC Educational Resources Information Center

    DeRuyter, Frank; Donoghue, Kathleen A.

    1989-01-01

    A case study of a difficult to manage nonspeaking young man with brain injury is presented. Assessment and intervention indicated severe cognitive-linguistic deficits, severe physical involvement of all extremities, extensive surgical management, visual perceptual and acuity deficits, and behavioral problems. (Author/DB)

  10. School-Based Traumatic Brain Injury and Concussion Management Program

    ERIC Educational Resources Information Center

    Davies, Susan C.

    2016-01-01

    Traumatic brain injuries (TBIs), including concussions, can result in a constellation of physical, cognitive, emotional, and behavioral symptoms that affect students' well-being and performance at school. Despite these effects, school personnel remain underprepared identify, educate, and assist this population of students. This article describes a…

  11. Endogenous lipoid pneumonia in a cachectic patient after brain injury.

    PubMed

    Zhang, Ji; Mu, Jiao; Lin, Wei; Dong, Hongmei

    2015-01-01

    Endogenous lipoid pneumonia (EnLP) is an uncommon non-life-threatening inflammatory lung disease that usually occurs in patients with conditions such as lung cancers, primary sclerosing cholangitis, and undifferentiated connective tissue disease. Here we report a case of EnLP in a paralytic and cachectic patient with bronchopneumonia after brain injury. A 40-year-old man experienced a severe brain injury in an automobile accident. He was treated for 1 month and his status plateaued. However, he became paralyzed and developed cachexia and ultimately died 145 days after the accident. Macroscopically, multifocal yellowish firm nodules were visible on scattered gross lesions throughout the lungs. Histologically, many foam cells had accumulated within the alveoli and alveolar walls accompanied by a surrounding interstitial infiltration of lymphocytes. The findings were in accordance with a diagnosis of EnLP. Bronchopneumonia was also noted. To our knowledge, there have been few reports of EnLP associated with bronchopneumonia and cachexia after brain injury. This uncommon pathogenesis should be well recognized by clinicians and forensic pathologists. The case reported here should prompt medical staff to increase the nutritional status and fight pulmonary infections in patients with brain injury to prevent the development of EnLP.

  12. Traumatic Brain Injury: When Children Return to School.

    ERIC Educational Resources Information Center

    Williams, Dennis

    This guide addresses issues concerned with the reintegration of students with traumatic brain injuries (TBI) into the classroom. It first provides a definition of TBI and identifies characteristics of students with TBI. The guide then discusses cognitive consequences of TBI, with emphasis on deficits of executive function, attention, and memory.…

  13. Predictors of Outcome following Acquired Brain Injury in Children

    ERIC Educational Resources Information Center

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  14. Glyburide - Novel Prophylaxis and Effective Treatment for Traumatic Brain Injury

    DTIC Science & Technology

    2010-08-01

    hemorrhagic shock. 15. SUBJECT TERMS blast, traumatic brain injury, neurogenic pulmonary edema, mortality, caspase-3, beta- amylase precursor...sublethal blast overpressure reduces the food intake and exercise performance of rats. Toxicology 121, 65-79. BAUMAN,R.A., LING,G., TONG,L., et al. (2009

  15. Students with Acquired Brain Injury: A Legal Analysis

    ERIC Educational Resources Information Center

    Zirkel, Perry A.

    2011-01-01

    This article provides a comprehensive and current synthesis of the legislation, regulations, policy interpretations, and case law concerning students with traumatic and nontraumatic brain injury from pre-K to grade 12. The primary focus is the Individuals with Disabilities Education Act, but the scope extends to other applicable legal bases. The…

  16. Treating neonatal brain injury - promise and inherent research challenges.

    PubMed

    Sävman, Karin; Brown, Kelly L

    2010-01-01

    In this review we discuss current challenges faced by researchers and clinician-scientists in the pursuit of therapeutics to treat hypoxic-ischemic (HI) brain injury in term infants. At present, there is an absence of neuroprotective drugs that are safe and effective for the protection of neonates from neurological sequels after HI. We discuss secondary neurotoxic processes elicited by HI that may be targets for therapeutic interventions with a specific focus on inflammatory mechanisms. Advances in research to unravel these cellular processes and molecular mechanisms that drive injurious processes after HI have traditionally been plagued by conflicting results when assessing different times for intervention, different models for brain injury, and the adult versus neonate brain. We attribute impeded drug development in part to such disparate results and general difficulties to conduct a stringent, comprehensive analysis of candidate drugs prior to clinical trials. It will be imperative to implement changes in the clinic and laboratory in order for future drug initiatives to achieve success. We also provide a brief discussion on the pursuit of anti-inflammatory molecules and monitoring methods that are the focus of current patents and that, in our opinion, may lead to important new developments in the treatment of HI brain injury in newborn infants.

  17. Predictors of Outcome following Acquired Brain Injury in Children

    ERIC Educational Resources Information Center

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  18. Traumatic Brain Injury and Its Effect on Students

    ERIC Educational Resources Information Center

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  19. Practitioner Review: Cognitive Rehabilitation for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Limond, Jenny; Leeke, Rachel

    2005-01-01

    Background: The need to address acquired cognitive impairments is increasing in child populations seen across a range of settings. However, current clinical practice following brain injury in children does not necessarily incorporate the use of cognitive rehabilitation models or techniques. The aim of this paper is to review the literature in this…

  20. Cognitive Rehabilitation for Children with Acquired Brain Injury

    ERIC Educational Resources Information Center

    Slomine, Beth; Locascio, Gianna

    2009-01-01

    Cognitive deficits are frequent consequences of acquired brain injury (ABI) and often require intervention. We review the theoretical and empirical literature on cognitive rehabilitation in a variety of treatment domains including attention, memory, unilateral neglect, speech and language, executive functioning, and family involvement/education.…

  1. Social dysfunction after pediatric traumatic brain injury: a translational perspective

    PubMed Central

    Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.

    2016-01-01

    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  2. Death Associated Protein Kinases: Molecular Structure and Brain Injury

    PubMed Central

    Nair, Syam; Hagberg, Henrik; Krishnamurthy, Rajanikant; Thornton, Claire; Mallard, Carina

    2013-01-01

    Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1. PMID:23880846

  3. Death associated protein kinases: molecular structure and brain injury.

    PubMed

    Nair, Syam; Hagberg, Henrik; Krishnamurthy, Rajanikant; Thornton, Claire; Mallard, Carina

    2013-07-04

    Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.

  4. Cerebral vascular regulation and brain injury in preterm infants.

    PubMed

    Brew, Nadine; Walker, David; Wong, Flora Y

    2014-06-01

    Cerebrovascular lesions, mainly germinal matrix hemorrhage and ischemic injury to the periventricular white matter, are major causes of adverse neurodevelopmental outcome in preterm infants. Cerebrovascular lesions and neuromorbidity increase with decreasing gestational age, with the white matter predominantly affected. Developmental immaturity in the cerebral circulation, including ongoing angiogenesis and vasoregulatory immaturity, plays a major role in the severity and pattern of preterm brain injury. Prevention of this injury requires insight into pathogenesis. Cerebral blood flow (CBF) is low in the preterm white matter, which also has blunted vasoreactivity compared with other brain regions. Vasoreactivity in the preterm brain to cerebral perfusion pressure, oxygen, carbon dioxide, and neuronal metabolism is also immature. This could be related to immaturity of both the vasculature and vasoactive signaling. Other pathologies arising from preterm birth and the neonatal intensive care environment itself may contribute to impaired vasoreactivity and ineffective CBF regulation, resulting in the marked variations in cerebral hemodynamics reported both within and between infants depending on their clinical condition. Many gaps exist in our understanding of how neonatal treatment procedures and medications have an impact on cerebral hemodynamics and preterm brain injury. Future research directions for neuroprotective strategies include establishing cotside, real-time clinical reference values for cerebral hemodynamics and vasoregulatory capacity and to demonstrate that these thresholds improve long-term outcomes for the preterm infant. In addition, stimulation of vascular development and repair with growth factor and cell-based therapies also hold promise.

  5. Traumatic Brain Injury and Its Effect on Students

    ERIC Educational Resources Information Center

    Rosenthal, Stacy B.

    2012-01-01

    Over one million people suffer a traumatic brain injury every year, many of whom are students between the ages of 5 and 18. Using a qualitative case study approach, I wanted to discover the specific factors that both impede and help the school re-entry process for students in grades kindergarten through twelve so that these students can return to…

  6. Traumatic Brain Injury and Special Education: An Information Resource Guide.

    ERIC Educational Resources Information Center

    Stevens, Alice M.

    This resource guide of annotated references on traumatic brain injury (TBI) was created to help educators locate information from such disciplines as neurology, neuropsychology, rehabilitation, and pediatric medicine. Twenty-four resources published from 1990 to 1994 are listed, with annotations. The resources include research reports/reviews,…

  7. Classroom Interventions for Students with Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Bowen, Julie M.

    2005-01-01

    Students who have sustained a traumatic brain injury (TBI) return to the school setting with a range of cognitive, psychosocial, and physical deficits that can significantly affect their academic functioning. Successful educational reintegration for students with TBI requires careful assessment of each child's unique needs and abilities and the…

  8. Predictors of Neuropsychological Test Performance After Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Donders, Jacobus; Nesbit-Greene, Kelly

    2004-01-01

    The influence of neurological and demographic variables on neuropsychological test performance was examined in 100 9- to 16-year-old children with traumatic brain injury (TBI). Regression analyses were conducted to determine the relative contributions of coma, neuroimaging findings, ethnicity, socioeconomic status, and gender to variance in…

  9. Neuroprotective Therapies after Perinatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    de Cerio, Felipe Goñi; Lara-Celador, Idoia; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration. PMID:24961314

  10. Neuroprotective therapies after perinatal hypoxic-ischemic brain injury.

    PubMed

    Cerio, Felipe Goñi de; Lara-Celador, Idoia; Alvarez, Antonia; Hilario, Enrique

    2013-03-05

    Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.

  11. The psychosocial outcomes of anoxic brain injury following cardiac arrest.

    PubMed

    Wilson, Michelle; Staniforth, Andrew; Till, Richard; das Nair, Roshan; Vesey, Patrick

    2014-06-01

    This exploratory study aimed to investigate the psychosocial outcomes for cardiac arrest survivors and explore if there is a greater impact on psychosocial outcome for individuals experiencing anoxic brain injury as a result of the cardiac arrest. Self-report measures were used to compare the quality of life, social functioning and symptoms of anxiety, depression and post-traumatic stress of individuals with and without anoxic brain injury. Secondary measures of subjective memory and executive difficulties were also used. Fifty-six participants (27 with anoxia, 29 without anoxia) took part in the study between six months and four years after experiencing cardiac arrest. A MANOVA identified a significant difference between the two groups, with the anoxia group reporting more psychosocial difficulties. They reported more social functioning difficulties and more anxiety, depression and post-traumatic stress symptoms. There was, however, no significant difference in self-reported quality of life between the two groups. As the first known study to compare psychosocial outcomes for cardiac arrest survivors experiencing anoxic brain injury with those without anoxia, the current results suggest that cardiac arrest survivors with subsequent acquired brain injury experience more psychosocial difficulties. This could be due to a combination of neuropsychological, social and psychological factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Integration of Neuropsychology in Educational Planning Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Stavinoha, Peter L.

    2005-01-01

    Traumatic brain injuries (TBIs) have the potential to significantly disrupt a student's cognitive, academic, social, emotional, behavioral, and physical functioning. It is important for educators to appreciate the array of difficulties students with TBI may experience in order to appropriately assess needs and create an educational plan that…

  13. Decompressive Craniectomy and Traumatic Brain Injury: A Review

    PubMed Central

    Alvis-Miranda, Hernando; Castellar-Leones, Sandra Milena; Moscote-Salazar, Luis Rafael

    2013-01-01

    Intracranial hypertension is the largest cause of death in young patients with severe traumatic brain injury. Decompressive craniectomy is part of the second level measures for the management of increased intracranial pressure refractory to medical management as moderate hypothermia and barbiturate coma. The literature lack of concepts is their indications. We present a review on the state of the art. PMID:27162826

  14. Management of Attention and Memory Disorders Following Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Mateer, Catherine A.; And Others

    1996-01-01

    Disorders of attention, memory, and executive function are common sequelae of traumatic brain injuries in children. Intervention usually involves externally focused interventions aimed at changing the environment to minimize the dysfunction; internally focused interventions aimed at improving the underlying cognitive ability; or compensatory…

  15. Evaluation of a Health Education Programme about Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Garcia, Jane Mertz; Sellers, Debra M.; Hilgendorf, Amy E.; Burnett, Debra L.

    2014-01-01

    Objective: Our aim was to evaluate a health education programme (TBIoptions: Promoting Knowledge) designed to increase public awareness and understanding about traumatic brain injury (TBI) through in-person (classroom) and computer-based (electronic) learning environments. Design: We used a pre-post survey design with randomization of participants…

  16. Performance Monitoring in Children following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Ornstein, Tisha J.; Levin, Harvey S.; Chen, Shirley; Hanten, Gerri; Ewing-Cobbs, Linda; Dennis, Maureen; Barnes, Marcia; Max, Jeffrey E.; Logan, Gordon D.; Schachar, Russell

    2009-01-01

    Background: Executive control deficits are common sequelae of childhood traumatic brain injury (TBI). The goal of the current study was to assess a specific executive control function, performance monitoring, in children following TBI. Methods: Thirty-one children with mild-moderate TBI, 18 with severe TBI, and 37 control children without TBI, of…

  17. Assisting Students with a Traumatic Brain Injury in School Interventions

    ERIC Educational Resources Information Center

    Aldrich, Erin M.; Obrzut, John E.

    2012-01-01

    Traumatic brain injury (TBI) in children and adolescents can significantly affect their lives and educational needs. Deficits are often exhibited in areas such as attention, concentration, memory, executive function, emotional regulation, and behavioral functioning, but specific outcomes are not particular to any one child or adolescent with a…

  18. Communicative Impairment in Traumatic Brain Injury: A Complete Pragmatic Assessment

    ERIC Educational Resources Information Center

    Angeleri, R.; Bosco, F. M.; Zettin, M.; Sacco, K.; Colle, L.; Bara, B. G.

    2008-01-01

    The aim of the present study was to examine the communicative abilities of traumatic brain injury patients (TBI). We wish to provide a complete assessment of their communicative ability/disability using a new experimental protocol, the "Assessment Battery of Communication," ("ABaCo") comprising five scales--linguistic, extralinguistic,…

  19. Intervention Strategies for Serving Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Arroyos-Jurado, Elsa; Savage, Todd A.

    2008-01-01

    As school-age children are at the highest risk for sustaining a traumatic brain injury (TBI), educational professionals working in school settings will encounter students dealing with the after-effects of a TBI. These effects can influence students' ability to navigate the behavioral, social, and academic demands of the classroom. This article…

  20. Classroom Interventions for Students with Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Bowen, Julie M.

    2005-01-01

    Students who have sustained a traumatic brain injury (TBI) return to the school setting with a range of cognitive, psychosocial, and physical deficits that can significantly affect their academic functioning. Successful educational reintegration for students with TBI requires careful assessment of each child's unique needs and abilities and the…