Science.gov

Sample records for brain injury secondary

  1. Reducing Secondary Insults in Traumatic Brain Injury

    DTIC Science & Technology

    2013-04-01

    persons, and leaves 99,000 persons permanently disabled [1]. The total cost for treatment and rehabilitation of patients with brain injuries is...registry based or retrospective or include only secondary insults that occur in the intensive care unit ( ICU ) setting. Most prior investigations have...in the surgical and neurosurgical ICU diagnosed with a traumatic brain injury requiring a diagnostic procedure were eligible for the study. The study

  2. Managing traumatic brain injury secondary to explosions

    PubMed Central

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-01-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined. PMID:20606794

  3. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults.

    PubMed

    Wang, Hong-Cai; Sun, Cheng-Feng; Chen, Hai; Chen, Mao-Song; Shen, Gang; Ma, Yan-Bin; Wang, Bo-Ding

    2014-01-01

    Traumatic brain injury (TBI) contributes to a substantial number of deaths and cases of disability. Despite well-established experimental models and years of carefully conducted research, a clinical therapeutic breakthrough in TBI has lagged. This may be due, in part, to the discrepancies between commonly used experimental models and clinical scenarios. Secondary insults, such as hypotension and hypoxemia, have been well demonstrated as powerful determinants of outcomes from TBI. Despite the frequency of secondary insults in patients with TBI, they are rarely incorporated into most existing models of TBI. This review focuses on the combined injury models, especially coupled with systemic secondary insults, and aims to provide a new view to guiding future research endeavors in this field. A growing number of experimental models of TBI complicated by certain secondary insult have been gradually introduced and characterized. Correspondingly, the pathophysiological changes following combined injuries and the interactive effects of primary injury with secondary insults can be studied more in-depth. A more complete understanding of the interactions between the injured brain and secondary insults represents a potentially fruitful avenue that may increase the likelihood of developing effective therapies. Experimental models of TBI should not only attempt to model the focal or diffuse changes resulting from external forces, but also integrate, when appropriate, secondary insults reminiscent of human situations.

  4. Age and Diet Affect Genetically Separable Secondary Injuries that Cause Acute Mortality Following Traumatic Brain Injury in Drosophila

    PubMed Central

    Katzenberger, Rebeccah J.; Ganetzky, Barry; Wassarman, David A.

    2016-01-01

    Outcomes of traumatic brain injury (TBI) vary because of differences in primary and secondary injuries. Primary injuries occur at the time of a traumatic event, whereas secondary injuries occur later as a result of cellular and molecular events activated in the brain and other tissues by primary injuries. We used a Drosophila melanogaster TBI model to investigate secondary injuries that cause acute mortality. By analyzing mortality percentage within 24 hr of primary injuries, we previously found that age at the time of primary injuries and diet afterward affect the severity of secondary injuries. Here, we show that secondary injuries peaked in activity 1–8 hr after primary injuries. Additionally, we demonstrate that age and diet activated distinct secondary injuries in a genotype-specific manner, and that concurrent activation of age- and diet-regulated secondary injuries synergistically increased mortality. To identify genes involved in secondary injuries that cause mortality, we compared genome-wide mRNA expression profiles of uninjured and injured flies under age and diet conditions that had different mortalities. During the peak period of secondary injuries, innate immune response genes were the predominant class of genes that changed expression. Furthermore, age and diet affected the magnitude of the change in expression of some innate immune response genes, suggesting roles for these genes in inhibiting secondary injuries that cause mortality. Our results indicate that the complexity of TBI outcomes is due in part to distinct, genetically controlled, age- and diet-regulated mechanisms that promote secondary injuries and that involve a subset of innate immune response genes. PMID:27754853

  5. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    PubMed

    Kulbe, Jacqueline R; Hall, Edward D

    2017-08-26

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lipid peroxidation and tyrosine nitration in traumatic brain injury: Insights into secondary injury from redox proteomics.

    PubMed

    Butterfield, D Allan; Reed, Tanea T

    2016-12-01

    Traumatic brain injury (TBI) is a spontaneous event in which sudden trauma and secondary injury cause brain damage. Symptoms of TBI can range from mild to severe depending on extent of injury. The outcome can span from complete patient recovery to permanent memory loss and neurological decline. Currently, there is no known cure for TBI; however, immediate medical attention after injury is most beneficial for patient recovery. It is a well-established concept that imbalances in the production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and native antioxidant mechanisms have been shown to increase oxidative stress. Over the years, proteomics has been used to identify specific biomarkers in diseases such as cancers and neurological disorders such as Alzheimer disease and Parkinson disease. As TBI is a risk factor for a multitude of neurological diseases, biomarkers for this phenomenon are a likely field of study in order to confirm diagnosis. This review highlights the current proteomics studies that investigated excessively nitrated proteins and those altered by lipid peroxidation in TBI. This review also highlights possible diagnostic measures and provides insights for future treatment strategies.

  7. Effects of hyperbaric oxygen on the Nrf2 signaling pathway in secondary injury following traumatic brain injury.

    PubMed

    Meng, X E; Zhang, Y; Li, N; Fan, D F; Yang, C; Li, H; Guo, D Z; Pan, S Y

    2016-01-29

    We investigated the effects of hyperbaric oxygen treatment on the Nrf2 signaling pathway in secondary injury following traumatic brain injury, using a rat model. An improved Feeney freefall method was used to establish the rat traumatic brain injury model. Sixty rats were randomly divided into three groups: a sham surgery group, a traumatic brain injury group, and a group receiving hyperbaric oxygen treatment after traumatic brain injury. Neurological function scores were assessed at 12 and 24 h after injury. The expression levels of Nrf2, heme oxygenase 1 (HO-1), and quinine oxidoreductase 1 (NQO-1) in the cortex surrounding the brain lesion were detected by western blotting 24 h after the injury. Additionally, the TUNEL method was used to detect apoptosis of nerve cells 24 h after traumatic injury and Nissl staining was used to detect the number of whole neurons. Hyperbaric oxygen treatment significantly increased the expression of nuclear Nrf2 protein (P < 0.05), HO-1, and NQO-1 in the brain tissues surrounding the lesion after a traumatic brain injury (P < 0.05) and also significantly reduced the number of apoptotic and injured nerve cells. The neurological function scores also improved with hyperbaric oxygen treatment (P < 0.05). Therefore, hyperbaric oxygen has a neuroprotective role in traumatic brain injury, which is mediated by up-regulation of the Nrf2 signaling pathway.

  8. Mixed acid-base disorder secondary to topiramate use in traumatic brain injury

    PubMed Central

    Golla, S.; Anandh, U.; Balasubramaniam, A.

    2016-01-01

    We report a case of a man with traumatic brain injury. He was started on to prophylactic topiramate which led to a mixed acid-base disorder. He had severe metabolic acidosis secondary to renal tubular acidification defect and respiratory alkalosis secondary to hyperventilation. Withdrawal of the offending drug led to the prompt resolution of the acid-base disturbance. PMID:27942179

  9. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury.

    PubMed

    Hadass, Orr; Tomlinson, Brittany N; Gooyit, Major; Chen, Shanyan; Purdy, Justin J; Walker, Jennifer M; Zhang, Chunyang; Giritharan, Andrew B; Purnell, Whitley; Robinson, Christopher R; Shin, Dmitriy; Schroeder, Valerie A; Suckow, Mark A; Simonyi, Agnes; Sun, Grace Y; Mobashery, Shahriar; Cui, Jiankun; Chang, Mayland; Gu, Zezong

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor-with such desirable pharmacokinetic properties-holds considerable promise as a potential pharmacological treatment of TBI.

  10. MiR-21 alleviates secondary blood-brain barrier damage after traumatic brain injury in rats.

    PubMed

    Ge, Xintong; Han, Zhaoli; Chen, Fanglian; Wang, Haichen; Zhang, Baoliang; Jiang, Rongcai; Lei, Ping; Zhang, Jianning

    2015-04-07

    Our recent studies have identified increased expression of miR-21 in brain following traumatic brain injury (TBI), which alleviated brain edema that related to the blood-brain barrier (BBB) leakage. To analyze the potential effect of miR-21 on secondary BBB damage after TBI, we employed the fluid percussion injury rat model and manipulated the expression level of miR-21 in brain. We found that miR-21 level in brain microvascular endothelial cells (BMVECs) in lesioned cerebral cortex can be upregulated or downregulated by intracerebroventricular infusion of miR-21 agomir or antagomir. Upregulated miR-21 level conferred a better neurological outcome of TBI, and alleviated TBI-induced secondary BBB damage and loss of tight junction proteins. To explore the molecular mechanism underlying this protective effect, we detected the impact of miR-21 on the expression of Angiopoietin-1(Ang-1) and Tie-2, which can promote the expression of tight junction proteins and amplify BBB stabilization. We found that miR-21 exerts the protective effect on BBB by activating the Ang-1/Tie-2 axis in BMVECs. Thus, miR-21 could be a potential therapeutic target for interventions of secondary BBB damage after TBI. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Visual Outcomes after Vitrectomy for Terson Syndrome Secondary to Traumatic Brain Injury.

    PubMed

    Narayanan, Raja; Taylor, Stanford C; Nayaka, Ashraya; Deshpande, Riddhima; St Aubin, Daniel; Hrisomalos, Frank N; Hu, Jonathan; Rajagopal, Rithwick; Tewari, Asheesh; Apte, Rajendra S

    2017-01-01

    To evaluate visual outcomes after vitrectomy for intraocular hemorrhages secondary to traumatic brain injury. Retrospective, observational case series. A total of 28 eyes in 20 patients undergoing vitrectomy for Terson syndrome secondary to traumatic brain injury between 1997 and 2015. We reviewed the records of patients undergoing a standard 20-gauge or 23-gauge pars plana vitrectomy for intraocular hemorrhages secondary to traumatic brain injury, and the timing of vitrectomy in relation to the inciting intracranial event was recorded. The primary outcome measure was the change in the preoperative visual acuity score at postoperative month 1 and at the last noted clinic appointment. A total of 28 eyes in 20 patients (all male) underwent pars plana vitrectomy for intraocular hemorrhages secondary to traumatic brain injury. The mean preoperative baseline logarithm of the minimum angle of resolution (logMAR) (Snellen) best-corrected visual acuity (BCVA) was 1.81±0.56 (20/1290). At 1-month postoperative follow-up, the mean BCVA was 0.30±0.33 (20/40). At the date of the last follow-up, the mean BCVA was 0.15±0.24 (20/30) and the median BCVA was 0.00 (20/20). Although the difference between preoperative and postoperative BVCA was significantly different at 1 month and the final postoperative clinic visits (P < 0.001), there was not a correlation between preoperative visual acuity as a predictor of final postoperative visual acuity outcome (r=-0.32; P = 0.09; 95% confidence interval [CI] -0.62 - 0.06). At the date of the last follow-up, the differences in visual outcomes between the individuals undergoing vitrectomy within 3 months of the inciting event, 0.08±0.15 (20/25), were not significantly different than those undergoing surgical intervention after 3 months, 0.18±0.27 (20/30) (P = 0.28). Three cases among those undergoing vitrectomy after 3 months were complicated by retinal detachment, none of which resulted in a BCVA worse than when the patient originally

  12. Clinical evidence of inflammation driving secondary brain injury: a systematic review.

    PubMed

    Hinson, Holly E; Rowell, Susan; Schreiber, Martin

    2015-01-01

    Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. The goal of this systematic review is to address the question: "What is the evidence in humans that inflammation is linked to secondary brain injury?" As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been inadvertently excluded due to use of non-search term key words. Conclusions and Implications of Key Findings Clinical evidence

  13. 77 FR 73366 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Traumatic Brain Injury AGENCY: Department of Veterans Affairs. ACTION: Proposed rule. SUMMARY: The... Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. The intended...

  14. Secondary stroke in patients with polytrauma and traumatic brain injury treated in an Intensive Care Unit, Karlovac General Hospital, Croatia.

    PubMed

    Belavić, M; Jančić, E; Mišković, P; Brozović-Krijan, A; Bakota, B; Žunić, J

    2015-11-01

    Traumatic brain injury (TBI) is divided into primary and secondary brain injury. Primary brain injury occurs at the time of injury and is the direct consequence of kinetic energy acting on the brain tissue. Secondary brain injury occurs several hours or days after primary brain injury and is the result of factors including shock, systemic hypotension, hypoxia, hypothermia or hyperthermia, intracranial hypertension, cerebral oedema, intracranial bleeding or inflammation. The aim of this retrospective analysis of a prospective database was to determine the prevalence of secondary stroke and stroke-related mortality, causes of secondary stroke, treatment and length of stay in the ICU and hospital. This study included patients with TBI with or without other injuries who were hospitalised in a general ICU over a five-year period. The following parameters were assessed: demographics (age, sex), scores (Glasgow Coma Score, APACHE II, SOFA), secondary stroke (prevalence, time of occurrence after primary brain injury, causes of stroke and associated mortality), length of stay in the ICU and hospital, vital parameters (state of consciousness, cardiac function, respiration, circulation, thermoregulation, diuresis) and laboratory values (leukocytes, C-reactive protein [CRP], blood glucose, blood gas analysis, urea, creatinine). Medical data were analysed for 306 patients with TBI (median age 56 years, range 18-93 years) who were treated in the general ICU. Secondary stroke occurred in 23 patients (7.5%), 10 of whom died, which gives a mortality rate of 43.4%. Three patients were excluded as the cause of the injury was missile trauma. The study data indicate that inflammation is the most important cause of secondary insults. Levels of CRP were elevated in 65% of patients with secondary brain injury; leukocytosis was present in 87% of these patients, and blood glucose was elevated in 73%. The lungs and urinary tract were the most common sites of infection. In conclusion

  15. Perioperative measures to improve outcome after subarachnoid hemorrhage-revisiting the concept of secondary brain injury.

    PubMed

    Steiger, Hans-Jakob; Beez, Thomas; Beseoglu, Kerim; Hänggi, Daniel; Kamp, Marcel A

    2015-01-01

    Progress in the management of aneurysmal subarachnoid hemorrhage (SAH) is reflected most clearly in a continuously decreasing case fatality rate over the last decades. The purpose of the present review is to identify the relevant factors responsible for this progress and to outline future possibilities of improvement. Although data on intracerebral hemorrhage and ischemic stroke are less homogeneous, the respective data suggest that reduction of case fatalities could also be achieved with these types of stroke. Therefore, advances of general neurocritical care may be the common denominator responsible for the decreasing case fatality rates. Additionally, a change in practice with regard to treatment of elderly patients that is more active may also be a factor. Regarding SAH, the majority of unfavorable outcomes is still related to early or delayed cerebral injury. Therefore, efforts to pharmacologically prevent secondary neuronal damage are likely to play a certain role in achieving improvement in overall outcome. However, the data from previous randomized clinical trials conducted during the last three decades does not strongly support this. A clear benefit has only been proven for oral nimodipine, whereas other calcium antagonists and the rho-kinase inhibitors were not conclusively shown to have a significant effect on functional outcome, and all other tested substances disappointed in clinical trials. Regarding ischemic stroke and traumatic brain injury, intensive clinical research has also been conducted during the last 30 years to improve outcome and to minimize secondary neuronal injury. For ischemic stroke, treatment focusing on reversal of the primary pathomechanism, such as thrombolysis, proved effective, but none of the pharmacological neuroprotective concepts resulted in any benefit. To date, decompressive hemicraniectomy has been the only effective effort focused at reducing secondary damage that resulted in a clear reduction of mortality. In the case

  16. Neuroprotective effect of chondroitinase ABC on primary and secondary brain injury after stroke in hypertensive rats.

    PubMed

    Chen, Xin-ran; Liao, Song-jie; Ye, Lan-xiang; Gong, Qiong; Ding, Qiao; Zeng, Jin-sheng; Yu, Jian

    2014-01-16

    Focal cerebral infarction causes secondary damage in the ipsilateral ventroposterior thalamic nucleus (VPN). Chondroitin sulfate proteoglycans (CSPGs) are a family of putative inhibitory components, and its degradation by chondroitinase ABC (ChABC) promotes post-injury neurogenesis. This study investigated the role of ChABC in the primary and secondary injury post stroke in hypertension. Renovascular hypertensive Sprague-Dawley rats underwent middle cerebral artery occlusion (MCAO), and were subjected to continuous intra-infarct infusion of ChABC (0.12 U/d for 7 days) 24 h later. Neurological function was evaluated by a modified neurologic severity score. Neurons were counted in the peri-infarct region and the ipsilateral VPN 8 and 14 days after MCAO by Nissl staining and NeuN labeling. The expressions of CSPGs, growth-associated protein-43 (GAP-43) and synaptophysin (SYN) were detected with immunofluorescence or Western blotting. The intra-infarct infusion of ChABC, by degrading accumulated CSPGs, rescued neuronal loss and increased the levels of GAP-43 and SYN in both the ipsilateral cortex and VPN, indicating enhancd neuron survival as well as augmented axonal growth and synaptic plasticity, eventually improving overall neurological function. The study demonstrated that intra-infarct ChABC infusion could salvage the brain from both primary and secondary injury by the intervention on the neuroinhibitory environment post focal cerebral infarction. © 2013 Published by Elsevier B.V.

  17. 78 FR 28546 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... Traumatic Brain Injury Correction In proposed rule document 2012-29709 beginning on page 73366 in the issue...: Structural imaging of the brain. LOC--Loss of consciousness. AOC--Alteration of consciousness/mental...

  18. Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice.

    PubMed

    Ahmad, Akbar; Crupi, Rosalia; Impellizzeri, Daniela; Campolo, Michela; Marino, Angela; Esposito, Emanuela; Cuzzocrea, Salvatore

    2012-11-01

    Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by significant blood brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether treatments that enhance plasticity might improve functional recovery, a controlled cortical impact (CCI) in adult mice, as a model of TBI, in which a controlled cortical impactor produced full thickness lesions of the forelimb region of the sensorimotor cortex, was performed. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The endogenous fatty acid palmitoylethanolamide (PEA) is one of the members of N-acyl-ethanolamines family that maintain not only redox balance but also inhibit the mechanisms of secondary injury. Therefore, we tested whether PEA shows efficacy in a mice model of experimental TBI. PEA treatment is able to reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level further support the efficacy of PEA therapy. The PEA treatment blocked infiltration of astrocytes and restored CCI-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, CD11b and GFAP. PEA inhibited the TBI-mediated decrease in the expression of pJNK and NF-κB. PEA-treated injured animals improved neurobehavioral functions as evaluated by behavioral tests.

  19. Changes of Noradrenaline in Brain Homogenate of Rats with Brain Injury Secondary to Intracerebral Hemorrhage: A Study of the Mechanism

    PubMed Central

    Xu, Zhi-Qiang; Zhou, Hua-Dong; Jiang, Xiao-Jiang; Wang, Jing-Zhou; Chen, Man-E

    2005-01-01

    Objective: To observe the changes of noradrenaline (NE) content dynamically in the homogenate of rat brain tissues during experimental intracerebral hemorrhage (ICH), so as to understand the role of NE in secondary brain injury. Methods: Seventy Wistar rats were randomly assigned into sham operation group and ICH group, each group subdivided into different time phase points as pre-operation, 0.5, 6, 12, 24, 48 and 72 h post-operation groups (n=5). ICH model was established by injection of collagenase and heparin into rat caudate nucleus, and the changes of NE content in the peripheral tissues of the hematoma, hypothalamus and brainstem were observed respectively at following time points as before operation and 0.5, 6, 12, 48 and 72 h after the operation. NE was determined by high-performance liquid chromatography. Results: NE activities in the peripheral tissues of the hematoma, hypothalamus and brainstem increased synchronously 0.5 h after operation, peaked at 24 h, and then began to decline at 48 h. At the same time, the neurobehavioral score varied synchronously together with NE. Conclusion: NE is involved in the pathogenesis of secondary damage of the brain during ICH. PMID:23674956

  20. Mild Traumatic Brain Injury

    MedlinePlus

    ... Questions Glossary Contact Us Visitor Feedback mild Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity ... most common deployment injuries is a mild Traumatic Brain Injury (TBI). A mild TBI is an injury ...

  1. Predictors of Secondary Attention-Deficit/Hyperactivity Disorder in Children and Adolescents 6 to 24 Months after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Schachar, Russell J.; Levin, Harvey S.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen; Saunders, Ann; Landis, Julie

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of attention-deficit/hyperactivity disorder (ADHD) after traumatic brain injury (TBI), also called secondary ADHD (SADHD). Method: Children without preinjury ADHD 5-14 years old with TBI from consecutive admissions (n = 143) to five trauma centers were observed prospectively from 6 to…

  2. [Traumatic brain injury].

    PubMed

    Hackenberg, K; Unterberg, A

    2016-02-01

    Since traumatic brain injury is the most common cause of long-term disability and death among young adults, it represents an enormous socio-economic and healthcare burden. As a consequence of the primary lesion, a perifocal brain edema develops causing an elevation of the intracranial pressure due to the limited intracranial space. This entails a reduction of the cerebral perfusion pressure and the cerebral blood flow. A cerebral perfusion deficit below the threshold for ischemia leads to further ischemic lesions and to a progression of the contusion. As the irreversible primary lesion can only be inhibited by primary prevention, the therapy of traumatic brain injury focuses on the secondary injuries. The treatment consists of surgical therapy evacuating the space-occupying intracranial lesion and conservative intensive medical care. Due to the complex pathophysiology the therapy of traumatic brain injury should be rapidly performed in a neurosurgical unit.

  3. Time-Dependent Effects of Arginine-Vasopressin V1 Receptor Inhibition on Secondary Brain Damage after Traumatic Brain Injury.

    PubMed

    Krieg, Sandro M; Trabold, Raimund; Plesnila, Nikolaus

    2017-04-01

    Arginine-vasopressin (AVP) V1 receptors are known to mediate brain edema formation after traumatic brain injury (TBI). So far, however, AVP V1 receptors were only inhibited by genetic deletion or prior to trauma. Therefore, the current study aimed to determine the therapeutic window of AVP V1 receptor antagonization after TBI. Male C57BL/6 mice (n = 7 per group) were subjected to controlled cortical impact (CCI), and 500 ng of a selective peptide V1 receptor antagonist (V1880) were applied by intracerebroventricular injection 5 min, and 1, 3, and 6 h thereafter. After 24 h, brain water content (BWC), intracranial pressure (ICP), and secondary contusion expansion volume were assessed. Neurological function was assessed daily for 7 days after trauma. Inhibition of AVP V1 receptors within 1 h after TBI significantly reduced BWC from 81.6 ± 0.7 to 80.6 ± 0.7% (mean ± SD; p < 0.05). Reduction of brain edema resulted in a significant decrease in ICP from 25.9 ± 1.8 mm Hg to 21.0 ± 1.5 mm Hg (p < 0.05) and a reduction in contusion volume (26.1 ± 2.5 mm(3) vs. 30.1 ± 2.0 mm(3) in controls; p < 0.05). This reduction of brain injury resulted in a significantly improved neurological function 7 days after trauma. Treatments initiated 6 h after TBI had no effect. The results of the current study demonstrate that inhibition of AVP V1 receptors improve outcome after experimental TBI when given within a clinically relevant time window. Therefore, AVP V1 receptors may represent a therapeutic target with clinical potential.

  4. Xenon improves neurological outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury

    PubMed Central

    Luh, Clara; Gruss, Marco; Radyushkin, Konstantin; Hirnet, Tobias; Werner, Christian; Engelhard, Kristin; Franks, Nicholas P; Thal, Serge C; Dickinson, Robert

    2015-01-01

    Objectives To determine the neuroprotective efficacy of the inert gas xenon following traumatic brain injury, and to determine whether application of xenon has a clinically relevant therapeutic time window. Design Controlled animal study. Setting University research laboratory. Subjects Male C57BL/6N mice (n=196) Interventions 75% xenon, 50% xenon or 30% xenon, with 25% oxygen (balance nitrogen) treatment following mechanical brain lesion by controlled cortical impact. Measurements & Main Results Outcome following trauma was measured using: 1) functional neurological outcome score, 2) histological measurement of contusion volume, 3) analysis of locomotor function and gait. Our study shows that xenon-treatment improves outcome following traumatic brain injury. Neurological outcome scores were significantly (p<0.05) better in xenon-treated groups in the early phase (24 hours) and up to 4 days after injury. Contusion volume was significantly (p<0.05) reduced in the xenon-treated groups. Xenon treatment significantly (p<0.05) reduced contusion volume when xenon was given 15 minutes after injury or when treatment was delayed 1 hour or 3 hours after injury. Neurological outcome was significantly (p<0.05) improved when xenon treatment was given 15 minutes or 1 hour after injury. Improvements in locomotor function (p<0.05) were observed in the xenon-treated group, 1 month after trauma. Conclusions These results show for the first time that xenon improves neurological outcome and reduces contusion volume following traumatic brain injury in mice. In this model, xenon application has a therapeutic time window of up to at least 3 hours. These findings support the idea that xenon may be of benefit as a neuroprotective treatment in brain trauma patients. PMID:25188549

  5. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  6. Assessing readiness for post-secondary education after traumatic brain injury using a simulated college experience.

    PubMed

    Maclennan, Don L; Maclennan, Diane C

    2008-01-01

    Approximately 1.4 million Americans sustain a traumatic brain injury (TBI) each year with approximately two-thirds of these injuries affecting people between the ages of 15 and 24 years. Consequently, many adults with brain injury sustain their injuries during a time when they are making important decisions regarding future vocational activities, including return to school. Cognitive impairments resulting from TBI present as a significant barrier to return to school and it is difficult to predict those persons who will succeed in school after a TBI and those who will not. This article presents a college simulation experience currently used in a rehabilitation setting. It involves lectures and examinations that test an individual's ability to learn new material. Lecture content focuses on the nature and effects of brain injury and on study skills. In addition, compensatory strategies commonly used in university settings (note takers, extended time for exams, taped lectures) may be used to assess potential benefit of these services. The simulated college experience provides a realistic appraisal of the individual's ability to learn information in a lecture-oriented class setting. It also provides information regarding the benefits of specific study skills and compensatory strategies. Case studies of three individuals with severe TBI are presented.

  7. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury

    PubMed Central

    Sun, Guo-zhu; Gao, Fen-fei; Zhao, Zong-mao; Sun, Hai; Xu, Wei; Wu, Li-wei; He, Yong-chang

    2016-01-01

    Neuronal apoptosis is mediated by intrinsic and extrinsic signaling pathways such as the membrane-mediated, mitochondrial, and endoplasmic reticulum stress pathways. Few studies have examined the endoplasmic reticulum-mediated apoptosis pathway in the penumbra after traumatic brain injury, and it remains unclear whether endoplasmic reticulum stress can activate the caspase-12-dependent apoptotic pathway in the traumatic penumbra. Here, we established rat models of fluid percussion-induced traumatic brain injury and found that protein expression of caspase-12, caspase-3 and the endoplasmic reticulum stress marker 78 kDa glucose-regulated protein increased in the traumatic penumbra 6 hours after injury and peaked at 24 hours. Furthermore, numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells in the traumatic penumbra also reached peak levels 24 hours after injury. These findings suggest that caspase-12-mediated endoplasmic reticulum-related apoptosis is activated in the traumatic penumbra, and may play an important role in the pathophysiology of secondary brain injury. PMID:27651773

  8. The relationship between transient zinc ion fluctuations and redox signaling in the pathways of secondary cellular injury: relevance to traumatic brain injury

    PubMed Central

    Li, Yuan; Hawkins, Bridget E.; DeWitt, Douglas S.; Prough, Donald S.; Maret, Wolfgang

    2010-01-01

    A major obstacle that hampers the design of drug therapy for traumatic brain injury is the incomplete understanding of the biochemical pathways that lead to secondary cellular injury and contribute to cell death. One such pathway involves reactive species that generate potentially cytotoxic zinc ion fluctuations as a major executor of neuronal, and possibly glial, cell death. Whether zinc ions released during traumatic brain injury are toxic or protective is controversial but can be approached by investigating the exact concentrations of free zinc ions, the thresholds of compromised zinc buffering capacity, and the mechanism of cellular homeostatic control of zinc. Rapidly stretch-injured rat pheochromocytoma (PC12) cells express cellular zinc ion fluctuations that depend on the production of nitric oxide. Chelation of cellular zinc ions after rapid stretch injury, however, increases cellular reactive oxygen species. In a rat model of traumatic brain injury, parasagittal fluid percussion, analysis of the metal load of metallothionein was used as an indicator of changes in cellular zinc ion concentrations. The combined results from the cellular and in vivo investigations caution against interpreting zinc ion fluctuations in the early phase (24 hours) after injury as a primarily cytotoxic event. PMID:20303343

  9. The relationship between transient zinc ion fluctuations and redox signaling in the pathways of secondary cellular injury: relevance to traumatic brain injury.

    PubMed

    Li, Yuan; Hawkins, Bridget E; DeWitt, Douglas S; Prough, Donald S; Maret, Wolfgang

    2010-05-12

    A major obstacle that hampers the design of drug therapy for traumatic brain injury is the incomplete understanding of the biochemical pathways that lead to secondary cellular injury and contribute to cell death. One such pathway involves reactive species that generate potentially cytotoxic zinc ion fluctuations as a major executor of neuronal, and possibly glial, cell death. Whether zinc ions released during traumatic brain injury are toxic or protective is controversial but can be approached by investigating the exact concentrations of free zinc ions, the thresholds of compromised zinc buffering capacity, and the mechanism of cellular homeostatic control of zinc. Rapidly stretch-injured rat pheochromocytoma (PC12) cells express cellular zinc ion fluctuations that depend on the production of nitric oxide. Chelation of cellular zinc ions after rapid stretch injury, however, increases cellular reactive oxygen species. In a rat model of traumatic brain injury, parasagittal fluid percussion, analysis of the metal load of metallothionein was used as an indicator of changes in cellular zinc ion concentrations. The combined results from the cellular and in vivo investigations caution against interpreting zinc ion fluctuations in the early phase (24h) after injury as a primarily cytotoxic event. (c) 2010 Elsevier B.V. All rights reserved.

  10. Bruxism secondary to brain injury treated with Botulinum toxin-A: a case report

    PubMed Central

    El Maaytah, Mohammed; Jerjes, Waseem; Upile, Tahwinder; Swinson, Brian; Hopper, Colin; Ayliffe, Peter

    2006-01-01

    We report a successful treatment of bruxism in a patient with anoxic brain injury using botulinum toxin-A (BTX-A). On examination the mouth opening was 0 mm, no feeding was possible through the mouth. Botulinum toxin was injected into the masseter and temporalis; great improvement in trismus and bruxism was noted after 3 weeks. One further treatment improved the mouth opening on the following week and the patient was discharged from our care to be reviewed when required. PMID:17123443

  11. Spreading Depressions as Secondary Insults After Traumatic Injury to the Human Brain

    DTIC Science & Technology

    2010-09-01

    is to determine whether SDs cause secondary injury after TBI, and therefore represent an acute target for treatment to improve recovery . The...data suggest that therapeutic blockade of SD/PID may be an effective strategy to improve recovery from TBI, and point toward the need for a future...Dreier JP, Major S, Fabricius M. Recovery of slow potentials in AC-coupled electrocorticography by digital inverse filtering: application to spreading

  12. Screening of biochemical and molecular mechanisms of secondary injury and repair in the brain after experimental blast-induced traumatic brain injury in rats.

    PubMed

    Kochanek, Patrick M; Dixon, C Edward; Shellington, David K; Shin, Samuel S; Bayır, Hülya; Jackson, Edwin K; Kagan, Valerian E; Yan, Hong Q; Swauger, Peter V; Parks, Steven A; Ritzel, David V; Bauman, Richard; Clark, Robert S B; Garman, Robert H; Bandak, Faris; Ling, Geoffrey; Jenkins, Larry W

    2013-06-01

    Abstract Explosive blast-induced traumatic brain injury (TBI) is the signature insult in modern combat casualty care and has been linked to post-traumatic stress disorder, memory loss, and chronic traumatic encephalopathy. In this article we report on blast-induced mild TBI (mTBI) characterized by fiber-tract degeneration and axonal injury revealed by cupric silver staining in adult male rats after head-only exposure to 35 psi in a helium-driven shock tube with head restraint. We now explore pathways of secondary injury and repair using biochemical/molecular strategies. Injury produced ∼25% mortality from apnea. Shams received identical anesthesia exposure. Rats were sacrificed at 2 or 24 h, and brain was sampled in the hippocampus and prefrontal cortex. Hippocampal samples were used to assess gene array (RatRef-12 Expression BeadChip; Illumina, Inc., San Diego, CA) and oxidative stress (OS; ascorbate, glutathione, low-molecular-weight thiols [LMWT], protein thiols, and 4-hydroxynonenal [HNE]). Cortical samples were used to assess neuroinflammation (cytokines, chemokines, and growth factors; Luminex Corporation, Austin, TX) and purines (adenosine triphosphate [ATP], adenosine diphosphate, adenosine, inosine, 2'-AMP [adenosine monophosphate], and 5'-AMP). Gene array revealed marked increases in astrocyte and neuroinflammatory markers at 24 h (glial fibrillary acidic protein, vimentin, and complement component 1) with expression patterns bioinformatically consistent with those noted in Alzheimer's disease and long-term potentiation. Ascorbate, LMWT, and protein thiols were reduced at 2 and 24 h; by 24 h, HNE was increased. At 2 h, multiple cytokines and chemokines (interleukin [IL]-1α, IL-6, IL-10, and macrophage inflammatory protein 1 alpha [MIP-1α]) were increased; by 24 h, only MIP-1α remained elevated. ATP was not depleted, and adenosine correlated with 2'-cyclic AMP (cAMP), and not 5'-cAMP. Our data reveal (1) gene-array alterations similar to disorders of

  13. FeTPPS Reduces Secondary Damage and Improves Neurobehavioral Functions after Traumatic Brain Injury

    PubMed Central

    Bruschetta, Giuseppe; Impellizzeri, Daniela; Campolo, Michela; Casili, Giovanna; Di Paola, Rosanna; Paterniti, Irene; Esposito, Emanuela; Cuzzocrea, Salvatore

    2017-01-01

    Traumatic brain injury (TBI) determinate a cascade of events that rapidly lead to neuron's damage and death. We already reported that administration of FeTPPS, a 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin iron III chloride peroxynitrite decomposition catalyst, possessed evident neuroprotective effects in a experimental model of spinal cord damage. The present study evaluated the neuroprotective property of FeTPPS in TBI, using a clinically validated model of TBI, the controlled cortical impact injury (CCI). We observe that treatment with FeTPPS (30 mg/kg, i.p.) reduced: the state of brain inflammation and the tissue hurt (histological score), myeloperoxidase activity, nitric oxide production, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines expression and apoptosis process. Moreover, treatment with FeTPPS re-established motor-cognitive function after CCI and it resulted in a reduction of lesion volumes. Our results established that FeTPPS treatment decreases the growth of inflammatory process and the tissue injury associated with TBI. Thus our study confirmed the neuroprotective role of FeTPPS treatment on TBI. PMID:28223911

  14. Temporal Profile of Cerebrospinal Fluid, Plasma, and Brain Interleukin-6 After Normothermic Fluid-Percussion Brain Injury: Effect of Secondary Hypoxia

    PubMed Central

    Chatzipanteli, Katina; Vitarbo, Elizabeth; Alonso, Ofelia F.; Bramlett, Helen M.

    2012-01-01

    Interleukin-6 (IL-6) is a proinflammatory cytokine that may play multiple roles in the pathogenesis of traumatic brain injury (TBI). The present study determined time-dependent changes in IL-6 concentrations in vulnerable brain regions, cerebrospinal fluid (CSF) samples, and plasma after normothermic TBI. Because secondary insults are common in head injured patients, we also assessed the consequences of a post-traumatic secondary hypoxic insult on this pleiotropic cytokine. Male Sprague-Dawley rats were intubated, anesthetized, and underwent a moderate parasagittal fluid-percussion brain injury (1.8–2.1 atm, 37°C) followed by either 30 minutes of normoxic or hypoxic (pO2=30–40 mmHg) gas levels. Rats were sacrificed 3, 6, or 24 hours after TBI or sham-operated procedures. Brain samples, including the ipsilateral cerebral cortex and hippocampus were dissected and analyzed. Plasma and CSF samples were collected at similar times and stored at −80°C until analysis. IL-6 levels were significantly increased (p<0.05) at 3, 6, and 24 hours in the cerebral cortex and at 6 hours in the hippocampus after TBI. IL-6 levels in the TBI normoxic group for both structures returned to control levels by 24 hours. Plasma levels of IL-6 were elevated at all time points, while CSF levels were high at 3 and 6 hours, but normalized by 24 hours. Post-traumatic hypoxia led to significantly elevated (p<0.05) IL-6 protein levels in the cerebral cortex at 24 hours compared to sham-operated controls. These findings demonstrate that moderate TBI leads to an early increase in IL-6 brain, plasma, and CSF protein levels. Secondary post-traumatic hypoxia, a common secondary injury mechanism, led to prolonged elevations in plasma IL-6 levels that may participate in the pathophysiology of this complicated TBI model. PMID:23667780

  15. Pulmonary thrombosis associated with antidiuretic hormone replacement therapy due to secondary diabetes insipidus after traumatic brain injury: A case report

    PubMed Central

    Naito, Kiyohito; Watari, Taiji; Yasunari, Eisuke; Yamano, Miki; Mogami, Atsuhiko; Obayashi, Osamu; Kaneko, Kazuo

    2012-01-01

    INTRODUCTION Diabetes insipidus is a well-recognized complication of traumatic brain injury. The majority of patients with post-traumatic diabetes insipidus will require antidiuretic hormone (ADH) replacement therapy and tend to show dehydration. On the other hand, some negative effects of ADH on blood coagulation, such as increased platelet cohesion and the promotion of von Willebrand factor release, have also been reported. However, the incidence of thrombosis during antidiuretic hormone replacement therapy is disputed. PRESENTATION OF CASE A case of pulmonary thrombosis associated with ADH replacement therapy due to secondary diabetes insipidus after traumatic brain injury is presented here. DISCUSSION In our case, there were three factors that may have contributed to the observed thrombosis (dehydration, bed rest for a long period and ADH replacement therapy). CONCLUSION We believe that controlling urinary output and monitoring urinary and serum osmotic pressure are necessary for the management for diabetes insipidus patients after traumatic brain injury. In particular, we must carefully monitor the management of such patients during antidiuretic hormone replacement therapy. PMID:23131855

  16. Pulmonary thrombosis associated with antidiuretic hormone replacement therapy due to secondary diabetes insipidus after traumatic brain injury: A case report.

    PubMed

    Naito, Kiyohito; Watari, Taiji; Yasunari, Eisuke; Yamano, Miki; Mogami, Atsuhiko; Obayashi, Osamu; Kaneko, Kazuo

    2013-01-01

    Diabetes insipidus is a well-recognized complication of traumatic brain injury. The majority of patients with post-traumatic diabetes insipidus will require antidiuretic hormone (ADH) replacement therapy and tend to show dehydration. On the other hand, some negative effects of ADH on blood coagulation, such as increased platelet cohesion and the promotion of von Willebrand factor release, have also been reported. However, the incidence of thrombosis during antidiuretic hormone replacement therapy is disputed. A case of pulmonary thrombosis associated with ADH replacement therapy due to secondary diabetes insipidus after traumatic brain injury is presented here. In our case, there were three factors that may have contributed to the observed thrombosis (dehydration, bed rest for a long period and ADH replacement therapy). We believe that controlling urinary output and monitoring urinary and serum osmotic pressure are necessary for the management for diabetes insipidus patients after traumatic brain injury. In particular, we must carefully monitor the management of such patients during antidiuretic hormone replacement therapy. Copyright © 2012 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  17. Effectiveness of chin-down posture to prevent tracheal aspiration in dysphagia secondary to acquired brain injury. A videofluoroscopy study.

    PubMed

    Terré, R; Mearin, F

    2012-05-01

    The chin-down posture is generally recommended in patients with neurogenic dysphagia to prevent tracheal aspiration; however, its effectiveness has not been demonstrated. To videofluoroscopically (VDF) assess the effectiveness of chin-down posture to prevent aspiration in patients with neurogenic dysphagia secondary to acquired brain injury. Randomized, alternating, cross-over study (with and without the chin-down posture) in 47 patients with a VDF diagnosis of aspiration [31 stroke, 16 traumatic brain injury (TBI)] and 25 controls without aspiration (14 stroke, 11 TBI). During the chin-down posture, 55% of patients avoided aspiration (40% preswallow aspiration and 60% aspiration during swallow). The percentage was similar in both etiologies (58% stroke and 50% TBI). Fifty-one percent of patients had silent aspiration; of these, 48% persisted with aspiration while in the chin-down posture. A statistically significant relationship was found between the existence of pharyngeal residue, cricopharyngeal dysfunction, pharyngeal delay time and bolus volume with the persistence of aspiration. The chin-down posture did not change swallow biomechanics in patients without aspiration. Only half the patients with acquired brain injury avoided aspiration during cervical flexion; 48% of silent aspirators continued to aspire during the maneuver. Several videofluoroscopic parameters were related to inefficiency of the maneuver. Therefore, the indication for chin-down posture should be evaluated by videofluoroscopic examination. © 2012 Blackwell Publishing Ltd.

  18. Decreased Secondary Lesion Growth and Attenuated Immune Response after Traumatic Brain Injury in Tlr2/4(-/-) Mice.

    PubMed

    Krieg, Sandro M; Voigt, Florian; Knuefermann, Pascal; Kirschning, Carsten Jürgen; Plesnila, Nikolaus; Ringel, Florian

    2017-01-01

    Danger-associated molecular patterns are released by damaged cells and trigger neuroinflammation through activation of non-specific pattern recognition receptors, e.g., toll-like receptors (TLRs). Since the role of TLR2 and 4 after traumatic brain injury (TBI) is still unclear, we examined the outcome and the expression of pro-inflammatory mediators after experimental TBI in Tlr2/4(-/-) and wild-type (WT) mice. Tlr2/4(-/-) and WT mice were subjected to controlled cortical injury and contusion volume and brain edema formation were assessed 24 h thereafter. Expression of inflammatory markers in brain tissue was measured by quantitative PCR 15 min, 3 h, 6 h, 12 h, and 24 h after controlled cortical impact (CCI). Contusion volume was significantly attenuated in Tlr2/4(-/-) mice (29.7 ± 0.7 mm(3) as compared to 33.5 ± 0.8 mm(3) in WT; p < 0.05) after CCI while brain edema was not affected. Only interleukin (IL)-1β gene expression was increased after CCI in the Tlr2/4(-/-) relative to WT mice. Inducible nitric oxide synthetase, TNF, IL-6, and COX-2 were similar in injured WT and Tlr2/4(-/-) mice, while the increase in high-mobility group box 1 was attenuated at 6 h. TLR2 and 4 are consequently shown to potentially promote secondary brain injury after experimental CCI via neuroinflammation and may therefore represent a novel therapeutic target for the treatment of TBI.

  19. Sertraline to improve arousal and alertness in severe traumatic brain injury secondary to motor vehicle crashes.

    PubMed

    Meythaler, J M; Depalma, L; Devivo, M J; Guin-Renfroe, S; Novack, T A

    2001-04-01

    To establish whether or not the serotonin reuptake inhibitor (SSRI) sertraline can improve arousal and alertness of patients with traumatic brain injury (TBI) and associated diffuse axonal injury (DAI). Serotonin is a major inhibitory as well an excitatory neurotransmitter, and serotonergic neurons modulate the activity of brain regions responsible for motor control, arousal, attention, and emotional regulation. Tertiary care inpatient rehabilitation centre directly attached to a university hospital level-one trauma centre. Prospective placebo-controlled randomized trial utilizing sertraline on admission to acute rehabilitation. Eleven subjects, post-high speed motor vehicle crash and post-severe TBI (GCS < or = 8) with presumed DAI randomized to receive either sertraline 100mg per day or placebo for 2 weeks. All subjects were within 2 weeks of acute injury. Outcome measures recorded were the Orientation Log (daily), Agitated Behaviour Scale (daily), and the Galveston Orientation and Amnesia Test (weekly). Both placebo and active medication groups demonstrated similar rates of improvement on all three scales. There was no difference in the rates of recovery for either study group (p > 0.05, ANOVA with repeated measures). The groups did not demonstrate a statistically significant negative effect on recovery either, although the size is too small for a statistically reliable beta-effect. This pilot study fails to establish whether the early use of sertraline may improve alertness, decrease agitation or improve cognitive recall of material. This may be due to the small size of the study group, the brief duration of treatment or by a skewed placebo group. Larger studies will be required to prove any efficacy. There were no complications with its use and sertraline did not demonstrate a detrimental effect on recovery. This indicates that sertraline may be safe to use in the treatment of psychiatric or behavioural complications attributable to TBI.

  20. Biochemical, cellular, and molecular mechanisms in the evolution of secondary damage after severe traumatic brain injury in infants and children: Lessons learned from the bedside.

    PubMed

    Kochanek, Patrick M.; Clark, Robert S.B.; Ruppel, Randall A.; Adelson, P. David; Bell, Michael J.; Whalen, Michael J.; Robertson, Courtney L.; Satchell, Margaret A.; Seidberg, Neal A.; Marion, Donald W.; Jenkins, Larry W.

    2000-07-01

    OBJECTIVE: To present a state-of-the-art review of mechanisms of secondary injury in the evolution of damage after severe traumatic brain injury in infants and children. DATA SOURCES: We reviewed 152 peer-reviewed publications, 15 abstracts and proceedings, and other material relevant to the study of biochemical, cellular, and molecular mechanisms of damage in traumatic brain injury. Clinical studies of severe traumatic brain injury in infants and children were the focus, but reports in experimental models in immature animals were also considered. Results from both clinical studies in adults and models of traumatic brain injury in adult animals were presented for comparison. DATA SYNTHESIS: Categories of mechanisms defined were those associated with ischemia, excitotoxicity, energy failure, and resultant cell death cascades; secondary cerebral swelling; axonal injury; and inflammation and regeneration. CONCLUSIONS: A constellation of mediators of secondary damage, endogenous neuroprotection, repair, and regeneration are set into motion in the brain after severe traumatic injury. The quantitative contribution of each mediator to outcome, the interplay between these mediators, and the integration of these mechanistic findings with novel imaging methods, bedside physiology, outcome assessment, and therapeutic intervention remain an important target for future research.

  1. Intracranial halo pin penetration causing brain injury secondary to poor halo care technique: a case report and literature review

    PubMed Central

    Male, Kishore Reddy; Guha, Abhijit; James, Stuart; Ahuja, Sashin

    2008-01-01

    This is a case report of intra cranial penetration by halo pins resulting in cerebritis and fits secondary to incorrect halo care by the patient and his family. Halo pin penetration into the skull with brain injury is itself a rare incident. Previously documented case reports were in patients with a previous cranioplasties and they were highlight the fact that halo not to be used in cranioplasty patients. Cranial penetration of the halo pins has generally been secondary to a fall/medical condition as epilepsy. This incident how ever highlights the fact the halo care itself along with proper techniques used for tightening the halo pins by the carer plays a crucial role in preventing complications such as this. PMID:19068118

  2. Hyperbaric Oxygen Alleviates Secondary Brain Injury After Trauma Through Inhibition of TLR4/NF-κB Signaling Pathway

    PubMed Central

    Meng, Xiang-En; Zhang, Yu; Li, Na; Fan, Dan-Feng; Yang, Chen; Li, Hang; Guo, Da-Zhi; Pan, Shu-Yi

    2016-01-01

    Background The aim of this study was to investigate the efficacy of hyperbaric oxygen in secondary brain injury after trauma and its mechanism in a rat model. Material/Methods A rat model of TBI was constructed using the modified Feeney’s free-fall method, and 60 SD rats were randomly divided into three groups – the sham group, the untreated traumatic brain injury (TBI) group, and the hyperbaric oxygen-treated TBI group. The neurological function of the rats was evaluated 12 and 24 hours after TBI modeling; the expression levels of TLR4, IκB, p65, and cleaved caspase-3 in the peri-trauma cortex were determined by Western blot; levels of TNF-α, IL-6, and IL-1β were determined by ELISA; and apoptosis of the neurons was evaluated by TUNEL assay 24 hours after TBI modeling. Results Hyperbaric oxygen therapy significantly inhibited the activation of the TLR4/NF-κB signaling pathway, reduced the expression of cleaved caspase-3, TNF-α, IL-6 and IL-1β (P<0.05), reduced apoptosis of the neurons and improved the neurological function of the rats (P<0.05). Conclusions Hyperbaric oxygen therapy protects the neurons after traumatic injury, possibly through inhibition of the TLR4/NF-κB signaling pathway. PMID:26812205

  3. A multidimensional physical therapy program for individuals with cerebellar ataxia secondary to traumatic brain injury: a case series.

    PubMed

    Sartor-Glittenberg, Cecelia; Brickner, Lori

    2014-02-01

    The purpose of this case series is to describe changes in impairments and activity limitations in three individuals with severe cerebellar ataxia from traumatic brain injury (TBI) who participated in a long-term, multidimensional physical therapy program. A secondary purpose is to document use of a climbing wall for these persons. Each of the individuals had a TBI, severe ataxia and was admitted to a transitional neuro-rehabilitation day treatment program. The first person, a 22-year-old, was 6 years post injury and had 127 individual physical therapy sessions over 12 months. The second person, a 16-year-old, was 5½ months post injury and had 187 individual therapy sessions over 19 months. The third person, a 20-year-old, was 6 months post injury and had 89 individual therapy sessions over 23 months. An integrative treatment approach was used, and the individuals participated in activities to minimize ataxia and improve mobility. Each of them made gains in coordination, balance, balance confidence, endurance and mobility. The three individuals with cerebellar ataxia participated in a long-term, individualized, multidimensional physical therapy treatment program, and made improvements in all areas of impairment and activity limitations. This study reinforces the need for long-term, multidimensional physical therapy for individuals with ataxia.

  4. Genetic predictors of response to treatment with citalopram in depression secondary to traumatic brain injury

    PubMed Central

    LANCTÔT, KRISTA L.; RAPOPORT, MARK J.; CHAN, FLORANCE; RAJARAM, RYAN D.; STRAUSS, JOHN; SICARD, TRICIA; MCCULLAGH, SCOTT; FEINSTEIN, ANTHONY; KISS, ALEX; KENNEDY, JAMES L.; BASSETT, ANNE S.; HERRMANN, NATHAN

    2011-01-01

    Objectives To determine which serotonergic system-related single nucleotide polymorphisms (SNPs) predicted variation in treatment response to citalopram in depression following a traumatic brain injury (TBI). Methods Ninety (50 M/40 F, aged 39.9, SD = 18.0 years) post-TBI patients with a major depressive episode (MDE) were recruited into a 6-week open-label study of citalopram (20 mg/day). Six functional SNPs in genes related to the serotonergic system were examined: serotonin transporter (5HTTLPR including rs25531), 5HT1A C-(1019)G and 5HT2A T-(102)C, methylene tetrahydrofolate reductase (MTHFR) C-(677)T, brain-derived neurotrophic factor (BDNF) val66met and tryptophan hydroxylase-2 (TPH2) G-(703)T. Regression analyses were performed using the six SNPs as independent variables: Model 1 with response (percentage Hamilton Depression (HAMD) change from baseline to endpoint) as the dependent variable and Model 2 with adverse event index as the dependent variable (Bonferroni corrected p-value <0.025). Results MTHFR and BDNF SNPs predicted greater treatment response (R2= 0.098, F = 4.65, p = 0.013). The 5HTTLPR predicted greater occurrence of adverse events (R2= 0.069, F = 5.72, p = 0.020). Conclusion Results suggest that polymorphisms in genes related to the serotonergic system may help predict short-term response to citalopram and tolerability to the medication in patients with MDE following a TBI. PMID:20515362

  5. Experimental traumatic brain injury

    PubMed Central

    2010-01-01

    Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury. PMID:20707892

  6. Temporal dysfunction in traumatic brain injury patients: primary or secondary impairment?

    PubMed Central

    Mioni, Giovanna; Grondin, Simon; Stablum, Franca

    2014-01-01

    Adequate temporal abilities are required for most daily activities. Traumatic brain injury (TBI) patients often present with cognitive dysfunctions, but few studies have investigated temporal impairments associated with TBI. The aim of the present work is to review the existing literature on temporal abilities in TBI patients. Particular attention is given to the involvement of higher cognitive processes in temporal processing in order to determine if any temporal dysfunction observed in TBI patients is due to the disruption of an internal clock or to the dysfunction of general cognitive processes. The results showed that temporal dysfunctions in TBI patients are related to the deficits in cognitive functions involved in temporal processing rather than to a specific impairment of the internal clock. In fact, temporal dysfunctions are observed when the length of temporal intervals exceeds the working memory span or when the temporal tasks require high cognitive functions to be performed. The consistent higher temporal variability observed in TBI patients is a sign of impaired frontally mediated cognitive functions involved in time perception. PMID:24817847

  7. Screening of Biochemical and Molecular Mechanisms of Secondary Injury and Repair in the Brain after Experimental Blast-Induced Traumatic Brain Injury in Rats

    DTIC Science & Technology

    2013-01-01

    chemokine45 stimulating macrophage infiltration at injury sites. It is produced in white matter lesions in multiple sclerosis and associated with...and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. Proc...potentiation. Ascorbate, LMWT, and protein thiols were reduced at 2 and 24h; by 24h HNE was increased. At 2h, multiple cytokines and chemokines (IL-1, IL-6

  8. Melatonin Alleviates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via Suppressing Apoptosis, Inflammation, Oxidative Stress, DNA Damage, and Mitochondria Injury.

    PubMed

    Wang, Zhong; Zhou, Feng; Dou, Yang; Tian, Xiaodi; Liu, Chenglin; Li, Haiying; Shen, Haitao; Chen, Gang

    2017-08-01

    Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity, and the effective treatment is still lacking. We designed this study to investigate the therapeutic effects and mechanisms of melatonin on the secondary brain injury (SBI) after ICH. An in vivo ICH model was induced via autologous whole blood injection into the right basal ganglia in Sprague-Dawley (SD) rats. Primary rat cortical neurons were treated with oxygen hemoglobin (OxyHb) as an in vitro ICH model. The results of the in vivo study showed that melatonin alleviated severe brain edema and behavior disorders induced by ICH. Indicators of blood-brain barrier (BBB) integrity, DNA damage, inflammation, oxidative stress, apoptosis, and mitochondria damage showed a significant increase after ICH, while melatonin reduced their levels. Meanwhile, melatonin promoted further increasing of expression levels of antioxidant indicators induced by ICH. Microscopically, TUNEL and Nissl staining showed that melatonin reduced the numbers of ICH-induced apoptotic cells. Inflammation and DNA damage indicators exhibited an identical pattern compared to those above. Additionally, the in vitro study demonstrated that melatonin reduced the apoptotic neurons induced by OxyHb and protected the mitochondrial membrane potential. Collectively, our investigation showed that melatonin ameliorated ICH-induced SBI by impacting apoptosis, inflammation, oxidative stress, DNA damage, brain edema, and BBB damage and reducing mitochondrial membrane permeability transition pore opening, and melatonin may be a potential therapeutic agent of ICH.

  9. Brain injury - discharge

    MedlinePlus

    Head injury - discharge; Head trauma - discharge; Contusion - discharge; Shaken baby syndrome - discharge ... done to help them recover from the brain injury. The person may have stayed in a special ...

  10. Increased Amyloid Precursor Protein and Tau Expression Manifests as Key Secondary Cell Death in Chronic Traumatic Brain Injury.

    PubMed

    Acosta, Sandra A; Tajiri, Naoki; Sanberg, Paul R; Kaneko, Yuji; Borlongan, Cesar V

    2017-03-01

    In testing the hypothesis of Alzheimer's disease (AD)-like pathology in late stage traumatic brain injury (TBI), we evaluated AD pathological markers in late stage TBI model. Sprague-Dawley male rats were subjected to moderate controlled cortical impact (CCI) injury, and 6 months later euthanized and brain tissues harvested. Results from H&E staining revealed significant 33% and 10% reduction in the ipsilateral and contralateral hippocampal CA3 interneurons, increased MHCII-activated inflammatory cells in many gray matter (8-20-fold increase) and white matter (6-30-fold increased) regions of both the ipsilateral and contralateral hemispheres, decreased cell cycle regulating protein marker by 1.6- and 1-fold in the SVZ and a 2.3- and 1.5-fold reductions in the ipsilateral and contralateral dentate gyrus, diminution of immature neuronal marker by two- and onefold in both the ipsilateral and contralateral SVZ and dentate gyrus, and amplified amyloid precursor protein (APP) distribution volumes in white matter including corpus callosum, fornix, and internal capsule (4-38-fold increase), as well as in the cortical gray matter, such as the striatum hilus, SVZ, and dentate gyrus (6-40-fold increase) in TBI animals compared to controls (P's < 0.001). Surrogate AD-like phenotypic markers revealed a significant accumulation of phosphorylated tau (AT8) and oligomeric tau (T22) within the neuronal cell bodies in ipsilateral and contralateral cortex, and dentate gyrus relative to sham control, further supporting the rampant neurodegenerative pathology in TBI secondary cell death. These findings indicate that AD-like pathological features may prove to be valuable markers and therapeutic targets for late stage TBI. J. Cell. Physiol. 232: 665-677, 2017. © 2016 Wiley Periodicals, Inc.

  11. 78 FR 76196 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... dementia of the Alzheimer type and post-traumatic dementia) if manifest within 15 years following moderate...) Dementias of the following types: presenile dementia of the Alzheimer type, frontotemporal dementia, and... cause types of dementia of the Alzheimer's type. The primary and secondary studies cited by the...

  12. Spreading Depressions as Secondary Insults after Traumatic Injury to the Human Brain

    DTIC Science & Technology

    2012-09-01

    database. E. NEW RESULTS Non-invasive monitoring A major limitation of the present study and research is that spreading depolarizations can only...Patients with prolonged SDs had worse outcomes (Hartings et al., Brain 134:1529-40, 2011). Furthermore, we have developed a new recording platform for...significantly associated with excitotoxicity and metabolic crisis , as measured by cerebral microdialysis. These results suggest a vicious cycle in

  13. Human Recombinant Factor VIIa is Neuroprotective in a Model of Traumatic Brain Injury and Secondary Hypoxemia

    DTIC Science & Technology

    2004-12-01

    exposure of FVII to subendothelial TF. Recent evidence suggests that proinflammatory cytokines (IL-1, IL-6, TNFα) can induce the upregulation of TF...kininogen. PK = prekallikrein. Recent evidence suggests however that proinflammatory cytokines (IL-1, IL-8, and TNFα) can induce the...Since these cytokines also have been implicated in the inflammatory response to TBI, it is conceivable that, in the traumatized brain, treatment

  14. [Total dream loss secondary to left temporo-occipital brain injury].

    PubMed

    Poza, J J; Martí Massó, J F

    2006-04-01

    Recently the case of a woman who reported cessation of dreaming after a bilateral PCA stroke but without REM sleep loss has been reported, suggesting that deep bilateral occipital lobe damage including the right inferior lingual gyrus may represent the "minimal lesion extension" necessary for dream loss. We report the case of a 24-year-old man who ceased dreaming after a unilateral left temporo- occipital hematoma. The polysomnographic characteristics in rapid eyes movements (REM) sleep were otherwise normal. Our patient demonstrates that a unilateral left temporo-occipital injury could be sufficient for losing dreams.

  15. Traumatic Brain Injuries. Guidelines Paper.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver. Special Education Services Unit.

    This paper on traumatic brain injuries begins with statistics on the incidence of the disorder, especially as they relate to Colorado. Traumatic brain injury is then defined, and problems caused by traumatic brain injury are discussed. The components of effective programming for students with traumatic brain injuries are described, followed by the…

  16. The neurophysiology of brain injury.

    PubMed

    Gaetz, Michael

    2004-01-01

    This article reviews the mechanisms and pathophysiology of traumatic brain injury (TBI). Research on the pathophysiology of diffuse and focal TBI is reviewed with an emphasis on damage that occurs at the cellular level. The mechanisms of injury are discussed in detail including the factors and time course associated with mild to severe diffuse injury as well as the pathophysiology of focal injuries. Examples of electrophysiologic procedures consistent with recent theory and research evidence are presented. Acceleration/deceleration (A/D) forces rarely cause shearing of nervous tissue, but instead, initiate a pathophysiologic process with a well defined temporal progression. The injury foci are considered to be diffuse trauma to white matter with damage occurring at the superficial layers of the brain, and extending inward as A/D forces increase. Focal injuries result in primary injuries to neurons and the surrounding cerebrovasculature, with secondary damage occurring due to ischemia and a cytotoxic cascade. A subset of electrophysiologic procedures consistent with current TBI research is briefly reviewed. The pathophysiology of TBI occurs over time, in a pattern consistent with the physics of injury. The development of electrophysiologic procedures designed to detect specific patterns of change related to TBI may be of most use to the neurophysiologist. This article provides an up-to-date review of the mechanisms and pathophysiology of TBI and attempts to address misconceptions in the existing literature.

  17. [Multiplicity and prevention for patients with hydrocephalus secondary to severe traumatic brain injury after surgery].

    PubMed

    Cao, Ke; Meng, Guangran; Li, Zongzheng; Wang, Faxuan; Ma, Hui

    2015-09-01

    目的:探讨重型颅脑伤(severe traumatic brain injury,STBI)患者术后发生继发性脑积水的相关因素,为临床上如何早期防治继发性脑积水提供指导方案及理论依据。方法:对按同一标准纳入的107例于2010年6月至2013年6月入住宁夏医科大学附属总医院神经外科STBI患者进行前瞻性研究,对年龄、性别、手术前/后格拉斯哥昏迷评分(Glasgow coma scale,GCS)、术后是否继发脑室系统出血、手术前/后颅脑CT中脑导水管及环池结构情况、腰椎穿刺术与继发性脑积水形成之间的关系进行logistic多因素回归分析,探讨术后继发性脑积水的危险因素与保护因素,并着重对保护因素进行分析。结果:多因素回归分析显示:患者术前(OR=0.099,95% CI:0.028~0.350)/术后(OR=0.088,95% CI:0.012~0.649)GCS评分低、术后脑室系统出血(OR=0.168,95% CI:0.029~0.979)、术前(OR=0.134,95% CI:0.038~0.473)/术后(OR=0.221,95% CI:0.055~0.882)颅脑CT中脑导水管及环池结构不清均为STBI术后患者继发性脑积水的危险因素;腰椎穿刺术(OR=75.885,95% CI:9.612~599.122)为STBI术后患者继发性脑积水的保护性因素。且术后脑积水主要发生于术后2周内和2周~3个月,对照组脑积水发生率均明显高于腰椎穿刺组(P<0.05),术后3个月后2组之间继发性脑积水发生率差异无统计学意义(P>0.05)。 结论:对于STBI术后患者,在生命体征稳定的情况下,早期辅以行腰椎穿刺术可显著降低术后急性期、亚急性期继发性脑积水的发生率,改善患者预后。.

  18. Anesthesia for Patients with Traumatic Brain Injuries.

    PubMed

    Bhattacharya, Bishwajit; Maung, Adrian A

    2016-12-01

    Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.

  19. MDCT imaging of traumatic brain injury

    PubMed Central

    Pezzullo, Martina; Delpierre, Isabelle; Sadeghi, Niloufar

    2016-01-01

    The aim of emergency imaging is to detect treatable lesions before secondary neurological damage occurs. CT plays a primary role in the acute setting of head trauma, allowing accurate detection of lesions requiring immediate neurosurgical treatment. CT is also accurate in detecting secondary injuries and is therefore essential in follow-up. This review discusses the main characteristics of primary and secondary brain injuries. PMID:26607650

  20. Brain injury in sports.

    PubMed

    Lloyd, John; Conidi, Frank

    2016-03-01

    Helmets are used for sports, military, and transportation to protect against impact forces and associated injuries. The common belief among end users is that the helmet protects the whole head, including the brain. However, current consensus among biomechanists and sports neurologists indicates that helmets do not provide significant protection against concussion and brain injuries. In this paper the authors present existing scientific evidence on the mechanisms underlying traumatic head and brain injuries, along with a biomechanical evaluation of 21 current and retired football helmets. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) standard test apparatus was modified and validated for impact testing of protective headwear to include the measurement of both linear and angular kinematics. From a drop height of 2.0 m onto a flat steel anvil, each football helmet was impacted 5 times in the occipital area. Skull fracture risk was determined for each of the current varsity football helmets by calculating the percentage reduction in linear acceleration relative to a 140-g skull fracture threshold. Risk of subdural hematoma was determined by calculating the percentage reduction in angular acceleration relative to the bridging vein failure threshold, computed as a function of impact duration. Ranking the helmets according to their performance under these criteria, the authors determined that the Schutt Vengeance performed the best overall. The study findings demonstrated that not all football helmets provide equal or adequate protection against either focal head injuries or traumatic brain injuries. In fact, some of the most popular helmets on the field ranked among the worst. While protection is improving, none of the current or retired varsity football helmets can provide absolute protection against brain injuries, including concussions and subdural hematomas. To maximize protection against head and brain injuries for football players of

  1. Brain injuries from blast.

    PubMed

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  2. Detection of secondary insults by brain tissue pO2 and bedside microdialysis in severe head injury.

    PubMed

    Sarrafzadeh, A S; Sakowitz, O W; Callsen, T A; Lanksch, W R; Unterberg, A W

    2002-01-01

    We evaluated bedside cerebral on-line microdialysis for early detection of cerebral hypoxia in patients with traumatic brain injury. 24 severely head injured patients (Glasgow Coma Score < or = 8) were studied. Patients underwent continuous brain tissue PO2 (PtiO2) monitoring using the LICOX (GMS mbH, Germany) microcatheter device. The catheter was placed into the non-lesioned frontal white matter within 32.2 (7-48) hrs post injury. The microdialysis catheter (CMA 100, Sweden) was placed close to the PtiO2 probe via a 2- or 3-way skull screw, connected to a pump and perfused with Ringer solution (0.3 microliter/min). The microdialysis samples were collected hourly and analyzed at the bedside for glucose, lactate, lactate-pyruvate-ratio and glutamate (CMA 600, Sweden). We identified 252 episodes of impending hypoxia (PtiO2 < 15 mm Hg; 11,810 minutes) and 38 episodes of cerebral hypoxia (PtiO2 < 10 mm Hg; 1996 minutes). Before cerebral hypoxia, glucose decreased significantly. Glutamate was unchanged when no hypoxia or impending hypoxia occurred but increased 3-4 fold before a hypoxic episode appeared. We conclude that early metabolic detection of cerebral hypoxia before a critical decrease in brain tissue PtiO2 is seen and possibly allows earlier changes in treatment (e.g. reduction of hyperventilation therapy).

  3. Radiation Injury to the Brain

    MedlinePlus

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  4. Sedation in Traumatic Brain Injury

    PubMed Central

    Flower, Oliver; Hellings, Simon

    2012-01-01

    Several different classes of sedative agents are used in the management of patients with traumatic brain injury (TBI). These agents are used at induction of anaesthesia, to maintain sedation, to reduce elevated intracranial pressure, to terminate seizure activity and facilitate ventilation. The intent of their use is to prevent secondary brain injury by facilitating and optimising ventilation, reducing cerebral metabolic rate and reducing intracranial pressure. There is limited evidence available as to the best choice of sedative agents in TBI, with each agent having specific advantages and disadvantages. This review discusses these agents and offers evidence-based guidance as to the appropriate context in which each agent may be used. Propofol, benzodiazepines, narcotics, barbiturates, etomidate, ketamine, and dexmedetomidine are reviewed and compared. PMID:23050154

  5. Acquired Brain Injury Program.

    ERIC Educational Resources Information Center

    Schwartz, Stacey Hunter

    This paper reviews the Acquired Brain Injury (ABI) Program at Coastline Community College (California). The ABI Program is a two-year, for-credit educational curriculum designed to provide structured cognitive retraining for adults who have sustained an ABI due to traumatic (such as motor vehicle accident or fall) or non-traumatic(such as…

  6. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  7. Preconditioning for traumatic brain injury.

    PubMed

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W Dalton; Bullock, M Ross

    2013-02-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury have been shown to induce consequent protection against post-TBI neuronal death. This concept termed "preconditioning" is achieved by exposure to different pre-injury stressors to achieve the induction of "tolerance" to the effect of the TBI. However, the precise mechanisms underlying this "tolerance" phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review, we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditioning studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible future clinical situations, in which pre-TBI preconditioning could be considered.

  8. Brain Injury Association of America

    MedlinePlus

    ... Only) 1-800-444-6443 Welcome to the Brain Injury Association of America (BIAA) Brain injury is not an event or an outcome. ... misunderstood, under-funded neurological disease. People who sustain brain injuries must have timely access to expert trauma ...

  9. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI.

  10. Neuroprotective Effects of Co-UltraPEALut on Secondary Inflammatory Process and Autophagy Involved in Traumatic Brain Injury.

    PubMed

    Cordaro, Marika; Impellizzeri, Daniela; Paterniti, Irene; Bruschetta, Giuseppe; Siracusa, Rosalba; De Stefano, Daniela; Cuzzocrea, Salvatore; Esposito, Emanuela

    2016-01-01

    Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. In the present study, we performed a widely used model of TBI to determine the neuroprotective propriety of palmitoylethanolamide (PEA) and the antioxidant effect of a flavonoid luteolin (Lut), given as a co-ultramicronized compound Co-ultraPEALut. We demonstrated that the treatment with Co-ultraPEALut resulted in a significant improvement of motor and cognitive recovery after controlled cortical impact, as well as markedly reducing lesion volumes. Moreover, our results revealed the ability of Co-ultraPEALut to reduce brain trauma through modulation of nuclear factor-κB activation. In addition, treatment with Co-ultraPEALut significantly enhanced the post-TBI expression of the neuroprotective neurotrophins glial cell line-derived neurotrophic factor compared with vehicle. Co-ultraPEALut at the dose of 1 mg/kg also modulated apoptosis, the release of cytokine and reactive oxygen species, the activation of chymase, tryptase, and nitrotyrosine, and inhibited autophagy. Thus, our data demonstrated that Co-ultraPEALut at a lower dose compared with PEA alone can exert neuroprotective effects and the combination of both could improve their ability to counteract the neurodegeneration and neuroinflammation induced by TBI.

  11. PERSONALITY CHANGES IN BRAIN INJURY

    PubMed Central

    Garcia, Patricia Gracia; Mielke, Michelle M.; Rosenberg, Paul; Bergey, Alyssa; Rao, Vani

    2011-01-01

    Traumatic brain injury (TBI) is frequently complicated by alterations in mood and behaviour and changes in personality. We report mild personality changes post-TBI as a possible indicator of traumatic brain injury, but not of injury severity or psychiatric complications. PMID:21677207

  12. Traumatic brain injuries.

    PubMed

    Blennow, Kaj; Brody, David L; Kochanek, Patrick M; Levin, Harvey; McKee, Ann; Ribbers, Gerard M; Yaffe, Kristine; Zetterberg, Henrik

    2016-11-17

    Traumatic brain injuries (TBIs) are clinically grouped by severity: mild, moderate and severe. Mild TBI (the least severe form) is synonymous with concussion and is typically caused by blunt non-penetrating head trauma. The trauma causes stretching and tearing of axons, which leads to diffuse axonal injury - the best-studied pathogenetic mechanism of this disorder. However, mild TBI is defined on clinical grounds and no well-validated imaging or fluid biomarkers to determine the presence of neuronal damage in patients with mild TBI is available. Most patients with mild TBI will recover quickly, but others report persistent symptoms, called post-concussive syndrome, the underlying pathophysiology of which is largely unknown. Repeated concussive and subconcussive head injuries have been linked to the neurodegenerative condition chronic traumatic encephalopathy (CTE), which has been reported post-mortem in contact sports athletes and soldiers exposed to blasts. Insights from severe injuries and CTE plausibly shed light on the underlying cellular and molecular processes involved in mild TBI. MRI techniques and blood tests for axonal proteins to identify and grade axonal injury, in addition to PET for tau pathology, show promise as tools to explore CTE pathophysiology in longitudinal clinical studies, and might be developed into diagnostic tools for CTE. Given that CTE is attributed to repeated head trauma, prevention might be possible through rule changes by sports organizations and legislators.

  13. Previous physical exercise alters the hepatic profile of oxidative-inflammatory status and limits the secondary brain damage induced by severe traumatic brain injury in rats.

    PubMed

    de Castro, Mauro Robson Torres; Ferreira, Ana Paula de Oliveira; Busanello, Guilherme Lago; da Silva, Luís Roberto Hart; da Silveira Junior, Mauro Eduardo Porto; Fiorin, Fernando da Silva; Arrifano, Gabriela; Crespo-López, Maria Elena; Barcelos, Rômulo Pillon; Cuevas, María J; Bresciani, Guilherme; González-Gallego, Javier; Fighera, Michele Rechia; Royes, Luiz Fernando Freire

    2017-09-01

    An early inflammatory response and oxidative stress are implicated in the signal transduction that alters both hepatic redox status and mitochondrial function after traumatic brain injury (TBI). Peripheral oxidative/inflammatory responses contribute to neuronal dysfunction after TBI Exercise training alters the profile of oxidative-inflammatory status in liver and protects against acute hyperglycaemia and a cerebral inflammatory response after TBI. Approaches such as exercise training, which attenuates neuronal damage after TBI, may have therapeutic potential through modulation of responses by metabolic organs. The vulnerability of the body to oxidative/inflammatory in TBI is significantly enhanced in sedentary compared to physically active counterparts. Although systemic responses have been described after traumatic brain injury (TBI), little is known regarding potential interactions between brain and peripheral organs after neuronal injury. Accordingly, we aimed to investigate whether a peripheral oxidative/inflammatory response contributes to neuronal dysfunction after TBI, as well as the prophylactic role of exercise training. Animals were submitted to fluid percussion injury after 6 weeks of swimming training. Previous exercise training increased mRNA expression of X receptor alpha and ATP-binding cassette transporter, and decreased inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression per se in liver. Interestingly, exercise training protected against hepatic inflammation (COX-2, iNOS, TNF-α and IL-6), oxidative stress (decreases in non-protein sulfhydryl and glutathione, as well as increases in 2',7'-dichlorofluorescein diacetate oxidation and protein carbonyl), which altered hepatic redox status (increases in myeloperoxidase and superoxide dismutase activity, as well as inhibition of catalase activity) mitochondrial function (decreases in methyl-tetrazolium and Δψ, as well as

  14. [The effect of gene therapy with the APOE3 Gene on structural and functional manifestations of secondary hippocampal damages in experimental traumatic brain injury].

    PubMed

    Pedachenko, E G; Biloshytsky, V V; Mikhal'sky, S A; Gridina, N Ya; Kvitnitskaya-Ryzhova, T Yu

    2015-01-01

    to study the efficiency of gene therapy following traumatic brain injury (TBI) by evaluating the influences of liposomal transfection of the brain tissue by APOE3-containing plasmid vector on the structural and functional manifestations of development of secondary brain injuries after acute experimental TBI in the rats of different age. Severe diffuse TBI in rats was inflicted under overall anesthesia by free load weighing 450 g, falling from a 1.5 m elevation. The mixture of DOTAP liposome and 25 μg of plasmid vector pCMV·SPORT6 with cDNA of APOE3 gene was infused intraventricularly using ALZET osmotic pumps. Combined morphological, electron microscopic, immunohistochemical and morphometric studies of СА1 hippocampal region were conducted in rats at days 5 and 10 following TBI and gene therapy after investigation of motor functions (using composite neurological motor score) and cognitive functions in Morris water maze. Significant changes in the morphofunctional state of hippocampus, as well as in the neurological and cognitive functions were shown on the model of severe TBI in the adult and old Wistar rats. Gene therapy, specifically cationic-liposome mediated APOE3 gene transfer to the CNS cells by plasmid vector, decreased a TBI-induced death of neurons and improved qualitative composition of neuronal population, normalized neuron-glial relations, decreased gliosis and microglial activation, axonal damage, myelin destruction and lipofuscin accumulation, all these having age-related peculiarities. After gene therapy observed in the animal brain was a lower intensity of the processes of apoptosis and a decrease of its rate in old animals. The above changes were accompanied with a more fast and expressed regress of neurological and cognitive disturbances typical for TBI. Administration of plasmid vector after TBI resulted in an increase of survival rate of old animals vs. old animals which got no gene therapy. APOE3 gene therapy has therapeutic potential in

  15. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats.

    PubMed

    Paredes, Sergio D; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A F

    2015-01-01

    Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription-polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury.

  16. Seizures and the Role of Anticonvulsants After Traumatic Brain Injury.

    PubMed

    Zimmermann, Lara L; Diaz-Arrastia, Ramon; Vespa, Paul M

    2016-10-01

    Posttraumatic seizures are a common complication of traumatic brain injury. Posttraumatic epilepsy accounts for 20% of symptomatic epilepsy in the general population and 5% of all epilepsy. Early posttraumatic seizures occur in more than 20% of patients in the intensive care unit and are associated with secondary brain injury and worse patient outcomes. Most posttraumatic seizures are nonconvulsive and therefore continuous electroencephalography monitoring should be the standard of care for patients with moderate or severe brain injury. The literature shows that posttraumatic seizures result in secondary brain injury caused by increased intracranial pressure, cerebral edema and metabolic crisis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Traumatic Brain Injury and Secondary Attention-Deficit/Hyperactivity Disorder in Children and Adolescents: The Effect of Reward on Inhibitory Control

    PubMed Central

    Sinopoli, Katia J.; Schachar, Russell; Dennis, Maureen

    2011-01-01

    Poor inhibitory control and abnormalities in responding to rewards are characteristic of the developmental or primary form of attention-deficit/hyperactivity disorder (P-ADHD). A secondary form of ADHD (S-ADHD) may occur as a consequence of childhood traumatic brain injury (TBI), but the similarities and differences between these two forms of ADHD have not been well characterized. To address these issues, we studied two inhibitory control tasks under different reward conditions in four groups of children and adolescents: TBI who did not exhibit S-ADHD, TBI who did exhibit S-ADHD, P-ADHD, and healthy controls. Participants with TBI exhibited poor cancellation inhibition relative to controls. Although reward facilitated both cancellation and restraint inhibition similarly across groups, poor performance persisted in the P-ADHD group, and participants with S-ADHD exhibited a selective deficit in cancellation inhibition. PMID:21598155

  18. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  19. Group Treatment in Acquired Brain Injury Rehabilitation

    ERIC Educational Resources Information Center

    Bertisch, Hilary; Rath, Joseph F.; Langenbahn, Donna M.; Sherr, Rose Lynn; Diller, Leonard

    2011-01-01

    The current article describes critical issues in adapting traditional group-treatment methods for working with individuals with reduced cognitive capacity secondary to acquired brain injury. Using the classification system based on functional ability developed at the NYU Rusk Institute of Rehabilitation Medicine (RIRM), we delineate the cognitive…

  20. Traumatic brain injury

    PubMed Central

    Risdall, Jane E.; Menon, David K.

    2011-01-01

    There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359

  1. NINDS Traumatic Brain Injury Information Page

    MedlinePlus

    ... Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury Stem Cells Traumatic Brain Injury Trans-Agency Activities Interagency Research ... Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury Stem Cells Traumatic Brain Injury Trans-Agency Activities Interagency Research ...

  2. Traumatic Brain Injury and Aggression.

    ERIC Educational Resources Information Center

    Miller, Laurence

    1994-01-01

    Persons who have suffered traumatic injury to the brain may subsequently display aggressive behavior. Three main syndromes of aggression following traumatic brain injury are described: (1) episodic dyscontrol; (2) frontal lobe disinhibition; and (3) exacerbation of premorbid antisociality. The neuropsychological substrates of these syndromes are…

  3. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  4. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  5. Brain Injury: A Manual For Educators.

    ERIC Educational Resources Information Center

    Connor, Karen; Dettmer, Judy; Dise-lewis, Jeanne E.; Murphy, Mary; Santistevan, Barbette; Seckinger, Barbara

    This manual provides Colorado educators with guidelines for serving students with brain injuries. Following an introductory chapter, chapter 2 provides basic information on the brain including definitions of brain injury and its severity, incidence of brain injury, and characteristics of students with brain injury. Chapter 3 considers…

  6. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  7. Cognitive outcome following traumatic brain injury.

    PubMed

    Dikmen, Sureyya S; Corrigan, John D; Levin, Harvey S; Machamer, Joan; Stiers, William; Weisskopf, Marc G

    2009-01-01

    To determine whether an association exists between traumatic brain injury (TBI) sustained in adulthood and cognitive impairment 6 months or longer after injury. Systematic review of the published, peer-reviewed literature. From 430 articles, we identified 11 primary and 22 secondary studies that examined cognitive impairment by using performance measures for adults who were at least 6 months post-TBI. There was clear evidence of an association between penetrating brain injury and impaired cognitive function. Factors that modified this association included preinjury intelligence, volume of brain tissue lost, and brain region injured. There was also suggestive evidence that penetrating brain injury may exacerbate the cognitive effects of normal aging. We found clear evidence for long-term cognitive deficits associated with severe TBI. There was suggestive evidence that moderately severe brain injuries are associated with cognitive impairments. There was inadequate/insufficient evidence to determine whether an association exists between a single, mild TBI and cognitive deficits 6 months or longer postinjury. In adults, penetrating, moderate, and severe TBIs are associated with cognitive deficits 6 months or longer postinjury. There is insufficient evidence to determine whether mild TBI is associated with cognitive deficits 6 months or longer postinjury.

  8. Introduction of the Uppsala Traumatic Brain Injury register for regular surveillance of patient characteristics and neurointensive care management including secondary insult quantification and clinical outcome

    PubMed Central

    Nyholm, Lena; Howells, Tim; Enblad, Per

    2013-01-01

    Background To improve neurointensive care (NIC) and outcome for traumatic brain injury (TBI) patients it is crucial to define and monitor indexes of the quality of patient care. With this purpose we established the web-based Uppsala TBI register in 2008. In this study we will describe and analyze the data collected during the first three years of this project. Methods Data from the medical charts were organized in three columns containing: 1) Admission data; 2) Data from the NIC period including neurosurgery, type of monitoring, treatment, complications, neurological condition at discharge, and the amount of secondary insults; 3) Outcome six months after injury. Indexes of the quality of care implemented include: 1) Index of improvement; 2) Index of change; 3) The percentages of ‘Talk and die' and ‘Talk and deteriorate' patients. Results Altogether 314 patients were included 2008–2010: 66 women and 248 men aged 0–86 years. Automatic reports showed that the proportion of patients improving during NIC varied between 80% and 60%. The percentage of deteriorated patients was less than 10%. The percentage of Talk and die/Talk and deteriorate cases was <1%. The mean Glasgow Coma Score (Motor) improved from 5.04 to 5.68 during the NIC unit stay. The occurrences of secondary insults were less than 5% of good monitoring time for intracranial pressure (ICP) >25 mmHg, cerebral perfusion pressure (CPP) <50 mmHg, and systolic blood pressure <100 mmHg. Favorable outcome was achieved by 64% of adults. Conclusion The Uppsala TBI register enables the routine monitoring of NIC quality indexes. PMID:23837596

  9. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  10. Neuropsychiatry of Pediatric Traumatic Brain Injury

    PubMed Central

    Max, Jeffrey E.

    2014-01-01

    Synopsis Pediatric traumatic brain injury (TBI) is a major public health problem. Psychiatric disorders with onset before the injury appear to be more common than population base rates. Novel (postinjury onset) psychiatric disorders (NPD) are also common and complicate child function after injury. Novel disorders include personality change due to TBI, secondary attention-deficit/hyperactivity disorder (SADHD), as well as other disruptive behavior disorders, and internalizing disorders. This article reviews preinjury psychiatric disorders as well as biopsychosocial risk factors and treatments for NPD. PMID:24529428

  11. Traumatic brain injury, neuroimaging, and neurodegeneration

    PubMed Central

    Bigler, Erin D.

    2012-01-01

    Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury. PMID:23964217

  12. Endocrine response to brain injury.

    PubMed

    Chioléro, R; Berger, M

    1994-11-01

    The neuroendocrine response (NER) is an essential component of the adaptive process to trauma, brain injury, and major surgery. While receiving additive humoral and neural afferent inputs, the brain nuclei responsible for the NER act mainly by efferent pathways to the hypothalamic-pituitary-adrenal (HPA) axis and the sympathoadrenal system, the activations of which induce subsequent circulatory and metabolic responses. The NER to brain injury is similar to the response observed in patients with extracerebral injury, even if the response after brain injury is extremely variable. Generally, there is a biphasic pattern, with a sympathoadrenal storm associated with variable and altered stimulation of the HPA during the ebb phase. The first phase is followed by a decrease in both responses while other endocrine changes develop, involving mainly the counter-regulatory, gonadal, and thyroid hormones. The outcome after brain injury is closely correlated with the intensity of these changes, particularly with catecholamine plasma levels and the severity of the low triiodothyronine syndrome. Alterations of the thyroid hormones are largely related to a reduction in peripheral deiodination of thyroxin. Recent research shows that increased free-radical production and decreased selenium (an antioxidant) serum levels play an important role in thyroid metabolism. Two major issues remain unsolved: a) the precise definition of cerebral death, since endocrine brain function is not abolished in the state currently defined as brain death; and b) the question of whether substitutive hormone therapy should be applied in severe brain injury.

  13. Progesterone for neuroprotection in pediatric traumatic brain injury.

    PubMed

    Robertson, Courtney L; Fidan, Emin; Stanley, Rachel M; Noje, Corina; Bayir, Hülya

    2015-03-01

    To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. National Library of Medicine PubMed literature review. The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global

  14. Traumatic Brain Injury and Dystonia

    MedlinePlus

    ... Symptoms of dystonia associated with TBI may be chronic or occur in episodes. Dystonia symptoms associated with ... a multi- disciplinary team with experience treating traumatic brain injury and/or movement disorders. • Learn as much as ...

  15. Mild hypoxemia during initial reperfusion alleviates the severity of secondary energy failure and protects brain in neonatal mice with hypoxic-ischemic injury

    PubMed Central

    Niatsetskaya, Zoya V; Charlagorla, Pradeep; Matsukevich, Dzmitry A; Sosunov, Sergey A; Mayurasakorn, Korapat; Ratner, Veniamin I; Polin, Richard A; Starkov, Anatoly A; Ten, Vadim S

    2012-01-01

    Reperfusion triggers an oxidative stress. We hypothesized that mild hypoxemia in reperfusion attenuates oxidative brain injury following hypoxia-ischemia (HI). In neonatal HI-mice, the reperfusion was initiated by reoxygenation with room air (RA) followed by the exposure to 100%, 21%, 18%, 15% oxygen for 60 minutes. Systemic oxygen saturation (SaO2), cerebral blood flow (CBF), brain mitochondrial respiration and permeability transition pore (mPTP) opening, markers of oxidative injury, and cerebral infarcts were assessed. Compared with RA-littermates, HI-mice exposed to 18% oxygen exhibited significantly decreased infarct volume, oxidative injury in the brain mitochondria and tissue. This was coupled with improved mitochondrial tolerance to mPTP opening. Oxygen saturation maintained during reperfusion at 85% to 95% was associated (r=0.57) with the best neurologic outcome. Exposure to 100% or 15% oxygen significantly exacerbated brain injury and oxidative stress. Compared with RA-mice, hyperoxia dramatically increased reperfusion CBF, but exposure to 15% oxygen significantly reduced CBF to values observed during the HI-insult. Mild hypoxemia during initial reperfusion alleviates the severity of HI-brain injury by limiting the reperfusion-driven oxidative stress to the mitochondria and mPTP opening. This suggests that at the initial stage of reperfusion, a slightly decreased systemic oxygenation (SaO2 85% to 95%) may be beneficial for infants with birth asphyxia. PMID:22108720

  16. Mild hypoxemia during initial reperfusion alleviates the severity of secondary energy failure and protects brain in neonatal mice with hypoxic-ischemic injury.

    PubMed

    Niatsetskaya, Zoya V; Charlagorla, Pradeep; Matsukevich, Dzmitry A; Sosunov, Sergey A; Mayurasakorn, Korapat; Ratner, Veniamin I; Polin, Richard A; Starkov, Anatoly A; Ten, Vadim S

    2012-02-01

    Reperfusion triggers an oxidative stress. We hypothesized that mild hypoxemia in reperfusion attenuates oxidative brain injury following hypoxia-ischemia (HI). In neonatal HI-mice, the reperfusion was initiated by reoxygenation with room air (RA) followed by the exposure to 100%, 21%, 18%, 15% oxygen for 60 minutes. Systemic oxygen saturation (SaO(2)), cerebral blood flow (CBF), brain mitochondrial respiration and permeability transition pore (mPTP) opening, markers of oxidative injury, and cerebral infarcts were assessed. Compared with RA-littermates, HI-mice exposed to 18% oxygen exhibited significantly decreased infarct volume, oxidative injury in the brain mitochondria and tissue. This was coupled with improved mitochondrial tolerance to mPTP opening. Oxygen saturation maintained during reperfusion at 85% to 95% was associated (r=0.57) with the best neurologic outcome. Exposure to 100% or 15% oxygen significantly exacerbated brain injury and oxidative stress. Compared with RA-mice, hyperoxia dramatically increased reperfusion CBF, but exposure to 15% oxygen significantly reduced CBF to values observed during the HI-insult. Mild hypoxemia during initial reperfusion alleviates the severity of HI-brain injury by limiting the reperfusion-driven oxidative stress to the mitochondria and mPTP opening. This suggests that at the initial stage of reperfusion, a slightly decreased systemic oxygenation (SaO(2) 85% to 95%) may be beneficial for infants with birth asphyxia.

  17. Pediatric Rodent Models of Traumatic Brain Injury.

    PubMed

    Semple, Bridgette D; Carlson, Jaclyn; Noble-Haeusslein, Linda J

    2016-01-01

    Due to a high incidence of traumatic brain injury (TBI) in children and adolescents, age-specific studies are necessary to fully understand the long-term consequences of injuries to the immature brain. Preclinical and translational research can help elucidate the vulnerabilities of the developing brain to insult, and provide model systems to formulate and evaluate potential treatments aimed at minimizing the adverse effects of TBI. Several experimental TBI models have therefore been scaled down from adult rodents for use in juvenile animals. The following chapter discusses these adapted models for pediatric TBI, and the importance of age equivalence across species during model development and interpretation. Many neurodevelopmental processes are ongoing throughout childhood and adolescence, such that neuropathological mechanisms secondary to a brain insult, including oxidative stress, metabolic dysfunction and inflammation, may be influenced by the age at the time of insult. The long-term evaluation of clinically relevant functional outcomes is imperative to better understand the persistence and evolution of behavioral deficits over time after injury to the developing brain. Strategies to modify or protect against the chronic consequences of pediatric TBI, by supporting the trajectory of normal brain development, have the potential to improve quality of life for brain-injured children.

  18. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  19. Concussion and Traumatic Brain Injury

    MedlinePlus

    ... long stays in intensive care units. Read More "Concussion" Articles Sports and Concussion / NIH Research on Concussion and the Brain / Doug Flutie: "Be on the Safe Side." / Concussion and Traumatic Brain Injury Summer 2015 Issue: Volume 10 ... Viewers & Players Friends of the National Library of Medicine (FNLM)

  20. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  1. Pathophysiology of hypopituitarism in the setting of brain injury

    PubMed Central

    Dusick, Joshua R.; Wang, Christina; Cohan, Pejman; Swerdloff, Ronald

    2014-01-01

    The complex pathophysiology of traumatic brain injury (TBI) involves not only the primary mechanical event but also secondary insults such as hypotension, hypoxia, raised intracranial pressure and changes in cerebral blood flow and metabolism. It is increasingly evident that these initial insults as well as transient events and treatments during the early injury phase can impact hypothalamic-pituitary function both acutely and chronically after injury. In turn, untreated pituitary hormonal dysfunction itself can further hinder recovery from brain injury. Secondary adrenal insufficiency, although typically reversible, occurs in up to 50% of intubated TBI victims and is associated with lower systemic blood pressure. PMID:18481181

  2. The prehospital management of traumatic brain injury.

    PubMed

    Goldberg, Scott A; Rojanasarntikul, Dhanadol; Jagoda, Andrew

    2015-01-01

    Traumatic brain injury (TBI) is an important cause of death and disability, particularly in younger populations. The prehospital evaluation and management of TBI is a vital link between insult and definitive care and can have dramatic implications for subsequent morbidity. Following a TBI the brain is at high risk for further ischemic injury, with prehospital interventions targeted at reducing this secondary injury while optimizing cerebral physiology. In the following chapter we discuss the prehospital assessment and management of the brain-injured patient. The initial evaluation and physical examination are discussed with a focus on interpretation of specific physical examination findings and interpretation of vital signs. We evaluate patient management strategies including indications for advanced airway management, oxygenation, ventilation, and fluid resuscitation, as well as prehospital strategies for the management of suspected or impending cerebral herniation including hyperventilation and brain-directed hyperosmolar therapy. Transport decisions including the role of triage models and trauma centers are discussed. Finally, future directions in the prehospital management of traumatic brain injury are explored. © 2015 Elsevier B.V. All rights reserved.

  3. Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases.

    PubMed

    Cruz-Haces, Marcela; Tang, Jonathan; Acosta, Glen; Fernandez, Joseph; Shi, Riyi

    2017-01-01

    Traumatic brain injury is among the most common causes of death and disability in youth and young adults. In addition to the acute risk of morbidity with moderate to severe injuries, traumatic brain injury is associated with a number of chronic neurological and neuropsychiatric sequelae including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. However, despite the high incidence of traumatic brain injuries and the established clinical correlation with neurodegeneration, the causative factors linking these processes have not yet been fully elucidated. Apart from removal from activity, few, if any prophylactic treatments against post-traumatic brain injury neurodegeneration exist. Therefore, it is imperative to understand the pathophysiological mechanisms of traumatic brain injury and neurodegeneration in order to identify potential factors that initiate neurodegenerative processes. Oxidative stress, neuroinflammation, and glutamatergic excitotoxicity have previously been implicated in both secondary brain injury and neurodegeneration. In particular, reactive oxygen species appear to be key in mediating molecular insult in neuroinflammation and excitotoxicity. As such, it is likely that post injury oxidative stress is a key mechanism which links traumatic brain injury to increased risk of neurodegeneration. Consequently, reactive oxygen species and their subsequent byproducts may serve as novel fluid markers for identification and monitoring of cellular damage. Furthermore, these reactive species may further serve as a suitable therapeutic target to reduce the risk of post-injury neurodegeneration and provide long term quality of life improvements for those suffering from traumatic brain injury.

  4. Dysautonomia after pediatric brain injury

    PubMed Central

    KIRK, KATHERINE A; SHOYKHET, MICHAEL; JEONG, JONG H; TYLER-KABARA, ELIZABETH C; HENDERSON, MARYANNE J; BELL, MICHAEL J; FINK, ERICKA L

    2012-01-01

    AIM Dysautonomia after brain injury is a diagnosis based on fever, tachypnea, hypertension, tachycardia, diaphoresis, and/or dystonia. It occurs in 8 to 33% of brain-injured adults and is associated with poor outcome. We hypothesized that brain-injured children with dysautonomia have worse outcomes and prolonged rehabilitation, and sought to determine the prevalence of dysautonomia in children and to characterize its clinical features. METHOD We developed a database of children (n=249, 154 males, 95 females; mean (SD) age 11y 10mo [5y 7mo]) with traumatic brain injury, cardiac arrest, stroke, infection of the central nervous system, or brain neoplasm admitted to The Children’s Institute of Pittsburgh for rehabilitation between 2002 and 2009. Dysautonomia diagnosis, injury type, clinical signs, length of stay, and Functional Independence Measure for Children (WeeFIM) testing were extracted from medical records, and analysed for differences between groups with and without dysautonomia. RESULTS Dysautonomia occurred in 13% of children with brain injury (95% confidence interval 9.3–18.0%), occurring in 10% after traumatic brain injury and 31% after cardiac arrest. The combination of hypertension, diaphoresis, and dystonia best predicted a diagnosis of dysautonomia (area under the curve=0.92). Children with dysautonomia had longer stays, worse WeeFIM scores, and improved less on the score’s motor component (all p≤0.001). INTERPRETATION Dysautonomia is common in children with brain injury and is associated with prolonged rehabilitation. Prospective study and standardized diagnostic approaches are needed to maximize outcomes. PMID:22712762

  5. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care.

    PubMed

    Elder, Gregory A; Cristian, Adrian

    2009-04-01

    Mild traumatic brain injury has been called the signature injury of the wars in Iraq and Afghanistan. In both theaters of operation, traumatic brain injury has been a significant cause of mortality and morbidity, with blast-related injury the most common cause. Improvised explosive devices have been the major cause of blast injuries. It is estimated that 10% to 20% of veterans returning from these operations have suffered a traumatic brain injury, and there is concern that blast-related injury may produce adverse long-term health affects and affect the resilience and in-theater performance of troops. Blast-related injury occurs through several mechanisms related to the nature of the blast overpressure wave itself as well as secondary and tertiary injuries. Animal studies clearly show that blast overpressure waves are transmitted to the brain and can cause changes that neuropathologically are most similar to diffuse axonal injury. One striking feature of the mild traumatic brain injury cases being seen in veterans of the wars in Iraq and Afghanistan is the high association of mild traumatic brain injury with posttraumatic stress disorder. The overlap in symptoms between the disorders has made distinguishing them clinically challenging. The high rates of mild traumatic brain injury and posttraumatic stress disorder in the current operations are of significant concern for the long-term health of US veterans with associated economic implications.

  6. NONINVASIVE BRAIN STIMULATION IN TRAUMATIC BRAIN INJURY

    PubMed Central

    Demirtas-Tatlidede, Asli; Vahabzadeh-Hagh, Andrew M.; Bernabeu, Montserrat; Tormos, Jose M.; Pascual-Leone, Alvaro

    2012-01-01

    Brain stimulation techniques have evolved in the last few decades with more novel methods capable of painless, noninvasive brain stimulation. While the number of clinical trials employing noninvasive brain stimulation continues to increase in a variety of medication-resistant neurological and psychiatric diseases, studies evaluating their diagnostic and therapeutic potential in traumatic brain injury (TBI) are largely lacking. This review introduces different techniques of noninvasive brain stimulation, which may find potential use in TBI. We cover transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), low-level laser therapy (LLLT) and transcranial doppler sonography (TCD) techniques. We provide a brief overview of studies to date, discuss possible mechanisms of action, and raise a number of considerations when thinking about translating these methods to clinical use. PMID:21691215

  7. Role of hydrogen sulfide in secondary neuronal injury.

    PubMed

    Wang, Jun-Feng; Li, Yu; Song, Jin-Ning; Pang, Hong-Gang

    2014-01-01

    In acute neuronal insult events, such as stroke, traumatic brain injury, and spinal cord injury, pathological processes of secondary neuronal injury play a key role in the severity of insult and clinical prognosis. Along with nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2S) is regarded as the third gasotransmitter and endogenous neuromodulator and plays multiple roles in the central nervous system under physiological and pathological states, especially in secondary neuronal injury. The endogenous level of H2S in the brain is significantly higher than that in peripheral tissues, and is mainly formed by cystathionine β-synthase (CBS) in astrocytes and released in response to neuronal excitation. The mechanism of secondary neuronal injury exacerbating the damage caused by the initial insult includes microcirculation failure, glutamate-mediated excitotoxicity, oxidative stress, inflammatory responses, neuronal apoptosis and calcium overload. H2S dilates cerebral vessels by activating smooth muscle cell plasma membrane ATP-sensitive K channels (KATP channels). This modification occurs on specific cysteine residues of the KATP channel proteins which are S-sulfhydrated. H2S counteracts glutamate-mediated excitotoxicity by inducing astrocytes to intake more glutamate from the extracellular space and thus increasing glutathione in neurons. In addition, H2S protects neurons from secondary neuronal injury by functioning as an anti-oxidant, anti-inflammatory and anti-apoptotic mediator. However, there are still some reports suggest that H2S elevates neuronal Ca(2+) concentration and may contribute to the formation of calcium overload in secondary neuronal injury. H2S also elicits calcium waves in primary cultures of astrocytes and may mediate signals between neurons and glia. Consequently, further exploration of the molecular mechanisms of H2S in secondary neuronal injury will provide important insights into its potential therapeutic uses for the treatment

  8. Traumatic brain injury-induced sleep disorders

    PubMed Central

    Viola-Saltzman, Mari; Musleh, Camelia

    2016-01-01

    Sleep disturbances are frequently identified following traumatic brain injury, affecting 30%–70% of persons, and often occur after mild head injury. Insomnia, fatigue, and sleepiness are the most frequent sleep complaints after traumatic brain injury. Sleep apnea, narcolepsy, periodic limb movement disorder, and parasomnias may also occur after a head injury. In addition, depression, anxiety, and pain are common brain injury comorbidities with significant influence on sleep quality. Two types of traumatic brain injury that may negatively impact sleep are acceleration/deceleration injuries causing generalized brain damage and contact injuries causing focal brain damage. Polysomnography, multiple sleep latency testing, and/or actigraphy may be utilized to diagnose sleep disorders after a head injury. Depending on the disorder, treatment may include the use of medications, positive airway pressure, and/or behavioral modifications. Unfortunately, the treatment of sleep disorders associated with traumatic brain injury may not improve neuropsychological function or sleepiness. PMID:26929626

  9. Brain Injury Alters Volatile Metabolome.

    PubMed

    Kimball, Bruce A; Cohen, Akiva S; Gordon, Amy R; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N; Beauchamp, Gary K

    2016-06-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function-which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. Published by Oxford University Press on behalf of US Government 2016.

  10. Brain Injury Alters Volatile Metabolome

    PubMed Central

    Cohen, Akiva S.; Gordon, Amy R.; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N.; Beauchamp, Gary K.

    2016-01-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function—which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  11. Traumatic brain injury associated coagulopathy.

    PubMed

    de Oliveira Manoel, Airton Leonardo; Neto, Antonio Capone; Veigas, Precilla V; Rizoli, Sandro

    2015-02-01

    The presence of coagulopathy is common after severe trauma. The aim of this study was to identify whether isolated severe traumatic brain injury (TBI) is an independent risk factor for coagulopathy. Prospective observational cohort of adult patients admitted to a Level I Trauma Center within 6 h of injury. Patients were categorized according to the abbreviated injury scale (AIS): Group 1-isolated severe TBI (AIS head ≥ 3 + AIS non-head < 3); Group 2-severe multisystem trauma associated with severe TBI (AIS head ≥ 3 + AIS non-head ≥ 3); Group 3-severe multisystem trauma without TBI (AIS head < 3 + AIS non-head ≥ 3). Primary outcome was the development of coagulopathy. Secondary outcome was in-hospital mortality. Three hundred and forty five patients were included (Group 1 = 48 patients, Group 2 = 137, and Group 3 = 160). Group 1 patients had the lowest incidence of coagulopathy and disseminated intravascular coagulopathy, and in general presented with better coagulation profile measured by either classic coagulation tests, thromboelastography or clotting factors. Isolated severe TBI was not an independent risk factor for the development of coagulopathy (OR 1.06; 0.35-3.22 CI, p = 0.92), however, isolated severe TBI patients who developed coagulopathy had higher mortality rates than isolated severe TBI patients without coagulopathy (66 vs. 16.6 %, p < 0.05). The presence of coagulopathy (OR 5.61; 2.65-11.86 CI, p < 0.0001) and isolated severe TBI (OR 11.51; 3.9-34.2 CI, p < 0.0001) were independent risk factors for in-hospital mortality. Isolated severe TBI is not an independent risk factor for the development of coagulopathy. However, severe TBI patients who develop coagulopathy have extremely high mortality rates.

  12. Defense and Veterans Brain Injury Center

    MedlinePlus

    Skip to main content Search form Search Basket Contact Us DVBIC Defense and Veterans Brain Injury Center About DVBIC Leadership History Newsroom Contact Us FAQs About Traumatic Brain Injury TBI & the Military DoD Worldwide Numbers for TBI ...

  13. Traumatic Brain Injury (TBI) Data and Statistics

    MedlinePlus

    ... Cancel Submit Search The CDC Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not supported ... this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and Symptoms ...

  14. Hypersomnia Following Traumatic Brain Injury

    PubMed Central

    Watson, Nathaniel F; Dikmen, Sureyya; Machamer, Joan; Doherty, Michael; Temkin, Nancy

    2007-01-01

    Study Objectives: To evaluate the prevalence and natural history of sleepiness following traumatic brain injury. Methods: This prospective cohort study used the Sickness Impact Profile to evaluate sleepiness in 514 consecutive subjects with traumatic brain injury (TBI), 132 non-cranial trauma controls, and 102 trauma-free controls 1 month and 1 year after injury. Results: Fifty-five percent of TBI subjects, 41% of non-cranial trauma controls, and 3% of trauma-free controls endorsed 1 or more sleepiness items 1 month following injury (p < .001). One year following injury, 27% of TBI subjects, 23% of non-cranial trauma controls, and 1% of trauma-free controls endorsed 1 or more sleepiness items (p < .001). Patients with TBI were sleepier than non-cranial trauma controls at 1 month (p < .02) but not 1 year after injury. Brain-injured subjects were divided into injury-severity groups based on time to follow commands (TFC). At 1 month, the non-cranial trauma controls were less sleepy than the 1- to 6-day (p < .05), 7- to 13-day (p < .01), and 14-day or longer (p < .01) TFC groups. In addition, the ≤ 24-hour group was less sleepy then the 7- to 13-day and 14-day or longer groups (each p < .05). At 1 year, the non-cranial trauma control group (p < .05) and the ≤ 24-hour TFC group (p < .01) were less sleepy than the 14-day or longer TFC group. Sleepiness improved in 84% to 100% of subjects in the TBI TFC groups, as compared with 78% of the non-cranial trauma control group (p < .01). Conclusions: Sleepiness is common following traumatic injury, particularly TBI, with more severe injuries resulting in greater sleepiness. Sleepiness improves in many patients, particularly those with TBI. However, about a quarter of TBI subjects and non-cranial trauma control subjects remained sleepy 1 year after injury. Citation: Watson NF; Dikmen S; Machamer J et al. Hypersomnia following traumatic brain injury. J Clin Sleep Med 2007;3(4):363-368. PMID:17694724

  15. Astrocyte roles in traumatic brain injury

    PubMed Central

    Burda, Joshua E.; Bernstein, Alexander M.; Sofroniew, Michael V.

    2015-01-01

    Astrocytes sense changes in neural activity and extracellular space composition. In response, they exert homeostatic mechanisms critical for maintaining neural circuit function, such as buffering neurotransmitters, modulating extracellular osmolarity and calibrating neurovascular coupling. In addition to upholding normal brain activities, astrocytes respond to diverse forms of brain injury with heterogeneous and progressive changes of gene expression, morphology, proliferative capacity and function that are collectively referred to as reactive astrogliosis. Traumatic brain injury (TBI) sets in motion complex events in which noxious mechanical forces cause tissue damage and disrupt central nervous system (CNS) homeostasis, which in turn trigger diverse multi-cellular responses that evolve over time and can lead either to neural repair or secondary cellular injury. In response to TBI, astrocytes in different cellular microenvironments tune their reactivity to varying degrees of axonal injury, vascular disruption, ischemia and inflammation. Here we review different forms of TBI-induced astrocyte reactivity and the functional consequences of these responses for TBI pathobiology. Evidence regarding astrocyte contribution to post-traumatic tissue repair and synaptic remodeling is examined, and the potential for targeting specific aspects of astrogliosis to ameliorate TBI sequelae is considered. PMID:25828533

  16. Traumatic Brain Injury-Associated Coagulopathy

    PubMed Central

    Zhang, Jianning; Jiang, Rongcai; Liu, Li; Watkins, Timothy; Zhang, Fangyi

    2012-01-01

    Abstract Traumatic injury is a common cause of coagulopathy, primarily due to blood loss and hemodilution secondary to fluid resuscitation. Traumatic injury-associated coagulopathy often follows a course of transition from hyper- to hypocoagulable state exemplified in disseminated intravascular coagulation. The incidence of coagulopathy is significantly higher in patients with traumatic brain injury (TBI), especially those with penetrating trauma compared to injury to the trunk and limbs. This occurs despite the fact that patients with isolated TBI bleed less and receive restricted volume load of fluids. TBI-associated coagulopathy is extensively documented to associate with poor clinical outcomes, but its pathophysiology remains poorly understood. Studies in the past have shown that brain tissue is highly enriched in key procoagulant molecules. This review focuses on the biochemical and cellular characteristics of these molecules and pathways that could make brain uniquely procoagulant and prone to coagulopathy. Understanding this unique procoagulant environment will help to identify new therapeutic targets that could reverse a state of coagulopathy with minimal impacts on hemostasis, a critical requirement for neurosurgical treatments of TBI. PMID:23020190

  17. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... head injury) or by an object penetrating the skull (called a penetrating injury). Some TBIs result in ... to) several types of injury to the brain: Skull fracture occurs when the skull cracks. Pieces of ...

  18. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury.

    PubMed

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed.

  19. Mesenchymal Stem Cells in the Treatment of Traumatic Brain Injury

    PubMed Central

    Hasan, Anwarul; Deeb, George; Rahal, Rahaf; Atwi, Khairallah; Mondello, Stefania; Marei, Hany Elsayed; Gali, Amr; Sleiman, Eliana

    2017-01-01

    Traumatic brain injury (TBI) is characterized by a disruption in the normal function of the brain due to an injury following a trauma, which can potentially cause severe physical, cognitive, and emotional impairment. The primary insult to the brain initiates secondary injury cascades consisting of multiple complex biochemical responses of the brain that significantly influence the overall severity of the brain damage and clinical sequelae. The use of mesenchymal stem cells (MSCs) offers huge potential for application in the treatment of TBI. MSCs have immunosuppressive properties that reduce inflammation in injured tissue. As such, they could be used to modulate the secondary mechanisms of injury and halt the progression of the secondary insult in the brain after injury. Particularly, MSCs are capable of secreting growth factors that facilitate the regrowth of neurons in the brain. The relative abundance of harvest sources of MSCs also makes them particularly appealing. Recently, numerous studies have investigated the effects of infusion of MSCs into animal models of TBI. The results have shown significant improvement in the motor function of the damaged brain tissues. In this review, we summarize the recent advances in the application of MSCs in the treatment of TBI. The review starts with a brief introduction of the pathophysiology of TBI, followed by the biology of MSCs, and the application of MSCs in TBI treatment. The challenges associated with the application of MSCs in the treatment of TBI and strategies to address those challenges in the future have also been discussed. PMID:28265255

  20. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  1. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  2. Assessment of Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Chesire, David J.; Buckley, Valerie A.; Canto, Angela I.

    2011-01-01

    The incidence of brain injuries, as well as their impact on individuals who sustain them, has received growing attention from American media in recent years. This attention is likely the result of high profile individuals suffering brain injuries. Greater public awareness of traumatic brain injuries (TBIs) has also been promoted by sources such as…

  3. Knowledge of Traumatic Brain Injury among Educators

    ERIC Educational Resources Information Center

    Ernst, William J.; Gallo, Adrienne B.; Sellers, Amanda L.; Mulrine, Jessica; MacNamara, Luciana; Abrahamson, Allison; Kneavel, Meredith

    2016-01-01

    The purpose of this study is to determine knowledge of traumatic brain injury among educators. Few studies have examined knowledge of traumatic brain injury in this population and fewer still have included a substantial proportion of general education teachers. Examining knowledge of traumatic brain injury in educators is important as the vast…

  4. Fever of unknown origin following traumatic brain injury.

    PubMed

    Jackson, R D; Mysiw, W J

    1991-01-01

    Fever is a common complication of a traumatic brain injury, occurring during both the acute-care phase and the rehabilitation phase of recovery. The aetiology of fever in this population may remain obscure because of the presence of cognitive confusion associated with post-traumatic amnesia interfering with history taking and the difficult physical examination. We present a case where recovery from a traumatic brain injury was complicated by a fever of unknown origin that proved to be secondary to lateral sinus thrombophlebitis. This case emphasises the importance of a thorough knowledge of the differential diagnosis for fever that is unique to the traumatic brain injury population.

  5. Central nervous system stimulants for secondary attention deficit-hyperactivity disorder after paediatric traumatic brain injury: a rationale and protocol for single patient (n-of-1) multiple cross-over trials

    PubMed Central

    2013-01-01

    Background It is estimated that 22,800 children were living with an Acquired Brain Injury (ABI) (0.6% of children aged under 15 years) in Australia during 2003. Many children after a traumatic brain injury will experience difficulties with attention and concentration; a condition termed secondary Attention Deficit-Hyperactivity Disorder. There is conflicting evidence on whether treatment with stimulant therapy with medications such as methylphenidate or dexamphetamine will improve the attention and behavior of children with this condition. Methods/Design Single patient trials (n-of-1s or SPTs) evaluate the effect of titrated doses of psychostimulants methylphenidate or dexamphetamine compared to placebo on attention and behavior, in children with TBI and secondary ADHD. The aggregation of multiple SPTs will produce a population estimate of the benefit. Forty-two children will be registered into the trial through rehabilitation services at three large children’s hospitals in Australia. Patients will complete up to 3 cycles of treatment. Each cycle is 2 weeks long comprising seven days each of treatment and placebo, with the first two days of each cycle considered a washout period and the data not analysed. The order of treatment and placebo is randomly allocated for each cycle. The Conners’ Parent Rating Scales long forms will be employed to measure change in attention-deficit/hyperactivity and related problems of the child, and the primary outcome measure is the Conners’ Global Index Parent Version. Secondary outcomes include the teacher and child (if aged > 12 years) Conners’ Rating Scales, the Behaviour Rating Inventory of Executive Function among other measures. This study will provide high-level evidence using a novel methodological approach to inform clinicians about the most appropriate treatment for individual children. Through aggregation of individual trials, a population estimate of treatment effect will be provided to guide clinical practice in

  6. Central nervous system stimulants for secondary attention deficit-hyperactivity disorder after paediatric traumatic brain injury: a rationale and protocol for single patient (n-of-1) multiple cross-over trials.

    PubMed

    Senior, Hugh E J; McKinlay, Lynne; Nikles, Jane; Schluter, Philip J; Carmont, Sue-Ann; Waugh, Mary-Clare; Epps, Adrienne; Lloyd, Owen; Mitchell, Geoffrey K

    2013-05-28

    It is estimated that 22,800 children were living with an Acquired Brain Injury (ABI) (0.6% of children aged under 15 years) in Australia during 2003. Many children after a traumatic brain injury will experience difficulties with attention and concentration; a condition termed secondary Attention Deficit-Hyperactivity Disorder. There is conflicting evidence on whether treatment with stimulant therapy with medications such as methylphenidate or dexamphetamine will improve the attention and behavior of children with this condition. Single patient trials (n-of-1s or SPTs) evaluate the effect of titrated doses of psychostimulants methylphenidate or dexamphetamine compared to placebo on attention and behavior, in children with TBI and secondary ADHD. The aggregation of multiple SPTs will produce a population estimate of the benefit. Forty-two children will be registered into the trial through rehabilitation services at three large children's hospitals in Australia. Patients will complete up to 3 cycles of treatment. Each cycle is 2 weeks long comprising seven days each of treatment and placebo, with the first two days of each cycle considered a washout period and the data not analysed. The order of treatment and placebo is randomly allocated for each cycle. The Conners' Parent Rating Scales long forms will be employed to measure change in attention-deficit/hyperactivity and related problems of the child, and the primary outcome measure is the Conners' Global Index Parent Version. Secondary outcomes include the teacher and child (if aged > 12 years) Conners' Rating Scales, the Behaviour Rating Inventory of Executive Function among other measures. This study will provide high-level evidence using a novel methodological approach to inform clinicians about the most appropriate treatment for individual children. Through aggregation of individual trials, a population estimate of treatment effect will be provided to guide clinical practice in the treatment of children with

  7. Neurostimulation for traumatic brain injury.

    PubMed

    Shin, Samuel S; Dixon, C Edward; Okonkwo, David O; Richardson, R Mark

    2014-11-01

    Traumatic brain injury (TBI) remains a significant public health problem and is a leading cause of death and disability in many countries. Durable treatments for neurological function deficits following TBI have been elusive, as there are currently no FDA-approved therapeutic modalities for mitigating the consequences of TBI. Neurostimulation strategies using various forms of electrical stimulation have recently been applied to treat functional deficits in animal models and clinical stroke trials. The results from these studies suggest that neurostimulation may augment improvements in both motor and cognitive deficits after brain injury. Several studies have taken this approach in animal models of TBI, showing both behavioral enhancement and biological evidence of recovery. There have been only a few studies using deep brain stimulation (DBS) in human TBI patients, and future studies are warranted to validate the feasibility of this technique in the clinical treatment of TBI. In this review, the authors summarize insights from studies employing neurostimulation techniques in the setting of brain injury. Moreover, they relate these findings to the future prospect of using DBS to ameliorate motor and cognitive deficits following TBI.

  8. Management of penetrating brain injury.

    PubMed

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-07-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients.

  9. Management of penetrating brain injury

    PubMed Central

    Kazim, Syed Faraz; Shamim, Muhammad Shahzad; Tahir, Muhammad Zubair; Enam, Syed Ather; Waheed, Shahan

    2011-01-01

    Penetrating brain injury (PBI), though less prevalent than closed head trauma, carries a worse prognosis. The publication of Guidelines for the Management of Penetrating Brain Injury in 2001, attempted to standardize the management of PBI. This paper provides a precise and updated account of the medical and surgical management of these unique injuries which still present a significant challenge to practicing neurosurgeons worldwide. The management algorithms presented in this document are based on Guidelines for the Management of Penetrating Brain Injury and the recommendations are from literature published after 2001. Optimum management of PBI requires adequate comprehension of mechanism and pathophysiology of injury. Based on current evidence, we recommend computed tomography scanning as the neuroradiologic modality of choice for PBI patients. Cerebral angiography is recommended in patients with PBI, where there is a high suspicion of vascular injury. It is still debatable whether craniectomy or craniotomy is the best approach in PBI patients. The recent trend is toward a less aggressive debridement of deep-seated bone and missile fragments and a more aggressive antibiotic prophylaxis in an effort to improve outcomes. Cerebrospinal fluid (CSF) leaks are common in PBI patients and surgical correction is recommended for those which do not close spontaneously or are refractory to CSF diversion through a ventricular or lumbar drain. The risk of post-traumatic epilepsy after PBI is high, and therefore, the use of prophylactic anticonvulsants is recommended. Advanced age, suicide attempts, associated coagulopathy, Glasgow coma scale score of 3 with bilaterally fixed and dilated pupils, and high initial intracranial pressure have been correlated with worse outcomes in PBI patients. PMID:21887033

  10. Controversies in the Management of Traumatic Brain Injury.

    PubMed

    Jinadasa, Sayuri; Boone, M Dustin

    2016-09-01

    Traumatic brain injury (TBI) is a physical insult (a bump, jolt, or blow) to the brain that results in temporary or permanent impairment of normal brain function. TBI describes a heterogeneous group of disorders. The resulting secondary injury, namely brain swelling and its sequelae, is the reason why patients with these vastly different initial insults are homogenously treated. Much of the evidence for the management of TBI is poor or conflicting, and thus definitive guidelines are largely unavailable for clinicians at this time. A substantial portion of this article focuses on discussing the controversies in the management of TBI.

  11. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury

    PubMed Central

    Andrews, Allison M.; Lutton, Evan M.; Merkel, Steven F.; Razmpour, Roshanak; Ramirez, Servio H.

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  12. Emerging Therapies in Traumatic Brain Injury

    PubMed Central

    Kochanek, Patrick M.; Jackson, Travis C.; Ferguson, Nikki Miller; Carlson, Shaun W.; Simon, Dennis W.; Brockman, Erik C.; Ji, Jing; Bayir, Hülya; Poloyac, Samuel M.; Wagner, Amy K.; Kline, Anthony E.; Empey, Philip E.; Clark, Robert S.B.; Jackson, Edwin K.; Dixon, C. Edward

    2015-01-01

    Despite decades of basic and clinical research, treatments to improve outcomes after traumatic brain injury (TBI) are limited. However, based on the recent recognition of the prevalence of mild TBI, and its potential link to neurodegenerative disease, many new and exciting secondary injury mechanisms have been identified and several new therapies are being evaluated targeting both classic and novel paradigms. This includes a robust increase in both preclinical and clinical investigations. Using a mechanism-based approach the authors define the targets and emerging therapies for TBI. They address putative new therapies for TBI across both the spectrum of injury severity and the continuum of care, from the field to rehabilitation. They discuss TBI therapy using 11 categories, namely, (1) excitotoxicity and neuronal death, (2) brain edema, (3) mitochondria and oxidative stress, (4) axonal injury, (5) inflammation, (6) ischemia and cerebral blood flow dysregulation, (7) cognitive enhancement, (8) augmentation of endogenous neuroprotection, (9) cellular therapies, (10) combination therapy, and (11) TBI resuscitation. The current golden age of TBI research represents a special opportunity for the development of breakthroughs in the field. PMID:25714870

  13. Sleep and Traumatic Brain Injury.

    PubMed

    Baumann, Christian R

    2016-03-01

    Post-traumatic sleep-wake disturbances are frequent and often chronic complications after traumatic brain injury. The most prevalent sleep-wake disturbances are insomnia, excessive daytime sleepiness, and pleiosomnia, (i.e., increased sleep need). These disturbances are probably of multifactorial origin, but direct traumatic damage to key brain structures in sleep-wake regulation is likely to contribute. Diagnosis and treatment consist of standard approaches, but because of misperception of sleep-wake behavior in trauma patients, subjective testing alone may not always suffice.

  14. Magnetic Resonance Imaging in Experimental Traumatic Brain Injury.

    PubMed

    Shen, Qiang; Watts, Lora Tally; Li, Wei; Duong, Timothy Q

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of death and disability in the USA. Common causes of TBI include falls, violence, injuries from wars, and vehicular and sporting accidents. The initial direct mechanical damage in TBI is followed by progressive secondary injuries such as brain swelling, perturbed cerebral blood flow (CBF), abnormal cerebrovascular reactivity (CR), metabolic dysfunction, blood-brain-barrier disruption, inflammation, oxidative stress, and excitotoxicity, among others. Magnetic resonance imaging (MRI) offers the means to noninvasively probe many of these secondary injuries. MRI has been used to image anatomical, physiological, and functional changes associated with TBI in a longitudinal manner. This chapter describes controlled cortical impact (CCI) TBI surgical procedures, a few common MRI protocols used in TBI imaging, and, finally, image analysis pertaining to experimental TBI imaging in rats.

  15. Inflammation and Neuroprotection in Traumatic Brain Injury

    PubMed Central

    Corps, Kara N.; Roth, Theodore L.; McGavern, Dorian B.

    2016-01-01

    IMPORTANCE Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. OBJECTIVES To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. EVIDENCE REVIEW We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. FINDINGS Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning

  16. Inflammation and neuroprotection in traumatic brain injury.

    PubMed

    Corps, Kara N; Roth, Theodore L; McGavern, Dorian B

    2015-03-01

    Traumatic brain injury (TBI) is a significant public health concern that affects individuals in all demographics. With increasing interest in the medical and public communities, understanding the inflammatory mechanisms that drive the pathologic and consequent cognitive outcomes can inform future research and clinical decisions for patients with TBI. To review known inflammatory mechanisms in TBI and to highlight clinical trials and neuroprotective therapeutic manipulations of pathologic and inflammatory mechanisms of TBI. We searched articles in PubMed published between 1960 and August 1, 2014, using the following keywords: traumatic brain injury, sterile injury, inflammation, astrocytes, microglia, monocytes, macrophages, neutrophils, T cells, reactive oxygen species, alarmins, danger-associated molecular patterns, purinergic receptors, neuroprotection, and clinical trials. Previous clinical trials or therapeutic studies that involved manipulation of the discussed mechanisms were considered for inclusion. The final list of selected studies was assembled based on novelty and direct relevance to the primary focus of this review. Traumatic brain injury is a diverse group of sterile injuries induced by primary and secondary mechanisms that give rise to cell death, inflammation, and neurologic dysfunction in patients of all demographics. Pathogenesis is driven by complex, interacting mechanisms that include reactive oxygen species, ion channel and gap junction signaling, purinergic receptor signaling, excitotoxic neurotransmitter signaling, perturbations in calcium homeostasis, and damage-associated molecular pattern molecules, among others. Central nervous system resident and peripherally derived inflammatory cells respond to TBI and can provide neuroprotection or participate in maladaptive secondary injury reactions. The exact contribution of inflammatory cells to a TBI lesion is dictated by their anatomical positioning as well as the local cues to which they are

  17. Brain injury requires lung protection

    PubMed Central

    Lopez-Aguilar, Josefina

    2015-01-01

    The paper entitled “The high-mobility group protein B1-Receptor for advanced glycation endproducts (HMGB1-RAGE) axis mediates traumatic brain injury (TBI)-induced pulmonary dysfunction in lung transplantation” published recently in Science Translational Medicine links lung failure after transplantation with alterations in the axis HMGB1-RAGE after TBI, opening a new field for exploring indicators for the early detection of patients at risk of developing acute lung injury (ALI). The lung is one of the organs most vulnerable to the inflammatory cascade triggered by TBI. HMGB1 is an alarm in that can be released from activated immune cells in response to tissue injury. Increased systemic HMGB1 concentration correlates with poor lung function before and after lung transplant, confirming its role in acute ALI after TBI. HMGB1 exerts its influence by interacting with several receptors, including the RAGE receptor. RAGE also plays an important role in the onset of innate immune inflammatory responses, and systemic levels of RAGE are strongly associated with ALI and clinical outcomes in ventilator-induced lung injury. RAGE ligation to HMGB1 triggers the amplification of the inflammatory cascade involving nuclear factor-κB (NF-κB) activation. Identifying early biomarkers that mediate pulmonary dysfunction will improve outcomes not only in lung transplantation, but also in other scenarios. These novel findings show that upregulation of the HMGB1-RAGE axis plays an important role in brain-lung crosstalk. PMID:26046092

  18. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  19. Intensive Care Treatment in Traumatic Brain Injury

    PubMed Central

    Dilmen, Özlem Korkmaz; Akçıl, Eren Fatma; Tunalı, Yusuf

    2015-01-01

    Head injury remains a serious public problem, especially in the young population. The understanding of the mechanism of secondary injury and the development of appropriate monitoring and critical care treatment strategies reduced the mortality of head injury. The pathophysiology, monitoring and treatment principles of head injury are summarised in this article. PMID:27366456

  20. Traumatic brain injury among Indiana state prisoners.

    PubMed

    Ray, Bradley; Sapp, Dona; Kincaid, Ashley

    2014-09-01

    Research on traumatic brain injury among inmates has focused on comparing the rate of traumatic brain injury among offenders to the general population, but also how best to screen for traumatic brain injury among this population. This study administered the short version of the Ohio State University Traumatic Brain Injury Identification Method to all male inmates admitted into Indiana state prisons were screened for a month (N = 831). Results indicate that 35.7% of the inmates reported experiencing a traumatic brain injury during their lifetime and that these inmates were more likely to have a psychiatric disorder and a prior period of incarceration than those without. Logistic regression analysis finds that a traumatic brain injury predicts the likelihood of prior incarceration net of age, race, education, and psychiatric disorder. This study suggests that brief instruments can be successfully implemented into prison screenings to help divert inmates into needed treatment.

  1. How woodpecker avoids brain injury?

    NASA Astrophysics Data System (ADS)

    Wu, C. W.; Zhu, Z. D.; Zhang, W.

    2015-07-01

    It has long been recognized that woodpecker is an excellent anti-shock organism, as its head and brain can bear high deceleration up to 1500 g under fast pecking. To investigate the mechanism of brain protection of woodpecker, we built a finite element model of a whole woodpecker using computed topography scanning technique and geometry modeling. Numerical results show that the periodical changing Young's modulus around the skull affects the stress wave propagation in head and makes the stress lowest at the position of the brain. Modal analysis reveals the application of pre-tension force to the hyoid bone can increase the natural frequency of woodpecker's head. The large gap between the natural and working frequencies enable the woodpecker to effectively protect its brain from the resonance injury. Energy analyses indicate the majority of the impact energy (99.7%) is stored in the bulk of body and is utilized in the next pecking. There is only a small fraction of it enters into the head (0.3%). The whole body of the woodpecker gets involved in the energy conversion and forms an efficient anti-shock protection system for the brain.

  2. Traumatic brain injury, axonal injury and shaking in New Zealand sea lion pups.

    PubMed

    Roe, W D; Mayhew, I G; Jolly, R D; Marshall, J; Chilvers, B L

    2014-04-01

    Trauma is a common cause of death in neonatal New Zealand sea lion pups, and subadult male sea lions have been observed picking up and violently shaking some pups. In humans, axonal injury is a common result of traumatic brain injury, and can be due to direct trauma to axons or to ischaemic damage secondary to trauma. 'Shaken baby syndrome', which has been described in human infants, is characterised by retinal and intracranial subdural haemorrhages, and has been associated with axonal injury to the brain, spinal cord and optic nerve. This study identifies mechanisms of traumatic brain injury in New Zealand sea lion pups, including impact injuries and shaking-type injuries, and identifies gross lesions of head trauma in 22/36 sea lion pups found dead at a breeding site in the Auckland Islands. Despite the high frequency of such gross lesions, only three of the pups had died of traumatic brain injury. Observational studies confirmed that shaking of pups occurred, but none were shown to die as a direct result of these shaking events. Axonal injury was evaluated in all 36 pup brains using β-amyloid precursor protein immunohistochemistry. Immunoreactive axons were present in the brains of all pups examined including seven with vascular axonal injury and two with diffuse axonal injury, but the severity and pattern of injury was not reliably associated with death due to traumatic brain injury. No dead pups had the typical combination of gross lesions and immunohistochemical findings that would conform to descriptions of 'shaken baby syndrome'. Axonal injury was present in the optic nerves of most pups, irrespective of cause of death, but was associated with ischaemia rather than trauma.

  3. Severe Traumatic Brain Injury In Children: An Evidence-Based Review Of Emergency Department Management.

    PubMed

    Morrissey, Kirsten; Fairbrother, Hilary

    2016-10-01

    More than 1.7 million traumatic brain injuries occur in adults and children each year in the United States, with approximately 30% occurring in children aged < 14 years. Traumatic brain injury is a significant cause of morbidity and mortality in pediatric trauma patients. Early identification and management of severe traumatic brain injury is crucial in decreasing the risk of secondary brain injury and optimizing outcome. The main focus for early management of severe traumatic brain injury is to mitigate and prevent secondary injury, specifically by avoiding hypotension and hypoxia, which have been associated with poorer outcomes. This issue discusses methods to maintain adequate oxygenation, maximize management of intracranial hypertension, and optimize blood pressure in the emergency department to improve neurologic outcomes following pediatric severe traumatic brain injury.

  4. Diffuse Brain Injury Induces Acute Post-Traumatic Sleep

    PubMed Central

    Rowe, Rachel K.; Striz, Martin; Bachstetter, Adam D.; Van Eldik, Linda J.; Donohue, Kevin D.; O'Hara, Bruce F.; Lifshitz, Jonathan

    2014-01-01

    Objective Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. Methods Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry. Results Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (>50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury. Conclusion Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair. PMID:24416145

  5. Imaging assessment of traumatic brain injury.

    PubMed

    Currie, Stuart; Saleem, Nayyar; Straiton, John A; Macmullen-Price, Jeremy; Warren, Daniel J; Craven, Ian J

    2016-01-01

    Traumatic brain injury (TBI) constitutes injury that occurs to the brain as a result of trauma. It should be appreciated as a heterogeneous, dynamic pathophysiological process that starts from the moment of impact and continues over time with sequelae potentially seen many years after the initial event. Primary traumatic brain lesions that may occur at the moment of impact include contusions, haematomas, parenchymal fractures and diffuse axonal injury. The presence of extra-axial intracranial lesions such as epidural and subdural haematomas and subarachnoid haemorrhage must be anticipated as they may contribute greatly to secondary brain insult by provoking brain herniation syndromes, cranial nerve deficits, oedema and ischaemia and infarction. Imaging is fundamental to the management of patients with TBI. CT remains the imaging modality of choice for initial assessment due to its ease of access, rapid acquisition and for its sensitivity for detection of acute haemorrhagic lesions for surgical intervention. MRI is typically reserved for the detection of lesions that may explain clinical symptoms that remain unresolved despite initial CT. This is especially apparent in the setting of diffuse axonal injury, which is poorly discerned on CT. Use of particular MRI sequences may increase the sensitivity of detecting such lesions: diffusion-weighted imaging defining acute infarction, susceptibility-weighted imaging affording exquisite data on microhaemorrhage. Additional advanced MRI techniques such as diffusion tensor imaging and functional MRI may provide important information regarding coexistent structural and functional brain damage. Gaining robust prognostic information for patients following TBI remains a challenge. Advanced MRI sequences are showing potential for biomarkers of disease, but this largely remains at the research level. Various global collaborative research groups have been established in an effort to combine imaging data with clinical and

  6. Hypopituitarism after traumatic brain injury.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI.

  7. Intrafacility transportation of patients with acute brain injury.

    PubMed

    Tu, Hsinfen

    2014-06-01

    Patients with acute brain injury (ABI) frequently require diagnostic and therapeutic procedures in the areas located outside of the intensive care unit. Transports can be risky for critically ill patients with ABI. Secondary brain injury can occur during the transport from causes such as ischemia, hypotension, hypoxia, hypercapnia, and cerebral edema. Preparation and implementation of preventive procedures including pretransport assessment, monitoring during transport, and posttransport examination and documentation for transports of patients with ABI deem to be necessary. The purpose of this article is to review the typical risks associated with the transports of the patients with ABI out of the intensive care unit and to propose the strategies that can be used to minimize the risks of secondary brain injury.

  8. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  9. Quality of Life Following Brain Injury: Perspectives from Brain Injury Association of America State Affiliates

    ERIC Educational Resources Information Center

    Degeneffe, Charles Edmund; Tucker, Mark

    2012-01-01

    Objective: to examine the perspectives of brain injury professionals concerning family members' feelings about the quality of life experienced by individuals with brain injuries. Participants: participating in the study were 28 individuals in leadership positions with the state affiliates of the Brain Injury Association of America (BIAA). Methods:…

  10. Brain Temperature: Physiology and Pathophysiology after Brain Injury

    PubMed Central

    Mrozek, Ségolène; Vardon, Fanny; Geeraerts, Thomas

    2012-01-01

    The regulation of brain temperature is largely dependent on the metabolic activity of brain tissue and remains complex. In intensive care clinical practice, the continuous monitoring of core temperature in patients with brain injury is currently highly recommended. After major brain injury, brain temperature is often higher than and can vary independently of systemic temperature. It has been shown that in cases of brain injury, the brain is extremely sensitive and vulnerable to small variations in temperature. The prevention of fever has been proposed as a therapeutic tool to limit neuronal injury. However, temperature control after traumatic brain injury, subarachnoid hemorrhage, or stroke can be challenging. Furthermore, fever may also have beneficial effects, especially in cases involving infections. While therapeutic hypothermia has shown beneficial effects in animal models, its use is still debated in clinical practice. This paper aims to describe the physiology and pathophysiology of changes in brain temperature after brain injury and to study the effects of controlling brain temperature after such injury. PMID:23326261

  11. A neuropsychiatric perspective on traumatic brain injury.

    PubMed

    Lux, Warren E

    2007-01-01

    Traumatic brain injury (TBI) due to closed mechanisms causes strain injuries to axons that increase in number and severity as injury severity increases. Axons that project up from the brain stem are vulnerable, even in milder concussive injuries, and include axons that participate in key monoaminergic pathways. Although called diffuse axonal injury, the supra-tentorial injury component typically shows an anterior preponderance in humans. As the injury forces increase, cerebral contusions may be superimposed on the axonal strain injuries, and these contusions show an anterior preponderance as well. The chronic neuropsychiatric manifestations of TBI reflect this injury distribution. In the cognitive sphere, these manifestations almost always include power function disturbances marked by difficulties with cognitive processing speed, multitasking, and cognitive endurance. These disturbances may then be followed by disturbances in executive function and self-awareness as injury severity increases. In the behavioral sphere, mood disturbances and disorders of behavioral control and regulation are particularly common.

  12. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  13. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  14. Surveillance of traumatic brain injuries in Utah.

    PubMed Central

    Thurman, D J; Jeppson, L; Burnett, C L; Beaudoin, D E; Rheinberger, M M; Sniezek, J E

    1996-01-01

    From 1990 through 1992 we conducted surveillance of cases requiring hospital admission and of fatal cases of traumatic brain injury among residents of Utah and found an annual incidence rate of 108.8 per 100,000 population. The greatest number of injuries occurred among men and persons aged 15 to 24 years. Motor vehicles were the leading cause of injury, followed by falls and assaults. The incidence rate we found is substantially lower than previously published rates of traumatic brain injury. This may be the result of a decrease in the incidence of these injuries in the decade since earlier studies were done, as well as changing hospital admission criteria that serve to exclude less severe cases of injury. Despite the apparent decline in rates, our findings indicate the continued importance of traumatic brain injury as a public health problem and the need to develop more effective prevention strategies that will address the major causes of these injuries. PMID:8987423

  15. Spreading depolarization monitoring in neurocritical care of acute brain injury.

    PubMed

    Hartings, Jed A

    2017-04-01

    Spreading depolarizations are unique in being discrete pathologic entities that are well characterized experimentally and also occur commonly in patients with substantial acute brain injury. Here, we review essential concepts in depolarization monitoring, highlighting its clinical significance, interpretation, and future potential. Cortical lesion development in diverse animal models is mediated by tissue waves of mass spreading depolarization that cause the toxic loss of ion homeostasis and limit energy substrate supply through associated vasoconstriction. The signatures of such deterioration are observed in electrocorticographic recordings from perilesional cortex of patients with acute stroke or brain trauma. Experimental work suggests that depolarizations are triggered by energy supply-demand mismatch in focal hotspots of the injury penumbra, and depolarizations are usually observed clinically when other monitoring variables are within recommended ranges. These results suggest that depolarizations are a sensitive measure of relative ischemia and ongoing secondary injury, and may serve as a clinical guide for personalized, mechanistically targeted therapy. Both existing and future candidate therapies offer hope to limit depolarization recurrence. Electrocorticographic monitoring of spreading depolarizations in patients with acute brain injury provides a sensitive measure of relative energy shortage in focal, vulnerable brains regions and indicates ongoing secondary damage. Depolarization monitoring holds potential for targeted clinical trial design and implementation of precision medicine approaches to acute brain injury therapy.

  16. Support Network Responses to Acquired Brain Injury

    ERIC Educational Resources Information Center

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  17. Behavioral Considerations Associated with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Mayfield, Joan; Homack, Susan

    2005-01-01

    Children who sustain traumatic brain injury (TBI) can experience significant cognitive deficits. These deficits may significantly impair their functioning in the classroom, resulting in the need for academic and behavioral modifications. Behavior and social problems can be the direct or indirect result of brain injury. Difficulties in paying…

  18. Traumatic Brain Injury. Fact Sheet Number 18.

    ERIC Educational Resources Information Center

    National Information Center for Children and Youth with Disabilities, Washington, DC.

    This fact sheet describes traumatic brain injury (TBI), an injury of the brain caused by the head being hit by something or being shaken violently. It discusses the incidence of TBI, and describes its symptoms as changes in thinking and reasoning, understanding words, remembering things, paying attention, solving problems, thinking abstractly,…

  19. Behavioral Considerations Associated with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Mayfield, Joan; Homack, Susan

    2005-01-01

    Children who sustain traumatic brain injury (TBI) can experience significant cognitive deficits. These deficits may significantly impair their functioning in the classroom, resulting in the need for academic and behavioral modifications. Behavior and social problems can be the direct or indirect result of brain injury. Difficulties in paying…

  20. Resource Guide on Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Monfore, Dorothea

    2005-01-01

    The purpose of this resource guide on traumatic brain injury (TBI) is to provide assistance to educators, families, and professionals who may be striving to increase their knowledge and understanding of brain injury. This guide will hopefully become an initial resource. It provides: a glossary of TBI Terms; contact information for and brief…

  1. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  2. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  3. Impaired Pituitary Axes Following Traumatic Brain Injury

    PubMed Central

    Scranton, Robert A.; Baskin, David S.

    2015-01-01

    Pituitary dysfunction following traumatic brain injury (TBI) is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed. PMID:26239686

  4. Outcomes after concomitant traumatic brain injury and hemorrhagic shock: A secondary analysis from the Pragmatic, Randomized Optimal Platelets and Plasma Ratios trial.

    PubMed

    Galvagno, Samuel M; Fox, Erin E; Appana, Savitri N; Baraniuk, Sarah; Bosarge, Patrick L; Bulger, Eileen M; Callcut, Rachel A; Cotton, Bryan A; Goodman, Michael; Inaba, Kenji; O'Keeffe, Terence; Schreiber, Martin A; Wade, Charles E; Scalea, Thomas M; Holcomb, John B; Stein, Deborah M

    2017-10-01

    Often the clinician is faced with a diagnostic and therapeutic dilemma in patients with concomitant traumatic brain injury (TBI) and hemorrhagic shock (HS), as rapid deterioration from either can be fatal. Knowledge about outcomes after concomitant TBI and HS may help prioritize the emergent management of these patients. We hypothesized that patients with concomitant TBI and HS (TBI + HS) had worse outcomes and required more intensive care compared with patients with only one of these injuries. This is a post hoc analysis of the Pragmatic, Randomized Optimal Platelets and Plasma Ratios (PROPPR) trial. TBI was defined by a head Abbreviated Injury Scale score greater than 2. HS was defined as a base excess of -4 or less and/or shock index of 0.9 or greater. The primary outcome for this analysis was mortality at 30 days. Logistic regression, using generalized estimating equations, was used to model categorical outcomes. Six hundred seventy patients were included. Patients with TBI + HS had significantly higher lactate (median, 6.3; interquartile range, 4.7-9.2) compared with the TBI group (median, 3.3; interquartile range, 2.3-4). TBI + HS patients had higher activated prothrombin times and lower platelet counts. Unadjusted mortality was higher in the TBI + HS (51.6%) and TBI (50%) groups compared with the HS (17.5%) and neither group (7.7%). Adjusted odds of death in the TBI and TBI + HS groups were 8.2 (95% confidence interval, 3.4-19.5) and 10.6 (95% confidence interval, 4.8-23.2) times higher, respectively. Ventilator, intensive care unit-free and hospital-free days were lower in the TBI and TBI + HS groups compared with the other groups. Patients with TBI + HS or TBI had significantly greater odds of developing a respiratory complication compared with the neither group. The addition of TBI to HS is associated with worse coagulopathy before resuscitation and increased mortality. When controlling for multiple known confounders, the diagnosis of TBI alone or TBI

  5. [Late-onset Neurodegenerative Diseases Following Traumatic Brain Injury: Chronic Traumatic Encephalopathy (CTE) and Alzheimer's Disease Secondary to TBI (AD-TBI)].

    PubMed

    Takahata, Keisuke; Tabuchi, Hajime; Mimura, Masaru

    2016-07-01

    Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease, which is associated with mild repetitive traumatic brain injury (TBI). This long-term and progressive symptom due to TBI was initially called punch-drunk syndrome or dementia pugilistica, since it was believed to be associated with boxing. However, serial neuropathological studies of mild repetitive TBI in the last decade have revealed that CTE occurs not only in boxers but also in a wider population including American football players, wrestlers, and military personnel. CTE has gained large public interest owing to dramatic cases involving retired professional athletes wherein serious behavioral problems and tragic incidents were reported. Unlike mild repetitive TBI, a single episode of severe TBI can cause another type of late-onset neuropsychiatric disease including Alzheimer's disease (AD). Several epidemiological studies have shown that a single episode of severe TBI is one of the major risk factors of AD. Pathologically, both AD and CTE are characterized by abnormal accumulations of hyperphosphorylated tau proteins. However, recent neuropathological studies revealed that CTE demonstrates a unique pattern of tau pathology in neurons and astrocytes, and accumulation of other misfolded proteins such as TDP-43. Currently, no reliable biomarkers of late-onset neurodegenerative diseases following TBI are available, and a definitive diagnosis can be made only via postmortem neuropathological examination. Development in neuroimaging techniques such as tau and amyloid positron emission tomography imaging might not only enable early diagnosis of CTE, but also contribute to the interventions for prevention of late-onset neurodegenerative diseases following TBI. Further studies are necessary to elucidate the mechanisms of neurodegeneration in the living brain of patients with TBI.

  6. Psychosis following traumatic brain injury.

    PubMed

    Arciniegas, David B; Harris, Susie N; Brousseau, Kristin M

    2003-11-01

    Psychosis is a relatively infrequent but potentially serious and debilitating consequence of traumatic brain injury (TBI), and one about which there is considerable scientific uncertainty and disagreement. There are several substantial clinical, epidemiological, and neurobiological differences between the post-traumatic psychoses and the primary psychotic disorders. The recognition of these differences may facilitate identification and treatment of patients whose psychosis is most appropriately regarded as post-traumatic. In the service of assisting psychiatrists and other mental health clinicians in the diagnosis and treatment of persons with post-traumatic psychoses, this article will review post-traumatic psychosis, including definitions relevant to describing the clinical syndrome, as well as epidemiologic, neurobiological, and neurogenetic factors attendant to it. An approach to evaluation and treatment will then be offered, emphasizing identification of the syndrome of post-traumatic psychosis, consideration of the differential diagnosis of this condition, and careful selection and administration of treatment interventions.

  7. Hypopituitarism following traumatic brain injury.

    PubMed

    Popovic, V; Aimaretti, G; Casanueva, F F; Ghigo, E

    2005-06-01

    Recent studies have demonstrated that hypopituitarism, and in particular growth hormone (GH) deficiency, is common among survivors of traumatic brain injury (TBI) tested several months or years following head trauma. In addition, it has been shown that post-traumatic neuroendocrine abnormalities occur early and with high frequency. These findings may have significant implications for the recovery and rehabilitation of patients with TBI. Although data emerging after 2000 demonstrate the relevance of the problem, in general there is a lack of awareness in the medical community about the incidence and clinical repercussions of the pathology. Most, but not all, head trauma associated with hypopituitarism is the result of motor accidents. The subjects at risk are those who have suffered moderate-to severe head trauma although mild intensity trauma may precede hypopituitarism also. Particular attention should be paid to this problem in children and adolescents. Onset of pituitary deficits can evolve over years following injury. For the assessment of the GH-IGF axis in TBI patients, plasma IGF-I concentrations, plus dynamic GH testing is indicated. Some degree of hypopituitarism is found in 35-40% of TBI patients. Among multiple pituitary deficits, the most common ones were GHD and gonadotrophin deficiency. In most series 10-15% presented with severe GHD and 15% with partial GHD after stimulating GH secretion confirming that the most common isolated deficit is GHD. Psychometric evaluation together with neurocognitive testing shows variability of disability and the possibility that untreated TBI induced hypopituitarism contributes to the chronic neurobehavioral problems seen in many head-injured patients warrants consideration. Preliminary data, from small pilot, open-label studies show that subjects treated with GH experience significant improvements in concentration, memory, depression, anxiety and fatigue. In conclusion, pituitary failure can occur even in minor head

  8. Prooxidant-antioxidant balance in patients with traumatic brain injury.

    PubMed

    Ehsaei, Mohamadreza; Khajavi, Mehdi; Arjmand, Mohammad Hassan; Abuee, Mohammad Ali; Ghayour-Mobarhan, Majid; Hamidi Alamdari, Daryoush

    2015-03-01

    Brain trauma is an important cause of mortality and disability among young people worldwide. One of the mechanisms of post-traumatic secondary brain damage is related to free radical release and oxidative stress (OS). OS is the consequence of an imbalance between pro-oxidants and antioxidants in favor of pro-oxidants. This imbalance may lead to macromolecule damage including lipid peroxidation, protein crosslinking, DNA damage and changes in growth and function of cells in brain. Free radical release and subsequent lipid peroxidation are early events following neural tissues injury and are associated with hypo-perfusion, edema, and disruption of axonal guidance. In this study, we determined the prooxidant-antioxidant balance (PAB) in patients with brain injury, and its correlation with number of demographic and clinical parameters. Sera from 98 patients with traumatic brain and 100 healthy subjects were collected. The serum PAB was measured. Age, sex, GCS (Glasgow coma scale), mechanism of injury, brain lesions found on CT scan and lesions in other parts of the body, caused by trauma, were determined. A significantly higher PAB value was observed in the patient group (138.97 ± 15.9 HK unit) compared to the controls (60.82 ± 12.6 HK) (P = 0.001). In the patient group, there was no significant correlation of PAB with GCS, brain lesion characteristic, mechanism of injury, other accompanying traumatic injury, age and gender. When patients were classified into three groups according to GCS: group 1 (GCS>13, n = 28, PAB serum value = 138.51 ± 62.66 HK), group 2 (GCS between 8 and 12, n = 29, PAB serum value = 162.7 ± 50.6 HK) and group 3 (GCS <8, n = 41, PAB serum value = 155.56 ± 58.21 HK); there was no significant difference between groups. The serum PAB values were higher in patients with traumatic brain injury, although this was not associated with the extent of injury.

  9. The neuroprotective effects of progesterone on traumatic brain injury: current status and future prospects

    PubMed Central

    Wei, Jing; Xiao, Guo-min

    2013-01-01

    Traumatic brain injury is the leading cause of morbidity and mortality in young adults. The secondary injury in traumatic brain injury consists of a complex cascade of processes that simultaneously react to the primary injury to the brain. This cascade has been the target of numerous therapeutic agents investigated over the last 30 years, but no neuroprotective treatment option is currently available that improve neurological outcome after traumatic brain injury. Progesterone has long been considered merely a female reproductive hormone. Numerous studies, however, show that progesterone has substantial pleiotropic properties as a neuroprotective agent in both animal models and humans. Here, we review the increasing evidence that progesterone can act as a neuroprotective agent to treat traumatic brain injury and the mechanisms underlying these effects. Additionally, we discuss the current progress of clinical studies on the application of progesterone in the treatment of traumatic brain injuries. PMID:24241345

  10. Fluid markers of traumatic brain injury.

    PubMed

    Zetterberg, Henrik; Blennow, Kaj

    2015-05-01

    Traumatic brain injury (TBI) occurs when an external force traumatically injures the brain. Whereas severe TBI can be diagnosed using a combination of clinical signs and standard neuroimaging techniques, mild TBI (also called concussion) is more difficult to detect. This is where fluid markers of injury to different cell types and subcellular compartments in the central nervous system come into play. These markers are often proteins, peptides or other molecules with selective or high expression in the brain, which can be measured in the cerebrospinal fluid or blood as they leak out or get secreted in response to the injury. Here, we review the literature on fluid markers of neuronal, axonal and astroglial injury to diagnose mild TBI and to predict clinical outcome in patients with head trauma. We also discuss chronic traumatic encephalopathy, a progressive neurodegenerative disease in individuals with a history of multiple mild TBIs in a biomarker context. This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  11. Apnoea and brain swelling in non-accidental head injury

    PubMed Central

    Kemp, A; Stoodley, N; Cobley, C; Coles, L; Kemp, K; Geddes, J

    2003-01-01

    Aims: (1) To identify whether infants and young children admitted to hospital with subdural haematomas (SDH) secondary to non-accidental head injury (NAHI), suffer from apnoea leading to radiological evidence of hypoxic ischaemic brain damage, and whether this is related to a poor prognosis; and (2) to determine what degree of trauma is associated with NAHI. Methods: Retrospective case series (1992–98) with case control analysis of 65 children under 2 years old, with an SDH secondary to NAHI. Outcome measures were presenting symptoms, associated injuries and apnoea at presentation, brain swelling or hypoxic ischaemic changes on neuroimaging, and clinical outcome (KOSCHI). Results: Twenty two children had a history of apnoea at presentation to hospital. Apnoea was significantly associated with hypoxic ischaemic brain damage. Severe symptoms at presentation, apnoea, and diffuse brain swelling/hypoxic ischaemic damage were significantly associated with a poor prognosis. Eighty five per cent of cases had associated injuries consistent with a diagnosis of non-accidental injury. Conclusions: Coma at presentation, apnoea, and diffuse brain swelling or hypoxic ischaemia all predict a poor outcome in an infant who has suffered from SDH after NAHI. There is evidence of associated violence in the majority of infants with NAHI. At this point in time we do not know the minimum forces necessary to cause NAHI. It is clear however that it is never acceptable to shake a baby. PMID:12765909

  12. Traumatic Brain Injury by a Closed Head Injury Device Induces Cerebral Blood Flow Changes and Microhemorrhages

    PubMed Central

    Kallakuri, Srinivasu; Bandaru, Sharath; Zakaria, Nisrine; Shen, Yimin; Kou, Zhifeng; Zhang, Liying; Haacke, Ewart Mark; Cavanaugh, John M

    2015-01-01

    Objectives: Traumatic brain injury is a poly-pathology characterized by changes in the cerebral blood flow, inflammation, diffuse axonal, cellular, and vascular injuries. However, studies related to understanding the temporal changes in the cerebral blood flow following traumatic brain injury extending to sub-acute periods are limited. In addition, knowledge related to microhemorrhages, such as their detection, localization, and temporal progression, is important in the evaluation of traumatic brain injury. Materials and Methods: Cerebral blood flow changes and microhemorrhages in male Sprague Dawley rats at 4 h, 24 h, 3 days, and 7 days were assessed following a closed head injury induced by the Marmarou impact acceleration device (2 m height, 450 g brass weight). Cerebral blood flow was measured by arterial spin labeling. Microhemorrhages were assessed by susceptibility-weighted imaging and Prussian blue histology. Results: Traumatic brain injury rats showed reduced regional and global cerebral blood flow at 4 h and 7 days post-injury. Injured rats showed hemorrhagic lesions in the cortex, corpus callosum, hippocampus, and brainstem in susceptibility-weighted imaging. Injured rats also showed Prussian blue reaction products in both the white and gray matter regions up to 7 days after the injury. These lesions were observed in various areas of the cortex, corpus callosum, hippocampus, thalamus, and midbrain. Conclusions: These results suggest that changes in cerebral blood flow and hemorrhagic lesions can persist for sub-acute periods after the initial traumatic insult in an animal model. In addition, microhemorrhages otherwise not seen by susceptibility-weighted imaging are present in diverse regions of the brain. The combination of altered cerebral blood flow and microhemorrhages can potentially be a source of secondary injury changes following traumatic brain injury and may need to be taken into consideration in the long-term care of these cases. PMID:26605126

  13. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    PubMed Central

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P.; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed

  14. Lateral fluid percussion: model of traumatic brain injury in mice.

    PubMed

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-08-22

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  15. Gas Cluster Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry High-Resolution Imaging of Cardiolipin Speciation in the Brain: Identification of Molecular Losses after Traumatic Injury.

    PubMed

    Tian, Hua; Sparvero, Louis J; Amoscato, Andrew A; Bloom, Anna; Bayır, Hülya; Kagan, Valerian E; Winograd, Nicholas

    2017-03-29

    Gas cluster ion beam-secondary ion mass spectrometry (GCIB-SIMS) has shown the full potential of mapping intact lipids in biological systems with better than 10 μm lateral resolution. This study investigated further the capability of GCIB-SIMS in imaging high-mass signals from intact cardiolipin (CL) and gangliosides in normal brain and the effect of a controlled cortical impact model (CCI) of traumatic brain injury (TBI) on their distribution. A combination of enzymatic and chemical treatments was employed to suppress the signals from the most abundant phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)) and enhance the signals from the low-abundance CLs and gangliosides to allow their GCIB-SIMS detection at 8 and 16 μm spatial resolution. Brain CLs have not been observed previously using other contemporary imaging mass spectrometry techniques at better than 50 μm spatial resolution. High-resolution images of naive and injured brain tissue facilitated the comparison of CL species across three multicell layers in the CA1, CA3, and DG regions of the hippocampus. GCIB-SIMS also reliably mapped losses of oxidizable polyunsaturated CL species (but not the oxidation-resistant saturated and monounsaturated gangliosides) to regions including the CA1 and CA3 of the hippocampus after CCI. This work extends the detection range for SIMS measurements of intact lipids to above m/z 2000, bridging the mass range gap compared with MALDI. Further advances in high-resolution SIMS of CLs, with the potential for single cell or supra-cellular imaging, will be essential for the understanding of CL's functional and structural organization in normal and injured brain.

  16. Blunt splenic injury and severe brain injury: a decision analysis and implications for care

    PubMed Central

    Alabbasi, Thamer; Nathens, Avery B.; Tien, Col Homer

    2015-01-01

    Background The initial nonoperative management (NOM) of blunt splenic injuries in hemodynamically stable patients is common. In soldiers who experience blunt splenic injuries with concomitant severe brain injury while on deployment, however, NOM may put the injured soldier at risk for secondary brain injury from prolonged hypotension. Methods We conducted a decision analysis using a Markov process to evaluate 2 strategies for managing hemodynamically stable patients with blunt splenic injuries and severe brain injury — immediate splenectomy and NOM — in the setting of a field hospital with surgical capability but no angiography capabilities. We considered the base case of a 40-year-old man with a life expectancy of 78 years who experienced blunt trauma resulting in a severe traumatic brain injury and an isolated splenic injury with an estimated failure rate of NOM of 19.6%. The primary outcome measured was life expectancy. We assumed that failure of NOM would occur in the setting of a prolonged casualty evacuation, where surgical capability was not present. Results Immediate splenectomy was the slightly more effective strategy, resulting in a very modest increase in overall survival compared with NOM. Immediate splenectomy yielded a survival benefit of only 0.4 years over NOM. Conclusion In terms of overall survival, we would not recommend splenectomy unless the estimated failure rate of NOM exceeded 20%, which corresponds to an American Association for the Surgery of Trauma grade III splenic injury. For military patients for whom angiography may not be available at the field hospital and who require prolonged evacuation, immediate splenectomy should be considered for grade III–V injuries in the presence of severe brain injury. PMID:26100770

  17. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID

  18. Genomic responses in rat cerebral cortex after traumatic brain injury

    PubMed Central

    von Gertten, Christina; Morales, Amilcar Flores; Holmin, Staffan; Mathiesen, Tiit; Nordqvist, Ann-Christin Sandberg

    2005-01-01

    Background Traumatic brain injury (TBI) initiates a complex sequence of destructive and neuroprotective cellular responses. The initial mechanical injury is followed by an extended time period of secondary brain damage. Due to the complicated pathological picture a better understanding of the molecular events occurring during this secondary phase of injury is needed. This study was aimed at analysing gene expression patterns following cerebral cortical contusion in rat using high throughput microarray technology with the goal of identifying genes involved in an early and in a more delayed phase of trauma, as genomic responses behind secondary mechanisms likely are time-dependent. Results Among the upregulated genes 1 day post injury, were transcription factors and genes involved in metabolism, e.g. STAT-3, C/EBP-δ and cytochrome p450. At 4 days post injury we observed increased gene expression of inflammatory factors, proteases and their inhibitors, like cathepsins, α-2-macroglobulin and C1q. Notably, genes with biological function clustered to immune response were significantly upregulated 4 days after injury, which was not found following 1 day. Osteopontin and one of its receptors, CD-44, were both upregulated showing a local mRNA- and immunoreactivity pattern in and around the injury site. Fewer genes had decreased expression both 1 and 4 days post injury and included genes implicated in transport, metabolism, signalling, and extra cellular matrix formation, e.g. vitronectin, neuroserpin and angiotensinogen. Conclusion The different patterns of gene expression, with little overlap in genes, 1 and 4 days post injury showed time dependence in genomic responses to trauma. An early induction of factors involved in transcription could lead to the later inflammatory response with strongly upregulated CD-44 and osteopontin expression. An increased knowledge of genes regulating the pathological mechanisms in trauma will help to find future treatment targets. Since

  19. Imatinib treatment reduces brain injury in a murine model of traumatic brain injury

    PubMed Central

    Su, Enming J.; Fredriksson, Linda; Kanzawa, Mia; Moore, Shannon; Folestad, Erika; Stevenson, Tamara K.; Nilsson, Ingrid; Sashindranath, Maithili; Schielke, Gerald P.; Warnock, Mark; Ragsdale, Margaret; Mann, Kris; Lawrence, Anna-Lisa E.; Medcalf, Robert L.; Eriksson, Ulf; Murphy, Geoffrey G.; Lawrence, Daniel A.

    2015-01-01

    Current therapies for Traumatic brain injury (TBI) focus on stabilizing individuals and on preventing further damage from the secondary consequences of TBI. A major complication of TBI is cerebral edema, which can be caused by the loss of blood brain barrier (BBB) integrity. Recent studies in several CNS pathologies have shown that activation of latent platelet derived growth factor-CC (PDGF-CC) within the brain can promote BBB permeability through PDGF receptor α (PDGFRα) signaling, and that blocking this pathway improves outcomes. In this study we examine the efficacy for the treatment of TBI of an FDA approved antagonist of the PDGFRα, Imatinib. Using a murine model we show that Imatinib treatment, begun 45 min after TBI and given twice daily for 5 days, significantly reduces BBB dysfunction. This is associated with significantly reduced lesion size 24 h, 7 days, and 21 days after TBI, reduced cerebral edema, determined from apparent diffusion co-efficient (ADC) measurements, and with the preservation of cognitive function. Finally, analysis of cerebrospinal fluid (CSF) from human TBI patients suggests a possible correlation between high PDGF-CC levels and increased injury severity. Thus, our data suggests a novel strategy for the treatment of TBI with an existing FDA approved antagonist of the PDGFRα. PMID:26500491

  20. Traumatic brain injury and forensic neuropsychology.

    PubMed

    Bigler, Erin D; Brooks, Michael

    2009-01-01

    As part of a special issue of The Journal of Head Trauma Rehabilitation, forensic neuropsychology is reviewed as it applies to traumatic brain injury (TBI) and other types of acquired brain injury in which clinical neuropsychologists and rehabilitation psychologists may be asked to render professional opinions about the neurobehavioral effects and outcome of a brain injury. The article introduces and overviews the topic focusing on the process of forensic neuropsychological consultation and practice as it applies to patients with TBI or other types of acquired brain injury. The emphasis is on the application of scientist-practitioner standards as they apply to legal questions about the status of a TBI patient and how best that may be achieved. This article introduces each topic area covered in this special edition.

  1. Sleep in traumatic brain injury.

    PubMed

    Mazwi, Nicole L; Fusco, Heidi; Zafonte, Ross

    2015-01-01

    Sleep disturbances affect more than half of survivors of traumatic brain injury (TBI) and have the potential to undermine rehabilitation, recovery, and outcomes. Normal sleep architecture has been well-described and the neurophysiology of sleep is becoming better understood in recent years, though this complex process continues to be dissected for better appreciation. There are numerous types of sleep disorder, most of which fall under two categories: dyssomnias and parasomnias. In more challenging scenarios patients may be plagued with more than one dyssomnia and/or parasomnia simultaneously, complicating the diagnostic and therapeutic approach. Objective and subjective methods are used to evaluate sleep disorders and help distinguish them from psychiatric and environmental contributors to poor sleep. There are several pharmacologic and nonpharmacologic treatments options for sleep disturbances after TBI, many of which have been particularly helpful in restoring adequate quantity and quality of sleep for survivors. However, to date no consensus has been established regarding how to treat this entity, and it may be that a multimodal approach is ultimately best.

  2. Hypothermia for traumatic brain injury.

    PubMed

    Lewis, Sharon R; Evans, David Jw; Butler, Andrew R; Schofield-Robinson, Oliver J; Alderson, Phil

    2017-09-21

    Hypothermia has been used in the treatment of brain injury for many years. Encouraging results from small trials and laboratory studies led to renewed interest in the area and some larger trials. To determine the effect of mild hypothermia for traumatic brain injury (TBI) on mortality, long-term functional outcomes and complications. We ran and incorporated studies from database searches to 21 March 2016. We searched the Cochrane Injuries Group's Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library), MEDLINE (OvidSP), Embase Classic+Embase (OvidSP), PubMed, ISI Web of science (SCI-EXPANDED, SSCI, CPCI-S & CPSI-SSH), clinical trials registers, and screened reference lists. We also re-ran these searches pre-publication in June 2017; the result from this search is presented in 'Studies awaiting classification'. We included randomised controlled trials of participants with closed TBI requiring hospitalisation who were treated with hypothermia to a maximum of 35 ºC for at least 12 consecutive hours. Treatment with hypothermia was compared to maintenance with normothermia (36.5 to 38 ºC). Two review authors assessed data on mortality, unfavourable outcomes according to the Glasgow Outcome Scale, and pneumonia. We included 37 eligible trials with a total of 3110 randomised participants; nine of these were new studies since the last update (2009) and five studies had been previously excluded but were re-assessed and included during the 2017 update. We identified two ongoing studies from searches of clinical trials registers and database searches and two studies await classification.Studies included both adults and children with TBI. Most studies commenced treatment immediately on admission to hospital or after craniotomies and all treatment was maintained for at least 24 hours. Thirty-three studies reported data for mortality, 31 studies reported data for unfavourable outcomes (death, vegetative state or severe disability

  3. Modeling premature brain injury and recovery

    PubMed Central

    Scafidi, Joey; Fagel, Devon M.; Ment, Laura R.; Vaccarino, Flora M.

    2009-01-01

    Premature birth is a growing and significant public health problem because of the large number of infants that survive with neurodevelopmental sequelae from brain injury. Recent advances in neuroimaging have shown that although some neuroanatomical structures are altered, others improve over time. This review outlines recent insights into brain structure and function in these preterm infants at school age and relevant animal models. These animal models have provided scientists with an opportunity to explore in depth the molecular and cellular mechanisms of injury as well as the potential of the brain for recovery. The endogenous potential that the brain has for neurogenesis and gliogenesis, and how environment contributes to recovery, are also outlined. These preclinical models will provide important insights into the genetic and epigenetic mechanisms responsible for variable degrees of injury and recovery, permitting the exploration of targeted therapies to facilitate recovery in the developing preterm brain. PMID:19482072

  4. Inflammogenesis of Secondary Spinal Cord Injury

    PubMed Central

    Anwar, M. Akhtar; Al Shehabi, Tuqa S.; Eid, Ali H.

    2016-01-01

    Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine. PMID:27147970

  5. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  6. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  7. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  8. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  9. Cranial injuries secondary to assault with a machete.

    PubMed

    Enicker, Basil; Madiba, Thandinkosi E

    2014-09-01

    Assaults with a machete cause compound skull fractures which present as a neurosurgical emergency. We aimed to profile cranial injuries caused by a machete over a 10 year period in a single neurosurgical unit. Retrospective data analysis of cranial injuries following assault with a machete, admitted to the neurosurgery ward, from January 2003 to December 2012 was performed. Medical records were analyzed for demographics, clinical presentation, CT scan findings, surgical treatment and Glasgow Outcome Scale (GOS) at discharge. Management involved wound debridement with antibiotic cover. Of 185 patients treated 172 (93%) were male. Mean age was 31±11.4 years. Mean GCS on admission was 13±2. Presenting features were focal neurological deficit (48%), brain matter oozing from wounds (20%), and post traumatic seizures (12%). Depressed skull fractures were found in 162 (88%) patients. Findings on CT brain scan were intra-cranial haematoma (88%), pneumocephalus (39%) and features of raised intra-cranial pressure (37%). Thirty-one patients (17%) presented with septic head wounds. One hundred and fifty seven patients (85%) were treated surgically. The median hospital stay was 8 days (range 1-145). The median GOS at discharge was 5 (range 1-5). Twelve patients died within the same admission (6.5%). Machetes cause complex cranial injuries with associated neurological deficit and should be treated as neurosurgical emergency. Timeous intervention and good surgical principles are advocated to prevent secondary infection and further neurological deterioration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    PubMed

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K; Engelhard, Kristin; Thal, Serge C

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  11. Influence of Age on Brain Edema Formation, Secondary Brain Damage and Inflammatory Response after Brain Trauma in Mice

    PubMed Central

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K.; Engelhard, Kristin; Thal, Serge C.

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  12. [A man with severe traumatic brain injury].

    PubMed

    Oudeman, Eline A; Martins Jarnalo, Carine O; van Ouwerkerk, Willem J R

    2013-01-01

    We present a 41-year-old man with severe traumatic brain injury. Cranial imaging studies revealed cerebral contusion and a longitudinal fracture of the temporal bone. Several days later brain herniated into the left external auditory canal. Imaging studies showed the known skull fracture with a direct connection between the external acoustic meatus and the intracranial structures.

  13. Modeling Blast-Related Brain Injury

    DTIC Science & Technology

    2008-12-01

    02139 D. Moore Defense and Veterans Brain Injury Center (WRAMC) 6900 Georgia Ave. NW, Washington, DC 20307 L. Noels University of Liege Chemin des...chevreuils 1, B4000 Liege , Belgium ABSTRACT Recent military conflicts in Iraq and Afghanistan have highlighted the wartime effect of traumatic brain in

  14. Characterization of Pressure Distribution in Penetrating Traumatic Brain Injuries

    PubMed Central

    Davidsson, Johan; Risling, Mårten

    2015-01-01

    Severe impacts to the head commonly lead to localized brain damage. Such impacts may also give rise to temporary pressure changes that produce secondary injuries in brain volumes distal to the impact site. Monitoring pressure changes in a clinical setting is difficult; detailed studies into the effect of pressure changes in the brain call for the development and use of animal models. The aim of this study is to characterize the pressure distribution in an animal model of penetrating traumatic brain injuries (pTBI). This data may be used to validate mathematical models of the animal model and to facilitate correlation studies between pressure changes and pathology. Pressure changes were measured in rat brains while subjected to pTBI for a variety of different probe velocities and shapes; pointy, blunt, and flat. Experiments on ballistic gel samples were carried out to study the formation of any temporary cavities. In addition, pressure recordings from the gel experiments were compared to values recorded in the animal experiments. The pTBI generated short lasting pressure changes in the brain tissue; the pressure in the contralateral ventricle (CLV) increased to 8 bar followed by a drop to 0.4 bar when applying flat probes. The pressure changes in the periphery of the probe, in the Cisterna Magna, and the spinal canal, were significantly less than those recorded in the CLV or the vicinity of the skull base. High-speed videos of the gel samples revealed the formation of spherically shaped cavities when flat and spherical probes were applied. Pressure changes in the gel were similar to those recorded in the animals, although amplitudes were lower in the gel samples. We concluded cavity expansion rate rather than cavity size correlated with pressure changes in the gel or brain secondary to probe impact. The new data can serve as validation data for finite element models of the trauma model and the animal and to correlate physical measurements with secondary injuries

  15. Neuroinflammation in animal models of traumatic brain injury

    PubMed Central

    Chiu, Chong-Chi; Liao, Yi-En; Yang, Ling-Yu; Wang, Jing-Ya; Tweedie, David; Karnati, Hanuma K.; Greig, Nigel H.; Wang, Jia-Yi

    2016-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI. PMID:27382003

  16. [Effects of alcohol consumption on traumatic brain injury].

    PubMed

    Katada, Ryuichi

    2011-10-01

    It has been well known that alcohol consumption affects traumatic brain injury. The mechanism of detrimental effect of ethanol on traumatic brain injury has not been clarified. This review focused on the relationship among traumatic brain injury, ethanol and aquaporin-4. We have reported that ethanol increased brain edema after brain contusion and decreased survival rates in rats. It was suggested that increasing brain edema by ethanol after brain contusion may be caused by oxidative stress. Brain edema consists of cytotoxic brain edema, vasogenic brain edema, interstitial brain edema and osmotic edema. Ethanol mainly increases cytotoxic brain edema. Both alcohol consumption and brain contusion cause oxidative stress. Antioxidant treatment decreases cytotoxic brain edema. Aquaporin-4, an water channel, was increased by ethanol 24 hr after traumatic brain injury in rat. The aquaporin-4 inhibitor decreased brain edema after brain contusion and increased survival rates under ethanol consumption. Aquaporin-4 may have strict relation between ethanol and brain edema increasing after brain contusion.

  17. Catecholamines and cognition after traumatic brain injury.

    PubMed

    Jenkins, Peter O; Mehta, Mitul A; Sharp, David J

    2016-09-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person's catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain 'networks' that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Traumatic Brain Injury and Sleep Disorders

    PubMed Central

    Viola-Saltzman, Mari; Watson, Nathaniel F.

    2012-01-01

    SYNOPSIS Sleep disturbance is common following traumatic brain injury (TBI), affecting 30–70% of individuals, many occurring after mild injuries. Insomnia, fatigue and sleepiness are the most frequent post-TBI sleep complaints with narcolepsy (with or without cataplexy), sleep apnea (obstructive and/or central), periodic limb movement disorder, and parasomnias occurring less commonly. In addition, depression, anxiety and pain are common TBI co-morbidities with substantial influence on sleep quality. Two types of TBI negatively impact sleep: contact injuries causing focal brain damage and acceleration/deceleration injuries causing more generalized brain damage. Diagnosis of sleep disorders after TBI may involve polysomnography, multiple sleep latency testing and/or actigraphy. Treatment is disorder specific and may include the use of medications, continuous positive airway pressure (or similar device) and/or behavioral modifications. Unfortunately, treatment of sleep disorders associated with TBI often does not improve sleepiness or neuropsychological function. PMID:23099139

  19. Stereotypic movement disorder after acquired brain injury.

    PubMed

    McGrath, Cynthia M; Kennedy, Richard E; Hoye, Wayne; Yablon, Stuart A

    2002-05-01

    Stereotypic movement disorder (SMD) consists of repetitive, non-functional motor behaviour that interferes with daily living or causes injury to the person. It is most often described in patients with mental retardation. However, recent evidence indicates that this condition is common among otherwise normal individuals. This case study describes a patient with new-onset SMD occurring after subdural haematoma and brain injury. SMD has rarely been reported after acquired brain injury, and none have documented successful treatment. The current psychiatric literature regarding neurochemistry, neuroanatomy, and treatment of SMD are reviewed with particular application to one patient. Treatment options include serotonin re-uptake inhibitors, opioid antagonists and dopamine antagonists. SMD has been under-appreciated in intellectually normal individuals, and may also be unrecognized after brain injury. Further investigation is needed in this area, which may benefit other individuals with SMD as well.

  20. Mapping the Connectome Following Traumatic Brain Injury.

    PubMed

    Hannawi, Yousef; Stevens, Robert D

    2016-05-01

    There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.

  1. Operational anaesthesia for the management of traumatic brain injury.

    PubMed

    Park, C L; Moor, P; Birch, K; Shirley, P J

    2010-12-01

    The primary brain insult that occurs at the time of head injury, is determined by the degree of neuronal damage or death and so cannot be influenced by further treatment. The focus of immediate and ongoing care from the point of wounding to intensive care management at Role 4 should be to reduce or prevent any secondary brain injury. The interventions and triage decisions must be reassessed at every stage of the process, but should focus on appropriate airway management, maintenance of oxygenation and carbon dioxide levels and maintenance of adequate cerebral perfusion pressure. Early identification of raised intracranial pressure and appropriate surgical intervention are imperative. Concurrent injuries must also be managed appropriately. Attention to detail at every stage of the evacuation chain should allow the head-injured patient the best chance of recovery.

  2. Past, Present, and Future of Traumatic Brain Injury Research.

    PubMed

    Hawryluk, Gregory W J; Bullock, M Ross

    2016-10-01

    Traumatic brain injury (TBI) is the greatest cause of death and severe disability in young adults; its incidence is increasing in the elderly and in the developing world. Outcome from severe TBI has improved dramatically as a result of advancements in trauma systems and supportive critical care, however we remain without a therapeutic which acts directly to attenuate brain injury. Recognition of secondary injury and its molecular mediators has raised hopes for such targeted treatments. Unfortunately, over 30 late-phase clinical trials investigating promising agents have failed to translate a therapeutic for clinical use. Numerous explanations for this failure have been postulated and are reviewed here. With this historical context we review ongoing research and anticipated future trends which are armed with lessons from past trials, new scientific advances, as well as improved research infrastructure and funding. There is great hope that these new efforts will finally lead to an effective therapeutic for TBI as well as better clinical management strategies.

  3. Extracellular fluid S100B in the injured brain: a future surrogate marker of acute brain injury?

    PubMed

    Sen, J; Belli, A; Petzold, A; Russo, S; Keir, G; Thompson, E J; Smith, M; Kitchen, N

    2005-08-01

    The authors describe the measurement of S100B protein in brain extracellular fluid (ECF) of patients with acute brain injury (traumatic brain injury and subarachnoid haemorrhage) using the technique of microdialysis. To our knowledge, this is the first report of S100B measurement in the human brain. Acute Brain Injury (ABI) is a leading cause of death and disability and the need for a practical and sensitive biochemical marker for monitoring these patients is urgent. The calcium binding astrocyte protein, S100B, may be a candidate for this role. Previous serum studies have shown S100B to be a sensitive predictor of mortality and rise in intracranial pressure in ABI, but it has never before been measured directly within the brain. The ECF reflects the local biochemistry of the brain parenchyma, and the use of intracerebral microdialysis opens up the possibility of studying many novel surrogate markers of injury in the laboratory, in addition to the conventional markers it measures at the bedside (lactate, pyruvate, glucose, and glycerol). In this preliminary report of two cases, the authors demonstrate the quantification of S100B in ECF microdialysate, and investigate whether changes in hourly S100B profile can be related to secondary brain injury. It is shown that extracellular concentrations of S100B change markedly in response to secondary brain injury. Further investigation is required to determine whether extracellular S100B measurement in ABI could assist in patient management.

  4. Recovery after brain injury: mechanisms and principles

    PubMed Central

    Nudo, Randolph J.

    2013-01-01

    The past 20 years have represented an important period in the development of principles underlying neuroplasticity, especially as they apply to recovery from neurological injury. It is now generally accepted that acquired brain injuries, such as occur in stroke or trauma, initiate a cascade of regenerative events that last for at least several weeks, if not months. Many investigators have pointed out striking parallels between post-injury plasticity and the molecular and cellular events that take place during normal brain development. As evidence for the principles and mechanisms underlying post-injury neuroplasticity has been gleaned from both animal models and human populations, novel approaches to therapeutic intervention have been proposed. One important theme has persisted as the sophistication of clinicians and scientists in their knowledge of neuroplasticity mechanisms has grown: behavioral experience is the most potent modulator of brain plasticity. While there is substantial evidence for this principle in normal, healthy brains, the injured brain is particularly malleable. Based on the quantity and quality of motor experience, the brain can be reshaped after injury in either adaptive or maladaptive ways. This paper reviews selected studies that have demonstrated the neurophysiological and neuroanatomical changes that are triggered by motor experience, by injury, and the interaction of these processes. In addition, recent studies using new and elegant techniques are providing novel perspectives on the events that take place in the injured brain, providing a real-time window into post-injury plasticity. These new approaches are likely to accelerate the pace of basic research, and provide a wealth of opportunities to translate basic principles into therapeutic methodologies. PMID:24399951

  5. Metabolic alterations in developing brain after injury – knowns and unknowns

    PubMed Central

    McKenna, Mary C.; Scafidi, Susanna; Robertson, Courtney L.

    2016-01-01

    Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed. PMID:26148530

  6. Secondary brain choriocarcinoma: a case report.

    PubMed

    Mandong, Barnabas M; Emmanuel, Innocent; Vandi, Kwaghe B; Shilong, Danaan; Karshima, Jonathan A; Olowu, Babatunde A

    2015-01-01

    Choriocarcinoma metastasizes widely. One in every ten choriocarcinoma that leaves its primary site, metastasizes to the brain. This 27 years old patient presented with symptoms of space occupying lesion that was confirmed by CT-SCAN. There was no history of vaginal bleeding and amenorrhoea was concealed by unmarried patient. Chest X-ray was normal. Tumor was excised after craniotomy. Histology of tumor was that of secondary choriocarcinoma. Patient responded excellently to chemotherapy and was well one year after. We strongly recommend a high index of suspicion of choriocarcinoma in management of brain tumors. β-HCG assay should be included in investigation of all patients with intracranial tumors irrespective of sex.

  7. The Outcome and Patterns of Traumatic Brain Injury in the Paediatric Population of a Developing Country Secondary to TV Trolley Tip-Over.

    PubMed

    Waqas, Muhammad; Javed, Gohar; Nathani, Karim Rizwan; Ujjan, Badar; Quadri, Syed A; Tahir, Muhammad Zubair

    2017-09-15

    Television (TV) trolley tip-over incidences are common and can cause significant morbidity and mortality in children. This study was aimed at analyzing the pattern and outcomes of head injuries resulting from TV trolley tip-over. We conducted a medical chart review of children with TV trolley tip-over head injuries from January 2009 to April 2016. We collected data on demographics, the mechanism of injury, clinical and radiological features of the injury, and outcomes. Outcomes were measured by means of the Glasgow Outcome Scale (GOS) at 6 months (except in 1 case). A descriptive analysis was carried out using SPSS v19. Twenty-two children were included in the study (median age 23.5 months). Sixteen children were male. Most of the children (n = 16) were aged 12-35 months. The median Glasgow Coma Scale score on admission was 15. The median Rotterdam Score for the patients was 2.0. Common symptoms upon admission were vomiting, irritability, scalp laceration, and bruises. Median length of hospital stay was 3 days. Skull bone fractures were present in 12 children. Other CT findings included contusions, extradural and subdural haematomas, intraventricular haemorrhage, and pneumocranium. Surgical intervention was required in 4 cases. Although most of the patients made a good recovery (GOS = 5), 1 patient developed a mild disability and another died in hospital. TV trolley tip-over is most common in toddlers and can lead to significant head injury and mortality. This can be avoided by parental supervision and adjustments in the household. © 2017 S. Karger AG, Basel.

  8. Catecholamines and cognition after traumatic brain injury

    PubMed Central

    Jenkins, Peter O.; Mehta, Mitul A.

    2016-01-01

    Cognitive problems are one of the main causes of ongoing disability after traumatic brain injury. The heterogeneity of the injuries sustained and the variability of the resulting cognitive deficits makes treating these problems difficult. Identifying the underlying pathology allows a targeted treatment approach aimed at cognitive enhancement. For example, damage to neuromodulatory neurotransmitter systems is common after traumatic brain injury and is an important cause of cognitive impairment. Here, we discuss the evidence implicating disruption of the catecholamines (dopamine and noradrenaline) and review the efficacy of catecholaminergic drugs in treating post-traumatic brain injury cognitive impairments. The response to these therapies is often variable, a likely consequence of the heterogeneous patterns of injury as well as a non-linear relationship between catecholamine levels and cognitive functions. This individual variability means that measuring the structure and function of a person’s catecholaminergic systems is likely to allow more refined therapy. Advanced structural and molecular imaging techniques offer the potential to identify disruption to the catecholaminergic systems and to provide a direct measure of catecholamine levels. In addition, measures of structural and functional connectivity can be used to identify common patterns of injury and to measure the functioning of brain ‘networks’ that are important for normal cognitive functioning. As the catecholamine systems modulate these cognitive networks, these measures could potentially be used to stratify treatment selection and monitor response to treatment in a more sophisticated manner. PMID:27256296

  9. Subacute to chronic mild traumatic brain injury.

    PubMed

    Mott, Timothy F; McConnon, Michael L; Rieger, Brian P

    2012-12-01

    Although a universally accepted definition is lacking, mild traumatic brain injury and concussion are classified by transient loss of consciousness, amnesia, altered mental status, a Glasgow Coma Score of 13 to 15, and focal neurologic deficits following an acute closed head injury. Most patients recover quickly, with a predictable clinical course of recovery within the first one to two weeks following traumatic brain injury. Persistent physical, cognitive, or behavioral postconcussive symptoms may be noted in 5 to 20 percent of persons who have mild traumatic brain injury. Physical symptoms include headaches, dizziness, and nausea, and changes in coordination, balance, appetite, sleep, vision, and hearing. Cognitive and behavioral symptoms include fatigue, anxiety, depression, and irritability, and problems with memory, concentration and decision making. Women, older adults, less educated persons, and those with a previous mental health diagnosis are more likely to have persistent symptoms. The diagnostic workup for subacute to chronic mild traumatic brain injury focuses on the history and physical examination, with continuing observation for the development of red flags such as the progression of physical, cognitive, and behavioral symptoms, seizure, progressive vomiting, and altered mental status. Early patient and family education should include information on diagnosis and prognosis, symptoms, and further injury prevention. Symptom-specific treatment, gradual return to activity, and multidisciplinary coordination of care lead to the best outcomes. Psychiatric and medical comorbidities, psychosocial issues, and legal or compensatory incentives should be explored in patients resistant to treatment.

  10. Acute liver injury secondary to sertraline.

    PubMed

    Suen, Christopher F D Li Wai; Boyapati, Ray; Simpson, Ian; Dev, Anouk

    2013-09-26

    Sertraline is widely prescribed to treat depression and anxiety disorders. However, hepatitis secondary to its use is a rare entity. We report the case of a 26-year-old woman in her 20th week of pregnancy presented with nausea, vomiting, malaise and dark urine. This occurred 6 months after sertraline 50 mg daily was started for the treatment of depression. Three weeks prior to her presentation, the dose of sertraline was increased to 100 mg daily. The patient's liver biochemical profile demonstrated increased transaminases. The biopsy of the liver showed lobular hepatitis, with a mild prominence of eosinophils, suggestive of a drug-induced or toxin-induced aetiology. Extensive biochemical work-up failed to show any other pathology to account for her hepatitis. Liver function tests normalised after cessation of sertraline, indicating a probable association between sertraline use and acute hepatocellular injury in our patient.

  11. Driving, brain injury and assistive technology.

    PubMed

    Lane, Amy K; Benoit, Dana

    2011-01-01

    Individuals with brain injury often present with cognitive, physical and emotional impairments which impact their ability to resume independence in activities of daily living. Of those activities, the resumption of driving privileges is cited as one of the greatest concerns by survivors of brain injury. The integration of driving fundamentals within the hierarchical model proposed by Keskinen represents the complexity of skills and behaviors necessary for driving. This paper provides a brief review of specific considerations concerning the driver with TBI and highlights current vehicle technology which has been developed by the automotive industry and by manufacturers of adaptive driving equipment that may facilitate the driving task. Adaptive equipment technology allows for compensation of a variety of operational deficits, whereas technological advances within the automotive industry provide drivers with improved safety and information systems. However, research has not yet supported the use of such intelligent transportation systems or advanced driving systems for drivers with brain injury. Although technologies are intended to improve the safety of drivers within the general population, the potential of negative consequences for drivers with brain injury must be considered. Ultimately, a comprehensive driving evaluation and training by a driving rehabilitation specialist is recommended for individuals with brain injury. An understanding of the potential impact of TBI on driving-related skills and knowledge of current adaptive equipment and technology is imperative to determine whether return-to-driving is a realistic and achievable goal for the individual with TBI.

  12. The neuropsychiatry of depression after brain injury.

    PubMed

    Fleminger, Simon; Oliver, Donna L; Williams, W Huw; Evans, Jonathan

    2003-01-01

    Biological aspects of depression after brain injury, in particular traumatic brain injury (TBI) and stroke, are reviewed. Symptoms of depression after brain injury are found to be rather non-specific with no good evidence of a clear pattern distinguishing it from depression in those without brain injury. Nevertheless symptoms of disturbances of interest and concentration are particularly prevalent, and guilt is less evident. Variabilitiy of mood is characteristic. The prevalence of depression is similar after both stroke and TBI with the order of 20-40% affected at any point in time in the first year, and about 50% of people experience depression at some stage. There is no good evidence for areas of specific vulnerability in terms of lesion location, and early suggestions of a specific association with injury to the left hemisphere have not been confirmed. Insight appears to be related to depressed mood with studies of TBI indicating that greater insight over time post-injury may be associated with greater depression. We consider that this relationship may be due to depression appearing as people gain more awareness of their disability, but also suggest that changes in mood may result in altered awareness. The risk of suicide after TBI is reviewed. There appears to be about a three to fourfold increased risk of suicide after TBI, although much of this increased risk may be due to pre-injury factors in terms of the characteristics of people who suffer TBI. About 1% of people who have suffered TBI will commit suicide over a 15-year follow-up. Drug management of depression is reviewed. There is little specific evidence to guide the choice of antidepressant medication and most psychiatrists would start with a selective serotonin reuptake inhibitor (SSRI). It is important that the drug management of depression after brain injury is part of a full package of care that can address biological as well as psychosocial factors in management.

  13. Nanomedicine strategies for treatment of secondary spinal cord injury

    PubMed Central

    White-Schenk, Désirée; Shi, Riyi; Leary, James F

    2015-01-01

    Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. PMID:25673988

  14. Assessing connectivity related injury burden in diffuse traumatic brain injury.

    PubMed

    Solmaz, Berkan; Tunç, Birkan; Parker, Drew; Whyte, John; Hart, Tessa; Rabinowitz, Amanda; Rohrbach, Morgan; Kim, Junghoon; Verma, Ragini

    2017-03-15

    Many of the clinical and behavioral manifestations of traumatic brain injury (TBI) are thought to arise from disruption to the structural network of the brain due to diffuse axonal injury (DAI). However, a principled way of summarizing diffuse connectivity alterations to quantify injury burden is lacking. In this study, we developed a connectome injury score, Disruption Index of the Structural Connectome (DISC), which summarizes the cumulative effects of TBI-induced connectivity abnormalities across the entire brain. Forty patients with moderate-to-severe TBI examined at 3 months postinjury and 35 uninjured healthy controls underwent magnetic resonance imaging with diffusion tensor imaging, and completed behavioral assessment including global clinical outcome measures and neuropsychological tests. TBI patients were selected to maximize the likelihood of DAI in the absence of large focal brain lesions. We found that hub-like regions, with high betweenness centrality, were most likely to be impaired as a result of diffuse TBI. Clustering of participants revealed a subgroup of TBI patients with similar connectivity abnormality profiles who exhibited relatively poor cognitive performance. Among TBI patients, DISC was significantly correlated with post-traumatic amnesia, verbal learning, executive function, and processing speed. Our experiments jointly demonstrated that assessing structural connectivity alterations may be useful in development of patient-oriented diagnostic and prognostic tools. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc.

  15. The neuropathology of traumatic brain injury.

    PubMed

    Mckee, Ann C; Daneshvar, Daniel H

    2015-01-01

    Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at

  16. Treating neonatal brain injury - promise and inherent research challenges.

    PubMed

    Sävman, Karin; Brown, Kelly L

    2010-01-01

    In this review we discuss current challenges faced by researchers and clinician-scientists in the pursuit of therapeutics to treat hypoxic-ischemic (HI) brain injury in term infants. At present, there is an absence of neuroprotective drugs that are safe and effective for the protection of neonates from neurological sequels after HI. We discuss secondary neurotoxic processes elicited by HI that may be targets for therapeutic interventions with a specific focus on inflammatory mechanisms. Advances in research to unravel these cellular processes and molecular mechanisms that drive injurious processes after HI have traditionally been plagued by conflicting results when assessing different times for intervention, different models for brain injury, and the adult versus neonate brain. We attribute impeded drug development in part to such disparate results and general difficulties to conduct a stringent, comprehensive analysis of candidate drugs prior to clinical trials. It will be imperative to implement changes in the clinic and laboratory in order for future drug initiatives to achieve success. We also provide a brief discussion on the pursuit of anti-inflammatory molecules and monitoring methods that are the focus of current patents and that, in our opinion, may lead to important new developments in the treatment of HI brain injury in newborn infants.

  17. The psychosocial outcomes of anoxic brain injury following cardiac arrest.

    PubMed

    Wilson, Michelle; Staniforth, Andrew; Till, Richard; das Nair, Roshan; Vesey, Patrick

    2014-06-01

    This exploratory study aimed to investigate the psychosocial outcomes for cardiac arrest survivors and explore if there is a greater impact on psychosocial outcome for individuals experiencing anoxic brain injury as a result of the cardiac arrest. Self-report measures were used to compare the quality of life, social functioning and symptoms of anxiety, depression and post-traumatic stress of individuals with and without anoxic brain injury. Secondary measures of subjective memory and executive difficulties were also used. Fifty-six participants (27 with anoxia, 29 without anoxia) took part in the study between six months and four years after experiencing cardiac arrest. A MANOVA identified a significant difference between the two groups, with the anoxia group reporting more psychosocial difficulties. They reported more social functioning difficulties and more anxiety, depression and post-traumatic stress symptoms. There was, however, no significant difference in self-reported quality of life between the two groups. As the first known study to compare psychosocial outcomes for cardiac arrest survivors experiencing anoxic brain injury with those without anoxia, the current results suggest that cardiac arrest survivors with subsequent acquired brain injury experience more psychosocial difficulties. This could be due to a combination of neuropsychological, social and psychological factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a "two-hit" model.

    PubMed

    Sekhon, Mypinder S; Ainslie, Philip N; Griesdale, Donald E

    2017-04-13

    Hypoxic ischemic brain injury (HIBI) after cardiac arrest (CA) is a leading cause of mortality and long-term neurologic disability in survivors. The pathophysiology of HIBI encompasses a heterogeneous cascade that culminates in secondary brain injury and neuronal cell death. This begins with primary injury to the brain caused by the immediate cessation of cerebral blood flow following CA. Thereafter, the secondary injury of HIBI takes place in the hours and days following the initial CA and reperfusion. Among factors that may be implicated in this secondary injury include reperfusion injury, microcirculatory dysfunction, impaired cerebral autoregulation, hypoxemia, hyperoxia, hyperthermia, fluctuations in arterial carbon dioxide, and concomitant anemia.Clarifying the underlying pathophysiology of HIBI is imperative and has been the focus of considerable research to identify therapeutic targets. Most notably, targeted temperature management has been studied rigorously in preventing secondary injury after HIBI and is associated with improved outcome compared with hyperthermia. Recent advances point to important roles of anemia, carbon dioxide perturbations, hypoxemia, hyperoxia, and cerebral edema as contributing to secondary injury after HIBI and adverse outcomes. Furthermore, breakthroughs in the individualization of perfusion targets for patients with HIBI using cerebral autoregulation monitoring represent an attractive area of future work with therapeutic implications.We provide an in-depth review of the pathophysiology of HIBI to critically evaluate current approaches for the early treatment of HIBI secondary to CA. Potential therapeutic targets and future research directions are summarized.

  19. Erythropoietin Neuroprotection with Traumatic Brain Injury

    PubMed Central

    Ponce, Lucido L.; Navarro, Jovany Cruz; Ahmed, Osama; Robertson, Claudia S.

    2012-01-01

    Numerous experimental studies in recent years have suggested that erythropoietin (EPO) is an endogenous mediator of neuroprotection in various central nervous system disorders, including TBI. Many characteristics of EPO neuroprotection that have been defined in TBI experimental models suggest that it is an attractive candidate for a new treatment of TBI. EPO targets multiple mechanisms known to cause secondary injury after TBI, including anti-excitotoxic, antioxidant, anti-edematous, and anti-inflammatory mechanisms. EPO crosses the blood brain barrier. EPO has a known dose response and time window for neuroprotection and neurorestoration that would be practical in the clinical setting. However, EPO also stimulates erythropoiesis, which can result in thromboembolic complications. Derivatives of EPO which do not bind to the classical EPO receptor (carbamylated EPO) or that have such a brief half-life in the circulation that they do not stimulate erythropoiesis (asialo EPO and neuro EPO) have the neuroprotective activities of EPO without these potential thromboembolic adverse effects associated with EPO administration. Likewise, a peptide based on the structure of the Helix B segment of the EPO molecule that does not bind to the EPO receptor (pyruglutamate Helix B surface peptide) has promise as another alternative to EPO that may provide neuroprotection without stimulating erythropoiesis. PMID:22421507

  20. Intranasal basic fibroblast growth factor attenuates endoplasmic reticulum stress and brain injury in neonatal hypoxic-ischaemic injury

    PubMed Central

    Lin, Zhenlang; Hu, Yingying; Wang, Zhouguang; Pan, Shulin; Zhang, Hao; Ye, Libing; Zhang, Hongyu; Fang, Mingchu; Jiang, Huai; Ye, Junming; Xiao, Jian; Liu, Li

    2017-01-01

    Brain injury secondary to birth asphyxia is the major cause of death and long-term disability in newborns. Intranasal drug administration enables agents to bypass the blood-brain barrier (BBB) and enter the brain directly. In this study, we determined whether intranasal basic fibroblast growth factor (bFGF) could exert neuroprotective effects in neonatal rats after hypoxic-ischaemic (HI) brain injury and assessed whether attenuation of endoplasmic reticulum (ER) stress was associated with these neuroprotective effects. Rats were subjected to HI brain injury via unilateral carotid artery ligation followed by 2.5 h of hypoxia and then treated with intranasal bFGF or vehicle immediately after HI injury. We found that the unfolded protein response (UPR) was strongly activated after HI injury and that bFGF significantly reduced the levels of the ER stress signalling proteins GRP78 and PDI. bFGF also decreased brain infarction volumes and conferred long-term neuroprotective effects against brain atrophy and neuron loss after HI brain injury. Taken together, our results suggest that intranasal bFGF provides neuroprotection function partly by inhibiting HI injury-induced ER stress. bFGF may have potential as a therapy for human neonates after birth asphyxia. PMID:28337259

  1. Role of Interleukin-10 in Acute Brain Injuries

    PubMed Central

    Garcia, Joshua M.; Stillings, Stephanie A.; Leclerc, Jenna L.; Phillips, Harrison; Edwards, Nancy J.; Robicsek, Steven A.; Hoh, Brian L.; Blackburn, Spiros; Doré, Sylvain

    2017-01-01

    Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation. PMID:28659854

  2. Stem cell therapies for perinatal brain injuries.

    PubMed

    Vawda, Reaz; Woodbury, Jennifer; Covey, Matthew; Levison, Steven W; Mehmet, Huseyin

    2007-08-01

    This chapter reviews four groups of paediatric brain injury. The pathophysiology of these injuries is discussed to establish which cells are damaged and therefore which cells represent targets for cell replacement. Next, we review potential sources of cellular replacements, including embryonic stem cells, fetal and neonatal neural stem cells and a variety of mesenchymal stem cells. The advantages and disadvantages of each source are discussed. We review published studies to illustrate where stem cell therapies have been evaluated for therapeutic gain and discuss the hurdles that will need to be overcome to achieve therapeutic benefit. Overall, we conclude that children with paediatric brain injuries or inherited genetic disorders that affect the brain are worthy candidates for stem cell therapeutics.

  3. Public attitudes towards survivors of brain injury.

    PubMed

    Linden, M A; Rauch, R J; Crothers, I R

    2005-11-01

    To explore the effects of religious identity, gender and socioeconomic status (SES) on public attitudes towards survivors of brain injury. An independent groups design was used to compare the attitudes of Northern Irish participants. The participants were asked to complete a modified form of the Community Attitudes to Mental Illness scale. The new questionnaire replaced the original scales' emphasis on mental illness with that of brain injury. Complete data was available for 179 participants for the religious identity and gender analysis and 124 for gender and SES. Analyses of variance were conducted on these variables. Significant differences between male and female attitudes were found along with significant interactions between religious identity and gender and SES and gender. Religious, economic and gender-based divisions in society affect attitudes towards survivors of brain injury.

  4. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  5. Emergency Neurological Life Support: Traumatic Brain Injury.

    PubMed

    Garvin, Rachel; Venkatasubramanian, Chitra; Lumba-Brown, Angela; Miller, Chad M

    2015-12-01

    Traumatic Brain Injury (TBI) was chosen as an Emergency Neurological Life Support topic due to its frequency, the impact of early intervention on outcomes for patients with TBI, and the need for an organized approach to the care of such patients within the emergency setting. This protocol was designed to enumerate the practice steps that should be considered within the first critical hour of neurological injury.

  6. Brain Injury Risk from Primary Blast

    DTIC Science & Technology

    2012-02-29

    combined abdominal and thoracic protection that reduced blast levels to an order of magnitude below pulmonary injury threshold. The results were scaled to... contusions typically on or around the brainstem though there were no skull fractures for any blast intensity. Risk functions were developed that...primary blast exposure to the brain was found to be more than twice the pulmonary fatality injury risk. However, the blast level for 50% risk of mild

  7. Osmolar therapy in pediatric traumatic brain injury.

    PubMed

    Bennett, Tellen D; Statler, Kimberly D; Korgenski, E Kent; Bratton, Susan L

    2012-01-01

    To describe patterns of use for mannitol and hypertonic saline in children with traumatic brain injury, to evaluate any potential associations between hypertonic saline and mannitol use and patient demographic, injury, and treatment hospital characteristics, and to determine whether the 2003 guidelines for severe pediatric traumatic brain injury impacted clinical practice regarding osmolar therapy. Retrospective cohort study. Pediatric Health Information System database, January, 2001 to December, 2008. Children (age <18 yrs) with traumatic brain injury and head/neck Abbreviated Injury Scale score ≥ 3 who received mechanical ventilation and intensive care. : None. The primary outcome was hospital billing for parenteral hypertonic saline and mannitol use, by day of service. Overall, 33% (2,069 of 6,238) of the patients received hypertonic saline, and 40% (2,500 of 6,238) received mannitol. Of the 1,854 patients who received hypertonic saline or mannitol for ≥ 2 days in the first week of therapy, 29% did not have intracranial pressure monitoring. After adjustment for hospital-level variation, primary insurance payer, and overall injury severity, use of both drugs was independently associated with older patient age, intracranial hemorrhage (other than epidural), skull fracture, and higher head/neck injury severity. Hypertonic saline use increased and mannitol use decreased with publication of the 2003 guidelines, and these trends continued through 2008. Hypertonic saline and mannitol are used less in infants than in older children. The patient-level and hospital-level variation in osmolar therapy use and the substantial amount of sustained osmolar therapy without intracranial pressure monitoring suggest opportunities to improve the quality of pediatric traumatic brain injury care. With limited high-quality evidence available, published expert guidelines appear to significantly impact clinical practice in this area.

  8. Injury biomechanics, neuropathology, and simplified physics of explosive blast and impact mild traumatic brain injury.

    PubMed

    Bandak, F A; Ling, G; Bandak, A; De Lanerolle, N C

    2015-01-01

    Explosive blast shock waves and blunt impact to the head are two types of loading shown to result in mild traumatic brain injury (mTBI). While mTBI from these two causes shares some common features behaviorally, there are distinct differences in the pathophysiology of the underlying injury mechanisms. Various elucidations have been offered in the literature to explain the organic damage associated with mTBI resulting from both types of loading. The current state of understanding in this field is somewhat limited by the degree of appreciation of the physics and biomechanics governing the effects of explosive blast shock waves and blunt impact on the head, which has resulted in the various approaches to the investigation of the operative brain injury "wounding mechanisms". In this chapter we provide a simplified description of terminology associated with forces on the head from explosive blast shock waves and blunt impact, to assist readers in the field in evaluating interpretations of brain injury "wounding" processes. Remarkably, mTBI from either loading is shown generally to result in only a small loss of neurons, with hippocampal neurons appearing to be particularly vulnerable to explosive blast shock waves. Explosive blast studies in large animal models show a unique pattern of periventricular injury, which is different from the classic diffuse axonal injury. Both astrocyte and microglial activation are also seen in explosive blast as well as impact trauma, but this may be a general secondary brain injury response, nonspecific to explosive blast or blunt trauma. Additionally, while moderate to severe impact closed head injuries sometimes result in petechial hemorrhages or hematomas, they do not appear to be associated with explosive blast mTBI even with repeated exposure to blasts.

  9. Acute neuroprotective effects of extremely low-frequency electromagnetic fields after traumatic brain injury in rats.

    PubMed

    Yang, Yang; Li, Ling; Wang, Yan-Gang; Fei, Zhou; Zhong, Jun; Wei, Li-Zhou; Long, Qian-Fa; Liu, Wei-Ping

    2012-05-10

    Traumatic brain injury commonly has a result of a short window of opportunity between the period of initial brain injury and secondary brain injury, which provides protective strategies and can reduce damages of brain due to secondary brain injury. Previous studies have reported neuroprotective effects of extremely low-frequency electromagnetic fields. However, the effects of extremely low-frequency electromagnetic fields on neural damage after traumatic brain injury have not been reported yet. The present study aims to investigate effects of extremely low-frequency electromagnetic fields on neuroprotection after traumatic brain injury. Male Sprague-Dawley rats were used for the model of lateral fluid percussion injury, which were placed in non-electromagnetic fields and 15 Hz (Hertz) electromagnetic fields with intensities of 1 G (Gauss), 3 G and 5 G. At various time points (ranging from 0.5 to 30 h) after lateral fluid percussion injury, rats were treated with kainic acid (administered by intraperitoneal injection) to induce apoptosis in hippocampal cells. The results were as follows: (1) the expression of hypoxia-inducible factor-1α was dramatically decreased during the neuroprotective time window. (2) The kainic acid-induced apoptosis in the hippocampus was significantly decreased in rats exposed to electromagnetic fields. (3) Electromagnetic fields exposure shortened the escape time in water maze test. (4) Electromagnetic fields exposure accelerated the recovery of the blood-brain barrier after brain injury. These findings revealed that extremely low-frequency electromagnetic fields significantly prolong the window of opportunity for brain protection and enhance the intensity of neuroprotection after traumatic brain injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Paclitaxel improves outcome from traumatic brain injury

    PubMed Central

    Cross, Donna J.; Garwin, Gregory G.; Cline, Marcella M.; Richards, Todd L.; Yarnykh, Vasily; Mourad, Pierre D.; Ho, Rodney J.Y.; Minoshima, Satoshi

    2016-01-01

    Pharmacologic interventions for traumatic brain injury (TBI) hold promise to improve outcome. The purpose of this study was to determine if the microtubule stabilizing therapeutic paclitaxel used for more than 20 years in chemotherapy would improve outcome after TBI. We assessed neurological outcome in mice that received direct application of paclitaxel to brain injury from controlled cortical impact (CCI). Magnetic resonance imaging was used to assess injury-related morphological changes. Catwalk Gait analysis showed significant improvement in the paclitaxel group on a variety of parameters compared to the saline group. MRI analysis revealed that paclitaxel treatment resulted in significantly reduced edema volume at site-of-injury (11.92 ± 3.0 and 8.86 ± 2.2 mm3 for saline vs. paclitaxel respectively, as determined by T2-weighted analysis; p ≤ 0.05), and significantly increased myelin tissue preservation (9.45 ± 0.4 vs. 8.95 ± 0.3, p ≤ 0.05). Our findings indicate that paclitaxel treatment resulted in improvement of neurological outcome and MR imaging biomarkers of injury. These results could have a significant impact on therapeutic developments to treat traumatic brain injury. PMID:26086366

  11. Polyamine Catabolism Is Enhanced after Traumatic Brain Injury

    PubMed Central

    Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.

    2010-01-01

    Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally

  12. Neurorestorative Treatments for Traumatic Brain Injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2011-01-01

    Traumatic brain injury (TBI) remains a major cause of death and permanent disability worldwide, especially in children and young adults. A total of 1.5 million people experience head trauma each year in the United States, with an annual economic cost exceeding $56 billion. Unfortunately, almost all Phase III TBI clinical trials have yet to yield a safe and effective neuroprotective treatment, raising questions regarding the use of neuroprotective strategies as the primary therapy for acute brain injuries. Recent preclinical data suggest that neurorestorative strategies that promote angiogenesis (formation of new blood vessels from pre-existing endothelial cells), axonal remodeling (axonal sprouting and pruning), neurogenesis (generation of new neurons) and synaptogenesis (formation of new synapses) provide promising opportunities for the treatment of TBI. This review discusses select cell-based and pharmacological therapies that activate and amplify these endogenous restorative brain plasticity processes to promote both repair and regeneration of injured brain tissue and functional recovery after TBI. PMID:21122475

  13. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury.

    PubMed

    Menzel, Lutz; Kleber, Lisa; Friedrich, Carina; Hummel, Regina; Dangel, Larissa; Winter, Jennifer; Schmitz, Katja; Tegeder, Irmgard; Schäfer, Michael K E

    2017-02-01

    In response to traumatic brain injury (TBI) microglia/macrophages and astrocytes release inflammatory mediators with dual effects on secondary brain damage progression. The neurotrophic and anti-inflammatory glycoprotein progranulin (PGRN) attenuates neuronal damage and microglia/macrophage activation in brain injury but mechanisms are still elusive. Here, we studied histopathology, neurology and gene expression of inflammatory markers in PGRN-deficient mice (Grn(-/-) ) 24 h and 5 days after experimental TBI. Grn(-/-) mice displayed increased perilesional axonal injury even though the overall brain tissue loss and neurological consequences were similar to wild-type mice. Brain inflammation was elevated in Grn(-/-) mice as reflected by increased transcription of pro-inflammatory cytokines TNFα, IL-1β, IL-6, and decreased transcription of the anti-inflammatory cytokine IL-10. However, numbers of Iba1(+) microglia/macrophages and immigrated CD45(+) leukocytes were similar at perilesional sites while determination of IgG extravasation suggested stronger impairment of blood brain barrier integrity in Grn(-/-) compared to wild-type mice. Most strikingly, Grn(-/-) mice displayed exaggerated astrogliosis 5 days after TBI as demonstrated by anti-GFAP immunohistochemistry and immunoblot. GFAP(+) astrocytes at perilesional sites were immunolabelled for iNOS and TNFα suggesting that pro-inflammatory activation of astrocytes was attenuated by PGRN. Accordingly, recombinant PGRN (rPGRN) attenuated LPS- and cytokine-evoked iNOS and TNFα mRNA expression in cultured astrocytes. Moreover, intracerebroventricular administration of rPGRN immediately before trauma reduced brain damage and neurological deficits, and restored normal levels of cytokine transcription, axonal injury and astrogliosis 5 days after TBI in Grn(-/-) mice. Our results show that endogenous and recombinant PGRN limit axonal injury and astrogliosis and suggest therapeutic potential of PGRN in TBI. GLIA 2017

  14. Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain

    PubMed Central

    Bhalala, Utpal S.; Koehler, Raymond C.; Kannan, Sujatha

    2015-01-01

    Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia – the so-called “brain macrophages,” infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds. PMID:25642419

  15. Neuroprotective measures in children with traumatic brain injury

    PubMed Central

    Agrawal, Shruti; Branco, Ricardo Garcia

    2016-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in children. Severe TBI is a leading cause of death and often leads to life changing disabilities in survivors. The modern management of severe TBI in children on intensive care unit focuses on preventing secondary brain injury to improve outcome. Standard neuroprotective measures are based on management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) to optimize the cerebral blood flow and oxygenation, with the intention to avoid and minimise secondary brain injury. In this article, we review the current trends in management of severe TBI in children, detailing the general and specific measures followed to achieve the desired ICP and CPP goals. We discuss the often limited evidence for these therapeutic interventions in children, extrapolation of data from adults, and current recommendation from paediatric guidelines. We also review the recent advances in understanding the intracranial physiology and neuroprotective therapies, the current research focus on advanced and multi-modal neuromonitoring, and potential new therapeutic and prognostic targets. PMID:26855892

  16. Minor traumatic brain injury in sports.

    PubMed

    Schleimer, Jonathan A

    2002-12-01

    Mild traumatic brain injury (MTBI) is an all-too-frequent occurrence among amateur and professional athletes alike. The increased attention it has received in recent literature may suggest that incidence of this injury has risen. The frequency of MTBI in general may be rising with the increased interest in so-called noncontact sports such as soccer, snowboarding, skateboarding, and motocross. Despite significant improvements made in the quality of protective equipment, head injury remains common in football, soccer, and amateur boxing. The management of athletes who suffer traumatic head injury remains problematic for coaches, trainers, team physicians, primary care physicians, and neurologic specialists. This article addresses guidelines, and diagnostic and treatment protocols to help with the management of athletes with concussion and traumatic head injuries.

  17. Therapeutic Potential of Intravenous Immunoglobulin in Acute Brain Injury

    PubMed Central

    Thom, Vivien; Arumugam, Thiruma V.; Magnus, Tim; Gelderblom, Mathias

    2017-01-01

    Acute ischemic and traumatic injury of the central nervous system (CNS) is known to induce a cascade of inflammatory events that lead to secondary tissue damage. In particular, the sterile inflammatory response in stroke has been intensively investigated in the last decade, and numerous experimental studies demonstrated the neuroprotective potential of a targeted modulation of the immune system. Among the investigated immunomodulatory agents, intravenous immunoglobulin (IVIg) stand out due to their beneficial therapeutic potential in experimental stroke as well as several other experimental models of acute brain injuries, which are characterized by a rapidly evolving sterile inflammatory response, e.g., trauma, subarachnoid hemorrhage. IVIg are therapeutic preparations of polyclonal immunoglobulin G, extracted from the plasma of thousands of donors. In clinical practice, IVIg are the treatment of choice for diverse autoimmune diseases and various mechanisms of action have been proposed. Only recently, several experimental studies implicated a therapeutic potential of IVIg even in models of acute CNS injury, and suggested that the immune system as well as neuronal cells can directly be targeted by IVIg. This review gives further insight into the role of secondary inflammation in acute brain injury with an emphasis on stroke and investigates the therapeutic potential of IVIg. PMID:28824617

  18. Advanced monitoring in traumatic brain injury: microdialysis.

    PubMed

    Carpenter, Keri L H; Young, Adam M H; Hutchinson, Peter J

    2017-04-01

    Here, we review the present state-of-the-art of microdialysis for monitoring patients with severe traumatic brain injury, highlighting the newest developments. Microdialysis has evolved in neurocritical care to become an established bedside monitoring modality that can reveal unique information on brain chemistry. A major advance is recent consensus guidelines for microdialysis use and interpretation. Other advances include insight obtained from microdialysis into the complex, interlinked traumatic brain injury disorders of electrophysiological changes, white matter injury, inflammation and metabolism. Microdialysis has matured into being a standard clinical monitoring modality that takes its place alongside intracranial pressure and brain tissue oxygen tension measurement in specialist neurocritical care centres, as well as being a research tool able to shed light on brain metabolism, inflammation, therapeutic approaches, blood-brain barrier transit and drug effects on downstream targets. Recent consensus on microdialysis monitoring is paving the way for improved neurocritical care protocols. Furthermore, there is scope for future improvements both in terms of the catheters and microdialysate analyser technology, which may further enhance its applicability.

  19. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  20. Better Sleep May Signal Recovery from Brain Injury

    MedlinePlus

    ... 162672.html Better Sleep May Signal Recovery From Brain Injury New research suggests sleep-wake cycles are ... Dec. 21, 2016 (HealthDay News) -- Recovery from traumatic brain injury appears to go hand-in-hand with ...

  1. What Can I Do to Help Prevent Traumatic Brain Injury?

    MedlinePlus

    ... Cancel Submit Search The CDC Traumatic Brain Injury & Concussion Note: Javascript is disabled or is not supported ... this page: About CDC.gov . Traumatic Brain Injury & Concussion Basic Information Get the Facts Signs and Symptoms ...

  2. The ebb and flow of traumatic brain injury research.

    PubMed

    Grafman, Jordan; Salazar, Andres M

    2015-01-01

    The purpose of this chapter is to summarize some key topics discussed in this volume and describe trends suggesting the direction of future traumatic brain injury (TBI) research. Interest in, and funding for, TBI has ebbed and flowed with the public awareness of injury risk from combat, sports, or everyday life. Advances in acute resuscitation, emergency response systems, and early management have had a major impact on survival after TBI, while recent research has emphasized underlying genetic substrates and the molecular mechanisms of brain injury, repair, and neuroplasticity. This in turn impacts not only on primary and secondary neuroprotection strategies for minimizing injury, but also on the other critical remaining challenge, that of identification and validation of optimal strategies for physical and cognitive TBI rehabilitation. New information also highlights long-term degenerative conditions associated with earlier TBI and mediated by a signature cascade of abnormal molecular processes. Thus, TBI has emerged as a recognized significant public health risk with both immediate and lifelong repercussions. The linkage of a TBI to late-life neurodegenerative diseases, the observation of persistent pathologic processes including neuroinflammation and accumulation of tau protein, as well as individual differences in the genetic predisposition for brain repair and plasticity should lead to meaningful translational research with a significant impact on the efficacy and cost-efficiency of acute and chronic treatment for TBI survivors.

  3. Fyn in Neurodevelopment and Ischemic Brain Injury

    PubMed Central

    Knox, Renatta; Jiang, Xiangning

    2016-01-01

    The Src Family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents, and with our work, in neonatal animals. An understanding of Fyn’s role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones. PMID:25720756

  4. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  5. Future directions in brain injury research.

    PubMed

    Gennarelli, Thomas A

    2014-01-01

    This paper reviews the potential future directions that are important for brain injury research, especially with regard to concussion. The avenues of proposed research are categorized according to current concepts of concussion, types of concussion, and a global schema for globally reducing the burden of concussion.

  6. Psychiatric disorders and traumatic brain injury

    PubMed Central

    Schwarzbold, Marcelo; Diaz, Alexandre; Martins, Evandro Tostes; Rufino, Armanda; Amante, Lúcia Nazareth; Thais, Maria Emília; Quevedo, João; Hohl, Alexandre; Linhares, Marcelo Neves; Walz, Roger

    2008-01-01

    Psychiatric disorders after traumatic brain injury (TBI) are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed. PMID:19043523

  7. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  8. Academic Placement after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Donders, Jacques

    The acadmic placement of 87 children (ages 6 to 16 years) who had sustained brain injuries was determined within 1 year after initial psychological assessment. Forty-five children had returned full time to regular academic programs, 21 children received special education support for less than half of their classes, and 21 children were enrolled in…

  9. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  10. Clinical review: ketones and brain injury.

    PubMed

    White, Hayden; Venkatesh, Balasubramanian

    2011-04-06

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury.

  11. Clinical review: Ketones and brain injury

    PubMed Central

    2011-01-01

    Although much feared by clinicians, the ability to produce ketones has allowed humans to withstand prolonged periods of starvation. At such times, ketones can supply up to 50% of basal energy requirements. More interesting, however, is the fact that ketones can provide as much as 70% of the brain's energy needs, more efficiently than glucose. Studies suggest that during times of acute brain injury, cerebral uptake of ketones increases significantly. Researchers have thus attempted to attenuate the effects of cerebral injury by administering ketones exogenously. Hypertonic saline is commonly utilized for management of intracranial hypertension following cerebral injury. A solution containing both hypertonic saline and ketones may prove ideal for managing the dual problems of refractory intracranial hypertension and low cerebral energy levels. The purpose of the present review is to explore the physiology of ketone body utilization by the brain in health and in a variety of neurological conditions, and to discuss the potential for ketone supplementation as a therapeutic option in traumatic brain injury. PMID:21489321

  12. Traumatic Brain Injury: A Guidebook for Educators.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office for Special Education Services.

    This guidebook is designed to help New York school staff better understand the specialized needs of students with traumatic brain injury (TBI) and appropriately apply educational interventions to improve special and general education services for these students. It provides information on the following areas: (1) the causes, incidence, and…

  13. Traumatic Brain Injury. Quick Turn Around (QTA).

    ERIC Educational Resources Information Center

    Markowitz, Joy; Linehan, Patrice

    This brief paper summarizes information concerning use of the traumatic brain injury (TBI) disability classification by states and the nature of state-level activities related to the education of children and youth with TBI. It notes addition of the TBI disability category to the Individuals with Disabilities Education Act in 1990 and provides the…

  14. Traumatic Brain Injury and Vocational Rehabilitation.

    ERIC Educational Resources Information Center

    Corthell, David W., Ed.

    Intended to serve as a resource guide on traumatic brain injury for rehabilitation practitioners, the book's 10 chapters are grouped into sections which provide an introduction and examine aspects of evaluation, treatment and placement planning, and unresolved issues. Chapters have the following titles and authors: "Scope of the Problem" (Marilyn…

  15. Interviewing Children with Acquired Brain Injury (ABI)

    ERIC Educational Resources Information Center

    Boylan, Anne-Marie; Linden, Mark; Alderdice, Fiona

    2009-01-01

    Research into the lives of children with acquired brain injury (ABI) often neglects to incorporate children as participants, preferring to obtain the opinions of the adult carer (e.g. McKinlay et al., 2002). There has been a concerted attempt to move away from this position by those working in children's research with current etiquette…

  16. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  17. Reality Lessons in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Adams, Elaine Parker; Adams, Albert A., Jr.

    2008-01-01

    This article goes beyond the typical guidance on how to address the educational needs of students with traumatic brain injury (TBI). A survivor of TBI and his parent advocate describe real-life encounters in the education arena and offer ways to respond to the problems depicted in the situations. Their candor enhances educator awareness of the…

  18. Traumatic Brain Injury: Perspectives from Educational Professionals

    ERIC Educational Resources Information Center

    Mohr, J. Darrell; Bullock, Lyndal M.

    2005-01-01

    This article reports the outcomes from 2 focus groups conducted to ascertain professional educators' perceptions regarding their (a) level of preparedness for working with students with traumatic brain injury (TBI), (b) ideas regarding ways to improve support to students and families, and (c) concerns about meeting the diverse needs of children…

  19. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  20. Traumatic Brain Injury: Empirical Family Assessment Techniques.

    ERIC Educational Resources Information Center

    Bishop, Duane S.; Miller, Ivan W.

    1988-01-01

    Methods are described for quantifying and formalizing assessment of traumatic brain injury patient families. The advantages and disadvantages of empirical and clinical assessment are outlined, and four family assessment methods are reviewed: self-report, interview, observation, and laboratory. Specific assessment instruments are noted along with…

  1. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  2. Seizures Following Traumatic Brain Injury in Childhood.

    ERIC Educational Resources Information Center

    Williams, Dennis

    This guide provides information on seizures in students with traumatic brain injury (TBI) and offers guidelines for classroom management. First, a classification system for seizures is presented with specific types of seizures explained. Post-traumatic seizures are specifically addressed as is the importance of seizure prevention when possible.…

  3. Academic Placement after Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Donders, Jacques

    The acadmic placement of 87 children (ages 6 to 16 years) who had sustained brain injuries was determined within 1 year after initial psychological assessment. Forty-five children had returned full time to regular academic programs, 21 children received special education support for less than half of their classes, and 21 children were enrolled in…

  4. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  5. Traumatic Brain Injury: Perspectives from Educational Professionals

    ERIC Educational Resources Information Center

    Mohr, J. Darrell; Bullock, Lyndal M.

    2005-01-01

    This article reports the outcomes from 2 focus groups conducted to ascertain professional educators' perceptions regarding their (a) level of preparedness for working with students with traumatic brain injury (TBI), (b) ideas regarding ways to improve support to students and families, and (c) concerns about meeting the diverse needs of children…

  6. Traumatic brain injury and posttraumatic stress disorder.

    PubMed

    Bahraini, Nazanin H; Breshears, Ryan E; Hernández, Theresa D; Schneider, Alexandra L; Forster, Jeri E; Brenner, Lisa A

    2014-03-01

    Given the upsurge of research in posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI), much of which has focused on military samples who served in Iraq and Afghanistan, the purpose of this article is to review the literature published after September 11th, 2001 that addresses the epidemiology, pathophysiology, evaluation, and treatment of PTSD in the context of TBI.

  7. Experimental models of repetitive brain injuries.

    PubMed

    Weber, John T

    2007-01-01

    Repetitive traumatic brain injury (TBI) occurs in a significant portion of trauma patients, especially in specific populations, such as child abuse victims or athletes involved in contact sports (e.g. boxing, football, hockey, and soccer). A continually emerging hypothesis is that repeated mild injuries may cause cumulative damage to the brain, resulting in long-term cognitive dysfunction. The growing attention to this hypothesis is reflected in several recent experimental studies of repeated mild TBI in vivo. These reports generally demonstrate cellular and cognitive dysfunction after repetitive injury using rodent TBI models. In some cases, data suggests that the effects of a second mild TBI may be synergistic, rather than additive. In addition, some studies have found increases in cellular markers associated with Alzheimer's disease after repeated mild injuries, which demonstrates a direct experimental link between repetitive TBI and neurodegenerative disease. To complement the findings from humans and in vivo experimentation, my laboratory group has investigated the effects of repeated trauma in cultured brain cells using a model of stretch-induced mechanical injury in vitro. In these studies, hippocampal cells exhibited cumulative damage when mild stretch injuries were repeated at either 1-h or 24-h intervals. Interestingly, the extent of damage to the cells was dependent on the time between repeated injuries. Also, a very low level of stretch, which produced no cell damage on its own, induced cell damage when it was repeated several times at a short interval (every 2 min). Although direct comparisons to the clinical situation are difficult, these types of repetitive, low-level, mechanical stresses may be similar to the insults received by certain athletes, such as boxers, or hockey and soccer players. This type of in vitro model could provide a reliable system in which to study the mechanisms underlying cellular dysfunction following repeated injuries. As

  8. Child and adolescent traumatic brain injury: correlates of injury severity.

    PubMed

    Max, J E; Lindgren, S D; Knutson, C; Pearson, C S; Ihrig, D; Welborn, A

    1998-01-01

    A record review focused on children and adolescents, with a history of traumatic brain injury, who were consecutively admitted to a brain injury clinic in which all new patients are psychiatrically evaluated. Significant correlates of severity of injury in the cognitive, education and communication domains of functioning included Performance IQ but not Verbal IQ nor standardized ratings of language or learning disability. Current organic personality syndrome (OPS) but not attention deficit hyperactivity disorder or oppositional defiant disorder/conduct disorder diagnostic status was significantly related to severity. In conclusion, the findings in this referred sample are similar to prospective studies indicating that Performance IQ appears sensitive in reflecting brain damage. The finding linking OPS to severity of injury is not surprising. This is because OPS is a diagnosis which is dependent on the clinician's judgment of the likelihood that the organic factor is etiologically related to a defined behavioural syndrome. The diagnosis therefore requires a clinical judgment that the threshold of severity of a presumed organic etiological factor has been reached.

  9. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  10. Role of microvascular disruption in brain damage from traumatic brain injury

    PubMed Central

    Logsdon, Aric F.; Lucke-Wold, Brandon P.; Turner, Ryan C.; Huber, Jason D.; Rosen, Charles L.; Simpkins, James W.

    2015-01-01

    Traumatic brain injury (TBI) is acquired from an external force, which can inflict devastating effects to the brain vasculature and neighboring neuronal cells. Disruption of vasculature is a primary effect that can lead to a host of secondary injury cascades. The primary effects of TBI are rapidly occurring while secondary effects can be activated at later time points and may be more amenable to targeting. Primary effects of TBI include diffuse axonal shearing, changes in blood brain barrier (BBB) permeability, and brain contusions. These mechanical events, especially changes to the BBB, can induce calcium perturbations within brain cells producing secondary effects, which include cellular stress, inflammation, and apoptosis. These secondary effects can be potentially targeted to preserve the tissue surviving the initial impact of TBI. In the past, TBI research had focused on neurons without any regard for glial cells and the cerebrovasculature. Now a greater emphasis is being placed on the vasculature and the neurovascular unit following TBI. A paradigm shift in the importance of the vascular response to injury has opened new avenues of drug treatment strategies for TBI. However, a connection between the vascular response to TBI and the development of chronic disease has yet to be elucidated. Long-term cognitive deficits are common amongst those sustaining severe or multiple mild TBIs. Understanding the mechanisms of cellular responses following TBI is important to prevent the development of neuropsychiatric symptoms. With appropriate intervention following TBI, the vascular network can perhaps be maintained and the cellular repair process possibly improved to aid in the recovery of cellular homeostasis. PMID:26140712

  11. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  12. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'.

  13. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  14. Traumatic Brain Injury as a Cause of Behavior Disorders.

    ERIC Educational Resources Information Center

    Nordlund, Marcia R.

    There is increasing evidence that many children and adolescents who display behavior disorders have sustained a traumatic brain injury. Traumatic brain injury can take the following forms: closed head trauma in which the brain usually suffers diffuse damage; open head injury which usually results in specific focal damage; or internal trauma (e.g.,…

  15. Neuroprotection against Surgically-Induced Brain Injury

    PubMed Central

    Jadhav, Vikram; Solaroglu, Ihsan; Obenaus, Andre; Zhang, John H.

    2007-01-01

    Background Neurosurgical procedures are carried out routinely in health institutions across the world. A key issue to be considered during neurosurgical interventions is that there is always an element of inevitable brain injury that results from the procedure itself due to the unique nature of the nervous system. Brain tissue at the periphery of the operative site is at risk of injury by various means including incisions and direct trauma, electrocautery, hemorrhage, and retractor stretch. Methods/Results In the present review we will elaborate upon this surgically-induced brain injury and also present a novel animal model to study it. Additionally, we will summarize preliminary results obtained by pretreatment with PP1, a src tyrosine kinase inhibitor reported to have neuroprotective properties in in-vivo experimental studies. Any form of pretreatment to limit the damage to the susceptible functional brain tissue during neurosurgical procedures may have a significant impact on the patient recovery. Conclusion This brief review is intended to raise the question of ‘neuroprotection against surgically-induced brain injury’ in the neurosurgical scientific community and stimulate discussions. PMID:17210286

  16. Traumatic brain injury imaging research roadmap.

    PubMed

    Wintermark, M; Coombs, L; Druzgal, T J; Field, A S; Filippi, C G; Hicks, R; Horton, R; Lui, Y W; Law, M; Mukherjee, P; Norbash, A; Riedy, G; Sanelli, P C; Stone, J R; Sze, G; Tilkin, M; Whitlow, C T; Wilde, E A; York, G; Provenzale, J M

    2015-03-01

    The past decade has seen impressive advances in the types of neuroimaging information that can be acquired in patients with traumatic brain injury. However, despite this increase in information, understanding of the contribution of this information to prognostic accuracy and treatment pathways for patients is limited. Available techniques often allow us to infer the presence of microscopic changes indicative of alterations in physiology and function in brain tissue. However, because histologic confirmation is typically lacking, conclusions reached by using these techniques remain solely inferential in almost all cases. Hence, a need exists for validation of these techniques by using data from large population samples that are obtained in a uniform manner, analyzed according to well-accepted procedures, and correlated with closely monitored clinical outcomes. At present, many of these approaches remain confined to population-based research rather than diagnosis at an individual level, particularly with regard to traumatic brain injury that is mild or moderate in degree. A need and a priority exist for patient-centered tools that will allow advanced neuroimaging tools to be brought into clinical settings. One barrier to developing these tools is a lack of an age-, sex-, and comorbidities-stratified, sequence-specific, reference imaging data base that could provide a clear understanding of normal variations across populations. Such a data base would provide researchers and clinicians with the information necessary to develop computational tools for the patient-based interpretation of advanced neuroimaging studies in the clinical setting. The recent "Joint ASNR-ACR HII-ASFNR TBI Workshop: Bringing Advanced Neuroimaging for Traumatic Brain Injury into the Clinic" on May 23, 2014, in Montreal, Quebec, Canada, brought together neuroradiologists, neurologists, psychiatrists, neuropsychologists, neuroimaging scientists, members of the National Institute of Neurologic

  17. Traumatic Brain Injury - Multiple Languages

    MedlinePlus

    ... this page, please enable JavaScript. Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) Somali (Af-Soomaali ) ... हिन्दी (Hindi) Bilingual PDF Health Information Translations Japanese (日本語) Expand Section Brain Scan - 日本語 (Japanese) Bilingual ...

  18. Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury

    PubMed Central

    Feala, Jacob D.; AbdulHameed, Mohamed Diwan M.; Yu, Chenggang; Dutta, Bhaskar; Yu, Xueping; Schmid, Kara; Dave, Jitendra; Tortella, Frank

    2013-01-01

    Abstract The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through computational models that integrate these diverse data sets. Here, we review available systems biology strategies, databases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar, we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature, recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates. PMID:23510232

  19. Traumatic Brain Injury and Neuropsychiatric Complications.

    PubMed

    Ahmed, Saeed; Venigalla, Hema; Mekala, Hema Madhuri; Dar, Sara; Hassan, Mudasar; Ayub, Shahana

    2017-01-01

    Traumatic brain injury (TBI) occurs when a blow or jolt to the head or a penetrating injury results in damage to the brain. It is the most frequent cause of hospitalization in young people with a higher prevalence in men. TBI is the leading cause of disability and mortality between the ages 1 and 45. TBI can be caused either by the direct result of trauma or due to a complication of the primary injury. The most common etiological factors for TBI are falls, road traffic accidents, violent physical assaults, and injuries associated with athletic activities. Following TBI, significant neurologic complications may occur which include seizures, dementia, Alzheimer's disease, and cranial nerve injuries. In addition, people may suffer from various psychiatric complications such as depression, posttraumatic stress disorder, generalized anxiety disorder, obsessive-compulsive disorder, and other cognitive and behavioral sequel that might significantly increase the comorbidity of the victims. Considering all of the above complications, TBI is one of the significant public health burdens. Literature has shown that only about 25% of people achieve long-term functional independence following TBI. In this paper, we focused not only on the epidemiology but also the etiology, complications following TBI and understanding their underlying pathogenesis. Further, we focused on analyzing the options to improve the treatment and rehabilitation following TBI in future.

  20. The gut reaction to traumatic brain injury

    PubMed Central

    Katzenberger, Rebeccah J; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a complex disorder that affects millions of people worldwide. The complexity of TBI partly stems from the fact that injuries to the brain instigate non-neurological injuries to other organs such as the intestine. Additionally, genetic variation is thought to play a large role in determining the nature and severity of non-neurological injuries. We recently reported that TBI in flies, as in humans, increases permeability of the intestinal epithelial barrier resulting in hyperglycemia and a higher risk of death. Furthermore, we demonstrated that genetic variation in flies is also pertinent to the complexity of non-neurological injuries following TBI. The goals of this review are to place our findings in the context of what is known about TBI-induced intestinal permeability from studies of TBI patients and rodent TBI models and to draw attention to how studies of the fly TBI model can provide unique insights that may facilitate diagnosis and treatment of TBI. PMID:26291482

  1. Substance P mediates reduced pneumonia rates after traumatic brain injury.

    PubMed

    Yang, Sung; Stepien, David; Hanseman, Dennis; Robinson, Bryce; Goodman, Michael D; Pritts, Timothy A; Caldwell, Charles C; Remick, Daniel G; Lentsch, Alex B

    2014-09-01

    Traumatic brain injury results in significant morbidity and mortality and is associated with infectious complications, particularly pneumonia. However, whether traumatic brain injury directly impacts the host response to pneumonia is unknown. The objective of this study was to determine the nature of the relationship between traumatic brain injury and the prevalence of pneumonia in trauma patients and investigate the mechanism of this relationship using a murine model of traumatic brain injury with pneumonia. Data from the National Trauma Data Bank and a murine model of traumatic brain injury with postinjury pneumonia. Academic medical centers in Cincinnati, OH, and Boston, MA. Trauma patients in the National Trauma Data Bank with a hospital length of stay greater than 2 days, age of at least 18 years at admission, and a blunt mechanism of injury. Subjects were female ICR mice 8-10 weeks old. Administration of a substance P receptor antagonist in mice. Pneumonia rates were measured in trauma patients before and after risk adjustment using propensity scoring. In addition, survival and pulmonary inflammation were measured in mice undergoing traumatic brain injury with or without pneumonia. After risk adjustment, we found that traumatic brain injury patients had significantly lower rates of pneumonia compared to blunt trauma patients without traumatic brain injury. A murine model of traumatic brain injury reproduced these clinical findings with mice subjected to traumatic brain injury demonstrating increased bacterial clearance and survival after induction of pneumonia. To determine the mechanisms responsible for this improvement, the substance P receptor was blocked in mice after traumatic brain injury. This treatment abrogated the traumatic brain injury-associated increases in bacterial clearance and survival. The data demonstrate that patients with traumatic brain injury have lower rates of pneumonia compared to non-head-injured trauma patients and suggest that the

  2. Military traumatic brain injury: a review.

    PubMed

    Chapman, Julie C; Diaz-Arrastia, Ramon

    2014-06-01

    Military mild traumatic brain injury (mTBI) differs from civilian injury in important ways. Although mTBI sustained in both military and civilian settings are likely to be underreported, the combat theater presents additional obstacles to reporting and accessing care. The impact of blast forces on the nervous system may differ from nonblast mechanisms, mTBI although studies comparing the neurologic and cognitive sequelae in mTBI survivors have not provided such evidence. However, emotional distress appears to figure prominently in symptoms following military mTBI. This review evaluates the extant literature with an eye towards future research directions.

  3. Primary and secondary management of pediatric soft tissue injuries.

    PubMed

    Hogg, Nicholas J V

    2012-08-01

    Injury is the most common cause of death in pediatric patients, with a large proportion related to head injury. The craniofacial region in children develops rapidly and at an early age, making the area more prominent compared with the remainder of the body, increasing the likelihood of injury. This article reviews the primary management of pediatric soft tissue injuries, including assessment, cleansing, surgical technique, anesthesia, and considerations for special wounds. The secondary management of pediatric facial injury is also discussed, including scar revision, management of scar hypertrophy/keloids, and staged surgical correction.

  4. Traumatic brain injury: an overview of pathobiology with emphasis on military populations

    PubMed Central

    Cernak, Ibolja; Noble-Haeusslein, Linda J

    2010-01-01

    This review considers the pathobiology of non-impact blast-induced neurotrauma (BINT). The pathobiology of traumatic brain injury (TBI) has been historically studied in experimental models mimicking features seen in the civilian population. These brain injuries are characterized by primary damage to both gray and white matter and subsequent evolution of secondary pathogenic events at the cellular, biochemical, and molecular levels, which collectively mediate widespread neurodegeneration. An emerging field of research addresses brain injuries related to the military, in particular blast-induced brain injuries. What is clear from the effort to date is that the pathobiology of military TBIs, particularly BINT, has characteristics not seen in other types of brain injury, despite similar secondary injury cascades. The pathobiology of primary BINT is extremely complex. It comprises systemic, local, and cerebral responses interacting and often occurring in parallel. Activation of the autonomous nervous system, sudden pressure-increase in vital organs such as lungs and liver, and activation of neuroendocrine-immune system are among the most important mechanisms significantly contributing to molecular changes and cascading injury mechanisms in the brain. PMID:19809467

  5. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2014-11-01

    Award Number: W81XWH-08-2-0017 TITLE: " Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology...TITLE AND SUBTITLE 5a. CONTRACT NUMBER “ Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology...traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected

  6. Priming the Inflammatory Pump of the CNS after Traumatic Brain Injury

    PubMed Central

    Witcher, Kristina G.; Eiferman, Daniel S.; Godbout, Jonathan P.

    2015-01-01

    Traumatic brain injury (TBI) can lead to secondary neuropsychiatric problems that develop and persist years after injury. Mounting evidence indicates that neuroinflammatory processes progress after the initial head injury and worsen with time. Microglia contribute to this inflammation by maintaining a primed profile long after the acute effects of the injury have dissipated. This may set the stage for glial dysfunction and hyperactivity to challenges including subsequent head injury, stress, or induction of a peripheral immune response. The purpose of this review is to discuss the evidence that microglia become primed following TBI and how this corresponds with vulnerability to a “second hit” and subsequent neuropsychiatric and neurodegenerative complications. PMID:26442695

  7. Emerging Roles for the Immune System in Traumatic Brain Injury

    PubMed Central

    McKee, Celia A.; Lukens, John R.

    2016-01-01

    Traumatic brain injury (TBI) affects an ever-growing population of all ages with long-term consequences on health and cognition. Many of the issues that TBI patients face are thought to be mediated by the immune system. Primary brain damage that occurs at the time of injury can be exacerbated and prolonged for months or even years by chronic inflammatory processes, which can ultimately lead to secondary cell death, neurodegeneration, and long-lasting neurological impairment. Researchers have turned to rodent models of TBI in order to understand how inflammatory cells and immunological signaling regulate the post-injury response and recovery mechanisms. In addition, the development of numerous methods to manipulate genes involved in inflammation has recently expanded the possibilities of investigating the immune response in TBI models. As results from these studies accumulate, scientists have started to link cells and signaling pathways to pro- and anti-inflammatory processes that may contribute beneficial or detrimental effects to the injured brain. Moreover, emerging data suggest that targeting aspects of the immune response may offer promising strategies to treat TBI. This review will cover insights gained from studies that approach TBI research from an immunological perspective and will summarize our current understanding of the involvement of specific immune cell types and cytokines in TBI pathogenesis. PMID:27994591

  8. Exosome platform for diagnosis and monitoring of traumatic brain injury.

    PubMed

    Taylor, Douglas D; Gercel-Taylor, Cicek

    2014-09-26

    We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression.

  9. Bilateral hemicraniectomy in non-penetrating traumatic brain injury.

    PubMed

    Walcott, Brian P; Nahed, Brian V; Sheth, Sameer A; Yanamadala, Vijay; Caracci, James R; Asaad, Wael F

    2012-07-01

    Traumatic brain injury is a heterogeneous entity that encompasses both surgical and non-surgical conditions. Surgery may be indicated with traumatic lesions such as hemorrhage, fractures, or malignant cerebral edema. However, the neurological exam may be clouded by the effects of medications administered in the field, systemic injuries, and inaccuracies in hyperacute prognostication. Typically, neurological injury is considered irreversible if diffuse loss of grey/white matter differentiation or if brainstem hemorrhage (Duret hemorrhage) exists. We aim to characterize a cohort of patients undergoing bilateral hemicraniectomy for severe traumatic brain injury. A retrospective consecutive cohort of adult patients undergoing craniectomy for trauma was established between the dates of January 2008 and November 2011. The primary outcome of the study was in-hospital mortality. Secondary outcomes were ICU length of stay, surgical complications, and Glasgow Outcome Score at most recent follow-up. During the study period, 210 patients undergoing craniectomy for traumatic mass-occupying lesion (epidural hematoma, subdural hematoma, or parenchymal contusion) were analyzed. Of those, 9 met study criteria. In-hospital mortality was 67% (6 of 9 patients). The average ICU length of stay was 12 days. The GOS score was 3 in surviving patients. Bilateral hemicraniectomy is a heroic intervention for patients with severe TBI, but can be a life-saving procedure.

  10. A review of glutamate's role in traumatic brain injury mechanisms

    NASA Astrophysics Data System (ADS)

    Good, Cameron H.

    2013-05-01

    Glutamate is the primary excitatory neurotransmitter used by the central nervous system (CNS) for synaptic communication, and its extracellular concentration is tightly regulated by glutamate transporters located on nearby astrocytes. Both animal models and human clinical studies have demonstrated elevated glutamate levels immediately following a traumatic brain event, with the duration and severity of the rise corresponding to prognosis. This rise in extracellular glutamate likely results from a combination of excessive neurotransmitter release from damaged neurons and down regulation of uptake mechanisms in local astrocytes. The immediate results of a traumatic event can lead to necrotic tissue in severely injured regions, while prolonged increases in excitatory transmission can cause secondary excitotoxic injury through activation of delayed apoptotic pathways. Initial TBI animal studies utilized a variety of broad glutamate receptor antagonists to successfully combat secondary injury mechanisms, but unfortunately this same strategy has proven inconclusive in subsequent human trials due to deleterious side effects and heterogeneity of injuries. More recent treatment strategies have utilized specific glutamate receptor subunit antagonists in an effort to minimize side effects and have shown promising results. Future challenges will be detecting the concentration and kinetics of the glutamate rise following injury, determining which patient populations could benefit from antagonist treatment based on their extracellular glutamate concentrations and when drugs should be administered to maximize efficacy.

  11. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  12. Optic radiation injury in a patient with traumatic brain injury.

    PubMed

    Yeo, Sang Seok; Kim, Seong Ho; Kim, Oh Lyong; Kim, Min-Su; Jang, Sung Ho

    2012-01-01

    This study reports on a patient who showed an optic radiation (OR) injury on diffusion tensor imaging (DTI) following head trauma. The patient, who had suffered a traffic accident, underwent conservative management for diffuse axonal injury and contusions in the left midbrain, temporal lobe and anterior to mid-portion of left OR. He complained of right homonymous hemianopsia from the onset of TBI and right bilateral homonymous hemianopsia was detected at the 6-month Humphrey visual field test. A 20 year-old man with traumatic brain injury (TBI) and eight age-matched normal subjects were recruited for this study. The left OR of the patient showed a discontinuation around the mid-portion. The FA (fractional anisotropy) values of the posterior portions of left OR decreased over two standard deviations of normal controls, but the ADC (apparent diffusion coefficient) values of these sites increased over two standard deviations of normal controls. Consequently, it was assumed that the main injury site of the left OR was located around the posterior portion of the left OR. This results suggest that DTI may be a useful technique for detection of an OR injury in patients with TBI.

  13. Airway management of patients with traumatic brain injury/C-spine injury.

    PubMed

    Jung, Jin Yong

    2015-06-01

    Traumatic brain injury (TBI) is usually combined with cervical spine (C-spine) injury. The possibility of C-spine injury is always considered when performing endotracheal intubation in these patients. Rapid sequence intubation is recommended with adequate sedative or analgesics and a muscle relaxant to prevent an increase in intracranial pressure during intubation in TBI patients. Normocapnia and mild hyperoxemia should be maintained to prevent secondary brain injury. The manual-in-line-stabilization (MILS) technique effectively lessens C-spine movement during intubation. However, the MILS technique can reduce mouth opening and lead to a poor laryngoscopic view. The newly introduced video laryngoscope can manage these problems. The AirWay Scope® (AWS) and AirTraq laryngoscope decreased the extension movement of C-spines at the occiput-C1 and C2-C4 levels, improving intubation conditions and shortening the time to complete tracheal intubation compared with a direct laryngoscope. The Glidescope® also decreased cervical movement in the C2-C5 levels during intubation and improved vocal cord visualization, but a longer duration was required to complete intubation compared with other devices. A lightwand also reduced cervical motion across all segments. A fiberoptic bronchoscope-guided nasal intubation is the best method to reduce cervical movement, but a skilled operator is required. In conclusion, a video laryngoscope assists airway management in TBI patients with C-spine injury.

  14. Airway management of patients with traumatic brain injury/C-spine injury

    PubMed Central

    2015-01-01

    Traumatic brain injury (TBI) is usually combined with cervical spine (C-spine) injury. The possibility of C-spine injury is always considered when performing endotracheal intubation in these patients. Rapid sequence intubation is recommended with adequate sedative or analgesics and a muscle relaxant to prevent an increase in intracranial pressure during intubation in TBI patients. Normocapnia and mild hyperoxemia should be maintained to prevent secondary brain injury. The manual-in-line-stabilization (MILS) technique effectively lessens C-spine movement during intubation. However, the MILS technique can reduce mouth opening and lead to a poor laryngoscopic view. The newly introduced video laryngoscope can manage these problems. The AirWay Scope® (AWS) and AirTraq laryngoscope decreased the extension movement of C-spines at the occiput-C1 and C2-C4 levels, improving intubation conditions and shortening the time to complete tracheal intubation compared with a direct laryngoscope. The Glidescope® also decreased cervical movement in the C2-C5 levels during intubation and improved vocal cord visualization, but a longer duration was required to complete intubation compared with other devices. A lightwand also reduced cervical motion across all segments. A fiberoptic bronchoscope-guided nasal intubation is the best method to reduce cervical movement, but a skilled operator is required. In conclusion, a video laryngoscope assists airway management in TBI patients with C-spine injury. PMID:26045922

  15. Incidence of Secondary Complications in Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Anson, C. A.; Shepherd, C.

    1996-01-01

    Data from 348 patients (mean age 37) with postacute spinal cord injury revealed that 95% reported at least 1 secondary problem, and 58% reported 3 or more. The number and severity of complications varied with time since the injury. Obesity, pain, spasticity, urinary tract infections, pressure sores, and lack of social integration were common…

  16. Incidence of Secondary Complications in Spinal Cord Injury.

    ERIC Educational Resources Information Center

    Anson, C. A.; Shepherd, C.

    1996-01-01

    Data from 348 patients (mean age 37) with postacute spinal cord injury revealed that 95% reported at least 1 secondary problem, and 58% reported 3 or more. The number and severity of complications varied with time since the injury. Obesity, pain, spasticity, urinary tract infections, pressure sores, and lack of social integration were common…

  17. Diffuse traumatic brain injury induces prolonged immune dysregulation and potentiates hyperalgesia following a peripheral immune challenge.

    PubMed

    Rowe, Rachel K; Ellis, Gavin I; Harrison, Jordan L; Bachstetter, Adam D; Corder, Gregory F; Van Eldik, Linda J; Taylor, Bradley K; Marti, Francesc; Lifshitz, Jonathan

    2016-01-01

    Nociceptive and neuropathic pain occurs as part of the disease process after traumatic brain injury (TBI) in humans. Central and peripheral inflammation, a major secondary injury process initiated by the traumatic brain injury event, has been implicated in the potentiation of peripheral nociceptive pain. We hypothesized that the inflammatory response to diffuse traumatic brain injury potentiates persistent pain through prolonged immune dysregulation. To test this, adult, male C57BL/6 mice were subjected to midline fluid percussion brain injury or to sham procedure. One cohort of mice was analyzed for inflammation-related cytokine levels in cortical biopsies and serum along an acute time course. In a second cohort, peripheral inflammation was induced seven days after surgery/injury with an intraplantar injection of carrageenan. This was followed by measurement of mechanical hyperalgesia, glial fibrillary acidic protein and Iba1 immunohistochemical analysis of neuroinflammation in the brain, and flow cytometric analysis of T-cell differentiation in mucosal lymph. Traumatic brain injury increased interleukin-6 and chemokine ligand 1 levels in the cortex and serum that peaked within 1-9 h and then resolved. Intraplantar carrageenan produced mechanical hyperalgesia that was potentiated by traumatic brain injury. Further, mucosal T cells from brain-injured mice showed a distinct deficiency in the ability to differentiate into inflammation-suppressing regulatory T cells (Tregs). We conclude that traumatic brain injury increased the inflammatory pain associated with cutaneous inflammation by contributing to systemic immune dysregulation. Regulatory T cells are immune suppressors and failure of T cells to differentiate into regulatory T cells leads to unregulated cytokine production which may contribute to the potentiation of peripheral pain through the excitation of peripheral sensory neurons. In addition, regulatory T cells are identified as a potential target for

  18. Erythropoietin in patients with traumatic brain injury and extracranial injury-A post hoc analysis of the erythropoietin traumatic brain injury trial.

    PubMed

    Skrifvars, Markus B; Bailey, Michael; French, Craig; Presneill, Jeffrey; Nichol, Alistair; Little, Lorraine; Duranteau, Jacques; Huet, Olivier; Haddad, Samir; Arabi, Yaseen; McArthur, Colin; Cooper, D James; Bellomo, Rinaldo

    2017-09-01

    Erythropoietin (EPO) may reduce mortality after traumatic brain injury (TBI). Secondary brain injury is exacerbated by multiple trauma, and possibly modifiable by EPO. We hypothesized that EPO decreases mortality more in TBI patients with multiple trauma, than in patients with TBI alone. A post hoc analysis of the EPO-TBI randomized controlled trial conducted in 2009 to 2014. To evaluate the impact of injuries outside the brain, we calculated an extracranial Injury Severity Score (ISS) that included the same components of the ISS, excluding head and face components. We defined multiple trauma as two injured body regions with an Abbreviated Injury Scale (AIS) score of 3 or higher. Cox regression analyses, allowing for potential differential responses per the presence or absence of extracranial injury defined by these injury scores, were used to assess the effect of EPO on time to mortality. Of 603 included patients, the median extracranial ISS was 6 (interquartile range, 1-13) and 258 (43%) had an AIS score of 3 or higher in at least two body regions. On Cox regression, EPO was associated with decreased mortality in patients with greater extracranial ISS (interaction p = 0.048) and weakly associated with differential mortality with multiple trauma (AIS score > 3 or in two regions, interaction p = 0.17). At 6 months in patients with extracranial ISS higher than 6, 10 (6.8%) of 147 EPO-treated patients compared with 26 (17%) of 154 placebo-treated patients died (risk reduction, 10%; 95% confidence interval, 2.9-17%; p = 0.007). In this post hoc analysis, EPO administration was associated with a potential differential improvement in 6-month mortality in TBI patients with more severe extracranial injury. These findings need confirmation in future clinical and experimental studies. Therapeutic study, level III.

  19. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  20. Chronic Endocrinopathies in Traumatic Brain Injury Disease.

    PubMed

    Masel, Brent E; Urban, Randy

    2015-12-01

    The aim of this review was to explain the role played by pituitary hormonal deficiencies in the traumatic brain injury (TBI) disease process. Chronic dysfunction of the pituitary axis is observed in approximately 35% of individuals who sustain a moderate-to-severe TBI. The most common deficiency is that of growth hormone, followed by gonadotropin, cortisol, and thyroid. The medical, psychological, and psychiatric consequences of untreated hypopituitarism are extensive and can be devastating. Many of the consequences of a chronic symptomatic TBI have, in the past, been solely attributed to the brain injury per se. Analysis of the signs and symptoms of pituitary axis dysfunction suggests that many of these consequences can be attributed to post-traumatic hypopituitarism (PTH). PTH may well play a significant role in the progressive signs and symptoms that follow a chronic TBI.

  1. Traumatic Brain Injury in Sports: A Review

    PubMed Central

    Sahler, Christopher S.; Greenwald, Brian D.

    2012-01-01

    Traumatic brain injury (TBI) is a clinical diagnosis of neurological dysfunction following head trauma, typically presenting with acute symptoms of some degree of cognitive impairment. There are an estimated 1.7 to 3.8 million TBIs each year in the United States, approximately 10 percent of which are due to sports and recreational activities. Most brain injuries are self-limited with symptom resolution within one week, however, a growing amount of data is now establishing significant sequelae from even minor impacts such as headaches, prolonged cognitive impairments, or even death. Appropriate diagnosis and treatment according to standardized guidelines are crucial when treating athletes who may be subjected to future head trauma, possibly increasing their likelihood of long-term impairments. PMID:22848836

  2. [Diagnosis and treatment of traumatic brain injury].

    PubMed

    Rickels, E

    2009-02-01

    Traumatic brain injury (TBI) is still the major cause of death under 45 years of age and an important one for children under 15. Its incidence is 332/100,000 inhabitants. It results from an impact with the skull with/without lesion of the brain but at least a short-term neurological disorder. All other injuries to the skull should be called concussion. The duration of unconsciousness defines the severity of TBI. Patients with TBI should be admitted to a surgical ward. Those retaining consciousness and with GCS scores of 15 might be allowed to go home if under surveillance. With GCS of <15 or with risk factors, TBI requires a CT scan and in-hospital surveillance. Acutely life-threatening, i.e. space-occupying, bleeding must be operated on immediately. Epidural or subdural bleeding, especially in comatose patients, is still a vital risk and thus requires immediate surgery.

  3. The neuroethics and neurolaw of brain injury.

    PubMed

    Aggarwal, Neil Krishan; Ford, Elizabeth

    2013-01-01

    Neuroethics and neurolaw are fields of study that involve the interface of neuroscience with clinical and legal decision-making. The past two decades have seen increasing attention being paid to both fields, in large part because of the advances in neuroimaging techniques and improved ability to visualize and measure brain structure and function. Traumatic brain injury (TBI), along with its acute and chronic sequelae, has emerged as a focus of neuroethical issues, such as informed consent for treatment and research, diagnostic and prognostic uncertainties, and the subjectivity of interpretation of data. The law has also more frequently considered TBI in criminal settings for exculpation, mitigation and sentencing purposes and in tort and administrative law for personal injury, disability and worker's compensation cases. This article provides an overview of these topics with an emphasis on the current challenges that the neuroscience of TBI faces in the medicolegal arena.

  4. Ethanol-induced hyponatremia augments brain edema after traumatic brain injury.

    PubMed

    Katada, Ryuichi; Watanabe, Satoshi; Ishizaka, Atsushi; Mizuo, Keisuke; Okazaki, Shunichiro; Matsumoto, Hiroshi

    2012-04-01

    Alcohol consumption augments brain edema by expression of brain aquaporin-4 after traumatic brain injury. However, how ethanol induces brain aquaporin-4 expression remains unclear. Aquaporin-4 can operate with some of ion channels and transporters. Therefore, we hypothesized that ethanol may affect electrolytes through regulating ion channels, leading to express aquaporin-4. To clarify the hypothesis, we examined role of AQP4 expression in ethanol-induced brain edema and changes of electrolyte levels after traumatic brain injury in the rat. In the rat traumatic brain injury model, ethanol administration reduced sodium ion concentration in blood significantly 24 hr after injury. An aquaporin-4 inhibitor recovered sodium ion concentration in blood to normal. We observed low sodium ion concentration in blood and the increase of brain aquaporin-4 in cadaver with traumatic brain injury. Therefore, ethanol increases brain edema by the increase of aquaporin-4 expression with hyponatremia after traumatic brain injury.

  5. Mild Traumatic Brain Injury in Translation

    PubMed Central

    Robertson, Claudia S.

    2013-01-01

    Abstract This Introduction to a Special Issue on Mild Traumatic Brain Injury (mTBI) highlights the methodological challenges in outcome studies and clinical trials involving patients who sustain mTBI. Recent advances in brain imaging and portable, computerized cognitive tasks have contributed to protocols that are sensitive to the effects of mTBI and efficient in time for completion. Investigation of civilian mTBI has been extended to single and repeated injuries in athletes and blast-related mTBI in service members and veterans. Despite differences in mechanism of injury, there is evidence for similar effects of acceleration-deceleration and blast mechanisms of mTBI on cognition. Investigation of repetitive mTBI suggests that the effects may be cumulative and that repeated mTBI and repeated subconcussive head trauma may lead to neurodegenerative conditions. Although animal models of mTBI using cortical impact and fluid percussion injury in rodents have been able to reproduce some of the cognitive deficits frequently exhibited by patients after mTBI, modeling post-concussion symptoms is difficult. Recent use of closed head and blast injury animal models may more closely approximate clinical mTBI. Translation of interventions that are developed in animal models to patients with mTBI is a priority for the research agenda. This Special Issue on mTBI integrates basic neuroscience studies using animal models with studies of human mTBI, including the cognitive sequelae, persisting symptoms, brain imaging, and host factors that facilitate recovery. PMID:23046349

  6. Blast-induced Mild Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    hemorrhagic lesions including intraparenchymal, subdural, and subarachnoid bleeding. Blast injury also induces a variety of histological effects...and microscopic intracerebral, subarachnoid and subdural hemorrhage , severity related to proximity of explosion to head Decreased rotarod and grip...tensor imaging study. J Neurosurg 2005;103:298-303. 66. Wilde EA, McCauley SR, Hunter JV, et al. Diffusion tensor imaging of acute mild traumatic brain

  7. Monitoring Brain Injury With TSALLIS Entropy

    DTIC Science & Technology

    2001-10-25

    significant but still remains to be studied. Literature has pointed to the role of q in the entropy computation for EEG studies [10]. In our study it is... EEG in the form of reduction during the bad physiological function outcome. The reduction level and recovery rate of TE are also consistent with...USA Abstract- Nonextensive entropy measure, Tsallis Entropy (TE), was undertaken to monitor the brain injury after cardiac arrest. EEG of human and

  8. Inflammatory neuroprotection following traumatic brain injury

    PubMed Central

    Russo, Matthew V.; McGavern, Dorian B.

    2017-01-01

    Traumatic brain injury (TBI) elicits an inflammatory response in the central nervous system (CNS) that involves both resident and peripheral immune cells. Neuroinflammation can persist for years following a single TBI and may contribute to neurodegeneration. However, administration of anti-inflammatory drugs shortly after injury was not effective in the treatment of TBI patients. Some components of the neuroinflammatory response seem to play a beneficial role in the acute phase of TBI. Indeed, following CNS injury, early inflammation can set the stage for proper tissue regeneration and recovery, which can, perhaps, explain why general immunosuppression in TBI patients is disadvantageous. Here, we discuss some positive attributes of neuroinflammation and propose that inflammation be therapeutically guided in TBI patients rather than globally suppressed. PMID:27540166

  9. [Decompressive craniectomy in traumatic brain injury and malignant brain infarction].

    PubMed

    Greiner, Christoph

    2008-10-01

    High intracranial pressure (ICP) is the most frequent cause of death and disability after severe traumatic brain injury and malignant cerebral infarction. After failure of general therapeutic maneuvers and first line therapies, "second tier" therapies have to be considered. Decompressive craniectomy is an advanced treatment option for controlling intracranial pressure (ICP). In this review indications and techniques of decompressive craniectomy are described and current literature is discussed. The author concludes that decompressive craniectomy is no routine, but should be considered in individual cases.

  10. Chronic neurodegenerative consequences of traumatic brain injury.

    PubMed

    Chauhan, Neelima B

    2014-01-01

    Traumatic brain injury (TBI) is a serious public health concern and a major cause of death and disability worldwide. Each year, an estimated 1.7 million Americans sustain TBI of which ~52,000 people die, ~275,000 people are hospitalized and 1,365,000 people are treated as emergency outpatients. Currently there are ~5.3 million Americans living with TBI. TBI is more of a disease process than of an event that is associated with immediate and long-term sensomotor, psychological and cognitive impairments. TBI is the best known established epigenetic risk factor for later development of neurodegenerative diseases and dementia. People sustaining TBI are ~4 times more likely to develop dementia at a later stage than people without TBI. Single brain injury is linked to later development of symptoms resembling Alzheimer's disease while repetitive brain injuries are linked to later development of chronic traumatic encephalopathy (CTE) and/or Dementia Pugilistica (DP). Furthermore, genetic background of ß-amyloid precursor protein (APP), Apolipoprotein E (ApoE), presenilin (PS) and neprilysin (NEP) genes is associated with exacerbation of neurodegenerative process after TBI. This review encompasses acute effects and chronic neurodegenerative consequences after TBI.

  11. Treatment window for hypothermia in brain injury.

    PubMed

    Markgraf, C G; Clifton, G L; Moody, M R

    2001-12-01

    The goal of this study was to evaluate the therapeutic window for hypothermia treatment following experimental brain injury by measuring edema formation and functional outcome. Traumatic brain injury (TBI) was produced in anesthetized rats by using cortical impact injury. Edema was measured in the ipsilateral and contralateral hemispheres by subtracting dry weight from wet weight, and neurological function was assessed using a battery of behavioral tests 24 hours after TBI. In injured rats, it was found that brain water levels were elevated at I hour postinjury, compared with those in sham-injured control animals, and that edema peaked at 24 hours and remained elevated for 4 days. Hypothermia (3 hours at 30 degrees C) induced either immediately after TBI or 60 minutes after TBI significantly reduced early neurological deficits. Delay of treatment by 90 or 120 minutes postinjury did not result in this neurological protection. Immediate administration of hypothermia also significantly decreased the peak magnitude of edema at 24 hours and 48 hours postinjury, compared with that in normothermic injured control animals. When delayed by 90 minutes, hypothermia did not affect the pattern of edema formation. When hypothermia was administered immediately or 60 minutes after TBI, injured rats showed an improvement in functional outcome and a decrease in edema. Delayed hypothermia treatment had no effect on functional outcome or on edema.

  12. Traumatic brain injury in modern war

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  13. The blood-brain barrier as a target in traumatic brain injury treatment.

    PubMed

    Thal, Serge C; Neuhaus, Winfried

    2014-11-01

    Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success.

  14. Position statement: definition of traumatic brain injury.

    PubMed

    Menon, David K; Schwab, Karen; Wright, David W; Maas, Andrew I

    2010-11-01

    A clear, concise definition of traumatic brain injury (TBI) is fundamental for reporting, comparison, and interpretation of studies on TBI. Changing epidemiologic patterns, an increasing recognition of significance of mild TBI, and a better understanding of the subtler neurocognitive neuroaffective deficits that may result from these injuries make this need even more critical. The Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health has therefore formed an expert group that proposes the following definition: In this article, we discuss criteria for considering or establishing a diagnosis of TBI, with a particular focus on the problems how a diagnosis of TBI can be made when patients present late after injury and how mild TBI may be differentiated from non-TBI causes with similar symptoms. Technologic advances in magnetic resonance imaging and the development of biomarkers offer potential for improving diagnostic accuracy in these situations. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. The molecular pathophysiology of concussive brain injury.

    PubMed

    Barkhoudarian, Garni; Hovda, David A; Giza, Christopher C

    2011-01-01

    Concussion or mild traumatic brain injury (mTBI) is a condition that affects hundreds of thousands of patients worldwide. Understanding the pathophysiology of this disorder can help manage its acute and chronic repercussions. Immediately following mTBI, there are several metabolic, hemodynamic, structural, and electric changes that alter normal cerebral function. These alterations can increase the brain's vulnerability to repeat injury and long-term disability. This review evaluates current studies from the bench to the bedside of mTBI. Acute and chronic effects of concussion are measured in both animal and clinical studies. Also, the effect of repeat concussions is analyzed. Concussion-induced pathophysiology with regards to glucose metabolism changes, mitochondrial dysfunction, axonal injury, and structural damage are evaluated. Translational studies such as functional magnetic resonance imaging, magnetic resonance spectroscopy and diffusion tensor imaging prove to be effective clinical tools for both prognostic and treatment parameters. Understanding the neurobiology of concussion will lead to development and validation of physiological biomarkers of this common injury. These biomarkers (eg, laboratory tests, imaging, electrophysiology) will then allow for improved detection, better functional assessment and evidence-based return to play recommendations. Published by Elsevier Inc.

  16. Reducing Secondary Insults in Traumatic Brain Injury

    DTIC Science & Technology

    2015-03-01

    perfusion pres- sure. In addition, the CCATT members were asked to note takeoff time, altitude on reaching cruising altitude , and any significant...changes in altitude and time of descent. Individual files were reviewed to verify quality of the data. Selection of Subjects A convenient sample of...transport. Stresses of Flight Aeromedical transport because of altitude and flight physi- ology presents unique challenges when caring for patients

  17. The Role of Markers of Inflammation in Traumatic Brain Injury

    PubMed Central

    Woodcock, Thomas; Morganti-Kossmann, Maria Cristina

    2013-01-01

    Within minutes of a traumatic impact, a robust inflammatory response is elicited in the injured brain. The complexity of this post-traumatic squeal involves a cellular component, comprising the activation of resident glial cells, microglia, and astrocytes, and the infiltration of blood leukocytes. The second component regards the secretion immune mediators, which can be divided into the following sub-groups: the archetypal pro-inflammatory cytokines (Interleukin-1, Tumor Necrosis Factor, Interleukin-6), the anti-inflammatory cytokines (IL-4, Interleukin-10, and TGF-beta), and the chemotactic cytokines or chemokines, which specifically drive the accumulation of parenchymal and peripheral immune cells in the injured brain region. Such mechanisms have been demonstrated in animal models, mostly in rodents, as well as in human brain. Whilst the humoral immune response is particularly pronounced in the acute phase following Traumatic brain injury (TBI), the activation of glial cells seems to be a rather prolonged effect lasting for several months. The complex interaction of cytokines and cell types installs a network of events, which subsequently intersect with adjacent pathological cascades including oxidative stress, excitotoxicity, or reparative events including angiogenesis, scarring, and neurogenesis. It is well accepted that neuroinflammation is responsible of beneficial and detrimental effects, contributing to secondary brain damage but also facilitating neurorepair. Although such mediators are clear markers of immune activation, to what extent cytokines can be defined as diagnostic factors reflecting brain injury or as predictors of long term outcome needs to be further substantiated. In clinical studies some groups reported a proportional cytokine production in either the cerebrospinal fluid or intraparenchymal tissue with initial brain damage, mortality, or poor outcome scores. However, the validity of cytokines as biomarkers is not broadly accepted. This

  18. A New Rabbit Model of Pediatric Traumatic Brain Injury

    PubMed Central

    Zhang, Zhi; Saraswati, Manda; Koehler, Raymond C.; Robertson, Courtney

    2015-01-01

    Abstract Traumatic brain injury (TBI) is a common cause of disability in childhood, resulting in numerous physical, behavioral, and cognitive sequelae, which can influence development through the lifespan. The mechanisms by which TBI influences normal development and maturation remain largely unknown. Pediatric rodent models of TBI often do not demonstrate the spectrum of motor and cognitive deficits seen in patients. To address this problem, we developed a New Zealand white rabbit model of pediatric TBI that better mimics the neurological injury seen after TBI in children. On postnatal Day 5-7 (P5-7), rabbits were injured by a controlled cortical impact (6-mm impactor tip; 5.5 m/sec, 2-mm depth, 50-msec duration). Rabbits from the same litter served as naïve (no injury) and sham (craniotomy alone) controls. Functional abilities and activity levels were measured 1 and 5 d after injury. Maturation level was monitored daily. We performed cognitive tests during P14-24 and sacrificed the animals at 1, 3, 7, and 21 d after injury to evaluate lesion volume and microglia. TBI kits exhibited delayed achievement of normal developmental milestones. They also demonstrated significant cognitive deficits, with lower percentage of correct alternation rate in the T-maze (n=9-15/group; p<0.001) and less discrimination between novel and old objects (p<0.001). Lesion volume increased from 16% at Day 3 to 30% at Day 7 after injury, indicating ongoing secondary injury. Activated microglia were noted at the injury site and also in white matter regions of the ipsilateral and contralateral hemispheres. The neurologic and histologic changes in this model are comparable to those reported clinically. Thus, this rabbit model provides a novel platform for evaluating neuroprotective therapies in pediatric TBI. PMID:25758339

  19. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats.

    PubMed

    Sullivan, P G; Rabchevsky, A G; Hicks, R R; Gibson, T R; Fletcher-Turner, A; Scheff, S W

    2000-01-01

    Acute neuropathology following experimental traumatic brain injury results in the rapid necrosis of cortical tissue at the site of injury. This primary injury is exacerbated in the ensuing hours and days via the progression of secondary injury mechanism(s) leading to significant neurological dysfunction. Recent evidence from our laboratory demonstrates that the immunosuppressant cyclosporin A significantly ameliorates cortical damage following traumatic brain injury. The present study extends the previous findings utilizing a unilateral controlled cortical impact model of traumatic brain injury in order to establish a dose-response curve and optimal dosing regimen of cyclosporin A. Following injury to adult rats, cyclosporin A was administrated at various dosages and the therapy was initiated at different times post-injury. In addition to examining the effect of cyclosporin A on the acute disruption of the blood-brain barrier following controlled cortical impact, we also assessed the efficacy of cyclosporin A to reduce tissue damage utilizing the fluid percussion model of traumatic brain injury. The findings demonstrate that the neuroprotection afforded by cyclosporin A is dose-dependent and that a therapeutic window exists up to 24h post-injury. Furthermore, the optimal cyclosporin dosage and regimen markedly reduces disruption of the blood-brain barrier acutely following a cortical contusion injury, and similarly affords significant neuroprotection following fluid percussion injury. These findings clearly suggest that the mechanisms responsible for tissue necrosis following traumatic brain injury are amenable to pharmacological intervention.

  20. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain.

    PubMed

    Kilbaugh, Todd J; Karlsson, Michael; Byro, Melissa; Bebee, Ashley; Ralston, Jill; Sullivan, Sarah; Duhaime, Ann-Christine; Hansson, Magnus J; Elmér, Eskil; Margulies, Susan S

    2015-09-01

    Traumatic brain injury (TBI) is one of the leading causes of death in children worldwide. Emerging evidence suggests that alterations in mitochondrial function are critical components of secondary injury cascade initiated by TBI that propogates neurodegeneration and limits neuroregeneration. Unfortunately, there is very little known about the cerebral mitochondrial bioenergetic response from the immature brain triggered by traumatic biomechanical forces. Therefore, the objective of this study was to perform a detailed evaluation of mitochondrial bioenergetics using high-resolution respirometry in a high-fidelity large animal model of focal controlled cortical impact injury (CCI) 24h post-injury. This novel approach is directed at analyzing dysfunction in electron transport, ADP phosphorylation and leak respiration to provide insight into potential mechanisms and possible interventions for mitochondrial dysfunction in the immature brain in focal TBI by delineating targets within the electron transport system (ETS). Development and application of these methodologies have several advantages, and adds to the interpretation of previously reported techniques, by having the added benefit that any toxins or neurometabolites present in the ex-vivo samples are not removed during the mitochondrial isolation process, and simulates the in situ tricarboxylic acid (TCA) cycle by maximizing key substrates for convergent flow of electrons through both complexes I and II. To investigate alterations in mitochondrial function after CCI, ipsilateral tissue near the focal impact site and tissue from the corresponding contralateral side were examined. Respiration per mg of tissue was also related to citrate synthase activity (CS) and calculated flux control ratios (FCR), as an attempt to control for variability in mitochondrial content. Our biochemical analysis of complex interdependent pathways of electron flow through the electron transport system, by most measures, reveals a bilateral

  1. Traumatic Brain Injury: A Guidebook for Idaho Educators.

    ERIC Educational Resources Information Center

    Carter, Susanne

    This guide is an introduction to head injury and to educational resources in the field. An introductory section describes traumatic brain injury (TBI) as a federally recognized disability category and provides its federal and Idaho definitions. The following section introduces the unique characteristics of students with brain injuries. A section…

  2. Traumatic Brain Injury and Aeromedical Evacuation: When is the Brain Fit to Fly?

    PubMed Central

    Goodman, Michael D.; Makley, Amy T.; Lentsch, Alex B.; Barnes, Stephen L.; Dorlac, Gina R.; Dorlac, Warren C.; Johannigman, Jay A.; Pritts, Timothy A.

    2015-01-01

    Background To review the inflammatory sequelae of traumatic brain injury (TBI) and altitude exposure and discuss the potential impact of aeromedical evacuation (AE) on this process. Methods Literature review and expert opinion regarding the inflammatory effects of TBI and AE. Results Traumatic brain injury has been called the signature injury of the current military conflict. As a result of the increasing incidence of blast injury, TBI is responsible for significant mortality and enduring morbidity in injured soldiers. Common secondary insults resulting from post-traumatic cerebral inflammation are recognized to adversely impact outcome. AE utilizing Critical Care Air Transport Teams has become a standard of care practice following battlefield injury, to quickly and safely transport critically injured soldiers to more sophisticated echelons of care. Exposure to the hypobaric conditions of the AE process may impose an additional physiologic risk on the TBI patient as well as a “second hit” inflammatory stimulus. Conclusions We review the known inflammatory effects of TBI and altitude exposure and propose that optimizing the post-traumatic inflammatory profile may assist in determining an ideal time to fly for head-injured soldiers. PMID:20006349

  3. Large animal models of traumatic brain injury.

    PubMed

    Dai, Jun-Xi; Ma, Yan-Bin; Le, Nan-Yang; Cao, Jun; Wang, Yang

    2017-10-03

    Purpose/Aim: Animal models of traumatic brain injury (TBI) provide powerful tools to study TBI in a controlled, rigorous and cost-efficient manner. The mostly used animals in TBI studies so far are rodents. However, compared with rodents, large animals (e.g. swine, rabbit, sheep, ferret, etc.) show great advantages in modeling TBI due to the similarity of their brains to human brain. The aim of our review was to summarize the development and progress of common large animal TBI models in past 30 years. Mixed published articles and books associated with large animal models of TBI were researched and summarized. We majorly sumed up current common large animal models of TBI, including discussion on the available research methodologies in previous studies, several potential therapies in large animal trials of TBI as well as advantages and disadvantages of these models. Large animal models of TBI play crucial role in determining the underlying mechanisms and screening putative therapeutic targets of TBI.

  4. Recent advances in imaging preterm brain injury.

    PubMed

    Boardman, J P; Dyet, L E

    2007-08-01

    Survivors of preterm birth are at high risk of neurocognitive impairment in childhood, but the disturbances to brain growth and function that underlie impairment are not completely understood. Improvements in perinatal care have led to a reduction in the major destructive parenchymal brain lesions that are associated with motor impairment, such as cystic periventricular leucomalacia and haemorrhagic parenchymal infarction. However, with the application of advanced magnetic resonance (MR) imaging and processing techniques in the neonatal period, subtle alterations in brain development have become apparent. These changes occur with similar frequency to long-term neurocognitive impairment, and may therefore represent candidate neural substrates for this group of disorders. Here we review the range of lesions and associated outcomes that are seen in the current era of perinatal care, and discuss how state of the art MR imaging techniques have helped to define the neural systems affected by preterm birth, and have provided insights into understanding mechanisms of injury.

  5. Inhibition of TLR4 Signalling-Induced Inflammation Attenuates Secondary Injury after Diffuse Axonal Injury in Rats

    PubMed Central

    Zhao, Yonglin; Zhang, Ming; Zhao, Junjie; Ma, Xudong; Huang, Tingqin; Pang, Honggang

    2016-01-01

    Increasing evidence suggests that secondary injury after diffuse axonal injury (DAI) damages more axons than the initial insult, but the underlying mechanisms of this phenomenon are not fully understood. Recent studies show that toll-like receptor 4 (TLR4) plays a critical role in promoting adaptive immune responses and have been shown to be associated with brain damage. The purpose of this study was to investigate the role of the TLR4 signalling pathway in secondary axonal injury in the cortices of DAI rats. TLR4 was mainly localized in microglial cells and neurons, and the levels of TLR4 downstream signalling molecules, including TLR4, myeloid differentiation primary response gene 88, toll/IR-1-(TIR-) domain-containing adaptor protein inducing interferon-beta, interferon regulatory factor 3, interferon β, nuclear factor κB (NF-κB) p65, and phospho-NF-κB p65, significantly increased and peaked at 1 d after DAI. Inhibition of TLR4 by TAK-242 attenuated apoptosis, neuronal and axonal injury, and glial responses. The neuroprotective effects of TLR4 inhibition were associated with decreases in the levels of TLR4 downstream signalling molecules and inflammatory factors, including interleukin-1β, interleukin-6, and tumour necrosis factor-α. These results suggest that the TLR4 signalling pathway plays an important role in secondary injury and may be an important therapeutic target following DAI. PMID:27478307

  6. Perceived needs following traumatic brain injury.

    PubMed

    Corrigan, John D; Whiteneck, Gale; Mellick, Dave

    2004-01-01

    (1) Provide population-based estimates of perceived needs following traumatic brain injury (TBI) and the prevalence of unmet needs 1 year postinjury; (2) identify relations among needs that define unique clusters of individuals; and (3) identify risk factors for experiencing selected needs. Telephone survey 1 year after injury of a prospective cohort of all people hospitalized with TBI in the state of Colorado during 2000. Self-reported need for assistance in 13 areas of functioning. A total of 58.8% of persons hospitalized with TBI experienced at least 1 need during the year following injury; 40.2% will experience at least 1 unmet need 1 year after injury. Most frequently experienced needs were "improving your memory, solving problems better" (34.1%), "managing stress, emotional upsets" (27.9%), and "managing your money, paying bills" (23.3%). Cluster analysis revealed 8 distinctive groupings of subjects. If a need existed, those least likely to be met involved cognitive abilities, employment, and alcohol and/or drug use. Results were consistent with findings from previous assessments of need for services based on surveys of convenience samples; however, the prevalence of unmet needs 1 year after injury may be higher than previously suspected. More post-hospital services addressing cognitive and emotional problems appear needed. Risk factors for experiencing needs suggest potential avenues for clinical intervention.

  7. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury.

    PubMed

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-09-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue.

  8. Neuroprotective effects of vagus nerve stimulation on traumatic brain injury

    PubMed Central

    Zhou, Long; Lin, Jinhuang; Lin, Junming; Kui, Guoju; Zhang, Jianhua; Yu, Yigang

    2014-01-01

    Previous studies have shown that vagus nerve stimulation can improve the prognosis of traumatic brain injury. The aim of this study was to elucidate the mechanism of the neuroprotective effects of vagus nerve stimulation in rabbits with brain explosive injury. Rabbits with brain explosive injury received continuous stimulation (10 V, 5 Hz, 5 ms, 20 minutes) of the right cervical vagus nerve. Tumor necrosis factor-α, interleukin-1β and interleukin-10 concentrations were detected in serum and brain tissues, and water content in brain tissues was measured. Results showed that vagus nerve stimulation could reduce the degree of brain edema, decrease tumor necrosis factor-α and interleukin-1β concentrations, and increase interleukin-10 concentration after brain explosive injury in rabbits. These data suggest that vagus nerve stimulation may exert neuroprotective effects against explosive injury via regulating the expression of tumor necrosis factor-α, interleukin-1β and interleukin-10 in the serum and brain tissue. PMID:25368644

  9. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  10. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  11. Mild Traumatic Brain Injury and Diffuse Axonal Injury in Swine

    PubMed Central

    Browne, Kevin D.; Chen, Xiao-Han; Meaney, David F.

    2011-01-01

    Abstract Until recently, mild traumatic brain injury (mTBI) or “concussion” was generally ignored as a major health issue. However, emerging evidence suggests that this injury is by no means mild, considering it induces persisting neurocognitive dysfunction in many individuals. Although little is known about the pathophysiological aspects of mTBI, there is growing opinion that diffuse axonal injury (DAI) may play a key role. To explore this possibility, we adapted a model of head rotational acceleration in swine to produce mTBI by scaling the mechanical loading conditions based on available biomechanical data on concussion thresholds in humans. Using these input parameters, head rotational acceleration was induced in either the axial plane (transverse to the brainstem; n=3), causing a 10- to 35-min loss of consciousness, or coronal plane (circumferential to the brainstem; n=2), which did not produce a sustained loss of consciousness. Seven days following injury, immunohistochemical analyses of the brains revealed that both planes of head rotation induced extensive axonal pathology throughout the white matter, characterized as swollen axonal bulbs or varicosities that were immunoreactive for accumulating neurofilament protein. However, the distribution of the axonal pathology was different between planes of head rotation. In particular, more swollen axonal profiles were observed in the brainstems of animals injured in the axial plane, suggesting an anatomic substrate for prolonged loss of consciousness in mTBI. Overall, these data support DAI as an important pathological feature of mTBI, and demonstrate that surprisingly overt axonal pathology may be present, even in cases without a sustained loss of consciousness. PMID:21740133

  12. The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome.

    PubMed

    McDonald, Stuart J; Sun, Mujun; Agoston, Denes V; Shultz, Sandy R

    2016-04-26

    Traumatic injuries are physical insults to the body that are prevalent worldwide. Many individuals involved in accidents suffer injuries affecting a number of extremities and organs, otherwise known as multitrauma or polytrauma. Traumatic brain injury is one of the most serious forms of the trauma-induced injuries and is a leading cause of death and long-term disability. Despite over dozens of phase III clinical trials, there are currently no specific treatments known to improve traumatic brain injury outcomes. These failures are in part due to our still poor understanding of the heterogeneous and evolving pathophysiology of traumatic brain injury and how factors such as concomitant extracranial injuries can impact these processes. Here, we review the available clinical and pre-clinical studies that have investigated the possible impact of concomitant injuries on traumatic brain injury pathobiology and outcomes. We then list the pathophysiological processes that may interact and affect outcomes and discuss promising areas for future research. Taken together, many of the clinical multitrauma/polytrauma studies discussed in this review suggest that concomitant peripheral injuries may increase the risk of mortality and functional deficits following traumatic brain injury, particularly when severe extracranial injuries are combined with mild to moderate brain injury. In addition, recent animal studies have provided strong evidence that concomitant injuries may increase both peripheral and central inflammatory responses and that structural and functional deficits associated with traumatic brain injury may be exacerbated in multiply injured animals. The findings of this review suggest that concomitant extracranial injuries are capable of modifying the outcomes and pathobiology of traumatic brain injury, in particular neuroinflammation. Though additional studies are needed to further identify the factors and mechanisms involved in central and peripheral injury

  13. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  14. Concussive brain injury from explosive blast.

    PubMed

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-09-01

    Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities - PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment.

  15. Role of Thalamus in Recovery of Traumatic Brain Injury

    PubMed Central

    Munivenkatappa, Ashok; Agrawal, Amit

    2016-01-01

    Degree of recovery after traumatic brain injury is highly variable that lasts for many weeks to months. The evidence of brain structures involved in recovery mechanisms is limited. This review highlights evidence of the brain structure particularly thalamus in neuroplasticity mechanism. Thalamus with its complex global networking has potential role in refining the cortical and other brain structures. Thalamic nuclei activation both naturally or by neurorehabilitation in injured brain can enhance and facilitate the improvement of posttraumatic symptoms. This review provides evidence from literature that thalamus plays a key role in recovery mechanism after injury. The study also emphasize that thalamus should be specifically targeted in neurorehabilitation following brain injury. PMID:28163509

  16. Visual impairments in the first year after traumatic brain injury.

    PubMed

    Greenwald, Brian D; Kapoor, Neera; Singh, Adeepa D

    2012-01-01

    This article reviews literature regarding individuals with traumatic brain injury who have vision related impairments up to one year, post-injury. Such impairments may impact rehabilitation of activities of daily living and mobility since vision is integral in much of what one does on a daily basis. Search of Medline, Ovid, and PubMed was performed using terms including: traumatic brain injury, visual deficits after brain injury, vision and traumatic brain injury, and ADLs after brain injury. Eighteen studies were analyzed and reviewed. A range of visual and visual-motor impairments are seen across the severity of traumatic brain injury. Visual impairment negatively impacts independence in mobility and activities of daily living. Common sensorimotor visual symptoms reported by those with traumatic brain injury include blurred vision, reading problems, double vision or eyestrain, dizziness or disequilibrium in visually-crowded environments, visual field defects, light sensitivity, and color blindness. This review should alert the reader to common visual complaints and defects seen after traumatic brain injury. It is important to screen persons who have suffered traumatic brain injury for sensorimotor vision deficits early on in recovery so that these issues may be addressed and recovery of function and independence in the community are not delayed.

  17. Traumatic brain injury research priorities: the Conemaugh International Brain Injury Symposium.

    PubMed

    Zitnay, George A; Zitnay, Kevin M; Povlishock, John T; Hall, Edward D; Marion, Donald W; Trudel, Tina; Zafonte, Ross D; Zasler, Nathan; Nidiffer, F Don; DaVanzo, John; Barth, Jeffrey T

    2008-10-01

    In 2005, an international symposium was convened with over 100 neuroscientists from 13 countries and major research centers to review current research in traumatic brain injury (TBI) and develop a consensus document on research issues and priorities. Four levels of TBI research were the focus of the discussion: basic science, acute care, post-acute neurorehabilitation, and improving quality of life (QOL). Each working group or committee was charged with reviewing current research, discussion and prioritizing future research directions, identifying critical issues that impede research in brain injury, and establishing a research agenda that will drive research over the next five years, leading to significantly improved outcomes and QOL for individuals suffering brain injuries. This symposium was organized at the request of the Congressional Brain Injury Task Force, to follow up on the National Institutes of Health Consensus Conference on TBI as mandated by the TBI ACT of 1996. The goal was to review what progress had been made since the National Institutes of Health (NIH) Consensus Conference, and also to follow up on the 1990's Decade of the Brain Project. The major purpose of the symposium was to provide recommendations to the U.S. Congress on a priority basis for research, treatment, and training in TBI over the next five years.

  18. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  19. De novo artistic behaviour following brain injury.

    PubMed

    Pollak, Thomas A; Mulvenna, Catherine M; Lythgoe, Mark F

    2007-01-01

    The effect of brain injury and disease on the output of established artists is an object of much study and debate. The emergence of de novo artistic behaviour following such injury or disease, while very rare, has been recorded in cases of frontotemporal dementia, epilepsy, subarachnoid haemorrhage and Parkinson's disease. This may be an underdiagnosed phenomenon and may represent an opportunity to further understand the neural bases of creative thought and behaviour in man and those of cognitive change after brain injury. There is clearly an important role for hemispheric localization of pathology, which is usually within the temporal cortex, upon the medium of artistic expression, and a likely role for mild frontal cortical dysfunction in producing certain behavioural and cognitive characteristics that may be conducive to the production of art. Possible mechanisms of 'artistic drive' and 'creative idea generation' in these patients are also considered. The increased recognition and responsible nurturing of this behaviour in patients may serve as a source of great comfort to individuals and their families at an otherwise difficult time.

  20. Fatal hyperammonemic brain injury from valproic Acid exposure.

    PubMed

    Bega, Danny; Vaitkevicius, Henrikas; Boland, Torrey A; Murray, Michael; Chou, Sherry H-Y

    2012-09-01

    Hyperammonemia is known to cause neuronal injury, and can result from valproic acid exposure. Prompt reduction of elevated ammonia levels may prevent permanent neurological injury. We report a case of fatal hyperammonemic brain injury in a woman exposed to valproic acid. A 38-year-old woman with schizoaffective disorder and recent increase in valproic acid dosage presented with somnolence and confusion and rapidly progressed to obtundation. Brain MRI showed diffuse bilateral restricted diffusion in nearly the entire cerebral cortex. She had normal liver function tests but serum ammonia level was severely elevated at 288 μmol/l. Genetic testing showed no mutation in urea cycle enzymes. Despite successful elimination of ammonia with hemodialysis she developed fatal cerebral edema. Cerebral edema secondary to hyperammonemia is potentially reversible if recognized early. Ammonia excretion can be facilitated by initiation of hemodialysis and administration of scavenging agents (sodium phenylacetate and sodium benzoate). Severe hyperammonemia can result from valproic acid exposure even in the absence of hepatotoxicity or inborn errors of metabolism. It is important to check serum ammonia in any patient with encephalopathy who has had recent valproic acid exposure.

  1. High-Performance Bioinstrumentation for Real-Time Neuroelectrochemical Traumatic Brain Injury Monitoring

    PubMed Central

    Papadimitriou, Konstantinos I.; Wang, Chu; Rogers, Michelle L.; Gowers, Sally A. N.; Leong, Chi L.; Boutelle, Martyn G.; Drakakis, Emmanuel M.

    2016-01-01

    Traumatic brain injury (TBI) has been identified as an important cause of death and severe disability in all age groups and particularly in children and young adults. Central to TBIs devastation is a delayed secondary injury that occurs in 30–40% of TBI patients each year, while they are in the hospital Intensive Care Unit (ICU). Secondary injuries reduce survival rate after TBI and usually occur within 7 days post-injury. State-of-art monitoring of secondary brain injuries benefits from the acquisition of high-quality and time-aligned electrical data i.e., ElectroCorticoGraphy (ECoG) recorded by means of strip electrodes placed on the brains surface, and neurochemical data obtained via rapid sampling microdialysis and microfluidics-based biosensors measuring brain tissue levels of glucose, lactate and potassium. This article progresses the field of multi-modal monitoring of the injured human brain by presenting the design and realization of a new, compact, medical-grade amperometry, potentiometry and ECoG recording bioinstrumentation. Our combined TBI instrument enables the high-precision, real-time neuroelectrochemical monitoring of TBI patients, who have undergone craniotomy neurosurgery and are treated sedated in the ICU. Electrical and neurochemical test measurements are presented, confirming the high-performance of the reported TBI bioinstrumentation. PMID:27242477

  2. Burn injury secondary to air bag deployment.

    PubMed

    Hendrickx, Ingrid; Mancini, Luca Livio; Guizzardi, Marco; Monti, Marcello

    2002-02-01

    The efficacy of air bags has been proven in diminishing the rate of fatalities and severity of injury in motor vehicle crashes. Unfortunately, as with any developing technology, new problems have been encountered that are directly attributable to the deployment of the air bag itself. Most air bag-related injuries are minor and, surprisingly, more than 7% are burns typically involving the upper extremity or head or neck. Fortunately, these are superficial burns that usually require only expectant therapy, but a high degree of suspicion in these circumstances is needed to make the proper diagnosis.

  3. Microglial Activation in Traumatic Brain Injury

    PubMed Central

    Donat, Cornelius K.; Scott, Gregory; Gentleman, Steve M.; Sastre, Magdalena

    2017-01-01

    Microglia have a variety of functions in the brain, including synaptic pruning, CNS repair and mediating the immune response against peripheral infection. Microglia rapidly become activated in response to CNS damage. Depending on the nature of the stimulus, microglia can take a number of activation states, which correspond to altered microglia morphology, gene expression and function. It has been reported that early microglia activation following traumatic brain injury (TBI) may contribute to the restoration of homeostasis in the brain. On the other hand, if they remain chronically activated, such cells display a classically activated phenotype, releasing pro-inflammatory molecules, resulting in further tissue damage and contributing potentially to neurodegeneration. However, new evidence suggests that this classification is over-simplistic and the balance of activation states can vary at different points. In this article, we review the role of microglia in TBI, analyzing their distribution, morphology and functional phenotype over time in animal models and in humans. Animal studies have allowed genetic and pharmacological manipulations of microglia activation, in order to define their role. In addition, we describe investigations on the in vivo imaging of microglia using translocator protein (TSPO) PET and autoradiography, showing that microglial activation can occur in regions far remote from sites of focal injuries, in humans and animal models of TBI. Finally, we outline some novel potential therapeutic approaches that prime microglia/macrophages toward the beneficial restorative microglial phenotype after TBI. PMID:28701948

  4. Inflammatory signalling associated with brain dead organ donation: from brain injury to brain stem death and posttransplant ischaemia reperfusion injury.

    PubMed

    Watts, Ryan P; Thom, Ogilvie; Fraser, John F

    2013-01-01

    Brain death is associated with dramatic and serious pathophysiologic changes that adversely affect both the quantity and quality of organs available for transplant. To fully optimise the donor pool necessitates a more complete understanding of the underlying pathophysiology of organ dysfunction associated with transplantation. These injurious processes are initially triggered by catastrophic brain injury and are further enhanced during both brain death and graft transplantation. The activated inflammatory systems then contribute to graft dysfunction in the recipient. Inflammatory mediators drive this process in concert with the innate and adaptive immune systems. Activation of deleterious immunological pathways in organ grafts occurs, priming them for further inflammation after engraftment. Finally, posttransplantation ischaemia reperfusion injury leads to further generation of inflammatory mediators and consequent activation of the recipient's immune system. Ongoing research has identified key mediators that contribute to the inflammatory milieu inherent in brain dead organ donation. This has seen the development of novel therapies that directly target the inflammatory cascade.

  5. Traumatic Brain Injury: Are We Conducting Enough Resarch

    DTIC Science & Technology

    2017-04-17

    FROM: 59 MDW/SGVU SUBJECT: Professional Presentation Approval 7 APR 2017 1. Your paper, entitled Traumatic Brain Injury: Are We Conducting Enough...review and approval.) NA - Pubmed searches w ere the only source of data 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Traumatic Brain Injury...Traumatic Brain Injury: Are We Conducting Enough Research? Capt Mariya Gusman MD, Lt Col Jonathan A Sosnov MD, Jeffrey T Howard PhD Background

  6. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    treating brain injuries is utilizing 16 an effective screening technique to target treatment for those individuals who need it most. Requirements for an...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS BASELINE ESTABLISHMENT USING VIRTUAL ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) by Casey...ENVIRONMENT TRAUMATIC BRAIN INJURY SCREEN (VETS) 5. FUNDING NUMBERS 6. AUTHOR(S) Casey G. DeMunck 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  7. Hypersexuality or altered sexual preference following brain injury.

    PubMed Central

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-01-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322

  8. Hypersexuality or altered sexual preference following brain injury.

    PubMed

    Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M

    1986-08-01

    Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury.

  9. Psychiatric disorders after traumatic brain injury.

    PubMed

    van Reekum, R; Bolago, I; Finlayson, M A; Garner, S; Links, P S

    1996-05-01

    Substantial psychological and neurobehavioural evidence is available to support the hypothesis that traumatic brain injury (TBI) is a risk factor for subsequent psychiatric disorders. However, studies utilizing established psychiatric diagnostic schemes to study these outcomes after TBI are scarce, and no studies have included an assessment of personality disorders in addition to the major psychiatric disorders. This study utilizes structured psychiatric interviews to measure the prevalence of DSM-III(R) disorders in a sample of 18 subjects derived from a TBI rehabilitation programme. Results revealed high rates for major depression, bipolar affective disorder, generalized anxiety disorder, borderline and avoidant personality disorders. Co-morbidity was also high. A preliminary study of postulated predictive factors revealed possible roles for sex and for initial severity of injury. The study supports the association between TBI and psychiatric disorder, and suggests the need for monitoring, for prevention, and for treatment of psychiatric disorders after TBI.

  10. Traumatic brain injury: advanced multimodal neuromonitoring from theory to clinical practice.

    PubMed

    Cecil, Sandy; Chen, Patrick M; Callaway, Sarah E; Rowland, Susan M; Adler, David E; Chen, Jefferson W

    2011-04-01

    Traumatic brain injury accounts for nearly 1.4 million injuries and 52 000 deaths annually in the United States. Intensive bedside neuromonitoring is critical in preventing secondary ischemic and hypoxic injury common to patients with traumatic brain injury in the days following trauma. Advancements in multimodal neuromonitoring have allowed the evaluation of changes in markers of brain metabolism (eg, glucose, lactate, pyruvate, and glycerol) and other physiological parameters such as intracranial pressure, cerebral perfusion pressure, cerebral blood flow, partial pressure of oxygen in brain tissue, blood pressure, and brain temperature. This article highlights the use of multimodal monitoring in the intensive care unit at a level I trauma center in the Pacific Northwest. The trends in and significance of metabolic, physiological, and hemodynamic factors in traumatic brain injury are reviewed, the technical aspects of the specific equipment used to monitor these parameters are described, and how multimodal monitoring may guide therapy is demonstrated. As a clinical practice, multimodal neuromonitoring shows great promise in improving bedside therapy in patients with traumatic brain injury, ultimately leading to improved neurological outcomes.

  11. Fear of falling after brain injury.

    PubMed

    Collicutt McGrath, Joanna

    2008-07-01

    To investigate the prevalence and nature of fear of falling in a sample of people with severe acquired brain injury. A descriptive study. A regional inpatient neurological rehabilitation unit. One hundred and five adults with acquired brain injury of mixed aetiology. All 105 participants were rated by observers who were asked to judge the degree to which fear behaviour interfered with rehabilitation therapy (activity limitation). Eighty-two participants also rated themselves. They were asked to report the degree of distress caused by fear. Both participants and observers were asked to describe the focus of any reported fear. Two stepwise logistic regression analyses were carried out to identify variables that predicted fear giving rise to significant activity limitation and fear giving rise to significant subjective distress. Self and observer rating scales designed and constructed specifically for the study. Raters reported significant fear-related activity limitation in 12-15% of participants. Significant fear-related subjective distress was reported by 40% of participants. Fear of falling, fear of physical harm and fear of not making sufficient rehabilitation progress dominated the reports of both observers and participants. The variables predicting significant activity limitation were premorbid alcohol misuse, low functional ability and the occurrence of a fall since onset. The variables predicting significant subjective distress were poor motor coordination and organization, and good verbal comprehension. Fear of falling is a clinically significant phenomenon in younger adults recovering from severe acquired brain injury. Fear sufficient to cause high degrees of subjective distress was often not evident to observers. Proactive questioning about fear of falling is therefore advisable when working clinically with this group.

  12. Brain Injury Vision Symptom Survey (BIVSS) Questionnaire.

    PubMed

    Laukkanen, Hannu; Scheiman, Mitchell; Hayes, John R

    2017-01-01

    Validation of the Brain Injury Vision Symptom Survey (BIVSS), a self-administered survey for vision symptoms related to traumatic brain injury (TBI). A 28-item vision symptom questionnaire was completed by 107 adult subjects (mean age 42.1, 16.2 SD, range 18-75) who self-reported as having sustained mild-to-moderate TBI and two groups of reference adult subjects (first-year optometry students: mean age 23.2, 2.8 SD, range 20-39; and 71 third-year optometry students: mean age 26.0, 2.9 SD, range 22-42) without TBI. Both a Likert-style method of analysis with factor analysis and a Rasch analysis were used. Logistic regression was used to determine sensitivity and specificity. At least 27 of 28 questions were completed by 93.5% of TBI subjects, and all 28 items were completed by all of the 157 reference subjects. BIVSS sensitivity was 82.2% for correctly predicting TBI and 90.4% for correctly predicting the optometry students. Factor analysis identified eight latent variables; six factors were positive in their risk for TBI. Other than dry eye and double vision, the TBI patients were significantly more symptomatic than either cohort of optometry students by at least one standard deviation (p < 0.001). Twenty-five of 28 questions were within limits for creating a single-dimension Rasch scale. Nearly all of the adult TBI subjects were able to self-complete the BIVSS, and there was significant mean score separation between TBI and non-TBI groups. The Rasch analysis revealed a single dimension associated with TBI. Using the Likert method with the BIVSS, it may be possible to identify different vision symptom profiles with TBI patients. The BIVSS seems to be a promising tool for better understanding the complex and diverse nature of vision symptoms that are associated with brain injury.

  13. The Involvement of Secondary Neuronal Damage in the Development of Neuropsychiatric Disorders Following Brain Insults

    PubMed Central

    Chen, Yun; Garcia, Gregory E.; Huang, Wei; Constantini, Shlomi

    2014-01-01

    Neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Previous publications have demonstrated that neuropsychiatric disorders can cause histomorphological damage in particular regions of the brain. By using a clinical symptom-comparing approach, 55 neuropsychiatric signs or symptoms related usually to 14 types of acute and chronic brain insults were identified and categorized in the present study. Forty percent of the 55 neuropsychiatric signs and symptoms have been found to be commonly shared by the 14 brain insults. A meta-analysis supports existence of the same neuropsychiatric signs or symptoms in all brain insults. The results suggest that neuronal damage might be occurring in the same or similar regions or structures of the brain. Neuronal cell death, neural loss, and axonal degeneration in some parts of the brain (the limbic system, basal ganglia system, brainstem, cerebellum, and cerebral cortex) might be the histomorphological basis that is responsible for the neuropsychiatric symptom clusters. These morphological alterations may be the result of secondary neuronal damage (a cascade of progressive neural injury and neuronal cell death that is triggered by the initial insult). Secondary neuronal damage causes neuronal cell death and neural injury in not only the initial injured site but also remote brain regions. It may be a major contributor to subsequent neuropsychiatric disorders following brain insults. PMID:24653712

  14. Effects of crystalloid-colloid solutions on traumatic brain injury.

    PubMed

    Elliott, Melanie B; Jallo, Jack J; Gaughan, John P; Tuma, Ronald F

    2007-01-01

    The purpose of this study was to compare the effects of crystalloid and crystalloid-colloid solutions administered at different times after isolated traumatic brain injury. Male Sprague-Dawley rats were randomized to receive one of three intravenous treatments (4 mL/kg body weight) at 10 min or 6 h after moderate traumatic brain injury. Treatments included hypertonic saline, hypertonic albumin, and normal albumin. Moderate injuries were produced using the controlled cortical impact injury model set at 2.0 mm, 4.0 m/sec, and 130 msec. Tissue damage and cerebral edema were measured to evaluate the effect of treatments for traumatic brain injury. Blood brain barrier permeability was assessed at different time points after injury to identify a mechanism for treatment effectiveness. Injury volume was the smallest for animals treated with hypertonic albumin at 6 h after injury compared to all other treatments and administration times. Ipsilateral brain water content was significantly attenuated with immediate normal saline-albumin treatment. The presence of colloid in the infusion solutions was associated with an improvement in tissue damage and edema following isolated head injury while hypertonic saline alone, when given immediately after injury, worsened tissue damage and edema. When hypertonic saline was administered at 6 h after injury, tissue damage and edema were not worsened. In conclusion, the presence of colloid in solutions used to treat traumatic brain injury and the timing of treatment have a significant impact on tissue damage and edema.

  15. Pathophysiology and Treatment of Severe Traumatic Brain Injuries in Children.

    PubMed

    Allen, Kimberly A

    2016-02-01

    Traumatic brain injuries (TBIs) in children are a major cause of morbidity and mortality worldwide. Severe TBIs account for 15,000 admissions annually and a mortality rate of 24% in children in the United States. The purpose of this article is to explore pathophysiologic events, examine monitoring techniques, and explain current treatment modalities and nursing care related to caring for children with severe TBI. The primary injury of a TBI is because of direct trauma from an external force, a penetrating object, blast waves, or a jolt to the head. Secondary injury occurs because of alterations in cerebral blood flow, and the development of cerebral edema leads to necrotic and apoptotic cellular death after TBI. Monitoring focuses on intracranial pressure, cerebral oxygenation, cerebral edema, and cerebrovascular injuries. If abnormalities are identified, treatments are available to manage the negative effects caused to the cerebral tissue. The mainstay treatments are hyperosmolar therapy; temperature control; cerebrospinal fluid drainage; barbiturate therapy; decompressive craniectomy; analgesia, sedation, and neuromuscular blockade; and antiseizure prophylaxis.

  16. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation.

    PubMed

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke; Mårtensson, Johan; Larsson, Henrik B W; Dahl, Jørgen Berg

    2015-01-01

    Noxious stimulation of the skin with either chemical, electrical or heat stimuli leads to the development of primary hyperalgesia at the site of injury, and to secondary hyperalgesia in normal skin surrounding the injury. Secondary hyperalgesia is inducible in most individuals and is attributed to central neuronal sensitization. Some individuals develop large areas of secondary hyperalgesia (high-sensitization responders), while others develop small areas (low-sensitization responders). The magnitude of each area is reproducible within individuals, and can be regarded as a phenotypic characteristic. To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application of the burn-injury) (p < 0.05). After the burn-injury, we found significant differences between responders during noxious stimulation of both primary (p < 0.01) and secondary hyperalgesia (p ≤ 0.04) skin areas. A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected in high-sensitization responders in comparison to low-sensitization responders. These findings suggest that brain-structure and neuronal activation to noxious

  17. Secondary Hyperalgesia Phenotypes Exhibit Differences in Brain Activation during Noxious Stimulation

    PubMed Central

    Werner, Mads Utke; Mårtensson, Johan; Larsson, Henrik B. W.; Dahl, Jørgen Berg

    2015-01-01

    Noxious stimulation of the skin with either chemical, electrical or heat stimuli leads to the development of primary hyperalgesia at the site of injury, and to secondary hyperalgesia in normal skin surrounding the injury. Secondary hyperalgesia is inducible in most individuals and is attributed to central neuronal sensitization. Some individuals develop large areas of secondary hyperalgesia (high-sensitization responders), while others develop small areas (low-sensitization responders). The magnitude of each area is reproducible within individuals, and can be regarded as a phenotypic characteristic. To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47°C, 7 min, 9 cm2) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary hyperalgesia areas after burn-injury. In addition, T1-weighted images were used to measure differences in gray-matter density in cortical and subcortical regions of the brain. We found significant differences in neuronal activity between high- and low-sensitization responders at baseline (before application of the burn-injury) (p < 0.05). After the burn-injury, we found significant differences between responders during noxious stimulation of both primary (p < 0.01) and secondary hyperalgesia (p ≤ 0.04) skin areas. A decreased volume of the right (p = 0.001) and left caudate nucleus (p = 0.01) was detected in high-sensitization responders in comparison to low-sensitization responders. These findings suggest that brain-structure and neuronal activation to noxious stimulation

  18. Sports-related traumatic brain injury.

    PubMed

    Phillips, Shawn; Woessner, Derek

    2015-06-01

    Concussions have garnered more attention in the medical literature, media, and social media. As such, in the nomenclature according to the Centers for Disease Control and Prevention, the term concussion has been supplanted by the term mild traumatic brain injury. Current numbers indicate that 1.7 million TBIs are documented annually, with estimates around 3 million annually (173,285 sports- and recreation-related TBIs among children and adolescents). The Sideline Concussion Assessment Tool 3 and the NFL Sideline Concussion Assessment Tool are commonly used sideline tools.

  19. Targeting secondary injury in intracerebral haemorrhage--perihaematomal oedema.

    PubMed

    Urday, Sebastian; Kimberly, W Taylor; Beslow, Lauren A; Vortmeyer, Alexander O; Selim, Magdy H; Rosand, Jonathan; Simard, J Marc; Sheth, Kevin N

    2015-02-01

    Perihaematomal oedema (PHO) is an important pathophysiological marker of secondary injury in intracerebral haemorrhage (ICH). In this Review, we describe a novel method to conceptualize PHO formation within the framework of Starling's principle of movement of fluid across a capillary wall. We consider progression of PHO through three stages, characterized by ionic oedema (stage 1) and progressive vasogenic oedema (stages 2 and 3). In this context, possible modifiers of PHO volume and their value in identifying patients who would benefit from therapies that target secondary injury are discussed; the practicalities of using neuroimaging to measure PHO volume are also considered. We examine whether PHO can be used as a predictor of neurological outcome following ICH, and we provide an overview of emerging therapies. Our discussion emphasizes that PHO has clinical relevance both as a therapeutic target, owing to its augmentation of the mass effect of a haemorrhage, and as a surrogate marker for novel interventions that target secondary injury.

  20. Severe Brain Injury in Massachusetts: Assessing the Continuum of Care.

    PubMed

    Lorenz, Laura; Katz, Gabrielle

    2015-12-10

    Acquired brain injury (ABI) is a major public health problem in Massachusetts (Hackman et al, 2014) and includes traumatic brain injury (TBI), stroke, ABI-related infectious diseases, metabolic disorders affecting the central nervous system (brain and spinal cord), and brain tumor. Advances in emergency medical care and neurosurgery mean that more people are surviving severe traumatic brain injury (Trexler et al, 2014). Yet many patients with severe TBI in particular, are not receiving inpatient services after initial treatment (Hackman et al, 2014; CDC, 2014) or later that are known to be effective (Malec & Kean, 2015; Lewis & Horn, 2015; BI Commission, 2011; Kolakowsky-Hayner et al, 2000; Interviews). These services include post-acute rehabilitation, case management, and brain injury-specific community programming (CDC, 2014; BI Commission, 2011; Interviews). Governance and data for decision-making are also major gaps in the continuum of care for severe brain injury in MA (Interviews; NASHIA, 2005). The last two decades saw a surge in interest in the brain, with advances in neuroscience, diagnosis and measurement of brain injury, rehabilitation services, and brain theory (Boyle, 2001). Severe brain injury however is the new "hidden epidemic" in our society. For many, an injury to the brain is not a short-term event that can be "cured" but the beginning of a life-long disability (CDC, 2014; Langlois et al, 2006). Fortunately, even after a severe brain injury, when the right rehabilitation is provided at the right time, the "rest of life" journey can be a positive one for many (Marquez de la Plata, 2015; Langlois et al, 2006). Severe brain injury can lead to a "new normal" as patients regain skills, find new meaning and in life, and take on new family, volunteer, and work roles. Throughout this brief, the term "severe brain injury" refers to "severe acquired brain injury," or any injury to the brain that occurs after birth. This definition does not include

  1. Why Some Kids Take Longer to Recover from Brain Injury

    MedlinePlus

    ... Why Some Kids Take Longer to Recover From Brain Injury Scans reveal white-matter decline after some ... 15, 2017 WEDNESDAY, March 15, 2017 (HealthDay News) -- Brain scans may reveal which children will take longer ...

  2. Characteristics of spinal injuries secondary to nonaccidental trauma.

    PubMed

    Knox, Jeffrey; Schneider, John; Wimberly, Robert L; Riccio, Anthony I

    2014-06-01

    Nonaccidental trauma (NAT) is considered an uncommon cause of spine trauma in the pediatric population. Little has been published on such injuries and no large series is available in the literature. The purpose of this study is to describe the incidence and characteristics of spine trauma secondary to NAT. An IRB-approved retrospective review of all patients presenting to a single level 1 pediatric trauma center with a spinal injury between 2003 and 2011 was performed. Patients were identified using our institution's trauma registry. Medical records were reviewed to identify all spine injuries that occurred as a result of NAT. These cases were reviewed for details regarding injury mechanism, type and location of injury, associated injuries, and the treatment. Our institution's NAT database was also queried to identify the total number of patients formally determined to have sustained any injury as a result of NAT during the same period. NAT was the cause of 11/342 (3.2%) spine injuries diagnosed during the study period. A total of 726 cases of NAT were identified, with spine injury present in 1.5%. All patients with spine trauma secondary to NAT were under the age of 2 years with an average age of 7 months. Among patients below 2 years with spinal trauma, NAT was tied as the most common mechanism, resulting in 38% of injuries. Eight of the 11 patients' spine injuries were cervical and 7 of these injuries were in the atlanto-occipital and atlantoaxial regions. Multilevel spine trauma was present in 64% of patients. Associated head and thoracic trauma was present in 73% and 36% of patients, respectively. Neurological injury was found in 54% of patients. The majority of injuries were treated nonoperatively and 1 patient required surgical management. NAT represents a very common yet often overlooked cause of spinal trauma in children under the age of 2 years. Because of its frequency in this age group, clinicians should consider including an assessment of the spine in

  3. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  4. Early Systolic Dysfunction Following Traumatic Brain Injury: A Cohort Study.

    PubMed

    Krishnamoorthy, Vijay; Rowhani-Rahbar, Ali; Gibbons, Edward F; Rivara, Frederick P; Temkin, Nancy R; Pontius, Crystal; Luk, Kevin; Graves, Morgan; Lozier, Danielle; Chaikittisilpa, Nophanan; Kiatchai, Taniga; Vavilala, Monica S

    2017-06-01

    Prior studies have suggested that traumatic brain injury may affect cardiac function. Our study aims were to determine the frequency, longitudinal course, and admission risk factors for systolic dysfunction in patients with moderate-severe traumatic brain injury. Prospective cohort study. Level 1 trauma center. Transthoracic echocardiogram within 1 day and over the first week after moderate-severe traumatic brain injury; transthoracic echocardiogram within 1 day after mild traumatic brain injury (comparison group). Systolic function was assessed by transthoracic echocardiogram, and systolic dysfunction was defined as fractional shortening less than 25%. Multivariable Poisson regression models examined admission risk factors for systolic dysfunction. Systolic function in 32 patients with isolated moderate-severe traumatic brain injury and 32 patients with isolated mild traumatic brain injury (comparison group) was assessed with transthoracic echocardiogram. Seven (22%) moderate-severe traumatic brain injury and 0 (0%) mild traumatic brain injury patients had systolic dysfunction within the first day after injury (p < 0.01). All patients with early systolic dysfunction recovered in 1 week. Younger age (relative risk, 0.87; 95% CI, 0.79-0.94; for 1 yr increase in age) and lower admission Glasgow Coma Scale score (relative risk, 0.34; 95% CI, 0.20-0.58; for one unit increase in Glasgow Coma Scale) were independently associated with the development of systolic dysfunction among moderate-severe traumatic brain injury patients. Early systolic dysfunction can occur in previously healthy patients with moderate-severe traumatic brain injury, and it is reversible over the first week of hospitalization. Younger age and lower admission Glasgow Coma Scale score are independently associated with the development of systolic dysfunction after moderate-severe traumatic brain injury.

  5. CCR2 Antagonism Alters Brain Macrophage Polarization and Ameliorates Cognitive Dysfunction Induced by Traumatic Brain Injury

    PubMed Central

    Jopson, Timothy D.; Liu, Sharon; Riparip, Lara-Kirstie; Guandique, Cristian K.; Gupta, Nalin; Ferguson, Adam R.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for the development of multiple neurodegenerative diseases. With respect to the increasing prevalence of TBI, new therapeutic strategies are urgently needed that will prevent secondary damage to primarily unaffected tissue. Consistently, neuroinflammation has been implicated as a key mediator of secondary damage following the initial mechanical insult. Following injury, there is uncertainty regarding the role that accumulating CCR2+ macrophages play in the injury-induced neuroinflammatory sequelae and cognitive dysfunction. Using CX3CR1GFP/+CCR2RFP/+ reporter mice, we show that TBI initiated a temporally restricted accumulation of peripherally derived CCR2+ macrophages, which were concentrated in the hippocampal formation, a region necessary for learning and memory. Multivariate analysis delineated CCR2+ macrophages' neuroinflammatory response while identifying a novel therapeutic treatment window. As a proof of concept, targeting CCR2+ macrophages with CCX872, a novel Phase I CCR2 selective antagonist, significantly reduced TBI-induced inflammatory macrophage accumulation. Concomitantly, there was a significant reduction in multiple proinflammatory and neurotoxic mediators with this treatment paradigm. Importantly, CCR2 antagonism resulted in a sparing of TBI-induced hippocampal-dependent cognitive dysfunction and reduced proinflammatory activation profile 1 month after injury. Thus, therapeutically targeting the CCR2+ subset of monocytes/macrophages may provide a new avenue of clinical intervention following TBI. PMID:25589768

  6. Robust whole-brain segmentation: application to traumatic brain injury.

    PubMed

    Ledig, Christian; Heckemann, Rolf A; Hammers, Alexander; Lopez, Juan Carlos; Newcombe, Virginia F J; Makropoulos, Antonios; Lötjönen, Jyrki; Menon, David K; Rueckert, Daniel

    2015-04-01

    We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called "Multi-Atlas Label Propagation with Expectation-Maximisation based refinement" (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to

  7. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory?

    PubMed

    Morganti-Kossmann, M C; Yan, E; Bye, N

    2010-07-01

    Compared to other neurological diseases, the research surrounding traumatic brain injury (TBI) has a more recent history. The establishment and use of animal models of TBI remains vital to understand the pathophysiology of this highly complex disease. Such models share the ultimate goals of reproducing patterns of tissue damage observed in humans (thus rendering them clinically relevant), reproducible and highly standardised to allow for the manipulation of individual variables, and to finally explore novel therapeutics for clinical translation. There is no doubt that the similarity of cellular and molecular events observed in human and rodent TBI has reinforced the use of small animals for research. When confronted with the choice of the experimental model it becomes clear that the ideal animal model does not exist. This limitation derives from the fact that most models mimic either focal or diffuse brain injury, whereas the clinical reality suggests that each patient has an individual form of TBI characterised by various combinations of focal and diffuse patterns of tissue damage. This is additionally complicated by the occurrence of secondary insults such as hypotension, hypoxia, ischaemia, extracranial injuries, modalities of traumatic events, age, gender and heterogeneity of medical treatments and pre-existing conditions. This brief review will describe the variety of TBI models available for laboratory research beginning from the most widely used rodent models of focal brain trauma, to complex large species such as the pig. In addition, the models mimicking diffuse brain damage will be discussed in relation to the early primate studies until the use of most common rodent models to elucidate the intriguing and less understood pathology of axonal dysfunction. The most recent establishment of in vitro paradigms has complemented the in vivo modelling studies offering a further cellular and molecular insight of this pathology.

  8. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    PubMed

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  9. Traumatic Brain Injury in the Workplace.

    PubMed

    Paci, Michael; Infante-Rivard, Claire; Marcoux, Judith

    2017-09-01

    Work-related traumatic brain injuries (TBIs) are not well documented in the literature. Published studies mostly rely on worker databases that fail to provide clinically relevant information. Our objective is to describe the characteristics of hospitalized patients and their work-related TBI. We used the Québec provincial trauma and TBI program databases to identify all patients with a diagnosis of work-related TBI admitted to the Montreal General Hospital, a level 1 trauma center, between 2000 and 2014. Data from their medical records were extracted using a predetermined information sheet. Simple descriptive statistics (means and percentages) were used to summarize the data. A total of 285 cases were analyzed. Workplace TBI patients were middle-aged (mean, 43.62 years), overwhelmingly male (male:female 18:1), mostly healthy, and had completed a high school level education. Most workers were from the construction industry; falling was the most common mechanism of injury. The majority of patients (76.8%) presented with a mild TBI; only a minority (14%) required neurosurgery. The most common finding on computed tomography was skull fracture. The median length of hospitalization was 7 days, after which most patients were discharged directly home. A total of 8.1% died of their injuries. Our study found that most hospitalized victims of work-related TBI had mild injury; however, some required neurosurgical intervention and a non-negligible proportion died of their injury. Improving fall prevention, accurately document helmet use and increasing the safety practice in the construction industry may help decrease work-related TBI burden.

  10. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2012-09-01

    not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. REPORT...of function after brain damage using a neural prosthesis (Complete main body of manuscript is included in the appendix.) Authors: David J. Guggenmos...feasible for brain repair strategies. This paper tests the hypothesis that recovery after brain injury can be facilitated by a neural prosthesis serving as

  11. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study.

    PubMed

    Petzold, Axel; Tisdall, Martin M; Girbes, Armand R; Martinian, Lillian; Thom, Maria; Kitchen, Neil; Smith, Martin

    2011-02-01

    Traumatic brain injury causes diffuse axonal injury and loss of cortical neurons. These features are well recognized histologically, but their in vivo monitoring remains challenging. In vivo cortical microdialysis samples the extracellular fluid adjacent to neurons and axons. Here, we describe a novel neuronal proteolytic pathway and demonstrate the exclusive neuro-axonal expression of Pavlov's enterokinase. Enterokinase is membrane bound and cleaves the neurofilament heavy chain at positions 476 and 986. Using a 100 kDa microdialysis cut-off membrane the two proteolytic breakdown products, extracellular fluid neurofilament heavy chains NfH(476-986) and NfH(476-1026), can be quantified with a relative recovery of 20%. In a prospective clinical in vivo study, we included 10 patients with traumatic brain injury with a median Glasgow Coma Score of 9, providing 640 cortical extracellular fluid samples for longitudinal data analysis. Following high-velocity impact traumatic brain injury, microdialysate extracellular fluid neurofilament heavy chain levels were significantly higher (6.18 ± 2.94 ng/ml) and detectable for longer (> 4 days) compared with traumatic brain injury secondary to falls (0.84 ± 1.77 ng/ml, < 2 days). During the initial 16 h following traumatic brain injury, strong correlations were found between extracellular fluid neurofilament heavy chain levels and physiological parameters (systemic blood pressure, anaerobic cerebral metabolism, excessive brain tissue oxygenation, elevated brain temperature). Finally, extracellular fluid neurofilament heavy chain levels were of prognostic value, predicting mortality with an odds ratio of 7.68 (confidence interval 2.15-27.46, P = 0.001). In conclusion, this study describes the discovery of Pavlov's enterokinase in the human brain, a novel neuronal proteolytic pathway that gives rise to specific protein biomarkers (NfH(476-986) and Nf(H476-1026)) applicable to in vivo monitoring of diffuse axonal injury and

  12. Detrimental consequences of brain injury on peripheral cells.

    PubMed

    Catania, Anna; Lonati, Caterina; Sordi, Andrea; Gatti, Stefano

    2009-10-01

    Acute brain injury and brain death exert detrimental effects on peripheral host cells. Brain-induced impairment of immune function makes patients more vulnerable to infections that are a major cause of morbidity and mortality after stroke, trauma, or subarachnoid hemorrhage (SAH). Systemic inflammation and organ dysfunction are other harmful consequences of CNS injury. Brain death, the most severe consequence of brain injury, causes inflammatory changes in peripheral organs that can contribute to the inferior outcome of organs transplanted from brain-dead donors. Understanding of the mechanisms underlying the detrimental effects of brain injury on peripheral organs remains incomplete. However, it appears that sympathetic nervous system (SNS)-activation contributes to elicit both inflammation and immunodepression. Indeed, norepinephrine (NE)-induced production of chemokines in liver and other organs likely participates in local and systemic inflammatory changes. Conversely, catecholamine-stimulated interleukin-10 (IL-10) production by blood monocytes exerts immunosuppressive effects. Activation of the hypothalamic-pituitary-adrenal axis (HPA) by increased inflammatory cytokines within the brain is a significant component in the CNS-induced immune function inhibition. Non-neurologic consequences of brain injury show impressive similarities regardless of the brain insult and appear to depend on altered neuroimmune circuits. Modulation of these circuits could reduce extra-brain damage and improve patient outcome in both vascular and traumatic brain injury.

  13. Update in mild traumatic brain injury.

    PubMed

    Freire-Aragón, María Dolores; Rodríguez-Rodríguez, Ana; Egea-Guerrero, Juan José

    2017-08-10

    There has been concern for many years regarding the identification of patients with mild traumatic brain injury (TBI) at high risk of developing an intracranial lesion (IL) that would require neurosurgical intervention. The small percentage of patients with these characteristics and the exceptional mortality associated with mild TBI with IL have led to the high use of resources such as computerised tomography (CT) being reconsidered. The various protocols developed for the management of mild TBI are based on the identification of risk factors for IL, which ultimately allows more selective indication or discarding both the CT application and the hospital stay for neurological monitoring. Finally, progress in the study of brain injury biomarkers with prognostic utility in different clinical categories of TBI has recently been incorporated by several clinical practice guidelines, which has allowed, together with clinical assessment, a more accurate prognostic approach for these patients to be established. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  14. Bridge Between Neuroimmunity and Traumatic Brain Injury

    PubMed Central

    Kelso, Matthew L.; Gendelman, Howard E.

    2014-01-01

    The pathophysiology of degenerative, infectious, inflammatory and traumatic diseases of the central nervous system includes a significant immune component. As to the latter, damage to the cerebral vasculature and neural cell bodies, caused by traumatic brain injury (TBI) activates innate immunity with concomitant infiltration of immunocytes into the damaged nervous system. This leads to pro-inflammatory cytokine and prostaglandin production and lost synaptic integrity and more generalized neurotoxicity. Engagement of adaptive immune responses follows including the production of antibodies and lymphocyte proliferation. These affect the tempo of disease along with tissue repair and as such provide a number of potential targets for pharmacological treatments for TBI. However, despite a large body of research, no such treatment intervention is currently available. In this review we will discuss the immune response initiated following brain injuries, drawing on knowledge gained from a broad array of experimental and clinical studies. Our discussion seeks to address potential therapeutic targets and propose ways in which the immune system can be controlled to promote neuroprotection. PMID:24025052

  15. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury

    PubMed Central

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Objectives: Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player’s life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users’ messages often reflects the prevailing culture related to a particular event or health issue. Methods: We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter® tweets related to traumatic brain injuries in sports collected during June and July 2013. Results: We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. Conclusion: While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies. PMID:28890783

  16. Twitter and traumatic brain injury: A content and sentiment analysis of tweets pertaining to sport-related brain injury.

    PubMed

    Workewych, Adriana M; Ciuffetelli Muzzi, Madeline; Jing, Rowan; Zhang, Stanley; Topolovec-Vranic, Jane; Cusimano, Michael D

    2017-01-01

    Sport-related traumatic brain injuries are a significant public health burden, with hundreds of thousands sustained annually in North America. While sports offer numerous physical and social health benefits, traumatic brain injuries such as concussion can seriously impact a player's life, athletic career, and sport enjoyment. The culture in many sports encourages winning at all costs, placing athletes at risk for traumatic brain injuries. As social media has become a central part of everyday life, the content of users' messages often reflects the prevailing culture related to a particular event or health issue. We hypothesized that Twitter data might be useful for understanding public perceptions and misperceptions of sport-related traumatic brain injuries. We performed a content and sentiment analysis of 7483 Twitter(®) tweets related to traumatic brain injuries in sports collected during June and July 2013. We identified five major themes. Users tweeted about personal traumatic brain injuries experiences, reported traumatic brain injuries in professional athletes, shared research about sport-related concussions, and discussed policy and safety in injury prevention, such as helmet use. We identified mixed perceptions of and sentiment toward traumatic brain injuries in sports: both an understanding that brain injuries are serious and disregard for activities that might reduce the public burden of traumatic brain injuries were prevalent in our Twitter analysis. While the scientific and medical community considers a concussion a form of traumatic brain injuries, our study demonstrates a misunderstanding of this fact among the public. In our current digital age, social media can provide useful insight into the culture around a health issue, facilitating implementation of prevention and treatment strategies.

  17. Haemostatic drugs for traumatic brain injury.

    PubMed

    Perel, Pablo; Roberts, Ian; Shakur, Haleema; Thinkhamrop, Bandit; Phuenpathom, Nakornchai; Yutthakasemsunt, Surakrant

    2010-01-20

    Traumatic brain injury (TBI) is a leading cause of death and disability. Intracranial bleeding is a common complication of TBI, and intracranial bleeding can develop or worsen after hospital admission. Haemostatic drugs may reduce the occurrence or size of intracranial bleeds and consequently lower the morbidity and mortality associated with TBI. To assess the effects of haemostatic drugs on mortality, disability and thrombotic complications in patients with traumatic brain injury. We searched the electronic databases: Cochrane Injuries Group Specialised Register (3 February 2009), CENTRAL (The Cochrane Library 2009, Issue 1), MEDLINE (1950 to Week 3 2009), PubMed (searched 3 February 2009 (last 180 days)), EMBASE (1980 to Week 4 2009), CINAHL (1982 to January 2009), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2009), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2009). We included published and unpublished randomised controlled trials comparing haemostatic drugs (antifibrinolytics: aprotinin, tranexamic acid (TXA), aminocaproic acid or recombined activated factor VIIa (rFVIIa)) with placebo, no treatment, or other treatment in patients with acute traumatic brain injury. Two review authors independently examined all electronic records, and extracted the data. We judged that there was clinical heterogeneity between trials so we did not attempt to pool the results of the included trials. The results are reported separately. We included two trials. One was a post-hoc analysis of 30 TBI patients from a randomised controlled trial of rFVIIa in blunt trauma patients. The risk ratio for mortality at 30 days was 0.64 (95% CI 0.25 to 1.63) for rFVIIa compared to placebo. This result should be considered with caution as the subgroup analysis was not pre-specified for the trial. The other trial evaluated the effect of rFVIIa in 97 TBI patients with evidence of intracerebral bleeding in a

  18. Haemostatic drugs for traumatic brain injury

    PubMed Central

    Perel, Pablo; Roberts, Ian; Shakur, Haleema; Thinkhamrop, Bandit; Phuenpathom, Nakornchai; Yutthakasemsunt, Surakrant

    2014-01-01

    Background Traumatic brain injury (TBI) is a leading cause of death and disability. Intracranial bleeding is a common complication of TBI, and intracranial bleeding can develop or worsen after hospital admission. Haemostatic drugs may reduce the occurrence or size of intracranial bleeds and consequently lower the morbidity and mortality associated with TBI. Objectives To assess the effects of haemostatic drugs on mortality, disability and thrombotic complications in patients with traumatic brain injury. Search methods We searched the electronic databases: Cochrane Injuries Group Specialised Register (3 February 2009), CENTRAL (The Cochrane Library 2009, Issue 1), MEDLINE (1950 to Week 3 2009), PubMed (searched 3 February 2009 (last 180 days)), EMBASE (1980 to Week 4 2009), CINAHL (1982 to January 2009), ISI Web of Science: Science Citation Index Expanded (SCI-EXPANDED) (1970 to January 2009), ISI Web of Science: Conference Proceedings Citation Index - Science (CPCI-S) (1990 to January 2009). Selection criteria We included published and unpublished randomised controlled trials comparing haemostatic drugs (antifibrinolytics: aprotinin, tranexamic acid (TXA), aminocaproic acid or recombined activated factor VIIa (rFVIIa)) with placebo, no treatment, or other treatment in patients with acute traumatic brain injury. Data collection and analysis Two review authors independently examined all electronic records, and extracted the data. We judged that there was clinical heterogeneity between trials so we did not attempt to pool the results of the included trials. The results are reported separately. Main results We included two trials. One was a post-hoc analysis of 30 TBI patients from a randomised controlled trial of rFVIIa in blunt trauma patients. The risk ratio for mortality at 30 days was 0.64 (95% CI 0.25 to 1.63) for rFVIIa compared to placebo. This result should be considered with caution as the subgroup analysis was not pre-specified for the trial. The other trial

  19. Ethics of neuroimaging after serious brain injury

    PubMed Central

    2014-01-01

    Background Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to “yes” or “no” answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Methods/Design Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients’ interests, and we

  20. Ethics of neuroimaging after serious brain injury.

    PubMed

    Weijer, Charles; Peterson, Andrew; Webster, Fiona; Graham, Mackenzie; Cruse, Damian; Fernández-Espejo, Davinia; Gofton, Teneille; Gonzalez-Lara, Laura E; Lazosky, Andrea; Naci, Lorina; Norton, Loretta; Speechley, Kathy; Young, Bryan; Owen, Adrian M

    2014-05-20

    Patient outcome after serious brain injury is highly variable. Following a period of coma, some patients recover while others progress into a vegetative state (unresponsive wakefulness syndrome) or minimally conscious state. In both cases, assessment is difficult and misdiagnosis may be as high as 43%. Recent advances in neuroimaging suggest a solution. Both functional magnetic resonance imaging and electroencephalography have been used to detect residual cognitive function in vegetative and minimally conscious patients. Neuroimaging may improve diagnosis and prognostication. These techniques are beginning to be applied to comatose patients soon after injury. Evidence of preserved cognitive function may predict recovery, and this information would help families and health providers. Complex ethical issues arise due to the vulnerability of patients and families, difficulties interpreting negative results, restriction of communication to "yes" or "no" answers, and cost. We seek to investigate ethical issues in the use of neuroimaging in behaviorally nonresponsive patients who have suffered serious brain injury. The objectives of this research are to: (1) create an approach to capacity assessment using neuroimaging; (2) develop an ethics of welfare framework to guide considerations of quality of life; (3) explore the impact of neuroimaging on families; and, (4) analyze the ethics of the use of neuroimaging in comatose patients. Our research program encompasses four projects and uses a mixed methods approach. Project 1 asks whether decision making capacity can be assessed in behaviorally nonresponsive patients. We will specify cognitive functions required for capacity and detail their assessment. Further, we will develop and pilot a series of scenarios and questions suitable for assessing capacity. Project 2 examines the ethics of welfare as a guide for neuroimaging. It grounds an obligation to explore patients' interests, and we explore conceptual issues in the

  1. Predictors of Attention-Deficit/Hyperactivity Disorder within 6 Months after Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Schachar, Russell J.; Levin, Harvey S.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen; Saunders, Ann; Landis, Julie

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of attention-deficit/hyperactivity disorder (ADHD) after traumatic brain injury (TBI), also called secondary ADHD (SADHD). Method: Children without preinjury ADHD 5-14 years old with TBI from consecutive admissions (n = 143) to five trauma centers were observed prospectively for 6…

  2. Predictors of Attention-Deficit/Hyperactivity Disorder within 6 Months after Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Schachar, Russell J.; Levin, Harvey S.; Ewing-Cobbs, Linda; Chapman, Sandra B.; Dennis, Maureen; Saunders, Ann; Landis, Julie

    2005-01-01

    Objective: To assess the phenomenology and predictive factors of attention-deficit/hyperactivity disorder (ADHD) after traumatic brain injury (TBI), also called secondary ADHD (SADHD). Method: Children without preinjury ADHD 5-14 years old with TBI from consecutive admissions (n = 143) to five trauma centers were observed prospectively for 6…

  3. A Randomized Placebo-Controlled Trial of Citalopram for Anxiety Disorders Following Traumatic Brain Injury

    DTIC Science & Technology

    2009-04-01

    IS, Yang SJ, Yoon JS. (2005). Comparing effects of methylphenidate, sertraline and placebo on neuropsychiatric sequelae in patients with traumatic...Guin-Renfroe S, and Novack TA. (2001). Sertraline to improve arousal and alertness in severe traumatic brain injury secondary to motor vehicle crashes

  4. Male body image following acquired brain injury.

    PubMed

    Howes, Hannah; Edwards, Stephen; Benton, David

    2005-02-01

    The purpose of this study was to investigate body image concerns and psycho-emotional health in males with acquired brain injury (ABI). Using a between subjects study of 25 males with ABI and 25 matched controls, variables were analysed using correlations and 2 x 2 analyses of variance (ANOVAs) with head injury and injury type as independent variables. Body image and psycho-emotional health were evaluated using self-report questionnaires. Disability and cognitive impairment were measured using a mixture of self-report, cognitive testing and clinical notes. Results indicated that males with ABI had significantly lower self-esteem and body dissatisfaction on a number of items relating to physical and sexual functioning. There were significant differences in body image between stroke and TBI, but there was no corresponding relationship with psycho-emotional health. These body image differences might be explained by age. The finding that ABI has a negative effect on body image and that this relates to psycho-emotional health should be investigated further, perhaps being included in future rehabilitation strategies.

  5. Brain injury, neuroinflammation and Alzheimer's disease

    PubMed Central

    Breunig, Joshua J.; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems. PMID:23874297

  6. Brain injury, neuroinflammation and Alzheimer's disease.

    PubMed

    Breunig, Joshua J; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and 'spreading' of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems.

  7. The Potential for Bio-Mediators and Biomarkers in Pediatric Traumatic Brain Injury and Neurocritical Care

    PubMed Central

    Kochanek, Patrick M.; Berger, Rachel P.; Fink, Ericka L.; Au, Alicia K.; Bayır, Hülya; Bell, Michael J.; Dixon, C. Edward; Clark, Robert S. B.

    2013-01-01

    The use of biomarkers of brain injury in pediatric neurocritical care has been explored for at least 15 years. Two general lines of research on biomarkers in pediatric brain injury have been pursued: (1) studies of “bio-mediators” in cerebrospinal fluid (CSF) of children after traumatic brain injury (TBI) to explore the components of the secondary injury cascades in an attempt to identify potential therapeutic targets and (2) studies of the release of structural proteins into the CSF, serum, or urine in order to diagnose, monitor, and/or prognosticate in patients with TBI or other pediatric neurocritical care conditions. Unique age-related differences in brain biology, disease processes, and clinical applications mandate the development and testing of brain injury bio-mediators and biomarkers specifically in pediatric neurocritical care applications. Finally, although much of the early work on biomarkers of brain injury in pediatrics has focused on TBI, new applications are emerging across a wide range of conditions specifically for pediatric neurocritical care including abusive head trauma, cardiopulmonary arrest, septic shock, extracorporeal membrane oxygenation, hydrocephalus, and cardiac surgery. The potential scope of the utility of biomarkers in pediatric neurocritical care is thus also discussed. PMID:23637695

  8. The Effects of Creatine Supplementation and Physical Exercise on Traumatic Brain Injury.

    PubMed

    Freire Royes, Luiz Fernando; Cassol, Gustavo

    2016-01-01

    Traumatic brain injury (TBI) is a devastating disease frequently followed by significant behavioral disabilities and long-term medical complications that include a wide range of behavioral and emotional problems. TBI is characterized by a combination of immediate mechanical dysfunction of brain tissue and secondary damage developed over a longer period of time following the injury. The early inflammatory response after tissue injury can be triggered by several factors such as extravasated blood products and reactive oxygen species (ROS). It is important to note that energy generation and mitochondrial function are closely related to and interconnected with delayed secondary manifestations of brain injury, including early neuromotor dysfunction, cognitive impairment and post-traumatic epilepsy (PTE). Given the extent of post-traumatic changes in neuronal function and the possibility of amplifying secondary cascades, different therapies designed to minimize damage and retain/restore cellular function after TBI are currently being studied. In this context, the present review covers the preclinical and clinical literature investigating the role of inflammation and free radicals in secondary damage generated by several models of TBI. Furthermore, the present review aims to discuss the role of creatine, a guanidine compound popularly used as a performance-enhancing supplement for high-intensity athletic performance, in secondary damage induced by TBI. In this narrative review, we also discuss the beneficial effect of exercise performed in animal models of TBI and how the results from animal studies can be applied to clinical settings.

  9. Blunt laryngeal trauma secondary to sporting injuries.

    PubMed

    Mendis, D; Anderson, J A

    2017-08-01

    Laryngeal injury after blunt trauma is uncommon, but can cause catastrophic airway obstruction and significant morbidity in voice and airway function. This paper aims to discuss a case series of sports-related blunt laryngeal trauma patients and describe the results of a thorough literature review. Retrospective case-based analysis of laryngeal trauma referrals over six years to a tertiary laryngology centre. Twenty-eight patients were identified; 13 (46 per cent) sustained sports-related trauma. Most were young males, presenting with dysphonia, some with airway compromise (62 per cent). Nine patients were diagnosed with a laryngeal fracture. Four patients were managed conservatively and nine underwent surgery. Post-treatment, the majority of patients achieved good voice outcomes (83 per cent) and all had normal airway function. Sports-related neck trauma can cause significant injury to the laryngeal framework and endolaryngeal soft tissues, and most cases require surgical intervention. Clinical presentation may be subtle; a systematic approach along with a high index of suspicion is essential, as early diagnosis and treatment have been reported to improve airway and voice outcome.

  10. Unusual primary and secondary facial blast injuries.

    PubMed

    Koren, Ilan; Shimonove, Mordechai; Shvero, Yaacov; Feinmesser, Raphael

    2003-01-01

    To discuss unusual facial injuries resulting from a bomb blast. In March 1997, a bomb consisting of a bag of nails was detonated in a coffee shop in Tel Aviv. Two of the wounded were brought to our level 1 Trauma Center with unique facial injuries. Computed tomography (CT) scan and CT angiogram were performed. The blast occurred to the immediate right of the victims who were sitting in an open cafe. Both had tympanic perforation. The first patient showed indirect damage to the facial nerve from a piece of shrapnel located anterior to the carotid artery and medial to the right mandibular angle. The second had a piece of shrapnel lodged in the parapharyngeal space that was initially missed and discovered only on reexamination 3 days later after the patient complained of pain in the temporomandibular joint; there was no facial nerve deficit. The port of entry was probably a small wound in the anterior wall of the external ear canal. The wounds are probably attributable to the spalling effect of the shrapnel passing through the parotid gland, which has mixed-density tissue. These cases show that nerves are susceptible to damage even in the absence of direct engagement and that the emergency room physician should be alert to even small skin imperfections in blast victims to avoid missing penetrating wounds. Copyright 2003, Elsevier Science (USA). All rights reserved.)

  11. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  12. Graph Analysis of Functional Brain Networks for Cognitive Control of Action in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H.; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P.

    2012-01-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly…

  13. Traumatic Brain Injury Pathophysiology and Treatments: Early, Intermediate, and Late Phases Post-Injury

    PubMed Central

    Algattas, Hanna; Huang, Jason H.

    2014-01-01

    Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways. PMID:24381049

  14. 77 FR 34363 - Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Disability and Rehabilitation Research Projects and Centers Program; Traumatic Brain Injury Model Systems... Program--Disability Rehabilitation Research Project (DRRP)-- Traumatic Brain Injury Model Systems Centers... priority for Traumatic Brain Injury Model Systems (TBIMS) Centers. The Assistant Secretary may use...

  15. The neuroinflammatory response in humans after traumatic brain injury.

    PubMed

    Smith, C; Gentleman, S M; Leclercq, P D; Murray, L S; Griffin, W S T; Graham, D I; Nicoll, J A R

    2013-10-01

    Traumatic brain injury is a significant cause of morbidity and mortality worldwide. An epidemiological association between head injury and long-term cognitive decline has been described for many years and recent clinical studies have highlighted functional impairment within 12 months of a mild head injury. In addition chronic traumatic encephalopathy is a recently described condition in cases of repetitive head injury. There are shared mechanisms between traumatic brain injury and Alzheimer's disease, and it has been hypothesized that neuroinflammation, in the form of microglial activation, may be a mechanism underlying chronic neurodegenerative processes after traumatic brain injury. This study assessed the microglial reaction after head injury in a range of ages and survival periods, from <24-h survival through to 47-year survival. Immunohistochemistry for reactive microglia (CD68 and CR3/43) was performed on human autopsy brain tissue and assessed 'blind' by quantitative image analysis. Head injury cases were compared with age matched controls, and within the traumatic brain injury group cases with diffuse traumatic axonal injury were compared with cases without diffuse traumatic axonal injury. A major finding was a neuroinflammatory response that develops within the first week and persists for several months after traumatic brain injury, but has returned to control levels after several years. In cases with diffuse traumatic axonal injury the microglial reaction is particularly pronounced in the white matter. These results demonstrate that prolonged microglial activation is a feature of traumatic brain injury, but that the neuroinflammatory response returns to control levels after several years. © 2012 British Neuropathological Society.

  16. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  17. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  18. Brain Injury among Children and Adolescents. Tip Cards.

    ERIC Educational Resources Information Center

    Lash, Marilyn; Savage, Ron; DePompei, Roberta; Blosser, Jean

    These eight brochures for parents provide practical information and suggestions regarding various aspects of managing a child with a brain injury. The brochures are: (1) "Back to School after a Mild Brain Injury or Concussion," which covers helping the student in the classroom and changes that occur in school and knowing when extra help is needed…

  19. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  20. The Pediatric Test of Brain Injury: Development and Interpretation

    ERIC Educational Resources Information Center

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena

    2009-01-01

    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  1. Students with Acquired Brain Injury. The School's Response.

    ERIC Educational Resources Information Center

    Glang, Ann, Ed.; Singer, George H. S., Ed.; Todis, Bonnie, Ed.

    Designed for educators, this book focuses on educational issues relating to students with acquired brain injury (ABI), and describes approaches that have been effective in improving the school experiences of students with brain injury. Section 1 provides an introduction to issues related to ABI in children and youth and includes: "An Overview of…

  2. The Pediatric Test of Brain Injury: Development and Interpretation

    ERIC Educational Resources Information Center

    Hotz, Gillian A.; Helm-Estabrooks, Nancy; Nelson, Nickola Wolf; Plante, Elena

    2009-01-01

    The Pediatric Test of Brain Injury (PTBI) is designed to assess neurocognitive, language, and literacy abilities that are relevant to the school curriculum of children and adolescents recovering from brain injury. The PTBI is intended to help clinicians establish baseline levels of cognitive-linguistic abilities in the acute stages of recovery,…

  3. Pathological Fingerprints, Systems Biology and Biomarkers of Blast Brain Injury

    DTIC Science & Technology

    2009-06-01

    microglia as ’sensors’ of injury in the pineal gland of rats following a non-penetrative blast." Neurosci Res 27(4): 317-322. ...including blood brain barrier disruption, glia activation and neuronal alterations. 15. SUBJECT TERMS blast; brain injury; experimental models

  4. Telerehabilitation needs: a survey of persons with acquired brain injury.

    PubMed

    Ricker, Joseph H; Rosenthal, Mitchell; Garay, Edward; DeLuca, John; Germain, Anneliese; Abraham-Fuchs, Klaus; Schmidt, Kai-Uwe

    2002-06-01

    To survey individuals with acquired brain injury to assess multiple facets of interest, access, and familiarity necessary to implement new telerehabilitation technologies. Anonymous mail survey. Community. Seventy-one respondents to a survey. These individuals had experienced acquired brain injury (predominantly severe traumatic brain injury [TBI]) and were living in the community. Surveys were mailed by a state chapter of the Brain Injury Association to a random selection of members with acquired brain injury. Survey designed specifically for this investigation. The survey responses indicate that there is great interest in the possibility of accessing telerehabilitative services among individuals with acquired brain injury. In particular, there was strong interest expressed in services that could be used to assist with problems in memory, attention, problem-solving, and activities of daily living. Telemedicine, and more specifically telerehabilitation, holds great promise as an adjunct to traditional clinical service delivery. Little research in this area has been applied, however, to individuals with acquired brain injuries. Although on the surface, telerehabilitation seems to be an appropriate assessment and treatment modality for individuals with brain injury, it will only succeed if those individuals have the interest-and the access-necessary to use new and evolving technologies.

  5. Brain Injury among Children and Adolescents. Tip Cards.

    ERIC Educational Resources Information Center

    Lash, Marilyn; Savage, Ron; DePompei, Roberta; Blosser, Jean

    These eight brochures for parents provide practical information and suggestions regarding various aspects of managing a child with a brain injury. The brochures are: (1) "Back to School after a Mild Brain Injury or Concussion," which covers helping the student in the classroom and changes that occur in school and knowing when extra help is needed…

  6. Novel Nitroxide Resuscitation Strategies in Experimental Traumatic Brain Injury

    DTIC Science & Technology

    2010-03-01

    peroxidase activity after traumatic brain injury. J Neurotrauma 2003;20:437–445. 68. Mavelli I, Rigo A, Federico R, et al. Superoxide dismutase, glu... Engel , C.C., and Castro, C.A. (2008). Mild traumatic brain injury in U.S. soldiers returning from Iraq. N. Engl. J. Med. 358, 453–463. Ling, G., Bandak

  7. Introducing the concept of "CSF-shift edema" in traumatic brain injury.

    PubMed

    Cherian, Iype; Beltran, Margarita; Landi, Alessandro; Alafaci, Concetta; Torregrossa, Fabio; Grasso, Giovanni

    2017-08-24

    Brain edema after severe traumatic brain injury (TBI) plays an important role in the outcome and survival of injured patients. It is also one of the main targets in the therapeutic approach in the current clinical practice. To date, the pathophysiology of traumatic brain swelling is complex and, being that it is thought to be mainly cytotoxic and vasogenic in origin, not yet entirely understood. However, based on new understandings of the hydrodynamic aspects of cerebrospinal fluid (CSF), an additional mechanism of brain swelling can be considered. An increase in pressure into the subarachnoid space, secondary to traumatic subarachnoid hemorrhage, would result in a rapid shift of CSF from the cisterns, through the paravascular spaces, into the brain, resulting in an increase of brain water content. This mechanism of brain swelling would be termed as "CSF-shift edema." This "CSF-shift," promoted by a pressure gradient, leads to increased pressure inside the paravascular spaces and the interstitium of the brain, disturbing the functions of the paravascular system, with implications of secondary brain injury. Cisternostomy, an emerging surgical treatment, would reverse the direction of the CSF-shift, allowing for a decrease in brain swelling. In addition, this technique would reduce the pressure in the paravascular spaces and interstitium, leading to a recovery of the functionality of the paravascular system. © 2017 Wiley Periodicals, Inc.

  8. Barbiturates for acute traumatic brain injury.

    PubMed

    Roberts, I

    2000-01-01

    Raised intracranial pressure (ICP) is an important complication of severe brain injury, and is associated with a high mortality rate. Barbiturates are believed to reduce intracranial pressure by suppressing cerebral metabolism, thus reducing cerebral metabolic demands and cerebral blood volume. However, barbiturates also reduce blood pressure and therefore may adversely effect cerebral perfusion pressure. To assess the effects of barbiturates in reducing raised intracranial pressure, mortality and morbidity in people with acute traumatic brain injury. To quantify any side effects resulting from the use of barbiturates. The review draws largely on the search strategy developed for the Cochrane Injuries Group as a whole. However, in addition the Cochrane Library was searched in December 1996 using the text terms "barbiturate*," "pentobarb*," "phenobarb*," "head," and "brain." An updated search was done in April 1999. Randomised or quasi randomised trials of any one or more of the barbiturate class of drugs (amobarbital, barbital, hexobarbital, mephobarbital, methohexital, murexide, pentobarbital, phenobarbital, secobarbital, thiobarbiturate) where study participants had a clinically diagnosed acute traumatic brain injury of any severity. The reviewer extracted the data and assessed the quality of allocation concealment in the trials. The pooled relative risk for death (barbiturate vs no barbiturate) was 1.09 (95%CI 0.81 to 1.47). The pooled effect of barbiturates on adverse neurological outcome, measured using the Glasgow Outcome Scale (death, persistent vegetative state or severe disability) was 1.15 (95% 0.81 to 1.64). Two studies examined the effect of barbiturate therapy on intracranial pressure. In the study by Eisenberger et al, a smaller proportion of patients in the barbiturate group had uncontrolled ICP (68% vs 83%). The relative risk for uncontrolled ICP was 0.81 (95%CI 0.62 to 1.06). Similarly, in the study by Ward et al, mean ICP was lower in the

  9. The far-reaching scope of neuroinflammation after traumatic brain injury.

    PubMed

    Simon, Dennis W; McGeachy, Mandy J; Bayır, Hülya; Clark, Robert S B; Loane, David J; Kochanek, Patrick M

    2017-03-01

    The 'silent epidemic' of traumatic brain injury (TBI) has been placed in the spotlight as a result of clinical investigations and popular press coverage of athletes and veterans with single or repetitive head injuries. Neuroinflammation can cause acute secondary injury after TBI, and has been linked to chronic neurodegenerative diseases; however, anti-inflammatory agents have failed to improve TBI outcomes in clinical trials. In this Review, we therefore propose a new framework of targeted immunomodulation after TBI for future exploration. Our framework incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structuring our discussion around the dynamics of the immune response to TBI - from initial triggers to chronic neuroinflammation - we consider the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration. We summarize both animal model and human studies, with clinical data explicitly defined throughout this Review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including concepts of inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. Moreover, we highlight findings that could offer novel therapeutic targets for translational and clinical research, assimilate evidence from other brain injury models, and identify outstanding questions in the field.

  10. Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury

    PubMed Central

    Peyvandi, Shabnam; De Santiago, Veronica; Chakkarapani, Elavazhagan; Chau, Vann; Campbell, Andrew; Poskitt, Kenneth J.; Xu, Duan; Barkovich, A. James; Miller, Steven; McQuillen, Patrick

    2016-01-01

    ). Patients with prenatal diagnosis had lower birth weight (mean, 3184.5 g; 95%CI, 3050.3–3318.6) than those with postnatal diagnosis (mean, 3397.6 g; 95%CI, 3277.6–3517.6) (P = .02). Those with prenatal diagnosis had an earlier estimated gestational age at delivery (mean, 38.6 weeks; 95%CI, 38.2–38.9) than those with postnatal diagnosis (mean, 39.1 weeks; 95%CI, 38.8–39.5) (P = .03). CONCLUSIONS AND RELEVANCE Newborns with prenatal diagnosis of single ventricle physiology and transposition of the great arteries demonstrate less preoperative brain injury and more robust microstructural brain development than those with postnatal diagnosis. These results are likely secondary to improved cardiovascular stability. The impact of these findings on neurodevelopmental outcomes warrants further study. PMID:26902528

  11. Association of Prenatal Diagnosis of Critical Congenital Heart Disease With Postnatal Brain Development and the Risk of Brain Injury.

    PubMed

    Peyvandi, Shabnam; De Santiago, Veronica; Chakkarapani, Elavazhagan; Chau, Vann; Campbell, Andrew; Poskitt, Kenneth J; Xu, Duan; Barkovich, A James; Miller, Steven; McQuillen, Patrick

    2016-04-01

    .3-3318.6) than those with postnatal diagnosis (mean, 3397.6 g; 95% CI, 3277.6-3517.6) (P = .02). Those with prenatal diagnosis had an earlier estimated gestational age at delivery (mean, 38.6 weeks; 95% CI, 38.2-38.9) than those with postnatal diagnosis (mean, 39.1 weeks; 95% CI, 38.8-39.5) (P = .03). Newborns with prenatal diagnosis of single ventricle physiology and transposition of the great arteries demonstrate less preoperative brain injury and more robust microstructural brain development than those with postnatal diagnosis. These results are likely secondary to improved cardiovascular stability. The impact of these findings on neurodevelopmental outcomes warrants further study.

  12. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  13. Evaluation of a Reading Comprehension Strategy Package to Improve Reading Comprehension of Adult College Students with Acquired Brain Injuries

    ERIC Educational Resources Information Center

    Griffiths, Gina G.

    2013-01-01

    Adults with mild to moderate acquired brain injury (ABI) often pursue post-secondary or professional education after their injuries in order to enter or re-enter the job market. An increasing number of these adults report problems with reading-to-learn. The problem is particularly concerning given the growing population of adult survivors of ABI.…

  14. Role and Importance of IGF-1 in Traumatic Brain Injuries

    PubMed Central

    Mangiola, Annunziato; Vigo, Vera; Anile, Carmelo; De Bonis, Pasquale; Lofrese, Giorgio

    2015-01-01

    It is increasingly affirmed that most of the long-term consequences of TBI are due to molecular and cellular changes occurring during the acute phase of the injury and which may, afterwards, persist or progress. Understanding how to prevent secondary damage and improve outcome in trauma patients, has been always a target of scientific interest. Plans of studies focused their attention on the posttraumatic neuroendocrine dysfunction in order to achieve a correlation between hormone blood level and TBI outcomes. The somatotropic axis (GH and IGF-1) seems to be the most affected, with different alterations between the acute and late phases. IGF-1 plays an important role in brain growth and development, and it is related to repair responses to damage for both the central and peripheral nervous system. The IGF-1 blood levels result prone to decrease during both the early and late phases after TBI. Despite this, experimental studies on animals have shown that the CNS responds to the injury upregulating the expression of IGF-1; thus it appears to be related to the secondary mechanisms of response to posttraumatic damage. We review the mechanisms involving IGF-1 in TBI, analyzing how its expression and metabolism may affect prognosis and outcome in head trauma patients. PMID:26417600

  15. Ursolic Acid Ameliorates Early Brain Injury After Experimental Traumatic Brain Injury in Mice by Activating the Nrf2 Pathway.

    PubMed

    Ding, Hui; Wang, Handong; Zhu, Lin; Wei, Wuting

    2017-02-01

    Previous studies have indicated oxidative stress and inflammatory injury as significant contributors to the secondary damage associated with traumatic brain injury (TBI). Ursolic acid (UA) has been demonstrated to exert anti-oxidative and anti-inflammatory effects on cerebral ischemia by activating the nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. However, the effects of UA on TBI remain unclear. The aim of this study is to evaluate the potential roles of UA in the activation of the Nrf2 pathway using an experimental TBI model and the underlying mechanism. Wild-type (WT) and Nrf2((-/-)) mice were divided into eight groups: (1) sham; (2) TBI; (3) TBI + vehicle; (4) TBI + 50 mg/kg UA; (5) TBI + 100 mg/kg UA; (6) TBI + 150 mg/kg UA; (7) TBI + Nrf2((-/-)) + vehicle; (8) TBI + Nrf2((-/-)) + UA. All mice underwent the TBI with the exception of the sham group. The neurologic outcomes of the mice were evaluated at 24 h after TBI, as well as the expression of Nrf2, NQO1, HO1,SOD, GPx, and MDA. Treatment of UA significantly ameliorated brain edema and the neurological insufficiencies after TBI. In addition, UA treatment markedly strengthened the nuclear translocation of Nrf2 protein and increased the expression of NQO1 and HO1. Moreover, UA significantly increased the expression of AKT, an Nrf2 upstream factor, suggesting that UA play a neuroprotective role through the activation of the Nrf2-ARE signal pathway. On the contrary, UA showed no neuroprotective effect on the Nrf2((-/-)) mice. These data indicated that UA increases the activity of antioxidant enzymes and attenuated brain injury via Nrf2 factor.

  16. Surgical brain injury: prevention is better than cure.

    PubMed

    Jadhav, Vikram; Zhang, John H

    2008-05-01

    Neurosurgical procedures can cause inevitable brain damage resulting from the procedure itself. Unavoidable cortical and parenchymal incisions, intraoperative hemorrhage, brain lobe retraction and thermal injuries from electrocautery can cause brain injuries attributable exclusively to the neurosurgical operations and collectively referred to as surgical brain injury (SBI). This particular brain damage cannot be demarcated from the underlying brain pathology and has not been studied previously. Recently, we developed rat and mouse models to study SBI and the underlying cellular mechanisms. The animal modeling mimics a neurosurgical operation and causes commonly encountered postoperative complications such as brain edema following blood brain barrier (BBB) disruption, and neuronal cell death. Furthermore, the SBI animal model allows screening of known experimental neuroprotective agents and therapeutic agents being tried in clinical trials as possible pretreatments before neurosurgical procedures. In the present review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, and the importance of blanket neuroprotection before neurosurgical procedures.

  17. Training to Optimize Learning after Traumatic Brain Injury

    PubMed Central

    Skidmore, Elizabeth R.

    2015-01-01

    One of the major foci of rehabilitation after traumatic brain injury is the design and implementation of interventions to train individuals to learn new knowledge and skills or new ways to access and execute previously acquired knowledge and skills. To optimize these interventions, rehabilitation professionals require a clear understanding of how traumatic brain injury impacts learning, and how specific approaches may enhance learning after traumatic brain injury. This brief conceptual review provides an overview of learning, the impact of traumatic brain injury on explicit and implicit learning, and the current state of the science examining selected training approaches designed to advance learning after traumatic brain injury. Potential directions for future scientific inquiry are discussed throughout the review. PMID:26217546

  18. Missed diagnosis of traumatic brain injury in patients with traumatic spinal cord injury.

    PubMed

    Sharma, Bhanu; Bradbury, Cheryl; Mikulis, David; Green, Robin

    2014-04-01

    To determine the frequency of missed acute care traumatic brain injury diagnoses in patients with traumatic spinal cord injury, and to examine risk factors for missed traumatic brain injury diagnosis. Prospective magnetic resonance imaging and neuro-psychological assessment plus retrospective medical record review, including computed tomography. Ninety-two adults with traumatic spinal cord injury recruited from a large, tertiary spinal cord injury program, initially referred from urban teaching hospitals with neurotrauma facilities. Diagnosis of traumatic brain injury made with clinical neurological indices (i.e., Glasgow Coma Scale, post-traumatic amnesia, and loss of consciousness), neuroimaging (computed tomography and structural magnetic resonance imaging), and neuropsychological tests of attention and speed of processing, memory, and executive function; all measures were validated on a case-by-case basis to rule out confounds. Missed traumatic brain injury diagnoses were made via acute care medical record review and were corroborated by patient/family report where possible. The frequency of missed traumatic brain injury diagnoses in our sample was 58.5%. Missed traumatic brain injury diagnoses were more frequent in injuries sustained outside of a motor vehicle collision (MVC), with 75.0% of acute care traumatic brain injury diagnoses missed in non-MVC patients vs. 42.9% missed in MVC patients. Among patients with non-MVC injuries, a comparable percentage of missed traumatic brain injury diagnoses were observed in patients with cervical (79%) and sub-cervical injuries (80%). In more than half of the traumatic spinal cord injury patients referred for in-patient rehabilitation, acute care diagnoses of traumatic brain injury were missed. A risk factor for missed diagnosis was an injury caused by a mechanism other than an MVC (e.g., falls, assaults), perhaps due to reduced expectations of traumatic brain injury in non-MVC patients. In our research study, we

  19. The potential of neural transplantation for brain repair and regeneration following traumatic brain injury

    PubMed Central

    Sun, Dong

    2016-01-01

    Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury. PMID:26981070

  20. Pediatric Traumatic Brain Injury. Special Topic Report #3.

    ERIC Educational Resources Information Center

    Waaland, Pamela K.; Cockrell, Janice L.

    This brief report summarizes what is known about pediatric traumatic brain injury, including the following: risk factors (e.g., males especially those ages 5 to 25, youth with preexisting problems including previous head injury victims, and children receiving inadequate supervision); life after injury; physical and neurological consequences (e.g.,…

  1. The enigma of "hidden" traumatic brain injury.

    PubMed

    Gordon, W A; Brown, M; Sliwinski, M; Hibbard, M R; Patti, N; Weiss, M J; Kalinsky, R; Sheerer, M

    1998-12-01

    To examine individuals with "hidden" traumatic brain injury (TBI), defined in this study as those who sustained a blow to the head, with altered mental status, and experienced a substantial number of the cognitive, behavioral, and emotional sequelae typically associated with brain injury but did not make the causal connection between the injury and its consequences. Comparison of four groups of individuals matched for age, gender, years of education, and duration of loss of consciousness. This study of hidden TBI followed the identification of 143 individuals who, within a larger study of people with TBI who live in the community, identified themselves as "nondisabled" (they were to be part of the comparison sample) but who had experienced a blow to the head that left them at minimum dazed and confused. 21 of these 143 individuals also reported large numbers of symptoms (eg, headaches, memory problems) associated with TBI. This group (Hidden TBI-High Symptoms group) was compared to three other matched samples: one with known TBI (Known Mild TBI group) and one with no disability (No Disability group) (both of which were drawn from the larger study), and one group of individuals who identified themselves as having no disability but who had experienced a blow to the head that resulted in a few symptoms (Head Trauma-Low Symptoms group). All study participants were administered an interview that incorporated several existing instruments documenting levels of reported symptoms, emotional well-being/distress, and vocational/social handicaps. The Hidden TBI-High Symptoms group was found to be similar to the Known Mild TBI group in terms of the number and types of symptoms experienced, whereas the Head Trauma-Low Symptoms group was similar in this respect to the No Disability group. The two former groups also evidenced high levels of emotional distress, whereas the two latter groups did not. However, on measures of handicap, the Hidden TBI-High Symptoms and Head Trauma

  2. Diminished supraspinal pain modulation in patients with mild traumatic brain injury

    PubMed Central

    Shukla, Shivshil; Yang, Eric; Canlas, Bryan; Kadokana, Mawj; Heald, Jason; Davani, Ariea; Song, David; Lin, Lisa; Polston, Greg; Tsai, Alice; Lee, Roland

    2016-01-01

    Background Chronic pain conditions are highly prevalent in patients with mild traumatic brain injury. Supraspinal diffuse axonal injury is known to dissociate brain functional connectivity in these patients. The effect of this dissociated state on supraspinal pain network is largely unknown. A functional magnetic resonance imaging study was conducted to compare the supraspinal pain network in patients with mild traumatic brain injury to the gender and age-matched healthy controls with the hypothesis that the functional connectivities of the medial prefrontal cortices, a supraspinal pain modulatory region to other pain-related sensory discriminatory and affective regions in the mild traumatic brain injury subjects are significantly reduced in comparison to healthy controls. Results The mild traumatic brain injury group (N = 15) demonstrated significantly (P < 0.01, cluster threshold > 150 voxels) less activities in the thalamus, pons, anterior cingulate cortex, insula, dorsolateral prefrontal cortex, and medial prefrontal cortices than the healthy control group (N = 15). Granger Causality Analyses (GCA) indicated while the left medial prefrontal cortices of the healthy control group cast a noticeable degree of outward (to affect) causality inference to multiple pain processing related regions, this outward inference pattern was not observed in the mild traumatic brain injury group. On the other hand, only patients’ bilateral anterior cingulate cortex received multiple inward (to be affected) causality inferences from regions including the primary and secondary somatosensory cortices and the inferior parietal lobe. Resting state functional connectivity analyses indicated that the medial prefrontal cortices of the mild traumatic brain injury group demonstrated a significantly (P < 0.01, F = 3.6, cluster size > 150 voxels) higher degree of functional connectivity to the inferior parietal lobe, premotor and secondary somatosensory cortex

  3. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Browning, Megan; Shear, Deborah A; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Schmid, Kara E; Poloyac, Samuel M; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.

  4. Graph analysis of functional brain networks for cognitive control of action in traumatic brain injury.

    PubMed

    Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P

    2012-04-01

    Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.

  5. 78 FR 12334 - Proposed Collection; Comment Request: Federal Interagency Traumatic Brain Injury Research (FITBIR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Traumatic Brain Injury Research (FITBIR) Informatics System Data Access Request SUMMARY: In compliance with.... Proposed Collection: Federal Interagency Traumatic Brain Injury Research (FITBIR) Informatics System...

  6. Nogo presence is inversely associated with shifts in cortical microglial morphology following experimental diffuse brain injury.

    PubMed

    Ziebell, Jenna M; Ray-Jones, Helen; Lifshitz, Jonathan

    2017-09-17

    Diffuse traumatic brain injury (TBI) initiates secondary pathology, including inflammation and reduced myelination. Considering these injury-related pathologies, the many states of activated microglia as demonstrated by differing morphologies would form, migrate, and function in and through fields of growth-inhibitory myelin byproduct, specifically Nogo. Here we evaluate the relationship between inflammation and reduced myelin antigenicity in the wake of diffuse TBI and present the hypothesis that the Nogo-66 receptor antagonist peptide NEP(1-40) would reverse the injury-induced shift in distribution of microglia morphologies by limiting myelin-based inhibition. Adult male rats were subjected to midline fluid percussion sham or brain injury. At 2h, 6h, 1d, 2d, 7d, and 21d post-injury, immunohistochemical staining was analyzed in sensory cortex (S1BF) for myelin antigens (myelin basic protein; MBP and CNPase), microglia morphology (ionized calcium-binding adapter protein; Iba1), Nogo receptor and Nogo. Pronounced reduction in myelin antigenicity was evident transiently at 1d post-injury, as evidenced by decreased MBP and CNPase staining, as well as loss of white matter organization, compared to sham and later injury time points. Concomitant with reduced myelin antigenicity, injury shifted microglia morphology from the predominantly ramified morphology observed in sham-injured cortex to hyper-ramified, activated, fully activated, or rod. Changes in microglial morphology were evident as early as 2h post-injury, and remained at least until day 21. Additional cohorts of uninjured and brain-injured animals received vehicle or drug (NEP(1-40), i.p., 15min and 19h post-injury) and brains were collected at 2h, 6h, 1d, 2d, or 7d post-injury. NEP(1-40) administration further shifted distributions of microglia away from an injury-induced activated morphology toward greater proportions of rod and macrophage-like morphologies compared to vehicle-treated. By 7d post-injury, no

  7. Rehabilitation of persons with traumatic brain injury.

    PubMed

    The objective of this NIH Consensus Statement is to inform the biomedical research and clinical practice communities of the results of the NIH Consensus Development Conference on Rehabilitation of Persons with Traumatic Brain Injury. The statement provides state-of-the-art information regarding effective rehabilitation measures for persons who have suffered a traumatic brain injury (TBI) and presents the conclusions and recommendations of the consensus panel regarding these issues. In addition, the statement identifies those areas that deserve further investigation. Upon completion of this educational activity, the reader should possess a clear working clinical knowledge of the state of the art regarding this topic. The target audience for this statement includes, but is not limited to, pediatricians, family practitioners, internists, neurologists, physiatrists, psychologists, and behavioral medicine specialists. Participants were a non-Federal, nonadvocate, 16-member panel representing the fields of neuropsychology, neurology, psychiatry, behavioral medicine, family medicine, pediatrics, physical medicine and rehabilitation, speech and hearing, occupational therapy, nursing, epidemiology, biostatistics and the public. In addition, 23 experts from these same fields presented data to the panel and a conference audience of 883. The literature was searched through Medline and an extensive bibliography of references was provided to the panel and the conference audience. Experts prepared abstracts with relevant citations from the literature. A compendium of evidence was prepared by the panel which included a contribution from a patient with TBI, a report from an Evidence Based Practice Center of the Agency for Health Care Policy and Research, and a report from the National Center for Injury Prevention and Control at the Centers for Disease Control and Prevention. Scientific evidence was given precedence over clinical anecdotal experience. The panel, answering predefined

  8. Critical care management of traumatic brain injury.

    PubMed

    Menon, D K; Ercole, A

    2017-01-01

    Traumatic brain injury (TBI) is a growing global problem, which is responsible for a substantial burden of disability and death, and which generates substantial healthcare costs. High-quality intensive care can save lives and improve the quality of outcome. TBI is extremely heterogeneous in terms of clinical presentation, pathophysiology, and outcome. Current approaches to the critical care management of TBI are not underpinned by high-quality evidence, and many of the current therapies in use have not shown benefit in randomized control trials. However, observational studies have informed the development of authoritative international guidelines, and the use of multimodality monitoring may facilitate rational approaches to optimizing acute physiology, allowing clinicians to optimize the balance between benefit and risk from these interventions in individual patients. Such approaches, along with the emerging impact of advanced neuroimaging, genomics, and protein biomarkers, could lead to the development of precision medicine approaches to the intensive care management of TBI.

  9. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  10. Hippocampal head atrophy after traumatic brain injury.

    PubMed

    Ariza, Mar; Serra-Grabulosa, Josep M; Junqué, Carme; Ramírez, Blanca; Mataró, Maria; Poca, Antonia; Bargalló, Nuria; Sahuquillo, Juan

    2006-01-01

    Traumatic brain injury (TBI) causes hippocampal damage. The hippocampus can be macroscopically divided into the head, body and tail, which differ in terms of their sensitivity to excitability and also in terms of their cortical connections. We investigated whether damage also varies according to the hippocampal area involved, and studied the relationship of hippocampal reductions with memory performance. Twenty TBI patients and matched controls were examined. MRI measurements were performed separately for the hippocampal head, body and tail. Memory outcome was measured by Rey's auditory verbal learning test, Rey's complex figure test and a modified version of Warrington's facial recognition memory test. Group comparison showed that patients had bilateral hippocampal atrophy, mainly involving the hippocampal head. Moreover, TBI subjects showed verbal memory deficits which presented slight correlations with left hippocampal head atrophy.

  11. Functional communication screening in individuals with traumatic brain injury.

    PubMed

    Drummond, Sakina S; Boss, Michelle R

    2004-01-01

    The feasibility of a novel instrument, the Functional Communication Scale (FCS), was determined for individuals with moderate-to-mild cognitive-communication deficits secondary to traumatic brain injury (TBI). A group design including 30 adults with confirmed diagnosis and communication problems was utilized. Conversational samples with each participant were videotaped and rated for 13 FCS items. Three raters with diverse clinical experiences rated the elicited samples. Results identified significant and positive relationships between the cognitive-communication severities and the total FCS scores. Significant inter- and intra-rater reliability scores were found for the three raters. The FCS also determined significant differences between individuals with and without concurrent aphasia or dysarthria. No obvious differences were found between males and females nor between individuals with the primary diagnosis of TBI vs other neurological aetiologies. These findings have implications for assessing the adequacy of functional communication of individuals who are candidates for community re-entry.

  12. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  13. Lateralized Response of Dynorphin A Peptide Levels after Traumatic Brain Injury

    PubMed Central

    Hussain, Zubair Muhammad; Fitting, Sylvia; Watanabe, Hiroyuki; Usynin, Ivan; Yakovleva, Tatjana; Knapp, Pamela E.; Scheff, Stephen W.; Hauser, Kurt F.

    2012-01-01

    Abstract Traumatic brain injury (TBI) induces a cascade of primary and secondary events resulting in impairment of neuronal networks that eventually determines clinical outcome. The dynorphins, endogenous opioid peptides, have been implicated in secondary injury and neurodegeneration in rodent and human brain. To gain insight into the role of dynorphins in the brain's response to trauma, we analyzed short-term (1-day) and long-term (7-day) changes in dynorphin A (Dyn A) levels in the frontal cortex, hippocampus, and striatum, induced by unilateral left-side or right-side cortical TBI in mice. The effects of TBI were significantly different from those of sham surgery (Sham), while the sham surgery also produced noticeable effects. Both sham and TBI induced short-term changes and long-term changes in all three regions. Two types of responses were generally observed. In the hippocampus, Dyn A levels were predominantly altered ipsilateral to the injury. In the striatum and frontal cortex, injury to the right (R) hemisphere affected Dyn A levels to a greater extent than that seen in the left (L) hemisphere. The R-TBI but not L-TBI produced Dyn A changes in the striatum and frontal cortex at 7 days after injury. Effects of the R-side injury were similar in the two hemispheres. In naive animals, Dyn A was symmetrically distributed between the two hemispheres. Thus, trauma may reveal a lateralization in the mechanism mediating the response of Dyn A-expressing neuronal networks in the brain. These networks may differentially mediate effects of left and right brain injury on lateralized brain functions. PMID:22468884

  14. Cerebrovascular pathophysiology following mild traumatic brain injury.

    PubMed

    Len, T K; Neary, J P

    2011-03-01

    Mild traumatic brain injury (mTBI) or sport-induced concussion has recently become a prominent concern not only in the athletic setting (i.e. sports venue) but also in the general population. The majority of research to date has aimed at understanding the neurological and neuropsychological outcomes of injury as well as return-to-play guidelines. Remaining relatively unexamined has been the pathophysiological aspect of mTBI. Recent technological advances including transcranial Doppler ultrasound and near infrared spectroscopy have allowed researchers to examine the systemic effects of mTBI from rest to exercise, and during both asymptomatic and symptomatic conditions. In this review, we focus on the current research available from both human and experimental (animal) studies surrounding the pathophysiology of mTBI. First, the quest for a unified definition of mTBI, its historical development and implications for future research is discussed. Finally, the impact of mTBI on the control and regulation of cerebral blood flow, cerebrovascular reactivity, cerebral oxygenation and neuroautonomic cardiovascular regulation, all of which may be compromised with mTBI, is discussed. © 2010 The Authors. Clinical Physiology and Functional Imaging © 2010 Scandinavian Society of Clinical Physiology and Nuclear Medicine.

  15. Iatrogenic traumatic brain injury during tooth extraction.

    PubMed

    Troxel, Mark

    2015-01-01

    An 8 yr old spayed female Yorkshire terrier was referred for evaluation of progressive neurological signs after a routine dental prophylaxis with tooth extractions. The patient was circling to the left and blind in the right eye with right hemiparesis. Neurolocalization was to the left forebrain. MRI revealed a linear tract extending from the caudal oropharynx, through the left retrobulbar space and frontal lobe, into the left parietal lobe. A small skull fracture was identified in the frontal bone through which the linear tract passed. Those findings were consistent with iatrogenic trauma from slippage of a dental elevator during extraction of tooth 210. The dog was treated empirically with clindamycin. The patient regained most of its normal neurological function within the first 4 mo after the initial injury. Although still not normal, the dog has a good quality of life. Traumatic brain injury is a rarely reported complication of extraction. Care must be taken while performing dental cleaning and tooth extraction, especially of the maxillary premolar and molar teeth to avoid iatrogenic damage to surrounding structures.

  16. Diabetes Insipidus after Traumatic Brain Injury

    PubMed Central

    Capatina, Cristina; Paluzzi, Alessandro; Mitchell, Rosalid; Karavitaki, Niki

    2015-01-01

    Traumatic brain injury (TBI) is a significant cause of morbidity and mortality in many age groups. Neuroendocrine dysfunction has been recognized as a consequence of TBI and consists of both anterior and posterior pituitary insufficiency; water and electrolyte abnormalities (diabetes insipidus (DI) and the syndrome of inappropriate antidiuretic hormone secretion (SIADH)) are amongst the most challenging sequelae. The acute head trauma can lead (directly or indirectly) to dysfunction of the hypothalamic neurons secreting antidiuretic hormone (ADH) or of the posterior pituitary gland causing post-traumatic DI (PTDI). PTDI is usually diagnosed in the first days after the trauma presenting with hypotonic polyuria. Frequently, the poor general status of most patients prevents adequate fluid intake to compensate the losses and severe dehydration and hypernatremia occur. Management consists of careful monitoring of fluid balance and hormonal replacement. PTDI is associated with high mortality, particularly when presenting very early following the injury. In many surviving patients, the PTDI is transient, lasting a few days to a few weeks and in a minority of cases, it is permanent requiring management similar to that offered to patients with non-traumatic central DI. PMID:26239685

  17. Systemic manifestations of traumatic brain injury.

    PubMed

    Gaddam, Samson Sujit Kumar; Buell, Thomas; Robertson, Claudia S

    2015-01-01

    Traumatic brain injury (TBI) affects functioning of various organ systems in the absence of concomitant non-neurologic organ injury or systemic infection. The systemic manifestations of TBI can be mild or severe and can present in the acute phase or during the recovery phase. Non-neurologic organ dysfunction can manifest following mild TBI or severe TBI. The pathophysiology of systemic manifestations following TBI is multifactorial and involves an effect on the autonomic nervous system, involvement of the hypothalamic-pituitary axis, release of inflammatory mediators, and treatment modalities used for TBI. Endocrine dysfunction, electrolyte imbalance, and respiratory manifestations are common following TBI. The influence of TBI on systemic immune response, coagulation cascade, cardiovascular system, gastrointestinal system, and other systems is becoming more evident through animal studies and clinical trials. Systemic manifestations can independently act as risk factors for mortality and morbidity following TBI. Some conditions like neurogenic pulmonary edema and disseminated intravascular coagulation can adversely affect the outcome. Early recognition and treatment of systemic manifestations may improve the clinical outcome following TBI. Further studies are required especially in the field of neuroimmunology to establish the role of various biochemical cascades, not only in the pathophysiology of TBI but also in its systemic manifestations and outcome.

  18. Hypoaminoacidemia Characterizes Chronic Traumatic Brain Injury.

    PubMed

    Durham, William J; Foreman, Jack P; Randolph, Kathleen M; Danesi, Christopher P; Spratt, Heidi; Masel, Brian D; Summons, Jennifer R; Singh, Charan K; Morrison, Melissa; Robles, Claudia; Wolfram, Cindy; Kreber, Lisa A; Urban, Randall J; Sheffield-Moore, Melinda; Masel, Brent E

    2017-01-15

    Individuals with a history of traumatic brain injury (TBI) are at increased risk for a number of disorders, including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. However, mediators of the long-term morbidity are uncertain. We conducted a multi-site, prospective trial in chronic TBI patients (∼18 years post-TBI) living in long-term 24-h care environments and local controls without a history of head injury. Inability to give informed consent was exclusionary for participation. A total of 41 individuals (17 moderate-severe TBI, 24 controls) were studied before and after consumption of a standardized breakfast to determine if concentrations of amino acids, cytokines, C-reactive protein, and insulin are potential mediators of long-term TBI morbidity. Analyte concentrations were measured in serum drawn before (fasting) and 1 h after meal consumption. Mean ages were 44 ± 15 and 49 ± 11 years for controls and chronic TBI patients, respectively. Chronic TBI patients had significantly lower circulating concentrations of numerous individual amino acids, as well as essential amino acids (p = 0.03) and large neutral amino acids (p = 0.003) considered as groups, and displayed fundamentally altered cytokine-amino acid relationships. Many years after injury, TBI patients exhibit abnormal metabolic responses and altered relationships between circulating amino acids, cytokines, and hormones. This pattern is consistent with TBI, inducing a chronic disease state in patients. Understanding the mechanisms causing the chronic disease state could lead to new treatments for its prevention.

  19. Sleep Disturbances in Traumatic Brain Injury: A Meta-Analysis

    PubMed Central

    Grima, Natalie; Ponsford, Jennie; Rajaratnam, Shantha M.; Mansfield, Darren; Pase, Matthew P.

    2016-01-01

    Study Objectives: Sleep disturbances are frequently reported following traumatic brain injury (TBI); however, the exact disturbances remain unclear. This meta-analysis aimed to characterize sleep disturbance in community dwelling patients with TBI as compared to controls. Methods: Two investigators independently conducted a systematic search of multiple electronic databases from inception to May 27, 2015. Studies were selected if they compared sleep in community dwelling individuals with TBI relative to a control population without head injury. Data were pooled in meta-analysis with outcomes expressed as the standard mean difference (SMD) and 95% confidence interval (CI). The primary outcomes were derived from polysomnography and secondary outcomes were derived from subjective sleep measures. Results: Sixteen studies were included, combining 637 TBI patients and 567 controls, all of whom were community dwelling. Pooled polysomnography data revealed that TBI patients had poorer sleep efficiency (SMD = −0.47, CI: −0.89, −0.06), shorter total sleep duration (SMD = −0.37, CI: −0.59, −0.16), and greater wake after sleep onset time (SMD = 0.60, CI: 0.33, 0.87). Although sleep architecture was similar between the groups, a trend suggested that TBI patients may spend less time in REM sleep (SMD = −0.22, CI: −0.45, 0.01). Consistent with polysomnographic derangement, TBI patients reported greater subjective sleepiness and poorer perceived sleep quality. Conclusions: The evidence suggests that TBI is associated with widespread objective and subjective sleep deficits. The present results highlight the need for physicians to monitor and address sleep deficits following TBI. Citation: Grima N, Ponsford J, Rajaratnam SM, Mansfield D, Pase MP. Sleep disturbances in traumatic brain injury: a meta-analysis. J Clin Sleep Med 2016;12(3):419–428. PMID:26564384

  20. Visual agnosia and focal brain injury.

    PubMed

    Martinaud, O

    Visual agnosia encompasses all disorders of visual recognition within a selective visual modality not due to an impairment of elementary visual processing or other cognitive deficit. Based on a sequential dichotomy between the perceptual and memory systems, two different categories of visual object agnosia are usually considered: 'apperceptive agnosia' and 'associative agnosia'. Impaired visual recognition within a single category of stimuli is also reported in: (i) visual object agnosia of the ventral pathway, such as prosopagnosia (for faces), pure alexia (for words), or topographagnosia (for landmarks); (ii) visual spatial agnosia of the dorsal pathway, such as cerebral akinetopsia (for movement), or orientation agnosia (for the placement of objects in space). Focal brain injuries provide a unique opportunity to better understand regional brain function, particularly with the use of effective statistical approaches such as voxel-based lesion-symptom mapping (VLSM). The aim of the present work was twofold: (i) to review the various agnosia categories according to the traditional visual dual-pathway model; and (ii) to better assess the anatomical network underlying visual recognition through lesion-mapping studies correlating neuroanatomical and clinical outcomes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Microglia and Inflammation: Impact on Developmental Brain Injuries

    ERIC Educational Resources Information Center

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  2. Microglia and Inflammation: Impact on Developmental Brain Injuries

    ERIC Educational Resources Information Center

    Chew, Li-Jin; Takanohashi, Asako; Bell, Michael

    2006-01-01

    Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…

  3. Death following traumatic brain injury in Drosophila is associated with intestinal barrier dysfunction

    PubMed Central

    Katzenberger, Rebeccah J; Chtarbanova, Stanislava; Rimkus, Stacey A; Fischer, Julie A; Kaur, Gulpreet; Seppala, Jocelyn M; Swanson, Laura C; Zajac, Jocelyn E; Ganetzky, Barry; Wassarman, David A

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Unfavorable TBI outcomes result from primary mechanical injuries to the brain and ensuing secondary non-mechanical injuries that are not limited to the brain. Our genome-wide association study of Drosophila melanogaster revealed that the probability of death following TBI is associated with single nucleotide polymorphisms in genes involved in tissue barrier function and glucose homeostasis. We found that TBI causes intestinal and blood–brain barrier dysfunction and that intestinal barrier dysfunction is highly correlated with the probability of death. Furthermore, we found that ingestion of glucose after a primary injury increases the probability of death through a secondary injury mechanism that exacerbates intestinal barrier dysfunction. Our results indicate that natural variation in the probability of death following TBI is due in part to genetic differences that affect intestinal barrier dysfunction. DOI: http://dx.doi.org/10.7554/eLife.04790.001 PMID:25742603

  4. Bruxism after brain injury: successful treatment with botulinum toxin-A.

    PubMed

    Ivanhoe, C B; Lai, J M; Francisco, G E

    1997-11-01

    Bruxism, the rhythmic grinding of teeth--usually during sleep--is not an infrequent complication of traumatic brain injury. Its prevalence in the general population is 21%, but its incidence after brain injury is unknown. Untreated, bruxism causes masseter hypertrophy, headache, temporomandibular joint destruction, and total dental wear. We report a case of complete resolution of postanoxic bruxism after treatment with botulinum toxin-A (BTX-A). The patient was a 28-year-old man with no history of bruxism who sustained an anoxic brain injury secondary to cardiac arrest of unknown etiology. On admission to our rehabilitation unit 2 months after the injury, the patient presented with severe bruxism and heavy dental wear. The patient was injected with a total of 200 units of BTX-A to each masseter and temporalis. There was total resolution of bruxism 2 days after injection, with no complications. On follow-up 3 months after injection, the patient remained free of bruxism. We propose that botulinum toxin be considered as a treatment for bruxism secondary to anoxic brain injury. Further studies regarding muscle selection and medication dosage are warranted to elucidate the toxin's efficacy in this condition.

  5. Memory functioning after traumatic brain injury in children.

    PubMed

    Donders, J

    1993-01-01

    Immediate and 45-minute delayed recall of a paragraph-length story and of a complex geometric figure were investigated in a sample of 30 children with traumatic brain injury. There was no significant difference between children with mild to moderate injuries and children with severe injuries with regard to general level of verbal recall. However, there was a trend for children with mild to moderate injuries to have better recall of visual information than children with severe injuries. Recall of verbally presented information deteriorated significantly over the 45-minute delay, regardless of injury severity. No such deterioration was found for recall of visually presented information. Clinical and research implications are discussed.

  6. Barbiturates for acute traumatic brain injury.

    PubMed

    Roberts, Ian; Sydenham, Emma

    2012-12-12

    Raised intracranial pressure (ICP) is an important complication of severe brain injury, and is associated with high mortality. Barbiturates are believed to reduce ICP by suppressing cerebral metabolism, thus reducing cerebral metabolic demands and cerebral blood volume. However, barbiturates also reduce blood pressure and may, therefore, adversely effect cerebral perfusion pressure. To assess the effects of barbiturates in reducing mortality, disability and raised ICP in people with acute traumatic brain injury. To quantify any side effects resulting from the use of barbiturates. The following electronic databases were searched on 26 September 2012: CENTRAL (The Cochrane Library), MEDLINE (Ovid SP), PubMed, EMBASE (Ovid SP), PsycINFO (Ovid SP), PsycEXTRA (Ovid SP), ISI Web of Science: Science Citation Index and Conference Proceedings Citation Index-Science. Searching was not restricted by date, language or publication status. We also searched the reference lists of the included trials and review articles. We contacted researchers for information on ongoing studies. Randomised controlled trials of one or more of the barbiturate class of drugs, where study participants had clinically diagnosed acute traumatic brain injury of any severity. Two review authors screened the search results, extracted data and assessed the risk of bias in the trials. Data from seven trials involving 341 people are included in this review.For barbiturates versus no barbiturate, the pooled risk ratio (RR) of death from three trials was 1.09 (95% confidence interval (CI) 0.81 to 1.47). Death or disability, measured using the Glasgow Outcome Scale was assessed in two trials, the RR with barbiturates was 1.15 (95% CI 0.81 to 1.64). Two trials examined the effect of barbiturate therapy on ICP. In one, a smaller proportion of patients in the barbiturate group had uncontrolled ICP (68% versus 83%); the RR for uncontrolled ICP was 0.81 (95% CI 0.62 to 1.06). In the other, mean ICP was also lower in

  7. Psychopharmacologic treatment of acquired attention disorders in children with brain injury.

    PubMed

    Mahalick, D M; Carmel, P W; Greenberg, J P; Molofsky, W; Brown, J A; Heary, R F; Marks, D; Zampella, E; Hodosh, R; von der Schmidt, E

    1998-09-01

    This investigation examined the efficacy of psychostimulant therapy in alleviating neurobehavioral dysfunction attendant to pediatric brain injury. The most commonly reported neurobehavioral sequelae associated with head injury in the pediatric population involve deficits along the attentional matrix. This is also the most common objectively documented neurobehavioral finding among children as well as adults. There are several investigations in the adult literature which have employed the use of psychostimulants in treating both psychiatric and neuropsychological residua associated with head injury. Overall, the results of these studies are equivocal, but suggest a beneficial impact on general functioning. The present prospective investigation utilized a double-blind, placebo-controlled, cross-over experimental design to examine the efficacy of methylphenidate in treating children with acquired attentional disorders secondary to brain injury. A cohort of 14 children with varying degrees of head injury were recruited for participation. As expected, differences between drug and placebo conditions uniformly achieved statistical significance. Additionally, there were no differences in performance between baseline and placebo conditions on neurobehavioral tasks of attention and concentration. Current findings suggest that methylphenidate (and probably other psychostimulants such as Cylert, Adderal, Wellbutrin and dextroamphetamine sulfate) is an extremely effective agent in treating attentional disorders secondary to brain injury in children.

  8. Exercise preconditioning improves traumatic brain injury outcomes.

    PubMed

    Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J

    2015-10-05

    To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Exercise Preconditioning Improves Traumatic Brain Injury Outcomes

    PubMed Central

    Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.

    2015-01-01

    Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153

  10. Chronic Traumatic Encephalopathy: The Neuropathological Legacy of Traumatic Brain Injury.

    PubMed

    Hay, Jennifer; Johnson, Victoria E; Smith, Douglas H; Stewart, William

    2016-05-23

    Almost a century ago, the first clinical account of the punch-drunk syndrome emerged, describing chronic neurological and neuropsychiatric sequelae occurring in former boxers. Thereafter, throughout the twentieth century, further reports added to our understanding of the neuropathological consequences of a career in boxing, leading to descriptions of a distinct neurodegenerative pathology, termed dementia pugilistica. During the past decade, growing recognition of this pathology in autopsy studies of nonboxers who were exposed to repetitive, mild traumatic brain injury, or to a single, moderate or severe traumatic brain injury, has led to an awareness that it is exposure to traumatic brain injury that carries with it a risk of this neurodegenerative disease, not the sport or the circumstance in which the injury is sustained. Furthermore, the neuropathology of the neurodegeneration that occurs after traumatic brain injury, now termed chronic traumatic encephalopathy, is acknowledged as being a complex, mixed, but distinctive pathology, the detail of which is reviewed in this article.

  11. Sports-related brain injuries: connecting pathology to diagnosis.

    PubMed

    Pan, James; Connolly, Ian D; Dangelmajer, Sean; Kintzing, James; Ho, Allen L; Grant, Gerald

    2016-04-01

    Brain injuries are becoming increasingly common in athletes and represent an important diagnostic challenge. Early detection and management of brain injuries in sports are of utmost importance in preventing chronic neurological and psychiatric decline. These types of injuries incurred during sports are referred to as mild traumatic brain injuries, which represent a heterogeneous spectrum of disease. The most dramatic manifestation of chronic mild traumatic brain injuries is termed chronic traumatic encephalopathy, which is associated with profound neuropsychiatric deficits. Because chronic traumatic encephalopathy can only be diagnosed by postmortem examination, new diagnostic methodologies are needed for early detection and amelioration of disease burden. This review examines the pathology driving changes in athletes participating in high-impact sports and how this understanding can lead to innovations in neuroimaging and biomarker discovery.

  12. [Traumatic brain injury--pathophysiology and clinic seen from a neurosurgical point of view].

    PubMed

    Eskesen, Vagn Nørgaard

    2007-01-15

    Traumatic brain injury (TBI) can be divided into primary and secondary brain damage. The primary damage occurs at the time of impact, induces neuronal death and is refractory to treatment. The secondary damage occurs at some time after the impact, has extracranial (hypoxia/hypotension) and intracranial (haematomas/swelling) causes and is largely preventable and treatable. Initially, TBI should be treated by the principles of ATLS. Space-occupying haematomas should be evacuated and neuro-intensive monitoring and treatment of intracranial pathology are mandatory in severe TBI.

  13. Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates.

    PubMed

    Gold, Mark S; Kobeissy, Firas H; Wang, Kevin K W; Merlo, Lisa J; Bruijnzeel, Adriaan W; Krasnova, Irina N; Cadet, Jean Lud

    2009-07-15

    The use of methamphetamine (METH) is a growing public health problem, because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans, because of mechanical injuries (e.g., traumatic brain injury [TBI]) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug METH can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (alphaII-spectrin protein and microtubule-associated protein-tau), evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI.

  14. Methamphetamine- and Trauma-Induced Brain Injuries: Comparative Cellular and Molecular Neurobiological Substrates

    PubMed Central

    Gold, Mark S.; Kobeissy, Firas H.; Wang, Kevin K.W.; Merlo, Lisa J.; Bruijnzeel, Adriaan W.; Krasnova, Irina N.; Cadet, Jean Lud

    2009-01-01

    The use of methamphetamine (METH) is a growing public health problem because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans as a result of mechanical injuries (e.g. traumatic brain injury, TBI) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug, METH, can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (αII-spectrin and MAP-tau protein) evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with the use of potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI. PMID:19345341

  15. Imaging modalities in mild traumatic brain injury and sports concussion.

    PubMed

    Gonzalez, Peter G; Walker, Matthew T

    2011-10-01

    Mild traumatic brain injury is a significant public health issue that has been gaining considerable attention over the past few years. After injury, a large percentage of patients experience postconcussive symptoms that affect work and school performance and that carry significant medicolegal implications. Conventional imaging modalities (computed tomography and magnetic resonance imaging) are insensitive to microstructural changes and underestimate the degree of diffuse axonal injury and metabolic changes. Newer imaging techniques have attempted to better diagnose and characterize diffuse axonal injury and the metabolic and functional aspects of traumatic brain injury. The following review article summarizes the currently available imaging studies and describes the novel and more investigational techniques available for mild traumatic brain injury. A suggested algorithm is offered.

  16. Social interaction attenuates the extent of secondary neuronal damage following closed head injury in mice

    PubMed Central

    Doulames, Vanessa M.; Vilcans, Meghan; Lee, Sangmook; Shea, Thomas B.

    2015-01-01

    Recovery following Traumatic Brain Injury (TBI) can vary tremendously among individuals. Lifestyle following injury, including differential social interactions, may modulate the extent of secondary injury following TBI. To examine this possibility under controlled conditions, closed head injury (CHI) was induced in C57Bl6 mice using a standardized weight drop device after which mice were either housed in isolation or with their original cagemates (“socially-housed”) for 4 weeks. CHI transiently impaired novel object recognition (NOR) in both isolated and social mice, confirming physical and functional injury. By contrast, Y maze navigation was impaired in isolated but not social mice at 1–4 weeks post CHI. CHI increased excitotoxic signaling in hippocampal slices from all mice, which was transiently exacerbated by isolation at 2 weeks post CHI. CHI slightly increased reactive oxygen species and did not alter levels of amyloid beta (Abeta), total or phospho-tau, total or phosphorylated neurofilaments. CHI increased serum corticosterone in both groups, which was exacerbated by isolation. These findings support the hypothesis that socialization may attenuate secondary damage following TBI. In addition, a dominance hierarchy was noted among socially-housed mice, in which the most submissive mouse displayed indices of stress in the above analyses that were statistically identical to those observed for isolated mice. This latter finding underscores that the nature and extent of social interaction may need to vary among individuals to provide therapeutic benefit. PMID:26528156

  17. Longitudinal Examination of Resilience after Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2017-07-19

    To evaluate the trajectory of resilience during the first year following a moderate-severe TBI, factors associated with resilience at 3, 6 and 12-months post-injury, and changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N = 195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3, 6, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year post-injury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to non-minority status, absence of pre-injury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017. Published by Elsevier Inc.

  18. Are neuropsychiatric symptoms associated with evidence of right brain injury in referrals to a neuropsychiatric brain injury unit?

    PubMed

    Borek, L L; Butler, R; Fleminger, S

    2001-01-01

    Studies suggest that neuropsychiatric symptoms are more common in patients with injury to the right side of the brain. However, most studies have examined patients with penetrating injuries because these allow more accurate localization of brain damage. This study investigates whether a similar association would be found in patients with non-penetrating brain injuries presenting to a neuropsychiatric unit. Over a 2 year period, 98 referrals were examined. Damage was localized using routine operation notes, EEG and neuroimaging. In total, 34 patients (35%) had a predominately right-sided injury, 33 (34%) had a left-sided injury and 31 (32%) had a diffuse or bilateral injury. Right-sided injuries were associated with hallucinations (p = 0.05), and left-sided injuries were associated with confabulation (p = 0.05) and lack of insight (p = 0.07). These results are consistent with findings from patients with penetrating head injuries. They suggest that evidence of the laterality of injury may be useful for planning the rehabilitation of patients seen in neuropsychiatric brain injury units.

  19. DARPA challenge: developing new technologies for brain and spinal injuries

    NASA Astrophysics Data System (ADS)

    Macedonia, Christian; Zamisch, Monica; Judy, Jack; Ling, Geoffrey

    2012-06-01

    The repair of traumatic injuries to the central nervous system remains among the most challenging and exciting frontiers in medicine. In both traumatic brain injury and spinal cord injuries, the ultimate goals are to minimize damage and foster recovery. Numerous DARPA initiatives are in progress to meet these goals. The PREventing Violent Explosive Neurologic Trauma program focuses on the characterization of non-penetrating brain injuries resulting from explosive blast, devising predictive models and test platforms, and creating strategies for mitigation and treatment. To this end, animal models of blast induced brain injury are being established, including swine and non-human primates. Assessment of brain injury in blast injured humans will provide invaluable information on brain injury associated motor and cognitive dysfunctions. The Blast Gauge effort provided a device to measure warfighter's blast exposures which will contribute to diagnosing the level of brain injury. The program Cavitation as a Damage Mechanism for Traumatic Brain Injury from Explosive Blast developed mathematical models that predict stresses, strains, and cavitation induced from blast exposures, and is devising mitigation technologies to eliminate injuries resulting from cavitation. The Revolutionizing Prosthetics program is developing an avant-garde prosthetic arm that responds to direct neural control and provides sensory feedback through electrical stimulation. The Reliable Neural-Interface Technology effort will devise technologies to optimally extract information from the nervous system to control next generation prosthetic devices with high fidelity. The emerging knowledge and technologies arising from these DARPA programs will significantly improve the treatment of brain and spinal cord injured patients.

  20. Traumatic brain injury is under-diagnosed in patients with spinal cord injury.

    PubMed

    Tolonen, Anu; Turkka, Jukka; Salonen, Oili; Ahoniemi, Eija; Alaranta, Hannu

    2007-10-01

    To investigate the occurrence and severity of traumatic brain injury in patients with traumatic spinal cord injury. Cross-sectional study with prospective neurological, neuropsychological and neuroradiological examinations and retrospective medical record review. Thirty-one consecutive, traumatic spinal cord injury patients on their first post-acute rehabilitation period in a national rehabilitation centre. The American Congress of Rehabilitation Medicine diagnostic criteria for mild traumatic brain injury were applied. Assessments were performed with neurological and neuropsychological examinations and magnetic resonance imaging 1.5T. Twenty-three of the 31 patients with spinal cord injury (74%) met the diagnostic criteria for traumatic brain injury. Nineteen patients had sustained a loss of consciousness or post-traumatic amnesia. Four patients had a focal neurological finding and 21 had neuropsychological findings apparently due to traumatic brain injury. Trauma-related magnetic resonance imaging abnormalities were detected in 10 patients. Traumatic brain injury was classified as moderate or severe in 17 patients and mild in 6 patients. The results suggest a high frequency of traumatic brain injury in patients with traumatic spinal cord injury, and stress a special diagnostic issue to be considered in this patient group.

  1. Motor Vehicle Crash Brain Injury in Infants and Toddlers: A Suitable Model for Inflicted Head Injury?

    ERIC Educational Resources Information Center

    Shah, Mahim; Vavilala, Monica S.; Feldman, Kenneth W.; Hallam, Daniel K.

    2005-01-01

    Objective: Children involved in motor vehicle crash (MVC) events might experience angular accelerations similar to those experienced by children with inflicted traumatic brain injury (iTBI). This is a pilot study to determine whether the progression of signs and symptoms and radiographic findings of MVC brain injury (mvcTBI) in children of the age…

  2. Motor Vehicle Crash Brain Injury in Infants and Toddlers: A Suitable Model for Inflicted Head Injury?

    ERIC Educational Resources Information Center

    Shah, Mahim; Vavilala, Monica S.; Feldman, Kenneth W.; Hallam, Daniel K.

    2005-01-01

    Objective: Children involved in motor vehicle crash (MVC) events might experience angular accelerations similar to those experienced by children with inflicted traumatic brain injury (iTBI). This is a pilot study to determine whether the progression of signs and symptoms and radiographic findings of MVC brain injury (mvcTBI) in children of the age…

  3. ED Utilization Trends in Sports-Related Traumatic Brain Injury

    PubMed Central

    Pomerantz, Wendy J.; Gittelman, Mike

    2013-01-01

    BACKGROUND: Emergency department (ED) visits for sports-related traumatic brain injuries (TBIs) have risen. This study evaluated how the number and severity of admissions have changed as ED visits for sports-related TBIs have increased. METHODS: A retrospective study of children aged 0 to 19 years at a level 1 trauma center was performed. Patients from 2002 to 2011 with a primary or secondary diagnosis of TBI were identified from the hospital’s inpatient and outpatient trauma registries. Frequencies were used to characterize the population, χ2 analysis was performed to determine differences between groups, and regression analysis looked at relationship between year and injury severity score or length of stay. RESULTS: Sport was responsible for injury in 3878 (15.4%) cases during the study period; 3506 (90.4%) were discharged from the hospital, and 372 (9.6%) were admitted. Seventy-three percent were male patients and 78% Caucasian; mean age was 13 ± 3.5 years. ED visits for sports-related TBIs increased 92% over the study period, yet there was no significant change (χ2 = 9.8, df = 9, P = .37) in the percentage of children admitted. Mean injury severity score for those admitted decreased from 7.8 to 4.8 (β = –0.46; P = .006); length of stay trended downward (β = –0.05; P = .05). CONCLUSIONS: The percentage of children being admitted from the ED with sports-related TBI has not changed over the past 10 years. The severity of admitted sports-related TBI is decreasing. Additional research is needed to correlate these trends with other TBI mechanisms. PMID:24081999

  4. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury.

    PubMed

    Schober, Michelle Elena; Block, Benjamin; Requena, Daniela F; Hale, Merica A; Lane, Robert H

    2012-06-01

    Pediatric traumatic brain injury (TBI) is a major cause of acquired cognitive dysfunction in children. Hippocampal Brain Derived Neurotrophic Factor (BDNF) is important for normal cognition. Little is known about the effects of TBI on BDNF levels in the developing hippocampus. We used controlled cortical impact (CCI) in the 17 day old rat pup to test the hypothesis that CCI would first increase rat hippocampal BDNF mRNA/protein levels relative to SHAM and Naïve rats by post injury day (PID) 2 and then decrease BDNF mRNA/protein by PID14. Relative to SHAM, CCI did not change BDNF mRNA/protein levels in the injured hippocampus in the first 2 days after injury but did decrease BDNF protein at PID14. Surprisingly, BDNF mRNA decreased at PID 1, 3, 7 and 14, and BDNF protein decreased at PID 2, in SHAM and CCI hippocampi relative to Naïve. In conclusion, TBI decreased BDNF protein in the injured rat pup hippocampus 14 days after injury. BDNF mRNA levels decreased in both CCI and SHAM hippocampi relative to Naïve, suggesting that certain aspects of the experimental paradigm (such as craniotomy, anesthesia, and/or maternal separation) may decrease the expression of BDNF in the developing hippocampus. While BDNF is important for normal cognition, no inferences can be made regarding the cognitive impact of any of these factors. Such findings, however, suggest that meticulous attention to the experimental paradigm, and possible inclusion of a Naïve group, is warranted in studies of BDNF expression in the developing brain after TBI.

  5. Brain abscess potentially secondary to odontogenic infection: case report.

    PubMed

    Yang, Joseph; Liu, Stanley Y; Hossaini-Zadeh, Mehran; Pogrel, M Anthony

    2014-02-01

    Odontogenic infections are rarely implicated in the causes of brain abscess formation. As such, there are very few reports of brain abscesses secondary to odontogenic infections in the literature. This is due partly to the relative rarity of brain abscesses but also to the difficulty in matching the causative organisms of a brain abscess to an odontogenic source. The authors report a case of a 50-year-old woman whose brain abscess may potentially have been secondary to an odontogenic infection. The patient's early diagnosis, supported by imaging and microbiologic assessment, along with early minicraniotomy and extraction of infected dentition followed by a course of cephalosporins and metronidazole, contributed to a successful outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Neuroprotective effect of Pycnogenol® following traumatic brain injury

    PubMed Central

    Scheff, Stephen W.; Ansari, Mubeen A.; Roberts, Kelly N.

    2012-01-01

    Traumatic brain injury (TBI) involves primary and secondary injury cascades that underlie delayed neuronal dysfunction and death. Oxidative stress is one of the most celebrated secondary injury mechanisms. A close relationship exists between levels of oxidative stress and the pathogenesis of TBI. However, other cascades, such as an increase in proinflammatory cytokines, also play important roles in the overall response to the trauma. Pharmacologic intervention, in order to be successful, requires a multifaceted approach. Naturally occurring flavonoids are unique in possessing not only tremendous free radical scavenging properties but also the ability to modulate cellular homeostasis leading to a reduction in inflammation and cell toxicity. This study evaluated the therapeutic role of Pycnogenol (PYC) a patented combinational bioflavonoid. Young adult Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion and treated post injury with PYC or vehicle. At either 48 or 96h post trauma, the animals were killed and the cortex and hippocampus analyzed for changes in enzymatic and non-enzymatic oxidative stress markers. In addition, possible changes in both pre and post synaptic proteins (synapsin-1, PSD-95, drebrin, synapse associated protein 97) were analyzed. Finally, a separate cohort of animals were used to evaluate two proinflammatory cytokines (IL-6, TNF-α). Following the trauma there was a significant increase in oxidative stress in both the injured cortex and the ipsilateral hippocampus. Animals treated with PYC significantly ameliorated levels of protein carbonyls, lipid peroxidation, and protein nitration. The PYC treatment also significantly reduced the loss of key pre and post synaptic proteins with some levels in the hippocampus of PYC treated animals not significantly different from sham operated controls. Although levels of the proinflammatory cytokines were significantly elevated in both injury groups, the cohort treated with PYC

  7. A Brain-Machine-Brain Interface for Rewiring of Cortical Circuitry after Traumatic Brain Injury

    DTIC Science & Technology

    2011-09-01

    Reorganization of Motor Cortex after Controlled Cortical Impact in Rats and Implications for Functional Recovery Mariko Nishibe,1,2 Scott Barbay,2,3 David ...J.S., Matthews, M.A., Davidson, J.F., Tabor , S.L., and Carey, M.E. (1996). Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in

  8. What environmental factors irritate people with acquired brain injury?

    PubMed

    Pryor, Julie

    2004-08-19

    This study aims to determine the environmental factors nurses identify as being irritating to people with acquired brain injury. This was a qualitative study. An experienced interviewer used the Critical Decision Method to interview 28 nurses working in 10 inpatient brain injury rehabilitation units in Australia on a one to one basis for 1-1.5 h on two consecutive days. Transcripts of interviews were analysed using thematic analysis. Nurses identified five groups of irritants that acted as triggers for aggression: The nurses in this study identified many environmental factors that irritate people with acquired brain injury. Some irritants appeared unavoidable but others could be addressed by staff expertise.

  9. Exercise to enhance neurocognitive function after traumatic brain injury.

    PubMed

    Fogelman, David; Zafonte, Ross

    2012-11-01

    Vigorous exercise has long been associated with improved health in many domains. Results of clinical observation have suggested that neurocognitive performance also is improved by vigorous exercise. Data derived from animal model-based research have been emerging that show molecular and neuroanatomic mechanisms that may explain how exercise improves cognition, particularly after traumatic brain injury. This article will summarize the current state of the basic science and clinical literature regarding exercise as an intervention, both independently and in conjunction with other modalities, for brain injury rehabilitation. A key principle is the factor of timing of the initiation of exercise after mild traumatic brain injury, balancing potentially favorable and detrimental effects on recovery.

  10. Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury.

    PubMed

    Ashwal, Stephen; Holshouser, Barbara A; Tong, Karen A

    2006-01-01

    Advanced neuroimaging techniques are now used to expand our knowledge of traumatic brain injury, and increasingly, they are being applied to children. This review will examine four of these methods as they apply to children who present acutely after injury. (1) Susceptibility weighted imaging is a 3-dimensional high-resolution magnetic resonance imaging technique that is more sensitive than conventional imaging in detecting hemorrhagic lesions that are often associated with diffuse axonal injury. (2) Magnetic resonance spectroscopy acquires metabolite information reflecting neuronal integrity and function from multiple brain regions and provides sensitive, noninvasive assessment of neurochemical alterations that offers early prognostic information regarding the outcome. (3) Diffusion weighted imaging is based on differences in diffusion of water molecules within the brain and has been shown to be very sensitive in the early detection of ischemic injury. It is now being used to study the direct effects of traumatic injury as well as those due to secondary ischemia. (4) Diffusion tensor imaging is a form of diffusion weighted imaging and allows better evaluation of white matter fiber tracts by taking advantage of the intrinsic directionality (anisotropy) of water diffusion in human brain. It has been shown to be useful in identifying white matter abnormalities after diffuse axonal injury when conventional imaging appears normal. An important aspect of these advanced methods is that they demonstrate that 'normal-appearing' brain in many instances is not normal, i.e. there is evidence of significant undetected injury that may underlie a child's clinical status. Availability and integration of these advanced imaging methods will lead to better treatment and change the standard of care for use of neuroimaging to evaluate children with traumatic brain injury.

  11. A Model of Excitotoxic Brain Injury in Larval Zebrafish: Potential Application for High-Throughput Drug Evaluation to Treat Traumatic Brain Injury.

    PubMed

    McCutcheon, Victoria; Park, Eugene; Liu, Elaine; Wang, Youdong; Wen, Xiao-Yan; Baker, Andrew J

    2016-06-01

    Traumatic brain injury (TBI) is a leading cause of death and morbidity with no effective therapeutic treatments for secondary injury. Preclinical drug evaluation in rodent models of TBI is a lengthy process. In this regard, the zebrafish has numerous advantages to address the technical and time-dependent obstacles associated with drug evaluation. We developed a reproducible brain injury using glutamate excitoxicity in zebrafish larvae, a known initiator of delayed cell death in TBI. Glutamate challenge resulted in dose-dependent lethality over an 84-h observation period. We report significant decrease in locomotion (p < 0.0001) and mean velocity (p < 0.001) with 10 μM glutamate application as measured through automated 96-well plate behavioral analysis. Application of the NMDA receptor antagonist MK-801 (400 nM) or the calpain inhibitor, MDL-28170 (20 μM), resulted in significant recovery of locomotor function. A secA5-YFP transgenic line was used to visualize the localization of cell death due to glutamate exposure in vivo using confocal fluorescence microscopy. Our results indicate that zebrafish larvae exhibit responses to excitotoxic injury and pharmacotherapeutic intervention with pathophysiological relevance to mammalian excitotoxic brain injury. This system has potential to be applied as a high-throughput drug screening model to quickly identify candidate lead compounds for further evaluation.

  12. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies.

    PubMed

    Vonder Haar, Cole; Peterson, Todd C; Martens, Kris M; Hoane, Michael R

    2016-06-01

    With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury.

    PubMed

    Coburn, Mark; Maze, Mervyn; Franks, Nicholas P

    2008-02-01

    The "inert" gas xenon has been shown to be an effective neuroprotectant in a variety of in vitro and in vivo models of neuronal injury. We examined its neuroprotective properties in an in vitro model of traumatic brain injury. Controlled laboratory study. Academic research laboratory. Organotypic hippocampal brain slices from mice pups. The cultured brain slices were subjected to a focal mechanical trauma, and injury was monitored in the presence and absence of inert gases at normal and elevated pressures and under both normothermic and hypothermic conditions. Neuronal injury was quantified using propidium iodide, which becomes fluorescent only when it enters injured cells. Low pressures of both helium and xenon were effective neuroprotectants when applied in addition to 1 atm of air. Moreover, both gases were effective at normal pressures when they replaced nitrogen in a gas mixture. The inert gases helium and xenon are effective neuroprotectants in a model for traumatic brain injury, and this novel treatment warrants further investigation. Xenon was particularly effective at reducing the secondary injury that developed following the initial trauma and could be administered at least 3 hrs postinjury with only a small reduction in efficacy.

  14. Dementia Resulting From Traumatic Brain Injury

    PubMed Central

    Shively, Sharon; Scher, Ann I.; Perl, Daniel P.; Diaz-Arrastia, Ramon

    2013-01-01

    Traumatic brain injury (TBI) is among the earliest illnesses described in human history and remains a major source of morbidity and mortality in the modern era. It is estimated that 2% of the US population lives with long-term disabilities due to a prior TBI, and incidence and prevalence rates are even higher in developing countries. One of the most feared long-term consequences of TBIs is dementia, as multiple epidemiologic studies show that experiencing a TBI in early or midlife is associated with an increased risk of dementia in late life. The best data indicate that moderate and severe TBIs increase risk of dementia between 2-and 4-fold. It is less clear whether mild TBIs such as brief concussions result in increased dementia risk, in part because mild head injuries are often not well documented and retrospective studies have recall bias. However, it has been observed for many years that multiple mild TBIs as experienced by professional boxers are associated with a high risk of chronic traumatic encephalopathy (CTE), a type of dementia with distinctive clinical and pathologic features. The recent recognition that CTE is common in retired professional football and hockey players has rekindled interest in this condition, as has the recognition that military personnel also experience high rates of mild TBIs and may have a similar syndrome. It is presently unknown whether dementia in TBI survivors is pathophysiologically similar to Alzheimer disease, CTE, or some other entity. Such information is critical for developing preventive and treatment strategies for a common cause of acquired dementia. Herein, we will review the epidemiologic data linking TBI and dementia, existing clinical and pathologic data, and will identify areas where future research is needed. PMID:22776913

  15. Return to school after brain injury

    PubMed Central

    Hawley, C; Ward, A; Magnay, A; Mychalkiw, W

    2004-01-01

    Aims: To examine return to school and classroom performance following traumatic brain injury (TBI). Methods: This cross-sectional study set in the community comprised a group of 67 school-age children with TBI (35 mild, 13 moderate, 19 severe) and 14 uninjured matched controls. Parents and children were interviewed and children assessed at a mean of 2 years post injury. Teachers reported on academic performance and educational needs. The main measures used were classroom performance, the Children's Memory Scale (CMS), the Wechsler Intelligence Scale for Children–third edition UK (WISC-III) and the Weschler Objective Reading Dimensions (WORD). Results: One third of teachers were unaware of the TBI. On return to school, special arrangements were made for 18 children (27%). Special educational needs were identified for 16 (24%), but only six children (9%) received specialist help. Two thirds of children with TBI had difficulties with school work, half had attention/concentration problems and 26 (39%) had memory problems. Compared to other pupils in the class, one third of children with TBI were performing below average. On the CMS, one third of the severe group were impaired/borderline for immediate and delayed recall of verbal material, and over one quarter were impaired/borderline for general memory. Children in the severe group had a mean full-scale IQ significantly lower than controls. Half the TBI group had a reading age ⩾1 year below their chronological age, one third were reading ⩾2 years below their chronological age. Conclusions: Schools rely on parents to inform them about a TBI, and rarely receive information on possible long-term sequelae. At hospital discharge, health professionals should provide schools with information about TBI and possible long-term impairments, so that children returning to school receive appropriate support. PMID:14736628

  16. Family function and its relationship to injury severity and psychiatric outcome in children with acquired brain injury: a systematized review.

    PubMed

    Lax Pericall, Maria Teresa; Taylor, Eric

    2014-01-01

    The psychological and psychiatric outcome of children with acquired brain injury is influenced by many variables. A review was undertaken to clarify the contribution of family function, how it relates to injury severity, and what particular aspects of family function influence psychological outcome in this group. A systematized review of the literature of studies published between 1970 and 2012 from OvidMedline, PsychoInfo, PsycARTICLES, and Cochrane was undertaken focusing on family function, injury severity, and psychiatric outcome. Thirty-six papers met the inclusion criteria. Injury severity was linked to the development of organic personality change. Family function before injury, measured by the Family Assessment Device or the Clinical Rating Scale, had a statistically significant effect on general psychological functioning in six out of eight studies. Family function had a significant effect for oppositional defiant disorder and secondary attention-deficit-hyperactivity disorder. The effects of family function may differ depending on the age of the child and the severity of the injury. Some styles of parenting moderated recovery. After injury, family function was related to the child's contemporaneous psychiatric symptoms. The level of evidence for these papers was 3 or 4 (Oxford Centre for Evidence-based Medicine criteria). Screening for some aspects of family functioning before injury and family function during the rehabilitation phase may identify children at risk of psychiatric disorders. © 2013 Mac Keith Press.

  17. Molecular contributions to neurovascular unit dysfunctions after brain injuries: lessons for target-specific drug development

    PubMed Central

    Jullienne, Amandine; Badaut, Jérôme

    2014-01-01

    The revised ‘expanded’ neurovascular unit (eNVU) is a physiological and functional unit encompassing endothelial cells, pericytes, smooth muscle cells, astrocytes and neurons. Ischemic stroke and traumatic brain injury are acute brain injuries directly affecting the eNVU with secondary damage, such as blood–brain barrier (BBB) disruption, edema formation and hypoperfusion. BBB dysfunctions are observed at an early postinjury time point, and are associated with eNVU activation of proteases, such as tissue plasminogen activator and matrix metalloproteinases. BBB opening is accompanied by edema formation using astrocytic AQP4 as a key protein regulating water movement. Finally, nitric oxide dysfunction plays a dual role in association with BBB injury and dysregulation of cerebral blood flow. These mechanisms are discussed including all targets of eNVU encompassing endothelium, glial cells and neurons, as well as larger blood vessels with smooth muscle. In fact, the feeding blood vessels should also be considered to treat stroke and traumatic brain injury. This review underlines the importance of the eNVU in drug development aimed at improving clinical outcome after stroke and traumatic brain injury. PMID:24489483

  18. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  19. Prevalence of clinically important traumatic brain injuries in children with minor blunt head trauma and isolated severe injury mechanisms.

    PubMed

    Nigrovic, Lise E; Lee, Lois K; Hoyle, John; Stanley, Rachel M; Gorelick, Marc H; Miskin, Michelle; Atabaki, Shireen M; Dayan, Peter S; Holmes, James F; Kuppermann, Nathan

    2012-04-01

    To determine the prevalence of clinically important traumatic brain injuries (TBIs) with severe injury mechanisms in children with minor blunt head trauma but with no other risk factors from the Pediatric Emergency Care Applied Research Network (PECARN) TBI prediction rules (defined as isolated severe injury mechanisms). Secondary analysis of a large prospective observational cohort study. Twenty-five emergency departments participating in the PECARN. Children with minor blunt head trauma and Glasgow Coma Scale scores of at least 14. Treating clinicians completed a structured data form that included injury mechanism (severity categories defined a priori). Clinically important TBIs were defined as intracranial injuries resulting in death, neurosurgical intervention, intubation for more than 24 hours, or hospital admission for at least 2 nights. We investigated the rate of clinically important TBIs in children with either severe injury mechanisms or isolated severe injury mechanisms. Of the 42,412 patients enrolled in the overall study, 42,099 (99%) had injury mechanisms recorded, and their data were included for analysis. Of all study patients, 5869 (14%) had severe injury mechanisms, and 3302 (8%) had isolated severe injury mechanisms. Overall, 367 children had clinically important TBIs (0.9%; 95% CI, 0.8%-1.0%). Of the 1327 children younger than 2 years with isolated severe injury mechanisms, 4 (0.3%; 95% CI, 0.1%-0.8%) had clinically important TBIs, as did 12 of the 1975 children 2 years or older (0.6%; 95% CI, 0.3%-1.1%). Children with isolated severe injury mechanisms are at low risk of clinically important TBI, and many do not require emergent neuroimaging.

  20. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  1. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  2. Phosphodiesterase Inhibitors as Therapeutics for Traumatic Brain Injury

    PubMed Central

    Titus, David J.; Oliva, Anthony A.; Wilson, Nicole M.; Atkins, Coleen M.

    2014-01-01

    Developing therapeutics for traumatic brain injury remains a challenge for all stages of recovery. The pathological features of traumatic brain injury are diverse, and it remains an obstacle to be able to target the wide range of pathologies that vary between traumatic brain injured patients and that evolve during recovery. One promising therapeutic avenue is to target the second messengers cAMP and cGMP with phosphodiesterase inhibitors due to their broad effects within the nervous system. Phosphodiesterase inhibitors have the capability to target different injury mechanisms throughout the time course of recovery after brain injury. Inflammation and neuronal death are early targets of phosphodiesterase inhibitors, and synaptic dysfunction and circuitry remodeling are late potential targets of phosphodiesterase inhibitors. This review will discuss how signaling through cyclic nucleotides contributes to the pathology of traumatic brain injury in the acute and chronic stages of recovery. We will review our current knowledge of the successes and challenges of using phosphodiesterase inhibitors for the treatment of traumatic brain injury and conclude with important considerations in developing phosphodiesterase inhibitors as therapeutics for brain trauma. PMID:25159077

  3. Brain development in infants born preterm: looking beyond injury.

    PubMed

    Duerden, Emma G; Taylor, Margot J; Miller, Steven P

    2013-06-01

    Infants born very preterm are high risk for acquired brain injury and disturbances in brain maturation. Although survival rates for preterm infants have increased in the last decades owing to improved neonatal intensive care, motor disabilities including cerebral palsy persist, and impairments in cognitive, language, social, and executive functions have not decreased. Evidence from neuroimaging studies exploring brain structure, function, and metabolism has indicated abnormalities in the brain development trajectory of very preterm-born infants that persist through to adulthood. In this chapter, we review neuroimaging approaches for the identification of brain injury in the preterm neonate. Advances in medical imaging and availability of specialized equipment necessary to scan infants have facilitated the feasibility of conducting longitudinal studies to provide greater understanding of early brain injury and atypical brain development and their effects on neurodevelopmental outcome. Improved understanding of the risk factors for acquired brain injury and associated factors that affect brain development in this population is setting the stage for improving the brain health of children born preterm.

  4. Expression of aquaporin-4 and pathological characteristics of brain injury in a rat model of traumatic brain injury

    PubMed Central

    ZHANG, CHENGCHENG; CHEN, JIANQIANG; LU, HONG

    2015-01-01

    Aquaporin 4 (AQP4) is a widely distributed membrane protein, which is found in glial cells, ependymocytes and capillary endothelial cells in the brain, and particularly in the choroid plexus. AQP4 is a key regulator of water metabolism, and changes in its expression following brain injury are associated with pathological changes in the damaged side of the brain; however, the effects of brain injury on AQP4 and injury-induced pathological changes in the contralateral non-damaged side of the brain remain to be fully elucidated. In the present study, male Sprague-Dawley rats were subjected to traumatic brain injury (TBI) and changes in brain water content, the expression of AQP4 expression and pathological characteristics in the damaged and contralateral non-damaged sides of the brain were examined. In the damaged side of the brain, vasogenic edema appeared first, followed by cellular edema. The aggravated cellular edema in the damaged side of the brain resulted in two periods of peak edema severity. Pathological changes in the contralateral non-damaged side of the brain occurred later than those in the damaged side; cellular edema appeared first, followed by vasogenic edema, which was alleviated earlier than the cellular edema. AQP4 was downregulated during vasogenic edema, and upregulated during cellular edema. Taken together, these results suggested t