Sample records for brain injury tbi

  1. Traumatic Brain Injury (TBI) in Kids

    MedlinePlus

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  2. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    MedlinePlus

    ... NICHD Research Information Find a Study More Information Traumatic Brain Injury (TBI) Condition Information NICHD Research Information Find a ... Care Providers Home Health A to Z List Traumatic Brain Injury (TBI) Condition Information What are common symptoms? Share ...

  3. TBI-ROC Part One: Understanding Traumatic Brain Injury--An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2011-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  4. Neutrophils in traumatic brain injury (TBI): friend or foe?

    PubMed

    Liu, Yang-Wuyue; Li, Song; Dai, Shuang-Shuang

    2018-05-17

    Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.

  5. Monitoring Neurocognitive Performance and Electrophysiological Activity After Mild Traumatic Brain Injury (mTBI)

    DTIC Science & Technology

    2014-03-01

    return to duty’ decisions. 15. SUBJECT TERMS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI, biomarkers, actigraphy 16...within approximately two years of the writing of this report. 3. KEYWORDS Traumatic Brain Injury, mTBI, concussion, Magnetoencephalography, MEG , MRI...Merrifield, PhD) i. Magnetoencephalography ( MEG ) laboratory is fully operational after two weeks of cool down and testing in February 2014. Pilot testing

  6. Factors associated with remission of post-traumatic brain injury fatigue in the years following traumatic brain injury (TBI): a TBI model systems module study.

    PubMed

    Lequerica, Anthony H; Botticello, Amanda L; Lengenfelder, Jean; Chiaravalloti, Nancy; Bushnik, Tamara; Dijkers, Marcel P; Hammond, Flora M; Kolakowsky-Hayner, Stephanie A; Rosenthal, Joseph

    2017-10-01

    Post-traumatic brain injury fatigue (PTBIF) is a major problem in the years after traumatic brain injury (TBI), yet little is known about its persistence and resolution. The objective of the study was to identify factors related to PTBIF remission and resolution. TBI Model System registrants at five centres participated in interviews at either one and two years post-injury (Y1-2 Cohort), or two and five years post-injury (Y2-5 Cohort). Characteristics of participants with PTBIF remission were compared to those with PTBIF persistence. Variables studied included the presence of and changes in disability, sleep dysfunction, mood, and community participation. The Functional Independence Measure did not differ significantly between groups or over time. In the Y1-2 Cohort the Fatigue Resolved group scored significantly better on the Disability Rating Scale and Pittsburgh Sleep Quality Index. In the Y2-5 Cohort the Fatigue Resolved group scored significantly higher on a measure of community participation. It was concluded that fewer than half of the sample in each cohort experienced a remission of PTBIF between time points. Persistence of PTBIF 1-2 years post-injury is associated with disability, sleep disturbance, and depression while persistence of fatigue beyond 2 years post-injury appears to be related to participation level, underscoring the potential impact of effective surveillance, assessment, and treatment of this condition in optimising life after TBI. Differences in fatigue progression may point to the presence of different types of PTBIF.

  7. Targeting Epigenetic Mechanisms in Pain Due to Trauma and Traumatic Brain Injury (TBI)

    DTIC Science & Technology

    2015-10-01

    particularly likely to involve TBI, peripheral trauma or both. Disability due to pain and other causes is very high amongst such patients. We have no...effective approaches to reducing the likelihood of developing chronic pain after TBI or peripheral injuries, and the mechanisms supporting such pain...brain or peripheral trauma may support chronic pain. Our work to-date has established a rodent model of TBI in combination with injury to a limb as a

  8. Common biochemical defects linkage between post-traumatic stress disorders, mild traumatic brain injury (TBI) and penetrating TBI.

    PubMed

    Prasad, Kedar N; Bondy, Stephen C

    2015-03-02

    Post-traumatic stress disorder (PTSD) is a complex mental disorder with psychological and emotional components, caused by exposure to single or repeated extreme traumatic events found in war, terrorist attacks, natural or man-caused disasters, and by violent personal assaults and accidents. Mild traumatic brain injury (TBI) occurs when the brain is violently rocked back and forth within the skull following a blow to the head or neck as in contact sports, or when in close proximity to a blast pressure wave following detonation of explosives in the battlefield. Penetrating TBI occurs when an object penetrates the skull and damages the brain, and is caused by vehicle crashes, gunshot wound to the head, and exposure to solid fragments in the proximity of explosions, and other combat-related head injuries. Despite clinical studies and improved understanding of the mechanisms of cellular damage, prevention and treatment strategies for patients with PTSD and TBI remain unsatisfactory. To develop an improved plan for treating and impeding progression of PTSD and TBI, it is important to identify underlying biochemical changes that may play key role in the initiation and progression of these disorders. This review identifies three common biochemical events, namely oxidative stress, chronic inflammation and excitotoxicity that participate in the initiation and progression of these conditions. While these features are separately discussed, in many instances, they overlap. This review also addresses the goal of developing novel treatments and drug regimens, aimed at combating this triad of events common to, and underlying, injury to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The effects of combat-related mild traumatic brain injury (mTBI): Does blast mTBI history matter?

    PubMed

    Kontos, Anthony P; Elbin, R J; Kotwal, Russ S; Lutz, Robert H; Kane, Shawn; Benson, Peter J; Forsten, Robert D; Collins, Michael W

    2015-10-01

    The effects of mild traumatic brain injury (mTBI) have received significant attention since the beginning of the conflicts in Afghanistan and Iraq. Surprisingly, little is known about the temporal nature of neurocognitive impairment, mTBI, and posttraumatic stress (PTS) symptoms following combat-related mTBI. It is also unclear as to the role that blast exposure history has on mTBI and PTS impairments and symptoms. The purposes of this study were to examine prospectively the effects of mTBI on neurocognitive performance as well as mTBI and PTS symptoms among US Army Special Operations Command personnel and to study the influence of history of blast mTBI on these effects. Eighty US Army Special Operations Command personnel with (n = 19) and without (n = 61) a history of blast-related mTBI completed the military version of the Immediate Post-concussion Assessment Cognitive Test (ImPACT), Post Concussion Symptom Scale (PCSS), and the PTSD Checklist (PCL) at baseline as well as 1 day to 7 days and 8 days to 20 days following a combat-related mTBI. Results indicated that verbal memory (p = 0.002) and processing speed (p = 0.003) scores were significantly lower and mTBI symptoms (p = 0.001) were significantly higher at 1 day to 7 days after injury compared with both baseline and 8 days to 20 days after injury. PTS remained stable across the three periods. Participants with a history of blast mTBI demonstrated lower verbal memory at 1 day to 7 days after mTBI compared with participants without a history of blast mTBI (p = 0.02). Decreases in neurocognitive performance and increased mTBI symptoms are evident in the first 1 day to 7 days following combat-related mTBI, and a history of blast-related mTBI may influence these effects. Epidemiologic/prognostic study, level II.

  10. The impact of pediatric traumatic brain injury (TBI) on family functioning: a systematic review.

    PubMed

    Rashid, Marghalara; Goez, Helly R; Mabood, Neelam; Damanhoury, Samah; Yager, Jerome Y; Joyce, Anthony S; Newton, Amanda S

    2014-01-01

    To explore the impact moderate to severe traumatic brain injury (TBI) in a child has on family functioning. The search was conducted using 9 bibliographic databases for articles published between 1980 and 2013. Two reviewers independently screened for inclusion and assessed study quality. Two reviewers extracted study data and a third checked for completeness and accuracy. Findings are presented by three domains: injury-related burden and stress, family adaptability, and family cohesion. Nine observational studies were included. Across the studies, differences between study groups for family functioning varied, but there was a trend for more dysfunction in families whose child had a severe TBI as compared to families whose child had a moderate TBI or orthopedic injury. In three studies, injury-associated burden was persistent post-injury and was highest in families whose child had a severe TBI followed by families with a child who had a moderate TBI. One study found fathers reported more family dysfunction caused by their child's injury compared to mothers. Two studies found that mothers' adaptability depended on social support and stress levels while fathers' adaptability was independent of these factors and injury severity. Moderate to severe TBI has a significant, long-standing impact on family functioning. Factors associated with family adaptability vary by parental role.

  11. TBI-ROC Part Seven: Traumatic Brain Injury--Technologies to Support Memory and Cognition

    ERIC Educational Resources Information Center

    Scherer, Marcia; Elias, Eileen; Weider, Katie

    2010-01-01

    This article is the seventh of a multi-part series on traumatic brain injury (TBI). The six earlier articles in this series have discussed the individualized nature of TBI and its consequences, the rehabilitation continuum, and interventions at various points along the continuum. As noted throughout the articles, many individuals with TBI…

  12. Airmen with mild traumatic brain injury (mTBI) at increased risk for subsequent mishaps.

    PubMed

    Whitehead, Casserly R; Webb, Timothy S; Wells, Timothy S; Hunter, Kari L

    2014-02-01

    Little is known regarding long-term performance decrements associated with mild Traumatic Brain Injury (mTBI). The goal of this study was to determine if individuals with an mTBI may be at increased risk for subsequent mishaps. Cox proportional hazards modeling was utilized to calculate hazard ratios for 518,958 active duty U.S. Air Force service members (Airmen) while controlling for varying lengths of follow-up and potentially confounding variables. Two non-mTBI comparison groups were used; the second being a subset of the original, both without head injuries two years prior to study entrance. Hazard ratios indicate that the causes of increased risk associated with mTBI do not resolve quickly. Additionally, outpatient mTBI injuries do not differ from other outpatient bodily injuries in terms of subsequent injury risk. These findings suggest that increased risk for subsequent mishaps are likely due to differences shared among individuals with any type of injury, including risk-taking behaviors, occupations, and differential participation in sports activities. Therefore, individuals who sustain an mTBI or injury have a long-term risk of additional mishaps. Differences shared among those who seek medical care for injuries may include risk-taking behaviors (Cherpitel, 1999; Turner & McClure, 2004; Turner, McClure, & Pirozzo, 2004), occupations, and differential participation in sports activities, among others. Individuals with an mTBI should be educated that they are at risk for subsequent injury. Historical data supported no lingering effects of mTBI, but more recent data suggest longer lasting effects. This study further adds that one of the longer term sequelae of mTBI may be an increased risk for subsequent mishap. Copyright © 2013 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Traumatic Brain Injury (TBI) Data and Statistics

    MedlinePlus

    ... data.cdc.gov . Emergency Department Visits, Hospitalizations, and Deaths Rates of TBI-related Emergency Department Visits, Hospitalizations, ... related Hospitalizations by Age Group and Injury Mechanism Deaths Rates of TBI-related Deaths by Sex Rates ...

  14. Correspondence of the Boston Assessment of Traumatic Brain Injury-Lifetime (BAT-L) clinical interview and the VA TBI screen.

    PubMed

    Fortier, Catherine Brawn; Amick, Melissa M; Kenna, Alexandra; Milberg, William P; McGlinchey, Regina E

    2015-01-01

    Mild traumatic brain injury is the signature injury of Operation Enduring Freedom (OEF), Operation Iraqi Freedom (OIF), and Operation New Dawn (OND), yet its identification and diagnosis is controversial and fraught with challenges. In 2007, the Department of Veterans Affairs (VA) implemented a policy requiring traumatic brain injury (TBI) screening on all individuals returning from deployment in the OEF/OIF/OND theaters of operation that lead to the rapid and widespread use of the VA TBI screen. The Boston Assessment of TBI-Lifetime (BAT-L) is the first validated, postcombat semistructured clinical interview to characterize head injuries and diagnose TBIs throughout the life span, including prior to, during, and post-military service. Community-dwelling convenience sample of 179 OEF/OIF/OND veterans. BAT-L, VA TBI screen. Based on BAT-L diagnosis of military TBI, the VA TBI screen demonstrated similar sensitivity (0.85) and specificity (0.82) when administered by research staff. When BAT-L diagnosis was compared with historical clinician-administered VA TBI screen in a subset of participants, sensitivity was reduced. The specificity of the research-administered VA TBI screen was more than adequate. The sensitivity of the VA TBI screen, although relatively high, suggests that it does not oversample or "catch all" possible military TBIs. Traumatic brain injuries identified by the BAT-L, but not identified by the VA TBI screen, were predominantly noncombat military injuries. There is potential concern regarding the validity and reliability of the clinician administered VA TBI screen, as we found poor correspondence between it and the BAT-L, as well as low interrater reliability between the clinician-administered and research-administered screen.

  15. Concordance of common data elements for assessment of subjective cognitive complaints after mild-traumatic brain injury: a TRACK-TBI Pilot Study.

    PubMed

    Ngwenya, Laura B; Gardner, Raquel C; Yue, John K; Burke, John F; Ferguson, Adam R; Huang, Michael C; Winkler, Ethan A; Pirracchio, Romain; Satris, Gabriela G; Yuh, Esther L; Mukherjee, Pratik; Valadka, Alex B; Okonkwo, David O; Manley, Geoffrey T

    2018-06-04

    To determine characteristics and concordance of subjective cognitive complaints (SCCs) 6 months following mild-traumatic brain injury (mTBI) as assessed by two different TBI common data elements (CDEs). The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot Study was a prospective observational study that utilized the NIH TBI CDEs, Version 1.0. We examined variables associated with SCC, performance on objective cognitive tests (Wechsler Adult Intelligence Scale, California Verbal Learning Test, and Trail Making Tests A and B), and agreement on self-report of SCCs as assessed by the acute concussion evaluation (ACE) versus the Rivermead Post Concussion Symptoms Questionnaire (RPQ). In total, 68% of 227 participants endorsed SCCs at 6 months. Factors associated with SCC included less education, psychiatric history, and being assaulted. Compared to participants without SCC, those with SCC defined by RPQ performed significantly worse on all cognitive tests. There was moderate agreement between the two measures of SCCs (kappa = 0.567 to 0.680). We show that the symptom questionnaires ACE and RPQ show good, but not excellent, agreement for SCCs in an mTBI study population. Our results support the retention of RPQ as a basic CDE for mTBI research. BSI-18: Brief Symptom Inventory; 18CDEs: common data elements; CT: computed tomography; CVLT: California Verbal Learning Test; ED: emergency department; GCS: Glasgow coma scale; LOC: loss of consciousnessm; TBI: mild-traumatic brain injury; PTA: post-traumatic amnesia; SCC: subjective cognitive complaints; TBI: traumatic brain injury; TRACK-TBI: Transforming Research and Clinical Knowledge in Traumatic Brain Injury; TMT: Trail Making Test; WAIS-PSI: Wechsler Adult Intelligence Scale, Fourth Edition, Processing Speed Index.

  16. Patient Characterization Protocols for Psychophysiological Studies of Traumatic Brain Injury and Post-TBI Psychiatric Disorders

    PubMed Central

    Rapp, Paul E.; Rosenberg, Brenna M.; Keyser, David O.; Nathan, Dominic; Toruno, Kevin M.; Cellucci, Christopher J.; Albano, Alfonso M.; Wylie, Scott A.; Gibson, Douglas; Gilpin, Adele M. K.; Bashore, Theodore R.

    2013-01-01

    Psychophysiological investigations of traumatic brain injury (TBI) are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed-onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP (event-related potential) component properties (e.g., timing, amplitude, scalp distribution), and a participant’s clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that TBI is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing TBI, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records. PMID:23885250

  17. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    PubMed

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  18. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    PubMed

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  19. Combined SCI and TBI: Recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement

    PubMed Central

    Inoue, Tomoo; Lin, Amity; Ma, Xiaokui; McKenna, Stephen L.; Creasey, Graham H.; Manley, Geoffrey T.; Ferguson, Adam R.; Bresnahan, Jacqueline C.; Beattie, Michael S.

    2015-01-01

    A significant proportion (estimates range from 16–74%) of patients with spinal cord injury (SCI) have concomitant traumatic brain injury (TBI), and the combination often produces difficulties in planning and implementing rehabilitation strategies and drug therapies. For example, many of the drugs used to treat SCI may interfere with cognitive rehabilitation, and conversely drugs that are used to control seizures in TBI patients may undermine locomotor recovery after SCI. The current paper presents an experimental animal model for combined SCI and TBI to help drive mechanistic studies of dual diagnosis. Rats received a unilateral SCI (75 kdyn) at C5 vertebral level, a unilateral TBI (2.0 mm depth, 4.0 m/s velocity impact on the forelimb sensori-motor cortex), or both SCI + TBI. TBI was placed either contralateral or ipsilateral to the SCI. Behavioral recovery was examined using paw placement in a cylinder, grooming, open field locomotion, and the IBB cereal eating test. Over 6 weeks, in the paw placement test, SCI + contralateral TBI produced a profound deficit that failed to recover, but SCI + ipsilateral TBI increased the relative use of the paw on the SCI side. In the grooming test, SCI + contralateral TBI produced worse recovery than either lesion alone even though contralateral TBI alone produced no observable deficit. In the IBB forelimb test, SCI + contralateral TBI revealed a severe deficit that recovered in 3 weeks. For open field locomotion, SCI alone or in combination with TBI resulted in an initial deficit that recovered in 2 weeks. Thus, TBI and SCI affected forelimb function differently depending upon the test, reflecting different neural substrates underlying, for example, exploratory paw placement and stereotyped grooming. Concurrent SCI and TBI had significantly different effects on outcomes and recovery, depending upon laterality of the two lesions. Recovery of function after cervical SCI was retarded by the addition of a moderate TBI in the

  20. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.

    PubMed

    Inoue, Tomoo; Lin, Amity; Ma, Xiaokui; McKenna, Stephen L; Creasey, Graham H; Manley, Geoffrey T; Ferguson, Adam R; Bresnahan, Jacqueline C; Beattie, Michael S

    2013-10-01

    A significant proportion (estimates range from 16 to 74%) of patients with spinal cord injury (SCI) have concomitant traumatic brain injury (TBI), and the combination often produces difficulties in planning and implementing rehabilitation strategies and drug therapies. For example, many of the drugs used to treat SCI may interfere with cognitive rehabilitation, and conversely drugs that are used to control seizures in TBI patients may undermine locomotor recovery after SCI. The current paper presents an experimental animal model for combined SCI and TBI to help drive mechanistic studies of dual diagnosis. Rats received a unilateral SCI (75 kdyn) at C5 vertebral level, a unilateral TBI (2.0 mm depth, 4.0 m/s velocity impact on the forelimb sensori-motor cortex), or both SCI+TBI. TBI was placed either contralateral or ipsilateral to the SCI. Behavioral recovery was examined using paw placement in a cylinder, grooming, open field locomotion, and the IBB cereal eating test. Over 6weeks, in the paw placement test, SCI+contralateral TBI produced a profound deficit that failed to recover, but SCI+ipsilateral TBI increased the relative use of the paw on the SCI side. In the grooming test, SCI+contralateral TBI produced worse recovery than either lesion alone even though contralateral TBI alone produced no observable deficit. In the IBB forelimb test, SCI+contralateral TBI revealed a severe deficit that recovered in 3 weeks. For open field locomotion, SCI alone or in combination with TBI resulted in an initial deficit that recovered in 2 weeks. Thus, TBI and SCI affected forelimb function differently depending upon the test, reflecting different neural substrates underlying, for example, exploratory paw placement and stereotyped grooming. Concurrent SCI and TBI had significantly different effects on outcomes and recovery, depending upon laterality of the two lesions. Recovery of function after cervical SCI was retarded by the addition of a moderate TBI in the contralateral

  1. NeuroImaging Radiological Interpretation System (NIRIS) for Acute Traumatic Brain Injury (TBI).

    PubMed

    Wintermark, Max; Li, Ying; Ding, Victoria Y; Xu, Yingding; Jiang, Bin; Ball, Robyn L; Zeineh, Michael; Gean, Alisa; Sanelli, Pina

    2018-04-18

    To develop an outcome-based NeuroImaging Radiological Interpretation System (NIRIS) for acute traumatic brain injury (TBI) patients that would standardize the interpretation of non-contrast head CTs and consolidate imaging findings into ordinal severity categories that would inform specific patient management actions and that could be used as a clinical decision support tool. We retrospectively identified all patients transported to our emergency department by ambulance or helicopter, for whom a trauma alert was triggered per established criteria and who underwent a non-contrast head CT due to suspicion of TBI, between November 2015 and April 2016. Two neuroradiologists reviewed the non-contrast head CTs and assessed the TBI imaging common data elements (CDEs), as defined by the National Institutes of Health (NIH). Using descriptive statistics and receiver operating characteristic curve analyses to identify imaging characteristics and associated thresholds that best distinguished among outcomes, we classified patients into five mutually exclusive categories: 0-discharge from the emergency department; 1-follow-up brain imaging and/or admission; 2-admission to an advanced care unit; 3-neurosurgical procedure; 4-death up to 6 months after TBI. Sensitivity of NIRIS with respect to each patient's true outcome was then evaluated and compared to that of the Marshall and Rotterdam scoring systems for TBI. In our cohort of 542 TBI patients, NIRIS was developed to predict discharge (182 patients), follow-up brain imaging/admission (187 patients), need for advanced care unit (151 patients). neurosurgical procedures (10 patients) and death (12 patients). NIRIS performed similarly to the Marshall and Rotterdam scoring systems in terms of predicting mortality. We developed an interpretation system for neuroimaging using the CDEs that informs specific patient management actions and could be used as a clinical decision support tool for patients with TBI. Our NIRIS classification

  2. Traumatic brain injury and delayed sequelae: a review--traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia.

    PubMed

    Kiraly, Michael; Kiraly, Stephen J

    2007-11-12

    Brain injuries are too common. Most people are unaware of the incidence of and horrendous consequences of traumatic brain injury (TBI) and mild traumatic brain injury (MTBI). Research and the advent of sophisticated imaging have led to progression in the understanding of brain pathophysiology following TBI. Seminal evidence from animal and human experiments demonstrate links between TBI and the subsequent onset of premature, psychiatric syndromes and neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Objectives of this summary are, therefore, to instill appreciation regarding the importance of brain injury prevention, diagnosis, and treatment, and to increase awareness regarding the long-term delayed consequences following TBI.

  3. Employment Interventions for Return to Work in Working Aged Adults Following Traumatic Brain Injury (TBI): A Systematic Review. Campbell Systematic Reviews 2016:6

    ERIC Educational Resources Information Center

    Graham, Carolyn W.; West, Michael D.; Bourdon, Jessica L.; Inge, Katherine J.; Seward, Hannah E.

    2016-01-01

    Individuals with traumatic brain injury (TBI) often struggle to obtain competitive employment after sustaining a TBI, commonly as a result of the post-injury difficulties they exhibit (Andelic, Stevens, Sigurdardottir, Arango-Lasprilla, & Roe, 2009; Mansfield et al., 2015). The currently reported unemployment rate for people with TBI is…

  4. Chronic Stress and Fatigue-Related Quality of Life after Mild-to-Moderate Traumatic Brain Injury (TBI)

    PubMed Central

    Bay, Esther; de-Leon, Marita B.

    2010-01-01

    Objective To determine relationships between chronic stress, fatigue-related quality of life (QOL-F) and related covariates after mild-to-moderate traumatic brain injury (TBI). Design Observational and cross-sectional Participants A total of 84 community-dwelling individuals with mild-to-moderate TBI recruited from multiple out-patient rehabilitation clinics assessed on average 15 months after injury. Method Data were collected with self-report surveys and chart abstraction. Measures Neurofunctional Behavioral Inventory, Perceived Stress Scale-14, Impact of Events Scale, McGill Pain Short-form Scale, and modified version of the Fatigue Impact Scale. Results Fatigue-related quality of life was associated with somatic symptoms, perceived situational stress, but not with event-related stress (PTSD symptoms) related to index TBI, pre-injury demographic, or post-injury characteristics. Somatic symptoms and chronic situational stress accounted for 42% of the variance in QOL (F). Conclusions QOL (F) in community-dwelling individuals with mild-to- moderate TBI is associated with chronic situational stress and somatic symptoms. Symptom management strategies may need to include general stress management to reduce fatigue burden and improve quality of life. PMID:21169862

  5. NIR light propagation in a digital head model for traumatic brain injury (TBI)

    PubMed Central

    Francis, Robert; Khan, Bilal; Alexandrakis, George; Florence, James; MacFarlane, Duncan

    2015-01-01

    Near infrared spectroscopy (NIRS) is capable of detecting and monitoring acute changes in cerebral blood volume and oxygenation associated with traumatic brain injury (TBI). Wavelength selection, source-detector separation, optode density, and detector sensitivity are key design parameters that determine the imaging depth, chromophore separability, and, ultimately, clinical usefulness of a NIRS instrument. We present simulation results of NIR light propagation in a digital head model as it relates to the ability to detect intracranial hematomas and monitor the peri-hematomal tissue viability. These results inform NIRS instrument design specific to TBI diagnosis and monitoring. PMID:26417498

  6. Mild Traumatic Brain Injury

    MedlinePlus

    ... Traumatic Brain Injury mild Traumatic Brain Injury VIDEO STORIES What is TBI Measuring Severity of TBI Symptoms ... across the country. National Center for Telehealth and Technology t2health.dcoe.mil The National Center for Telehealth ...

  7. TBI-ROC Part Nine: Diagnosing TBI and Psychiatric Disorders

    ERIC Educational Resources Information Center

    Elias, Eileen; Weider, Katie; Mustafa, Ruman

    2011-01-01

    This article is the ninth of a multi-part series on traumatic brain injury (TBI). It focuses on the process of diagnosing TBI and psychiatric disorders. Diagnosing traumatic brain injury can be challenging. It can be difficult differentiating TBI and psychiatric symptoms, as both have similar symptoms (e.g., memory problems, emotional outbursts,…

  8. Hypopituitarism after acute brain injury.

    PubMed

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  9. Automated Neuropsychological Assessment Metrics (ANAM) Traumatic Brain Injury (TBI): Human Factors Assessment

    DTIC Science & Technology

    2011-07-01

    Lindsay, Cory Overby, Angela Jeter, Petra E. Alfred, Gary L. Boykin, Carita DeVilbiss, and Raymond Bateman ARL-TN-0440 July 2011...Neuropsychological Assessment Metrics (ANAM) Traumatic Brain Injury (TBI): Human Factors Assessment Valerie J. Rice, Petra E. Alfred, Gary L. Boykin...Angela Jeter*, Petra E. Alfred, Gary L. Boykin, Carita DeVilbiss, and Raymond Bateman 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  10. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    PubMed

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  11. Patterns of post-acute health care utilization after a severe traumatic brain injury: Results from the PariS-TBI cohort.

    PubMed

    Jourdan, Claire; Bayen, Eleonore; Darnoux, Emmanuelle; Ghout, Idir; Azerad, Sylvie; Ruet, Alexis; Vallat-Azouvi, Claire; Pradat-Diehl, Pascale; Aegerter, Philippe; Weiss, Jean-Jacques; Azouvi, Philippe

    2015-01-01

    To assess brain injury services utilization and their determinants using Andersen's model. Prospective follow-up of the PariS-TBI inception cohort. Out of 504 adults with severe traumatic brain injury (TBI), 245 survived and 147 received a 4-year outcome assessment (mean age 33 years, 80% men). Provision rates of medical, rehabilitation, social and re-entry services and their relations to patients' characteristics were assessed. Following acute care discharge, 78% of patients received physiotherapy, 61% speech/cognitive therapy, 50% occupational therapy, 41% psychological assistance, 63% specialized medical follow-up, 21% community re-entry assistance. Health-related need factors, in terms of TBI severity, were the main predictors of services. Provision of each therapy was significantly associated with corresponding speech, motor and psychological impairments. However, care provision did not depend on cognitive impairments and cognitive therapy was related to pre-disposing and geographical factors. Community re-entry assistance was provided to younger and more independent patients. These quantitative findings illustrate strengths and weaknesses of late brain injury care provision in urban France and highlight the need to improve treatment of cognitive impairments.

  12. Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism.

    PubMed

    Pierce, Janet D; Gupte, Raeesa; Thimmesch, Amanda; Shen, Qiuhua; Hiebert, John B; Brooks, William M; Clancy, Richard L; Diaz, Francisco J; Harris, Janna L

    2018-06-01

    Following traumatic brain injury (TBI), there is significant secondary damage to cerebral tissue from increased free radicals and impaired mitochondrial function. This imbalance between reactive oxygen species (ROS) production and the effectiveness of cellular antioxidant defenses is termed oxidative stress. Often there are insufficient antioxidants to scavenge ROS, leading to alterations in cerebral structure and function. Attenuating oxidative stress following a TBI by administering an antioxidant may decrease secondary brain injury, and currently many drugs and supplements are being investigated. We explored an over-the-counter supplement called ubiquinol (reduced form of coenzyme Q10), a potent antioxidant naturally produced in brain mitochondria. We administered intra-arterial ubiquinol to rats to determine if it would reduce mitochondrial damage, apoptosis, and severity of a contusive TBI. Adult male F344 rats were randomly assigned to one of three groups: (1) Saline-TBI, (2) ubiquinol 30 minutes before TBI (UB-PreTBI), or (3) ubiquinol 30 minutes after TBI (UB-PostTBI). We found when ubiquinol was administered before or after TBI, rats had an acute reduction in brain mitochondrial damage, apoptosis, and two serum biomarkers of TBI severity, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, in vivo neurometabolic assessment with proton magnetic resonance spectroscopy did not show attenuated injury-induced changes. These findings are the first to show that ubiquinol preserves mitochondria and reduces cellular injury severity after TBI, and support further study of ubiquinol as a promising adjunct therapy for TBI. © 2018 Wiley Periodicals, Inc.

  13. Traumatic Brain Injury

    MedlinePlus

    Traumatic brain injury (TBI) happens when a bump, blow, jolt, or other head injury causes damage to the brain. Every year, millions of people in the U.S. suffer brain injuries. More than half are bad enough that ...

  14. Greater neurobehavioral deficits occur in adult mice after repeated, as compared to single, mild traumatic brain injury (mTBI).

    PubMed

    Nichols, Jessica N; Deshane, Alok S; Niedzielko, Tracy L; Smith, Cory D; Floyd, Candace L

    2016-02-01

    Mild traumatic brain injury (mTBI) accounts for the majority of all brain injuries and affected individuals typically experience some extent of cognitive and/or neuropsychiatric deficits. Given that repeated mTBIs often result in worsened prognosis, the cumulative effect of repeated mTBIs is an area of clinical concern and on-going pre-clinical research. Animal models are critical in elucidating the underlying mechanisms of single and repeated mTBI-associated deficits, but the neurobehavioral sequelae produced by these models have not been well characterized. Thus, we sought to evaluate the behavioral changes incurred after single and repeated mTBIs in mice utilizing a modified impact-acceleration model. Mice in the mTBI group received 1 impact while the repeated mTBI group received 3 impacts with an inter-injury interval of 24h. Classic behavior evaluations included the Morris water maze (MWM) to assess learning and memory, elevated plus maze (EPM) for anxiety, and forced swim test (FST) for depression/helplessness. Additionally, species-typical behaviors were evaluated with the marble-burying and nestlet shredding tests to determine motivation and apathy. Non-invasive vibration platforms were used to examine sleep patterns post-mTBI. We found that the repeated mTBI mice demonstrated deficits in MWM testing and poorer performance on species-typical behaviors. While neither single nor repeated mTBI affected behavior in the EPM or FST, sleep disturbances were observed after both single and repeated mTBI. Here, we conclude that behavioral alterations shown after repeated mTBI resemble several of the deficits or disturbances reported by patients, thus demonstrating the relevance of this murine model to study repeated mTBIs. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Impact of Traumatic Brain Injury on the Aging Brain.

    PubMed

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  16. When Injury Clouds Understanding of Others: Theory of Mind after Mild TBI in Preschool Children.

    PubMed

    Bellerose, Jenny; Bernier, Annie; Beaudoin, Cindy; Gravel, Jocelyn; Beauchamp, Miriam H

    2015-08-01

    There is evidence to suggest that social skills, such as the ability to understand the perspective of others (theory of mind), may be affected by childhood traumatic brain injuries; however, studies to date have only considered moderate and severe traumatic brain injury (TBI). This study aimed to assess theory of mind after early, mild TBI (mTBI). Fifty-one children who sustained mTBI between 18 and 60 months were evaluated 6 months post-injury on emotion and desires reasoning and false-belief understanding tasks. Their results were compared to that of 50 typically developing children. The two groups did not differ on baseline characteristics, except for pre- and post-injury externalizing behavior. The mTBI group obtained poorer scores relative to controls on both the emotion and desires task and the false-belief understanding task, even after controlling for pre-injury externalizing behavior. No correlations were found between TBI injury characteristics and theory of mind. This is the first evidence that mTBI in preschool children is associated with theory of mind difficulties. Reduced perspective taking abilities could be linked with the social impairments that have been shown to arise following TBI.

  17. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  18. Annexin A7 Levels Increase in Rats With Traumatic Brain Injury and Promote Secondary Brain Injury.

    PubMed

    Gao, Fan; Li, Di; Rui, Qin; Ni, Haibo; Liu, Huixiang; Jiang, Feng; Tao, Li; Gao, Rong; Dang, Baoqi

    2018-01-01

    The incidence of traumatic brain injury (TBI) has been increasing annually. Annexin A7 is a calcium-dependent phospholipid binding protein. It can promote melting of the cell membrane. Recent studies have shown that it plays an important role in atherosclerosis, other cardiovascular diseases, and a variety of tumors. However, few studies of ANXA7 in TBI have been performed. We here observed how ANXA7 changes after TBI and discuss whether brain injury is associated with the use of ANXA7 antagonist intervention. Experimental Results: 1. After TBI, ANXA7 levels were higher than in the sham group, peaking 24 h after TBI. 2. The use of siA7 was found to reduce the expression of A7 in the injured brain tissue, and also brain edema, BBB damage, cell death, and apoptosis relative to the sham group. Conclusion: ANXA7 promotes the development of secondary brain injury (SBI) after TBI.

  19. Predictive factors for 1-year outcome of a cohort of patients with severe traumatic brain injury (TBI): results from the PariS-TBI study.

    PubMed

    Jourdan, C; Bosserelle, V; Azerad, S; Ghout, I; Bayen, E; Aegerter, P; Weiss, J J; Mateo, J; Lescot, T; Vigué, B; Tazarourte, K; Pradat-Diehl, P; Azouvi, P

    2013-01-01

    To assess outcome and predicting factors 1 year after a severe traumatic brain injury (TBI). Multi-centre prospective inception cohort study of patients aged 15 or older with a severe TBI in the Parisian area, France. Data were collected prospectively starting the day of injury. One-year evaluation included the relatives-rating of the Dysexecutive Questionnaire (DEX-R), the Glasgow Outcome Scale-Extended (GOSE) and employment. Univariate and multivariate tests were computed. Among 257 survivors, 134 were included (mean age 36 years, 84% men). Good recovery concerned 19%, moderate disability 43% and severe disability 38%. Among patients employed pre-injury, 42% were working, 28% with no job change. DEX-R score was significantly associated with length of education only. Among initial severity measures, only the IMPACT prognostic score was significantly related to GOSE in univariate analyses, while measures relating to early evolution were more significant predictors. In multivariate analyses, independent predictors of GOSE were length of stay in intensive care (LOS), age and education. Independent predictors of employment were LOS and age. Age, education and injury severity are independent predictors of global disability and return to work 1 year after a severe TBI.

  20. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review.

    PubMed

    Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M

    2018-04-01

    This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and

  1. Genetic Variation Underlying Traumatic Brain injury (TBI) and Late Onset Alzheimer’s Disease (LOAD)

    DTIC Science & Technology

    2017-10-01

    Episodic memory trajectories (EMTs), longitudinal evaluations , Alzheimer’s Disease, Traumatic Brain Injury (TBI), dementia 3. ACCOMPLISHMENTS  What were... evaluate potential manuscripts/conference presentations etc SA3. To investigate whether rare coding variants in the loci...available WES datasets for replication Task 5. Report results and evaluate potential manuscripts/conference presentations

  2. Preconditioning for traumatic brain injury

    PubMed Central

    Yokobori, Shoji; Mazzeo, Anna T; Hosein, Khadil; Gajavelli, Shyam; Dietrich, W. Dalton; Bullock, M. Ross

    2016-01-01

    Traumatic brain injury (TBI) treatment is now focused on the prevention of primary injury and reduction of secondary injury. However, no single effective treatment is available as yet for the mitigation of traumatic brain damage in humans. Both chemical and environmental stresses applied before injury, have been shown to induce consequent protection against post-TBI neuronal death. This concept termed “preconditioning” is achieved by exposure to different pre-injury stressors, to achieve the induction of “tolerance” to the effect of the TBI. However, the precise mechanisms underlying this “tolerance” phenomenon are not fully understood in TBI, and therefore even less information is available about possible indications in clinical TBI patients. In this review we will summarize TBI pathophysiology, and discuss existing animal studies demonstrating the efficacy of preconditioning in diffuse and focal type of TBI. We will also review other non-TBI preconditionng studies, including ischemic, environmental, and chemical preconditioning, which maybe relevant to TBI. To date, no clinical studies exist in this field, and we speculate on possible futureclinical situation, in which pre-TBI preconditioning could be considered. PMID:24323189

  3. Traumatic brain injury.

    PubMed

    Barlow, Karen Maria

    2013-01-01

    In childhood, traumatic brain injury (TBI) poses the unique challenges of an injury to a developing brain and the dynamic pattern of recovery over time, inflicted TBI and its medicolegal ramifications. The mechanisms of injury vary with age, as do the mechanisms that lead to the primary brain injury. As it is common, and is the leading cause of death and disability in the USA and Canada, prevention is the key, and we may need increased legislation to facilitate this. Despite its prevalence, there is an almost urgent need for research to help guide the optimal management and improve outcomes. Indeed, contrary to common belief, children with severe TBI have a worse outcome and many of the consequences present in teenage years or later. The treatment needs, therefore, to be multifaceted and starts at the scene of the injury and extends into the home and school. In order to do this, the care needs to be multidisciplinary from specialists with a specific interest in TBI and to involve the family, and will often span many decades. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. TBI-ROC Part Six: Lifelong Living after TBI

    ERIC Educational Resources Information Center

    Boeing, Marianne; Barton, Barbara; Zinsmeister, Paula; Brouwers, Lynn; Trudel, Tina M.; Elias, Eileen; Weider, Katie

    2010-01-01

    This article is the sixth of a multi-part series on traumatic brain injury (TBI) and discusses lifelong living after TBI. Following TBI, lifelong outcomes vary depending on the individual affected, treatment provided and severity of injury. Fortunately, many individuals who experience mild concussions common to childhood have no lasting symptoms.…

  5. Evidence of increased brain amyloid in severe TBI survivors at 1, 12, and 24 months after injury: report of 2 cases.

    PubMed

    Gatson, Joshua W; Stebbins, Cari; Mathews, Dana; Harris, Thomas S; Madden, Christopher; Batjer, Hunt; Diaz-Arrastia, Ramon; Minei, Joseph P

    2016-06-01

    Traumatic brain injury (TBI) is a major risk factor for Alzheimer's disease. With respect to amyloid deposition, there are no published serial data regarding the deposition rate of amyloid throughout the brain after TBI. The authors conducted serial (18)F-AV-45 (florbetapir F18) positron emission tomography (PET) imaging in 2 patients with severe TBI at 1, 12, and 24 months after injury. A total of 12 brain regions were surveyed for changes in amyloid levels. Case 1 involved a 50-year-old man who experienced a severe TBI. Compared with the 1-month time point, of the 12 brain regions that were surveyed, a decrease in amyloid (as indicated by standard uptake value ratios) was only observed in the hippocampus (-16%, left; -12%, right) and caudate nucleus (-18%, left; -18%, right), suggesting that initial amyloid accumulation in the brain was cleared between time points 1 and 12 months after injury. Compared to the scan at 1 year, a greater increase in amyloid (+15%) was observed in the right hippocampus at the 24-month time point. The patient in Case 2 was a 37-year-old man who suffered severe trauma to the head and a subsequent stroke; he had poor cognitive/functional outcomes and underwent 1.5 years of rehabilitation. Due to a large infarct area on the injured side of the brain (right side), the authors focused primarily on brain regions affected within the left hemisphere. Compared with the 1-month scan, they only found an increase in brain amyloid within the left anterior putamen (+11%) at 12 months after injury. In contrast, decreased amyloid burden was detected in the left caudate nucleus (-48%), occipital cortex (-21%), and precuneus (-19%) brain regions at the 12-month time point, which is indicative of early accumulation and subsequent clearance. In comparison with 12-month values, more clearance was observed, since a reduction in amyloid was found at 24 months after trauma within the left anterior putamen (-12%) and occipital cortex (-15%). Also, by 24

  6. Autobiographical memory and structural brain changes in chronic phase TBI.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hypersomnia Following Traumatic Brain Injury

    PubMed Central

    Watson, Nathaniel F; Dikmen, Sureyya; Machamer, Joan; Doherty, Michael; Temkin, Nancy

    2007-01-01

    Study Objectives: To evaluate the prevalence and natural history of sleepiness following traumatic brain injury. Methods: This prospective cohort study used the Sickness Impact Profile to evaluate sleepiness in 514 consecutive subjects with traumatic brain injury (TBI), 132 non-cranial trauma controls, and 102 trauma-free controls 1 month and 1 year after injury. Results: Fifty-five percent of TBI subjects, 41% of non-cranial trauma controls, and 3% of trauma-free controls endorsed 1 or more sleepiness items 1 month following injury (p < .001). One year following injury, 27% of TBI subjects, 23% of non-cranial trauma controls, and 1% of trauma-free controls endorsed 1 or more sleepiness items (p < .001). Patients with TBI were sleepier than non-cranial trauma controls at 1 month (p < .02) but not 1 year after injury. Brain-injured subjects were divided into injury-severity groups based on time to follow commands (TFC). At 1 month, the non-cranial trauma controls were less sleepy than the 1- to 6-day (p < .05), 7- to 13-day (p < .01), and 14-day or longer (p < .01) TFC groups. In addition, the ≤ 24-hour group was less sleepy then the 7- to 13-day and 14-day or longer groups (each p < .05). At 1 year, the non-cranial trauma control group (p < .05) and the ≤ 24-hour TFC group (p < .01) were less sleepy than the 14-day or longer TFC group. Sleepiness improved in 84% to 100% of subjects in the TBI TFC groups, as compared with 78% of the non-cranial trauma control group (p < .01). Conclusions: Sleepiness is common following traumatic injury, particularly TBI, with more severe injuries resulting in greater sleepiness. Sleepiness improves in many patients, particularly those with TBI. However, about a quarter of TBI subjects and non-cranial trauma control subjects remained sleepy 1 year after injury. Citation: Watson NF; Dikmen S; Machamer J et al. Hypersomnia following traumatic brain injury. J Clin Sleep Med 2007;3(4):363-368. PMID:17694724

  8. Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into their Communities: Understanding the Scope and Timeline of Post-Deployment Driving Problems

    DTIC Science & Technology

    2015-10-01

    behaviors and anxieties among post- deployed SMs with and without traumatic brain injury (TBI), post-traumatic stress syndrome (PTSD) or TBI with...post- traumatic stress syndrome (TBI/PTSD). The goal was to compare SMs who were post-deployment to SMs who had not served in OEF/OIF/OND, however all...in situations when SM would typically drive (p=.02) with TBI/PTSD reporting this more common than TBI and 0Dx. • Move to middle of road or onto

  9. Traumatic brain injury among female offenders in a prison population: results of the FleuryTBI study.

    PubMed

    Durand, Eric; Watier, Laurence; Lécu, Anne; Fix, Michel; Weiss, Jean-Jacques; Chevignard, Mathilde; Pradat-Diehl, Pascale

    2017-01-01

    The study was designed to estimate the prevalence of traumatic brain injury (TBI) in a French prison population of female offenders, study the variables known to be associated with TBI, and compare our results with those obtained among male offenders as described in a previous paper. All female offenders (adults and juveniles) consecutively admitted to Fleury-Mérogis prison over a 3-month period were included in the study. During the admission procedure, female offenders were interviewed by healthcare staff using a self-reported questionnaire. In all, 100 female offenders were included. The rate of self-reported TBI was high, with a prevalence of 21%. The first cause of TBI was violence related (35%) and a majority of female offenders with a history of TBI reported having sustained more than one TBI. When compared with those who did not report a TBI, epilepsy and use of alcohol were higher among female offenders with a history of TBI. Perceived health was significantly worse for women who reported a TBI. This study findings provide additional evidence that TBI among offender populations is serious and that specific actions need to be developed and implemented in correctional settings such as screening for TBI upon arrival.

  10. Influence of Mild Traumatic Brain Injury (TBI) and Posttraumatic Stress Disorder (PTSD) on Pain Intensity Levels in OEF/OIF/OND Veterans.

    PubMed

    Stojanovic, Milan P; Fonda, Jennifer; Fortier, Catherine Brawn; Higgins, Diana M; Rudolph, James L; Milberg, William P; McGlinchey, Regina E

    2016-11-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are common among US veterans of Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND). We postulated that these injuries may modulate pain processing in these individuals and affect their subjective pain levels. Cross-sectional. 310 deployed service members of OEF/OIF/OND without a lifetime history of moderate or severe TBI were included in this study. All participants completed a comprehensive evaluation for Blast Exposure, mTBI, PTSD, and Pain Levels. The Boston Assessment of TBI-Lifetime Version (BAT-L) was used to assess blast exposure and potential brain injury during military service. The Clinician-Administered PTSD Scale (CAPS) characterized presence and severity of PTSD. The Visual Analog Scale (VAS) was used to assess pain intensity over the previous month before the interview, with higher scores indicative of worse pain. Statistical analysis was performed by ANOVA and results were adjusted for co-morbidities, clinical characteristics and demographic data. In comparison to control participants (veterans without mTBI or current PTSD), veterans with both current PTSD and mTBI reported the highest pain intensity levels, followed by veterans with PTSD only (P < 0.0001 and P = 0.0005, respectively). Pain levels in veterans with mTBI only were comparable to control participants. Comorbid PTSD and mTBI is associated with increased self-reported pain intensity. mTBI alone was not associated with increased pain. Published by Oxford University Press on behalf of the American Academy of Pain Medicine 2016. This work is written by US Government employees and is in the public domain in the US.

  11. Cognitive reserve and persistent post-concussion symptoms--A prospective mild traumatic brain injury (mTBI) cohort study.

    PubMed

    Oldenburg, Christian; Lundin, Anders; Edman, Gunnar; Nygren-de Boussard, Catharina; Bartfai, Aniko

    2016-01-01

    Having three or more persisting (i.e. > 3 months) post-concussion symptoms (PCS) affects a significant number of patients after a mild traumatic brain injury (mTBI). A common complaint is cognitive deficits. However, several meta-analyses have found no evidence of long-term cognitive impairment in mTBI patients. The study sought to answer two questions: first, is there a difference in cognitive performance between PCS and recovered mTBI patients? Second, is lower cognitive reserve a risk factor for developing PCS? Prospective inception cohort study. One hundred and twenty-two adult patients were recruited from emergency departments within 24 hours of an mTBI. Three months post-injury, participants completed the Rivermead Post Concussion Symptoms Questionnaire and a neuropsychological assessment. A healthy control group (n = 35) were recruited. The estimate of cognitive reserve was based upon sub-test Information from Wechsler Adult Intelligence Scale and international classifications of educational level and occupational skill level. mTBI patients showed reduced memory performance. Patients with lower cognitive reserve were 4.14-times more likely to suffer from PCS. mTBI may be linked to subtle executive memory deficits. Lower cognitive reserve appears to be a risk factor for PCS and indicates individual vulnerabilities.

  12. Traumatic brain injury (TBI) outcomes in an LMIC tertiary care centre and performance of trauma scores.

    PubMed

    Samanamalee, Samitha; Sigera, Ponsuge Chathurani; De Silva, Ambepitiyawaduge Pubudu; Thilakasiri, Kaushila; Rashan, Aasiyah; Wadanambi, Saman; Jayasinghe, Kosala Saroj Amarasiri; Dondorp, Arjen M; Haniffa, Rashan

    2018-01-08

    This study evaluates post-ICU outcomes of patients admitted with moderate and severe Traumatic Brain Injury (TBI) in a tertiary neurocritical care unit in an low middle income country and the performance of trauma scores: A Severity Characterization of Trauma, Trauma and Injury Severity Score, Injury Severity Score and Revised Trauma Score in this setting. Adult patients directly admitted to the neurosurgical intensive care units of the National Hospital of Sri Lanka between 21st July 2014 and 1st October 2014 with moderate or severe TBI were recruited. A telephone administered questionnaire based on the Glasgow Outcome Scale Extended (GOSE) was used to assess functional outcome of patients at 3 and 6 months after injury. The economic impact of the injury was assessed before injury, and at 3 and 6 months after injury. One hundred and one patients were included in the study. Survival at ICU discharge, 3 and 6 months after injury was 68.3%, 49.5% and 45.5% respectively. Of the survivors at 3 months after injury, 43 (86%) were living at home. Only 19 (38%) patients had a good recovery (as defined by GOSE 7 and 8). Three months and six months after injury, respectively 25 (50%) and 14 (30.4%) patients had become "economically dependent". Selected trauma scores had poor discriminatory ability in predicting mortality. This observational study of patients sustaining moderate or severe TBI in Sri Lanka (a LMIC) reveals only 46% of patients were alive at 6 months after ICU discharge and only 20% overall attained a good (GOSE 7 or 8) recovery. The social and economic consequences of TBI were long lasting in this setting. Injury Severity Score, Revised Trauma Score, A Severity Characterization of Trauma and Trauma and Injury Severity Score, all performed poorly in predicting mortality in this setting and illustrate the need for setting adapted tools.

  13. An audit of traumatic brain injury (TBI) in a busy developing-world trauma service exposes a significant deficit in resources available to manage severe TBI.

    PubMed

    Jerome, Ellen; Laing, Grant L; Bruce, John L; Sartorius, Ben; Brysiewicz, Petra; Clarke, Damian L

    2017-06-30

    Traumatic brain injury (TBI) affects large numbers of patients, both adults and children, and significant resources are needed to manage it. To determine the burden of TBI and the adequacy of available resources to manage in the Pietermaritzburg Metropolitan Trauma Service (PMTS). All patients with a TBI were identified from the hybrid electronic medical registry at Grey's and Edendale hospitals in Pietermaritzburg (PMB), KwaZulu-Natal, South Africa. Patients were classified according to severity of head injury and age. We defined mild TBI as Glasgow coma scale (GCS) 13 - 15, moderate as GCS 9 - 12, and severe as GCS ≤8, in accordance with international standards. We divided the cohort according to ages 0 - 5 years, 6 - 10 years, >10 - 17 years and adults (>17 years). From January 2012 to December 2014, 3 301 patients were treated for TBI in PMB. The mean age was 27.4 (standard deviation 14.4) years. There were 2 632 males and 564 females. There were 2 540 mild, 326 moderate, and 329 severe TBI admissions during the period under review. A total of 139 (4.2%) patients died. A total of 242 (7.3%) patients were admitted to the intensive care unit (ICU), of whom 137 (57.0%) had a GCS of ≤9. Only 27.0% of patients with a GCS of ≤9 were admitted to the ICU. There is a significant burden of TBI managed by the PMTS. Critical care resources available to manage patients with TBI are inadequate.

  14. Diagnostic imaging of traumatic brain injury.

    PubMed

    Furlow, Bryant

    2006-01-01

    In this Directed Reading, the history and epidemiology of traumatic brain injury (TBI) will be briefly introduced, the physical and physiological nature of TBI reviewed and the role of imaging in the assessment of TBI patients described. New imaging techniques and recent findings about the neurological correlates of TBI symptoms and outcomes from studies using different imaging modalities and techniques will also be discussed. This directed reading will focus on closed-head TBI; penetrating missile brain injuries, such as those caused by bullet wounds, will not be reviewed.

  15. Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury.

    PubMed

    Kim, Jae Young; Lee, Yong Woo; Kim, Jae Hwan; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2015-07-01

    Traumatic brain injury (TBI) is associated with poor neurological outcome, including necrosis and brain edema. In this study, we investigated whether agmatine treatment reduces edema and apoptotic cell death after TBI. TBI was produced by cold injury to the cerebral primary motor cortex of rats. Agmatine was administered 30 min after injury and once daily until the end of the experiment. Animals were sacrificed for analysis at 1, 2, or 7 days after the injury. Various neurological analyses were performed to investigate disruption of the blood-brain barrier (BBB) and neurological dysfunction after TBI. To examine the extent of brain edema after TBI, the expression of aquaporins (AQPs), phosphorylation of mitogen-activated protein kinases (MAPKs), and nuclear translocation of nuclear factor-κB (NF-κB) were investigated. Our findings demonstrated that agmatine treatment significantly reduces brain edema after TBI by suppressing the expression of AQP1, 4, and 9. In addition, agmatine treatment significantly reduced apoptotic cell death by suppressing the phosphorylation of MAPKs and by increasing the nuclear translocation of NF-κB after TBI. These results suggest that agmatine treatment may have therapeutic potential for brain edema and neural cell death in various central nervous system diseases.

  16. Clinical Utility and Psychometric Properties of the Traumatic Brain Injury Quality of Life Scale (TBI-QOL) in US Military Service Members.

    PubMed

    Lange, Rael T; Brickell, Tracey A; Bailie, Jason M; Tulsky, David S; French, Louis M

    2016-01-01

    To examine the clinical utility and psychometric properties of the Traumatic Brain Injury Quality of Life (TBI-QOL) scale in a US military population. One hundred fifty-two US military service members (age: M = 34.3, SD = 9.4; 89.5% men) prospectively enrolled from the Walter Reed National Military Medical Center and other nationwide community outreach initiatives. Participants included 99 service members who had sustained a mild traumatic brain injury (TBI) and 53 injured or noninjured controls without TBI (n = 29 and n = 24, respectively). Participants completed the TBI-QOL scale and 5 other behavioral measures, on average, 33.8 months postinjury (SD = 37.9). Fourteen TBI-QOL subscales; Neurobehavioral Symptom Inventory; Posttraumatic Stress Disorder Checklist-Civilian version; Alcohol Use Disorders Identification Test; Combat Exposure Scale. The internal consistency reliability of the TBI-QOL scales ranged from α = .91 to α = .98. The convergent and discriminant validity of the 14 TBI-QOL subscales was high. The mild TBI group had significantly worse scores on 10 of the 14 TBI-QOL subscales than the control group (range, P < .001 to P = .043). Effect sizes ranged from medium to very large (d = 0.35 to d = 1.13). The largest differences were found on the Cognition-General Concerns (d = 1.13), Executive Function (d = 0.94), Grief-Loss (d = 0.88), Pain Interference (d = 0.83), and Headache Pain (d = 0.83) subscales. These results support the use of the TBI-QOL scale as a measure of health-related quality of life in a mild TBI military sample. Additional research is recommended to further evaluate the clinical utility of the TBI-QOL scale in both military and civilian settings.

  17. Fractal Analysis of Brain Blood Oxygenation Level Dependent (BOLD) Signals from Children with Mild Traumatic Brain Injury (mTBI).

    PubMed

    Dona, Olga; Noseworthy, Michael D; DeMatteo, Carol; Connolly, John F

    2017-01-01

    Conventional imaging techniques are unable to detect abnormalities in the brain following mild traumatic brain injury (mTBI). Yet patients with mTBI typically show delayed response on neuropsychological evaluation. Because fractal geometry represents complexity, we explored its utility in measuring temporal fluctuations of brain resting state blood oxygen level dependent (rs-BOLD) signal. We hypothesized that there could be a detectable difference in rs-BOLD signal complexity between healthy subjects and mTBI patients based on previous studies that associated reduction in signal complexity with disease. Fifteen subjects (13.4 ± 2.3 y/o) and 56 age-matched (13.5 ± 2.34 y/o) healthy controls were scanned using a GE Discovery MR750 3T MRI and 32-channel RF-coil. Axial FSPGR-3D images were used to prescribe rs-BOLD (TE/TR = 35/2000ms), acquired over 6 minutes. Motion correction was performed and anatomical and functional images were aligned and spatially warped to the N27 standard atlas. Fractal analysis, performed on grey matter, was done by estimating the Hurst exponent using de-trended fluctuation analysis and signal summation conversion methods. Voxel-wise fractal dimension (FD) was calculated for every subject in the control group to generate mean and standard deviation maps for regional Z-score analysis. Voxel-wise validation of FD normality across controls was confirmed, and non-Gaussian voxels (3.05% over the brain) were eliminated from subsequent analysis. For each mTBI patient, regions where Z-score values were at least 2 standard deviations away from the mean (i.e. where |Z| > 2.0) were identified. In individual patients the frequently affected regions were amygdala (p = 0.02), vermis(p = 0.03), caudate head (p = 0.04), hippocampus(p = 0.03), and hypothalamus(p = 0.04), all previously reported as dysfunctional after mTBI, but based on group analysis. It is well known that the brain is best modeled as a complex system. Therefore a measure of complexity

  18. Brain imaging and behavioral outcome in traumatic brain injury.

    PubMed

    Bigler, E D

    1996-09-01

    Brain imaging studies have become an essential diagnostic assessment procedure in evaluating the effects of traumatic brain injury (TBI). Such imaging studies provide a wealth of information about structural and functional deficits following TBI. But how pathologic changes identified by brain imaging methods relate to neurobehavioral outcome is not as well known. Thus, the focus of this article is on brain imaging findings and outcome following TBI. The article starts with an overview of current research dealing with the cellular pathology associated with TBI. Understanding the cellular elements of pathology permits extrapolation to what is observed with brain imaging. Next, this article reviews the relationship of brain imaging findings to underlying pathology and how that pathology relates to neurobehavioral outcome. The brain imaging techniques of magnetic resonance imaging, computerized tomography, and single photon emission computed tomography are reviewed. Various image analysis procedures, and how such findings relate to neuropsychological testing, are discussed. The importance of brain imaging in evaluating neurobehavioral deficits following brain injury is stressed.

  19. Traumatic Brain Injury Inpatient Rehabilitation

    ERIC Educational Resources Information Center

    Im, Brian; Schrer, Marcia J.; Gaeta, Raphael; Elias, Eileen

    2010-01-01

    Traumatic brain injuries (TBI) can cause multiple medical and functional problems. As the brain is involved in regulating nearly every bodily function, a TBI can affect any part of the body and aspect of cognitive, behavioral, and physical functioning. However, TBI affects each individual differently. Optimal management requires understanding the…

  20. Dementia resulting from traumatic brain injury

    PubMed Central

    Ramalho, Joana; Castillo, Mauricio

    2015-01-01

    Traumatic brain injury (TBI) represents a significant public health problem in modern societies. It is primarily a consequence of traffic-related accidents and falls. Other recently recognized causes include sports injuries and indirect forces such as shock waves from battlefield explosions. TBI is an important cause of death and lifelong disability and represents the most well-established environmental risk factor for dementia. With the growing recognition that even mild head injury can lead to neurocognitive deficits, imaging of brain injury has assumed greater importance. However, there is no single imaging modality capable of characterizing TBI. Current advances, particularly in MR imaging, enable visualization and quantification of structural and functional brain changes not hitherto possible. In this review, we summarize data linking TBI with dementia, emphasizing the imaging techniques currently available in clinical practice along with some advances in medical knowledge. PMID:29213985

  1. Project Career: Perceived benefits of iPad apps among college students with Traumatic Brain Injury (TBI).

    PubMed

    Jacobs, K; Leopold, A; Hendricks, D J; Sampson, E; Nardone, A; Lopez, K B; Rumrill, P; Stauffer, C; Elias, E; Scherer, M; Dembe, J

    2017-09-14

    Project Career is an interprofessional five-year development project designed to improve academic and employment success of undergraduate students with a traumatic brain injury (TBI) at two- and four-year colleges and universities. Students receive technology in the form of iPad applications ("apps") to support them in and out of the classroom. To assess participants' perspectives on technology at baseline and perceived benefit of apps after 6 and 12 months of use. This article address a component of a larger study. Participants included 50 college-aged students with traumatic brain injuries. Statistical analysis included data from two Matching Person and Technology (MPT) assessment forms, including the Survey of Technology Use at baseline and the Assistive Technology Use Follow-Up Survey: Apps Currently Using, administered at 6- and 12-months re-evaluation. Analyses included frequencies and descriptives. Average scores at baseline indicated positive perspectives on technology. At 6 months, quality of life (67%) and academics (76%) improved moderately or more from the use of iPad apps. At 12 months, quality of life (65%) and academics (82%) improved moderately or more from the use of iPad apps. Students with a TBI have positive perspectives on technology use. The results on perceived benefit of apps indicated that students with a TBI (including civilians and veterans) report that the apps help them perform in daily life and academic settings.

  2. Mathematical outcomes and working memory in children with TBI and orthopedic injury.

    PubMed

    Raghubar, Kimberly P; Barnes, Marcia A; Prasad, Mary; Johnson, Chad P; Ewing-Cobbs, Linda

    2013-03-01

    This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n550) or orthopedic injury (OI; n547) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI.

  3. Mathematical Outcomes and Working Memory in Children With TBI and Orthopedic Injury

    PubMed Central

    Raghubar, Kimberly P.; Barnes, Marcia A.; Prasad, Mary; Johnson, Chad P.; Ewing-Cobbs, Linda

    2013-01-01

    This study compared mathematical outcomes in children with predominantly moderate to severe traumatic brain injury (TBI; n =50) or orthopedic injury (OI; n=47) at 2 and 24 months post-injury. Working memory and its contribution to math outcomes at 24 months post-injury was also examined. Participants were administered an experimental cognitive addition task and standardized measures of calculation, math fluency, and applied problems; as well as experimental measures of verbal and visual-spatial working memory. Although children with TBI did not have deficits in foundational math fact retrieval, they performed more poorly than OIs on standardized measures of math. In the TBI group, performance on standardized measures was predicted by age at injury, socioeconomic status, and the duration of impaired consciousness. Children with TBI showed impairments on verbal, but not visual working memory relative to children with OI. Verbal working memory mediated group differences on math calculations and applied problems at 24 months post-injury. Children with TBI have difficulties in mathematics, but do not have deficits in math fact retrieval, a signature deficit of math disabilities. Results are discussed with reference to models of mathematical cognition and disability and the role of working memory in math learning and performance for children with TBI. PMID:23164058

  4. The experience of return to work in individuals with traumatic brain injury (TBI): A qualitative study.

    PubMed

    Libeson, Lauren; Downing, Marina; Ross, Pamela; Ponsford, Jennie

    2018-05-10

    Traumatic Brain Injury (TBI) is a leading cause of disability in young people, with return to work (RTW) a major goal of recovery. This qualitative study aimed to understand the RTW experience of individuals with TBI who received comprehensive vocational rehabilitation, and to identify facilitating and limiting factors in the RTW process. Semi-structured interviews were conducted with 15 individuals (mean age = 47.33 years) approximately 4.5 years post-injury, of whom 14 had moderate to severe TBI. Twelve individuals had successfully returned to work. Thematic analysis of transcribed interviews identified three key factors affecting RTW: client, work and rehabilitation factors. Across these factors, 12 themes reported to be critical to the success or failure of the RTW programme were identified. Client themes included social support, cognitive difficulties and motivation, with RTW too early associated with unfavourable outcomes. Work themes included work modifications, employer support and financial incentives. Rehabilitation themes included the RTW programme, the role of the vocational occupational therapist and work preparation. These key factors were reported to have impacted the RTW outcome, comprising three further themes: work satisfaction, future vocational outlook, and quality of life. Consideration of these factors can inform vocational rehabilitation programmes, potentially improving employment outcomes following TBI.

  5. Traumatic brain injury caused by laser-induced shock wave in rats: a novel laboratory model for studying blast-induced traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Hatano, Ben; Matsumoto, Yoshihisa; Otani, Naoki; Saitoh, Daizoh; Tokuno, Shinichi; Satoh, Yasushi; Nawashiro, Hiroshi; Matsushita, Yoshitaro; Sato, Shunichi

    2011-03-01

    The detailed mechanism of blast-induced traumatic brain injury (bTBI) has not been revealed yet. Thus, reliable laboratory animal models for bTBI are needed to investigate the possible diagnosis and treatment for bTBI. In this study, we used laser-induced shock wave (LISW) to induce TBI in rats and investigated the histopathological similarities to actual bTBI. After craniotomy, the rat brain was exposed to a single shot of LISW with a diameter of 3 mm at various laser fluences. At 24 h after LISW exposure, perfusion fixation was performed and the extracted brain was sectioned; the sections were stained with hematoxylin-eosin. Evans blue (EB) staining was also used to evaluate disruption of the blood brain barrier. At certain laser fluence levels, neural cell injury and hemorrhagic lesions were observed in the cortex and subcortical region. However, injury was limited in the tissue region that interacted with the LISW. The severity of injury increased with increasing laser fluence and hence peak pressure of the LISW. Fluorescence originating from EB was diffusively observed in the injuries at high fluence levels. Due to the grade and spatial controllability of injuries and the histological observations similar to those in actual bTBI, brain injuries caused by LISWs would be useful models to study bTBI.

  6. Tics after traumatic brain injury.

    PubMed

    Ranjan, Nishant; Nair, Krishnan Padmakumari Sivaraman; Romanoski, Charles; Singh, Rajiv; Venketswara, Guruprasad

    2011-01-01

    Tics are involuntary non-rhythmic, stereotyped muscle contractions which can be suppressed temporarily. Tics usually start during childhood as part of Tourette syndrome. Adult onset tics are infrequent. This study reports on an adult man who developed tics 1 year after severe traumatic brain injury (TBI). Case report and review of literature. A 19-year-old man sustained TBI following a road traffic accident. He did not have tics or features of obsessive compulsive disorder before the brain injury. A year after injury he developed motor and vocal tics. Magnetic resonance image of the brain showed lesions in the basal ganglia. A search of databases Medline, EMBASE and CINHAL found only four publications on tics in adults with TBI. None of these reported cases had lesions in the basal ganglia. Tics are a rare complication of TBI. People with early onset post-traumatic tics may have had a previously unrecognized, mild tic disorder or a genetic predisposition for tics, which was unmasked by the TBI. In contrast, late post-traumatic tics could be due to delayed effects of injury on neural circuits connecting the frontal cortex and basal ganglia.

  7. Progesterone for Neuroprotection in Pediatric Traumatic Brain Injury

    PubMed Central

    Robertson, Courtney L.; Fidan, Emin; Stanley, Rachel M.; MHSA; Noje, Corina; Bayir, Hülya

    2016-01-01

    Objective To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury (TBI), and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric TBI. Data Sources National Library of Medicine PubMed literature review. Data Selection The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of TBI are summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult TBI is reviewed. Data Extraction and Synthesis Progesterone is a pleotropic agent with beneficial effects on secondary injury cascades that occur after TBI, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after TBI in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human Phase II trials of progesterone for adult TBI have been published, and two multi-center Phase III trials are underway. Conclusions The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of TBI. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children, and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, statue epilepticus). PMID

  8. Self-awareness four years after severe traumatic brain injury: discordance between the patient's and relative's complaints. Results from the PariS-TBI study.

    PubMed

    Chesnel, Camille; Jourdan, Claire; Bayen, Eleonore; Ghout, Idir; Darnoux, Emmanuelle; Azerad, Sylvie; Charanton, James; Aegerter, Philippe; Pradat-Diehl, Pascale; Ruet, Alexis; Azouvi, Philippe; Vallat-Azouvi, Claire

    2018-05-01

    To evaluate the patient's awareness of his or her difficulties in the chronic phase of severe traumatic brain injury (TBI) and to determine the factors related to poor awareness. This study was part of a larger prospective inception cohort study of patients with severe TBI in the Parisian region (PariS-TBI study). Intervention/Main measures: Evaluation was carried out at four years and included the Brain Injury Complaint Questionnaire (BICoQ) completed by the patient and his or her relative as well as the evaluation of impairments, disability and quality of life. A total of 90 patient-relative pairs were included. Lack of awareness was measured using the unawareness index that corresponded to the number of discordant results between the patient and relative in the direction of under evaluation of difficulties by the patient. The only significant relationship found with lack of awareness was the subjective burden perceived by the relative (Zarit Burden Inventory) ( r = 0.5; P < 0.00001). There was no significant relationship between lack of awareness and injury severity, pre-injury socio-demographic data, cognitive impairments, mood disorders, functional independence (Barthel index), global disability (Glasgow Outcome Scale), return to work at four years or quality of life (Quality Of Life after Brain Injury scale (QOLIBRI)). Lack of awareness four years post severe TBI was not related to the severity of the initial trauma, sociodemographic data, the severity of impairments, limitations of activity and participation, or the patient's quality of life. However, poor awareness did significantly influence the weight of the burden perceived by the relative.

  9. A clinical comparison of penetrating and blunt traumatic brain injuries.

    PubMed

    Santiago, Luis A; Oh, Bryan C; Dash, Pramod K; Holcomb, John B; Wade, Charles E

    2012-01-01

    Traumatic brain injury (TBI) is a leading cause of injury death and long-term disability in the USA. It commonly results from blunt (closed) or penetrating trauma. The majority of civilian TBI is caused by falls or motor vehicle collisions, whereas military TBI mainly results from explosions. Although penetrating injuries are less common than closed injuries in the civilian population, they are far more lethal. Unfortunately, the pathophysiologic differences between penetrating and closed TBI remain poorly understood due to the lack of studies on the subject. Many studies on the prognostic factors of mortality and functional outcome after TBI exclude penetrating brain injuries from their series because they are believed to have a different pathophysiology. 125 Articles regarding brain injury were reviewed and summarized for this report. Despite the absence of a clear delineation between penetrating and blunt TBI, the current guidelines for penetrating TBI suggest defaulting to management strategies used for closed TBI with limited supportive evidence. Thus, injuries that appear to have different pathophysiologies and outcomes are managed equally and perhaps not optimally. In view of the incomplete understanding of the impact of mechanism of injury on TBI outcomes, as demonstrated in the current review, new research studies are required to improve evidence-based TBI guidelines tailored especially for penetrating injuries.

  10. BPSD following traumatic brain injury.

    PubMed

    Anghinah, Renato; Freire, Fabio Rios; Coelho, Fernanda; Lacerda, Juliana Rhein; Schmidt, Magali Taino; Calado, Vanessa Tomé Gonçalves; Ianof, Jéssica Natuline; Machado, Sergio; Velasques, Bruna; Ribeiro, Pedro; Basile, Luis Fernando Hindi; Paiva, Wellingson Silva; Amorim, Robson Luis

    2013-01-01

    Annually, 700,000 people are hospitalized with brain injury acquired after traumatic brain injury (TBI) in Brazil. We aim to review the basic concepts related to TBI, and the most common Behavioral and Psychological Symptoms of Dementia (BPSD) findings in moderate and severe TBI survivors. We also discussed our strategies used to manage such patients in the post-acute period. Fifteen TBI outpatients followed at the Center for Cognitive Rehabilitation Post-TBI of the Clinicas Hospital of the University of São Paulo were submitted to a neurological, neuropsychological, speech and occupational therapy evaluation, including the Mini-Mental State Examination. Rehabilitation strategies will then be developed, together with the interdisciplinary team, for each patient individually. Where necessary, the pharmacological approach will be adopted. Our study will discuss options of pharmacologic treatment choices for cognitive, behavioral, or affective disorders following TBI, providing relevant information related to a structured cognitive rehabilitation service and certainly will offer an alternative for patients and families afflicted by TBI. Traumatic brain injury can cause a variety of potentially disabling psychiatric symptoms and syndromes. Combined behavioral and pharmacological strategies, in the treatment of a set of highly challenging behavioral problems, appears to be essential for good patient recovery.

  11. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  12. Changes in sexual functioning from 6 to 12 months following traumatic brain injury: a prospective TBI model system multicenter study.

    PubMed

    Hanks, Robin A; Sander, Angelle M; Millis, Scott R; Hammond, Flora M; Maestas, Kacey L

    2013-01-01

    To investigate longitudinal changes in sexual functioning during the first year following moderate to severe traumatic brain injury (TBI). Prospective cohort study. Community. 182 persons (53 women and 129 men) with moderate to severe TBI who were admitted to 1 of 6 participating TBI Model System centers and followed in the community at 6 and 12 months after injury. Derogatis Interview for Sexual Functioning-Self-Report (DISF-SR); Global Sexual Satisfaction Index (GSSI). Mean T-scores on the DISF-SR Arousal subscale demonstrated marginal improvement over time, with a 2.59-point increase (P = .05) from 6 to 12 months after injury. There were no significant differences over this 6-month period on the remaining DISF-SR subscales, including sexual cognition/fantasy, sexual behavior/experience, and orgasm. There was no significant change in satisfaction with sexual functioning on the GSSI from 6 months (72% satisfied) to 12 months (71% satisfied). Sexual function and satisfaction appears to be stable in those with moderate to severe TBI from 6 to 12 months after injury, with the exception of minimal improvement in arousal. These findings, to our knowledge, reflect the first evidence regarding prospective changes in sexual functioning in this population. Future research can go far to assist clinicians in treatment planning and managing patient expectations of recovery of sexual functioning after TBI.

  13. The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI): II. Reliability and Convergent Validity

    PubMed Central

    Wilde, Elisabeth A.; Kelly, Tara M.; Weyand, Annie M.; Yallampalli, Ragini; Waldron, Eric J.; Pedroza, Claudia; Schnelle, Kathleen P.; Boake, Corwin; Levin, Harvey S.; Moretti, Paolo

    2010-01-01

    Abstract A standardized measure of neurological dysfunction specifically designed for TBI currently does not exist and the lack of assessment of this domain represents a substantial gap. To address this, the Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI) was developed for TBI outcomes research through the addition to and modification of items specifically relevant to patients with TBI, based on the National Institutes of Health Stroke Scale. In a sample of 50 participants (mean age = 33.3 years, SD = 12.9) ≤18 months (mean = 3.1, SD = 3.2) following moderate (n = 8) to severe (n = 42) TBI, internal consistency of the NOS-TBI was high (Cronbach's alpha = 0.942). Test-retest reliability also was high (ρ = 0.97, p < 0.0001), and individual item kappas between independent raters were excellent, ranging from 0.83 to 1.0. Overall inter-rater agreement between independent raters (Kendall's coefficient of concordance) for the NOS-TBI total score was excellent (W = 0.995). Convergent validity was demonstrated through significant Spearman rank-order correlations between the NOS-TBI and the concurrently administered Disability Rating Scale (ρ = 0.75, p < 0.0001), Rancho Los Amigos Scale (ρ = −0.60, p < 0.0001), Supervision Rating Scale (ρ = 0.59, p < 0.0001), and the FIM™ (ρ = −0.68, p < 0.0001). These results suggest that the NOS-TBI is a reliable and valid measure of neurological functioning in patients with moderate to severe TBI. PMID:20210595

  14. Traumatic brain injury in modern war

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Hawley, Jason; Grimes, Jamie; Macedonia, Christian; Hancock, James; Jaffee, Michael; Dombroski, Todd; Ecklund, James M.

    2013-05-01

    Traumatic brain injury (TBI) is common and especially with military service. In Iraq and Afghanistan, explosive blast related TBI has become prominent and is mainly from improvised explosive devices (IED). Civilian standard of care clinical practice guidelines (CPG) were appropriate has been applied to the combat setting. When such CPGs do not exist or are not applicable, new practice standards for the military are created, as for TBI. Thus, CPGs for prehospital care of combat TBI CPG [1] and mild TBI/concussion [2] were introduced as was a DoD system-wide clinical care program, the first large scale system wide effort to address all severities of TBI in a comprehensive organized way. As TBI remains incompletely understood, substantial research is underway. For the DoD, leading this effort are The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury. This program is a beginning, a work in progress ready to leverage advances made scientifically and always with the intent of providing the best care to its military beneficiaries.

  15. Chronic neurodegenerative consequences of traumatic brain injury.

    PubMed

    Chauhan, Neelima B

    2014-01-01

    Traumatic brain injury (TBI) is a serious public health concern and a major cause of death and disability worldwide. Each year, an estimated 1.7 million Americans sustain TBI of which ~52,000 people die, ~275,000 people are hospitalized and 1,365,000 people are treated as emergency outpatients. Currently there are ~5.3 million Americans living with TBI. TBI is more of a disease process than of an event that is associated with immediate and long-term sensomotor, psychological and cognitive impairments. TBI is the best known established epigenetic risk factor for later development of neurodegenerative diseases and dementia. People sustaining TBI are ~4 times more likely to develop dementia at a later stage than people without TBI. Single brain injury is linked to later development of symptoms resembling Alzheimer's disease while repetitive brain injuries are linked to later development of chronic traumatic encephalopathy (CTE) and/or Dementia Pugilistica (DP). Furthermore, genetic background of ß-amyloid precursor protein (APP), Apolipoprotein E (ApoE), presenilin (PS) and neprilysin (NEP) genes is associated with exacerbation of neurodegenerative process after TBI. This review encompasses acute effects and chronic neurodegenerative consequences after TBI.

  16. Cerebral Vascular Injury in Traumatic Brain Injury.

    PubMed

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  17. Traumatic Brain Injury: A Challenge for Educators

    ERIC Educational Resources Information Center

    Bullock, Lyndal M.; Gable, Robert A.; Mohr, J. Darrell

    2005-01-01

    In this article, the authors provide information designed to enhance the knowledge and understanding of school personnel about traumatic brain injury (TBI). The authors specifically define TBI and enumerate common characteristics associated with traumatic brain injury, discuss briefly the growth and type of services provided, and offer some…

  18. Head injuries (TBI) to adults and children in motor vehicle crashes.

    PubMed

    Viano, David C; Parenteau, Chantal S; Xu, Likang; Faul, Mark

    2017-08-18

    This is a descriptive study. It determined the annual, national incidence of head injuries (traumatic brain injury, TBI) to adults and children in motor vehicle crashes. It evaluated NASS-CDS for exposure and incidence of various head injuries in towaway crashes. It evaluated 3 health databases for emergency department (ED) visits, hospitalizations, and deaths due to TBI in motor vehicle occupants. Four databases were evaluated using 1997-2010 data on adult (15+ years old) and child (0-14 years old) occupants in motor vehicle crashes: (1) NASS-CDS estimated the annual incidence of various head injuries and outcomes in towaway crashes, (2) National Hospital Ambulatory Medical Care Survey (NHAMCS)-estimated ED visits for TBI, (3) National Hospital Discharge Survey (NHDS) estimated hospitalizations for TBI, and (4) National Vital Statistics System (NVSS) estimated TBI deaths. The 4 databases provide annual national totals for TBI related injury and death in motor vehicle crashes based on differing definitions with TBI coded by the Abbreviated Injury Scale (AIS) in NASS-CDS and by International Classification of Diseases (ICD) in the health data. Adults: NASS-CDS had 16,980 ± 2,411 (risk = 0.43 ± 0.06%) with severe head injury (AIS 4+) out of 3,930,543 exposed adults in towaway crashes annually. There were 49,881 ± 9,729 (risk = 1.27 ± 0.25%) hospitalized with AIS 2+ head injury, without death. There were 6,753 ± 882 (risk = 0.17 ± 0.02%) fatalities with a head injury cause. The public health data had 89,331 ± 6,870 ED visits, 33,598 ± 1,052 hospitalizations, and 6,682 ± 22 deaths with TBI. NASS-CDS estimated 48% more hospitalized with AIS 2+ head injury without death than NHDS occupants hospitalized with TBI. NASS-CDS estimated 29% more deaths with AIS 3+ head injury than NVSS occupant TBI deaths but only 1% more deaths with a head injury cause. Children: NASS-CDS had 1,453 ± 318 (risk = 0.32 ± 0.07%) with severe head injury (AIS 4+) out of 454,973 exposed

  19. Understanding Traumatic Brain Injury: An Introduction

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  20. Synaptic Mechanisms of Blast-Induced Brain Injury

    PubMed Central

    Przekwas, Andrzej; Somayaji, Mahadevabharath R.; Gupta, Raj K.

    2016-01-01

    Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to military personnel. Brain tissue compression/tension due to blast-induced cranial deformations and shear waves due to head rotation may generate diffuse micro-damage to neuro-axonal structures and trigger a cascade of neurobiological events culminating in cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein neuronal synapses are stretched and sheared. This synaptic injury may result in temporary disconnect of the neural circuitry and transient loss in neuronal communication. We hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which start immediately after the insult, could be attributed to synaptic injury. Although empirical evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are still elusive. Coordinated in vitro–in vivo experiments and mathematical modeling studies can shed light into the synaptic injury mechanisms and their role in the potentiation of mTBI symptoms. PMID:26834697

  1. Back to the future: estimating pre-injury brain volume in patients with traumatic brain injury.

    PubMed

    Ross, David E; Ochs, Alfred L; D Zannoni, Megan; Seabaugh, Jan M

    2014-11-15

    A recent meta-analysis by Hedman et al. allows for accurate estimation of brain volume changes throughout the life span. Additionally, Tate et al. showed that intracranial volume at a later point in life can be used to estimate reliably brain volume at an earlier point in life. These advancements were combined to create a model which allowed the estimation of brain volume just prior to injury in a group of patients with mild or moderate traumatic brain injury (TBI). This volume estimation model was used in combination with actual measurements of brain volume to test hypotheses about progressive brain volume changes in the patients. Twenty six patients with mild or moderate TBI were compared to 20 normal control subjects. NeuroQuant® was used to measure brain MRI volume. Brain volume after the injury (from MRI scans performed at t1 and t2) was compared to brain volume just before the injury (volume estimation at t0) using longitudinal designs. Groups were compared with respect to volume changes in whole brain parenchyma (WBP) and its 3 major subdivisions: cortical gray matter (GM), cerebral white matter (CWM) and subcortical nuclei+infratentorial regions (SCN+IFT). Using the normal control data, the volume estimation model was tested by comparing measured brain volume to estimated brain volume; reliability ranged from good to excellent. During the initial phase after injury (t0-t1), the TBI patients had abnormally rapid atrophy of WBP and CWM, and abnormally rapid enlargement of SCN+IFT. Rates of volume change during t0-t1 correlated with cross-sectional measures of volume change at t1, supporting the internal reliability of the volume estimation model. A logistic regression analysis using the volume change data produced a function which perfectly predicted group membership (TBI patients vs. normal control subjects). During the first few months after injury, patients with mild or moderate TBI have rapid atrophy of WBP and CWM, and rapid enlargement of SCN+IFT. The

  2. Predictors of sexual functioning and satisfaction 1 year following traumatic brain injury: a TBI model systems multicenter study.

    PubMed

    Sander, Angelle M; Maestas, Kacey Little; Nick, Todd G; Pappadis, Monique R; Hammond, Flora M; Hanks, Robin A; Ripley, David L

    2013-01-01

    To investigate predictors of sexual functioning 1 year following traumatic brain injury (TBI). Prospective cohort study. Community. A total of 255 persons with TBI (187 males; 68 females) who had been treated at 1 of 6 TBI Model Systems inpatient rehabilitation units and were living in the community. Derogatis Interview for Sexual Functioning-Self-Report (DISF-SR); Global Satisfaction With Sexual Functioning (Global Sexual Satisfaction Index); Participation Assessment With Recombined Tools-Objective; Patient Health Questionnaire-9. Older age, female gender, and more severe injury were associated with greater sexual dysfunction 1 year following injury. As age increased from 24 to 49 years, the odds of sexual impairment increased more than 3-fold (95% confidence interval: 1.82-5.88). Females had a 2.5 increase in odds of sexual impairment compared with males (95% confidence interval: 1.23-5.26). Greater social participation was predictive of better sexual functioning. Dissatisfaction with sexual functioning was predicted by older age and depression. Older persons and females appear to be at greater risk for sexual dysfunction after TBI and may benefit from specialized assessment and treatment services. Relationships were identified between social participation and sexual function and between depression and sexual satisfaction that may serve as clinical indicators for further assessment and intervention. Further research is needed to elucidate these relationships and identify effective clinical approaches.

  3. The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats.

    PubMed

    Karimi, Seyed Asaad; Hosseinmardi, Narges; Janahmadi, Mahyar; Sayyah, Mohammad; Hajisoltani, Razieh

    2017-09-01

    Traumatic brain injury (TBI), as an expanding public health epidemic, is a common cause of death among youth. TBI is associated with cognitive deficits and memory impairment. Hydrogen sulfide (H 2 S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. In the present study the potential neuroprotective role of sodium hydrosulfide (NaHS), an H 2 S donor on TBI induced memory deficit in a rat model of controlled cortical impact (CCI) injury was investigated. CCI model was used to induce TBI. Male rats were randomly assigned into the following groups: control, sham, sham treated with NaHS, TBI, and TBI treated with NaHS (3 and 5mg/kg). NaHS was injected intraperitoneally 5min before TBI induction. Learning and memory were assessed using Morris water maze (MWM) on days 8-12 following injury. CCI resulted in MWM deficits. Injured animals showed a slower rate of acquisition with respect to the sham-operated animals [F (1, 24)=13.97, P<0.01, two-way ANOVA]. NaHS improved spatial memory impairment of injured rats. Treatment with NaHS (5 mg/kg) decreased the escape latency [F (1, 24)=7.559, P<0.05, two-way ANOVA] and traveled distance [F (1, 12)=6.398, P<0.05, Two way ANOVA)]. In probe test, injured animals spent less time in target zone (P<0.05, unpaired t-test) and NaHS did not have any effect on this parameter (p>0.05, one way ANOVA). These findings suggest that NaHS has a neuroprotective effect on TBI-induced memory impairment in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Imaging of Traumatic Brain Injury.

    PubMed

    Bodanapally, Uttam K; Sours, Chandler; Zhuo, Jiachen; Shanmuganathan, Kathirkamanathan

    2015-07-01

    Imaging plays an important role in the management of patients with traumatic brain injury (TBI). Computed tomography (CT) is the first-line imaging technique allowing rapid detection of primary structural brain lesions that require surgical intervention. CT also detects various deleterious secondary insults allowing early medical and surgical management. Serial imaging is critical to identifying secondary injuries. MR imaging is indicated in patients with acute TBI when CT fails to explain neurologic findings. However, MR imaging is superior in patients with subacute and chronic TBI and also predicts neurocognitive outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Review of the literature on the use of social media by people with traumatic brain injury (TBI).

    PubMed

    Brunner, Melissa; Hemsley, Bronwyn; Palmer, Stuart; Dann, Stephen; Togher, Leanne

    2015-01-01

    To review the literature relating to use of social media by people with a traumatic brain injury (TBI), specifically its use for social engagement, information exchange or rehabilitation. A systematic review with a qualitative meta-synthesis of content themes was conducted. In June 2014, 10 databases were searched for relevant, peer-reviewed research studies in English that related to both TBI and social media. Sixteen studies met the inclusion criteria, with Facebook™ and Twitter™ being the most common social media represented in the included studies. Content analysis identified three major categories of meaning in relation to social media and TBI: (1) risks and benefits; (2) barriers and facilitators; and (3) purposes of use of social media. A greater emphasis was evident regarding potential risks and apparent barriers to social media use, with little focus on facilitators of successful use by people with TBI. Research to date reveals a range of benefits to the use of social media by people with TBI however there is little empirical research investigating its use. Further research focusing on ways to remove the barriers and increase facilitators for the use of social media by people with TBI is needed.

  6. Postconcussive symptoms (PCS) following combat-related traumatic brain injury (TBI) in Veterans with posttraumatic stress disorder (PTSD): Influence of TBI, PTSD, and depression on symptoms measured by the Neurobehavioral Symptom Inventory (NSI).

    PubMed

    Porter, Katherine E; Stein, Murray B; Martis, Brian; Avallone, Kimberly M; McSweeney, Lauren B; Smith, Erin R; Simon, Naomi M; Gargan, Sean; Liberzon, Israel; Hoge, Charles W; Rauch, Sheila A M

    2018-07-01

    Mild traumatic brain injury (mTBI) is commonly reported in recent combat Veterans. While the majority resolve, some Veterans develop postconcussive symptoms (PCS). Previous research suggests these symptoms are not specific to head injury and are often associated with psychiatric symptoms. The current study examines the relative contributions of posttraumatic stress, depressive symptoms, and TBI on postconcussive symptoms, and explores whether the relationship remains after controlling for symptom overlap. Two hundred eighteen combat Veterans from Operation Iraqi Freedom (OIF), Operation Enduring Freedom (OEF), and Operation New Dawn (OND) provided the data for this study as part of a baseline evaluation for inclusion into larger treatment study for posttraumatic stress disorder (PTSD). Participants completed the Brief Traumatic Brain Injury Screen (BTBIS), Neurobehavioral Symptom Inventory (NSI), PTSD Checklist-Stressor Version (PCL-S), Beck Depression Inventory-II (BDI-II). Significant differences in NSI total score between individuals with and without history of TBI were not found. A series of regression analyses demonstrated that Depression and PTSD were significant predictors of NSI score even after removal of NSI symptoms that overlap with PTSD or depression. TBI status was also a significant predictor of PCS in most models, but its relative contribution was much smaller than that of depression and PTSD. Within PTSD symptoms, hyperarousal cluster was a significant predictor of NSI scores. Findings demonstrate that depression and PTSD are related to PCS beyond similarities in construct. Further, within a primarily PTSD treatment-seeking population, these psychiatric symptoms appear to be a stronger contributor than TBI. Copyright © 2018. Published by Elsevier Ltd.

  7. Parents and teachers reporting on a child's emotional and behavioural problems following severe traumatic brain injury (TBI): the moderating effect of time.

    PubMed

    Silberg, Tamar; Tal-Jacobi, Dana; Levav, Miriam; Brezner, Amichai; Rassovsky, Yuri

    2015-01-01

    Gathering information from parents and teachers following paediatric traumatic brain injury (TBI) has substantial clinical value for diagnostic decisions. Yet, a multi-informant approach has rarely been addressed when evaluating children at the chronic stage post-injury. In the current study, the goals were to examine (1) differences between parents' and teachers' reports on a child's emotional and behavioural problems and (2) the effect of time elapsed since injury on each rater's report. A sample of 42 parents and 42 teachers of children following severe TBI completed two standard rating scales. Receiver Operating Characteristic (ROC) curves were used to determine whether time elapsed since injury reliably distinguished children falling above and below clinical levels. Emotional-behavioural scores of children following severe TBI fell within normal range, according to both teachers and parents. Significant differences were found between parents' reports relatively close to the time of injury and 2 years post-injury. However, no such differences were observed in teachers' ratings. Parents and teachers of children following severe TBI differ in their reports on a child's emotional and behavioural problems. The present study not only underscores the importance of multiple informants, but also highlights, for the first time, the possibility that informants' perceptions may vary across time.

  8. The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury.

    PubMed

    Gao, Huabin; Han, Zhaoli; Bai, Ruojing; Huang, Shan; Ge, Xintong; Chen, Fanglian; Lei, Ping

    2017-02-15

    Traumatic brain injury (TBI) is a major public health problem with long-term neurobehavioral sequela. The evidences have revealed that TBI is a risk factor for later development of neurodegenerative disease and both the single and repetitive brain injury can lead to the neurodegeneration. But whether the effects of accumulation play an important role in the neurodegenerative disease is still unknown. We utilized the Sprague Dawley (SD) rats to develop the animal models of repetitive mild TBI and single mild TBI in order to detect the neurobehavioral changes. The results of neurobehavioral test revealed that the repetitive mild TBI led to more severe behavioral injuries than the single TBI. There were more activated microglia cells and astrocytes in the repetitive mild TBI group than the single TBI group. In consistent with this, the levels of TNF-α and IL-6 were higher and the expression of IL-10 was lower in the repetitive mild TBI group compared with the single TBI group. The expression of amyloid precursor protein (APP) increased in the repetitive TBI group detected by ELISA and western blot. But the levels of total tau (Tau-5) and P-tau (ser202) seem no different between the two groups in most time point. In conclusion, repetitive mild TBI could lead to more severe neurobehavioral impairments and the effects of accumulation may be associated with the increased inflammation in the brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Emerging treatments for traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2009-01-01

    Background This review summarizes promising approaches for the treatment of traumatic brain injury (TBI), which are either in preclinical or clinical trials. Objective The pathophysiology underlying neurological deficits after TBI is described. An overview of select therapies for TBI with neuroprotective and neurorestorative effects is presented. Methods A literature review of pre-clinical TBI studies and clinical TBI trials related to neuroprotective and neurorestorative therapeutic approaches is provided. Results/conclusion Nearly all phase II/III clinical trials in neuroprotection have failed to show any consistent improvement in outcome for TBI patients. The next decade will witness an increasing number of clinical trials which seek to translate preclinical research discoveries to the clinic. Promising drug- or cell-based therapeutic approaches include erythropoietin and its carbamylated form, statins, bone marrow stromal cells, stem cells singularly or in combination or with biomaterials to reduce brain injury via neuroprotection and promote brain remodeling via angiogenesis, neurogenesis, and synaptogenesis with a final goal to improve functional outcome of TBI patients. In addition, enriched environment and voluntary physical exercise show promise in promoting functional outcome after TBI, and should be evaluated alone or in combination with other treatments as therapeutic approaches for TBI. PMID:19249984

  10. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI) in adolescent rats

    PubMed Central

    Yamakawa, Glenn R.; Lengkeek, Connor; Salberg, Sabrina; Spanswick, Simon C.; Mychasiuk, Richelle

    2017-01-01

    Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI), we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury induction, behavioral outcomes were measured with a test battery designed to examine symptoms consistent with clinical manifestation of PCS (balance and motor coordination, anxiety, short-term working memory, and depressive-like behaviours). In addition, pathophysiological outcomes were examined with histological measures of volume and cellular proliferation in the dentate gyrus, as well as microglia activation in the ventromedial hypothalamus. Finally, modifications to expression of 12 genes (Adora2a, App, Aqp4, Bdnf, Bmal1, Clock, Cry, Gfap, Orx1, Orx2, Per, Tau), in the prefrontal cortex, hippocampus, and/or the hypothalamus were assessed. We found that chronic caffeine consumption in adolescence altered normal developmental trajectories, as well as recovery from RmTBI. Of particular importance, many of the outcomes exhibited sex-dependent responses whereby the sex of the animal modified response to caffeine, RmTBI, and the combination of the two. These results suggest that caffeine consumption in adolescents at high risk for RmTBI should be monitored. PMID:29108016

  11. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI) in adolescent rats.

    PubMed

    Yamakawa, Glenn R; Lengkeek, Connor; Salberg, Sabrina; Spanswick, Simon C; Mychasiuk, Richelle

    2017-01-01

    Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI), we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury induction, behavioral outcomes were measured with a test battery designed to examine symptoms consistent with clinical manifestation of PCS (balance and motor coordination, anxiety, short-term working memory, and depressive-like behaviours). In addition, pathophysiological outcomes were examined with histological measures of volume and cellular proliferation in the dentate gyrus, as well as microglia activation in the ventromedial hypothalamus. Finally, modifications to expression of 12 genes (Adora2a, App, Aqp4, Bdnf, Bmal1, Clock, Cry, Gfap, Orx1, Orx2, Per, Tau), in the prefrontal cortex, hippocampus, and/or the hypothalamus were assessed. We found that chronic caffeine consumption in adolescence altered normal developmental trajectories, as well as recovery from RmTBI. Of particular importance, many of the outcomes exhibited sex-dependent responses whereby the sex of the animal modified response to caffeine, RmTBI, and the combination of the two. These results suggest that caffeine consumption in adolescents at high risk for RmTBI should be monitored.

  12. Definition of Traumatic Brain Injury, Neurosurgery, Trauma Orthopedics, Neuroimaging, Psychology, and Psychiatry in Mild Traumatic Brain Injury.

    PubMed

    Pervez, Mubashir; Kitagawa, Ryan S; Chang, Tiffany R

    2018-02-01

    Traumatic brain injury (TBI) disrupts the normal function of the brain. This condition can adversely affect a person's quality of life with cognitive, behavioral, emotional, and physical symptoms that limit interpersonal, social, and occupational functioning. Although many systems exist, the simplest classification includes mild, moderate, and severe TBI depending on the nature of injury and the impact on the patient's clinical status. Patients with TBI require prompt evaluation and multidisciplinary management. Aside from the type and severity of the TBI, recovery is influenced by individual patient characteristics, social and environmental factors, and access to medical and rehabilitation services. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Medical Management of the Severe Traumatic Brain Injury Patient.

    PubMed

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  14. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    PubMed

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  15. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    PubMed Central

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease

  16. Diffusion Tensor Imaging for Outcome Prediction in Mild Traumatic Brain Injury: A TRACK-TBI Study

    PubMed Central

    Yuh, Esther L.; Cooper, Shelly R.; Mukherjee, Pratik; Yue, John K.; Lingsma, Hester F.; Gordon, Wayne A.; Valadka, Alex B.; Okonkwo, David O.; Schnyer, David M.; Vassar, Mary J.; Maas, Andrew I.R.; Casey, Scott S.; Cheong, Maxwell; Dams-O'Connor, Kristen; Hricik, Allison J.; Inoue, Tomoo; Menon, David K.; Morabito, Diane J.; Pacheco, Jennifer L.; Puccio, Ava M.; Sinha, Tuhin K.

    2014-01-01

    Abstract We evaluated 3T diffusion tensor imaging (DTI) for white matter injury in 76 adult mild traumatic brain injury (mTBI) patients at the semiacute stage (11.2±3.3 days), employing both whole-brain voxel-wise and region-of-interest (ROI) approaches. The subgroup of 32 patients with any traumatic intracranial lesion on either day-of-injury computed tomography (CT) or semiacute magnetic resonance imaging (MRI) demonstrated reduced fractional anisotropy (FA) in numerous white matter tracts, compared to 50 control subjects. In contrast, 44 CT/MRI-negative mTBI patients demonstrated no significant difference in any DTI parameter, compared to controls. To determine the clinical relevance of DTI, we evaluated correlations between 3- and 6-month outcome and imaging, demographic/socioeconomic, and clinical predictors. Statistically significant univariable predictors of 3-month Glasgow Outcome Scale-Extended (GOS-E) included MRI evidence for contusion (odds ratio [OR] 4.9 per unit decrease in GOS-E; p=0.01), ≥1 ROI with severely reduced FA (OR, 3.9; p=0.005), neuropsychiatric history (OR, 3.3; p=0.02), age (OR, 1.07/year; p=0.002), and years of education (OR, 0.79/year; p=0.01). Significant predictors of 6-month GOS-E included ≥1 ROI with severely reduced FA (OR, 2.7; p=0.048), neuropsychiatric history (OR, 3.7; p=0.01), and years of education (OR, 0.82/year; p=0.03). For the subset of 37 patients lacking neuropsychiatric and substance abuse history, MRI surpassed all other predictors for both 3- and 6-month outcome prediction. This is the first study to compare DTI in individual mTBI patients to conventional imaging, clinical, and demographic/socioeconomic characteristics for outcome prediction. DTI demonstrated utility in an inclusive group of patients with heterogeneous backgrounds, as well as in a subset of patients without neuropsychiatric or substance abuse history. PMID:24742275

  17. Predictors of informal care burden 1 year after a severe traumatic brain injury: results from the PariS-TBI study.

    PubMed

    Bayen, Eleonore; Pradat-Diehl, Pascale; Jourdan, Claire; Ghout, Idir; Bosserelle, Vanessa; Azerad, Sylvie; Weiss, Jean-Jacques; Joël, Marie-Eve; Aegerter, Philippe; Azouvi, Philippe

    2013-01-01

    To investigate predictors of informal care burden 1 year after a severe traumatic brain injury (TBI). Patients (N = 66) aged 15 years or older with severe TBI (Glasgow Coma Scale score of 8 or less) and their primary informal caregivers. Multicenter inception cohort study over 22 months in Paris and the surrounding area (PariS-TBI study). Patients' preinjury characteristics; injury severity data; outcome measures at discharge from intensive care and 1 year after the injury; Dysexecutive Questionnaire; Medical Outcome Study Short Form-36; Zarit Burden Inventory. Among the 257 survivors at discharge from acute care, 66 patient-caregiver couples were included. Primary informal caregivers were predominantly women (73%), of middle age (age, 50 years), supporting male patients (79%), of mean age of 38 years. The majority (56%) of caregivers experienced significant burden, and 44% were at risk of depression. Caregivers' impaired health status and perceived burden significantly correlated with patients' global disability (as assessed with the Glasgow Outcome Scale-Extended) and impairments of executive functions (as assessed with the Dysexecutive Questionnaire). A focused principal component analysis suggested that disability and executive dysfunctions were independent predictors of perceived burden, whereas demographics, injury severity, and Glasgow Outcome Scale at discharge from acute care did not significantly correlate with caregiver's burden. Global handicap and impairments of executive functions are independent significant predictors of caregiver burden 1 year after TBI.

  18. Traumatic Brain Injury: Looking Back, Looking Forward

    ERIC Educational Resources Information Center

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  19. Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation.

    PubMed

    Scheibel, Randall S; Newsome, Mary R; Troyanskaya, Maya; Steinberg, Joel L; Goldstein, Felicia C; Mao, Hui; Levin, Harvey S

    2009-09-01

    Functional magnetic resonance imaging (fMRI) has revealed more extensive cognitive-control related brain activation following traumatic brain injury (TBI), but little is known about how activation varies with TBI severity. Thirty patients with moderate to severe TBI and 10 with orthopedic injury (OI) underwent fMRI at 3 months post-injury using a stimulus response compatibility task. Regression analyses indicated that lower total Glasgow Coma Scale (GCS) and GCS verbal component scores were associated with higher levels of brain activation. Brain-injured patients were also divided into three groups based upon their total GCS score (3-4, 5-8, or 9-15), and patients with a total GCS score of 8 or less produced increased, diffuse activation that included structures thought to mediate visual attention and cognitive control. The cingulate gyrus and thalamus were among the areas showing greatest increases, and this is consistent with vulnerability of these midline structures in severe, diffuse TBI. Better task performance was associated with higher activation, and there were differences in the over-activation pattern that varied with TBI severity, including greater reliance upon left-lateralized brain structures in patients with the most severe injuries. These findings suggest that over-activation is at least partially effective for improving performance and may be compensatory.

  20. Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Lu, Liyan; Wei, Xiaoer; Li, Minghua; Li, Yuehua; Li, Wenbin

    2014-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death worldwide, and mild traumatic brain injury (mTBI) is the most common traumatic injury. It is difficult to detect mTBI using a routine neuroimaging. Advanced techniques with greater sensitivity and specificity for the diagnosis and treatment of mTBI are required. The aim of this review is to offer an overview of various emerging neuroimaging methodologies that can solve the clinical health problems associated with mTBI. Important findings and improvements in neuroimaging that hold value for better detection, characterization and monitoring of objective brain injuries in patients with mTBI are presented. Conventional computed tomography (CT) and magnetic resonance imaging (MRI) are not very efficient for visualizing mTBI. Moreover, techniques such as diffusion tensor imaging, magnetization transfer imaging, susceptibility-weighted imaging, functional MRI, single photon emission computed tomography, positron emission tomography and magnetic resonance spectroscopy imaging were found to be useful for mTBI imaging.

  1. Discriminating military and civilian traumatic brain injuries.

    PubMed

    Reid, Matthew W; Velez, Carmen S

    2015-05-01

    Traumatic brain injury (TBI) occurs at higher rates among service members than civilians. Explosions from improvised explosive devices and mines are the leading cause of TBI in the military. As such, TBI is frequently accompanied by other injuries, which makes its diagnosis and treatment difficult. In addition to postconcussion symptoms, those who sustain a TBI commonly report chronic pain and posttraumatic stress symptoms. This combination of symptoms is so typical they have been referred to as the "polytrauma clinical triad" among injured service members. We explore whether these symptoms discriminate civilian occurrences of TBI from those of service members, as well as the possibility that repeated blast exposure contributes to the development of chronic traumatic encephalopathy (CTE). This article is part of a Special Issue entitled 'Traumatic Brain Injury'. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice.

    PubMed

    Ma, Elise L; Smith, Allen D; Desai, Neemesh; Cheung, Lumei; Hanscom, Marie; Stoica, Bogdan A; Loane, David J; Shea-Donohue, Terez; Faden, Alan I

    2017-11-01

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric pathogen Citrobacter rodentium (Cr) on both gut and brain after injury. Moderate-level TBI was induced in C57BL/6mice by controlled cortical impact (CCI). Mucosal barrier function was assessed by transepithelial resistance, fluorescent-labelled dextran flux, and quantification of tight junction proteins. Enteric glial cell number and activation were measured by Sox10 expression and GFAP reactivity, respectively. Separate groups of mice were challenged with Cr infection during the chronic phase of TBI, and host immune response, barrier integrity, enteric glial cell reactivity, and progression of brain injury and inflammation were assessed. Chronic CCI induced changes in colon morphology, including increased mucosal depth and smooth muscle thickening. At day 28 post-CCI, increased paracellular permeability and decreased claudin-1 mRNA and protein expression were observed in the absence of inflammation in the colon. Colonic glial cell GFAP and Sox10 expression were significantly increased 28days after brain injury. Clearance of Cr and upregulation of Th1/Th17 cytokines in the colon were unaffected by CCI; however, colonic paracellular flux and enteric glial cell GFAP expression were significantly increased. Importantly, Cr infection in chronically-injured mice worsened the brain lesion injury and increased astrocyte- and microglial-mediated inflammation. These experimental studies demonstrate chronic and bidirectional brain-gut interactions after TBI, which may negatively impact late outcomes after brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Technology and its role in rehabilitation for people with cognitive-communication disability following a traumatic brain injury (TBI).

    PubMed

    Brunner, Melissa; Hemsley, Bronwyn; Togher, Leanne; Palmer, Stuart

    2017-01-01

    To review the literature on communication technologies in rehabilitation for people with a traumatic brain injury (TBI), and: (a) determine its application to cognitive-communicative rehabilitation, and b) develop a model to guide communication technology use with people after TBI. This integrative literature review of communication technology in TBI rehabilitation and cognitive-communication involved searching nine scientific databases and included 95 studies. Three major types of communication technologies (assistive technology, augmentative and alternative communication technology, and information communication technology) and multiple factors relating to use of technology by or with people after TBI were categorized according to: (i) individual needs, motivations and goals; (ii) individual impairments, activities, participation and environmental factors; and (iii) technologies. While there is substantial research relating to communication technologies and cognitive rehabilitation after TBI, little relates specifically to cognitive-communication rehabilitation. Further investigation is needed into the experiences and views of people with TBI who use communication technologies, to provide the 'user' perspective and influence user-centred design. Research is necessary to investigate the training interventions that address factors fundamental for success, and any impact on communication. The proposed model provides an evidence-based framework for incorporating technology into speech pathology clinical practice and research.

  4. Transcranial amelioration of inflammation and cell death after brain injury

    NASA Astrophysics Data System (ADS)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.

    2014-01-01

    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  5. Prevalence of traumatic brain injury in juvenile offenders: a meta-analysis.

    PubMed

    Farrer, Thomas J; Frost, R Brock; Hedges, Dawson W

    2013-01-01

    Studies of traumatic brain injury (TBI) among adult populations demonstrate that such injuries can lead to aggressive behaviors. Related findings suggest that incarcerated individuals have high rates of brain injuries. Such studies suggest that traumatic brain injury may be related to the etiology and recidivism of criminal behavior. Relatively few studies have examined the prevalence of TBI using a delinquent juvenile sample. In order to assess the relationship between TBI and juvenile offender status, the current study used meta-analytic techniques to examine the odds of having a TBI among juvenile offenders. Across 9 studies, we found that approximately 30% of juvenile offenders have sustained a previous brain injury. Across 5 studies that used a control group, a calculated summary odds ratio of 3.37 suggests that juvenile offenders are significantly more likely to have a TBI compared to controls. Results suggest that the rate of TBIs within the juvenile offender population is significant and that there may be a relationship between TBIs and juvenile criminal behavior.

  6. Baseline Establishment Using Virtual Environment Traumatic Brain Injury Screen (VETS)

    DTIC Science & Technology

    2015-06-01

    indicator of mTBI. Further, these results establish a baseline data set, which may be useful in comparing concussed individuals. 14. SUBJECT TERMS... Concussion , mild traumatic brain injury (mTBI), traumatic brain injury (TBI), balance, Sensory Organization Test, Balance Error Scoring System, center of...43 5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 44 Appendix A Military Acute Concussion Evaluation 47

  7. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury.

    PubMed

    Tu, Tsang-Wei; Lescher, Jacob D; Williams, Rashida A; Jikaria, Neekita; Turtzo, L Christine; Frank, Joseph A

    2017-01-01

    Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the

  8. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury

    PubMed Central

    Lescher, Jacob D.; Williams, Rashida A.; Jikaria, Neekita; Turtzo, L. Christine; Frank, Joseph A.

    2017-01-01

    Abstract Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate

  9. The experience of traumatic brain injury in Botswana.

    PubMed

    Mbakile-Mahlanza, Lingani; Manderson, Lenore; Ponsford, Jennie

    2015-01-01

    Whilst the consequences of traumatic brain injury (TBI) are understood in Western countries, it is not known how cultural background and beliefs affect response and outcome following TBI in low and middle income countries. This study aimed to explore the experiences of TBI in Botswana. Participants included 21 individuals with moderate to severe TBI (68% males, mean age 35.2 years), 18 caregivers and 25 healthcare workers. Qualitative semi-structured interviews were transcribed, translated and thematically coded. Thematic analysis indicated several themes: Injury-related changes, attributions and beliefs about the cause of the injury, family reactions, attitudes, and resources. Participants described the common injury-related effects of TBI. Many participants attributed their injury to supernatural causes. Immediate family members of participants with TBI expressed a sense of love and devotion towards the injured person. Communication was characterised by inadequate information given to those injured and their caregivers. Provision of care was impeded by insufficient staff, limited supplies and lack of training of nurses. The current healthcare system would therefore appear to be ill-equipped to meet the needs of TBI survivors in Botswana. This study will improve understanding of cultural responses and approaches to brain injuries in Botswana which may, in turn, inform improved practice.

  10. Rehabilitation Treatment and Progress of Traumatic Brain Injury Dysfunction

    PubMed Central

    Dang, Baoqi; Chen, Wenli; He, Weichun

    2017-01-01

    Traumatic brain injury (TBI) is a major cause of chronic disability. Worldwide, it is the leading cause of disability in the under 40s. Behavioral problems, mood, cognition, particularly memory, attention, and executive function are commonly impaired by TBI. Spending to assist, TBI survivors with disabilities are estimated to be costly per year. Such impaired functional outcomes following TBI can be improved via various rehabilitative approaches. The objective of the present paper is to review the current rehabilitation treatment of traumatic brain injury in adults. PMID:28491478

  11. Superoxide and Nitric Oxide Mechanisms in Traumatic Brain Injury and Hemorrhagic Hypotension.

    DTIC Science & Technology

    1999-12-01

    DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) Traumatic brain injury (TBI) renders the brain vulnerable to secondary ischemia and poor outcome...cerebral blood flow (CBF) and renders the brain vulnerable to secondary ischemia. There is clinical evidence that hypotension contributes to poor...without TBI. These data indicate that even moderate TBI renders the brain sensitive to ischemic injury during relative mild levels of hypotension that

  12. Kevlar Vest Protection Against Blast Overpressure Brain Injury: Systemic Contributions to Injury Etiology

    DTIC Science & Technology

    2014-11-01

    GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast... traumatic brain injury (bTBI) is largely undefined. Along with reducing mortality, in preliminary experiments Kevlar vests significantly protected...mitigation strategies. 15. SUBJECT TERMS Traumatic Brain Injury (TBI), Kevlar Vests, Neuroprotection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  13. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice.

    PubMed

    Evans, Lucy P; Newell, Elizabeth A; Mahajan, MaryAnn; Tsang, Stephen H; Ferguson, Polly J; Mahoney, Jolonda; Hue, Christopher D; Vogel, Edward W; Morrison, Barclay; Arancio, Ottavio; Nichols, Russell; Bassuk, Alexander G; Mahajan, Vinit B

    2018-03-01

    Limited attention has been given to ocular injuries associated with traumatic brain injury (TBI). The retina is an extension of the central nervous system and evaluation of ocular damage may offer a less-invasive approach to gauge TBI severity and response to treatment. We aim to characterize acute changes in the mouse eye after exposure to two different models of TBI to assess the utility of eye damage as a surrogate to brain injury. A model of blast TBI (bTBI) using a shock tube was compared to a lateral fluid percussion injury model (LFPI) using fluid pressure applied directly to the brain. Whole eyes were collected from mice 3 days post LFPI and 24 days post bTBI and were evaluated histologically using a hematoxylin and eosin stain. bTBI mice showed evidence of vitreous detachment in the posterior chamber in addition to vitreous hemorrhage with inflammatory cells. Subretinal hemorrhage, photoreceptor degeneration, and decreased cellularity in the retinal ganglion cell layer was also seen in bTBI mice. In contrast, eyes of LFPI mice showed evidence of anterior uveitis and subcapsular cataracts. We demonstrated that variations in the type of TBI can result in drastically different phenotypic changes within the eye. As such, molecular and phenotypic changes in the eye following TBI may provide valuable information regarding the mechanism, severity, and ongoing pathophysiology of brain injury. Because vitreous samples are easily obtained, molecular changes within the eye could be utilized as biomarkers of TBI in human patients.

  14. Social dysfunction after pediatric traumatic brain injury: a translational perspective

    PubMed Central

    Ryan, Nicholas P.; Catroppa, Cathy; Godfrey, Celia; Noble-Haeusslein, Linda J.; Shultz, Sandy R.; O'Brien, Terence J.; Anderson, Vicki; Semple, Bridgette D.

    2016-01-01

    Social dysfunction is common after traumatic brain injury (TBI), contributing to reduced quality of life for survivors. Factors which influence the emergence, development or persistence of social deficits after injury remain poorly understood, particularly in the context of ongoing brain maturation during childhood. Aberrant social interactions have recently been modeled in adult and juvenile rodents after experimental TBI, providing an opportunity to gain new insights into the underlying neurobiology of these behaviors. Here, we review our current understanding of social dysfunction in both humans and rodent models of TBI, with a focus on brain injuries acquired during early development. Modulators of social outcomes are discussed, including injury-related and environmental risk and resilience factors. Disruption of social brain network connectivity and aberrant neuroendocrine function are identified as potential mechanisms of social impairments after pediatric TBI. Throughout, we highlight the overlap and disparities between outcome measures and findings from clinical and experimental approaches, and explore the translational potential of future research to prevent or ameliorate social dysfunction after childhood TBI. PMID:26949224

  15. Quantitative magnetic resonance imaging in traumatic brain injury.

    PubMed

    Bigler, E D

    2001-04-01

    Quantitative neuroimaging has now become a well-established method for analyzing magnetic resonance imaging in traumatic brain injury (TBI). A general review of studies that have examined quantitative changes following TBI is presented. The consensus of quantitative neuroimaging studies is that most brain structures demonstrate changes in volume or surface area after injury. The patterns of atrophy are consistent with the generalized nature of brain injury and diffuse axonal injury. Various clinical caveats are provided including how quantitative neuroimaging findings can be used clinically and in predicting rehabilitation outcome. The future of quantitative neuroimaging also is discussed.

  16. Evidence for impaired plasticity after traumatic brain injury in the developing brain.

    PubMed

    Li, Nan; Yang, Ya; Glover, David P; Zhang, Jiangyang; Saraswati, Manda; Robertson, Courtney; Pelled, Galit

    2014-02-15

    The robustness of plasticity mechanisms during brain development is essential for synaptic formation and has a beneficial outcome after sensory deprivation. However, the role of plasticity in recovery after acute brain injury in children has not been well defined. Traumatic brain injury (TBI) is the leading cause of death and disability among children, and long-term disability from pediatric TBI can be particularly devastating. We investigated the altered cortical plasticity 2-3 weeks after injury in a pediatric rat model of TBI. Significant decreases in neurophysiological responses across the depth of the noninjured, primary somatosensory cortex (S1) in TBI rats, compared to age-matched controls, were detected with electrophysiological measurements of multi-unit activity (86.4% decrease), local field potential (75.3% decrease), and functional magnetic resonance imaging (77.6% decrease). Because the corpus callosum is a clinically important white matter tract that was shown to be consistently involved in post-traumatic axonal injury, we investigated its anatomical and functional characteristics after TBI. Indeed, corpus callosum abnormalities in TBI rats were detected with diffusion tensor imaging (9.3% decrease in fractional anisotropy) and histopathological analysis (14% myelination volume decreases). Whole-cell patch clamp recordings further revealed that TBI results in significant decreases in spontaneous firing rate (57% decrease) and the potential to induce long-term potentiation in neurons located in layer V of the noninjured S1 by stimulation of the corpus callosum (82% decrease). The results suggest that post-TBI plasticity can translate into inappropriate neuronal connections and dramatic changes in the function of neuronal networks.

  17. Traumatic Alterations in Consciousness: Traumatic Brain Injury

    PubMed Central

    Blyth, Brian J.; Bazarian, Jeffrey J.

    2010-01-01

    Mild traumatic brain injury (mTBI) refers to the clinical condition of transient alteration of consciousness as a result of traumatic injury to the brain. The priority of emergency care is to identify and facilitate the treatment of rare but potentially life threatening intra-cranial injuries associated with mTBI through the judicious application of appropriate imaging studies and neurosurgical consultation. Although post-mTBI symptoms quickly and completely resolve in the vast majority of cases, a significant number of patients will complain of lasting problems that may cause significant disability. Simple and early interventions such as patient education and appropriate referral can reduce the likelihood of chronic symptoms. Although definitive evidence is lacking, mTBI is likely to be related to significant long-term sequelae such as Alzheimer's disease and other neurodegenerative processes. PMID:20709244

  18. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  19. Traumatic brain injury

    PubMed Central

    Risdall, Jane E.; Menon, David K.

    2011-01-01

    There is an increasing incidence of military traumatic brain injury (TBI), and similar injuries are seen in civilians in war zones or terrorist incidents. Indeed, blast-induced mild TBI has been referred to as the signature injury of the conflicts in Iraq and Afghanistan. Assessment involves schemes that are common in civilcian practice but, in common with civilian TBI, takes little account of information available from modern imaging (particularly diffusion tensor magnetic resonance imaging) and emerging biomarkers. The efficient logistics of clinical care delivery in the field may have a role in optimizing outcome. Clinical care has much in common with civilian TBI, but intracranial pressure monitoring is not always available, and protocols need to be modified to take account of this. In addition, severe early oedema has led to increasing use of decompressive craniectomy, and blast TBI may be associated with a higher incidence of vasospasm and pseudoaneurysm formation. Visual and/or auditory deficits are common, and there is a significant risk of post-traumatic epilepsy. TBI is rarely an isolated finding in this setting, and persistent post-concussive symptoms are commonly associated with post-traumatic stress disorder and chronic pain, a constellation of findings that has been called the polytrauma clinical triad. PMID:21149359

  20. The King's Outcome Scale for Childhood Head Injury and Injury Severity and Outcome Measures in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Calvert, Sophie; Miller, Helen E.; Curran, Andrew; Hameed, Biju; McCarter, Renee; Edwards, Richard J.; Hunt, Linda; Sharples, Peta Mary

    2008-01-01

    The aim of this study was to relate discharge King's Outcome Scale for Childhood Head Injury (KOSCHI) category to injury severity and detailed outcome measures obtained in the first year post-traumatic brain injury (TBI). We used a prospective cohort study. Eighty-one children with TBI were studied: 29 had severe, 15 moderate, and 37 mild TBI. The…

  1. Post-traumatic stress disorder vs traumatic brain injury

    PubMed Central

    Bryant, Richard

    2011-01-01

    Post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI) often coexist because brain injuries are often sustained in traumatic experiences. This review outlines the significant overlap between PTSD and TBI by commencing with a critical outline of the overlapping symptoms and problems of differential diagnosis. The impact of TBI on PTSD is then described, with increasing evidence suggesting that mild TBI can increase risk for PTSD. Several explanations are offered for this enhanced risk. Recent evidence suggests that impairment secondary to mild TBI is largely attributable to stress reactions after TBI, which challenges the long-held belief that postconcussive symptoms are a function of neurological insult This recent evidence is pointing to new directions for treatment of postconcussive symptoms that acknowledge that treating stress factors following TBI may be the optimal means to manage the effects of many TBIs, PMID:22034252

  2. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  3. Internet and Social Media Use After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Baker-Sparr, Christina; Hart, Tessa; Bergquist, Thomas; Bogner, Jennifer; Dreer, Laura; Juengst, Shannon; Mellick, David; OʼNeil-Pirozzi, Therese M; Sander, Angelle M; Whiteneck, Gale G

    To characterize Internet and social media use among adults with moderate to severe traumatic brain injury (TBI) and to compare demographic and socioeconomic factors associated with Internet use between those with and without TBI. Ten Traumatic Brain Injury Model Systems centers. Persons with moderate to severe TBI (N = 337) enrolled in the TBI Model Systems National Database and eligible for follow-up from April 1, 2014, to March 31, 2015. Prospective cross-sectional observational cohort study. Internet usage survey. The proportion of Internet users with TBI was high (74%) but significantly lower than those in the general population (84%). Smartphones were the most prevalent means of Internet access for persons with TBI. The majority of Internet users with TBI had a profile account on a social networking site (79%), with more than half of the sample reporting multiplatform use of 2 or more social networking sites. Despite the prevalence of Internet use among persons with TBI, technological disparities remain in comparison with the general population. The extent of social media use among persons with TBI demonstrates the potential of these platforms for social engagement and other purposes. However, further research examining the quality of online activities and identifying potential risk factors of problematic use is recommended.

  4. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury.

    PubMed

    Dennis, Emily L; Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C; Thompson, Paul M; Asarnow, Robert F

    2016-05-01

    Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1-6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI.

  5. Polyamine catabolism is enhanced after traumatic brain injury.

    PubMed

    Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A; Strauss, Kenneth I

    2010-03-01

    Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N(1)-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6-24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6-24 h), then increased by approximately 50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6-72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24-72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally. Prolonged increases in brain

  6. Hypobaric Hypoxia Exacerbates the Neuroinflammatory Response to Traumatic Brain Injury

    PubMed Central

    Goodman, Michael D.; Makley, Amy T.; Huber, Nathan L.; Clarke, Callisia N.; Friend, Lou Ann W.; Schuster, Rebecca M.; Bailey, Stephanie R.; Barnes, Stephen L.; Dorlac, Warren C.; Johannigman, Jay A.; Lentsch, Alex B.; Pritts, Timothy A.

    2015-01-01

    Objective To determine the inflammatory effects of time-dependent exposure to the hypobaric environment of simulated aeromedical evacuation following traumatic brain injury (TBI). Methods Mice were subjected to a blunt TBI or sham injury. Righting reflex response (RRR) time was assessed as an indicator of neurologic recovery. Three or 24 h (Early and Delayed groups, respectively) after TBI, mice were exposed to hypobaric flight conditions (Fly) or ground-level control (No Fly) for 5 h. Arterial blood gas samples were obtained from all groups during simulated flight. Serum and cortical brain samples were analyzed for inflammatory cytokines after flight. Neuron specific enolase (NSE) was measured as a serum biomarker of TBI severity. Results TBI resulted in prolonged RRR time compared with sham injury. After TBI alone, serum levels of interleukin-6 (IL-6) and keratinocyte-derived chemokine (KC) were increased by 6 h post-injury. Simulated flight significantly reduced arterial oxygen saturation levels in the Fly group. Post-injury altitude exposure increased cerebral levels of IL-6 and macrophage inflammatory protein-1α (MIP-1α), as well as serum NSE in the Early but not Delayed Flight group compared to ground-level controls. Conclusions The hypobaric environment of aero-medical evacuation results in significant hypoxia. Early, but not delayed, exposure to a hypobaric environment following TBI increases the neuroinflammatory response to injury and the severity of secondary brain injury. Optimization of the post-injury time to fly using serum cytokine and biomarker levels may reduce the potential secondary cerebral injury induced by aeromedical evacuation. PMID:20850781

  7. MRI patterns in prolonged low response states following traumatic brain injury in children and adolescents.

    PubMed

    Patrick, Peter D; Mabry, Jennifer L; Gurka, Matthew J; Buck, Marcia L; Boatwright, Evelyn; Blackman, James A

    2007-01-01

    To explore the relationship between location and pattern of brain injury identified on MRI and prolonged low response state in children post-traumatic brain injury (TBI). This observational study compared 15 children who spontaneously recovered within 30 days post-TBI to 17 who remained in a prolonged low response state. 92.9% of children with brain stem injury were in the low response group. The predicted probability was 0.81 for brain stem injury alone, increasing to 0.95 with a regional pattern of injury to the brain stem, basal ganglia, and thalamus. Low response state in children post-TBI is strongly correlated with two distinctive regions of injury: the brain stem alone, and an injury pattern to the brain stem, basal ganglia, and thalamus. This study demonstrates the need for large-scale clinical studies using MRI as a tool for outcome assessment in children and adolescents following severe TBI.

  8. Brain Injury Vision Symptom Survey (BIVSS) Questionnaire.

    PubMed

    Laukkanen, Hannu; Scheiman, Mitchell; Hayes, John R

    2017-01-01

    Validation of the Brain Injury Vision Symptom Survey (BIVSS), a self-administered survey for vision symptoms related to traumatic brain injury (TBI). A 28-item vision symptom questionnaire was completed by 107 adult subjects (mean age 42.1, 16.2 SD, range 18-75) who self-reported as having sustained mild-to-moderate TBI and two groups of reference adult subjects (first-year optometry students: mean age 23.2, 2.8 SD, range 20-39; and 71 third-year optometry students: mean age 26.0, 2.9 SD, range 22-42) without TBI. Both a Likert-style method of analysis with factor analysis and a Rasch analysis were used. Logistic regression was used to determine sensitivity and specificity. At least 27 of 28 questions were completed by 93.5% of TBI subjects, and all 28 items were completed by all of the 157 reference subjects. BIVSS sensitivity was 82.2% for correctly predicting TBI and 90.4% for correctly predicting the optometry students. Factor analysis identified eight latent variables; six factors were positive in their risk for TBI. Other than dry eye and double vision, the TBI patients were significantly more symptomatic than either cohort of optometry students by at least one standard deviation (p < 0.001). Twenty-five of 28 questions were within limits for creating a single-dimension Rasch scale. Nearly all of the adult TBI subjects were able to self-complete the BIVSS, and there was significant mean score separation between TBI and non-TBI groups. The Rasch analysis revealed a single dimension associated with TBI. Using the Likert method with the BIVSS, it may be possible to identify different vision symptom profiles with TBI patients. The BIVSS seems to be a promising tool for better understanding the complex and diverse nature of vision symptoms that are associated with brain injury.

  9. Adolescent Mice Demonstrate a Distinct Pattern of Injury after Repetitive Mild Traumatic Brain Injury

    PubMed Central

    Berkner, Justin; Mei, Zhengrong; Alcon, Sasha; Hashim, Jumana; Robinson, Shenandoah; Jantzie, Lauren; Meehan, William P.; Qiu, Jianhua

    2017-01-01

    Abstract Recently, there has been increasing interest in outcomes after repetitive mild traumatic brain injury (rmTBI) (e.g., sports concussions). Although most of the scientific attention has focused on elite athlete populations, the sequelae of rmTBI in children and young adults have not been well studied. Prior TBI studies have suggested that developmental differences in response to injury, including differences in excitotoxicity and inflammation, could result in differences in functional and histopathological outcomes after injury. The purpose of this study is to compare outcomes in adolescent (5-week-old) versus adult (4-month-old) mice in a clinically relevant model of rmTBI. We hypothesized that functional and histopathological outcomes after rmTBI would differ in developing adolescent brains compared with mature adult brains. Male adolescent and adult (C57Bl/6) mice were subjected to a weight drop model of rmTBI (n = 10–16/group). Loss of consciousness (LOC) after each injury was measured. Functional outcomes were assessed including tests of balance (rotorod), spatial memory (Morris water maze), and impulsivity (elevated plus maze). After behavioral testing, brains were assessed for histopathological outcomes including microglial immunolabeling and N-methyl-d-aspartate (NMDA) receptor subunit expression. Injured adolescent mice had longer LOC than injured adult mice compared with their respective sham controls. Compared with sham mice, adolescent and adult mice subjected to rmTBI had impaired balance, increased impulsivity, and worse spatial memory that persisted up to 3 months after injury, and the effect of injury was worse in adolescent than in adult mice in terms of spatial memory. Three months after injury, adolescent and adult mice demonstrated increased ionized calcium binding adaptor 1 (IbA1) immunolabeling compared with sham controls. Compared with sham controls, NMDA receptor subtype 2B (NR2B) expression in the hippocampus was reduced by

  10. Narrative Language in Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Marini, Andrea; Galetto, Valentina; Zampieri, Elisa; Vorano, Lorenza; Zettin, Marina; Carlomagno, Sergio

    2011-01-01

    Persons with traumatic brain injury (TBI) often show impaired linguistic and/or narrative abilities. The present study aimed to document the features of narrative discourse impairment in a group of adults with TBI. 14 severe TBI non-aphasic speakers (GCS less than 8) in the phase of neurological stability and 14 neurologically intact participants…

  11. The blood-brain barrier as a target in traumatic brain injury treatment.

    PubMed

    Thal, Serge C; Neuhaus, Winfried

    2014-11-01

    Traumatic brain injury (TBI) is one of the most frequent causes of death in the young population. Several clinical trials have unsuccessfully focused on direct neuroprotective therapies. Recently immunotherapeutic strategies shifted into focus of translational research in acute CNS diseases. Cross-talk between activated microglia and blood-brain barrier (BBB) could initiate opening of the BBB and subsequent recruitment of systemic immune cells and mediators into the brain. Stabilization of the BBB after TBI could be a promising strategy to limit neuronal inflammation, secondary brain damage and acute neurodegeneration. This review provides an overview on the pathophysiology of TBI and brain edema formation including definitions and classification of TBI, current clinical treatment strategies, as well as current understanding on the underlying cellular processes. A summary of in vivo and in vitro models to study different aspects of TBI is presented. Three mechanisms proposed for stabilization of the BBB, myosin light chain kinases, glucocorticoid receptors and peroxisome proliferator-activated receptors are reviewed for their influence on barrier-integrity and outcome after TBI. In conclusion, the BBB is recommended as a promising target for the treatment of traumatic brain injury, and it is suggested that a combination of BBB stabilization and neuroprotectants may improve therapeutic success. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  12. Identity, grief and self-awareness after traumatic brain injury.

    PubMed

    Carroll, Emma; Coetzer, Rudi

    2011-06-01

    The objective of this study was to investigate perceived identity change in adults with traumatic brain injury (TBI) and explore associations between identity change, grief, depression, self-esteem and self-awareness. The participants were 29 adults with TBI who were being followed up by a community brain injury rehabilitation service. Participants were longer post-injury than those more commonly studied. Time since injury ranged from 2.25 to 40 years (mean = 11.17 years, SD = 11.4 years). Participants completed a battery of questionnaires. Significant others and clinicians completed a parallel version of one of these measures. Questionnaires included the Head Injury Semantic Differential Scale (HISDS-III), Brain Injury Grief Inventory (BIGI), Hospital Anxiety and Depression Scale - Depression, Rosenberg Self-Esteem Scale (RSES) and the Awareness Questionnaire (Self/Significant other/Clinician versions). The main findings were that participants reported significant changes in self-concept with current self being viewed negatively in comparison to pre-injury self. Perceived identity change was positively associated with depression and grief and negatively associated with self-esteem and awareness. Awareness was negatively associated with self-esteem and positively associated with depression. These findings were consistent with previous research, revealing changes in identity following TBI. Further research is needed to increase our understanding of the psychological factors involved in emotional adjustment after TBI and to inform brain injury rehabilitation interventions, including psychotherapy approaches.

  13. The profile of head injuries and traumatic brain injury deaths in Kashmir.

    PubMed

    Yattoo, Gh; Tabish, Amin

    2008-06-21

    This study was conducted on patients of head injury admitted through Accident & Emergency Department of Sher-i-Kashmir Institute of Medical Sciences during the year 2004 to determine the number of head injury patients, nature of head injuries, condition at presentation, treatment given in hospital and the outcome of intervention. Traumatic brain injury (TBI) deaths were also studied retrospectively for a period of eight years (1996 to 2003).The traumatic brain injury deaths showed a steady increase in number from year 1996 to 2003 except for 1999 that showed decline in TBI deaths. TBI deaths were highest in age group of 21-30 years (18.8%), followed by 11-20 years age group (17.8%) and 31-40 years (14.3%). The TBI death was more common in males. Maximum number of traumatic brain injury deaths was from rural areas as compared to urban areas.To minimize the morbidity and mortality resulting from head injury there is a need for better maintenance of roads, improvement of road visibility and lighting, proper mechanical maintenance of automobile and other vehicles, rigid enforcement of traffic rules, compulsory wearing of crash helmets by motor cyclist and scooterists and shoulder belt in cars and imparting compulsory road safety education to school children from primary education level. Moreover, appropriate medical care facilities (including trauma centres) need to be established at district level, sub-divisional and block levels to provide prompt and quality care to head injury patients.

  14. Neuroinflammation in the Evolution of Secondary Injury, Repair, and Chronic Neurodegeneration after Traumatic Brain Injury

    PubMed Central

    Simon, Dennis W.; McGeachy, Mandy; Bayır, Hülya; Clark, Robert S.B.; Loane, David J.; Kochanek, Patrick M.

    2017-01-01

    The “silent epidemic” of traumatic brain injury (TBI) has been placed in the spotlight following investigations and popular press coverage of athletes and returning soldiers with single and repetitive injuries; however, treatments to improve the outcome for patients with TBI across the spectrum from mild to severe TBI are lacking. Neuroinflammation may cause acute secondary injury after TBI, and it has been linked to chronic neurodegenerative diseases. Despite these findings, anti-inflammatory agents have failed to improve outcomes in clinical trials. We therefore propose in this review a new framework for future exploration of targeted immunomodulation after TBI that incorporates factors such as the time from injury, mechanism of injury, and secondary insults in considering potential treatment options. Structured around the dynamics of the immune response to TBI – from initial triggers to chronic neuroinflammation – the ability of soluble and cellular inflammatory mediators to promote repair and regeneration versus secondary injury and neurodegeneration is highlighted, with knowledge from human studies explicitly defined throughout this review. Recent advances in neuroimmunology and TBI-responsive neuroinflammation are incorporated, including inflammasomes, mechanisms of microglial polarization, and glymphatic clearance. In addition, we identify throughout this review where these findings may offer novel therapeutic targets for translational and clinical research, incorporate evidence from other brain injury models, and identify outstanding questions in the field. PMID:28186177

  15. Extracellular N-Acetylaspartate in Human Traumatic Brain Injury

    PubMed Central

    Shannon, Richard J.; Carter, Eleanor L.; Jalloh, Ibrahim; Menon, David K.; Hutchinson, Peter J.; Carpenter, Keri L.H.

    2016-01-01

    Abstract N-acetylaspartate (NAA) is an amino acid derivative primarily located in the neurons of the adult brain. The function of NAA is incompletely understood. Decrease in brain tissue NAA is presently considered symptomatic and a potential biomarker of acute and chronic neuropathological conditions. The aim of this study was to use microdialysis to investigate the behavior of extracellular NAA (eNAA) levels after traumatic brain injury (TBI). Sampling for this study was performed using cerebral microdialysis catheters (M Dialysis 71) perfused at 0.3 μL/min. Extracellular NAA was measured in microdialysates by high-performance liquid chromatography in 30 patients with severe TBI and for comparison, in radiographically “normal” areas of brain in six non-TBI neurosurgical patients. We established a detailed temporal eNAA profile in eight of the severe TBI patients. Microdialysate concentrations of glucose, lactate, pyruvate, glutamate, and glycerol were measured on an ISCUS clinical microdialysis analyzer. Here, we show that the temporal profile of microdialysate eNAA was characterized by highest levels in the earliest time-points post-injury, followed by a steady decline; beyond 70 h post-injury, average levels were 40% lower than those measured in non-TBI patients. There was a significant inverse correlation between concentrations of eNAA and pyruvate; eNAA showed significant positive correlations with glycerol and the lactate/pyruvate (L/P) ratio measured in microdialysates. The results of this on-going study suggest that changes in eNAA after TBI relate to the release of intracellular components, possibly due to neuronal death or injury, as well as to adverse brain energy metabolism. PMID:26159566

  16. An evaluation of the strategic approach to the rehabilitation of traumatic brain injury (TBI) patients

    PubMed Central

    Tomaszewski, Wiesław; Mańko, Grzegorz

    2011-01-01

    Summary Background The objective of our study was to evaluate a goal-driven strategic plan for the step-by-step rehabilitation of traumatic brain injury (TBI) patients, with effectiveness measured in terms of quality of life, as compared to patients treated according to a standard, progressive rehabilitation program. Material/Methods We studied 40 patients after TBI awakened from a long-term coma. The patients were divided into two equal groups: a control group (n=20) involving patients treated before the introduction of the strategic approach, and an experimental group (n=20) involving patients rehabilitated under the strategic approach. In evaluating the effectiveness of rehabilitation we used a structured interview with clinical observation and a scale for assessing the quality of life of patients after TBI. Results The deterioration in the quality of life of TBI patients is mainly related to difficulties in satisfying physiological needs, self-care, reduced mobility and disorders of cognitive, regulatory, and social functions. In both groups, the feature most susceptible to rehabilitation related change was movement, while the least susceptible functions were associated with the use of different means of transport. This change is significantly greater in persons in the experimental group, as compared to controls. Conclusions We found that a rehabilitation program controlled by a strategic plan, with the cooperation of the patient, is more effective in improving the quality of life, as the patient is more self-motivated to individually designed objectives. PMID:21873948

  17. Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    PubMed

    Cnossen, Maryse C; Polinder, Suzanne; Lingsma, Hester F; Maas, Andrew I R; Menon, David; Steyerberg, Ewout W

    2016-01-01

    The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches.

  18. Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).

    PubMed

    Ciuffreda, Kenneth J; Yadav, Naveen K; Ludlam, Diana P

    2013-01-01

    The purpose of the experiment was to assess the effect of binasal occlusion (BNO) on the visually-evoked potential (VEP) in visually-normal (VN) individuals and in those with mild traumatic brain injury (mTBI) for whom BNO frequently reduces their primary symptoms related to abnormally-increased visual motion sensitivity (VMS). Subjects were comprised of asymptomatic VN adults (n = 10) and individuals with mTBI (n = 10) having the symptom of VMS. Conventional full-field VEP testing was employed under two conditions: without BNO and with opaque BNO which blocked regions on either side of the VEP test stimulus. Subjective impressions were also assessed. In VN, the mean VEP amplitude decreased significantly with BNO in all subjects. In contrast, in mTBI, the mean VEP amplitude increased significantly with BNO in all subjects. Latency was normal and unaffected in all cases. Repeat VEP testing in three subjects from each group revealed similar test-re-test findings. Visuomotor activities improved, with reduced symptoms, with BNO in the mTBI group. It is speculated that individuals with mTBI habitually attempt to suppress visual information in the near retinal periphery to reduce their abnormal VMS, with addition of the BNO negating the suppressive influence and thus producing a widespread disinhibition effect and resultant increase in VEP amplitude.

  19. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    PubMed Central

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  20. Diffusion Tensor Imaging Reveals White Matter Injury in a Rat Model of Repetitive Blast-Induced Traumatic Brain Injury

    PubMed Central

    Calabrese, Evan; Du, Fu; Garman, Robert H.; Johnson, G. Allan; Riccio, Cory; Tong, Lawrence C.

    2014-01-01

    Abstract Blast-induced traumatic brain injury (bTBI) is one of the most common combat-related injuries seen in U.S. military personnel, yet relatively little is known about the underlying mechanisms of injury. In particular, the effects of the primary blast pressure wave are poorly understood. Animal models have proven invaluable for the study of primary bTBI, because it rarely occurs in isolation in human subjects. Even less is known about the effects of repeated primary blast wave exposure, but existing data suggest cumulative increases in brain damage with a second blast. MRI and, in particular, diffusion tensor imaging (DTI), have become important tools for assessing bTBI in both clinical and preclinical settings. Computational statistical methods such as voxelwise analysis have shown promise in localizing and quantifying bTBI throughout the brain. In this study, we use voxelwise analysis of DTI to quantify white matter injury in a rat model of repetitive primary blast exposure. Our results show a significant increase in microstructural damage with a second blast exposure, suggesting that primary bTBI may sensitize the brain to subsequent injury. PMID:24392843

  1. Concussive brain injury from explosive blast

    PubMed Central

    de Lanerolle, Nihal C; Hamid, Hamada; Kulas, Joseph; Pan, Jullie W; Czlapinski, Rebecca; Rinaldi, Anthony; Ling, Geoffrey; Bandak, Faris A; Hetherington, Hoby P

    2014-01-01

    Objective Explosive blast mild traumatic brain injury (mTBI) is associated with a variety of symptoms including memory impairment and posttraumatic stress disorder (PTSD). Explosive shock waves can cause hippocampal injury in a large animal model. We recently reported a method for detecting brain injury in soldiers with explosive blast mTBI using magnetic resonance spectroscopic imaging (MRSI). This method is applied in the study of veterans exposed to blast. Methods The hippocampus of 25 veterans with explosive blast mTBI, 20 controls, and 12 subjects with PTSD but without exposure to explosive blast were studied using MRSI at 7 Tesla. Psychiatric and cognitive assessments were administered to characterize the neuropsychiatric deficits and compare with findings from MRSI. Results Significant reductions in the ratio of N-acetyl aspartate to choline (NAA/Ch) and N-acetyl aspartate to creatine (NAA/Cr) (P < 0.05) were found in the anterior portions of the hippocampus with explosive blast mTBI in comparison to control subjects and were more pronounced in the right hippocampus, which was 15% smaller in volume (P < 0.05). Decreased NAA/Ch and NAA/Cr were not influenced by comorbidities – PTSD, depression, or anxiety. Subjects with PTSD without blast had lesser injury, which tended to be in the posterior hippocampus. Explosive blast mTBI subjects had a reduction in visual memory compared to PTSD without blast. Interpretation The region of the hippocampus injured differentiates explosive blast mTBI from PTSD. MRSI is quite sensitive in detecting and localizing regions of neuronal injury from explosive blast associated with memory impairment. PMID:25493283

  2. Motor Vehicle Crash Brain Injury in Infants and Toddlers: A Suitable Model for Inflicted Head Injury?

    ERIC Educational Resources Information Center

    Shah, Mahim; Vavilala, Monica S.; Feldman, Kenneth W.; Hallam, Daniel K.

    2005-01-01

    Objective: Children involved in motor vehicle crash (MVC) events might experience angular accelerations similar to those experienced by children with inflicted traumatic brain injury (iTBI). This is a pilot study to determine whether the progression of signs and symptoms and radiographic findings of MVC brain injury (mvcTBI) in children of the age…

  3. Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.

    2016-03-01

    Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.

  4. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  5. The possibility of application of spiral brain computed tomography to traumatic brain injury.

    PubMed

    Lim, Daesung; Lee, Soo Hoon; Kim, Dong Hoon; Choi, Dae Seub; Hong, Hoon Pyo; Kang, Changwoo; Jeong, Jin Hee; Kim, Seong Chun; Kang, Tae-Sin

    2014-09-01

    The spiral computed tomography (CT) with the advantage of low radiation dose, shorter test time required, and its multidimensional reconstruction is accepted as an essential diagnostic method for evaluating the degree of injury in severe trauma patients and establishment of therapeutic plans. However, conventional sequential CT is preferred for the evaluation of traumatic brain injury (TBI) over spiral CT due to image noise and artifact. We aimed to compare the diagnostic power of spiral facial CT for TBI to that of conventional sequential brain CT. We evaluated retrospectively the images of 315 traumatized patients who underwent both brain CT and facial CT simultaneously. The hemorrhagic traumatic brain injuries such as epidural hemorrhage, subdural hemorrhage, subarachnoid hemorrhage, and contusional hemorrhage were evaluated in both images. Statistics were performed using Cohen's κ to compare the agreement between 2 imaging modalities and sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT to conventional sequential brain CT. Almost perfect agreement was noted regarding hemorrhagic traumatic brain injuries between spiral facial CT and conventional sequential brain CT (Cohen's κ coefficient, 0.912). To conventional sequential brain CT, sensitivity, specificity, positive predictive value, and negative predictive value of spiral facial CT were 92.2%, 98.1%, 95.9%, and 96.3%, respectively. In TBI, the diagnostic power of spiral facial CT was equal to that of conventional sequential brain CT. Therefore, expanded spiral facial CT covering whole frontal lobe can be applied to evaluate TBI in the future. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Top-cited articles in traumatic brain injury.

    PubMed

    Sharma, Bhanu; Lawrence, David Wyndham

    2014-01-01

    A review of the top-cited articles in a scientific discipline can identify areas of research that are well established and those in need of further development, and may, as a result, inform and direct future research efforts. Our objective was to identify and characterize the top-cited articles in traumatic brain injury (TBI). We used publically available software to identify the 50 TBI articles with the most lifetime citations, and the 50 TBI articles with the highest annual citation rates. A total of 73 articles were included in this review, with 27 of the 50 papers with the highest annual citation rates common to the cohort of 50 articles with the most lifetime citations. All papers were categorized by their primary topic or focus, namely: predictor of outcome, pathology/natural history, treatment, guidelines and consensus statements, epidemiology, assessment measures, or experimental model of TBI. The mean year of publication of the articles with the most lifetime citations and highest annual citation rates was 1990 ± 14.9 years and 2003 ± 6.7 years, respectively. The 50 articles with the most lifetime citations typically studied predictors of outcome (34.0%, 17/50) and were specific to severe TBI (38.0%, 19/50). In contrast, the most common subject of papers with the highest annual citation rates was treatment of brain injury (22.0%, 11/50), and these papers most frequently investigated mild TBI (36.0%, 18/50). These findings suggest an intensified focus on mild TBI, which is perhaps a response to the dedicated attention these injuries are currently receiving in the context of sports and war, and because of their increasing incidence in developing nations. Our findings also indicate increased focus on treatment of TBI, possibly due to the limited efficacy of current interventions for brain injury. This review provides a cross-sectional summary of some of the most influential articles in TBI, and a bibliometric examination of the current status of

  7. Purines: forgotten mediators in traumatic brain injury.

    PubMed

    Jackson, Edwin K; Boison, Detlev; Schwarzschild, Michael A; Kochanek, Patrick M

    2016-04-01

    Recently, the topic of traumatic brain injury has gained attention in both the scientific community and lay press. Similarly, there have been exciting developments on multiple fronts in the area of neurochemistry specifically related to purine biology that are relevant to both neuroprotection and neurodegeneration. At the 2105 meeting of the National Neurotrauma Society, a session sponsored by the International Society for Neurochemistry featured three experts in the field of purine biology who discussed new developments that are germane to both the pathomechanisms of secondary injury and development of therapies for traumatic brain injury. This included presentations by Drs. Edwin Jackson on the novel 2',3'-cAMP pathway in neuroprotection, Detlev Boison on adenosine in post-traumatic seizures and epilepsy, and Michael Schwarzschild on the potential of urate to treat central nervous system injury. This mini review summarizes the important findings in these three areas and outlines future directions for the development of new purine-related therapies for traumatic brain injury and other forms of central nervous system injury. In this review, novel therapies based on three emerging areas of adenosine-related pathobiology in traumatic brain injury (TBI) were proposed, namely, therapies targeting 1) the 2',3'-cyclic adenosine monophosphate (cAMP) pathway, 2) adenosine deficiency after TBI, and 3) augmentation of urate after TBI. © 2016 International Society for Neurochemistry.

  8. Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes

    PubMed Central

    2014-01-01

    Background Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. Findings Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. Conclusions This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction. PMID:24576351

  9. Race/Ethnicity and Retention in Traumatic Brain Injury Outcomes Research: A Traumatic Brain Injury Model Systems National Database Study.

    PubMed

    Sander, Angelle M; Lequerica, Anthony H; Ketchum, Jessica M; Hammond, Flora M; Gary, Kelli Williams; Pappadis, Monique R; Felix, Elizabeth R; Johnson-Greene, Douglas; Bushnik, Tamara

    2018-05-31

    To investigate the contribution of race/ethnicity to retention in traumatic brain injury (TBI) research at 1 to 2 years postinjury. Community. With dates of injury between October 1, 2002, and March 31, 2013, 5548 whites, 1347 blacks, and 790 Hispanics enrolled in the Traumatic Brain Injury Model Systems National Database. Retrospective database analysis. Retention, defined as completion of at least 1 question on the follow-up interview by the person with TBI or a proxy. Retention rates 1 to 2 years post-TBI were significantly lower for Hispanic (85.2%) than for white (91.8%) or black participants (90.5%) and depended significantly on history of problem drug or alcohol use. Other variables associated with low retention included older age, lower education, violent cause of injury, and discharge to an institution versus private residence. The findings emphasize the importance of investigating retention rates separately for blacks and Hispanics rather than combining them or grouping either with other races or ethnicities. The results also suggest the need for implementing procedures to increase retention of Hispanics in longitudinal TBI research.

  10. Brain Imaging and Behavioral Outcome in Traumatic Brain Injury.

    ERIC Educational Resources Information Center

    Bigler, Erin D.

    1996-01-01

    This review explores the cellular pathology associated with traumatic brain injury (TBI) and its relation to neurobehavioral outcomes, the relationship of brain imaging findings to underlying pathology, brain imaging techniques, various image analysis procedures and how they relate to neuropsychological testing, and the importance of brain imaging…

  11. Traumatic brain injury shows better functional recovery than brain tumor: a rehabilitative perspective.

    PubMed

    Bilgin, S; Kose, N; Karakaya, J; Mut, M

    2014-02-01

    The similar symptoms seen in the brain tumor (BT) and traumatic brain injury (TBI) population. However, functional comparisons between these two diagnostic groups have been limited. To compare functional outcomes in patients with supratentorial BT and TBI after early rehabilitation. This was a retrospective database analysis. Setting. Patients admitted to an Acute Care Unit as inpatient (Hacettepe Hospital, Ankara-Turkey). Population. The population included patients with BT and TBI. Thirty-four patients with BT and TBI were matched one-to-one by lesion side and sex. The Barthel Index was used to assess functional status at the pre- and postrehabilitation. The change rate and efficiency in BI were also calculated. The time between injury onset and admission to rehabilitation (the onset to admission interval, OAI) and length of stay in rehabilitation (LOS rehab) were recorded. In addition, the influence of lesion side (left and right) and age on functional outcome were analyzed. The functional level was significantly lower in TBI patients than in patients BT before rehabilitation (P<0.05). The post-rehabilitation BI score was similar in patients with BT and TBI (P>0.05). Patients with TBI had greater the change rate and efficiency in BI (P<0.05). The OAI and LOS rehab was longer in patients with TBI (P<0.05). In terms of lesion side comparisons, no differences were found (P>0.05). The age had no effect on functional outcome in patients with TBI and BT (P>0.05), expect the age group 45-59 (P<0.05). The early rehabilitation program improved functional ability of patients with brain tumors, as well as patients with traumatic brain injury. Despite the lower functional status, patients with TBI displayed better functional recovery than patients with BT. Lesion side had no effect on functional outcome in patients with TBI and BT. Differences in functional status begin to appear even in patients with TBI between 45 and 59 years. Further investigations with more detailed

  12. Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

    PubMed Central

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P.; Thakker-Varia, Smita

    2011-01-01

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed

  13. Lateral fluid percussion: model of traumatic brain injury in mice.

    PubMed

    Alder, Janet; Fujioka, Wendy; Lifshitz, Jonathan; Crockett, David P; Thakker-Varia, Smita

    2011-08-22

    Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes (1,2). Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement (3,4). The resulting hematomas and lacerations cause a vascular response (3,5), and the morphological and functional damage of the white matter leads to diffuse axonal injury (6-8). Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure (9). Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals (10-12), which ultimately result in long-term neurological disabilities (13,14). Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair. Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration (1). The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue (1,15). Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure (16,17). The weight drop/impact model is characterized by the fall of a rod with a specific

  14. Getting My Bearings, Returning to School: Issues Facing Adolescents with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Schilling, Ethan J.; Getch, Yvette Q.

    2012-01-01

    Traumatic brain injury (TBI) is characterized by a blow to the head or other penetrating head injury resulting in impairment of the brain's functioning. Despite the high incidence of TBI in adolescents, many educators still consider TBI to be a low-incidence disability. In addition, school personnel often report receiving little to no pre-service…

  15. Traumatic Brain Injury and Personality Change

    ERIC Educational Resources Information Center

    Fowler, Marc; McCabe, Paul C.

    2011-01-01

    Traumatic brain injury (TBI) is the leading cause of death and lifelong disability in the United States for individuals below the age of 45. Current estimates from the Center for Disease Control (CDC) indicate that at least 1.4 million Americans sustain a TBI annually. TBI affects 475,000 children under age 14 each year in the United States alone.…

  16. The validity of the Brain Injury Cognitive Screen (BICS) as a neuropsychological screening assessment for traumatic and non-traumatic brain injury.

    PubMed

    Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi

    2017-04-01

    The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.

  17. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury.

    PubMed

    Liu, Xixia; Qiu, Jianhua; Alcon, Sasha; Hashim, Jumana; Meehan, William P; Mannix, Rebekah

    2017-08-15

    Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.

  18. Working with Students with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Lucas, Matthew D.

    2010-01-01

    The participation of a student with Traumatic Brain Injury (TBI) in general physical education can often be challenging and rewarding for the student and physical education teacher. This article addresses common characteristics of students with TBI and presents basic solutions to improve the education of students with TBI in the general physical…

  19. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury.

    PubMed

    Millet, A; Cuisinier, A; Bouzat, P; Batandier, C; Lemasson, B; Stupar, V; Pernet-Gallay, K; Crespy, T; Barbier, E L; Payen, J F

    2018-06-01

    The mechanisms by which hypertonic sodium lactate (HSL) solution act in injured brain are unclear. We investigated the effects of HSL on brain metabolism, oxygenation, and perfusion in a rodent model of diffuse traumatic brain injury (TBI). Thirty minutes after trauma, anaesthetised adult rats were randomly assigned to receive a 3 h infusion of either a saline solution (TBI-saline group) or HSL (TBI-HSL group). The sham-saline and sham-HSL groups received no insult. Three series of experiments were conducted up to 4 h after TBI (or equivalent) to investigate: 1) brain oedema using diffusion-weighted magnetic resonance imaging and brain metabolism using localized 1 H-magnetic resonance spectroscopy (n = 10 rats per group). The respiratory control ratio was then determined using oxygraphic analysis of extracted mitochondria, 2) brain oxygenation and perfusion using quantitative blood-oxygenation-level-dependent magnetic resonance approach (n = 10 rats per group), and 3) mitochondrial ultrastructural changes (n = 1 rat per group). Compared with the TBI-saline group, the TBI-HSL and the sham-operated groups had reduced brain oedema. Concomitantly, the TBI-HSL group had lower intracellular lactate/creatine ratio [0.049 (0.047-0.098) vs 0.097 (0.079-0.157); P < 0.05], higher mitochondrial respiratory control ratio, higher tissue oxygen saturation [77% (71-79) vs 66% (55-73); P < 0.05], and reduced mitochondrial cristae thickness in astrocytes [27.5 (22.5-38.4) nm vs 38.4 (31.0-47.5) nm; P < 0.01] compared with the TBI-saline group. Serum sodium and lactate concentrations and serum osmolality were higher in the TBI-HSL than in the TBI-saline group. These findings indicate that the hypertonic sodium lactate solution can reverse brain oxygenation and metabolism dysfunction after traumatic brain injury through vasodilatory, mitochondrial, and anti-oedema effects. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  20. Polyamine Catabolism Is Enhanced after Traumatic Brain Injury

    PubMed Central

    Zahedi, Kamyar; Huttinger, Francis; Morrison, Ryan; Murray-Stewart, Tracy; Casero, Robert A.

    2010-01-01

    Abstract Polyamines spermine and spermidine are highly regulated, ubiquitous aliphatic cations that maintain DNA structure and function as immunomodulators and as antioxidants. Polyamine homeostasis is disrupted after brain injuries, with concomitant generation of toxic metabolites that may contribute to secondary injuries. To test the hypothesis of increased brain polyamine catabolism after traumatic brain injury (TBI), we determined changes in catabolic enzymes and polyamine levels in the rat brain after lateral controlled cortical impact TBI. Spermine oxidase (SMO) catalyzes the degradation of spermine to spermidine, generating H2O2 and aminoaldehydes. Spermidine/spermine-N1-acetyltransferase (SSAT) catalyzes acetylation of these polyamines, and both are further oxidized in a reaction that generates putrescine, H2O2, and aminoaldehydes. In a rat cortical impact model of TBI, SSAT mRNA increased subacutely (6–24 h) after TBI in ipsilateral cortex and hippocampus. SMO mRNA levels were elevated late, from 3 to 7 days post-injury. Polyamine catabolism increased as well. Spermine levels were normal at 6 h and decreased slightly at 24 h, but were normal again by 72 h post-injury. Spermidine levels also decreased slightly (6–24 h), then increased by ∼50% at 72 h post-injury. By contrast, normally low putrescine levels increased up to sixfold (6–72 h) after TBI. Moreover, N-acetylspermidine (but not N-acetylspermine) was detectable (24–72 h) near the site of injury, consistent with increased SSAT activity. None of these changes were seen in the contralateral hemisphere. Immunohistochemical confirmation indicated that SSAT and SMO were expressed throughout the brain. SSAT-immunoreactivity (SSAT-ir) increased in both neuronal and nonneuronal (likely glial) populations ipsilateral to injury. Interestingly, bilateral increases in cortical SSAT-ir neurons occurred at 72 h post-injury, whereas hippocampal changes occurred only ipsilaterally

  1. Deep pockets or blueprint for change: traumatic brain injury (TBI) proactive strategy.

    PubMed

    Wood, D W; Pohl, S; Lawler, S; Okamoto, G

    1998-09-01

    The Pacific Conference scheduled for October 1-3, 1988, is a critical event in the development of an integrated community-based plan for a comprehensive continuum of services to address the "silent epidemic," Traumatic Brain Injured (TBI). This paper provides insights of the complex nature and the special problems faced by the TBI survivors; their families, natural supports and caregivers, as well as the health, social and educational care providers in Hawaii. Process for the development of the community plan is presented.

  2. The pattern of traumatic brain injuries: a country undergoing rapid development.

    PubMed

    Bener, Abdulbari; Omar, Azhar O Kh; Ahmad, Amal E; Al-Mulla, Fatma H; Abdul Rahman, Yassir S

    2010-02-01

    Traumatic brain injuries (TBIs) remain an important public health problem in most industrial developed and especially in developing countries. This may also result in temporary or permanent disability. The aim of this study was to examine the trends in the distribution of traumatic brain injuries by gender, age, severity of injury and outcome and describe the incidence in the injury patterns. This is a retrospective, descriptive, hospital-based study that included all cases of TBI during the period from January 2003 to December 2007. This study is a retrospective analysis of 1919 patients with traumatic brain injury attended and treated at the Accident and Emergency Department of the Hamad General Hospital and other Trauma Centers of the Hamad Medical Corporation. Details of all TBI cases were extracted from the database of the Emergency Medical Services (EMS). Severity of TBI was assessed by Glasgow Coma Scale (GCS). This study was based on 1919 patients suffering from traumatic brain injury, where 154 died and 97 (5.1%) of them died in the intensive care unit. The number of TBI cases increased remarkably in 2007 by 69.7%. However, the incidence rate was nearly stable across the years (4.2-4.9/10 000 population). Of the total TBI cases, the majority of them were non-Qataris (72.7%) and men (88.6%). There was a significant increase in number of TBI cases between 2003 and 2007 in terms of age group (p = 0.003), nationality (p = 0.004) and severity of injuries (p = 0.05). The highest peak rate of TBI cases was observed among the population over 65 years old, followed by 15-24 year olds. Falls caused most TBIs in the 1-14 years age group, road traffic accidents in the age group 15-24 years and sports and recreation in the age group 25-34 years. The present study findings revealed that traumatic brain injury is a major public health problem, especially among young adults and older people. Although there was a sharp increase found in the number of TBI cases, the

  3. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. Copyright © 2016 the American Physiological Society.

  4. Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Wang, Kevin K. W.; Moghieb, Ahmed; Yang, Zhihui; Zhang, Zhiqun

    2013-05-01

    Traumatic brain injury (TBI) is a significant biomedical problem among military personnel and civilians. There exists an urgent need to develop and refine biological measures of acute brain injury and chronic recovery after brain injury. Such measures "biomarkers" can assist clinicians in helping to define and refine the recovery process and developing treatment paradigms for the acutely injured to reduce secondary injury processes. Recent biomarker studies in the acute phase of TBI have highlighted the importance and feasibilities of identifying clinically useful biomarkers. However, much less is known about the subacute and chronic phases of TBI. We propose here that for a complex biological problem such as TBI, multiple biomarker types might be needed to harness the wide range of pathological and systemic perturbations following injuries, including acute neuronal death, neuroinflammation, neurodegeneration and neuroregeneration to systemic responses. In terms of biomarker types, they range from brain-specific proteins, microRNA, genetic polymorphism, inflammatory cytokines and autoimmune markers and neuro-endocrine hormones. Furthermore, systems biology-driven biomarkers integration can help present a holistic approach to understanding scenarios and complexity pathways involved in brain injury.

  5. Defense.gov Special Report: Traumatic Brain Injury

    Science.gov Websites

    Excellence TBI Resources Brainline Military The Michael E. DeBakey VA Medical Center Congressionally Directed Medical Research Program NIH: National Institute of Neurological Disorders NIH: Traumatic Brain Injury Research CDC: Give Brain Injury a Voice Center for Medical Excellence for Multimedia Brainline.org - Brain

  6. Dynamic association between perfusion and white matter integrity across time since injury in Veterans with history of TBI.

    PubMed

    Clark, Alexandra L; Bangen, Katherine J; Sorg, Scott F; Schiehser, Dawn M; Evangelista, Nicole D; McKenna, Benjamin; Liu, Thomas T; Delano-Wood, Lisa

    2017-01-01

    Cerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI. 37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI. Regression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum ( p  < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI. Our results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and

  7. Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder

    PubMed Central

    Van Boven, Robert W.; Harrington, Greg S.; Hackney, David B.; Ebel, Andreas; Gauger, Grant; Bremner, J. Douglas; D’Esposito, Mark; Detre, John A.; Haacke, E. Mark; Jack, Clifford R.; Jagust, William J.; Le Bihan, Denis; Mathis, Chester A.; Mueller, Susanne; Mukherjee, Pratik; Schuff, Norbert; Chen, Anthony; Weiner, Michael W.

    2011-01-01

    Improved diagnosis and treatment of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) are needed for our military and veterans, their families, and society at large. Advances in brain imaging offer important biomarkers of structural, functional, and metabolic information concerning the brain. This article reviews the application of various imaging techniques to the clinical problems of TBI and PTSD. For TBI, we focus on findings and advances in neuroimaging that hold promise for better detection, characterization, and monitoring of objective brain changes in symptomatic patients with combat-related, closed-head brain injuries not readily apparent by standard computed tomography or conventional magnetic resonance imaging techniques. PMID:20104401

  8. Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury

    PubMed Central

    Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia

    2017-01-01

    Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295

  9. Traumatic brain injury: preferred methods and targets for resuscitation.

    PubMed

    Scaife, Eric R; Statler, Kimberly D

    2010-06-01

    Severe traumatic brain injury (TBI) is the most common cause of death and disability in pediatric trauma. This review looks at the strategies to treat TBI in a temporal fashion. We examine the targets for resuscitation from field triage to definitive care in the pediatric ICU. Guidelines for the management of pediatric TBI exist. The themes of contemporary clinical research have been compliance with these guidelines and refinement of treatment recommendations developing a more sophisticated understanding of the pathophysiology of the injured brain. In the field, the aim has been to achieve routine compliance with the resuscitation goals. In the hospital, efforts have been directed at improving our ability to monitor the injured brain, developing techniques that limit brain swelling, and customizing brain perfusion. As our understanding of pediatric TBI evolves, the ambition is that age-specific and perhaps individual brain injury strategies based upon feedback from continuous monitors will be defined. In addition, vogue methods such as hypothermia, hypertonic saline, and aggressive surgical decompression may prove to impact brain swelling and outcomes.

  10. Ethyl pyruvate protects against blood-brain barrier damage and improves long-term neurological outcomes in a rat model of traumatic brain injury.

    PubMed

    Shi, Hong; Wang, Hai-Lian; Pu, Hong-Jian; Shi, Ye-Jie; Zhang, Jia; Zhang, Wen-Ting; Wang, Guo-Hua; Hu, Xiao-Ming; Leak, Rehana K; Chen, Jun; Gao, Yan-Qin

    2015-04-01

    Many traumatic brain injury (TBI) survivors sustain neurological disability and cognitive impairments due to the lack of defined therapies to reduce TBI-induced long-term brain damage. Ethyl pyruvate (EP) has shown neuroprotection in several models of acute brain injury. The present study therefore investigated the potential beneficial effect of EP on long-term outcomes after TBI and the underlying mechanisms. Male adult rats were subjected to unilateral controlled cortical impact injury. EP was injected intraperitoneally 15 min after TBI and again at 12, 24, 36, 48, and 60 h after TBI. Neurological deficits, blood-brain barrier (BBB) integrity, and neuroinflammation were assessed. Ethyl pyruvate improved sensorimotor and cognitive functions and ameliorated brain tissue damage up to 28 day post-TBI. BBB breach and brain edema were attenuated by EP at 48 h after TBI. EP suppressed matrix metalloproteinase (MMP)-9 production from peripheral neutrophils and reduced the number of MMP-9-overproducing neutrophils in the spleen, and therefore mitigated MMP-9-mediated BBB breakdown. Moreover, EP exerted potent antiinflammatory effects in cultured microglia and inhibited the elevation of inflammatory mediators in the brain after TBI. Ethyl pyruvate confers long-term neuroprotection against TBI, possibly through breaking the vicious cycle among MMP-9-mediated BBB disruption, neuroinflammation, and long-lasting brain damage. © 2014 John Wiley & Sons Ltd.

  11. OCT imaging of acute vascular changes following mild traumatic brain injury in mice (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chico-Calero, Isabel; Shishkov, Milen; Welt, Jonathan; Blatter, Cedric; Vakoc, Benjamin J.

    2016-03-01

    While most people recover completely from mild traumatic brain injuries (mTBIs) and concussions, a subset develop lasting neurological disorders. Understanding the complex pathophysiology of these injuries is critical to developing improved prognostic and therapeutic approaches. Multiple studies have shown that the structure and perfusion of brain vessels are altered after mTBI. It is possible that these vascular injuries contribute to or trigger neurodegeneration. Intravital microscopy and mouse models of TBI offer a powerful platform to study the vascular component of mTBI. Because optical coherence tomography based angiography is based on perfusion contrast and is not significantly degraded by vessel leakage or blood brain barrier disruption, it is uniquely suited to studies of brain perfusion in the setting of trauma. However, existing TBI imaging models require surgical exposure of the brain at the time of injury which conflates TBI-related vascular changes with those caused by surgery. In this work, we describe a modified cranial window preparation based on a flexible, transparent polyurethane membrane. Impact injuries were delivered directly through this membrane, and imaging was performed immediately after injury without the need for additional surgical procedures. Using this model, we demonstrate that mTBI induces a transient cessation of flow in the capillaries and smaller vessels near the injury point. Reperfusion is observed in all animals within 3 hours of injury. This work describes new insight into the transient vascular changes induced by mTBI, and demonstrates more broadly the utility of the OCT/polyurethane window model platform in preclinical studies of mTBI.

  12. Characteristics of traumatic brain injuries sustained among veterans seeking homeless services.

    PubMed

    Barnes, Sean M; Russell, Leah M; Hostetter, Trisha A; Forster, Jeri E; Devore, Maria D; Brenner, Lisa A

    2015-02-01

    This hypothesis-generating research describes the characteristics of traumatic brain injuries (TBIs) sustained among 229 Veterans seeking homeless services. Nearly all participants (83%) had sustained at least one TBI prior to their first episode of homelessness. Among participants with a TBI, assaults, transportation-related accidents, and falls were the most common causes of these injuries. Thirty percent of individuals sustained injuries with severity levels that would be expected to be associated with ongoing TBI-related deficits. Forty-three percent of the Veterans sustained at least one brain injury following their first episode of homelessness. Median lifetime number of TBIs was three. The severity of TBIs was similar among Veterans who sustained injuries before or after their first incident of homelessness. Findings suggest that future research should directly examine the potential bi-directional relationship between TBI and homelessness, as well as the impact of TBI-related deficits on Veterans' ability to benefit from homeless services and/or maintain stable housing.

  13. BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury

    PubMed Central

    Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan

    2011-01-01

    Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305

  14. Novel Treatment for Patients with Traumatic Brain Injury (TBI)

    DTIC Science & Technology

    2016-06-01

    equieffectiv e dose of phenylephri ne (PE)? 18 Does AVP maintain brain and muscle tissue 02 during CPP managemen t after TBI relative to an... Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any...discuss the meeting dates. I can be reached by telephone or email as listed below. K nnet 1·0 t ,. ti .. P ofessor of Surgery Leonard M. Miller

  15. Update in mild traumatic brain injury.

    PubMed

    Freire-Aragón, María Dolores; Rodríguez-Rodríguez, Ana; Egea-Guerrero, Juan José

    2017-08-10

    There has been concern for many years regarding the identification of patients with mild traumatic brain injury (TBI) at high risk of developing an intracranial lesion (IL) that would require neurosurgical intervention. The small percentage of patients with these characteristics and the exceptional mortality associated with mild TBI with IL have led to the high use of resources such as computerised tomography (CT) being reconsidered. The various protocols developed for the management of mild TBI are based on the identification of risk factors for IL, which ultimately allows more selective indication or discarding both the CT application and the hospital stay for neurological monitoring. Finally, progress in the study of brain injury biomarkers with prognostic utility in different clinical categories of TBI has recently been incorporated by several clinical practice guidelines, which has allowed, together with clinical assessment, a more accurate prognostic approach for these patients to be established. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. Traumatic brain injury decreases serotonin transporter expression in the rat cerebrum.

    PubMed

    Abe, Keiichi; Shimada, Ryo; Okada, Yoshikazu; Kibayashi, Kazuhiko

    2016-04-01

    An association has been postulated between traumatic brain injury (TBI) and depression. The serotonin transporter (SERT) regulates the concentration of serotonin in the synaptic cleft and represents a molecular target for antidepressants. We hypothesized that SERT expression in the brain changes following TBI. We performed immunohistochemistry, real-time polymerase chain reaction analysis for mRNA and western blot analysis for protein to examine the time-dependent changes in SERT expression in the cerebrum during the first 14 days after TBI, using a controlled cortical impact model in rats. SERT immunoreactivity in neuronal fibres within the area adjacent to the cortical contusion decreased 1 to 14 days after injury. Significantly decreased SERT mRNA and protein expression were noted in the area adjacent to the cortical contusion 7 days after injury. There were no significant changes in SERT expression in the cingulum of the injured brain. The findings of this study indicate that TBI decreases SERT expression in the cerebral cortex. The decreased levels of SERT expression after TBI may result in decreased serotonin neurotransmission in the brain and indicate a possible relationship with depression following TBI.

  17. Traumatic brain injury-induced alterations in peripheral immunity.

    PubMed

    Schwulst, Steven J; Trahanas, Diane M; Saber, Rana; Perlman, Harris

    2013-11-01

    The complex alterations that occur in peripheral immunity after traumatic brain injury (TBI) have been poorly characterized to date. The purpose of this study was to determine the temporal changes in the peripheral immune response after TBI in a murine model of closed head injury. C57Bl/6 mice underwent closed head injury via a weight drop technique (n = 5) versus sham injury (n = 3) per time point. Blood, spleen, and thymus were collected, and immune phenotype, cytokine expression, and antibody production were determined via flow cytometry and multiplex immunoassays at 1, 3, 7, 14, 30, and 60 days after injury. TBI results in acute and chronic changes in both the innate and adaptive immune response. TBI resulted in a striking loss of thymocytes as early as 3 days after injury (2.1 × 10 TBI vs. 5.6 × 10 sham, p = 0.001). Similarly, blood monocyte counts were markedly diminished as early as 24 hours after TBI (372 per deciliter TBI vs. 1359 per deciliter sham, p = 0.002) and remained suppressed throughout the first month after injury. At 60 days after injury, monocytes were polarized toward an anti-inflammatory (M2) phenotype. TBI also resulted in diminished interleukin 12 expression from Day 14 after injury throughout the remainder of the observation period. TBI results in temporal changes in both the peripheral and the central immune systems culminating in an overall immune suppressed phenotype and anti-inflammatory milieu.

  18. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury

    PubMed Central

    Valko, Philipp O.; Gavrilov, Yuri V.; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R.; Scammell, Thomas E.

    2016-01-01

    Study Objectives: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Methods: Postmortem examination of 8 TBI patients and 10 controls. Results: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. Conclusions: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. Citation: Valko PO, Gavrilov YV, Yamamoto M, Noain D, Reddy H, Haybaeck J, Weis S, Baumann CR, Scammell TE. Damage to arousal-promoting brainstem neurons with traumatic brain injury. SLEEP 2016;39(6):1249–1252. PMID:27091531

  19. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study.

    PubMed

    Cnossen, Maryse C; Huijben, Jilske A; van der Jagt, Mathieu; Volovici, Victor; van Essen, Thomas; Polinder, Suzanne; Nelson, David; Ercole, Ari; Stocchetti, Nino; Citerio, Giuseppe; Peul, Wilco C; Maas, Andrew I R; Menon, David; Steyerberg, Ewout W; Lingsma, Hester F

    2017-09-06

    No definitive evidence exists on how intracranial hypertension should be treated in patients with traumatic brain injury (TBI). It is therefore likely that centers and practitioners individually balance potential benefits and risks of different intracranial pressure (ICP) management strategies, resulting in practice variation. The aim of this study was to examine variation in monitoring and treatment policies for intracranial hypertension in patients with TBI. A 29-item survey on ICP monitoring and treatment was developed on the basis of literature and expert opinion, and it was pilot-tested in 16 centers. The questionnaire was sent to 68 neurotrauma centers participating in the Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. The survey was completed by 66 centers (97% response rate). Centers were mainly academic hospitals (n = 60, 91%) and designated level I trauma centers (n = 44, 67%). The Brain Trauma Foundation guidelines were used in 49 (74%) centers. Approximately 90% of the participants (n = 58) indicated placing an ICP monitor in patients with severe TBI and computed tomographic abnormalities. There was no consensus on other indications or on peri-insertion precautions. We found wide variation in the use of first- and second-tier treatments for elevated ICP. Approximately half of the centers were classified as using a relatively aggressive approach to ICP monitoring and treatment (n = 32, 48%), whereas the others were considered more conservative (n = 34, 52%). Substantial variation was found regarding monitoring and treatment policies in patients with TBI and intracranial hypertension. The results of this survey indicate a lack of consensus between European neurotrauma centers and provide an opportunity and necessity for comparative effectiveness research.

  20. TBI Symptoms, Diagnosis, Treatment, Prevention

    MedlinePlus

    ... Bar Home Current Issue Past Issues Cover Story: Traumatic Brain Injury TBI Symptoms, Diagnosis, Treatment, Prevention Past Issues / Fall ... very lucky in my ongoing recovery from the traumatic brain injury I suffered in Iraq." —Bob Woodruff Treatment Immediate ...

  1. Psychometric properties of the college survey for students with brain injury: individuals with and without traumatic brain injury.

    PubMed

    Kennedy, Mary R T; Krause, Miriam O; O'Brien, Katy H

    2014-01-01

    The psychometric properties of the college challenges sub-set from The College Survey for Students with Brain Injury (CSS-BI) were investigated with adults with and without traumatic brain injury (TBI). Adults with and without TBI completed the CSS-BI. A sub-set of participants with TBI were interviewed, intentional and convergent validity were investigated, and the internal structure of the college challenges was analysed with exploratory factor analysis/principle component analysis. Respondents with TBI understood the items describing college challenges with evidence of intentional validity. More individuals with TBI than controls endorsed eight of the 13 college challenges. Those who reported more health issues endorsed more college challenges, demonstrating preliminary convergent validity. Cronbach's alphas of >0.85 demonstrated acceptable internal reliability. Factor analysis revealed a four-factor model for those with TBI: studying and learning (Factor 1), time management and organization (Factor 2), social (Factor 3) and nervousness/anxiety (Factor 4). This model explained 72% and 69% of the variance for those with and without TBI, respectively. The college challenges sub-set from the CSS-BI identifies challenges that individuals with TBI face when going to college. Some challenges were related to two factors in the model, demonstrating the inter-connections of these experiences.

  2. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model.

    PubMed

    Yang, Lijun; Wang, Feng; Yang, Liang; Yuan, Yunchao; Chen, Yan; Zhang, Gengshen; Fan, Zhenzeng

    2018-01-01

    Traumatic brain injury (TBI) is a complex neurological injury in young adults lacking effective treatment. Emerging evidences suggest that inflammation contributes to the secondary brain injury following TBI, including breakdown of the blood brain barrier (BBB), subsequent edema and neurological deterioration. High mobility group box-1 (HMGB1) has been identified as a key cytokine in the inflammation reaction following TBI. Here, we investigated the therapeutic efficacy of HMGB1 A-box fragment, an antagonist competing with full-length HMGB1 for receptor binding, against TBI. TBI was induced by controlled cortical impact (CCI) in adult male mice. HMGB1 A-box fragment was given intravenously at 2 mg/kg/day for 3 days after CCI. HMGB1 A-box-treated CCI mice were compared with saline-treated CCI mice and sham mice in terms of BBB disruption evaluated by Evan's blue extravasation, brain edema by brain water content, cell death by propidium iodide staining, inflammation by Western blot and ELISA assay for cytokine productions, as well as neurological functions by the modified Neurological Severity Score, wire grip and beam walking tests. HMGB1 A-box reversed brain damages in the mice following TBI. It significantly reduced brain edema by protecting integrity of the BBB, ameliorated cell degeneration, and decreased expression of pro-inflammatory cytokines released in injured brain after TBI. These cellular and molecular effects were accompanied by improved behavioral performance in TBI mice. Notably, HMGB1 A-box blocked IL-1β-induced HMGB1 release, and preferentially attenuated TLR4, Myd88 and P65 in astrocyte cultures. Our data suggest that HMGB1 is involved in CCI-induced TBI, which can be inhibited by HMGB1 A-box fragment. Therefore, HMGB1 A-box fragment may have therapeutic potential for the secondary brain damages in TBI. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Cooling the injured brain: how does moderate hypothermia influence the pathophysiology of traumatic brain injury.

    PubMed

    Sahuquillo, Juan; Vilalta, Anna

    2007-01-01

    Neither any neuroprotective drug has been shown to be beneficial in improving the outcome of severe traumatic brain injury (TBI) nor has any prophylactically-induced moderate hypothermia shown any beneficial effect on outcome in severe TBI, despite the optimism generated by preclinical studies. This contrasts with the paradox that hypothermia still is the most powerful neuroprotective method in experimental models because of its ability to influence the multiple biochemical cascades that are set in motion after TBI. The aim of this short review is to highlight the most recent developments concerning the pathophysiology of severe TBI, to review new data on thermoregulation and induced hypothermia, the regulation of core and brain temperature in mammals and the multiplicity of effects of hypothermia in the pathophysiology of TBI. Many experimental studies in the last decade have again confirmed that moderate hypothermia confers protection against ischemic and non-ischemic brain hypoxia, traumatic brain injury, anoxic injury following resuscitation after cardiac arrest and other neurological insults. Many posttraumatic adverse events that occur in the injured brain at a cellular and molecular level are highly temperature-sensitive and are thus a good target for induced hypothermia. The basic mechanisms through which hypothermia protects the brain are clearly multifactorial and include at least the following: reduction in brain metabolic rate, effects on cerebral blood flow, reduction of the critical threshold for oxygen delivery, blockade of excitotoxic mechanisms, calcium antagonism, preservation of protein synthesis, reduction of brain thermopooling, a decrease in edema formation, modulation of the inflammatory response, neuroprotection of the white matter and modulation of apoptotic cell death. The new developments discussed in this review indicate that, by targeting many of the abnormal neurochemical cascades initiated after TBI, induced hypothermia may modulate

  4. School Reentry Following Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Deidrick, Kathleen K. M.; Farmer, Janet E.

    2005-01-01

    Successful school reentry following traumatic brain injury (TBI) is critical to recovery. Physical, cognitive, behavioral, academic, and social problems can affect a child's school performance after a TBI. However, early intervention has the potential to improve child academic outcomes and promote effective coping with any persistent changes in…

  5. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  6. Quercetin protects rat cortical neurons against traumatic brain injury.

    PubMed

    Du, Guoliang; Zhao, Zongmao; Chen, Yonghan; Li, Zonghao; Tian, Yaohui; Liu, Zhifeng; Liu, Bin; Song, Jianqiang

    2018-06-01

    Previous studies have demonstrated that traumatic brain injury (TBI) may cause neurological deficits and neuronal cell apoptosis. Quercetin, one of the most widely distributed flavonoids, possesses anti‑inflammatory, anti‑blood coagulation, anti‑ischemic and anti‑cancer activities, and neuroprotective effects in the context of brain injury. The purpose of the present study was to investigate the neuroprotective effects of quercetin in TBI. A total of 75 rats were randomly arranged into 3 groups as follows: Sham group (Sham); TBI group (TBI); and TBI + quercetin group (Que). Brain edema was evaluated by analysis of brain water content. The neurobehavioral status of the rats was evaluated by Neurological Severity Scoring. Immunohistochemical and western blot analyses were used to measure the expression of certain proteins. The results of the present study demonstrated that post‑TBI administration of quercetin may attenuate brain edema, in addition to improving motor function in rats. Additionally, quercetin caused a marked inhibition of extracellular signal‑regulated kinase 1/2 phosphorylation and activated Akt serine/threonine protein kinase phosphorylation, which may result in attenuation of neuronal apoptosis. The present study provided novel insights into the mechanism through which quercetin may exert its neuroprotective activity in a rat model of TBI.

  7. Perioperative Care for Pediatric Patients With Penetrating Brain Injury: A Review.

    PubMed

    Mikhael, Marco; Frost, Elizabeth; Cristancho, Maria

    2017-05-19

    Traumatic brain injury (TBI) continues to be the leading cause of death and acquired disability in young children and adolescents, due to blunt or penetrating trauma, the latter being less common but more lethal. Penetrating brain injury (PBI) has not been studied extensively, mainly reported as case reports or case series, due to the assumption that both types of brain injury have common pathophysiology and consequently common management. However, recommendations and guidelines for the management of PBI differ from those of blunt TBI in regards to neuroimaging, intracranial pressure (ICP) monitoring, and surgical management including those pertaining to vascular injury. PBI was one of the exclusion criteria in the second edition of guidelines for the acute medical management of severe TBI in infants, children, and adolescents that was published in 2012 (it is referred to as "pediatric guidelines" in this review). Many reviews of TBI do not differentiate between the mechanisms of injury. We present an overview of PBI, its presenting features, epidemiology, and causes as well as an analysis of case series and the conclusions that may be drawn from those and other studies. More clinical trials specific to penetrating head injuries in children, focusing mainly on pathophysiology and management, are needed. The term PBI is specific to penetrating injury only, whereas TBI, a more inclusive term, describes mainly, but not only, blunt injury.

  8. The clinical spectrum of sport-related traumatic brain injury.

    PubMed

    Jordan, Barry D

    2013-04-01

    Acute and chronic sports-related traumatic brain injuries (TBIs) are a substantial public health concern. Various types of acute TBI can occur in sport, but detection and management of cerebral concussion is of greatest importance as mismanagement of this syndrome can lead to persistent or chronic postconcussion syndrome (CPCS) or diffuse cerebral swelling. Chronic TBI encompasses a spectrum of disorders that are associated with long-term consequences of brain injury, including chronic traumatic encephalopathy (CTE), dementia pugilistica, post-traumatic parkinsonism, post-traumatic dementia and CPCS. CTE is the prototype of chronic TBI, but can only be definitively diagnosed at autopsy as no reliable biomarkers of this disorder are available. Whether CTE shares neuropathological features with CPCS is unknown. Evidence suggests that participation in contact-collision sports may increase the risk of neurodegenerative disorders such as Alzheimer disease, but the data are conflicting. In this Review, the spectrum of acute and chronic sport-related TBI is discussed, highlighting how examination of athletes involved in high-impact sports has advanced our understanding of pathology of brain injury and enabled improvements in detection and diagnosis of sport-related TBI.

  9. Facial emotion recognition deficits following moderate-severe Traumatic Brain Injury (TBI): re-examining the valence effect and the role of emotion intensity.

    PubMed

    Rosenberg, Hannah; McDonald, Skye; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick

    2014-11-01

    Many individuals who sustain moderate-severe traumatic brain injuries (TBI) are poor at recognizing emotional expressions, with a greater impairment in recognizing negative (e.g., fear, disgust, sadness, and anger) than positive emotions (e.g., happiness and surprise). It has been questioned whether this "valence effect" might be an artifact of the wide use of static facial emotion stimuli (usually full-blown expressions) which differ in difficulty rather than a real consequence of brain impairment. This study aimed to investigate the valence effect in TBI, while examining emotion recognition across different intensities (low, medium, and high). Twenty-seven individuals with TBI and 28 matched control participants were tested on the Emotion Recognition Task (ERT). The TBI group was more impaired in overall emotion recognition, and less accurate recognizing negative emotions. However, examining the performance across the different intensities indicated that this difference was driven by some emotions (e.g., happiness) being much easier to recognize than others (e.g., fear and surprise). Our findings indicate that individuals with TBI have an overall deficit in facial emotion recognition, and that both people with TBI and control participants found some emotions more difficult than others. These results suggest that conventional measures of facial affect recognition that do not examine variance in the difficulty of emotions may produce erroneous conclusions about differential impairment. They also cast doubt on the notion that dissociable neural pathways underlie the recognition of positive and negative emotions, which are differentially affected by TBI and potentially other neurological or psychiatric disorders.

  10. Traumatic Brain Injury: An Educator's Manual. [Revised Edition.

    ERIC Educational Resources Information Center

    Fiegenbaum, Ed, Ed.; And Others

    This manual for the Portland (Oregon) Public Schools presents basic information on providing educational services to children with traumatic brain injury (TBI). Individual sections cover the following topics: the brain, central nervous system and behavior; physical, psychological and emotional implication; traumatic brain injury in children versus…

  11. The Predictive Brain State: Timing Deficiency in Traumatic Brain Injury?

    PubMed Central

    Ghajar, Jamshid; Ivry, Richard B.

    2015-01-01

    Attention and memory deficits observed in traumatic brain injury (TBI) are postulated to result from the shearing of white matter connections between the prefrontal cortex, parietal lobe, and cerebellum that are critical in the generation, maintenance, and precise timing of anticipatory neural activity. These fiber tracts are part of a neural network that generates predictions of future states and events, processes that are required for optimal performance on attention and working memory tasks. The authors discuss the role of this anticipatory neural system for understanding the varied symptoms and potential rehabilitation interventions for TBI. Preparatory neural activity normally allows the efficient integration of sensory information with goal-based representations. It is postulated that an impairment in the generation of this activity in traumatic brain injury (TBI) leads to performance variability as the brain shifts from a predictive to reactive mode. This dysfunction may constitute a fundamental defect in TBI as well as other attention disorders, causing working memory deficits, distractibility, a loss of goal-oriented behavior, and decreased awareness. “The future is not what is coming to meet us, but what we are moving forward to meet.” —Jean-Marie Guyau1 PMID:18460693

  12. Protection against Blast-Induced Traumatic Brain Injury by Increase in Brain Volume.

    PubMed

    Gu, Ming; Kawoos, Usmah; McCarron, Richard; Chavko, Mikulas

    2017-01-01

    Blast-induced traumatic brain injury (bTBI) is a leading cause of injuries in recent military conflicts and it is responsible for an increased number of civilian casualties by terrorist attacks. bTBI includes a variety of neuropathological changes depending on the intensity of blast overpressure (BOP) such as brain edema, neuronal degeneration, diffuse axonal damage, and vascular dysfunction with neurological manifestations of psychological and cognitive abnormalities. Internal jugular vein (IJV) compression is known to reduce intracranial compliance by causing an increase in brain volume and was shown to reduce brain damage during closed impact-induced TBI. We investigated whether IJV compression can attenuate signs of TBI in rats after exposure to BOP. Animals were exposed to three 110 ± 5 kPa BOPs separated by 30 min intervals. Exposure to BOP resulted in a significant decrease of neuronal nuclei (NeuN) together with upregulation of aquaporin-4 (AQP-4), 3-nitrotyrosine (3-NT), and endothelin 1 receptor A (ETRA) expression in frontal cortex and hippocampus one day following exposures. IJV compression attenuated this BOP-induced increase in 3-NT in cortex and ameliorated the upregulation of AQP-4 in hippocampus. These results suggest that elevated intracranial pressure and intracerebral volume have neuroprotective potential in blast-induced TBI.

  13. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment

    PubMed Central

    Irimia, Andrei; Goh, S.-Y. Matthew; Torgerson, Carinna M.; Stein, Nathan R.; Chambers, Micah C.; Vespa, Paul M.; Van Horn, John D.

    2013-01-01

    Objective To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Methods Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. Results We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Conclusion Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. PMID:24011495

  14. Electroencephalographic inverse localization of brain activity in acute traumatic brain injury as a guide to surgery, monitoring and treatment.

    PubMed

    Irimia, Andrei; Goh, S-Y Matthew; Torgerson, Carinna M; Stein, Nathan R; Chambers, Micah C; Vespa, Paul M; Van Horn, John D

    2013-10-01

    To inverse-localize epileptiform cortical electrical activity recorded from severe traumatic brain injury (TBI) patients using electroencephalography (EEG). Three acute TBI cases were imaged using computed tomography (CT) and multimodal magnetic resonance imaging (MRI). Semi-automatic segmentation was performed to partition the complete TBI head into 25 distinct tissue types, including 6 tissue types accounting for pathology. Segmentations were employed to generate a finite element method model of the head, and EEG activity generators were modeled as dipolar currents distributed over the cortical surface. We demonstrate anatomically faithful localization of EEG generators responsible for epileptiform discharges in severe TBI. By accounting for injury-related tissue conductivity changes, our work offers the most realistic implementation currently available for the inverse estimation of cortical activity in TBI. Whereas standard localization techniques are available for electrical activity mapping in uninjured brains, they are rarely applied to acute TBI. Modern models of TBI-induced pathology can inform the localization of epileptogenic foci, improve surgical efficacy, contribute to the improvement of critical care monitoring and provide guidance for patient-tailored treatment. With approaches such as this, neurosurgeons and neurologists can study brain activity in acute TBI and obtain insights regarding injury effects upon brain metabolism and clinical outcome. Published by Elsevier B.V.

  15. Traumatic brain injuries in the construction industry.

    PubMed

    Colantonio, Angela; McVittie, Doug; Lewko, John; Yin, Junlang

    2009-10-01

    This study analyses factors associated with work-related traumatic brain injury (TBI), specifically in the construction industry in Ontario, Canada. This cross-sectional study utilized data extracted from the Ontario Workplace Safety and Insurance Board (WSIB) records indicating concussion/intracranial injury that resulted in days off work in 2004-2005. Analyses of 218 TBI cases revealed that falls were the most common cause of injury, followed by being struck by or against an object. Mechanisms of injury and the temporal profile of injury also varied by age. For instance, a significantly higher proportion of injuries occurred in the mornings for young workers compared to older workers. The results of this study provide important information for prevention of TBI which suggest important age-specific strategies for workers in the construction industry.

  16. Traumatic Brain Injury: An Overview of School Re-Entry.

    ERIC Educational Resources Information Center

    Tucker, Bonnie Foster; Colson, Steven E.

    1992-01-01

    This article presents a definition of traumatic brain injury (TBI); describes problem behavioral characteristics of students post-TBI and some possible solutions; examines academic, social, emotional, and cognitive factors; and outlines interventions to assist teachers in working constructively with TBI students. (JDD)

  17. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury.

    PubMed

    Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome

    2017-12-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2015-10-01

    Anemia in Traumatic Brain Injury (TBI)” which we will share with other investigators through the Federal Interagency Traumatic Brain Injury (FITBIR... Informatics System. This trial was funded by National Institute of Neurological Disorders and Stroke (NINDS) grant #P01-NS38660. The study began...Data Elements (CDEs) for TBI, and therefore requires work to convert the data to the format required by FITBIR. 2. KEYWORDS: Traumatic brain

  19. Prevalence of suicidal behaviour following traumatic brain injury: Longitudinal follow-up data from the NIDRR Traumatic Brain Injury Model Systems.

    PubMed

    Fisher, Lauren B; Pedrelli, Paola; Iverson, Grant L; Bergquist, Thomas F; Bombardier, Charles H; Hammond, Flora M; Hart, Tessa; Ketchum, Jessica M; Giacino, Joseph; Zafonte, Ross

    2016-01-01

    This study utilized the Traumatic Brain Injury Model Systems (TBIMS) National Database to examine the prevalence of depression and suicidal behaviour in a large cohort of patients who sustained moderate-to-severe TBI. Participants presented to a TBIMS acute care hospital within 72 hours of injury and received acute care and comprehensive rehabilitation in a TBIMS designated brain injury inpatient rehabilitation programme. Depression and suicidal ideation were measured with the Patient Health Questionnaire (PHQ-9). Self-reported suicide attempts during the past year were recorded at each follow-up examination, at 1, 2, 3, 10, 15 and 20 years post-injury. Throughout the 20 years of follow-up, rates of depression ranged from 24.8-28.1%, suicidal ideation ranged from 7.0-10.1% and suicide attempts (past year) ranged from 0.8-1.7%. Participants who endorsed depression and/or suicidal behaviour at year 1 demonstrated consistently elevated rates of depression and suicidal behaviour 5 years after TBI. Compared to the general population, individuals with TBI are at greater risk for depression and suicidal behaviour many years after TBI. The significant psychiatric symptoms evidenced by individuals with TBI highlight the need for routine screening and mental health treatment in this population.

  20. TBI-Induced Formation of Toxic Tau and Its Biochemical Similarities to Tau in AD Brains

    DTIC Science & Technology

    2016-10-01

    onto wild-type mice markedly reduces 1) memory including contextual fear memory and spatial memory, and 2) long-term potentiation, a type of...TERMS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s disease 16. SECURITY CLASSIFICATION OF: 17...mechanism leading to TBI and AD. 2 KEYWORDS Tau, contextual fear memory, spatial memory, synaptic plasticity, traumatic brain injury, Alzheimer’s

  1. A randomised control trial of walking to ameliorate brain injury fatigue: a NIDRR TBI model system centre-based study.

    PubMed

    Kolakowsky-Hayner, Stephanie A; Bellon, Kimberly; Toda, Ketra; Bushnik, Tamara; Wright, Jerry; Isaac, Linda; Englander, Jeffrey

    2017-10-01

    Fatigue is one of the most commonly reported sequelae after traumatic brain injury (TBI). This study evaluated the impact of a graduated physical activity programme on fatigue after TBI. Using a prospective randomised single-blind crossover design, 123 individuals with TBI, over the age of 18, were enrolled. Interventions included a home-based walking programme utilising a pedometer to track daily number of steps at increasing increments accompanied by tapered coaching calls over a 12-week period. Nutritional counselling with the same schedule of coaching calls served as the control condition. Main outcome measures included: the Global Fatigue Index (GFI), the Barrow Neurological Institute (BNI) Fatigue Scale Overall Severity Index Score, and the Multidimensional Fatigue Inventory (MFI). Step counts improved over time regardless of group assignment. The walking intervention led to a decrease in GFI, BNI Total, and MFI General scores. Participants reported less fatigue at the end of the active part of the intervention (24 weeks) and after a wash out period (36 weeks) as measured by the BNI Overall. The study suggests that walking can be used as an efficient and cost-effective tool to improve fatigue in persons who have sustained a TBI.

  2. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood.

    PubMed

    Pop, Viorela; Sorensen, Dane W; Kamper, Joel E; Ajao, David O; Murphy, M Paul; Head, Elizabeth; Hartman, Richard E; Badaut, Jérôme

    2013-02-01

    Clinical studies suggest that traumatic brain injury (TBI) hastens cognitive decline and development of neuropathology resembling brain aging. Blood-brain barrier (BBB) disruption following TBI may contribute to the aging process by deregulating substance exchange between the brain and blood. We evaluated the effect of juvenile TBI (jTBI) on these processes by examining long-term alterations of BBB proteins, β-amyloid (Aβ) neuropathology, and cognitive changes. A controlled cortical impact was delivered to the parietal cortex of male rats at postnatal day 17, with behavioral studies and brain tissue evaluation at 60 days post-injury (dpi). Immunoglobulin G extravasation was unchanged, and jTBI animals had higher levels of tight-junction protein claudin 5 versus shams, suggesting the absence of BBB disruption. However, decreased P-glycoprotein (P-gp) on cortical blood vessels indicates modifications of BBB properties. In parallel, we observed higher levels of endogenous rodent Aβ in several brain regions of the jTBI group versus shams. In addition at 60 dpi, jTBI animals displayed systematic search strategies rather than relying on spatial memory during the water maze. Together, these alterations to the BBB phenotype after jTBI may contribute to the accumulation of toxic products, which in turn may induce cognitive differences and ultimately accelerate brain aging.

  3. Differences in Brain Metabolic Impairment between Chronic Mild/Moderate TBI Patients with and without Visible Brain Lesions Based on MRI.

    PubMed

    Ito, Keiichi; Asano, Yoshitaka; Ikegame, Yuka; Shinoda, Jun

    2016-01-01

    Introduction. Many patients with mild/moderate traumatic brain injury (m/mTBI) in the chronic stage suffer from executive brain function impairment. Analyzing brain metabolism is important for elucidating the pathological mechanisms associated with their symptoms. This study aimed to determine the differences in brain glucose metabolism between m/mTBI patients with and without visible traumatic brain lesions based on MRI. Methods. Ninety patients with chronic m/mTBI due to traffic accidents were enrolled and divided into two groups based on their MRI findings. Group A comprised 50 patients with visible lesions. Group B comprised 40 patients without visible lesions. Patients underwent FDG-PET scans following cognitive tests. FDG-PET images were analyzed using voxel-by-voxel univariate statistical tests. Results. There were no significant differences in the cognitive tests between Group A and Group B. Based on FDG-PET findings, brain metabolism significantly decreased in the orbital gyrus, cingulate gyrus, and medial thalamus but increased in the parietal and occipital convexity in Group A compared with that in the control. Compared with the control, patients in Group B exhibited no significant changes. Conclusions. These results suggest that different pathological mechanisms may underlie cognitive impairment in m/mTBI patients with and without organic brain damage.

  4. Blood biomarkers for brain injury: What are we measuring?

    PubMed Central

    Kawata, Keisuke; Liu, Charles Y.; Merkel, Steven F.; Ramirez, Servio H.; Tierney, Ryan T.; Langford, Dianne

    2016-01-01

    Accurate diagnosis for mild traumatic brain injury (mTBI) remains challenging, as prognosis and return-to-play/work decisions are based largely on patient reports. Numerous investigations have identified and characterized cellular factors in the blood as potential biomarkers for TBI, in the hope that these factors may be used to gauge the severity of brain injury. None of these potential biomarkers have advanced to use in the clinical setting. Some of the most extensively studied blood biomarkers for TBI include S100β, neuron-specific enolase, glial fibrillary acidic protein, and Tau. Understanding the biological function of each of these factors may be imperative to achieve progress in the field. We address the basic question: what are we measuring? This review will discuss blood biomarkers in terms of cellular origin, normal and pathological function, and possible reasons for increased blood levels. Considerations in the selection, evaluation, and validation of potential biomarkers will also be addressed, along with mechanisms that allow brain-derived proteins to enter the bloodstream after TBI. Lastly, we will highlight perspectives and implications for repetitive neurotrauma in the field of blood biomarkers for brain injury. PMID:27181909

  5. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice

    USDA-ARS?s Scientific Manuscript database

    Traumatic brain injury (TBI) has complex effects on the gastrointestinal tract that are associated with TBI-related morbidity and mortality. We examined changes in mucosal barrier properties and enteric glial cell response in the gut after experimental TBI in mice, as well as effects of the enteric...

  6. Traumatic brain injury in mice and pentadecapeptide BPC 157 effect.

    PubMed

    Tudor, Mario; Jandric, Ivan; Marovic, Anton; Gjurasin, Miroslav; Perovic, Darko; Radic, Bozo; Blagaic, Alenka Boban; Kolenc, Danijela; Brcic, Luka; Zarkovic, Kamelija; Seiwerth, Sven; Sikiric, Predrag

    2010-02-25

    Gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, an anti-ulcer peptide, efficient in inflammatory bowel disease trials (PL 14736), no toxicity reported, improved muscle crush injury. After an induced traumatic brain injury (TBI) in mice by a falling weight, BPC 157 regimens (10.0microg, 10.0ng/kgi.p.) demonstrated a marked attenuation of damage with an improved early outcome and a minimal postponed mortality throughout a 24h post-injury period. Ultimately, the traumatic lesions (subarachnoidal and intraventricular haemorrhage, brain laceration, haemorrhagic laceration) were less intense and consecutive brain edema had considerably improved. Given prophylactically (30 min before TBI) the improved conscious/unconscious/death ratio in TBI-mice was after force impulses of 0.068 Ns, 0.093 Ns, 0.113 Ns, 0.130 Ns, 0.145 Ns, and 0.159 Ns. Counteraction (with a reduction of unconsciousness, lower mortality) with both microg- and ng-regimens included the force impulses of 0.068-0.145 Ns. A higher regimen presented effectiveness also against the maximal force impulse (0.159 Ns). Furthermore, BPC 157 application immediately prior to injury was beneficial in mice subjected to force impulses of 0.093 Ns-TBI. For a more severe force impulse (0.130 Ns, 0.145 Ns, or 0159 Ns), the time-relation to improve the conscious/unconscious/death ratio was: 5 min (0.130 Ns-TBI), 20 min (0.145 Ns-TBI) or 30 min (0.159 Ns-TBI). Copyright 2009 Elsevier B.V. All rights reserved.

  7. Evaluation after Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Trudel, Tina M.; Halper, James; Pines, Hayley; Cancro, Lorraine

    2010-01-01

    It is important to determine if a traumatic brain injury (TBI) has occurred when an individual is assessed in a hospital emergency room after a car accident, fall, or other injury that affects the head. This determination influences decisions about treatment. It is essential to screen for the injury, because the sooner they begin appropriate…

  8. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    PubMed Central

    Tsitsopoulos, Parmenion P.; Abu Hamdeh, Sami; Marklund, Niklas

    2017-01-01

    Traumatic brain injury (TBI) is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI) is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key risk factor for

  9. Standardizing Data Collection in Traumatic Brain Injury

    DTIC Science & Technology

    2010-01-01

    om th is p ro of . 15 Definitions of mild TBI vary considerably across studies ( Comper et al 2005). The American Congress of Rehabilitation...451-627. Comper P, Bisschop S, Carnide N, Tricco A (2005). A Systematic Review of Treatments for Mild Traumatic Brain Injury. Brain Injury 19, 863

  10. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    NASA Astrophysics Data System (ADS)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  11. Pituitary Dysfunction after Blast Traumatic Brain Injury: The UK BIOSAP Study

    PubMed Central

    Baxter, David; Sharp, David J; Feeney, Claire; Papadopoulou, Debbie; Ham, Timothy E; Jilka, Sagar; Hellyer, Peter J; Patel, Maneesh C; Bennett, Alexander N; Mistlin, Alan; McGilloway, Emer; Midwinter, Mark; Goldstone, Anthony P

    2013-01-01

    Objective Pituitary dysfunction is a recognized consequence of traumatic brain injury (TBI) that causes cognitive, psychological, and metabolic impairment. Hormone replacement offers a therapeutic opportunity. Blast TBI (bTBI) from improvised explosive devices is commonly seen in soldiers returning from recent conflicts. We investigated: (1) the prevalence and consequences of pituitary dysfunction following moderate to severe bTBI and (2) whether it is associated with particular patterns of brain injury. Methods Nineteen male soldiers with moderate to severe bTBI (median age = 28.3 years) and 39 male controls with moderate to severe nonblast TBI (nbTBI; median age = 32.3 years) underwent full dynamic endocrine assessment between 2 and 48 months after injury. In addition, soldiers had structural brain magnetic resonance imaging, including diffusion tensor imaging (DTI), and cognitive assessment. Results Six of 19 (32.0%) soldiers with bTBI, but only 1 of 39 (2.6%) nbTBI controls, had anterior pituitary dysfunction (p = 0.004). Two soldiers had hyperprolactinemia, 2 had growth hormone (GH) deficiency, 1 had adrenocorticotropic hormone (ACTH) deficiency, and 1 had combined GH/ACTH/gonadotrophin deficiency. DTI measures of white matter structure showed greater traumatic axonal injury in the cerebellum and corpus callosum in those soldiers with pituitary dysfunction than in those without. Soldiers with pituitary dysfunction after bTBI also had a higher prevalence of skull/facial fractures and worse cognitive function. Four soldiers (21.1%) commenced hormone replacement(s) for hypopituitarism. Interpretation We reveal a high prevalence of anterior pituitary dysfunction in soldiers suffering moderate to severe bTBI, which was more frequent than in a matched group of civilian moderate to severe nbTBI subjects. We recommend that all patients with moderate to severe bTBI should routinely have comprehensive assessment of endocrine function. Ann Neurol 2013;74:527–536 PMID

  12. Educational professionals' understanding of childhood traumatic brain injury.

    PubMed

    Linden, Mark A; Braiden, Hannah-Jane; Miller, Sarah

    2013-01-01

    To determine the understanding of educational professionals around the topic of childhood brain injury and explore the factor structure of the Common Misconceptions about Traumatic Brain Injury Questionnaire (CM-TBI). Cross-sectional postal survey. The CM-TBI was posted to all educational establishments in one region of the UK. One representative from each school was asked to complete and return the questionnaire (n = 388). Differences were demonstrated between those participants who knew someone with a brain injury and those who did not, with a similar pattern being shown for those educators who had taught a child with brain injury. Participants who had taught a child with brain injury demonstrated greater knowledge in areas such as seatbelts/prevention, brain damage, brain injury sequelae, amnesia, recovery and rehabilitation. Principal components analysis suggested the existence of four factors and the discarding of half the original items of the questionnaire. In the first European study to explore this issue, it is highlighted that teachers are ill-prepared to cope with children who have sustained a brain injury. Given the importance of a supportive school environment in return to life following hospitalization, the lack of understanding demonstrated by teachers in this research may significantly impact on a successful return to school.

  13. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury

    PubMed Central

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O.; Fair, Joseph E.; Frost, R. Brock; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D.; Gardner, Scott; Stevens, Mark; Larson, Michael J.

    2016-01-01

    Introduction Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a Level One Trauma Center. Methods Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor FIM scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. DOI quantitative injury lesion volumes and degree of midline shift were obtained from day-of-injury (DOI) brain computed tomography (CT) scans. A multiple step-wise regression model including 13 independent variables was created. This model was used to predict post-rehabilitation outcomes, including FIM scores and ability to return to home. P<0.05 was considered significant. Results 96 patients were enrolled in the study. Mean age was 43±21 years, admission Glasgow Coma Score 8.4±4.8, Injury Severity Score 24.7±9.9, and head Abbreviated Injury Scale score 3.73±0.97. Acute hospital length of stay (LOS) was 12.3±8.9 days and rehabilitation LOS was 15.9±9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p=0.004) and discharge (p=0.004) and inversely associated with ability to be discharged to home after rehabilitation (p=0.006). Conclusion In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute injury phase may

  14. Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain.

    PubMed

    Irimia, Andrei; Van Horn, John D; Vespa, Paul M

    2018-06-01

    Although cerebral microbleeds (CMBs) are frequently associated with traumatic brain injury (TBI), their effects on clinical outcome after TBI remain controversial and poorly understood, particularly in older adults. Here we (1) highlight major challenges and opportunities associated with studying the effects of TBI-mediated CMBs; (2) review the evidence on their potential effects on cognitive and neural outcome as a function of age at injury; and (3) suggest priorities for future research on understanding the clinical implications of CMBs. Although TBI-mediated CMBs are likely distinct from those due to cerebral amyloid angiopathy or other neurodegenerative diseases, the effects of these 2 CMB types on brain function may share common features. Furthermore, in older TBI victims, the incidence of TBI-mediated CMBs may approximate that of cerebral amyloid angiopathy-related CMBs, and thus warrants detailed study. Because the alterations effected by CMBs on brain structure and function are both unique and age-dependent, it seems likely that novel, age-tailored therapeutic approaches are necessary for the adequate clinical interpretation and treatment of these ubiquitous and underappreciated TBI sequelae. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism.

    PubMed

    Prodam, F; Gasco, V; Caputo, M; Zavattaro, M; Pagano, L; Marzullo, P; Belcastro, S; Busti, A; Perino, C; Grottoli, S; Ghigo, E; Aimaretti, G

    2013-08-01

    Hypopituitarism is associated with metabolic alterations but in TBI-induced hypopituitarism data are scanty. The aim of our study was to evaluate the prevalence of naïve hypertension, dyslipidemia, and altered glucose metabolism in TBI-induced hypopituitarism patients. Cross-sectional retrospective study in a tertiary care endocrinology center. 54 adult patients encountering a moderate or severe TBI were evaluated in the chronic phase (at least 12 months after injury) after-trauma. Presence of hypopituitarism, BMI, hypertension, fasting blood glucose and insulin levels, oral glucose tolerance test (if available) and a lipid profile were evaluated. The 27.8% of patients showed various degrees of hypopituitarism. In particular, 9.3% had total, 7.4% multiple and 11.1% isolated hypopituitarism. GHD was present in 22.2% of patients. BMI was similar between the two groups. Hypopituitaric patients presented a higher prevalence of dyslipidemia (p<0.01) and altered glucose metabolism (p<0.005) with respect to non hypopituitaric patients. In particular, triglycerides (p<0.05) and HOMA-IR (p<0.02) were higher in hypopituitaric TBI patients. We showed that long-lasting TBI patients who develop hypopituitarism frequently present metabolic alterations, in particular altered glucose levels, insulin resistance and hypertriglyceridemia. In view of the risk of premature cardiovascular death in hypopituitaric patients, major attention has to been paid in those who encountered a TBI, because they suffer from the same comorbidities and may present other deterioration factors due to complex pharmacological treatments and restriction in participation in life activities and healthy lifestyle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The neuropathology and neurobiology of traumatic brain injury.

    PubMed

    Blennow, Kaj; Hardy, John; Zetterberg, Henrik

    2012-12-06

    The acute and long-term consequences of traumatic brain injury (TBI) have received increased attention in recent years. In this Review, we discuss the neuropathology and neural mechanisms associated with TBI, drawing on findings from sports-induced TBI in athletes, in whom acute TBI damages axons and elicits both regenerative and degenerative tissue responses in the brain and in whom repeated concussions may initiate a long-term neurodegenerative process called dementia pugilistica or chronic traumatic encephalopathy (CTE). We also consider how the neuropathology and neurobiology of CTE in many ways resembles other neurodegenerative illnesses such as Alzheimer's disease, particularly with respect to mismetabolism and aggregation of tau, β-amyloid, and TDP-43. Finally, we explore how translational research in animal models of acceleration/deceleration types of injury relevant for concussion together with clinical studies employing imaging and biochemical markers may further elucidate the neurobiology of TBI and CTE. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Managing traumatic brain injury secondary to explosions.

    PubMed

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-04-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined.

  18. Normobaric oxygen worsens outcome after a moderate traumatic brain injury

    PubMed Central

    Talley Watts, Lora; Long, Justin Alexander; Manga, Venkata Hemanth; Huang, Shiliang; Shen, Qiang; Duong, Timothy Q

    2015-01-01

    Traumatic brain injury (TBI) is a multifaceted injury and a leading cause of death in children, young adults, and increasingly in Veterans. However, there are no neuroprotective agents clinically available to counteract damage or promote repair after brain trauma. This study investigated the neuroprotective effects of normobaric oxygen (NBO) after a controlled cortical impact in rats. The central hypothesis was that NBO treatment would reduce lesion volume and functional deficits compared with air-treated animals after TBI by increasing brain oxygenation thereby minimizing ischemic injury. In a randomized double-blinded design, animals received either NBO (n=8) or normal air (n=8) after TBI. Magnetic resonance imaging (MRI) was performed 0 to 3 hours, and 1, 2, 7, and 14 days after an impact to the primary forelimb somatosensory cortex. Behavioral assessments were performed before injury induction and before MRI scans on days 2, 7, and 14. Nissl staining was performed on day 14 to corroborate the lesion volume detected from MRI. Contrary to our hypothesis, we found that NBO treatment increased lesion volume in a rat model of moderate TBI and had no positive effect on behavioral measures. Our results do not promote the acute use of NBO in patients with moderate TBI. PMID:25690469

  19. Neuropsychiatric Predictors of Post-Injury Headache After Mild-Moderate Traumatic Brain Injury in Veterans.

    PubMed

    Bomyea, Jessica; Lang, Ariel J; Delano-Wood, Lisa; Jak, Amy; Hanson, Karen L; Sorg, Scott; Clark, Alexandra L; Schiehser, Dawn M

    2016-04-01

    To determine differences in neuropsychiatric complaints between Veterans with mild to moderate traumatic brain injury (TBI), with and without headache, compared with Veteran controls, and to identify neuropsychiatric predictors of headache severity. Mild to moderate TBI is a common occurrence in Veterans, and is frequently associated with complaints of headache. Neuropsychiatric complaints are also common among individuals who have sustained head injury, although the relationship between these factors and headache after injury is unclear. Research is needed to comprehensively determine differences between individuals with mild to moderate traumatic brain injury who differ with respect to headache, and which injury, psychological, or sleep and fatigue factors predict headache severity. A cross-sectional study compared 85 Veterans in three groups (positive for TBI and headache, positive for TBI without significant headache, and a control group) on a set of injury characteristics and neuropsychiatric variables. Correlates of headache severity were examined, and a regression model was used to identify significant independent predictors of headache severity. Individuals with mild to moderate TBI and headache endorsed significantly greater neuropsychiatric symptoms than participants in the other groups (η(p)2  = .23-.36) Neuropsychiatric complaints, as well as presence of posttraumatic amnesia, were correlated with headache in the subsample with TBI (rs = .44-.57). When entering all predictors into a regression model, only fatigue represented a significant independent predictor of headache severity (β = .59, R2 = .35). Rather than being a global risk factor, mild to moderate TBI was associated with poorer mental health outcomes, particularly for those who endorse headache. Findings underscore the possibility that Veterans with history of TBI who present with complaints of headache may represent a particularly vulnerable subgroup. Additionally, our findings

  20. A preliminary model for posttraumatic brain injury depression.

    PubMed

    Malec, James F; Brown, Allen W; Moessner, Anne M; Stump, Timothy E; Monahan, Patrick

    2010-07-01

    To develop, based on previous research, and evaluate a model for depression after traumatic brain injury (TBI). Cross-sectional structural equation modeling (SEM) of data from consecutively recruited patients. Acute hospital and inpatient rehabilitation units. Adult patients (N=158) after hospital admission for moderate to severe TBI. Not applicable. External appraisal of ability in participants was measured by the Mayo-Portland Adaptability Inventory (MPAI-4) Ability Index completed by a TBI clinical nurse specialist. Patient self-appraisal of post-TBI ability and depression were measured by the Awareness Questionnaire and Beck Depression Inventory-II. Functional outcome 1 year after injury was assessed with the MPAI-4 Participation Index. Successive SEM resulted in a parsimonious model with excellent fit. Consistent with prior research, a moderately strong association between self-appraisal of post-TBI ability and depression was found. Injury severity, as measured by the duration of posttraumatic amnesia (PTA), was not significantly associated with post-TBI depression. The 1-year functional outcome was associated with depression and TBI severity. The strong association between self-appraisal of post-TBI ability and depression is consistent with the cognitive-behavioral model of depression and recommends consideration and further study of cognitive-behavioral therapy for post-TBI depression. The lack of association between TBI severity and depression may represent the indirect and proxy nature of current measures of TBI severity such as PTA. Emerging neuroimaging techniques (eg, diffusion tensor imaging, magnetic resonance imaging spectroscopy) may provide the more direct measures of disruption of brain function after TBI that are needed to advance this line of research. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Injury versus non-injury factors as predictors of post-concussive symptoms following mild traumatic brain injury in children

    PubMed Central

    McNally, Kelly A.; Bangert, Barbara; Dietrich, Ann; Nuss, Kathy; Rusin, Jerome; Wright, Martha; Taylor, H. Gerry; Yeates, Keith Owen

    2013-01-01

    Objective To examine the relative contributions of injury characteristics and non-injury child and family factors as predictors of postconcussive symptoms (PCS) following mild traumatic brain injury (TBI) in children. Methods Participants were 8- to 15-year-old children, 186 with mild TBI and 99 with mild orthopedic injuries (OI). Parents and children rated PCS shortly after injury and at 1, 3, and 12 months post-injury. Hierarchical regression analyses were conducted to predict PCS from (1) demographic variables; (2) pre-morbid child factors (WASI IQ; WRAT-3 Reading; Child Behavior Checklist; ratings of pre-injury PCS); (3) family factors (Family Assessment Device General Functioning Scale; Brief Symptom Inventory; and Life Stressors and Social Resources Inventory); and (4) injury group (OI, mild TBI with loss of consciousness [LOC] and associated injuries [AI], mild TBI with LOC but without AI, mild TBI without LOC but with AI, and mild TBI without LOC or AI) Results Injury group predicted parent and child ratings of PCS but showed a decreasing contribution over time. Demographic variables consistently predicted symptom ratings across time. Premorbid child factors, especially retrospective ratings of premorbid symptoms, accounted for the most variance in symptom ratings. Family factors, particularly parent adjustment, consistently predicted parent, but not child, ratings of PCS. Conclusions Injury characteristics predict PCS in the first months following mild TBI but show a decreasing contribution over time. In contrast, non-injury factors are more consistently related to persistent PCS. PMID:23356592

  2. Hypogonadism after traumatic brain injury.

    PubMed

    Hohl, Alexandre; Mazzuco, Tânia Longo; Coral, Marisa Helena César; Schwarzbold, Marcelo; Walz, Roger

    2009-11-01

    Traumatic brain injury (TBI) is the most common cause of death and disability in young adults. Post-TBI neuroendocrine disorders have been increasingly acknowledged in recent years due to their potential contribution to morbidity and, probably, to mortality after trauma. Marked alterations of the hypothalamic-pituitary axis during the post-TBI acute and chronic phases have been reported. Prospective and longitudinal studies have shown that some abnormalities are transitory. On the other hand, there is a high frequency (15% to 68%) of pituitary hormone deficiency among TBI survivors in a long term setting. Post-TBI hypogonadism is a common finding after cranial trauma, and it is predicted to develop in 16% of the survivors in the long term. Post-TBI hypogonadism has been associated with adverse results in the acute and chronic phases after injury. These data reinforce the need for identification of hormonal deficiencies and their proper treatment, in order to optimize patient recovery, improve their life quality, and avoid the negative consequences of non-treated hypogonadism in the long term.

  3. Glucose and oxygen metabolism after penetrating ballistic-like brain injury.

    PubMed

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-05-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies.

  4. Variation in general supportive and preventive intensive care management of traumatic brain injury: a survey in 66 neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study.

    PubMed

    Huijben, Jilske A; Volovici, Victor; Cnossen, Maryse C; Haitsma, Iain K; Stocchetti, Nino; Maas, Andrew I R; Menon, David K; Ercole, Ari; Citerio, Giuseppe; Nelson, David; Polinder, Suzanne; Steyerberg, Ewout W; Lingsma, Hester F; van der Jagt, Mathieu

    2018-04-13

    General supportive and preventive measures in the intensive care management of traumatic brain injury (TBI) aim to prevent or limit secondary brain injury and optimize recovery. The aim of this survey was to assess and quantify variation in perceptions on intensive care unit (ICU) management of patients with TBI in European neurotrauma centers. We performed a survey as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We analyzed 23 questions focused on: 1) circulatory and respiratory management; 2) fever control; 3) use of corticosteroids; 4) nutrition and glucose management; and 5) seizure prophylaxis and treatment. The survey was completed predominantly by intensivists (n = 33, 50%) and neurosurgeons (n = 23, 35%) from 66 centers (97% response rate). The most common cerebral perfusion pressure (CPP) target was > 60 mmHg (n = 39, 60%) and/or an individualized target (n = 25, 38%). To support CPP, crystalloid fluid loading (n = 60, 91%) was generally preferred over albumin (n = 15, 23%), and vasopressors (n = 63, 96%) over inotropes (n = 29, 44%). The most commonly reported target of partial pressure of carbon dioxide in arterial blood (PaCO 2 ) was 36-40 mmHg (4.8-5.3 kPa) in case of controlled intracranial pressure (ICP) < 20 mmHg (n = 45, 69%) and PaCO 2 target of 30-35 mmHg (4-4.7 kPa) in case of raised ICP (n = 40, 62%). Almost all respondents indicated to generally treat fever (n = 65, 98%) with paracetamol (n = 61, 92%) and/or external cooling (n = 49, 74%). Conventional glucose management (n = 43, 66%) was preferred over tight glycemic control (n = 18, 28%). More than half of the respondents indicated to aim for full caloric replacement within 7 days (n = 43, 66%) using enteral nutrition (n = 60, 92%). Indications for and duration of seizure prophylaxis varied, and levetiracetam was mostly reported as the agent of choice

  5. Acetazolamide Mitigates Astrocyte Cellular Edema Following Mild Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Sturdivant, Nasya M.; Smith, Sean G.; Ali, Syed F.; Wolchok, Jeffrey C.; Balachandran, Kartik

    2016-09-01

    Non-penetrating or mild traumatic brain injury (mTBI) is commonly experienced in accidents, the battlefield and in full-contact sports. Astrocyte cellular edema is one of the major factors that leads to high morbidity post-mTBI. Various studies have reported an upregulation of aquaporin-4 (AQP4), a water channel protein, following brain injury. AZA is an antiepileptic drug that has been shown to inhibit AQP4 expression and in this study we investigate the drug as a therapeutic to mitigate the extent of mTBI induced cellular edema. We hypothesized that mTBI-mediated astrocyte dysfunction, initiated by increased intracellular volume, could be reduced when treated with AZA. We tested our hypothesis in a three-dimensional in vitro astrocyte model of mTBI. Samples were subject to no stretch (control) or one high-speed stretch (mTBI) injury. AQP4 expression was significantly increased 24 hours after mTBI. mTBI resulted in a significant increase in the cell swelling within 30 min of mTBI, which was significantly reduced in the presence of AZA. Cell death and expression of S100B was significantly reduced when AZA was added shortly before mTBI stretch. Overall, our data point to occurrence of astrocyte swelling immediately following mTBI, and AZA as a promising treatment to mitigate downstream cellular mortality.

  6. Assessing Neuro-Systemic & Behavioral Components in the Pathophysiology of Blast-Related Brain Injury

    PubMed Central

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z.; Whidden, Melissa A.; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K. W.

    2013-01-01

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the “distinct” but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved. PMID:24312074

  7. Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain injury.

    PubMed

    Kobeissy, Firas; Mondello, Stefania; Tümer, Nihal; Toklu, Hale Z; Whidden, Melissa A; Kirichenko, Nataliya; Zhang, Zhiqun; Prima, Victor; Yassin, Walid; Anagli, John; Chandra, Namas; Svetlov, Stan; Wang, Kevin K W

    2013-11-21

    Among the U.S. military personnel, blast injury is among the leading causes of brain injury. During the past decade, it has become apparent that even blast injury as a form of mild traumatic brain injury (mTBI) may lead to multiple different adverse outcomes, such as neuropsychiatric symptoms and long-term cognitive disability. Blast injury is characterized by blast overpressure, blast duration, and blast impulse. While the blast injuries of a victim close to the explosion will be severe, majority of victims are usually at a distance leading to milder form described as mild blast TBI (mbTBI). A major feature of mbTBI is its complex manifestation occurring in concert at different organ levels involving systemic, cerebral, neuronal, and neuropsychiatric responses; some of which are shared with other forms of brain trauma such as acute brain injury and other neuropsychiatric disorders such as post-traumatic stress disorder. The pathophysiology of blast injury exposure involves complex cascades of chronic psychological stress, autonomic dysfunction, and neuro/systemic inflammation. These factors render blast injury as an arduous challenge in terms of diagnosis and treatment as well as identification of sensitive and specific biomarkers distinguishing mTBI from other non-TBI pathologies and from neuropsychiatric disorders with similar symptoms. This is due to the "distinct" but shared and partially identified biochemical pathways and neuro-histopathological changes that might be linked to behavioral deficits observed. Taken together, this article aims to provide an overview of the current status of the cellular and pathological mechanisms involved in blast overpressure injury and argues for the urgent need to identify potential biomarkers that can hint at the different mechanisms involved.

  8. Assessing Quantitative Changes in Intrinsic Thalamic Networks in Blast and Nonblast Mild Traumatic Brain Injury: Implications for Mechanisms of Injury.

    PubMed

    Nathan, Dominic E; Bellgowan, Julie F; Oakes, Terrence R; French, Louis M; Nadar, Sreenivasan R; Sham, Elyssa B; Liu, Wei; Riedy, Gerard

    2016-06-01

    In the global war on terror, the increased use of improvised explosive devices has resulted in increased incidence of blast-related mild traumatic brain injury (mTBI). Diagnosing mTBI is both challenging and controversial due to heterogeneity of injury location, trauma intensity, transient symptoms, and absence of focal biomarkers on standard clinical imaging modalities. The goal of this study is to identify a brain biomarker that is sensitive to mTBI injury. Research suggests the thalamus may be sensitive to changes induced by mTBI. A significant number of connections to and from various brain regions converge at the thalamus. In addition, the thalamus is involved in information processing, integration, and regulation of specific behaviors and mood. In this study, changes in task-free thalamic networks as quantified by graph theory measures in mTBI blast (N = 186), mTBI nonblast (N = 80), and controls (N = 21) were compared. Results show that the blast mTBI group had significant hyper-connectivity compared with the controls and nonblast mTBI group. However, after controlling for post-traumatic stress symptoms (PTSS), the blast mTBI group was not different from the controls, but the nonblast mTBI group showed significant hypo-connectivity. The results suggest that there are differences in the mechanisms of injury related to mTBI as reflected in the architecture of the thalamic networks. However, the effect of PTSS and its relationship to mTBI is difficult to distinguish and warrants more research.

  9. Systems Biology Approaches for Discovering Biomarkers for Traumatic Brain Injury

    PubMed Central

    Feala, Jacob D.; AbdulHameed, Mohamed Diwan M.; Yu, Chenggang; Dutta, Bhaskar; Yu, Xueping; Schmid, Kara; Dave, Jitendra; Tortella, Frank

    2013-01-01

    Abstract The rate of traumatic brain injury (TBI) in service members with wartime injuries has risen rapidly in recent years, and complex, variable links have emerged between TBI and long-term neurological disorders. The multifactorial nature of TBI secondary cellular response has confounded attempts to find cellular biomarkers for its diagnosis and prognosis or for guiding therapy for brain injury. One possibility is to apply emerging systems biology strategies to holistically probe and analyze the complex interweaving molecular pathways and networks that mediate the secondary cellular response through computational models that integrate these diverse data sets. Here, we review available systems biology strategies, databases, and tools. In addition, we describe opportunities for applying this methodology to existing TBI data sets to identify new biomarker candidates and gain insights about the underlying molecular mechanisms of TBI response. As an exemplar, we apply network and pathway analysis to a manually compiled list of 32 protein biomarker candidates from the literature, recover known TBI-related mechanisms, and generate hypothetical new biomarker candidates. PMID:23510232

  10. Cognitive control of conscious error awareness: error awareness and error positivity (Pe) amplitude in moderate-to-severe traumatic brain injury (TBI)

    PubMed Central

    Logan, Dustin M.; Hill, Kyle R.; Larson, Michael J.

    2015-01-01

    Poor awareness has been linked to worse recovery and rehabilitation outcomes following moderate-to-severe traumatic brain injury (M/S TBI). The error positivity (Pe) component of the event-related potential (ERP) is linked to error awareness and cognitive control. Participants included 37 neurologically healthy controls and 24 individuals with M/S TBI who completed a brief neuropsychological battery and the error awareness task (EAT), a modified Stroop go/no-go task that elicits aware and unaware errors. Analyses compared between-group no-go accuracy (including accuracy between the first and second halves of the task to measure attention and fatigue), error awareness performance, and Pe amplitude by level of awareness. The M/S TBI group decreased in accuracy and maintained error awareness over time; control participants improved both accuracy and error awareness during the course of the task. Pe amplitude was larger for aware than unaware errors for both groups; however, consistent with previous research on the Pe and TBI, there were no significant between-group differences for Pe amplitudes. Findings suggest possible attention difficulties and low improvement of performance over time may influence specific aspects of error awareness in M/S TBI. PMID:26217212

  11. Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study.

    PubMed

    Ross, David E; Ochs, Alfred L; Seabaugh, Jan M; Demark, Michael F; Shrader, Carole R; Marwitz, Jennifer H; Havranek, Michael D

    2012-01-01

    NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The aims of this study were as follows: (1) to examine the test-retest reliability of NeuroQuant®; (2) to test the hypothesis that patients with mild traumatic brain injury (TBI) would have abnormally rapid progressive brain atrophy; and (3) to test the hypothesis that progressive brain atrophy in patients with mild TBI would be associated with vocational outcome. Sixteen patients with mild TBI were compared to 20 normal controls. Vocational outcome was assessed with the Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale (DRS). NeuroQuant® showed high test-re-test reliability. Patients had abnormally rapid progressive atrophy in several brain regions and the rate of atrophy was associated with inability to return to work. NeuroQuant®, is a reliable and valid method for assessing the anatomic effects of TBI. Progression of atrophy may continue for years after injury, even in patients with mild TBI.

  12. Anosmia and olfactory outcomes following paediatric traumatic brain injury.

    PubMed

    Bakker, Kathleen; Catroppa, Cathy; Anderson, Vicki

    2016-01-01

    Research into olfactory dysfunction (OD) following paediatric traumatic brain injury (TBI) is limited. The current study investigated the frequency of OD following paediatric TBI and the relationship between OD and injury characteristics including severity, site of impact and cause of injury. It was hypothesized that children with moderate/severe TBI would demonstrate greater OD than those with mild TBI. Thirty-seven children aged 8-16 with TBI were recruited to a prospective longitudinal study at a metropolitan children's hospital. Olfactory assessment, using the University of Pennsylvania Smell Identification Test, was completed at 0-3 months post-injury. Nineteen per cent of participants demonstrated impaired olfaction, while a small number (5%) were anosmic. A significant relationship between OD and severity of injury was found. No other injury variables demonstrated a significant relationship with olfactory outcomes. OD was relatively common in this paediatric TBI cohort and the hypothesized relationship with severity of injury was supported. It is recommended that information about OD after TBI be routinely provided to children and families. Further research is needed in larger cohorts to support the implementation of routine clinical assessment, understand the relationship between OD and other injury characteristics, determine the functional implications of OD and document recovery trajectories.

  13. Deletion of aquaporin-4 is neuroprotective during the acute stage of micro traumatic brain injury in mice.

    PubMed

    Liang, Fengyin; Luo, Chuanming; Xu, Guangqing; Su, Fengjuan; He, Xiaofei; Long, Simei; Ren, Huixia; Liu, Yaning; Feng, Yanqing; Pei, Zhong

    2015-06-26

    Micro traumatic brain injury (TBI) is the most common type of brain injury, but the mechanisms underlying it are poorly understood. Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet, which plays an important role in brain edema. However, little is known about the role of AQP4 in micro TBI. Here, we examined the role of AQP4 in the pathogenesis of micro TBI in a closed-skull brain injury model, using two-photon microscopy. Our results indicate that AQP4 deletion reduced cell death, water content, astrocyte swelling and lesion volume during the acute stage of micro TBI. Our data revealed that astrocyte swelling is a decisive pathophysiological factor in the acute phase of this form of micro brain injury. Thus, treatments that inhibit AQP4 could be used as a neuroprotective strategy for micro TBI. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Clinically-Important Brain Injury and CT Findings in Pediatric Mild Traumatic Brain Injuries: A Prospective Study in a Chinese Reference Hospital

    PubMed Central

    Zhu, Huiping; Gao, Qi; Xia, Xin; Xiang, Joe; Yao, Hongli; Shao, Jianbo

    2014-01-01

    This study investigated injury patterns and the use of computed tomography (CT) among Chinese children with mild traumatic brain injury (MTBI). We enrolled children with MTBI who were treated within 24 hours of head trauma in the emergency department of Wuhan Medical Care Center for Women and Children in Wuhan, China. Characteristics of MTBIs were analyzed by age and gender. Results of cranial CT scan and clinically-important brain injury (ciTBI) for children were obtained. The definition of ciTBI was: death from TBI, intubation for more than 24 h for TBI, neurosurgery, or hospital admission of 2 nights or more. Of 455 eligible patients with MTBI, ciTBI occurred in two, and no one underwent neurosurgical intervention. CT scans were performed for 441 TBI patients (96.9%), and abnormal findings were reported for 147 patients (33.3%, 95% CI 29.0–37.8). Falls were the leading cause of MTBI (61.5%), followed by blows (18.9%) and traffic collisions (14.1%) for children in the 0–2 group and 10–14 group. For children aged between 3 and 9, the top three causes of TBI were falls, traffic collisions and blows. Leisure activity was the most reported activity when injuries occurred for all age groups. Sleeping/resting and walking ranked in the second and third place for children between 0 and 2 years of age, and walking and riding for the other two groups. The places where the majority injuries occurred were the home for the 0–2 and 3–9 years of age groups, and school for the 10–14 years of age group. There was no statistical difference between boys and girls with regard to the activity that caused the MTBI. This study highlights the important roles that parents and school administrators in the development of preventive measures to reduce the risk of traumatic brain injury in children. Also, identifying children who had a head trauma at very low risk of clinically important TBI for whom CT might be unnecessary is a priority area of research in China. PMID:24675642

  15. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    PubMed

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  16. Apathy following traumatic brain injury.

    PubMed

    Starkstein, Sergio E; Pahissa, Jaime

    2014-03-01

    Traumatic brain injury (TBI) may result in significant emotional and behavioral changes, such as depression, impulsivity, anxiety, aggressive behavior, and posttraumatic stress disorder. Apathy has been increasingly recognized as a relevant sequela of TBI, with a negative impact on the patients' quality of life as well as their participation in rehabilitation activities. This article reviews the nosologic and phenomenological aspects of apathy in TBI, diagnostic issues, frequency and prevalence, relevant comorbid conditions, potential mechanisms, and treatment. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  17. Mangiferin attenuates blast-induced traumatic brain injury via inhibiting NLRP3 inflammasome.

    PubMed

    Fan, Kaihua; Ma, Jie; Xiao, Wenjing; Chen, Jingmin; Wu, Juan; Ren, Jiandong; Hou, Jun; Hu, Yonghe; Gu, Jianwen; Yu, Botao

    2017-06-01

    There is growing evidence that Mangiferin possess therapeutic benefit during neuroinflammation on various brain injury models due to its anti-inflammatory properties. It is reported that inflammatory plays a crucial role in the pathogenesis of secondary injury induced by the blast-induced traumatic brain injury (bTBI). However, the role of mangiferin in bTBI is yet to be studied. In our study, the potential effect of mangiferin in the duration of bTBI was examined first. Fortunately, the amelioration of cerebral cortex damage was found in rats suffering bTBI after mangiferin administration. Furthermore, the detail mechanism of mangiferin's beneficial actions in bTBI was also studied. The results revealed that mangiferin might alleviate brain damage in rats with bTBI by inhibiting the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, which was accompanied by mangiferin's inhibition of oxidative stress and pro-inflammatory cytokines production. Therefore, this research allows us to speculate that, for first time, NLRP3 is involved in the anti-inflammatory effect of mangiferin in the cerebral cortex, and mangiferin could be a potential therapy drug for bTBI. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Brain-Derived Neurotrophic Factor in TBI-related mortality: Interrelationships between Genetics and Acute Systemic and CNS BDNF Profiles

    PubMed Central

    Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.

    2015-01-01

    Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (p<0.0001). Both gene*BDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196

  19. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  20. Pathophysiology of hypopituitarism in the setting of brain injury

    PubMed Central

    Dusick, Joshua R.; Wang, Christina; Cohan, Pejman; Swerdloff, Ronald

    2014-01-01

    The complex pathophysiology of traumatic brain injury (TBI) involves not only the primary mechanical event but also secondary insults such as hypotension, hypoxia, raised intracranial pressure and changes in cerebral blood flow and metabolism. It is increasingly evident that these initial insults as well as transient events and treatments during the early injury phase can impact hypothalamic-pituitary function both acutely and chronically after injury. In turn, untreated pituitary hormonal dysfunction itself can further hinder recovery from brain injury. Secondary adrenal insufficiency, although typically reversible, occurs in up to 50% of intubated TBI victims and is associated with lower systemic blood pressure. PMID:18481181

  1. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    PubMed

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. Does Traumatic Brain Injury Increase Risk for Substance Abuse?

    PubMed Central

    Grant, Steven J.

    2009-01-01

    Abstract Wars in Afghanistan and Iraq have resulted in thousands of military personnel suffering traumatic brain injury (TBI), including closed-head injuries. Of interest is whether these individuals and other TBI survivors are at increased risk for substance use disorder (SUD). While it has been well established that drug or alcohol intoxication itself increases probability of suffering a TBI in accidents or acts of violence, little is known about whether the brain insult itself increases the likelihood that a previously non-drug-abusing individual would develop SUD. Might TBI survivors be unusually vulnerable to addiction to opiate analgesics compared to other pain patients? Similarly, it is not known if TBI increases the likelihood of relapse among persons with SUD in remission. We highlight challenges in answering these questions, and review neurochemical and behavioral evidence that supports a causal relationship between TBI and SUD. In this review, we conclude that little is known regarding the directionality of TBI increasing drug abuse, and that collaborative research in this area is critically needed. PMID:19203230

  3. Thaliporphine Derivative Improves Acute Lung Injury after Traumatic Brain Injury

    PubMed Central

    Chen, Gunng-Shinng; Huang, Kuo-Feng; Huang, Chien-Chu; Wang, Jia-Yi

    2015-01-01

    Acute lung injury (ALI) occurs frequently in patients with severe traumatic brain injury (TBI) and is associated with a poor clinical outcome. Aquaporins (AQPs), particularly AQP1 and AQP4, maintain water balances between the epithelial and microvascular domains of the lung. Since pulmonary edema (PE) usually occurs in the TBI-induced ALI patients, we investigated the effects of a thaliporphine derivative, TM-1, on the expression of AQPs and histological outcomes in the lung following TBI in rats. TM-1 administered (10 mg/kg, intraperitoneal injection) at 3 or 4 h after TBI significantly reduced the elevated mRNA expression and protein levels of AQP1 and AQP4 and diminished the wet/dry weight ratio, which reflects PE, in the lung at 8 and 24 h after TBI. Postinjury TM-1 administration also improved histopathological changes at 8 and 24 h after TBI. PE was accompanied with tissue pathological changes because a positive correlation between the lung injury score and the wet/dry weight ratio in the same animal was observed. Postinjury administration of TM-1 improved ALI and reduced PE at 8 and 24 h following TBI. The pulmonary-protective effect of TM-1 may be attributed to, at least in part, downregulation of AQP1 and AQP4 expression after TBI. PMID:25705683

  4. Repeated mild traumatic brain injury produces neuroinflammation, anxiety-like behaviour and impaired spatial memory in mice.

    PubMed

    Broussard, John I; Acion, Laura; De Jesús-Cortés, Héctor; Yin, Terry; Britt, Jeremiah K; Salas, Ramiro; Costa-Mattioli, Mauro; Robertson, Claudia; Pieper, Andrew A; Arciniegas, David B; Jorge, Ricardo

    2018-01-01

    Repeated traumatic brain injuries (rmTBI) are frequently associated with debilitating neuropsychiatric conditions such as cognitive impairment, mood disorders, and post-traumatic stress disorder. We tested the hypothesis that repeated mild traumatic brain injury impairs spatial memory and enhances anxiety-like behaviour. We used a between groups design using single (smTBI) or repeated (rmTBI) controlled cranial closed skull impacts to mice, compared to a control group. We assessed the effects of smTBI and rmTBI using measures of motor performance (Rotarod Test [RT]), anxiety-like behaviour (Elevated Plus Maze [EPM] and Open Field [OF] tests), and spatial memory (Morris Water Maze [MWM]) within 12 days of the final injury. In separate groups of mice, astrocytosis and microglial activation were assessed 24 hours after the final injury using GFAP and IBA-1 immunohistochemistry. RmTBI impaired spatial memory in the MWM and increased anxiety-like behaviour in the EPM and OFT. In addition, rmTBI elevated GFAP and IBA-1 immunohistochemistry throughout the mouse brain. RmTBI produced astrocytosis and microglial activation, and elicited impaired spatial memory and anxiety-like behaviour. rmTBI produces acute cognitive and anxiety-like disturbances associated with inflammatory changes in brain regions involved in spatial memory and anxiety.

  5. Imaging Evaluation of Acute Traumatic Brain Injury

    PubMed Central

    Mutch, Christopher A.; Talbott, Jason F.; Gean, Alisa

    2016-01-01

    SYNOPSIS Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Imaging plays an important role in the evaluation, diagnosis, and triage of patients with TBI. Recent studies suggest that it will also help predict patient outcomes. TBI consists of multiple pathoanatomical entities. Here we review the current state of TBI imaging including its indications, benefits and limitations of the modalities, imaging protocols, and imaging findings for each these pathoanatomic entities. We also briefly survey advanced imaging techniques, which include a number of promising areas of TBI research. PMID:27637393

  6. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2012-10-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT . Traumatic Brain Injury ( TBI ) is a public health problem of immense magnitude and...immediate importance that has become endemic among military personnel and veterans. Imaging biomarkers of TBI are needed to support diagnosis and therapy...and to predict TBI consequences while avoiding further injury. Diffusion magnetic resonance imaging has potential to become the non-invasive tool

  7. Managing traumatic brain injury secondary to explosions

    PubMed Central

    Burgess, Paula; E Sullivent, Ernest; M Sasser, Scott; M Wald, Marlena; Ossmann, Eric; Kapil, Vikas

    2010-01-01

    Explosions and bombings are the most common deliberate cause of disasters with large numbers of casualties. Despite this fact, disaster medical response training has traditionally focused on the management of injuries following natural disasters and terrorist attacks with biological, chemical, and nuclear agents. The following article is a clinical primer for physicians regarding traumatic brain injury (TBI) caused by explosions and bombings. The history, physics, and treatment of TBI are outlined. PMID:20606794

  8. Big for small: Validating brain injury guidelines in pediatric traumatic brain injury.

    PubMed

    Azim, Asad; Jehan, Faisal S; Rhee, Peter; O'Keeffe, Terence; Tang, Andrew; Vercruysse, Gary; Kulvatunyou, Narong; Latifi, Rifat; Joseph, Bellal

    2017-12-01

    Brain injury guidelines (BIG) were developed to reduce overutilization of neurosurgical consultation (NC) as well as computed tomography (CT) imaging. Currently, BIG have been successfully applied to adult populations, but the value of implementing these guidelines among pediatric patients remains unassessed. Therefore, the aim of this study was to evaluate the established BIG (BIG-1 category) for managing pediatric traumatic brain injury (TBI) patients with intracranial hemorrhage (ICH) without NC (no-NC). We prospectively implemented the BIG-1 category (normal neurologic examination, ICH ≤ 4 mm limited to one location, no skull fracture) to identify pediatric TBI patients (age, ≤ 21 years) that were to be managed no-NC. Propensity score matching was performed to match these no-NC patients to a similar cohort of patients managed with NC before the implementation of BIG in a 1:1 ratio for demographics, severity of injury, and type as well as size of ICH. Our primary outcome measure was need for neurosurgical intervention. A total of 405 pediatric TBI patients were enrolled, of which 160 (NC, 80; no-NC, 80) were propensity score matched. The mean age was 9.03 ± 7.47 years, 62.1% (n = 85) were male, the median Glasgow Coma Scale score was 15 (13-15), and the median head Abbreviated Injury Scale score was 2 (2-3). A subanalysis based on stratifying patients by age groups showed a decreased in the use of repeat head CT (p = 0.02) in the no-NC group, with no difference in progression (p = 0.34) and the need for neurosurgical intervention (p = 0.9) compared with the NC group. The BIG can be safely and effectively implemented in pediatric TBI patients. Reducing repeat head CT in pediatric patients has long-term sequelae. Likewise, adhering to the guidelines helps in reducing radiation exposure across all age groups. Therapeutic/care management, level III.

  9. Long-Term Consequences of Traumatic Brain Injury: Current Status of Potential Mechanisms of Injury and Neurological Outcomes.

    PubMed

    Bramlett, Helen M; Dietrich, W Dalton

    2015-12-01

    Traumatic brain injury (TBI) is a significant clinical problem with few therapeutic interventions successfully translated to the clinic. Increased importance on the progressive, long-term consequences of TBI have been emphasized, both in the experimental and clinical literature. Thus, there is a need for a better understanding of the chronic consequences of TBI, with the ultimate goal of developing novel therapeutic interventions to treat the devastating consequences of brain injury. In models of mild, moderate, and severe TBI, histopathological and behavioral studies have emphasized the progressive nature of the initial traumatic insult and the involvement of multiple pathophysiological mechanisms, including sustained injury cascades leading to prolonged motor and cognitive deficits. Recently, the increased incidence in age-dependent neurodegenerative diseases in this patient population has also been emphasized. Pathomechanisms felt to be active in the acute and long-term consequences of TBI include excitotoxicity, apoptosis, inflammatory events, seizures, demyelination, white matter pathology, as well as decreased neurogenesis. The current article will review many of these pathophysiological mechanisms that may be important targets for limiting the chronic consequences of TBI.

  10. Impact of mild traumatic brain injury on auditory brain stem dysfunction in mouse model.

    PubMed

    Amanipour, Reza M; Frisina, Robert D; Cresoe, Samantha A; Parsons, Teresa J; Xiaoxia Zhu; Borlongan, Cesario V; Walton, Joseph P

    2016-08-01

    The auditory brainstem response (ABR) is an electrophysiological test that examines the functionality of the auditory nerve and brainstem. Traumatic brain injury (TBI) can be detected if prolonged peak latency is observed in ABR measurements, since latency measures the neural conduction time in the brainstem, and an increase in latency can be a sign of pathological lesion at the auditory brainstem level. The ABR is elicited by brief sounds that can be used to measure hearing sensitivity as well as temporal processing. Reduction in peak amplitudes and increases in latency are indicative of dysfunction in the auditory nerve and/or central auditory pathways. In this study we used sixteen young adult mice that were divided into two groups: sham and mild traumatic brain injury (mTBI), with ABR measurements obtained prior to, and at 2, 6, and 14 weeks after injury. Abnormal ABRs were observed for the nine TBI cases as early as two weeks after injury and the deficits lasted for fourteen weeks after injury. Results indicated a significant reduction in the Peak 1 (P1) and Peak 4 (P4) amplitudes to the first noise burst, as well as an increase in latency response for P1 and P4 following mTBI. These results are the first to demonstrate auditory sound processing deficits in a rodent model of mild TBI.

  11. Hypopituitarism after traumatic brain injury.

    PubMed

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The Changed Brain: Teacher Awareness of Traumatic Brain Injury and Instruction Methods to Enhance Cognitive Processing in Mathematics

    ERIC Educational Resources Information Center

    Stahl, Judith M.

    2008-01-01

    Traumatic brain injury (TBI) has come to subjugate and exert its authority on education as some survivors re-enter the academic arena. A key component of a TBI student's academic success is dependent upon a teacher's awareness of the TBI learner and a willingness to modify curriculum to promote the uniqueness of the changed brain and therefore,…

  13. Traumatic brain injury in Indian children.

    PubMed

    Chaitanya, Krishna; Addanki, Archana; Karambelkar, Rajendra; Ranjan, Rakesh

    2018-06-01

    Traumatic brain injury (TBI) in children and adolescents is a community-based medical and educational challenge world-over due to increasing urbanization and motorization. In India, children between 1 to 15 years constitute significant proportion of the total population, who are vulnerable for TBI. In developed countries, pediatric trauma mortality still represents more than half of all childhood fatalities, which is 18 times more common than brain tumors. In this study, we attempted to analyze epidemiological factors, management, and outcome of TBI in children at a tertiary care center in Pune, Maharashtra. To study the clinical spectrum of pediatric traumatic brain injury cases received at a Tertiary Care Hospital. This prospective study (August 2015-July 2017), conducted at our institution, includes all children < 16 years with TBI reporting to the neurosurgical emergency department. All the case records were reviewed and the pertinent data (clinical history, age, sex, mode of injury, computed tomography (CT) scan findings, interventions, morbidity, and mortality) analyzed. Any residual neurological deficits at the time discharge were assessed as the outcome of TBI. A total 76 pediatric cases of TBI were admitted during the period of August 2015-July 2017, with 51 males (67%) and 25 females (33%) with male to female ratio 2:1. Mean age of incidence in our study is 5.5 years. Out of 76 children with TBI, 60.5% were of mild, 14.5% moderate, and 25% severe TBI. Overall, RTA (40.8%) is the most common mode of injury followed by fall from height (30.2%) and slippage in and around home (26.4%). Clinical evaluation revealed, loss of consciousness(LOC) in 36 (47.3%) patients, vomiting in 42 (55%) patients, headache in 10 (13%) patients, ENT bleeding in 18 (23.6%), and seizure in 16 (21%) patients, no external injuries in 25 (33%) patients, normal sensorium was found in 41 (54%) patients, 18 (23.6%) children were drowsy at presentation, and 17 (22.3%) children were

  14. Investigation of blast-induced traumatic brain injury.

    PubMed

    Taylor, Paul A; Ludwigsen, John S; Ford, Corey C

    2014-01-01

    Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear.

  15. Investigation of blast-induced traumatic brain injury

    PubMed Central

    Ludwigsen, John S.; Ford, Corey C.

    2014-01-01

    Objective Many troops deployed in Iraq and Afghanistan have sustained blast-related, closed-head injuries from being within non-lethal distance of detonated explosive devices. Little is known, however, about the mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI). This study attempts to identify the precise conditions of focused stress wave energy within the brain, resulting from blast exposure, which will correlate with a threshold for persistent brain injury. Methods This study developed and validated a set of modelling tools to simulate blast loading to the human head. Using these tools, the blast-induced, early-time intracranial wave motions that lead to focal brain damage were simulated. Results The simulations predict the deposition of three distinct wave energy components, two of which can be related to injury-inducing mechanisms, namely cavitation and shear. Furthermore, the results suggest that the spatial distributions of these damaging energy components are independent of blast direction. Conclusions The predictions reported herein will simplify efforts to correlate simulation predictions with clinical measures of TBI and aid in the development of protective headwear. PMID:24766453

  16. Anesthetics and analgesics in experimental traumatic brain injury: Selection based on experimental objectives

    PubMed Central

    Rowe, Rachel K.; Harrison, Jordan L.; Thomas, Theresa C.; Pauly, James R.; Adelson, P. David; Lifshitz, Jonathan

    2013-01-01

    The use of animal modeling in traumatic brain injury (TBI) research is justified by the lack of sufficiently comprehensive in vitro and computer modeling that incorporates all components of the neurovascular unit. Valid animal modeling of TBI requires accurate replication of both the mechanical forces and secondary injury conditions observed in human patients. Regulatory requirements for animal modeling emphasize the administration of appropriate anesthetics and analgesics unless withholding these drugs is scientifically justified. The objective of this review is to present scientific justification for standardizing the use of anesthetics and analgesics, within a study, when modeling TBI in order to preserve study validity. Evidence for the interference of anesthetics and analgesics in the natural course of brain injury calls for consistent consideration of pain management regimens when conducting TBI research. Anesthetics administered at the time of or shortly after induction of brain injury can alter cognitive, motor, and histological outcomes following TBI. A consistent anesthesia protocol based on experimental objectives within each individual study is imperative when conducting TBI studies to control for the confounding effects of anesthesia on outcome parameters. Experimental studies that replicate the clinical condition are essential to gain further understanding and evaluate possible treatments for TBI. However, with animal models of TBI it is essential that investigators assure a uniform drug delivery protocol that minimizes confounding variables, while minimizing pain and suffering. PMID:23877609

  17. In-Vitro Approaches for Studying Blast-Induced Traumatic Brain Injury

    PubMed Central

    Chen, Yung Chia; Smith, Douglas H.

    2009-01-01

    Abstract Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma. PMID:19397424

  18. Vocational outcome 6-15 years after a traumatic brain injury.

    PubMed

    Lexell, J; Wihlney, A-K; Jacobsson, L J

    2016-01-01

    To describe vocational outcome 6-15 years after a traumatic brain injury (TBI) among individuals who were productive by working or studying at the time of their TBI and determine the associations with variables related to the time of injury and at follow-up. Thirty-four individuals with a mild TBI and 45 with a moderate-to-severe TBI were assessed on average 10 years post-injury. Logistic regression was used to determine the association between their current vocational situation and variables related to the time of injury (gender, age, injury severity and educational level) and at follow-up (time since injury, marital status and overall disability). A total of 67% were productive at follow-up. Age at injury, injury severity and the degree of disability at follow-up were strongly associated with being productive. Younger individuals with milder TBI and less severe disability were significantly more likely to be fully productive. No significant associations were found between productivity and gender, education, time since injury or marital status. This study indicates that return to productivity in a long-term perspective after a TBI is possible, in particular when the individual is young, has sustained a mild TBI and has a milder form of overall disability.

  19. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    PubMed Central

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  20. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain

    PubMed Central

    O'Brien, Terence J.; Gimlin, Kayleen; Wright, David K.; Kim, Shi Eun; Casillas-Espinosa, Pablo M.; Webster, Kyria M.; Petrou, Steven; Noble-Haeusslein, Linda J.

    2017-01-01

    Epilepsy after pediatric traumatic brain injury (TBI) is associated with poor quality of life. This study aimed to characterize post-traumatic epilepsy in a mouse model of pediatric brain injury, and to evaluate the role of interleukin-1 (IL-1) signaling as a target for pharmacological intervention. Male mice received a controlled cortical impact or sham surgery at postnatal day 21, approximating a toddler-aged child. Mice were treated acutely with an IL-1 receptor antagonist (IL-1Ra; 100 mg/kg, s.c.) or vehicle. Spontaneous and evoked seizures were evaluated from video-EEG recordings. Behavioral assays tested for functional outcomes, postmortem analyses assessed neuropathology, and brain atrophy was detected by ex vivo magnetic resonance imaging. At 2 weeks and 3 months post-injury, TBI mice showed an elevated seizure response to the convulsant pentylenetetrazol compared with sham mice, associated with abnormal hippocampal mossy fiber sprouting. A robust increase in IL-1β and IL-1 receptor were detected after TBI. IL-1Ra treatment reduced seizure susceptibility 2 weeks after TBI compared with vehicle, and a reduction in hippocampal astrogliosis. In a chronic study, IL-1Ra-TBI mice showed improved spatial memory at 4 months post-injury. At 5 months, most TBI mice exhibited spontaneous seizures during a 7 d video-EEG recording period. At 6 months, IL-1Ra-TBI mice had fewer evoked seizures compared with vehicle controls, coinciding with greater preservation of cortical tissue. Findings demonstrate this model's utility to delineate mechanisms underlying epileptogenesis after pediatric brain injury, and provide evidence of IL-1 signaling as a mediator of post-traumatic astrogliosis and seizure susceptibility. SIGNIFICANCE STATEMENT Epilepsy is a common cause of morbidity after traumatic brain injury in early childhood. However, a limited understanding of how epilepsy develops, particularly in the immature brain, likely contributes to the lack of efficacious treatments

  1. MANF prevents traumatic brain injury in rats by inhibiting inflammatory activation and protecting Blood Brain Barrier.

    PubMed

    Li, Qing-Xin; Shen, Yu-Xian; Ahmad, Akhlaq; Shen, Yu-Jun; Zhang, Yi-Quan; Xu, Pei-Kun; Chen, Wei-Wei; Yu, Yong-Qiang

    2018-06-05

    Our previous studies have shown that MANF provides neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This work investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). The model of TBI was induced by Feeney free falling methods with male Sprauge-Dawley rats. The expression of MANF, 24 hrs after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot and Reverse transcription PCR(RT-PCR) techniques. After treatment with recombinant human MANF following TBI, assessment was conducted - 24 hrs later for brain water content(BWC), cerebral edema volume in MRI, neurobehavioral testing and Evans blue extravasation. Moreover, by the techniques of Western blot and RT-PCR, the expression of inflammatory cytokines(IL-1β, TNF-α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. At 24 hrs after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with high dose of recombinant human MANF(20 μg/20 μL) - significantly increased the modified Garcia score, and reduced BWC as well as cerebral edema volume in MRI. Furthermore, MANF alleviated not only the blood-brain barrier(BBB) permeability, but also the expressions of IL-1β and TNF-α mRNA and protein. Besides, the activation of P65 was also inhibited. These results suggest that MANF provides neuroprotective effect against acute brain injury after TBI, via attenuating BBB disruption and intracranial neuroinflammation, while the inhibition of NF-κB signaling pathway might be a potential mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Optimising the management of severe Traumatic Brain Injury in the military maritime environment.

    PubMed

    Edgar, I A; Hadjipavlou, G; Smith, J E

    2014-01-01

    Severe Traumatic Brain Injury (sTBI) is a devastating cause of morbidity and mortality, especially among those aged less than 45 years. Advances in clinical practice continue to focus on preventing primary injury through developing ballistic head and eye protection, and through minimising secondary brain injury (secondary prevention). Managing sTBI is challenging in well-developed, well-resourced healthcare systems. Achieving management aims in the military maritime environment poses even greater challenges. Strategies for the management of sTBI in the maritime environment should be in keeping with current best evidence. Provision of specialist interventions for sTBI in military maritime environments may require alternative approaches matched to the skills of the staff and environmental restrictions.

  3. Preliminary associations between brain derived neurotrophic factor, memory impairment, functional cognition, and depressive symptoms following severe TBI

    PubMed Central

    Failla, Michelle D.; Juengst, Shannon B.; Arenth, Patricia; Wagner, Amy K.

    2015-01-01

    Background Traumatic brain injury (TBI) often leads to mood and cognitive complications, impacting functional recovery. Understanding neurobiological alterations common in post-TBI depression (PTD) and cognition may identify novel biomarkers for TBI complications. Brain-derived neurotrophic factor (BDNF) is a likely target based on evidence of reduced BDNF signaling in experimental TBI and depression models and its role in learning and memory. Objective Evaluate BDNF as a biomarker for PTD, cognitive impairment, and functional cognition in a prospective cohort with severe TBI. Methods Participants with TBI (n=113) were evaluated for PTD (Patient Health Questionnaire-9), cognitive impairment (cognitive composite score) and functional cognition (Functional Independence Measure–Cognition, FIM-Cog). BDNF levels were measured in cerebrospinal fluid (CSF) and serum 0–6 days post-injury and in serum at 6 and 12 months post-injury. Results Serum BDNF was reduced after TBI versus controls at all time-points. Acute serum BDNF positively correlated with Memory composites (6 months: r=0.43, p=0.019, n=30; 12 months: r=0.53, p=0.005, n=26) and FIM-Memory scores (6 months: r=0.35, p=0.019, n=45; 12 months: r=0.38, p=0.018, n=38). Acute serum BDNF negatively correlated with 12 month PHQ-9 scores (r=−0.38, p=0.044, n=29). At 12 months, chronic serum BDNF tended to be lower in participants with PTD (p=0.07) and correlated with PHQ-9 scores (r=−0.41, p=0.019, n=32). Conclusions Acute BDNF associations with memory recovery may implicate hippocampal damage/degeneration. Comparatively, BDNF associations with PTD status were not as strong as associations with PTD severity. Further investigation may delineate longitudinal BDNF patterns, and BDNF responsive treatments, reflecting mood and cognitive recovery following TBI. PMID:26276123

  4. Pathophysiological links between traumatic brain injury and post-traumatic headaches

    PubMed Central

    Ruff, Robert L.; Blake, Kayla

    2016-01-01

    This article reviews possible ways that traumatic brain injury (TBI) can induce migraine-type post-traumatic headaches (PTHs) in children, adults, civilians, and military personnel. Several cerebral alterations resulting from TBI can foster the development of PTH, including neuroinflammation that can activate neural systems associated with migraine. TBI can also compromise the intrinsic pain modulation system and this would increase the level of perceived pain associated with PTH. Depression and anxiety disorders, especially post-traumatic stress disorder (PTSD), are associated with TBI and these psychological conditions can directly intensify PTH. Additionally, depression and PTSD alter sleep and this will increase headache severity and foster the genesis of PTH. This article also reviews the anatomic loci of injury associated with TBI and notes the overlap between areas of injury associated with TBI and PTSD. PMID:27635228

  5. Brain and Serum Androsterone Is Elevated in Response to Stress in Rats with Mild Traumatic Brain Injury

    PubMed Central

    Servatius, Richard J.; Marx, Christine E.; Sinha, Swamini; Avcu, Pelin; Kilts, Jason D.; Naylor, Jennifer C.; Pang, Kevin C. H.

    2016-01-01

    Exposure to lateral fluid percussion (LFP) injury consistent with mild traumatic brain injury (mTBI) persistently attenuates acoustic startle responses (ASRs) in rats. Here, we examined whether the experience of head trauma affects stress reactivity. Male Sprague-Dawley rats were matched for ASRs and randomly assigned to receive mTBI through LFP or experience a sham surgery (SHAM). ASRs were measured post injury days (PIDs) 1, 3, 7, 14, 21, and 28. To assess neurosteroids, rats received a single 2.0 mA, 0.5 s foot shock on PID 34 (S34), PID 35 (S35), on both days (2S), or the experimental context (CON). Levels of the neurosteroids pregnenolone (PREG), allopregnanolone (ALLO), and androsterone (ANDRO) were determined for the prefrontal cortex, hippocampus, and cerebellum. For 2S rats, repeated blood samples were obtained at 15, 30, and 60 min post-stressor for determination of corticosterone (CORT) levels after stress or context on PID 34. Similar to earlier work, ASRs were severely attenuated in mTBI rats without remission for 28 days after injury. No differences were observed between mTBI and SHAM rats in basal CORT, peak CORT levels or its recovery. In serum and brain, ANDRO levels were the most stress-sensitive. Stress-induced ANDRO elevations were greater than those in mTBI rats. As a positive allosteric modulator of gamma-aminobutyric acid (GABAA) receptors, increased brain ANDRO levels are expected to be anxiolytic. The impact of brain ANDRO elevations in the aftermath of mTBI on coping warrants further elaboration. PMID:27616978

  6. Effect of chromatic filters on visual performance in individuals with mild traumatic brain injury (mTBI): A pilot study.

    PubMed

    Fimreite, Vanessa; Willeford, Kevin T; Ciuffreda, Kenneth J

    2016-01-01

    Spectral filters have been used clinically in patients with mild traumatic brain injury (mTBI). However, they have not been formally assessed using objective techniques in this population. Thus, the aim of the present pilot study was to determine the effect of spectral filters on reading performance and visuo-cortical responsivity in adults with mTBI. 12 adults with mTBI/concussion were tested. All reported photosensitivity and reading problems. They were compared to 12 visually-normal, asymptomatic adults. There were several test conditions: three luminance-matched control filters (gray neutral density, blue, and red), the patient-selected 'precision tint lens' that provided the most comfort and clarity of text using the Intuitive Colorimeter System, and baseline without any filters. The Visagraph was used to assess reading eye movements and reading speed objectively with each filter. In addition, both the amplitude and latency of the visual-evoked potential (VEP) were assessed with the same filters. There were few significant group differences in either the reading-related parameters or VEP latency for any of the test filter conditions. Subjective improvements were noted in most with mTBI (11/12). The majority of patients with mTBI chose a tinted filter that resulted in increased visual comfort. While significant findings based on the objective testing were found for some conditions, the subjective results suggest that precision tints should be considered as an adjunctive treatment in patients with mTBI and photosensitivity. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  7. Investigating Metacognition, Cognition, and Behavioral Deficits of College Students with Acute Traumatic Brain Injuries

    ERIC Educational Resources Information Center

    Martinez, Sarah; Davalos, Deana

    2016-01-01

    Objective: Executive dysfunction in college students who have had an acute traumatic brain injury (TBI) was investigated. The cognitive, behavioral, and metacognitive effects on college students who endorsed experiencing a brain injury were specifically explored. Participants: Participants were 121 college students who endorsed a mild TBI, and 121…

  8. Loss of hypocretin (orexin) neurons with traumatic brain injury.

    PubMed

    Baumann, Christian R; Bassetti, Claudio L; Valko, Philipp O; Haybaeck, Johannes; Keller, Morten; Clark, Erika; Stocker, Reto; Tolnay, Markus; Scammell, Thomas E

    2009-10-01

    Chronic, daytime sleepiness is a major, disabling symptom for many patients with traumatic brain injury (TBI), but thus far, its etiology is not well understood. Extensive loss of the hypothalamic neurons that produce the wake-promoting neuropeptide hypocretin (orexin) causes the severe sleepiness of narcolepsy, and partial loss of these cells may contribute to the sleepiness of Parkinson disease and other disorders. We have found that the number of hypocretin neurons is significantly reduced in patients with severe TBI. This observation highlights the often overlooked hypothalamic injury in TBI and provides new insights into the causes of chronic sleepiness in patients with TBI.

  9. The role of free radicals in traumatic brain injury.

    PubMed

    O'Connell, Karen M; Littleton-Kearney, Marguerite T

    2013-07-01

    Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.

  10. Glucose and oxygen metabolism after penetrating ballistic-like brain injury

    PubMed Central

    Gajavelli, Shyam; Kentaro, Shimoda; Diaz, Julio; Yokobori, Shoji; Spurlock, Markus; Diaz, Daniel; Jackson, Clayton; Wick, Alexandra; Zhao, Weizhao; Leung, Lai Y; Shear, Deborah; Tortella, Frank; Bullock, M Ross

    2015-01-01

    Traumatic brain injury (TBI) is a major cause of death and disability in all age groups. Among TBI, penetrating traumatic brain injuries (PTBI) have the worst prognosis and represent the leading cause of TBI-related morbidity and death. However, there are no specific drugs/interventions due to unclear pathophysiology. To gain insights we looked at cerebral metabolism in a PTBI rat model: penetrating ballistic-like brain injury (PBBI). Early after injury, regional cerebral oxygen tension and consumption significantly decreased in the ipsilateral cortex in the PBBI group compared with the control group. At the same time point, glucose uptake was significantly reduced globally in the PBBI group compared with the control group. Examination of Fluorojade B-stained brain sections at 24 hours after PBBI revealed an incomplete overlap of metabolic impairment and neurodegeneration. As expected, the injury core had the most severe metabolic impairment and highest neurodegeneration. However, in the peri-lesional area, despite similar metabolic impairment, there was lesser neurodegeneration. Given our findings, the data suggest the presence of two distinct zones of primary injury, of which only one recovers. We anticipate the peri-lesional area encompassing the PBBI ischemic penumbra, could be salvaged by acute therapies. PMID:25669903

  11. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury.

    PubMed

    Haneef, Zulfi; Levin, Harvey S; Frost, James D; Mizrahi, Eli M

    2013-04-15

    Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods.

  12. Electroencephalography and Quantitative Electroencephalography in Mild Traumatic Brain Injury

    PubMed Central

    Levin, Harvey S.; Frost, James D.; Mizrahi, Eli M.

    2013-01-01

    Abstract Mild traumatic brain injury (mTBI) causes brain injury resulting in electrophysiologic abnormalities visible in electroencephalography (EEG) recordings. Quantitative EEG (qEEG) makes use of quantitative techniques to analyze EEG characteristics such as frequency, amplitude, coherence, power, phase, and symmetry over time independently or in combination. QEEG has been evaluated for its use in making a diagnosis of mTBI and assessing prognosis, including the likelihood of progressing to the postconcussive syndrome (PCS) phase. We review the EEG and qEEG changes of mTBI described in the literature. An attempt is made to separate the findings seen during the acute, subacute, and chronic phases after mTBI. Brief mention is also made of the neurobiological correlates of qEEG using neuroimaging techniques or in histopathology. Although the literature indicates the promise of qEEG in making a diagnosis and indicating prognosis of mTBI, further study is needed to corroborate and refine these methods. PMID:23249295

  13. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update

    PubMed Central

    Wu, Xin; Kirov, Ivan I.; Gonen, Oded; Ge, Yulin; Grossman, Robert I.

    2016-01-01

    Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level–dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. © RSNA, 2016 PMID:27183405

  14. A Military-Centered Approach to Neuroprotection for Traumatic Brain Injury

    PubMed Central

    Shear, Deborah A.; Tortella, Frank C.

    2013-01-01

    Studies in animals show that many compounds and therapeutics have the potential to greatly reduce the morbidity and post-injury clinical sequela for soldiers experiencing TBI. However, to date there are no FDA approved drugs for the treatment of TBI. In fact, expert opinion suggests that combination therapies will be necessary to treat any stage of TBI recovery. Our approach to this research effort is to conduct comprehensive pre-clinical neuroprotection studies in military-relevant animal models of TBI using the most promising neuroprotective agents. In addition, emerging efforts incorporating novel treatment strategies such as stem cell based therapies and alternative therapeutic approaches will be discussed. The development of a non-surgical, non-invasive brain injury therapeutic clearly addresses a major, unresolved medical problem for the Combat Casualty Care Research Program. Since drug discovery is too expensive to be pursued by DOD in the TBI arena, this effort capitalizes on partnerships with the Private Sector (Pharmaceutical Companies) and academic collaborations (Operation Brain Trauma Therapy Consortium) to study therapies already under advanced development. Candidate therapies selected for research include drugs that are aimed at reducing the acute and delayed effects of the traumatic incident, stem cell therapies aimed at brain repair, and selective brain cooling to stabilize cerebral metabolism. Each of these efforts can also focus on combination therapies targeting multiple mechanisms of neuronal injury. PMID:23781213

  15. Psychiatric disorders and traumatic brain injury

    PubMed Central

    Schwarzbold, Marcelo; Diaz, Alexandre; Martins, Evandro Tostes; Rufino, Armanda; Amante, Lúcia Nazareth; Thais, Maria Emília; Quevedo, João; Hohl, Alexandre; Linhares, Marcelo Neves; Walz, Roger

    2008-01-01

    Psychiatric disorders after traumatic brain injury (TBI) are frequent. Researches in this area are important for the patients’ care and they may provide hints for the comprehension of primary psychiatric disorders. Here we approach epidemiology, diagnosis, associated factors and treatment of the main psychiatric disorders after TBI. Finally, the present situation of the knowledge in this field is discussed. PMID:19043523

  16. Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury

    PubMed Central

    Diaz-Arrastia, Ramon; Wu, Alan H. B.; Yue, John K.; Manley, Geoffrey T.; Sair, Haris I.; Van Eyk, Jennifer; Everett, Allen D.; Okonkwo, David O.; Valadka, Alex B.; Gordon, Wayne A.; Maas, Andrew I.R.; Mukherjee, Pratik; Yuh, Esther L.; Lingsma, Hester F.; Puccio, Ava M.; Schnyer, David M.

    2016-01-01

    Abstract Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n = 76) and San Francisco General Hospital (SFGH, n = 80), and a control group of JHH ED patients without TBI (n = 150). Findings were subsequently validated in the prospective, multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study (n = 159). We investigated the association between BDNF, glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) and recovery from TBI at 6 months in the TRACK-TBI Pilot cohort. Incomplete recovery was defined as having either post-concussive syndrome or a Glasgow Outcome Scale Extended score <8 at 6 months. Median day-of-injury BDNF concentrations (ng/mL) were lower among TBI cases (JHH TBI, 17.5 and SFGH TBI, 13.8) than in JHH controls (60.3; p = 0.0001). Among TRACK-TBI Pilot subjects, median BDNF concentrations (ng/mL) were higher in mild (8.3) than in moderate (4.3) or severe TBI (4.0; p = 0.004. In the TRACK-TBI cohort, the 75 (71.4%) subjects with very low BDNF values (i.e., TBI controls, <14.2 ng/mL) had higher odds of incomplete recovery than those who did not have very low values (odds ratio, 4.0; 95% confidence interval [CI]: 1.5-11.0). The area under the receiver operator curve for discriminating complete and incomplete recovery was 0.65 (95% CI: 0.52-0.78) for BDNF, 0.61 (95% CI: 0.49-0.73) for GFAP, and 0.55 (95% CI: 0.43-0.66) for UCH-L1. The addition of GFAP/UCH-L1 to BDNF did not improve outcome prediction significantly. Day-of-injury serum BDNF is associated with TBI diagnosis and also provides 6-month prognostic information regarding recovery from TBI. Thus

  17. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    PubMed Central

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  18. Erythropoietin-Derived Peptide Protects Against Acute Lung Injury After Rat Traumatic Brain Injury.

    PubMed

    Liu, Yuan; Lu, Junyu; Wang, Xiaoya; Chen, Liu; Liu, Su; Zhang, Zhiren; Yao, Wei

    2017-01-01

    Traumatic brain injury (TBI) can be complicated by TBI-triggered acute lung injury (ALI), in which inflammation plays a central role. It has been reported that an Erythropoietin-derived peptide (pHBSP) was able to ameliorate TBI; however, its function in TBI-caused ALI has not been reported yet. In this study, we studied the effect of pHBSP on TBI-caused ALI by using a weight-drop induced TBI model. At 8 h and 24 h post-TBI, pulmonary edema (PE) and bronchoalveolar lavage fluid (BALF) proteins were measured, and haematoxylin and eosin (H&E) staining of lung sections was carried out. At 24 h following TBI, the lungs were harvested for immunofluorescence staining and qRT-PCR analysis. At 8 h and 24 h post-TBI, pHBSP treatment significantly decreased wet/dry ratios, decreased total BALF protein, and attenuated the histological signs of pulmonary injury. At 24 h post-TBI, pHBSP treatment decreased the accumulation of CD68+ macrophages in the lung and reduced the mRNA levels of TNF-α, IL-6, IL-1β and iNOS in the lung. We identified the protective role that pHBSP played in TBI-caused ALI, suggesting that pHBSP is a potent candidate for systemic therapy in TBI patients. © 2017 The Author(s)Published by S. Karger AG, Basel.

  19. Traumatic Brain Injury (TBI) Studies at Grady Memorial Hospital

    DTIC Science & Technology

    2010-09-01

    communication among clinicians and along the care continuum during the treatment of a patient’s emergent conditions. Ancillary reports are distributed...data necessary to improve the treatment of traumatic brain injury and compare treatment and outcomes by injury type. Specific Aims: 1. Develop and...Our research will utilize both of these tests to assess patients during treatment in the Emergency Department at GMH for mild traumatic brain

  20. Association Between Traumatic Brain Injury-Related Brain Lesions and Long-term Caregiver Burden.

    PubMed

    Guevara, Andrea Brioschi; Demonet, Jean-Francois; Polejaeva, Elena; Knutson, Kristine M; Wassermann, Eric M; Grafman, Jordan; Krueger, Frank

    2016-01-01

    To investigate the association between traumatic brain injury (TBI)-related brain lesions and long-term caregiver burden in relation to dysexecutive syndrome. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland. A total of 256 participants: 105 combat veterans with TBI, 23 healthy control combat veterans (HCv), and 128 caregivers. Caregiver burden assessed by the Zarit Burden Interview at 40 years postinjury. Participants with penetrating TBI were compared with HCv on perceived caregiver burden and neuropsychological assessment measures. Data of computed tomographic scans (overlay lesion maps of participants with a penetrating TBI whose caregivers have a significantly high burden) and behavioral statistical analyses were combined to identify brain lesions associated with caregiver burden. Burden was greater in caregivers of veterans with TBI than in caregivers of HCv. Caregivers of participants with lesions affecting cognitive and behavioral indicators of dysexecutive syndrome (ie, left dorsolateral prefrontal cortex and dorsal anterior cingulate cortex) showed greater long-term burden than caregivers of participants with lesions elsewhere in the brain. The TBI-related brain lesions have a lasting effect on long-term caregiver burden due to cognitive and behavioral factors associated with dysexecutive syndrome.

  1. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    PubMed Central

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (P<.001). For patients who completed 2, 3, or 4 weeks of rehabilitation, differences in effort ratings (P<.001) were observed between 5 subgroups stratified by admission FIM cognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (P<.0001). Conclusions Patients' level of effort can be observed and reliably rated in the TBI inpatient rehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  2. Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury.

    PubMed

    Sarkaki, Alireza; Farbood, Yaghoub; Gharib-Naseri, Mohammad Kazem; Badavi, Mohammad; Mansouri, Mohammad Taghi; Haghparast, Abbas; Mirshekar, Mohammad Ali

    2015-08-01

    Traumatic brain injury (TBI) is one of the main causes of intellectual and cognitive disabilities. In the clinic it is essential to limit the development of cognitive impairment after TBI. In this study, the effects of gallic acid (GA; 100 mg/kg, per oral, from 7 days before to 2 days after TBI induction) on neurological score, passive avoidance memory, long-term potentiation (LTP) deficits, and levels of proinflammatory cytokines including interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) in the brain have been evaluated. Brain injury was induced following Marmarou's method. Data were analyzed by one-way and repeated measures ANOVA followed by Tukey's post-hoc test. The results indicated that memory was significantly impaired (p < 0.001) in the group treated with TBI + vehicle, together with deterioration of the hippocampal LTP and increased brain tissue levels of IL-1β, IL-6, and TNF-α. GA treatment significantly improved memory and LTP in the TBI rats. The brain tissue levels of IL-1β, IL-6, and TNF-α were significantly reduced (p < 0.001) in the group treated with GA. The results suggest that GA has neuroprotective properties against TBI-induced behavioral, electrophysiological, and inflammatory disorders, probably via the decrease of cerebral proinflammatory cytokines.

  3. Loss to Follow-Up and Social Background in an Inception Cohort of Patients With Severe Traumatic Brain Injury: Results From the PariS-TBI Study.

    PubMed

    Jourdan, Claire; Bayen, Eleonore; Bahrami, Stephane; Ghout, Idir; Darnoux, Emmanuelle; Azerad, Sylvie; Ruet, Alexis; Vallat-Azouvi, Claire; Weiss, Jean-Jacques; Aegerter, Philippe; Mateo, Joaquim; Vigue, Bernard; Tazarourte, Karim; Pradat-Diehl, Pascale; Azouvi, Philippe

    2016-01-01

    To assess determinants of loss to follow-up (FU) at 2 time points of an inception traumatic brain injury (TBI) cohort. The PariS-TBI study consecutively included 504 adults with severe TBI on the accident scene (76% male, mean age 42 years, mean Glasgow Coma Scale 5). No exclusion criteria were used. Loss to FU at 1 and 4 years was defined among survivors as having no outcome data other than survival status. Among 257 1-year survivors, 118 (47%) were lost to FU at 1 year and 98 (40%) at 4 years. Main reasons for loss to FU were impossibility to achieve contact (109 at 1 year, 52 at 4 years) and refusal to participate (respectively 5 and 24). At 1 year, individuals not working preinjury or with nonaccidental traumas were more often lost to FU in univariate and multivariable analyses. At 4 years, loss to FU was significantly associated with preinjury alcohol abuse and unemployment. Relationship with injury severity was not significant. Socially disadvantaged persons are underrepresented in TBI outcome research. It could result in overestimation of outcome and biased estimates of sociodemographic characteristics' effects. These persons, particularly unemployed individuals, require special attention in clinical practice.

  4. Long-Term Functional and Psychosocial Outcomes After Hypoxic-Ischemic Brain Injury: A Case-Controlled Comparison to Traumatic Brain Injury.

    PubMed

    Harbinson, Meredith; Zarshenas, Sareh; Cullen, Nora K

    2017-12-01

    Despite the increasing rate of survival from hypoxic-ischemic brain injury (HIBI), there is a paucity of evidence on the long-term functional outcomes after inpatient rehabilitation among these nontrauma patients compared to patients with traumatic brain injury (TBI). To compare functional and psychosocial outcomes of patients with HIBI to those of case-matched patients with TBI 4-11 years after brain insult. Retrospective, matched case-controlled study. Data at the time of rehabilitation admission and discharge were collected as part of a larger acquired brain injury (ABI) database at Toronto Rehabilitation Institute (TRI) between 1999 and 2009. This study consisted of 11 patients with HIBI and 11 patients with TBI that attended the neuro-rehabilitation day program at TRI during a similar time frame and were matched on age, admission Functional Independence Measure (FIM) scores, and acute care length of stay (ALOS). At 4-11 years following brain insult, patients were reassessed using the FIM, Disability Rating Scale (DRS), Personal Health Questionnaire Depression Scale (PHQ-9), and the Mayo-Portland Adaptability Inventory 4 (MPAI-4). At follow-up, patients with HIBI had significantly lower FIM motor and cognitive scores than patients with TBI (75.3 ± 20.6 versus 88.1 ± 4.78, P < .05, and 25.5 ± 5.80 versus 32.7 ± 2.54, P <.05, respectively) despite having a similar time frame postinsult (ie, 4-11 years). In addition, there were significant differences in motor and total FIM change from admission to follow-up between HIBI and TBI patients (P < .05). Patients with HIBI also had significantly lower scores on the DRS, PHQ-9, and total MPAI-4 at follow-up (P < .05). The study results suggest that patients with HIBI achieve less long-term functional improvements compared to patients with TBI. Further research is warranted to compare the components of inpatient rehabilitation while adjusting for demographics and clinical characteristics between these 2 groups of

  5. “Studying Injured Minds” – The Vietnam Head Injury Study and 40 Years of Brain Injury Research

    PubMed Central

    Raymont, Vanessa; Salazar, Andres M.; Krueger, Frank; Grafman, Jordan

    2011-01-01

    The study of those who have sustained traumatic brain injuries (TBI) during military conflicts has greatly facilitated research in the fields of neuropsychology, neurosurgery, psychiatry, neurology, and neuroimaging. The Vietnam Head Injury Study (VHIS) is a prospective, long-term follow-up study of a cohort of 1,221 Vietnam veterans with mostly penetrating brain injuries, which has stretched over more than 40 years. The scope of this study, both in terms of the types of injury and fields of examination, has been extremely broad. It has been instrumental in extending the field of TBI research and in exposing pressing medical and social issues that affect those who suffer such injuries. This review summarizes the history of conflict-related TBI research and the VHIS to date, as well as the vast range of important findings the VHIS has established. PMID:21625624

  6. A Coordinated Action of Blood-Borne and Brain Insulin-Like Growth Factor I in the Response to Traumatic Brain Injury.

    PubMed

    Santi, A; Genis, L; Torres Aleman, I

    2018-06-01

    In response to injury, the brain produces different neuroprotective molecules, such as insulin-like growth factor I (IGF-I). However, IGF-I is also taken up by the brain from the circulation in response to physiological stimuli. Herein, we analyzed in mice the relative contribution of circulating and locally produced IGF-I to increased brain IGF-I levels after insult. Traumatic brain injury (TBI) induced by a controlled impact resulted in increased IGF-I levels in the vicinity of the lesion, but mice with low serum IGF-I showed significantly lower increases. Indeed, in normal mice, peripheral IGF-I accumulated at the lesion site after injury, and at the same time serum IGF-I levels decreased. Collectively, these data suggest that serum IGF-I enter into the brain after TBI and contributes to increased brain IGF-I levels at the injury site. This connection between central and circulating IGF-I provides an amenable route for treatment, as subcutaneous administration of IGF-I to TBI mice led to functional recovery. These latter results add further support to the use of systemic IGF-I or its mimetics for treatment of brain injuries.

  7. Traumatic Brain Injury-Induced Ependymal Ciliary Loss Decreases Cerebral Spinal Fluid Flow

    PubMed Central

    Xiong, Guoxiang; Elkind, Jaclynn A.; Kundu, Suhali; Smith, Colin J.; Antunes, Marcelo B.; Tamashiro, Edwin; Kofonow, Jennifer M.; Mitala, Christina. M.; Stein, Sherman C.; Grady, M. Sean; Einhorn, Eugene; Cohen, Noam A.

    2014-01-01

    Abstract Traumatic brain injury (TBI) afflicts up to 2 million people annually in the United States and is the primary cause of death and disability in young adults and children. Previous TBI studies have focused predominantly on the morphological, biochemical, and functional alterations of gray matter structures, such as the hippocampus. However, little attention has been given to the brain ventricular system, despite the fact that altered ventricular function is known to occur in brain pathologies. In the present study, we investigated anatomical and functional alterations to mouse ventricular cilia that result from mild TBI. We demonstrate that TBI causes a dramatic decrease in cilia. Further, using a particle tracking technique, we demonstrate that cerebrospinal fluid flow is diminished, thus potentially negatively affecting waste and nutrient exchange. Interestingly, injury-induced ventricular system pathology resolves completely by 30 days after injury as ependymal cell ciliogenesis restores cilia density to uninjured levels in the affected lateral ventricle. PMID:24749541

  8. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    PubMed

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  9. Anaemia worsens early functional outcome after traumatic brain injury: a preliminary study.

    PubMed

    Litofsky, N Scott; Miller, Douglas C; Chen, Zhenzhou; Simonyi, Agnes; Klakotskaia, Diana; Giritharan, Andrew; Feng, Qi; McConnell, Diane; Cui, Jiankun; Gu, Zezong

    2018-01-01

    To determine early effects on outcome from traumatic brain injury (TBI) induced by controlled cortical impact (CCI) associated with anaemia in mice. Outcome from TBI with concomitant anaemia would be worse than TBI without anaemia. CCI was induced with electromagnetic impaction in four groups of C57BL/6J mice: sham, sham+anaemia; TBI; and TBI+anaemia. Anaemia was created by withdrawal of 30% of calculated intravascular blood volume and saline replacement of equal volume. Functional outcome was assessed by beam-walking test and open field test (after pre-injury training) on post-injury days 3 and 7. After functional assessment, brains removed from sacrificed animals were pathological reviewed with haematoxylin and eosin, cresyl violet, Luxol Fast Blue, and IBA-1 immunostains. Beam-walking was similar between animals with TBI and TBI+anaemia (p = 0.9). In open field test, animals with TBI+anaemia walked less distance than TBI alone or sham animals on days 3 (p < 0.001) and 7 (p < 0.05), indicating less exploratory and locomotion behaviours. No specific pathologic differences could be identified. Anaemia associated with TBI from CCI is associated with worse outcome as measured by less distance travelled in the open field test at three days than if anaemia is not present.

  10. Brain injury, neuroinflammation and Alzheimer's disease.

    PubMed

    Breunig, Joshua J; Guillot-Sestier, Marie-Victoire; Town, Terrence

    2013-01-01

    With as many as 300,000 United States troops in Iraq and Afghanistan having suffered head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention. While the cause and severity of these injuries is variable, severe cases can lead to lifelong disability or even death. While aging is the greatest risk factor for Alzheimer's disease (AD), it is now becoming clear that a history of TBI predisposes the individual to AD later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining hallmark pathological features of AD and the various forms of TBI. Putative mechanisms underlying the risk relationship between these two neurological disorders are then critically considered. Such mechanisms include precipitation and 'spreading' of cerebral amyloid pathology and the role of neuroinflammation. The combined problems of TBI and AD represent significant burdens to public health. A thorough, mechanistic understanding of the precise relationship between TBI and AD is of utmost importance in order to illuminate new therapeutic targets. Mechanistic investigations and the development of preclinical therapeutics are reliant upon a clearer understanding of these human diseases and accurate modeling of pathological hallmarks in animal systems.

  11. Comparative Effectiveness of Family Problem-Solving Therapy (F-PST) for Adolescent TBI

    ClinicalTrials.gov

    2018-01-25

    Tbi; Intracranial Edema; Brain Edema; Craniocerebral Trauma; Head Injury; Brain Hemorrhage, Traumatic; Subdural Hematoma; Brain Concussion; Head Injuries, Closed; Epidural Hematoma; Cortical Contusion; Wounds and Injuries; Disorders of Environmental Origin; Trauma, Nervous System; Brain Injuries

  12. Traumatic brain injury: next steps, research needed, and priority focus areas.

    PubMed

    Helmick, Kathy; Baugh, Laura; Lattimore, Tracie; Goldman, Sarah

    2012-08-01

    Traumatic brain injury (TBI) has been not only a major focus of concern during the recent conflicts in Afghanistan and Iraq, but also among our garrison service members. The prevalence of these injuries has compelled the nation and Congress to invest in the development of policies and programs that support evidence-based care for the full continuum of TBI, from mild (otherwise known as concussion) to severe and penetrating brain injuries. Although, the Department of Defense has made great strides in the areas of TBI clinical care, education, and research, there remains a great need to leverage scientific, policy, and clinical advancement to maximize care of the service member. The purpose of this article is to outline the 7 major areas of work currently being undertaken to help advance the field of TBI. The 7 areas include: (1) eliminating undetected mild traumatic brain injury through prompt early diagnosis, (2) ensuring force readiness and addressing cultural barriers, (3) improving collaborations with the Department of Veterans Affairs, other federal agencies, and academic and civilian organizations, (4) improving deployment-related assessments, (5) deploying effective treatments, (6) conducting military-relevant and targeted research, and (7) enhancing information technology systems.

  13. Loss of white matter connections after severe traumatic brain injury (TBI) and its relationship to social cognition.

    PubMed

    McDonald, Skye; Dalton, Katie I; Rushby, Jacqueline A; Landin-Romero, Ramon

    2018-06-14

    Adults with severe traumatic brain injury (TBI) often suffer poor social cognition. Social cognition is complex, requiring verbal, non-verbal, auditory, visual and affective input and integration. While damage to focal temporal and frontal areas has been implicated in disorders of social cognition after TBI, the role of white matter pathology has not been examined. In this study 17 adults with chronic, severe TBI and 17 control participants underwent structural MRI scans and Diffusion Tensor Imaging. The Awareness of Social Inference Test (TASIT) was used to assess their ability to understand emotional states, thoughts, intentions and conversational meaning in everyday exchanges. Track-based spatial statistics were used to perform voxelwise analysis of Fractional Anisotropy (FA) and Mean Diffusivity (MD) of white matter tracts associated with poor social cognitive performance. FA suggested a wide range of tracts were implicated in poor TASIT performance including tracts known to mediate, auditory localisation (planum temporale) communication between nonverbal and verbal processes in general (corpus callosum) and in memory in particular (fornix) as well as tracts and structures associated with semantics and verbal recall (left temporal lobe and hippocampus), multimodal processing and integration (thalamus, external capsule, cerebellum) and with social cognition (orbitofrontal cortex, frontopolar cortex, right temporal lobe). Even when controlling for non-social cognition, the corpus callosum, fornix, bilateral thalamus, right external capsule and right temporal lobe remained significant contributors to social cognitive performance. This study highlights the importance of loss of white matter connectivity in producing complex social information processing deficits after TBI.

  14. Tribes and tribulations: interdisciplinary eHealth in providing services for people with a traumatic brain injury (TBI).

    PubMed

    Hines, M; Brunner, M; Poon, S; Lam, M; Tran, V; Yu, D; Togher, L; Shaw, T; Power, E

    2017-11-21

    eHealth has potential for supporting interdisciplinary care in contemporary traumatic brain injury (TBI) rehabilitation practice, yet little is known about whether this potential is being realised, or what needs to be done to further support its implementation. The purpose of this study was to explore health professionals' experiences of, and attitudes towards eHealth technologies to support interdisciplinary practice within rehabilitation for people after TBI. A qualitative study using narrative analysis was conducted. One individual interview and three focus groups were conducted with health professionals (n = 17) working in TBI rehabilitation in public and private healthcare settings across regional and metropolitan New South Wales, Australia. Narrative analysis revealed that participants held largely favourable views about eHealth and its potential to support interdisciplinary practice in TBI rehabilitation. However, participants encountered various issues related to (a) the design of, and access to electronic medical records, (b) technology, (c) eHealth implementation, and (d) information and communication technology processes that disconnected them from the work they needed to accomplish. In response, health professionals attempted to make the most of unsatisfactory eHealth systems and processes, but were still mostly unsuccessful in optimising the quality, efficiency, and client-centredness of their work. Attention to sources of disconnection experienced by health professionals, specifically design of, and access to electronic health records, eHealth resourcing, and policies and procedures related to eHealth and interdisciplinary practice are required if the potential of eHealth for supporting interdisciplinary practice is to be realised.

  15. A Porcine Model of Traumatic Brain Injury via Head Rotational Acceleration

    PubMed Central

    Cullen, D. Kacy; Harris, James P.; Browne, Kevin D.; Wolf, John A; Duda, John E.; Meaney, David F.; Margulies, Susan S.; Smith, Douglas H.

    2017-01-01

    Unique from other brain disorders, traumatic brain injury (TBI) generally results from a discrete biomechanical event that induces rapid head movement. The large size and high organization of the human brain makes it particularly vulnerable to traumatic injury from rotational accelerations that can cause dynamic deformation of the brain tissue. Therefore, replicating the injury biomechanics of human TBI in animal models presents a substantial challenge, particularly with regard to addressing brain size and injury parameters. Here we present the historical development and use of a porcine model of head rotational acceleration. By scaling up the rotational forces to account for difference in brain mass between swine and humans, this model has been shown to produce the same tissue deformations and identical neuropathologies found in human TBI. The parameters of scaled rapid angular accelerations applied for the model reproduce inertial forces generated when the human head suddenly accelerates or decelerates in falls, collisions, or blunt impacts. The model uses custom-built linkage assemblies and a powerful linear actuator designed to produce purely impulsive nonimpact head rotation in different angular planes at controlled rotational acceleration levels. Through a range of head rotational kinematics, this model can produce functional and neuropathological changes across the spectrum from concussion to severe TBI. Notably, however, the model is very difficult to employ, requiring a highly skilled team for medical management, biomechanics, neurological recovery, and specialized outcome measures including neuromonitoring, neurophysiology, neuroimaging, and neuropathology. Nonetheless, while challenging, this clinically relevant model has proven valuable for identifying mechanisms of acute and progressive neuropathologies as well as for the evaluation of noninvasive diagnostic techniques and potential neuroprotective treatments following TBI. PMID:27604725

  16. Whole Brain Magnetic Resonance Spectroscopic Determinants of Functional Outcomes in Pediatric Moderate/Severe Traumatic Brain Injury.

    PubMed

    Babikian, Talin; Alger, Jeffry R; Ellis-Blied, Monica U; Giza, Christopher C; Dennis, Emily; Olsen, Alexander; Mink, Richard; Babbitt, Christopher; Johnson, Jeff; Thompson, Paul M; Asarnow, Robert F

    2018-05-18

    Diffuse axonal injury contributes to the long-term functional morbidity observed after pediatric moderate/severe traumatic brain injury (msTBI). Whole-brain proton magnetic resonance echo-planar spectroscopic imaging was used to measure the neurometabolite levels in the brain to delineate the course of disruption/repair during the first year post-msTBI. The association between metabolite biomarkers and functional measures (cognitive functioning and corpus callosum [CC] function assessed by interhemispheric transfer time [IHTT] using an event related potential paradigm) was also explored. Pediatric patients with msTBI underwent assessments at two times (post-acutely at a mean of three months post-injury, n = 31, and chronically at a mean of 16 months post-injury, n = 24). Healthy controls also underwent two evaluations, approximately 12 months apart. Post-acutely, in patients with msTBI, there were elevations in choline (Cho; marker for inflammation and/or altered membrane metabolism) in all four brain lobes and the CC and decreases in N-acetylaspartate (NAA; marker for neuronal and axonal integrity) in the CC compared with controls, all of which normalized by the chronic time point. Subgroups of TBI showed variable patterns chronically. Patients with slow IHTT had lower lobar Cho chronically than those with normal IHTT; they also did not show normalization in CC NAA whereas those with normal IHTT showed significantly higher levels of CC NAA relative to controls. In the normal IHTT group only, chronic CC Cho and NAA together explained 70% of the variance in long-term cognitive functioning. MR based whole brain metabolic evaluations show different patterns of neurochemistry after msTBI in two subgroups with different outcomes. There is a dynamic relationship between prolonged inflammatory responses to brain damage, reparative processes/remyelination, and subsequent neurobehavioral outcomes. Multimodal studies allow us to test hypotheses about degenerative and

  17. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    PubMed

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  18. Traumatic Brain Injury: Persistent Misconceptions and Knowledge Gaps among Educators

    ERIC Educational Resources Information Center

    Ettel, Deborah; Glang, Ann E.; Todis, Bonnie; Davies, Susan C.

    2016-01-01

    Each year approximately 700,000 U.S. children aged 0-19 years sustain a traumatic brain injury (TBI) placing them at risk for academic, cognitive, and behavioural challenges. Although TBI has been a special education disability category for 25 years, prevalence studies show that of the 145,000 students each year who sustain long-term injury from…

  19. Berberine Protects against Neuronal Damage via Suppression of Glia-Mediated Inflammation in Traumatic Brain Injury

    PubMed Central

    Lee, Chao Yu; Wang, Liang-Fei; Wu, Chun-Hu; Ke, Chia-Hua; Chen, Szu-Fu

    2014-01-01

    Traumatic brain injury (TBI) triggers a series of neuroinflammatory processes that contribute to evolution of neuronal injury. The present study investigated the neuroprotective effects and anti-inflammatory actions of berberine, an isoquinoline alkaloid, in both in vitro and in vivo TBI models. Mice subjected to controlled cortical impact injury were injected with berberine (10 mg·kg−1) or vehicle 10 min after injury. In addition to behavioral studies and histology analysis, blood-brain barrier (BBB) permeability and brain water content were determined. Expression of PI3K/Akt and Erk signaling and inflammatory mediators were also analyzed. The protective effect of berberine was also investigated in cultured neurons either subjected to stretch injury or exposed to conditioned media with activated microglia. Berberine significantly attenuated functional deficits and brain damage associated with TBI up to day 28 post-injury. Berberine also reduced neuronal death, apoptosis, BBB permeability, and brain edema at day 1 post-injury. These changes coincided with a marked reduction in leukocyte infiltration, microglial activation, matrix metalloproteinase-9 activity, and expression of inflammatory mediators. Berberine had no effect on Akt or Erk 1/2 phosphorylation. In mixed glial cultures, berberine reduced TLR4/MyD88/NF-κB signaling. Berberine also attenuated neuronal death induced by microglial conditioned media; however, it did not directly protect cultured neurons subjected to stretch injury. Moreover, administration of berberine at 3 h post-injury also reduced TBI-induced neuronal damage, apoptosis and inflammation in vivo. Berberine reduces TBI-induced brain damage by limiting the production of inflammatory mediators by glial cells, rather than by a direct neuroprotective effect. PMID:25546475

  20. Animal models of traumatic brain injury

    PubMed Central

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2014-01-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160

  1. Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human

    PubMed Central

    Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren

    2013-01-01

    Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the

  2. Impact of Posttraumatic Stress Disorder and Injury Severity on Recovery in Children with Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Kenardy, Justin; Le Brocque, Robyne; Hendrikz, Joan; Iselin, Greg; Anderson, Vicki; McKinlay, Lynne

    2012-01-01

    The adverse impact on recovery of posttraumatic stress disorder (PTSD) in mild traumatic brain injury (TBI) has been demonstrated in returned veterans. The study assessed this effect in children's health outcomes following TBI and extended previous work by including a full range of TBI severity, and improved assessment of PTSD within a…

  3. Blast induced mild traumatic brain injury/concussion: A physical analysis

    NASA Astrophysics Data System (ADS)

    Kucherov, Yan; Hubler, Graham K.; DePalma, Ralph G.

    2012-11-01

    Currently, a consensus exists that low intensity non-impact blast wave exposure leads to mild traumatic brain injury (mTBI). Considerable interest in this "invisible injury" has developed in the past few years but a disconnect remains between the biomedical outcomes and possible physical mechanisms causing mTBI. Here, we show that a shock wave travelling through the brain excites a phonon continuum that decays into specific acoustic waves with intensity exceeding brain tissue strength. Damage may occur within the period of the phonon wave, measured in tens to hundreds of nanometers, which makes the damage difficult to detect using conventional modalities.

  4. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  5. Damage to Arousal-Promoting Brainstem Neurons with Traumatic Brain Injury.

    PubMed

    Valko, Philipp O; Gavrilov, Yuri V; Yamamoto, Mihoko; Noaín, Daniela; Reddy, Hasini; Haybaeck, Johannes; Weis, Serge; Baumann, Christian R; Scammell, Thomas E

    2016-06-01

    Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. Postmortem examination of 8 TBI patients and 10 controls. Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries. © 2016 Associated Professional Sleep Societies, LLC.

  6. Neuropsychology of traumatic brain injury: An expert overview.

    PubMed

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Loss of hypocretin (orexin) neurons with traumatic brain injury

    PubMed Central

    Baumann, Christian R.; Bassetti, Claudio L.; Valko, Philipp O.; Haybaeck, Johannes; Keller, Morten; Clark, Erika; Stocker, Reto; Tolnay, Markus; Scammell, Thomas E.

    2009-01-01

    Chronic, daytime sleepiness is a major, disabling symptom for many patients with traumatic brain injury (TBI), but thus far, its etiology is not well understood. Extensive loss of the hypothalamic neurons that produce the wake-promoting neuropeptide hypocretin (orexin) causes the severe sleepiness of narcolepsy, and partial loss of these cells may contribute to the sleepiness of Parkinson’s disease and other disorders. We have found that the number of hypocretin neurons is significantly reduced in patients with severe TBI. This observation highlights the often overlooked hypothalamic injury in TBI and provides new insights into the causes of chronic sleepiness in patients with TBI. PMID:19847903

  8. Recent neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  9. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities.

    PubMed

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2018-06-01

    Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  10. Hypopituitarism after traumatic brain injury.

    PubMed

    Bondanelli, Marta; Ambrosio, Maria Rosaria; Zatelli, Maria Chiara; De Marinis, Laura; degli Uberti, Ettore C

    2005-05-01

    Traumatic brain injury (TBI) is one of the main causes of death and disability in young adults, with consequences ranging from physical disabilities to long-term cognitive, behavioural, psychological and social defects. Post-traumatic hypopituitarism (PTHP) was recognized more than 80 years ago, but it was thought to be a rare occurrence. Recently, clinical evidence has demonstrated that TBI may frequently cause hypothalamic-pituitary dysfunction, probably contributing to a delayed or hampered recovery from TBI. Changes in pituitary hormone secretion may be observed during the acute phase post-TBI, representing part of the acute adaptive response to the injury. Moreover, diminished pituitary hormone secretion, caused by damage to the pituitary and/or hypothalamus, may occur at any time after TBI. PTHP is observed in about 40% of patients with a history of TBI, presenting as an isolated deficiency in most cases, and more rarely as complete pituitary failure. The most common alterations appear to be gonadotropin and somatotropin deficiency, followed by corticotropin and thyrotropin deficiency. Hyper- or hypoprolactinemia may also be present. Diabetes insipidus may be frequent in the early, acute phase post-TBI, but it is rarely permanent. Severity of TBI seems to be an important risk factor for developing PTHP; however, PTHP can also manifest after mild TBI. Accurate evaluation and long-term follow-up of all TBI patients are necessary in order to detect the occurrence of PTHP, regardless of clinical evidence for pituitary dysfunction. In order to improve outcome and quality of life of TBI patients, an adequate replacement therapy is of paramount importance.

  11. Mental Trauma Experienced by Caregivers of patients with Diffuse Axonal Injury or Severe Traumatic Brain Injury

    PubMed Central

    Syed Hassan, Syed Tajuddin; Jamaludin, Husna; Abd Raman, Rosna; Mohd Riji, Haliza; Wan Fei, Khaw

    2013-01-01

    Context As with care giving and rehabilitation in chronic illnesses, the concern with traumatic brain injury (TBI), particularly with diffuse axonal injury (DAI), is that the caregivers are so overwhelmingly involved in caring and rehabilitation of the victim that in the process they become traumatized themselves. This review intends to shed light on the hidden and silent trauma sustained by the caregivers of severe brain injury survivors. Motor vehicle accident (MVA) is the highest contributor of TBI or DAI. The essence of trauma is the infliction of pain and suffering and having to bear the pain (i.e. by the TBI survivor) and the burden of having to take care and manage and rehabilitate the TBI survivor (i.e. by the TBI caregiver). Moreover many caregivers are not trained for their care giving task, thus compounding the stress of care giving and rehabilitating patients. Most research on TBI including DAI, focus on the survivors and not on the caregivers. TBI injury and its effects and impacts remain the core question of most studies, which are largely based on the quantitative approach. Evidence Acquisition Qualitative research can better assess human sufferings such as in the case of DAI trauma. While quantitative research can measure many psychometric parameters to assess some aspects of trauma conditions, qualitative research is able to fully reveal the meaning, ramification and experience of TBI trauma. Both care giving and rehabilitation are overwhelmingly demanding; hence , they may complicate the caregivers’ stress. However, some positive outcomes also exist. Results Caregivers involved in caring and rehabilitation of TBI victims may become mentally traumatized. Posttraumatic recovery of the TBI survivor can enhance the entire family’s closeness and bonding as well as improve the mental status of the caregiver. Conclusions A long-term longitudinal study encompassing integrated research is needed to fully understand the traumatic experiences of

  12. [CT scans in children with head/brain injury: five years after the revision of the guideline on "mild traumatic head/brain injury"].

    PubMed

    Hageman, G Gerard

    2015-01-01

    In 2010 the guideline on mild traumatic head/ brain injury for both adults and children was revised under the supervision of the Dutch Neurology Society. The revised guideline endorsed rules for decisions on whether to carry out diagnostic imaging investigations (brain CT scanning) and formulates indications for admission. Unfortunately, 5 years after its introduction, it is clear that the guideline rules result in excessive brain CT scanning, in which no more serious head injury is diagnosed. Brain injury may be present in (small) children even if symptoms are absent at first presentation. Also, clinical signs do not predict intracranial complications. This was nicely demonstrated in a study by Tilma, Bekhof and Brand of 410 children with mTBI: no clinical symptom or sign reliably predicted the risk of intracranial bleeding. They advise hospitalisation for observation instead of brain CT scanning. It may be necessary to review part of the Dutch guideline on mTBI.

  13. Severe Traumatic Brain Injury at a Tertiary Referral Center in Tanzania: Epidemiology and Adherence to Brain Trauma Foundation Guidelines.

    PubMed

    Smart, Luke R; Mangat, Halinder S; Issarow, Benson; McClelland, Paul; Mayaya, Gerald; Kanumba, Emmanuel; Gerber, Linda M; Wu, Xian; Peck, Robert N; Ngayomela, Isidore; Fakhar, Malik; Stieg, Philip E; Härtl, Roger

    2017-09-01

    Severe traumatic brain injury (TBI) is a major cause of death and disability worldwide. Prospective TBI data from sub-Saharan Africa are sparse. This study examines epidemiology and explores management of patients with severe TBI and adherence to Brain Trauma Foundation Guidelines at a tertiary care referral hospital in Tanzania. Patients with severe TBI hospitalized at Bugando Medical Centre were recorded in a prospective registry including epidemiologic, clinical, treatment, and outcome data. Between September 2013 and October 2015, 371 patients with TBI were admitted; 33% (115/371) had severe TBI. Mean age was 32.0 years ± 20.1, and most patients were male (80.0%). Vehicular injuries were the most common cause of injury (65.2%). Approximately half of the patients (47.8%) were hospitalized on the day of injury. Computed tomography of the brain was performed in 49.6% of patients, and 58.3% were admitted to the intensive care unit. Continuous arterial blood pressure monitoring and intracranial pressure monitoring were not performed in any patient. Of patients with severe TBI, 38.3% received hyperosmolar therapy, and 35.7% underwent craniotomy. The 2-week mortality was 34.8%. Mortality of patients with severe TBI at Bugando Medical Centre, Tanzania, is approximately twice that in high-income countries. Intensive care unit care, computed tomography imaging, and continuous arterial blood pressure and intracranial pressure monitoring are underused or unavailable in the tertiary referral hospital setting. Improving outcomes after severe TBI will require concerted investment in prehospital care and improvement in availability of intensive care unit resources, computed tomography, and expertise in multidisciplinary care. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sleep and Psychiatric Disorders in Persons With Mild Traumatic Brain Injury.

    PubMed

    Mollayeva, Tatyana; D'Souza, Andrea; Mollayeva, Shirin

    2017-08-01

    Mild traumatic brain injury (mTBI) frequently challenges the integrity of sleep function by affecting multiple brain areas implicated in controlling the switch between wakefulness and sleep and those involved in circadian and homeostatic processes; the malfunction of each causes a variety of disorders. In this review, we discuss recent data on the dynamics between disorders of sleep and mental/psychiatric disorders in persons with mTBI. This analysis sets the stage for understanding how a variety of physiological, emotional and environmental influences affect sleep and mental activities after injury to the brain. Consideration of the intricate links between sleep and mental functions in future research can increase understanding on the underlying mechanisms of sleep-related and psychiatric comorbidity in mTBI.

  15. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury.

    PubMed

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D; O'Neil, Brian J; Haacke, E Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.

  16. Severe and penetrating traumatic brain injury in the context of war.

    PubMed

    Meyer, Kimberly; Helmick, Kathy; Doncevic, Selina; Park, Rachel

    2008-01-01

    Our data suggests that traumatic brain injury (TBI) may account for up to one third of battle-related injuries in today's war. Although the majority of these injuries are classified as mild in severity, service members with severe or penetrating TBI can be faced with many challenges. Injuries sustained on the battlefield require a slightly different approach than the TBI care that is traditionally seen in a civilian setting. This article presents the range of care that occurs beginning on the battlefield and continuing to state-of-the-art rehabilitation within the Department of Defense and Veterans Affairs Polytrauma System of Care.

  17. The chronic and evolving neurological consequences of traumatic brain injury.

    PubMed

    Wilson, Lindsay; Stewart, William; Dams-O'Connor, Kristen; Diaz-Arrastia, Ramon; Horton, Lindsay; Menon, David K; Polinder, Suzanne

    2017-10-01

    Traumatic brain injury (TBI) can have lifelong and dynamic effects on health and wellbeing. Research on the long-term consequences emphasises that, for many patients, TBI should be conceptualised as a chronic health condition. Evidence suggests that functional outcomes after TBI can show improvement or deterioration up to two decades after injury, and rates of all-cause mortality remain elevated for many years. Furthermore, TBI represents a risk factor for a variety of neurological illnesses, including epilepsy, stroke, and neurodegenerative disease. With respect to neurodegeneration after TBI, post-mortem studies on the long-term neuropathology after injury have identified complex persisting and evolving abnormalities best described as polypathology, which includes chronic traumatic encephalopathy. Despite growing awareness of the lifelong consequences of TBI, substantial gaps in research exist. Improvements are therefore needed in understanding chronic pathologies and their implications for survivors of TBI, which could inform long-term health management in this sizeable patient population. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Changes in brain-behavior relationships following a 3-month pilot cognitive intervention program for adults with traumatic brain injury.

    PubMed

    Porter, S; Torres, I J; Panenka, W; Rajwani, Z; Fawcett, D; Hyder, A; Virji-Babul, N

    2017-08-01

    Facilitating functional recovery following brain injury is a key goal of neurorehabilitation. Direct, objective measures of changes in the brain are critical to understanding how and when meaningful changes occur, however, assessing neuroplasticity using brain based results remains a significant challenge. Little is known about the underlying changes in functional brain networks that correlate with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot study was to assess the feasibility of an intensive three month cognitive intervention program in individuals with chronic TBI and to evaluate the effects of this intervention on brain-behavioral relationships. We used tools from graph theory to evaluate changes in global and local brain network features prior to and following cognitive intervention. Network metrics were calculated from resting state electroencephalographic (EEG) recordings from 10 adult participants with mild to severe brain injury and 11 age and gender matched healthy controls. Local graph metrics showed hyper-connectivity in the right inferior frontal gyrus and hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in comparison with the control group. Following the intervention, there was a statistically significant increase in the composite cognitive score in the TBI participants and a statistically significant decrease in functional connectivity in the right inferior frontal gyrus. In addition, there was evidence of changes in the brain-behavior relationships following intervention. The results from this pilot study provide preliminary evidence for functional network reorganization that parallels cognitive improvements after cognitive rehabilitation in individuals with chronic TBI.

  19. Neuroimaging Correlates of Novel Psychiatric Disorders after Pediatric Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Max, Jeffrey E.; Wilde, Elisabeth A.; Bigler, Erin D.; Thompson, Wesley K.; MacLeod, Marianne; Vasquez, Ana C.; Merkley, Tricia L.; Hunter, Jill V.; Chu, Zili D.; Yallampalli, Ragini; Hotz, Gillian; Chapman, Sandra B.; Yang, Tony T.; Levin, Harvey S.

    2012-01-01

    Objective: To study magnetic resonance imaging (MRI) correlates of novel (new-onset) psychiatric disorders (NPD) after traumatic brain injury (TBI) and orthopedic injury (OI). Method: Participants were 7 to 17 years of age at the time of hospitalization for either TBI or OI. The study used a prospective, longitudinal, controlled design with…

  20. Sentence Processing in Traumatic Brain Injury: Evidence from the P600

    ERIC Educational Resources Information Center

    Key-DeLyria, Sarah E.

    2016-01-01

    Purpose: Sentence processing can be affected following a traumatic brain injury (TBI) due to linguistic or cognitive deficits. Language-related event-related potentials (ERPs), particularly the P600, have not been described in individuals with TBI history. Method: Four young adults with a history of closed head injury participated. Two had severe…

  1. Immediate, but Not Delayed, Microsurgical Skull Reconstruction Exacerbates Brain Damage in Experimental Traumatic Brain Injury Model

    PubMed Central

    Lau, Tsz; Kaneko, Yuji; van Loveren, Harry; Borlongan, Cesario V.

    2012-01-01

    Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI. PMID:22438975

  2. The Effects of Shilajit on Brain Edema, Intracranial Pressure and Neurologic Outcomes following the Traumatic Brain Injury in Rat.

    PubMed

    Khaksari, Mohammad; Mahmmodi, Reza; Shahrokhi, Nader; Shabani, Mohammad; Joukar, Siavash; Aqapour, Mobin

    2013-07-01

    Brain edema is one of the most serious causes of death within the first few days after trauma brain injury (TBI). In this study we have investigated the role of Shilajit on brain edema, blood-brain barrier (BBB) permeability, intracranial pressure (ICP) and neurologic outcomes following brain trauma. Diffuse traumatic brain trauma was induced in rats by drop of a 250 g weight from a 2 m high (Marmarou's methods). Animals were randomly divided into 5 groups including sham, TBI, TBI-vehicle, TBI-Shi150 group and TBI-Shi250 group. Rats were undergone intraperitoneal injection of Shilajit and vehicle at 1, 24, 48 and 72 hr after trauma. Brain water content, BBB permeability, ICP and neurologic outcomes were finally measured. Brain water and Evans blue dye contents showed significant decrease in Shilajit-treated groups compared to the TBI-vehicle and TBI groups. Intracranial pressure at 24, 48 and 72 hr after trauma had significant reduction in Shilajit-treated groups as compared to TBI-vehicle and TBI groups (P<0.001). The rate of neurologic outcomes improvement at 4, 24, 48 and 72 hr after trauma showed significant increase in Shilajit-treated groups in comparison to theTBI- vehicle and TBI groups (P <0.001). The present results indicated that Shilajit may cause in improvement of neurologic outcomes through decreasing brain edema, disrupting of BBB, and ICP after the TBI.

  3. Methamphetamine- and Trauma-Induced Brain Injuries: Comparative Cellular and Molecular Neurobiological Substrates

    PubMed Central

    Gold, Mark S.; Kobeissy, Firas H.; Wang, Kevin K.W.; Merlo, Lisa J.; Bruijnzeel, Adriaan W.; Krasnova, Irina N.; Cadet, Jean Lud

    2009-01-01

    The use of methamphetamine (METH) is a growing public health problem because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans as a result of mechanical injuries (e.g. traumatic brain injury, TBI) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug, METH, can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (αII-spectrin and MAP-tau protein) evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with the use of potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI. PMID:19345341

  4. Relation of Executive Functioning to Pragmatic Outcome following Severe Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Douglas, Jacinta M.

    2010-01-01

    Purpose: This study was designed to explore the behavioral nature of pragmatic impairment following severe traumatic brain injury (TBI) and to evaluate the contribution of executive skills to the experience of pragmatic difficulties after TBI. Method: Participants were grouped into 43 TBI dyads (TBI adults and close relatives) and 43 control…

  5. Airway management of patients with traumatic brain injury/C-spine injury

    PubMed Central

    2015-01-01

    Traumatic brain injury (TBI) is usually combined with cervical spine (C-spine) injury. The possibility of C-spine injury is always considered when performing endotracheal intubation in these patients. Rapid sequence intubation is recommended with adequate sedative or analgesics and a muscle relaxant to prevent an increase in intracranial pressure during intubation in TBI patients. Normocapnia and mild hyperoxemia should be maintained to prevent secondary brain injury. The manual-in-line-stabilization (MILS) technique effectively lessens C-spine movement during intubation. However, the MILS technique can reduce mouth opening and lead to a poor laryngoscopic view. The newly introduced video laryngoscope can manage these problems. The AirWay Scope® (AWS) and AirTraq laryngoscope decreased the extension movement of C-spines at the occiput-C1 and C2-C4 levels, improving intubation conditions and shortening the time to complete tracheal intubation compared with a direct laryngoscope. The Glidescope® also decreased cervical movement in the C2-C5 levels during intubation and improved vocal cord visualization, but a longer duration was required to complete intubation compared with other devices. A lightwand also reduced cervical motion across all segments. A fiberoptic bronchoscope-guided nasal intubation is the best method to reduce cervical movement, but a skilled operator is required. In conclusion, a video laryngoscope assists airway management in TBI patients with C-spine injury. PMID:26045922

  6. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits

    PubMed Central

    Corser-Jensen, Chelsea E.; Goodell, Dayton J.; Freund, Ronald K.; Serbedzija, Predrag; Murphy, Robert C.; Farias, Santiago E.; Dell'Acqua, Mark L.; Frey, Lauren C.; Serkova, Natalie; Heidenreich, Kim A.

    2014-01-01

    Neuroinflammation is a component of secondary injury following traumatic brain injury (TBI) that can persist beyond the acute phase. Leukotrienes are potent, pro-inflammatory lipid mediators generated from membrane phospholipids. In the absence of injury, leukotrienes are undetectable in brain, but after trauma they are rapidly synthesized by a transcellular event involving infiltrating neutrophils and endogenous brain cells. Here, we investigate the efficacy of MK-886, an inhibitor of 5-lipoxygenase activating protein (FLAP), in blocking leukotriene synthesis, secondary brain damage, synaptic dysfunction, and cognitive impairments after TBI. Male Sprague Dawley rats (9-11 weeks) received either MK-886 or vehicle after they were subjected to unilateral moderate fluid percussion injury (FPI) to assess the potential clinical use of FLAP inhibitors for TBI. MK-886 was also administered before FPI to determine the preventative potential of FLAP inhibitors. MK-886 given before or after injury significantly blocked the production of leukotrienes, measured by reverse-phase liquid chromatography coupled to tandem mass spectrometry (RP LC-MS/MS), and brain edema, measured by T2-weighted magnetic resonance imaging (MRI). MK-886 significantly attenuated blood-brain barrier disruption in the CA1 hippocampal region and deficits in long-term potentiation (LTP) at CA1 hippocampal synapses. The prevention of FPI-induced synaptic dysfunction by MK-886 was accompanied by fewer deficits in post-injury spatial learning and memory performance in the radial arms water maze (RAWM). These results indicate that leukotrienes contribute significantly to secondary brain injury and subsequent cognitive deficits. FLAP inhibitors represent a novel anti-inflammatory approach for treating human TBI that is feasible for both intervention and prevention of brain injury and neurologic deficits. PMID:24681156

  7. Current status of fluid biomarkers in mild traumatic brain injury

    PubMed Central

    Kulbe, Jacqueline R.; Geddes, James W.

    2015-01-01

    Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers. PMID:25981889

  8. Exercise Preconditioning Improves Traumatic Brain Injury Outcomes

    PubMed Central

    Taylor, Jordan M.; Montgomery, Mitchell H.; Gregory, Eugene J.; Berman, Nancy E.J.

    2015-01-01

    Purpose To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). Methods 120 mice were randomly assigned to one of four groups: 1) no exercise + no TBI (NOEX-NOTBI [n=30]), 2) no exercise + TBI (NOEX-TBI [n=30]), 3) exercise + no TBI (EX-NOTBI [n=30]), and 4) exercise + TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. Results EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Conclusions Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. PMID:26165153

  9. Exercise preconditioning improves traumatic brain injury outcomes.

    PubMed

    Taylor, Jordan M; Montgomery, Mitchell H; Gregory, Eugene J; Berman, Nancy E J

    2015-10-05

    To determine whether 6 weeks of exercise performed prior to traumatic brain injury (TBI) could improve post-TBI behavioral outcomes in mice, and if exercise increases neuroprotective molecules (vascular endothelial growth factor-A [VEGF-A], erythropoietin [EPO], and heme oxygenase-1 [HO-1]) in brain regions responsible for movement (sensorimotor cortex) and memory (hippocampus). 120 mice were randomly assigned to one of four groups: (1) no exercise+no TBI (NOEX-NOTBI [n=30]), (2) no exercise+TBI (NOEX-TBI [n=30]), (3) exercise+no TBI (EX-NOTBI [n=30]), and (4) exercise+TBI (EX-TBI [n=30]). The gridwalk task and radial arm water maze were used to evaluate sensorimotor and cognitive function, respectively. Quantitative real time polymerase chain reaction and immunostaining were performed to investigate VEGF-A, EPO, and HO-1 mRNA and protein expression in the right cerebral cortex and ipsilateral hippocampus. EX-TBI mice displayed reduced post-TBI sensorimotor and cognitive deficits when compared to NOEX-TBI mice. EX-NOTBI and EX-TBI mice showed elevated VEGF-A and EPO mRNA in the cortex and hippocampus, and increased VEGF-A and EPO staining of sensorimotor cortex neurons 1 day post-TBI and/or post-exercise. EX-TBI mice also exhibited increased VEGF-A staining of hippocampal neurons 1 day post-TBI/post-exercise. NOEX-TBI mice demonstrated increased HO-1 mRNA in the cortex (3 days post-TBI) and hippocampus (3 and 7 days post-TBI), but HO-1 was not increased in mice that exercised. Improved TBI outcomes following exercise preconditioning are associated with increased expression of specific neuroprotective genes and proteins (VEGF-A and EPO, but not HO-1) in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cold Environment Exacerbates Brain Pathology and Oxidative Stress Following Traumatic Brain Injuries: Potential Therapeutic Effects of Nanowired Antioxidant Compound H-290/51.

    PubMed

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José Vicente; Sjöquist, Per-Ove; Patnaik, Ranjana; Ryan Tian, Z; Ozkizilcik, Asya; Sharma, Hari S

    2018-01-01

    The possibility that traumatic brain injury (TBI) occurring in a cold environment exacerbates brain pathology and oxidative stress was examined in our rat model. TBI was inflicted by making a longitudinal incision into the right parietal cerebral cortex (2 mm deep and 4 mm long) in cold-acclimatized rats (5 °C for 3 h daily for 5 weeks) or animals at room temperature under Equithesin anesthesia. TBI in cold-exposed rats exhibited pronounced increase in brain lucigenin (LCG), luminol (LUM), and malondialdehyde (MDA) and marked pronounced decrease in glutathione (GTH) as compared to identical TBI at room temperature. The magnitude and intensity of BBB breakdown to radioiodine and Evans blue albumin, edema formation, and neuronal injuries were also exacerbated in cold-exposed rats after injury as compared to room temperature. Nanowired delivery of H-290/51 (50 mg/kg) 6 and 8 h after injury in cold-exposed group significantly thwarted brain pathology and oxidative stress whereas normal delivery of H-290/51 was neuroprotective after TBI at room temperature only. These observations are the first to demonstrate that (i) cold aggravates the pathophysiology of TBI possibly due to an enhanced production of oxidative stress, (ii) and in such conditions, nanodelivery of antioxidant compound has superior neuroprotective effects, not reported earlier.

  11. Cognitive development after traumatic brain injury in young children

    PubMed Central

    GERRARD-MORRIS, AIMEE; TAYLOR, H. GERRY; YEATES, KEITH OWEN; WALZ, NICOLAY CHERTKOFF; STANCIN, TERRY; MINICH, NORI; WADE, SHARI L.

    2014-01-01

    The primary aims of this study were to examine post-injury cognitive development in young children with traumatic brain injury (TBI) and to investigate the role of the proximal family environment in predicting cognitive outcomes. Age at injury was 3–6 years, and TBI was classified as severe (n = 23), moderate (n = 21), and complicated mild (n = 43). A comparison group of children who sustained orthopedic injuries (OI, n = 117) was also recruited. Child cognitive assessments were administered at a post-acute baseline evaluation and repeated at 6, 12, and 18 months post-injury. Assessment of the family environment consisted of baseline measures of learning support and stimulation in the home and of parenting characteristics observed during videotaped parent–child interactions. Relative to the OI group, children with severe TBI group had generalized cognitive deficiencies and those with less severe TBI had weaknesses in visual memory and executive function. Although deficits persisted or emerged across follow-up, more optimal family environments were associated with higher scores for all injury groups. The findings confirm other reports of poor recovery of cognitive skills following early childhood TBI and suggest environmental influences on outcomes. PMID:19849883

  12. Efficacy of legal judgments for defendants with traumatic brain injury.

    PubMed

    St Pierre, Maria E; Parente, Rick

    2016-06-23

    Literature has compared the frequency of aggressive behaviors of the TBI population and the non-TBI population, suggesting that the TBI population is predisposed to aggressive tendencies because the injury enables impulsivity, loss of self-control, and the inability to modify behaviors. These behavior changes have consequently, been found to lead to criminal involvement. In fact, the majority of the prison population has sustained at least one TBI in their lifetime compared to the prevalence of brain injuries in the general population. However, there is little research investigating the perceptions of criminality and guilt of these individuals. Two experiments were conducted that investigated the perceptions of morality, level of guilt, and appropriate sentencing of crimes committed by defendants with different severities of TBI (i.e., mild, severe, and no TBI). Participants were asked to read scenarios about crimes being committed by the defendant. Experiment 1 used a 1-between (crime), 1-within (TBI) mixed design ANOVA testing three dependent variables (morality, guilt, and sentencing). Using a more in vivo jury approach, Experiment 2 used a 3 (TBI)×2 (crime) independent groups factorial design testing the three dependent measures. Overall, defendants with TBI were found less guilty of their crime, perceived as behaving morally to the crime, and receiving a milder punishment relative to the no-TBI defendants. In the courtroom, the defense attorney should educate the judge and/or the jury on the effects brain injuries have on the cognition, behavior, and emotions of an individual. Thus, this education will ensure the best verdict is being reached.

  13. An update on substance use and treatment following traumatic brain injury.

    PubMed

    Graham, David P; Cardon, Aaron L

    2008-10-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among young adults. Substance abusers constitute a disproportionate percentage of these patients. A history of substance abuse predicts increased disability, poorer prognosis, and delayed recovery. While consensus in the literature indicates that substance-abuse rates decline following injury, conflicting literature shows a significant history of brain injury in addicts. We reviewed the literature on substance abuse after TBI to explore the state of knowledge on TBI as a risk factor for substance abuse. While recent reviews regarding substance abuse in TBI patients concur that substance-abuse rates decline even after mild TBI, an emerging literature suggests mild TBI may cause subtle impairments in cognitive, executive, and decision-making functions that are often poorly recognized in early diagnosis and treatment. When combined with difficulties in psychosocial adjustment and coping skills, these impairments may increase the risk for chronic substance abuse in a subset of TBI patients. Preliminary results from veterans indicate these patterns hold in a combat-related post-traumatic stress disorder population with TBI. This increasingly prevalent combination presents a specific challenge in rehabilitation. While this comorbidity presents a challenge for the successful treatment and rehabilitation of both disorders, there is sparse evidence to recommend any specific treatment strategy for these individuals. Mild TBI and substance abuse are bidirectionally related both for risks and treatment. Further understanding the neuropsychiatric pathology and different effects of different types of injuries will likely improve the implementation of effective treatments for each of these two conditions.

  14. Caspase 7: increased expression and activation after traumatic brain injury in rats.

    PubMed

    Larner, Stephen F; McKinsey, Deborah M; Hayes, Ronald L; W Wang, Kevin K

    2005-07-01

    Caspases, a cysteine proteinase family, are required for the initiation and execution phases of apoptosis. It has been suggested that caspase 7, an apoptosis executioner implicated in cell death proteolysis, is redundant to the main executioner caspase 3 and it is generally believed that it is not present in the brain or present in only minute amounts with highly restricted activity. Here we report evidence that caspase 7 is up-regulated and activated after traumatic brain injury (TBI) in rats. TBI disrupts homeostasis resulting in pathological apoptotic activation. After controlled cortical impact TBI of adult male rats we observed, by semiquantitative real-time PCR, increased mRNA levels within the traumatized cortex and hippocampus peaking in the former about 5 days post-injury and in the latter within 6-24 h of trauma. The activation of caspase 7 protein after TBI, demonstrated by immunoblot by the increase of the active form of caspase 7 peaking 5 days post-injury in the cortex and hippocampus, was found to be up-regulated in both neurons and astrocytes by immunohistochemistry. These findings, the first to document the up-regulation of caspase 7 in the brain after acute brain injury in rats, suggest that caspase 7 activation could contribute to neuronal cell death on a scale not previously recognized.

  15. A review of the International Brain Research Foundation novel approach to mild traumatic brain injury presented at the International Conference on Behavioral Health and Traumatic Brain Injury.

    PubMed

    Polito, Mary Zemyan; Thompson, James W G; DeFina, Philip A

    2010-09-01

    "The International Conference on Behavioral Health and Traumatic Brain Injury" held at St. Joseph's Regional Medical Center in Paterson, NJ., from October 12 to 15, 2008, included a presentation on the novel assessment and treatment approach to mild traumatic brain injury (mTBI) by Philip A. DeFina, PhD, of the International Brain Research Foundation (IBRF). Because of the urgent need to treat a large number of our troops who are diagnosed with mTBI and post-traumatic stress disorder (PTSD), the conference was held to create a report for Congress titled "Recommendations to Improve the Care of Wounded Warriors NOW. March 12, 2009." This article summarizes and adds greater detail to Dr. DeFina's presentation on the current standard and novel ways to approach assessment and treatment of mTBI and PTSD. Pilot data derived from collaborative studies through the IBRF have led to the development of clinical and research protocols utilizing currently accepted, valid, and reliable neuroimaging technologies combined in novel ways to develop "neuromarkers." These neuromarkers are being evaluated in the context of an "Integrity-Deficit Matrix" model to demonstrate their ability to improve diagnostic accuracy, guide treatment programs, and possibly predict outcomes for patients suffering from traumatic brain injury.

  16. Aging, neurodegenerative disease, and traumatic brain injury: the role of neuroimaging.

    PubMed

    Esopenko, Carrie; Levine, Brian

    2015-02-15

    Traumatic brain injury (TBI) is a highly prevalent condition with significant effects on cognition and behavior. While the acute and sub-acute effects of TBI recover over time, relatively little is known about the long-term effects of TBI in relation to neurodegenerative disease. This issue has recently garnered a great deal of attention due to publicity surrounding chronic traumatic encephalopathy (CTE) in professional athletes, although CTE is but one of several neurodegenerative disorders associated with a history of TBI. Here, we review the literative on neurodegenerative disorders linked to remote TBI. We also review the evidence for neuroimaging changes associated with unhealthy brain aging in the context of remote TBI. We conclude that neuroimaging biomarkers have significant potential to increase understanding of the mechanisms of unhealthy brain aging and neurodegeneration following TBI, with potential for identifying those at risk for unhealthy brain aging prior to the clinical manifestation of neurodegenerative disease.

  17. Lactate: Brain Fuel in Human Traumatic Brain Injury: A Comparison with Normal Healthy Control Subjects

    PubMed Central

    Martin, Neil A.; Horning, Michael A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Brooks, George A.

    2015-01-01

    Abstract We evaluated the hypothesis that lactate shuttling helps support the nutritive needs of injured brains. To that end, we utilized dual isotope tracer [6,6-2H2]glucose, that is, D2-glucose, and [3-13C]lactate techniques involving arm vein tracer infusion along with simultaneous cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Traumatic brain injury (TBI) patients with nonpenetrating brain injuries (n=12) were entered into the study following consent of patients' legal representatives. Written and informed consent was obtained from control volunteers (n=6). Patients were studied 5.7±2.2 (mean±SD) days post-injury; during periods when arterial glucose concentration tended to be higher in TBI patients. As in previous investigations, the cerebral metabolic rate for glucose (CMRgluc, i.e., net glucose uptake) was significantly suppressed following TBI (p<0.001). However, lactate fractional extraction, an index of cerebral lactate uptake related to systemic lactate supply, approximated 11% in both healthy control subjects and TBI patients. Further, neither the CMR for lactate (CMRlac, i.e., net lactate release), nor the tracer-measured cerebral lactate uptake differed between healthy controls and TBI patients. The percentages of lactate tracer taken up and released as 13CO2 into the JB accounted for 92% and 91% for control and TBI conditions, respectively, suggesting that most cerebral lactate uptake was oxidized following TBI. Comparisons of isotopic enrichments of lactate oxidation from infused [3-13C]lactate tracer and 13C-glucose produced during hepatic and renal gluconeogenesis (GNG) showed that 75–80% of 13CO2 released into the JB was from lactate and that the remainder was from the oxidation of glucose secondarily labeled from lactate. Hence, either directly as lactate uptake, or indirectly via GNG, peripheral lactate production accounted for ∼70% of carbohydrate (direct lactate uptake+uptake of glucose from lactate) consumed by the

  18. Legacy Clinical Data from the Epo TBI Trial

    DTIC Science & Technology

    2016-06-01

    investigators through the Federal Interagency Traumatic Brain Injury (FITBIR) Informatics System. This trial was funded by National Institute of Neurological...Effects of Erythropoietin (Epo) on Cerebral Vascular Dysfunction and Anemia in Traumatic Brain Injury (TBI)” which we will share with other...the format required by FITBIR. 2. KEYWORDS: Traumatic brain injury Erythropoietin Anemia Transfusion threshold 3. ACCOMPLISHMENTS: What

  19. Diagnosing pseudobulbar affect in traumatic brain injury.

    PubMed

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%-48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA.

  20. Diagnosing pseudobulbar affect in traumatic brain injury

    PubMed Central

    Engelman, William; Hammond, Flora M; Malec, James F

    2014-01-01

    Pseudobulbar affect (PBA) is defined by episodes of involuntary crying and/or laughing as a result of brain injury or other neurological disease. Epidemiology studies show that 5.3%–48.2% of people with traumatic brain injury (TBI) may have symptoms consistent with (or suggestive of) PBA. Yet it is a difficult and often overlooked condition in individuals with TBI, and is easily confused with depression or other mood disorders. As a result, it may be undertreated and persist for longer than it should. This review presents the signs and symptoms of PBA in patients with existing TBI and outlines how to distinguish PBA from other similar conditions. It also compares and contrasts the different diagnostic criteria found in the literature and briefly mentions appropriate treatments. This review follows a composite case with respect to the clinical course and treatment for PBA and presents typical challenges posed to a provider when diagnosing PBA. PMID:25336956

  1. Viewing the functional consequences of traumatic brain injury by using brain SPECT.

    PubMed

    Pavel, D; Jobe, T; Devore-Best, S; Davis, G; Epstein, P; Sinha, S; Kohn, R; Craita, I; Liu, P; Chang, Y

    2006-03-01

    High-resolution brain SPECT is increasingly benefiting from improved image processing software and multiple complementary display capabilities. This enables detailed functional mapping of the disturbances in relative perfusion occurring after TBI. The patient population consisted of 26 cases (ages 8-61 years)between 3 months and 6 years after traumatic brain injury.A very strong case can be made for the routine use of Brain SPECT in TBI. Indeed it can provide a detailed evaluation of multiple functional consequences after TBI and is thus capable of supplementing the clinical evaluation and tailoring the therapeutic strategies needed. In so doing it also provides significant additional information beyond that available from MRI/CT. The critical factor for Brain SPECT's clinical relevance is a carefully designed technical protocol, including displays which should enable a comprehensive description of the patterns found, in a user friendly mode.

  2. [Guidelines for the diagnosis and treatment of severe traumatic brain injury. Part 2. Intensive care and neuromonitoring].

    PubMed

    Potapov, A A; Krylov, V V; Gavrilov, A G; Kravchuk, A D; Likhterman, L B; Petrikov, S S; Talypov, A E; Zakharova, N E; Oshorov, A V; Sychev, A A; Alexandrova, E V; Solodov, A A

    2016-01-01

    Traumatic brain injury (TBI) is one of the major causes of death and disability in young and middle-aged people. The most problematic group is comprised of patients with severe TBI who are in a coma. The adequate diagnosis of primary brain injuries and timely prevention and treatment of the secondary injury mechanisms largely define the possibility of reducing mortality and severe disabling consequences. When developing these guidelines, we used our experience in the development of international and national recommendations for the diagnosis and treatment of mild traumatic brain injury, penetrating gunshot wounds to the skull and brain, severe traumatic brain injury, and severe consequences of brain injuries, including a vegetative state. In addition, we used international and national guidelines for the diagnosis, intensive care, and surgical treatment of severe traumatic brain injury, which had been published in recent years. The proposed guidelines concern intensive care of severe TBI in adults and are particularly intended for neurosurgeons, neurologists, neuroradiologists, anesthesiologists, and intensivists who are routinely involved in the treatment of these patients.

  3. Sexual behavior and its correlates after traumatic brain injury.

    PubMed

    Turner, Daniel; Schöttle, Daniel; Krueger, Richard; Briken, Peer

    2015-03-01

    Traumatic brain injury (TBI) is one of the leading causes of permanent disability in young adults and is frequently accompanied by changes in sexual behaviors. Satisfying sexuality is an important factor for overall quality of life in people with disabilities. The purpose of this article is to review the studies evaluating the assessment, correlates and management of sexuality following TBI. The Brain Injury Questionnaire of Sexuality is the first validated questionnaire specifically developed for adults with TBI. A considerable amount of individuals with TBI show inappropriate sexual behaviors and sexual dysfunctions. Whereas inappropriate sexual behaviors are related to younger age, less social participation and more severe injuries, sexual dysfunctions show an association with higher fatigue, higher depression scores, less self-esteem and female sex. Healthcare professionals have suggested that because of discomfort at the individual or institutional level, sexual problems are often not sufficiently addressed and have suggested that a specialist should treat sexual problems. Although some important correlates of sexual problems could be identified, methodological differences across studies limit their comparability. Furthermore, there is an absence of evidence-based treatment strategies for addressing sexual problems. Therapeutic efforts should take into account the identified correlates of sexual problems following TBI.

  4. The military's approach to traumatic brain injury and post-traumatic stress disorder

    NASA Astrophysics Data System (ADS)

    Ling, Geoffrey S. F.; Grimes, Jamie; Ecklund, James M.

    2014-06-01

    Traumatic brain injury (TBI) and Post Traumatic Stress Disorder (PTSD) are common conditions. In Iraq and Afghanistan, explosive blast related TBI became prominent among US service members but the vast majority of TBI was still due to typical causes such as falls and sporting events. PTS has long been a focus of the US military mental health providers. Combat Stress Teams have been integral to forward deployed units since the beginning of the Global War on Terror. Military medical management of disease and injury follows standard of care clinical practice guidelines (CPG) established by civilian counterparts. However, when civilian CPGs do not exist or are not applicable to the military environment, new practice standards are created. Such is the case for mild TBI. In 2009, the VA-DoD CPG for management of mild TBI/concussion was published and a system-wide clinical care program for mild TBI/concussion was introduced. This was the first large scale effort on an entire medical care system to address all severities of TBI in a comprehensive organized way. In 2010, the VA-DoD CPG for management of PTSD was published. Nevertheless, both TBI and PTS are still incompletely understood. Investment in terms of money and effort has been committed by the DoD to their study. The Defense and Veterans Brain Injury Center, National Intrepid Center of Excellence and the Defense Centers of Excellence for Psychological Health and Traumatic Brain Injury are prominent examples of this effort. These are just beginnings, a work in progress ready to leverage advances made scientifically and always striving to provide the very best care to its military beneficiaries.

  5. Metabolic and Structural Imaging at 7 Tesla After Repetitive Mild Traumatic Brain Injury in Immature Rats.

    PubMed

    Fidan, Emin; Foley, Lesley M; New, Lee Ann; Alexander, Henry; Kochanek, Patrick M; Hitchens, T Kevin; Bayır, Hülya

    2018-01-01

    Mild traumatic brain injury (mTBI) in children is a common and serious public health problem. Traditional neuroimaging findings in children who sustain mTBI are often normal, putting them at risk for repeated mTBI (rmTBI). There is a need for more sensitive imaging techniques capable of detecting subtle neurophysiological alterations after injury. We examined neurochemical and white matter changes using diffusion tensor imaging of the whole brain and proton magnetic resonance spectroscopy of the hippocampi at 7 Tesla in 18-day-old male rats at 7 days after mTBI and rmTBI. Traumatic axonal injury was assessed by beta-amyloid precursor protein accumulation using immunohistochemistry. A significant decrease in fractional anisotropy and increase in axial and radial diffusivity were observed in several brain regions, especially in white matter regions, after a single mTBI versus sham and more prominently after rmTBI. In addition, we observed accumulation of beta-amyloid precursor protein in the external capsule after mTBI and rmTBI. mTBI and rmTBI reduced the N-acetylaspartate/creatine ratio (NAA/Cr) and increased the myoinositol/creatine ratio (Ins/Cr) versus sham. rmTBI exacerbated the reduction in NAA/Cr versus mTBI. The choline/creatine (Cho/Cr) and (lipid/Macro Molecule 1)/creatine (Lip/Cr) ratios were also decreased after rmTBI versus sham. Diffusion tensor imaging findings along with the decrease in Cho and Lip after rmTBI may reflect damage to axonal membrane. NAA and Ins are altered at 7 days after mTBI and rmTBI likely reflecting neuro-axonal damage and glial response, respectively. These findings may be relevant to understanding the extent of disability following mTBI and rmTBI in the immature brain and may identify possible therapeutic targets.

  6. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury

    PubMed Central

    Chen, Michael J.; Plog, Benjamin A.; Zeppenfeld, Douglas M.; Soltero, Melissa; Yang, Lijun; Singh, Itender; Deane, Rashid; Nedergaard, Maiken

    2014-01-01

    Traumatic brain injury (TBI) is an established risk factor for the early development of dementia, including Alzheimer's disease, and the post-traumatic brain frequently exhibits neurofibrillary tangles comprised of aggregates of the protein tau. We have recently defined a brain-wide network of paravascular channels, termed the “glymphatic” pathway, along which CSF moves into and through the brain parenchyma, facilitating the clearance of interstitial solutes, including amyloid-β, from the brain. Here we demonstrate in mice that extracellular tau is cleared from the brain along these paravascular pathways. After TBI, glymphatic pathway function was reduced by ∼60%, with this impairment persisting for at least 1 month post injury. Genetic knock-out of the gene encoding the astroglial water channel aquaporin-4, which is importantly involved in paravascular interstitial solute clearance, exacerbated glymphatic pathway dysfunction after TBI and promoted the development of neurofibrillary pathology and neurodegeneration in the post-traumatic brain. These findings suggest that chronic impairment of glymphatic pathway function after TBI may be a key factor that renders the post-traumatic brain vulnerable to tau aggregation and the onset of neurodegeneration. PMID:25471560

  7. Cognitive and functional outcomes of terror victims who suffered from traumatic brain injury.

    PubMed

    Schwartz, Isabella; Tuchner, Maya; Tsenter, Jeanna; Shochina, Mara; Shoshan, Yigal; Katz-Leurer, Michal; Meiner, Zeev

    2008-03-01

    To describe the outcomes of terror victims suffered from traumatic brain injury (TBI). Retrospective chart review of 17 terror and 39 non-terror TBI patients treated in a rehabilitation department during the same period. Variables include demographic data, Injury Severity Scale (ISS), length of stay (LOS) and imaging results. ADL was measured using the Functional Independence Measurement (FIM), cognitive and memory functions were measured using the Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) battery and the Rivermead Battery Memory Test (RBMT), respectively. Terror TBI patients were significantly younger, had higher ISS score and higher rates of intracerebral haemorrhage (ICH), brain surgery and penetrating brain injuries than the non-terror TBI group. There was no difference in mean LOS, mean FIM values, mean FIM gain and mean cognitive and memory improvement between groups. Terror victims suffered from a higher percentage of post-traumatic epilepsy (35% vs. 10%, p=0.05), whereas the rate of PTSD and the rate of return to previous occupation were similar between groups. Although TBI terror victims had more severe injury, they gained most of ADL functions and their rehabilitation outcomes were similar to non-terror TBI patients. These favourable results were achieved due to a comprehensive interdisciplinary approach to terror victims and also by national support which allowed an adequate period of treatment and sufficient resources as needed.

  8. Neuroinflammation, myelin and behavior: Temporal patterns following mild traumatic brain injury in mice

    PubMed Central

    Taib, Toufik; Leconte, Claire; Van Steenwinckel, Juliette; Cho, Angelo H.; Palmier, Bruno; Torsello, Egle; Lai Kuen, Rene; Onyeomah, Somfieme; Ecomard, Karine; Benedetto, Chiara; Coqueran, Bérard; Novak, Anne-Catherine; Deou, Edwige; Plotkine, Michel; Gressens, Pierre; Marchand-Leroux, Catherine

    2017-01-01

    Traumatic brain injury (TBI) results in white matter injury (WMI) that is associated with neurological deficits. Neuroinflammation originating from microglial activation may participate in WMI and associated disorders. To date, there is little information on the time courses of these events after mild TBI. Therefore we investigated (i) neuroinflammation, (ii) WMI and (iii) behavioral disorders between 6 hours and 3 months after mild TBI. For that purpose, we used experimental mild TBI in mice induced by a controlled cortical impact. (i) For neuroinflammation, IL-1b protein as well as microglial phenotypes, by gene expression for 12 microglial activation markers on isolated CD11b+ cells from brains, were studied after TBI. IL-1b protein was increased at 6 hours and 1 day. TBI induced a mixed population of microglial phenotypes with both pro-inflammatory, anti-inflammatory and immunomodulatory markers from 6 hours to 3 days post-injury. At 7 days, microglial activation was completely resolved. (ii) Three myelin proteins were assessed after TBI on ipsi- and contralateral corpus callosum, as this structure is enriched in white matter. TBI led to an increase in 2',3'-cyclic-nucleotide 3'-phosphodiesterase, a marker of immature and mature oligodendrocyte, at 2 days post-injury; a bilateral demyelination, evaluated by myelin basic protein, from 7 days to 3 months post-injury; and an increase in myelin oligodendrocyte glycoprotein at 6 hours and 3 days post-injury. Transmission electron microscopy study revealed various myelin sheath abnormalities within the corpus callosum at 3 months post-TBI. (iii) TBI led to sensorimotor deficits at 3 days post-TBI, and late cognitive flexibility disorder evidenced by the reversal learning task of the Barnes maze 3 months after injury. These data give an overall invaluable overview of time course of neuroinflammation that could be involved in demyelination and late cognitive disorder over a time-scale of 3 months in a model of mild TBI

  9. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    PubMed Central

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  10. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System

    PubMed Central

    Plog, Benjamin A.; Dashnaw, Matthew L.; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid

    2015-01-01

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. PMID:25589747

  11. Consequences of Traumatic Brain Injury for Human Vergence Dynamics

    PubMed Central

    Tyler, Christopher W.; Likova, Lora T.; Mineff, Kristyo N.; Elsaid, Anas M.; Nicholas, Spero C.

    2015-01-01

    Purpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters. Methods: Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls. Vergence tracking responses were measured to sinusoidal disparity modulation of a random-dot field. Disparity vergence step responses were characterized in terms of their dynamic parameters separately for the convergence and divergence directions. Results: The control group showed notable differences between convergence and divergence dynamics. The dTBI group showed significantly abnormal vergence behavior on many of the dynamic parameters. Conclusion: The results support the hypothesis that occult injury to the oculomotor control system is a common residual outcome of dTBI. PMID:25691880

  12. Philosophy of mind: coming to terms with traumatic brain injury.

    PubMed

    Buzan, Randall D; Kupfer, Jeff; Eastridge, Dixie; Lema-Hincapie, Andres

    2014-01-01

    Patients and their families struggle with accepting changes in personality after traumatic brain injury (TBI). A neuroanatomic understanding may assist with this process. We briefly review the history of the Western conceptualization of the Self, and discuss how neuroscience and changes in personality wrought by brain injuries modify and enrich our understanding of our selves and our patients. The sense of self, while conflated with the concept of a "soul" in Western thinking, is more rationally considered a construct derived from neurophysiologic structures. The self or personality therefore often changes when the brain changes. A neuroanatomic perspective can help patients, families, and clinicians accept and cope with the sequellae of TBI.

  13. Estrone is neuroprotective in rats after traumatic brain injury.

    PubMed

    Gatson, Joshua W; Liu, Ming-Mei; Abdelfattah, Kareem; Wigginton, Jane G; Smith, Scott; Wolf, Steven; Simpkins, James W; Minei, Joseph P

    2012-08-10

    In various animal and human studies, early administration of 17β-estradiol, a strong antioxidant, anti-inflammatory, and anti-apoptotic agent, significantly decreases the severity of injury in the brain associated with cell death. Estrone, the predominant estrogen in postmenopausal women, has been shown to be a promising neuroprotective agent. The overall goal of this project was to determine if estrone mitigates secondary injury following traumatic brain injury (TBI) in rats. Male rats were given either placebo (corn oil) or estrone (0.5 mg/kg) at 30 min after severe TBI. Using a controlled cortical impact device in rats that underwent a craniotomy, the right parietal cortex was injured using the impactor tip. Non-injured control and sham animals were also included. At 72 h following injury, the animals were perfused intracardially with 0.9% saline followed by 10% phosphate-buffered formalin. The whole brain was removed, sliced, and stained for TUNEL-positive cells. Estrone decreased cortical lesion volume (p<0.01) and neuronal injury (p<0.001), and it reduced cerebral cortical levels of TUNEL-positive staining (p<0.0001), and decreased numbers of TUNEL-positive cells in the corpus callosum (p<0.03). We assessed the levels of β-amyloid in the injured animals and found that estrone significantly decreased the cortical levels of β-amyloid after brain injury. Cortical levels of phospho-ERK1/2 were significantly (p<0.01) increased by estrone. This increase was associated with an increase in phospho-CREB levels (p<0.021), and brain-derived neurotrophic factor (BDNF) expression (p<0.0006). In conclusion, estrone given acutely after injury increases the signaling of protective pathways such as the ERK1/2 and BDNF pathways, decreases ischemic secondary injury, and decreases apoptotic-mediated cell death. These results suggest that estrone may afford protection to those suffering from TBI.

  14. Does inhibition of angiotensin function cause neuroprotection in diffuse traumatic brain injury?

    PubMed

    Khaksari, Mohammad; Rajizadeh, Mohammad Amin; Bejeshk, Mohammad Abbas; Soltani, Zahra; Motamedi, Sina; Moramdi, Fatemeh; Islami, Masoud; Shafa, Shahriyar; Khosravi, Sepehr

    2018-06-01

    Neuroprotection is created following the inhibition of angiotensin II type 1 receptor (AT1R). Therefore, the purpose of this research was examining AT1R blockage by candesartan in diffuse traumatic brain injury (TBI). Male rats were assigned into sham, TBI, vehicle, and candesartan groups. Candesartan (0.3 mg/kg) or vehicle was administered IP, 30 min post-TBI. Brain water and Evans blue contents were determined, 24 and 5 hr after TBI, respectively. Intracranial pressure (ICP) and neurologic outcome were evaluated at -1, 1, 4 and 24 hr after TBI. Oxidant index [malondialdehyde (MDA)] was determined 24 hr after TBI. Brain water and Evans blue contents, and MDA and ICP levels increased in TBI and vehicle groups in comparison with the sham group. Candesartan attenuated the TBI-induced brain water and Evans blue contents, and ICP and MDA enhancement. The neurologic score enhanced following candesartan administration, 24 hr after TBI. The blockage of AT1R may be neuroprotective by decreasing ICP associated with the reduction of lipid peroxidation, brain edema, and blood-brain barrier (BBB) permeability, which led to the improvement of neurologic outcome.

  15. Using the public health model to address unintentional injuries and TBI: A perspective from the Centers for Disease Control and Prevention (CDC).

    PubMed

    Baldwin, Grant; Breiding, Matt; Sleet, David

    2016-06-30

    Traumatic brain injury (TBI) can have long term effects on mental and physical health, and can disrupt vocational, educational, and social functioning. TBIs can range from mild to severe and their effects can last many years after the initial injury. CDC seeks to reduce the burden of TBI from unintentional injuries through a focus on primary prevention, improved recognition and management, and intervening to improve health outcomes after TBI. CDC uses a 4-stage public health model to guide TBI prevention, moving from 1) surveillance of TBI, 2) identification of risk and protective factors for TBI, 3) development and testing of evidence-based interventions, to 4) bringing effective intervention to scale through widespread adoption. CDC's unintentional injury prevention activities focus on the prevention of sports-related concussions, motor vehicle crashes, and older adult falls. For concussion prevention, CDC developed Heads Up - an awareness initiative focusing on ways to prevent a concussion in sports, and identifying how to recognize and manage potential concussions. In motor vehicle injury prevention, CDC has developed a tool (MV PICCS) to calculate the expected number of injuries prevented and lives saved using various evidence-based motor vehicle crash prevention strategies. To help prevent TBI related to older adult falls, CDC has developed STEADI, an initiative to help primary care providers identify their patients' falls risk and provide effective interventions. In the future, CDC is focused on advancing our understanding of the public health burden of TBI through improved surveillance in order to produce more comprehensive estimates of the public health burden of TBI.

  16. Amyloid pathology and axonal injury after brain trauma.

    PubMed

    Scott, Gregory; Ramlackhansingh, Anil F; Edison, Paul; Hellyer, Peter; Cole, James; Veronese, Mattia; Leech, Rob; Greenwood, Richard J; Turkheimer, Federico E; Gentleman, Steve M; Heckemann, Rolf A; Matthews, Paul M; Brooks, David J; Sharp, David J

    2016-03-01

    To image β-amyloid (Aβ) plaque burden in long-term survivors of traumatic brain injury (TBI), test whether traumatic axonal injury and Aβ are correlated, and compare the spatial distribution of Aβ to Alzheimer disease (AD). Patients 11 months to 17 years after moderate-severe TBI underwent (11)C-Pittsburgh compound B ((11)C-PiB)-PET, structural and diffusion MRI, and neuropsychological examination. Healthy aged controls and patients with AD underwent PET and structural MRI. Binding potential (BPND) images of (11)C-PiB, which index Aβ plaque density, were computed using an automatic reference region extraction procedure. Voxelwise and regional differences in BPND were assessed. In TBI, a measure of white matter integrity, fractional anisotropy, was estimated and correlated with (11)C-PiB BPND. Twenty-eight participants (9 with TBI, 9 controls, 10 with AD) were assessed. Increased (11)C-PiB BPND was found in TBI vs controls in the posterior cingulate cortex and cerebellum. Binding in the posterior cingulate cortex increased with decreasing fractional anisotropy of associated white matter tracts and increased with time since injury. Compared to AD, binding after TBI was lower in neocortical regions but increased in the cerebellum. Increased Aβ burden was observed in TBI. The distribution overlaps with, but is distinct from, that of AD. This suggests a mechanistic link between TBI and the development of neuropathologic features of dementia, which may relate to axonal damage produced by the injury. © 2016 American Academy of Neurology.

  17. Amyloid pathology and axonal injury after brain trauma

    PubMed Central

    Scott, Gregory; Ramlackhansingh, Anil F.; Edison, Paul; Hellyer, Peter; Cole, James; Veronese, Mattia; Leech, Rob; Greenwood, Richard J.; Turkheimer, Federico E.; Gentleman, Steve M.; Heckemann, Rolf A.; Matthews, Paul M.; Brooks, David J.

    2016-01-01

    Objective: To image β-amyloid (Aβ) plaque burden in long-term survivors of traumatic brain injury (TBI), test whether traumatic axonal injury and Aβ are correlated, and compare the spatial distribution of Aβ to Alzheimer disease (AD). Methods: Patients 11 months to 17 years after moderate–severe TBI underwent 11C-Pittsburgh compound B (11C-PiB)-PET, structural and diffusion MRI, and neuropsychological examination. Healthy aged controls and patients with AD underwent PET and structural MRI. Binding potential (BPND) images of 11C-PiB, which index Aβ plaque density, were computed using an automatic reference region extraction procedure. Voxelwise and regional differences in BPND were assessed. In TBI, a measure of white matter integrity, fractional anisotropy, was estimated and correlated with 11C-PiB BPND. Results: Twenty-eight participants (9 with TBI, 9 controls, 10 with AD) were assessed. Increased 11C-PiB BPND was found in TBI vs controls in the posterior cingulate cortex and cerebellum. Binding in the posterior cingulate cortex increased with decreasing fractional anisotropy of associated white matter tracts and increased with time since injury. Compared to AD, binding after TBI was lower in neocortical regions but increased in the cerebellum. Conclusions: Increased Aβ burden was observed in TBI. The distribution overlaps with, but is distinct from, that of AD. This suggests a mechanistic link between TBI and the development of neuropathologic features of dementia, which may relate to axonal damage produced by the injury. PMID:26843562

  18. Financial Capacity Following Traumatic Brain Injury: A Six-Month Longitudinal Study

    PubMed Central

    Dreer, Laura E.; DeVivo, Michael J.; Novack, Thomas A.; Marson, Daniel C.

    2015-01-01

    Objective To longitudinally investigate financial capacity (FC) following traumatic brain injury (TBI). Design Longitudinal study comparing FC in cognitively healthy adults and persons with moderate to severe TBI at time of acute hospitalization (Time 1) and at six months post injury (Time 2). Setting Inpatient brain injury rehabilitation unit. Participants Twenty healthy adult controls and 24 adult persons with moderate to severe TBI. Main Outcome Measures Participants were administered the Financial Capacity Instrument (FCI-9), a standardized instrument that measures performance on eighteen financial tasks, nine domains, and two global scores. Between and within group differences were examined for each FCI-9 domain and global scores. Using control group referenced cut scores, participants with TBI were also assigned an impairment rating (intact, marginal, or impaired) on each domain and global score. Results At Time 1, participants with TBI performed significantly below controls on the majority of financial variables tested. At Time 2, participants with TBI demonstrated within group improvement on both simple and complex financial skills, but continued to perform below adult controls on complex financial skills and both global scores. Group by time interactions were significant for five domains and both global scores. At Time 1, high percentages of participants with TBI were assigned either ‘marginal’ or ‘impaired’ ratings on the domains and global scores, with significant percentage increases of ‘intact’ ratings at Time 2. Conclusions Immediately following acute injury, persons with moderate to severe TBI show global impairment of FC. Findings indicate improvement of both simple and complex financial skills over a six month period, but continued impairment on more complex financial skills. Future studies should examine loss and recovery of FC following TBI over longer time periods and a wider range of injury severity. PMID:22369113

  19. The Effects of Shilajit on Brain Edema, Intracranial Pressure and Neurologic Outcomes following the Traumatic Brain Injury in Rat

    PubMed Central

    Khaksari, Mohammad; Mahmmodi, Reza; Shahrokhi, Nader; Shabani, Mohammad; Joukar, Siavash; Aqapour, Mobin

    2013-01-01

    Objective(s): Brain edema is one of the most serious causes of death within the first few days after trauma brain injury (TBI). In this study we have investigated the role of Shilajit on brain edema, blood-brain barrier (BBB) permeability, intracranial pressure (ICP) and neurologic outcomes following brain trauma. Materials and Methods: Diffuse traumatic brain trauma was induced in rats by drop of a 250 g weight from a 2 m high (Marmarou’s methods). Animals were randomly divided into 5 groups including sham, TBI, TBI-vehicle, TBI-Shi150 group and TBI-Shi250 group. Rats were undergone intraperitoneal injection of Shilajit and vehicle at 1, 24, 48 and 72 hr after trauma. Brain water content, BBB permeability, ICP and neurologic outcomes were finally measured. Results: Brain water and Evans blue dye contents showed significant decrease in Shilajit-treated groups compared to the TBI-vehicle and TBI groups. Intracranial pressure at 24, 48 and 72 hr after trauma had significant reduction in Shilajit-treated groups as compared to TBI-vehicle and TBI groups (P<0.001). The rate of neurologic outcomes improvement at 4, 24, 48 and 72 hr after trauma showed significant increase in Shilajit-treated groups in comparison to theTBI- vehicle and TBI groups (P <0.001). Conclusion: The present results indicated that Shilajit may cause in improvement of neurologic outcomes through decreasing brain edema, disrupting of BBB, and ICP after the TBI. PMID:23997917

  20. Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products

    PubMed Central

    Mondello, Stefania; Newsom, Kimberly J.; Yang, Zhihui; Yang, Boxuan; Kobeissy, Firas; Guingab, Joy; Glushakova, Olena; Robicsek, Steven; Heaton, Shelley; Buki, Andras; Hannay, Julia; Gold, Mark S.; Rubenstein, Richard; Lu, Xi-chun May; Dave, Jitendra R.; Schmid, Kara; Tortella, Frank; Robertson, Claudia S.; Wang, Kevin K. W.

    2014-01-01

    The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38–50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0–1 days) to late (7–10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients. PMID:24667434

  1. Validating Multidimensional Outcome Assessment Using the TBI Common Data Elements: An Analysis of the TRACK-TBI Pilot Sample.

    PubMed

    Nelson, Lindsay D; Ranson, Jana; Ferguson, Adam R; Giacino, Joseph; Okonkwo, David O; Valadka, Alex; Manley, Geoffrey; McCrea, Michael

    2017-06-08

    The Glasgow Outcome Scale-Extended (GOSE) is often the primary outcome measure in clinical trials for traumatic brain injury (TBI). Although the GOSE's capture of global function outcome has several strengths, concerns have been raised about its limited ability to identify mild disability and failure to capture the full scope of problems patients exhibit after TBI. This analysis examined the convergence of disability ratings across a multidimensional set of outcome domains in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study. The study collected measures recommended by the TBI Common Data Elements (CDE) Workgroup. Patients presenting to 3 emergency departments with a TBI of any severity enrolled in TRACK-TBI prospectively after injury; outcome measures were collected at 3 and six months postinjury. Analyses examined frequency of impairment and overlap between impairment status across the CDE outcome domains of Global Level of Functioning (GOSE), Neuropsychological (cognitive) Impairment, Psychological Status, TBI Symptoms, and Quality of Life. GOSE score correlated in the expected direction with other outcomes (M Spearman's rho = .21 and .49 with neurocognitive and self-report outcomes, respectively). The subsample in the Upper Good Recovery (GOSE 8) category appeared quite healthy across most other outcomes, although 19.0% had impaired executive functioning (Trail Making Test Part B). A significant minority of participants in the Lower Good Recovery subgroup (GOSE 7) met criteria for impairment across numerous other outcome measures. The findings highlight the multidimensional nature of TBI recovery and the limitations of applying only a single outcome measure.

  2. Epidemiology and 12-month outcomes from traumatic brain injury in australia and new zealand.

    PubMed

    Myburgh, John A; Cooper, D James; Finfer, Simon R; Venkatesh, Balasubramanian; Jones, Daryl; Higgins, Alisa; Bishop, Nicole; Higlett, Tracey

    2008-04-01

    An epidemiologic profile of traumatic brain injury (TBI) in Australia and New Zealand was obtained following the publication of international evidence-based guidelines. Adult patients with TBI admitted to the intensive care units (ICU) of major trauma centers were studied in a 6-month prospective inception cohort study. Data including mechanisms of injury, prehospital interventions, secondary insults, operative and intensive care management, and outcome assessments 12-months postinjury were collected. There were 635 patients recruited from 16 centers. The mean (+/-SD) age was 41.6 years +/- 19.6 years; 74.2% were men; 61.4% were due to vehicular trauma, 24.9% were falls in elderly patients, and 57.2% had severe TBI (Glasgow Coma Scale score brain insults were recorded in 28.5% and 34.8% underwent neurosurgical procedures before ICU admission. There was concordance with TBI and ICU practice guidelines, although intracranial pressure monitoring was used in 44.5% patients with severe TBI. Twelve-month mortality was 26.9% in all patients and 35.1% in patients with severe TBI. Favorable outcomes at 12 months were recorded in 58.8% of all patients and in 48.5% of patients with severe TBI. In Australia and New Zealand, mortality and favorable neurologic outcomes after TBI were similar to published data before the advent of evidence-based guidelines. A high incidence of prehospital secondary brain insults and an ageing population may have contributed to these outcomes. Strategies to improve outcomes from TBI should be directed at preventive public health strategies and interventions to minimize secondary brain injuries in the prehospital period.

  3. Increased CD147 (EMMPRIN) expression in the rat brain following traumatic brain injury.

    PubMed

    Wei, Ming; Li, Hong; Shang, Yanguo; Zhou, Ziwei; Zhang, Jianning

    2014-10-17

    The extracellular matrix metalloproteinase inducer (EMMPRIN), or CD147, has been known to play a key regulatory role in vascular permeability and leukocyte activation by inducing the expression of matrix metalloproteinases (MMPs). The effects of traumatic brain injury on the expression of EMMPRIN remain poorly understood. In this study, we investigated changes in EMMPRIN expression in a rat model of fluid percussion injury (FPI) and examined the potential association between EMMPRIN and MMP-9 expression. Adult male rats were subjected to FPI. EMMPRIN expression was markedly up-regulated in the brain tissue surrounding the injured region 6-48 h after TBI, as measured by immunoblot and immunohistochemistry. EMMPRIN expression was localized to inflammatory cells. The increase in EMMPRIN expression was temporally correlated with an increase in MMP-9 levels. These data demonstrate, for the first time, changes in CD147 and MMP-9 expression following TBI. These data also suggest that CD147 and MMP-9 may play a role in vascular injuries after TBI. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Insomnia symptoms and behavioural health symptoms in veterans 1 year after traumatic brain injury.

    PubMed

    Farrell-Carnahan, Leah; Barnett, Scott; Lamberty, Gregory; Hammond, Flora M; Kretzmer, Tracy S; Franke, Laura M; Geiss, Meghan; Howe, Laura; Nakase-Richardson, Risa

    2015-01-01

    Insomnia and behavioural health symptoms 1 year after traumatic brain injury (TBI) were examined in a clinical sample representative of veterans who received inpatient treatment for TBI-related issues within the Veterans Health Administration. This was a cross-sectional sub-study (n = 112) of the Polytrauma Rehabilitation Centres' traumatic brain injury model system programme. Prevalence estimates of insomnia, depression, general anxiety, nightmares, headache and substance use, stratified by injury severity, were derived. Univariate logistic regression was used to examine unadjusted effects for each behavioural health problem and insomnia by injury severity. Participants were primarily male, < 30 years old and high school educated. Twenty-nine per cent met study criteria for insomnia; those with mild TBI were significantly more likely to meet criteria (43%) than those with moderate/severe TBI (22%), χ(2)(1, n = 112) = 5.088, p ≤ 0.05. Univariable logistic regression analyses revealed depressive symptoms and general anxiety were significantly associated with insomnia symptoms after TBI of any severity. Headache and binge drinking were significantly inversely related to insomnia symptoms after moderate/severe TBI, but not MTBI. Veterans with history of TBI, of any severity, and current insomnia symptoms may be at increased risk for depression and anxiety 1 year after TBI.

  5. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury.

    PubMed

    Reifschneider, Kent; Auble, Bethany A; Rose, Susan R

    2015-07-31

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children's quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6-12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  6. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  7. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    PubMed Central

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D.; O'Neil, Brian J.; Haacke, E. Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances. PMID:26819765

  8. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    PubMed

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Severe traumatic head injury: prognostic value of brain stem injuries detected at MRI.

    PubMed

    Hilario, A; Ramos, A; Millan, J M; Salvador, E; Gomez, P A; Cicuendez, M; Diez-Lobato, R; Lagares, A

    2012-11-01

    Traumatic brain injuries represent an important cause of death for young people. The main objectives of this work are to correlate brain stem injuries detected at MR imaging with outcome at 6 months in patients with severe TBI, and to determine which MR imaging findings could be related to a worse prognosis. One hundred and eight patients with severe TBI were studied by MR imaging in the first 30 days after trauma. Brain stem injury was categorized as anterior or posterior, hemorrhagic or nonhemorrhagic, and unilateral or bilateral. Outcome measures were GOSE and Barthel Index 6 months postinjury. The relationship between MR imaging findings of brain stem injuries, outcome, and disability was explored by univariate analysis. Prognostic capability of MR imaging findings was also explored by calculation of sensitivity, specificity, and area under the ROC curve for poor and good outcome. Brain stem lesions were detected in 51 patients, of whom 66% showed a poor outcome, as expressed by the GOSE scale. Bilateral involvement was strongly associated with poor outcome (P < .05). Posterior location showed the best discriminatory capability in terms of outcome (OR 6.8, P < .05) and disability (OR 4.8, P < .01). The addition of nonhemorrhagic and anterior lesions or unilateral injuries showed the highest odds and best discriminatory capacity for good outcome. The prognosis worsens in direct relationship to the extent of traumatic injury. Posterior and bilateral brain stem injuries detected at MR imaging are poor prognostic signs. Nonhemorrhagic injuries showed the highest positive predictive value for good outcome.

  10. Histopathologic response of the immature rat to diffuse traumatic brain injury.

    PubMed

    Adelson, P D; Jenkins, L W; Hamilton, R L; Robichaud, P; Tran, M P; Kochanek, P M

    2001-10-01

    The purpose of this study was to characterize the histopathologic response of rats at postnatal day (PND) 17 following an impact-acceleration diffuse traumatic brain injury (TBI) using a 150-g/2-meter injury as previously described. This injury produces acute neurologic and physiologic derangements as well as enduring motor and Morris water maze (MWM) functional deficits. Histopathologic studies of perfusion-fixed brains were performed by gross examination and light microscopy using hematoxylin and eosin, Bielschowsky silver stain, and glial fibrillary acidic protein (GFAP) immunohistochemistry at 1, 3, 7, 28, and 90 day after injury. Gross pathologic examination revealed diffuse subarachnoid hemorrhage (SAH) at 1-3 days but minimal supratentorial intraparenchymal hemorrhage. Petechial hemorrhages were noted in ventral brainstem segments and in the cerebellum. After 1-3-day survivals, light microscopy revealed diffuse SAH and intraventricular hemorrhage (IVH), mild edema, significant axonal injury, reactive astrogliosis, and localized midline cerebellar hemorrhage. Axonal injury most commonly occurred in the long ascending and descending fiber tracts of the brainstem and occasionally in the forebrain, and was maximal at 3 days, but present until 7 days after injury. Reactive astrocytes were similarly found both in location and timing, but were also significantly identified in the hippocampus, white matter tracts, and corpus callosum. Typically, TBI produced significant diffuse SAH accompanied by cerebral and brainstem astrogliosis and axonal injury without obvious neuronal loss. Since this injury produces some pathologic changes with sustained functional deficits similar to TBI in infants and children, it should be useful for the further study of the pathophysiology and therapy of diffuse TBI and brainstem injury in the immature brain.

  11. Pathophysiology and Treatment of Memory Dysfunction after Traumatic Brain Injury

    PubMed Central

    Paterno, Rosalia; Folweiler, Kaitlin A.; Cohen, Akiva S.

    2018-01-01

    Memory is fundamental to everyday life, and cognitive impairments resulting from traumatic brain injury (TBI) have devastating effects on TBI survivors. A contributing component to memory impairments caused by TBI are alterations in the neural circuits associated with memory function. In this review, we aim to bring together experimental findings that characterize behavioral memory deficits and the underlying pathophysiology of memory-involved circuits after TBI. While there is little doubt that TBI causes memory and cognitive dysfunction, it is difficult to conclude which memory phase i.e., encoding, maintenance or retrieval is specifically altered by TBI. This is most likely due to variation in behavioral protocols and experimental models. Additionally we review a selection of experimental treatments that hold translational potential to mitigate memory dysfunction following injury. PMID:28500417

  12. In Vivo Characterization of Traumatic Brain Injury Neuropathology with Structural and Functional Neuroimaging

    PubMed Central

    LEVINE, BRIAN; FUJIWARA, ESTHER; O’CONNOR, CHARLENE; RICHARD, NADINE; KOVACEVIC, NATASA; MANDIC, MARINA; RESTAGNO, ADRIANA; EASDON, CRAIG; ROBERTSON, IAN H.; GRAHAM, SIMON J.; CHEUNG, GORDON; GAO, FUQIANG; SCHWARTZ, MICHAEL L.; BLACK, SANDRA E.

    2007-01-01

    Quantitative neuroimaging is increasingly used to study the effects of traumatic brain injury (TBI) on brain structure and function. This paper reviews quantitative structural and functional neuroimaging studies of patients with TBI, with an emphasis on the effects of diffuse axonal injury (DAI), the primary neuropathology in TBI. Quantitative structural neuroimaging has evolved from simple planometric measurements through targeted region-of-interest analyses to whole-brain analysis of quantified tissue compartments. Recent studies converge to indicate widespread volume loss of both gray and white matter in patients with moderate-to-severe TBI. These changes can be documented even when patients with focal lesions are excluded. Broadly speaking, performance on standard neuropsychological tests of speeded information processing are related to these changes, but demonstration of specific brain-behavior relationships requires more refined experimental behavioral measures. The functional consequences of these structural changes can be imaged with activation functional neuroimaging. Although this line of research is at an early stage, results indicate that TBI causes a more widely dispersed activation in frontal and posterior cortices. Further progress in analysis of the consequences of TBI on neural structure and function will require control of variability in neuropathology and behavior. PMID:17020478

  13. Pathophysiology Associated with Traumatic Brain Injury: Current Treatments and Potential Novel Therapeutics.

    PubMed

    Pearn, Matthew L; Niesman, Ingrid R; Egawa, Junji; Sawada, Atsushi; Almenar-Queralt, Angels; Shah, Sameer B; Duckworth, Josh L; Head, Brian P

    2017-05-01

    Traumatic brain injury (TBI) is one of the leading causes of death of young people in the developed world. In the United States alone, 1.7 million traumatic events occur annually accounting for 50,000 deaths. The etiology of TBI includes traffic accidents, falls, gunshot wounds, sports, and combat-related events. TBI severity ranges from mild to severe. TBI can induce subtle changes in molecular signaling, alterations in cellular structure and function, and/or primary tissue injury, such as contusion, hemorrhage, and diffuse axonal injury. TBI results in blood-brain barrier (BBB) damage and leakage, which allows for increased extravasation of immune cells (i.e., increased neuroinflammation). BBB dysfunction and impaired homeostasis contribute to secondary injury that occurs from hours to days to months after the initial trauma. This delayed nature of the secondary injury suggests a potential therapeutic window. The focus of this article is on the (1) pathophysiology of TBI and (2) potential therapies that include biologics (stem cells, gene therapy, peptides), pharmacological (anti-inflammatory, antiepileptic, progrowth), and noninvasive (exercise, transcranial magnetic stimulation). In final, the review briefly discusses membrane/lipid rafts (MLR) and the MLR-associated protein caveolin (Cav). Interventions that increase Cav-1, MLR formation, and MLR recruitment of growth-promoting signaling components may augment the efficacy of pharmacologic agents or already existing endogenous neurotransmitters and neurotrophins that converge upon progrowth signaling cascades resulting in improved neuronal function after injury.

  14. New perspectives on central and peripheral immune responses to acute traumatic brain injury

    PubMed Central

    2012-01-01

    Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain. PMID:23061919

  15. Sleep-wake disturbances after traumatic brain injury.

    PubMed

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Substance use, criminal behaviour and psychiatric symptoms following childhood traumatic brain injury: findings from the ALSPAC cohort.

    PubMed

    Kennedy, Eleanor; Heron, Jon; Munafò, Marcus

    2017-10-01

    Recent research suggests a link between traumatic brain injury (TBI) in youth and later risk behaviour. We explored the association between mild TBI and psychiatric symptoms, substance use and criminal behaviour using data from a longitudinal birth cohort. Participants with mild TBI (n = 800), orthopaedic injuries (n = 2305) and no injuries (n = 8307) were identified from self and parent reports up to age 16 years. Self-report measures of substance use (alcohol, tobacco and cannabis) and criminal behaviours, and parent-reported psychiatric symptoms were collected at age 17 years. Analyses were adjusted for pre-birth and early childhood confounders. Participants with a TBI showed increased odds of hazardous alcohol use compared to those with no injury and those with an orthopaedic injury. Relative to those with no injury, participants with a TBI showed increased odds of problematic use of tobacco and cannabis, being in trouble with the police and having more parent-reported conduct problems. Sustaining either a TBI or an orthopaedic injury increased the odds of offending behaviour compared to having no injuries. There was no clear evidence of association between orthopaedic injury and the other risk outcomes. The increased odds of risk behaviour associated with TBI relative to no injury replicated previous research. However, the inclusion of a non-brain-related injury group adds evidence for a possible causal pathway between mild TBI in youth and later hazardous alcohol use only. This highlights the importance of including an additional negative control injury group in mild TBI research.

  17. TBI Assessment of Readiness Using a Gait Evaluation Test (TARGET): Development of a Portable mTBI Screening Device

    DTIC Science & Technology

    2017-05-01

    AWARD NUMBER: W81XWH-15-1-0094 TITLE: TBI Assessment of Readiness Using a Gait Evaluation Test (TARGET): Development of a Portable mTBI Screening...Annual 3. DATES COVERED 1 May 2016 - 30 Apr 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER “TBI Assessment of Readiness Using a Gait Evaluation ...service members sustaining some form of traumatic brain injury (TBI) over the past 14 years, the lack of an objective measurement tool for evaluation

  18. The Power of Cross-Disciplinary Teams for Developing First Responder Training in TBI

    ERIC Educational Resources Information Center

    Shackelford, Jo L.; Cappiccie, Amy

    2016-01-01

    Misunderstanding of the symptoms of traumatic brain injury (TBI) often leaves first responders ill-equipped to handle encounters involving subjects with brain injury. This paper details a cross-disciplinary project to develop and disseminate a training curriculum designed to increase first responders' knowledge of and skills with TBI survivors.…

  19. Recovery of White Matter following Pediatric Traumatic Brain Injury Depends on Injury Severity.

    PubMed

    Genc, Sila; Anderson, Vicki; Ryan, Nicholas P; Malpas, Charles B; Catroppa, Cathy; Beauchamp, Miriam H; Silk, Timothy J

    2017-02-15

    Previous studies in pediatric traumatic brain injury (TBI) have been variable in describing the effects of injury severity on white-matter development. The present study used diffusion tensor imaging to investigate prospective sub-acute and longitudinal relationships between early clinical indicators of injury severity, diffusion metrics, and neuropsychological outcomes. Pediatric patients with TBI underwent magnetic resonance imaging (MRI) (n = 78, mean [M] = 10.56, standard deviation [SD] = 2.21 years) at the sub-acute stage after injury (M = 5.55, SD = 3.05 weeks), and typically developing children were also included and imaged (n = 30, M = 10.60, SD = 2.88 years). A sub-set of the patients with TBI (n = 15) was followed up with MRI 2 years post-injury. Diffusion MRI images were acquired at sub-acute and 2-year follow-up time points and analyzed using Tract-Based Spatial Statistics. At the sub-acute stage, mean diffusivity and axial diffusivity were significantly higher in the TBI group compared with matched controls (p < 0.05). TBI severity significantly predicted diffusion profiles at the sub-acute and 2-year post-injury MRI. Patients with more severe TBI also exhibited poorer information processing speed at 6-months post-injury, which in turn correlated with their diffusion metrics. These findings highlight that the severity of the injury not only has an impact on white-matter microstructure, it also impacts its recovery over time. Moreover, findings suggest that sub-acute microstructural changes may represent a useful prognostic marker to identify children at elevated risk for longer term deficits.

  20. 78 FR 76196 - Secondary Service Connection for Diagnosable Illnesses Associated With Traumatic Brain Injury

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ...The Department of Veterans Affairs (VA) amends its adjudication regulations concerning service connection. This final rule acts upon a report of the National Academy of Sciences, Institute of Medicine (IOM), Gulf War and Health, Volume 7: Long-Term Consequences of Traumatic Brain Injury, regarding the association between traumatic brain injury (TBI) and five diagnosable illnesses. This amendment establishes that if a veteran who has a service-connected TBI also has one of these diagnosable illnesses, then that illness will be considered service connected as secondary to the TBI.

  1. Groupings of Persons With Traumatic Brain Injury: A New Approach to Classifying Traumatic Brain Injury in the Post-Acute Period.

    PubMed

    Sherer, Mark; Nick, Todd G; Sander, Angelle M; Melguizo, Maria; Hanks, Robin; Novack, Thomas A; Tulsky, David; Kisala, Pamela; Luo, Chunqiao; Tang, Xinyu

    To (1) identify groups of persons with traumatic brain injury (TBI) who differ on 12 dimensions of cognitive function: cognitive, emotional, and physical symptoms; personal strengths; physical functioning; environmental supports; and performance validity; and (2) describe patterns of differences among the groups on these dimensions and on participation outcome. Three centers for rehabilitation of persons with TBI. A total of 504 persons with TBI living in the community who were an average (standard deviation) of 6.3 (6.8) years postinjury and who had capacity to give consent, could be interviewed and tested in English, and were able to participate in an assessment lasting up to 4 hours. Observational study of a convenience sample of persons with TBI. Selected scales from the Traumatic Brain Injury Quality of Life measures, Neurobehavioral Symptom Inventory, Economic Quality of Life Scale, Family Assessment Device General Functioning Scale, measures of cognitive function, Word Memory Test, and Participation Assessment with Recombined Tools-Objective (PART-O) scale. Cluster analysis identified 5 groups of persons with TBI who differed in clinically meaningful ways on the 12 dimension scores and the PART-O scale. Cluster groupings identified in this study could assist clinicians with case conceptualization and treatment planning.

  2. Effects of pregabalin on brain edema, neurologic and histologic outcomes in experimental traumatic brain injury.

    PubMed

    Shamsi Meymandi, Manzumeh; Soltani, Zahra; Sepehri, Gholamreza; Amiresmaili, Sedigheh; Farahani, Fatemeh; Moeini Aghtaei, Mohammadmehdi

    2018-05-03

    Brain edema and increased intracranial pressure (ICP) are among the main causes of neurological disturbance and mortality following traumatic brain injury (TBI). Since pregabalin neuroprotective effects have been shown, this study was performed to evaluate the possible neuroprotective effects of pregabalin in experimental TBI of male rats. Adult male Wistar rats were divided into 4 groups: sham, vehicle, pregabalin 30 mg/kg and pregabalin 60 mg/kg. TBI was induced in vehicle and pregabalin groups by Marmarou method. Pregabalin was administered 30 min after TBI. Sham and vehicle groups received saline. Brain water and Evans blue content and histopathological changes were evaluated 24, 5 and 24 h after TBI, respectively. The ICP and neurological outcomes (veterinary coma scale, VCS) were recorded before, 1 h and 24 h post TBI. The results showed a significant reduction in brain water content and ICP, and a significant increase in VCS of pregabalin group (60 mg/kg) as compared to vehicle group (P < 0.05). Also, pregabalin reduced brain edema and apoptosis score as compared to vehicle group. Post TBI pregabalin administration revealed a delayed but significant improvement in ICP and neurological outcomes in experimental TBI. The underlying mechanism(s) was not determined and needs further investigation. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.

    PubMed

    Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun

    2017-04-01

    A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

  4. Hybrid Diffusion Imaging in Mild Traumatic Brain Injury.

    PubMed

    Wu, Yu-Chien; Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Kodiweera, Chandana; Flashman, Laura A; McAllister, Thomas

    2018-05-22

    Mild traumatic brain injury (mTBI) is an important public health problem. Although conventional medical imaging techniques can detect moderate-to-severe injuries, they are relatively insensitive to mTBI. In this study, we used hybrid diffusion imaging (HYDI) to detect white-matter alterations in nineteen patients with mTBI and 23 other trauma-control patients. Within 15 days (SD=10) of brain injury, all subjects underwent magnetic-resonance HYDI and were assessed with battery of neuropsychological tests of sustained attention, memory, and executive function. Tract-based spatial statistics (TBSS) were used for voxelwise statistical analyses within the white-matter skeleton to study between-group differences in diffusion metrics, within-group correlations between diffusion metrics and clinical outcomes, and between group interaction effects. The advanced diffusion imaging techniques including neurite orientation dispersion and density imaging (NODDI) and q-space analyses appeared to be more sensitive then classic diffusion tensor imaging (DTI). Only NODDI-derived intra-axonal volume fraction (Vic) demonstrated significant group differences (i.e., 5% to 9% lower in the injured brain). Within the mTBI group, Vic and a q-space measure, P0, correlated with 6 of 10 neuropsychological tests including measures of attention, memory, and executive function. In addition, the direction of correlations differed significantly between the groups (R2 > 0.71 and Pinteration < 0.03). Specifically, in the control group, higher Vic and P0 were associated with better performances on clinical assessments, whereas in the mTBI group, higher Vic and P0 were associated with worse performances with correlation coefficients > 0.83. In summary, the NODDI-derived axonal density index and q-space measure for tissue restriction demonstrated superior sensitivity to white-matter changes shortly after mTBI

  5. The influence of acceleration loading curve characteristics on traumatic brain injury.

    PubMed

    Post, Andrew; Blaine Hoshizaki, T; Gilchrist, Michael D; Brien, Susan; Cusimano, Michael D; Marshall, Shawn

    2014-03-21

    To prevent brain trauma, understanding the mechanism of injury is essential. Once the mechanism of brain injury has been identified, prevention technologies could then be developed to aid in their prevention. The incidence of brain injury is linked to how the kinematics of a brain injury event affects the internal structures of the brain. As a result it is essential that an attempt be made to describe how the characteristics of the linear and rotational acceleration influence specific traumatic brain injury lesions. As a result, the purpose of this study was to examine the influence of the characteristics of linear and rotational acceleration pulses and how they account for the variance in predicting the outcome of TBI lesions, namely contusion, subdural hematoma (SDH), subarachnoid hemorrhage (SAH), and epidural hematoma (EDH) using a principal components analysis (PCA). Monorail impacts were conducted which simulated falls which caused the TBI lesions. From these reconstructions, the characteristics of the linear and rotational acceleration were determined and used for a PCA analysis. The results indicated that peak resultant acceleration variables did not account for any of the variance in predicting TBI lesions. The majority of the variance was accounted for by duration of the resultant and component linear and rotational acceleration. In addition, the components of linear and rotational acceleration characteristics on the x, y, and z axes accounted for the majority of the remainder of the variance after duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. First in vivo traumatic brain injury imaging via magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  7. Sex-related differences in striatal dopaminergic system after traumatic brain injury.

    PubMed

    Xu, Xiupeng; Cao, Shengwu; Chao, Honglu; Liu, Yinlong; Ji, Jing

    2016-06-01

    Several studies have demonstrated alterations in the dopamine (DA) system after traumatic brain injury (TBI). Additionally, the existence of significant sex-related differences in the dopaminergic system has long been recognized. Accordingly, the purpose of the present study was to investigate whether TBI would differentially alter, in female and male mice, the expression and the function of the striatal vesicular monoamine transporter-2 (VMAT-2), an important DA transporter. After controlled cortical impact (CCI) injury, female mice showed significantly lower striatal DA concentrations and K(+)-evoked DA output. By contrast, no significant sex-related differences were observed in the mRNA and protein levels of striatal dopamine transporter (DAT) and VMAT-2 and the methamphetamine (MA)-evoked DA output. These results demonstrated clear sex-related differences in striatal VMAT-2 function in response to TBI and suggested that female mice may be more sensitive to the TBI-induced inhibition of the VMAT-2 function, as indicated by the greater degree of deficits observed when the VMAT-2 DA-storage function was inhibited by TBI. Moreover, the TBI-induced suppression of locomotion was more pronounced than female mice. Such findings highlight the need for sex-specific considerations when examining differences among brain injury conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    PubMed

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. Copyright © 2015 the authors 0270-6474/15/350518-09$15.00/0.

  9. Preservation of General Intelligence following Traumatic Brain Injury: Contributions of the Met66 Brain-Derived Neurotrophic Factor

    PubMed Central

    Barbey, Aron K.; Colom, Roberto; Paul, Erick; Forbes, Chad; Krueger, Frank; Goldman, David; Grafman, Jordan

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) promotes survival and synaptic plasticity in the human brain. The Val66Met polymorphism of the BDNF gene interferes with intracellular trafficking, packaging, and regulated secretion of this neurotrophin. The human prefrontal cortex (PFC) shows lifelong neuroplastic adaption implicating the Val66Met BDNF polymorphism in the recovery of higher-order executive functions after traumatic brain injury (TBI). In this study, we examined the effect of this BDNF polymorphism on the preservation of general intelligence following TBI. We genotyped a sample of male Vietnam combat veterans (n = 156) consisting of a frontal lobe lesion group with focal penetrating head injuries for the Val66Met BDNF polymorphism. Val/Met did not differ from Val/Val genotypes in general cognitive ability before TBI. However, we found substantial average differences between these groups in general intelligence (≈ half a standard deviation or 8 IQ points), verbal comprehension (6 IQ points), perceptual organization (6 IQ points), working memory (8 IQ points), and processing speed (8 IQ points) after TBI. These results support the conclusion that Val/Met genotypes preserve general cognitive functioning, whereas Val/Val genotypes are largely susceptible to TBI. PMID:24586380

  10. Mathematical Models of Blast-Induced TBI: Current Status, Challenges, and Prospects

    PubMed Central

    Gupta, Raj K.; Przekwas, Andrzej

    2013-01-01

    Blast-induced traumatic brain injury (TBI) has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic, and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast-induced TBI, identify research gaps, and recommend future developments. A brief overview of blast wave physics, injury biomechanics, and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation, and potential applications of the model for prevention and protection against blast wave TBI. PMID:23755039

  11. Transcranial Low-Level Laser (Light) Therapy for Brain Injury

    PubMed Central

    Thunshelle, Connor

    2016-01-01

    Abstract Background: Low-level laser therapy (LLLT) or photobiomodulation (PBM) is a possible treatment for brain injury, including traumatic brain injury (TBI). Methods: We review the fundamental mechanisms at the cellular and molecular level and the effects on the brain are discussed. There are several contributing processes that have been proposed to lead to the beneficial effects of PBM in treating TBI such as stimulation of neurogenesis, a decrease in inflammation, and neuroprotection. Both animal and clinical trials for ischemic stroke are outlined. A number of articles have shown how transcranial LLLT (tLLLT) is effective at increasing memory, learning, and the overall neurological performance in rodent models with TBI. Results: Our laboratory has conducted three different studies on the effects of tLLLT on mice with TBI. The first studied pulsed against continuous laser irradiation, finding that 10 Hz pulsed was the best. The second compared four different wavelengths, discovering only 660 and 810 nm to have any effectiveness, whereas 732 and 980 nm did not. The third looked at varying regimens of daily laser treatments (1, 3, and 14 days) and found that 14 laser applications was excessive. We also review several studies of the effects of tLLLT on neuroprogenitor cells, brain-derived neurotrophic factor and synaptogenesis, immediate early response knockout mice, and tLLLT in combination therapy with metabolic inhibitors. Conclusions: Finally, some clinical studies in TBI patients are covered. PMID:28001759

  12. Parental perspectives on recovery and social reintegration after pediatric traumatic brain injury.

    PubMed

    Prigatano, George P; Gray, Jennifer

    2008-01-01

    To determine the validity of parental ratings of their child's overall recovery and social reintegration after pediatric traumatic brain injury (TBI). Primary care hospital/medical center. Ninety-nine children aged 6 to 16 years (80 with TBI and 19 orthopedic trauma controls) evaluated as outpatients. Parental ratings of overall recovery and social reintegration; neuropsychological test performance. Severity of injury correlated with postacute parental ratings of the child's overall recovery (r = -0.498, N = 84, P = .001) and social reintegration (r = -0.507, N = 84, P = .001). A similar correlation was observed between TBI severity and a known "objective" marker of recovery (Wechsler Intelligence Scale for Children-III Coding subtest; r = -0.503, N = 84, P = .001). The present findings support the concurrent validity of parental perspectives of a child's overall recovery and social reintegration after pediatric TBI. Incorporating these views may assist in the rehabilitation of children following brain injury. Parental reasons for judging a child's recovery as "incomplete" may differ as a function of severity of injury.

  13. Aging with a traumatic brain injury: Could behavioral morbidities and endocrine symptoms be influenced by microglial priming?

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Muccigrosso, Megan M; Reddaway, Jack T; Adelson, P David; Godbout, Jonathan P; Lifshitz, Jonathan

    2017-01-01

    A myriad of factors influence the developmental and aging process and impact health and life span. Mounting evidence indicates that brain injury, even moderate injury, can lead to lifetime of physical and mental health symptoms. Therefore, the purpose of this mini-review is to discuss how recovery from traumatic brain injury (TBI) depends on age-at-injury and how aging with a TBI affects long-term recovery. TBI initiates pathophysiological processes that dismantle circuits in the brain. In response, reparative and restorative processes reorganize circuits to overcome the injury-induced damage. The extent of circuit dismantling and subsequent reorganization depends as much on the initial injury parameters as other contributing factors, such as genetics and age. Age-at-injury influences the way the brain is able to repair itself, as a result of developmental status, extent of cellular senescence, and injury-induced inflammation. Moreover, endocrine dysfunction can occur with TBI. Depending on the age of the individual at the time of injury, endocrine dysfunction may disrupt growth, puberty, influence social behaviors, and possibly alter the inflammatory response. In turn, activation of microglia, the brain's immune cells, after injury may continue to fuel endocrine dysfunction. With age, the immune system develops and microglia become primed to subsequent challenges. Sustained inflammation and microglial activation can continue for weeks to months post-injury. This prolonged inflammation can influence developmental processes, behavioral performance and age-related decline. Overall, brain injury may influence the aging process and expedite glial and neuronal alterations that impact mental health. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A mild traumatic brain injury in mice produces lasting deficits in brain metabolism.

    PubMed

    Lyons, Danielle N; Vekaria, Hemendra; Macheda, Teresa; Bakshi, Vikas; Powell, David K; Gold, Brian T; Lin, Ai-Ling; Sulllivan, Pat; Bachstetter, Adam D

    2018-05-29

    Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (ATP production) and state-V (complex-I) driven mitochondrial respiration was found at 1-month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at 1-month post injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid (NAA), and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyper- perfusion, as measured by a pseudo-continuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration following a mild TBI. Magnetic resonance spectroscopy provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.

  15. Association Between Traumatic Brain Injury and Risk of Posttraumatic Stress Disorder in Active-Duty Marines

    DTIC Science & Technology

    2013-01-01

    traumatic brain injury (TBI) is a risk factor for posttraumatic stress disorder ( PTSD ) has been difficult to determine because of the prevalence of...Qualification Test; CAPS, Clinician-Administered PTSD Scale; PTSD , posttraumatic stress disorder ; TBI, traumatic brain injury. a For the zeromodel, base...New onset and persistent symptoms of post - traumatic stress disorder self reported after deployment and combat exposures. BMJ.

  16. Traumatic brain injury impairs small-world topology

    PubMed Central

    Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.

    2013-01-01

    Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068

  17. Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.

    PubMed

    Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H

    2015-08-01

    Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.

  18. Loss of Acid Sensing Ion Channel-1a and Bicarbonate Administration Attenuate the Severity of Traumatic Brain Injury

    PubMed Central

    Yin, Terry; Lindley, Timothy E.; Albert, Gregory W.; Ahmed, Raheel; Schmeiser, Peter B.; Grady, M. Sean; Howard, Matthew A.; Welsh, Michael J.

    2013-01-01

    Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 − after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 − administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI. PMID:23991103

  19. Wireless Intracranial Pressure Sensors for the Assessment of Traumatic Brain Injury

    NASA Astrophysics Data System (ADS)

    Meng, Xu

    A significant cause of death and long term disability due to head injuries and pathological conditions is an elevation in the intracranial pressure (ICP). ICP measurements before and after the injury in a completely closed-head environment have significant research value, particularly during the acute post-injury period. With the current technology, a tethered fiber optic probe penetrates the brain, and therefore can only remain implanted for relatively short time periods. The goal of this research was to evaluate the dynamic performances of both AICP (previously designed) and digital ICP (DICP) (newly designed) devices in different traumatic brain injury (TBI) models: a swine model of closed-head rotational injury and a rat model of closed-head single and repetitive blast injury. The uniqueness of this work is accentuated by the first time in-vivo studies of dynamic ICP changes using custom-built ICP sensors implanted in two different TBI models. Following implant, baseline ICP readings were relatively stable prior to injury and closed-head rotation TBI induced a rapid and extreme ICP spike occurring directly upon injury. The acute elevation in ICP generally lasted for 40-60 minutes, followed by a gradual decline to a persistently maintained elevated level over several hours post-injury. The AICP devices were redesigned for the study of ICP variation in a rat model of single and repetitive blast induced TBI (bTBI) for seven days and the results revealed the ICP changes in a week under different blast overpressure (BOP) exposure conditions with respect to the peak pressure and the numbers of occurrences of BOP. In addition, a novel TBI in-vitro model was proposed to induce a BOP similar to that in the one measured in the animal's head generated by shock tube for the study of immediate neuron response to BOP in a small Petri dish. This research highlights the utility of wireless ICP devices as a tool to diagnose and track long-term ICP changes following TBI in a

  20. Prognostic value of major extracranial injury in traumatic brain injury: an individual patient data meta-analysis in 39,274 patients.

    PubMed

    van Leeuwen, Nikki; Lingsma, Hester F; Perel, Pablo; Lecky, Fiona; Roozenbeek, Bob; Lu, Juan; Shakur, Haleema; Weir, James; Steyerberg, Ewout W; Maas, Andrew I R

    2012-04-01

    Major extracranial injury (MEI) is common in traumatic brain injury (TBI) patients, but the effect on outcome is controversial. To assess the prognostic value of MEI on mortality after TBI in an individual patient data meta-analysis of 3 observational TBI studies (International Mission on Prognosis and Clinical Trial Design in TBI [IMPACT]), a randomized controlled trial (Corticosteroid Randomization After Significant Head Injury [CRASH]), and a trauma registry (Trauma Audit and Research Network [TARN]). MEI (extracranial injury with an Abbreviated Injury Scale ≥ 3 or requiring hospital admission) was related to mortality with logistic regression analysis, adjusted for age, Glasgow Coma Scale motor score, and pupil reactivity and stratified by TBI severity. We pooled odds ratios (ORs) with random-effects meta-analysis. We included 39,274 patients. Mortality was 25%, and 32% had MEI. MEI was a strong predictor for mortality in TARN, with adjusted odds ratios of 2.81 (95% confidence interval [CI], 2.44-3.23) in mild, 2.18 (95% CI, 1.80-2.65) in moderate, and 2.14 (95% CI, 1.95-2.35) in severe TBI patients. The prognostic effect was smaller in IMPACT and CRASH, with pooled adjusted odds ratios of 2.14 (95% CI, 0.93-4.91) in mild, 1.46 (95% CI, 1.14-1.85) in moderate, and 1.18 (95% CI, 1.03-1.55) in severe TBI. When patients who died within 6 hours after injury were excluded from TARN, the effect of MEI was comparable with IMPACT and CRASH. MEI is an important prognostic factor for mortality in TBI patients. However, the effect varies by population, which explains the controversy in the literature. The strength of the effect is smaller in patients with more severe brain injury and depends on time of inclusion in a study.

  1. A SPECT study of language and brain reorganization three years after pediatric brain injury.

    PubMed

    Chiu Wong, Stephanie B; Chapman, Sandra B; Cook, Lois G; Anand, Raksha; Gamino, Jacquelyn F; Devous, Michael D

    2006-01-01

    Using single photon emission computed tomography (SPECT), we investigated brain plasticity in children 3 years after sustaining a severe traumatic brain injury (TBI). First, we assessed brain perfusion patterns (i.e., the extent of brain blood flow to regions of the brain) at rest in eight children who suffered severe TBI as compared to perfusion patterns in eight normally developing children. Second, we examined differences in perfusion between children with severe TBI who showed good versus poor recovery in complex discourse skills. Specifically, the children were asked to produce and abstract core meaning for two stories in the form of a lesson. Inconsistent with our predictions, children with severe TBI showed areas of increased perfusion as compared to normally developing controls. Adult studies have shown the reverse pattern with TBI associated with reduced perfusion. With regard to the second aim and consistent with previously identified brain-discourse relations, we found a strong positive association between perfusion in right frontal regions and discourse abstraction abilities, with higher perfusion linked to better discourse outcomes and lower perfusion linked to poorer discourse outcomes. Furthermore, brain-discourse patterns of increased perfusion in left frontal regions were associated with lower discourse abstraction ability. The results are discussed in terms of how brain changes may represent adaptive and maladaptive plasticity. The findings offer direction for future studies of brain plasticity in response to neurocognitive treatments.

  2. FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER DISRUPTION, AND REDUCES MMP9 GENE EXPRESSION IN A RAT MODEL OF JUVENILE TRAUMATIC BRAIN INJURY

    PubMed Central

    Russell, K. L.; Berman, N. E. J.; Gregg, P. R. A.; Levant, B.

    2014-01-01

    SUMMARY The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil (2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage 30 minutes prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9h gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. PMID:24342130

  3. Fish oil improves motor function, limits blood-brain barrier disruption, and reduces Mmp9 gene expression in a rat model of juvenile traumatic brain injury.

    PubMed

    Russell, K L; Berman, N E J; Gregg, P R A; Levant, B

    2014-01-01

    The effects of an oral fish oil treatment regimen on sensorimotor, blood-brain barrier, and biochemical outcomes of traumatic brain injury (TBI) were investigated in a juvenile rat model. Seventeen-day old Long-Evans rats were given a 15mL/kg fish oil (2.01g/kg EPA, 1.34g/kg DHA) or soybean oil dose via oral gavage 30min prior to being subjected to a controlled cortical impact injury or sham surgery, followed by daily doses for seven days. Fish oil treatment resulted in less severe hindlimb deficits after TBI as assessed with the beam walk test, decreased cerebral IgG infiltration, and decreased TBI-induced expression of the Mmp9 gene one day after injury. These results indicate that fish oil improved functional outcome after TBI resulting, at least in part from decreased disruption of the blood-brain barrier through a mechanism that includes attenuation of TBI-induced expression of Mmp9. © 2013 Elsevier Ltd. All rights reserved.

  4. Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development.

    PubMed

    Thelin, Eric Peter; Carpenter, Keri L H; Hutchinson, Peter J; Helmy, Adel

    2017-03-01

    Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.

  5. The importance of structural anisotropy in computational models of traumatic brain injury.

    PubMed

    Carlsen, Rika W; Daphalapurkar, Nitin P

    2015-01-01

    Understanding the mechanisms of injury might prove useful in assisting the development of methods for the management and mitigation of traumatic brain injury (TBI). Computational head models can provide valuable insight into the multi-length-scale complexity associated with the primary nature of diffuse axonal injury. It involves understanding how the trauma to the head (at the centimeter length scale) translates to the white-matter tissue (at the millimeter length scale), and even further down to the axonal-length scale, where physical injury to axons (e.g., axon separation) may occur. However, to accurately represent the development of TBI, the biofidelity of these computational models is of utmost importance. There has been a focused effort to improve the biofidelity of computational models by including more sophisticated material definitions and implementing physiologically relevant measures of injury. This paper summarizes recent computational studies that have incorporated structural anisotropy in both the material definition of the white matter and the injury criterion as a means to improve the predictive capabilities of computational models for TBI. We discuss the role of structural anisotropy on both the mechanical response of the brain tissue and on the development of injury. We also outline future directions in the computational modeling of TBI.

  6. Blast traumatic brain injury induced cognitive deficits are attenuated by pre- or post-injury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4

    PubMed Central

    Tweedie, David; Rachmany, Lital; Rubovitch, Vardit; Li, Yazhou; Holloway, Harold W.; Lehrmann, Elin; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Hoffer, Barry J.; Pick, Chaim G.; Greig, Nigel H.

    2015-01-01

    Background Blast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently there are no approved drugs for blast brain injury. Methods Exendin-4, administered subcutaneously, was evaluated as a pre-treatment (48 hours) and post-injury treatment (2 hours) on neurodegeneration, behaviors and gene expressions in a murine open field model of blast injury. Results B-TBI induced neurodegeneration, changes in cognition and genes expressions linked to dementia disorders. Exendin-4, administered pre- or post-injury ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7–14 and attenuated genes regulated by blast at day 14 post-injury. Conclusions The present data suggest shared pathological processes between concussive and B-TBI, with endpoints amenable to beneficial therapeutic manipulation by exendin-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiological studies of Barnes and co-workers who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life. PMID:26327236

  7. A qualitative investigation of masculine identity after traumatic brain injury.

    PubMed

    MacQueen, Ruth; Fisher, Paul; Williams, Deirdre

    2018-04-30

    Men are twice as likely as women to experience a traumatic brain injury (TBI), suggesting that aspects of masculine identity contribute to how people acquire their brain injuries. Research also suggests that masculine identity impacts on how people manage their health experiences. The current study aimed to explore the experience of masculine identity following TBI. Individual interviews were conducted with 10 men aged 21-67 years who had experienced a TBI. All were living in the community. Interpretative phenomenological analysis was used to consider lived experiences and to explore the meaning of the TBI experience in relation to masculine identity. Three superordinate themes emerged from the analysis: doing life and relationships differently, self-perceptions and the perceived view of others, and managing the impact of TBI as a man. These themes are considered in relation to how participants' experiences interacted with dominant social ideals of masculine identity. The findings highlighted how masculine identity may be a valuable aspect of self in considering threats to and reconstruction of self-identity after TBI. Aspects of gender identity should be considered in order to promote engagement, support adjustment and achieve meaningful outcomes in rehabilitation.

  8. Effect of binasal occlusion (BNO) and base-in prisms on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).

    PubMed

    Yadav, Naveen K; Ciuffreda, Kenneth J

    2014-01-01

    To assess quantitatively the effect and relative contribution of binasal occlusion (BNO) and base-in prisms (BI) on visually-evoked potential (VEP) responsivity in persons with mild traumatic brain injury (mTBI) and the symptom of visual motion sensitivity (VMS), as well as in visually-normal (VN) individuals. Subjects were comprised of 20 VN adults and 15 adults with mTBI and VMS. There were four test conditions: (1) conventional pattern VEP, which served as the baseline comparison condition; (2) VEP with BNO alone; (3) VEP with 2 pd BI prisms before each eye; and (4) VEP with the above BNO and BI prism combination. In mTBI, the mean VEP amplitude increased significantly in nearly all subjects (∼90%) with BNO alone. In contrast, in VN, it decreased significantly with BNO alone in all subjects (100%), as compared to the other test conditions. These objective findings were consistent with improvements in visual impressions and sensorimotor tasks in the group with mTBI. Latency remained within normal limits under all test conditions in both groups. Only the BNO condition demonstrated significant, but opposite and consistent, directional effects on the VEP amplitude in both groups. The BNO-VEP test condition may be used clinically for the objectively-based, differential diagnosis of persons suspected of having mTBI and VMS from the VNs.

  9. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers

    PubMed Central

    Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-01-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. PMID:27251042

  10. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury.

    PubMed

    Spain, Aisling; Daumas, Stephanie; Lifshitz, Jonathan; Rhodes, Jonathan; Andrews, Peter J D; Horsburgh, Karen; Fowler, Jill H

    2010-08-01

    Mild traumatic brain injury (TBI) accounts for up to 80% of clinical TBI and can result in cognitive impairment and white matter damage that may develop and persist over several years. Clinically relevant models of mild TBI for investigation of neurobiological changes and the development of therapeutic strategies are poorly developed. In this study we investigated the temporal profile of axonal and somal injury that may contribute to cognitive impairments in a mouse model of mild TBI. Neuronal perikaryal damage (hematoxylin and eosin and Fluoro-Jade C), myelin integrity (myelin basic protein and myelin-associated glycoprotein), and axonal damage (amyloid precursor protein), were evaluated by immunohistochemistry at 4 h, 24 h, 72 h, 4 weeks, and 6 weeks after mild lateral fluid percussion brain injury (0.9 atm; righting time 167 +/- 15 sec). At 3 weeks post-injury spatial reference learning and memory were tested in the Morris water maze (MWM). Levels of damage to neuronal cell bodies were comparable in the brain-injured and sham groups. Myelin integrity was minimally altered following injury. Clear alterations in axonal damage were observed at various time points after injury. Axonal damage was localized to the cingulum at 4 h post-injury. At 4 and 6 weeks post-injury, axonal damage was evident in the external capsule, and was seen at 6 weeks in the dorsal thalamic nuclei. At 3 weeks post-injury, injured mice showed an impaired ability to learn the water maze task, suggesting injury-induced alterations in search strategy learning. The evolving localization of axonal damage points to ongoing degeneration after injury that is concomitant with a deficit in learning.

  11. Risk Factors for Institutionalization After Traumatic Brain Injury Inpatient Rehabilitation.

    PubMed

    Eum, Regina S; Brown, Allen W; Watanabe, Thomas K; Zasler, Nathan D; Goldstein, Richard; Seel, Ronald T; Roth, Elliot J; Zafonte, Ross D; Glenn, Mel B

    To create a profile of individuals with traumatic brain injury (TBI) who received inpatient rehabilitation and were discharged to an institutional setting using characteristics measured at rehabilitation discharge. The Traumatic Brain Injury Model Systems National Database is a prospective, multicenter, longitudinal database for people with moderate to severe TBI. We analyzed data for participants enrolled from January 2002 to June 2012 who had lived in a private residence before TBI. This cross-sectional study used logistic regression analyses to identify sociodemographic factors, lengths of stay, and cognitive and physical functioning levels that differentiated patients discharged to institutional versus private settings. Older age, living alone before TBI, and lower levels of function at rehabilitation discharge (independence in locomotion, bladder management, comprehension, and social interaction) were significantly associated with higher institutionalization rates and provided the best models identifying factors associated with institutionalization. Institutionalization was also associated with decreased independence in bed-chair-wheelchair transfers and increased duration of posttraumatic amnesia. Individuals institutionalized after inpatient rehabilitation for TBI were older, lived alone before injury, had longer posttraumatic amnesia durations, and were less independent in specific functional characteristics. Research evaluating the effect of increasing postdischarge support and improving treatment effectiveness in these functional areas is recommended.

  12. Neurocognitive predictors of financial capacity in traumatic brain injury.

    PubMed

    Martin, Roy C; Triebel, Kristen; Dreer, Laura E; Novack, Thomas A; Turner, Crystal; Marson, Daniel C

    2012-01-01

    To develop cognitive models of financial capacity (FC) in patients with traumatic brain injury (TBI). Longitudinal design. Inpatient brain injury rehabilitation unit. Twenty healthy controls, and 24 adults with moderate-to-severe TBI were assessed at baseline (30 days postinjury) and 6 months postinjury. The FC instrument (FCI) and a neuropsychological test battery. Univariate correlation and multiple regression procedures were employed to develop cognitive models of FCI performance in the TBI group, at baseline and 6-month time follow-up. Three cognitive predictor models of FC were developed. At baseline, measures of mental arithmetic/working memory and immediate verbal memory predicted baseline FCI performance (R = 0.72). At 6-month follow-up, measures of executive function and mental arithmetic/working memory predicted 6-month FCI performance (R = 0.79), and a third model found that these 2 measures at baseline predicted 6-month FCI performance (R = 0.71). Multiple cognitive functions are associated with initial impairment and partial recovery of FC in moderate-to-severe TBI patients. In particular, arithmetic, working memory, and executive function skills appear critical to recovery of FC in TBI. The study results represent an initial step toward developing a neurocognitive model of FC in patients with TBI.

  13. A prospective study of short- and long-term outcomes after traumatic brain injury in children: behavior and achievement.

    PubMed

    Taylor, H Gerry; Yeates, Keith Owen; Wade, Shari L; Drotar, Dennis; Stancin, Terry; Minich, Nori

    2002-01-01

    Longitudinal behavior and achievement outcomes of traumatic brain injury (TBI) were investigated in 53 children with severe TBI, 56 children with moderate TBI, and 80 children with orthopedic injuries not involving brain insult. Measures of preinjury child and family status and of postinjury achievement skills were administered shortly after injury. Assessments were repeated 3 times across a mean follow-up interval of 4 years. Results from mixed model analysis revealed persisting sequelae of TBI. Recovery of math skills was observed in the severe TBI group but only for children from less stressed families. Social disadvantage in children with TBI predicted more adverse behavioral sequelae and less favorable changes in some outcome measures. The findings suggest that pediatric TBI has long-term effects on behavior and achievement but that postinjury progress is influenced by the family environment.

  14. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    PubMed Central

    King, Jace B.; Lopez-Larson, Melissa P.; Yurgelun-Todd, Deborah A.

    2016-01-01

    In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI) has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral). Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05). These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05). These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature. PMID:26909332

  15. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury.

    PubMed

    King, Jace B; Lopez-Larson, Melissa P; Yurgelun-Todd, Deborah A

    2016-01-01

    In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI) has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral). Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05). These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05). These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  16. Traumatic Brain Injury in Early Childhood: Developmental Effects and Interventions.

    ERIC Educational Resources Information Center

    Lowenthal, Barbara; Lowenthal, Barbara

    1998-01-01

    Describes the unique effects of traumatic brain injury (TBI) on development in early childhood and offers suggestions for interventions in the cognitive, language, social-emotional, motor, and adaptive domains. Urges more intensive, long-term studies on the immediate and long-term effects of TBI. (Author/DB)

  17. Callosal Function in Pediatric Traumatic Brain Injury Linked to Disrupted White Matter Integrity

    PubMed Central

    Dennis, Emily L.; Ellis, Monica U.; Marion, Sarah D.; Jin, Yan; Moran, Lisa; Olsen, Alexander; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.

    2015-01-01

    Traumatic brain injury (TBI) often results in traumatic axonal injury and white matter (WM) damage, particularly to the corpus callosum (CC). Damage to the CC can lead to impaired performance on neurocognitive tasks, but there is a high degree of heterogeneity in impairment following TBI. Here we examined the relation between CC microstructure and function in pediatric TBI. We used high angular resolution diffusion-weighted imaging (DWI) to evaluate the structural integrity of the CC in humans following brain injury in a sample of 32 children (23 males and 9 females) with moderate-to-severe TBI (msTBI) at 1–5 months postinjury, compared with well matched healthy control children. We assessed CC function through interhemispheric transfer time (IHTT) as measured using event-related potentials (ERPs), and related this to DWI measures of WM integrity. Finally, the relation between DWI and IHTT results was supported by additional results of neurocognitive performance assessed using a single composite performance scale. Half of the msTBI participants (16 participants) had significantly slower IHTTs than the control group. This slow IHTT group demonstrated lower CC integrity (lower fractional anisotropy and higher mean diffusivity) and poorer neurocognitive functioning than both the control group and the msTBI group with normal IHTTs. Lower fractional anisotropy—a common sign of impaired WM—and slower IHTTs also predicted poor neurocognitive function. This study reveals that there is a subset of pediatric msTBI patients during the post-acute phase of injury who have markedly impaired CC functioning and structural integrity that is associated with poor neurocognitive functioning. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is the primary cause of death and disability in children and adolescents. There is considerable heterogeneity in postinjury outcome, which is only partially explained by injury severity. Imaging biomarkers may help explain some of this

  18. Sodium selenate treatment mitigates reduction of bone volume following traumatic brain injury in rats.

    PubMed

    Brady, R D; Grills, B L; Romano, T; Wark, J D; O'Brien, T J; Shultz, S R; McDonald, S J

    2016-12-14

    Administration of sodium selenate to rats given traumatic brain injury (TBI) attenuates brain damage and improves long-term behavioural outcomes. We have previously provided evidence that TBI causes bone loss in rats, however the effect of sodium selenate treatment on bone quantity following TBI is unknown. Rats were randomly assigned into sham injury or fluid percussion injury (FPI) groups and administered saline or sodium selenate for 12 weeks post-injury. Femora were analysed using histomorphometry, peripheral quantitative computed tomography (pQCT) and biomechanical testing. Distal metaphyseal trabecular bone volume fraction of FPI-selenate rats was higher than FPI-vehicle rats (41.8%; p<0.01), however, femora from selenate-treated groups were shorter in length (4.3%; p<0.01) and had increased growth plate width (22.1%; p<0.01), indicating that selenate impaired long bone growth. pQCT analysis demonstrated that distal metaphyseal cortical thickness was decreased in TBI rats compared to shams (11.7%; p<0.05), however selenate treatment to TBI animals offset this reduction (p<0.05). At the midshaft we observed no differences in biomechanical measures. These are the first findings to indicate that mitigating TBI-induced neuropathology may have the added benefit of preventing osteoporosis and associated fracture risk following TBI.

  19. Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI)

    DTIC Science & Technology

    2013-01-01

    supportive apparatus with a locking mechanism . The blast was delivered at approximately 14 and 22 PSI, which generated a noise of 10 ms duration at ~194...Rats were sacrificed two weeks after TBI for histological observations of axonal injury. Data. No skull fractures , respiratory depression or...Mark Haacke, and Pamela VandeVord (2012) Mechanisms and Treatment Strategies of Blast-Induced Tinnitus and Its Related TBI. Military Health 62 | P a

  20. Vocational rehabilitation after traumatic brain injury: models and services.

    PubMed

    Tyerman, Andy

    2012-01-01

    A recent systematic review suggests that around 40% of people with traumatic brain injury (TBI) return to work (RTW). Yet in the U.K. currently only a small minority of people with TBI receive vocational rehabilitation (VR) to enable a RTW. Agencies with an interest in developing such services are likely to favour different models of VR. The primary objective of this paper was to review models of specialist VR after TBI and their outcomes to inform service development across relevant agencies. A literature review on VR after TBI was undertaken in MEDLINE, EMBASE and PsychINFO (from 1967 to date). Papers reporting models of VR were selected for more detailed consideration. Illustrative examples of VR models are outlined: brain injury rehabilitation programmes with added VR elements, VR models adapted for TBI, case coordination/resource facilitation models, and consumer-directed models. Models differ, both within and across these four broad categories, in provision of core TBI rehabilitation, work preparation, work trials and supported placements. Methodological variation limits direct comparison of outcomes across models with few comparative or controlled studies. There is evidence to support the benefits of a wide range of models of specialist VR after TBI. However, there remains a need for controlled studies to inform service development and more evidence on cost-effectiveness to inform funding decisions.

  1. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial.

    PubMed

    Nichol, Alistair; French, Craig; Little, Lorraine; Haddad, Samir; Presneill, Jeffrey; Arabi, Yaseen; Bailey, Michael; Cooper, D James; Duranteau, Jacques; Huet, Olivier; Mak, Anne; McArthur, Colin; Pettilä, Ville; Skrifvars, Markus; Vallance, Shirley; Varma, Dinesh; Wills, Judy; Bellomo, Rinaldo

    2015-12-19

    Erythropoietin might have neurocytoprotective effects. In this trial, we studied its effect on neurological recovery, mortality, and venous thrombotic events in patients with traumatic brain injury. Erythropoietin in Traumatic Brain Injury (EPO-TBI) was a double-blind, placebo-controlled trial undertaken in 29 centres (all university-affiliated teaching hospitals) in seven countries (Australia, New Zealand, France, Germany, Finland, Ireland, and Saudi Arabia). Within 24 h of brain injury, 606 patients were randomly assigned by a concealed web-based computer-generated randomisation schedule to erythropoietin (40,000 units subcutaneously) or placebo (0·9% sodium chloride subcutaneously) once per week for a maximum of three doses. Randomisation was stratified by severity of traumatic brain injury (moderate vs severe) and participating site. With the exception of designated site pharmacists, the site dosing nurses at all sites, and the pharmacists at the central pharmacy in France, all study personnel, patients, and patients' relatives were masked to treatment assignment. The primary outcome, assessed at 6 months by modified intention-to-treat analysis, was improvement in the patients' neurological status, summarised as a reduction in the proportion of patients with an Extended Glasgow Outcome Scale (GOS-E) of 1-4 (death, vegetative state, and severe disability). Two equally spaced preplanned interim analyses were done (after 202 and 404 participants were enrolled). This study is registered with ClinicalTrials.gov, number NCT00987454. Between May 3, 2010, and Nov 1, 2014, 606 patients were enrolled and randomly assigned to erythropoietin (n=308) or placebo (n=298). Ten of these patients (six in the erythropoietin group and four in the placebo group) were lost to follow up at 6 months; therefore, data for the primary outcome analysis was available for 596 patients (302 in the erythropoietin group and 294 in the placebo group). Compared with placebo, erythropoietin did

  2. 78 FR 9929 - Current Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Traumatic Brain Injury State Implementation Partnership Grantees; Non-Competitive One-Year Extension Funds...). ACTION: Notice of Non-Competitive One-Year Extension Funds for Current Traumatic Brain Injury (TBI) State... initially authorized by the Traumatic Brain Injury Act of 1996 (Pub. L. 104-166) and was most recently...

  3. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury.

    PubMed

    Zweckberger, K; Hackenberg, K; Jung, C S; Hertle, D N; Kiening, K L; Unterberg, A W; Sakowitz, O W

    2014-07-11

    Following traumatic brain injury (TBI) SUR1-regulated NCCa-ATP (SUR1/TRPM4) channels are transcriptionally up-regulated in ischemic astrocytes, neurons, and capillaries. ATP depletion results in depolarization and opening of the channel leading to cytotoxic edema. Glibenclamide is an inhibitor of SUR-1 and, thus, might prevent cytotoxic edema and secondary brain damage following TBI. Anesthetized adult Sprague-Dawley rats underwent parietal craniotomy and were subjected to controlled cortical impact injury (CCI). Glibenclamide was administered as a bolus injection 15min after CCI injury and continuously via osmotic pumps throughout 7days. In an acute trial (180min) mean arterial blood pressure, heart rate, intracranial pressure, encephalographic activity, and cerebral metabolism were monitored. Brain water content was assessed gravimetrically 24h after CCI injury and contusion volumes were measured by MRI scanning technique at 8h, 24h, 72h, and 7d post injury. Throughout the entire time of observation neurological function was quantified using the "beam-walking" test. Glibenclamide-treated animals showed a significant reduction in the development of brain tissue water content(80.47%±0.37% (glibenclamide) vs. 80.83%±0.44% (control); p<0.05; n=14). Contusion sizes increased continuously within 72h following CCI injury, but glibenclamide-treated animals had significantly smaller volumes at any time-points, like 172.53±38.74mm(3) (glibenclamide) vs. 299.20±64.02mm(3) (control) (p<0.01; n=10; 24h) or 211.10±41.03mm(3) (glibenclamide) vs. 309.76±19.45mm(3) (control) (p<0.05; n=10; 72h), respectively. An effect on acute parameters, however, could not be detected, most likely because of the up-regulation of the channel within 3-6h after injury. Furthermore, there was no significant effect on motor function assessed by the beam-walking test throughout 7days. In accordance to these results and the available literature, glibenclamide seems to have promising potency in

  4. Positive psychology perspective on traumatic brain injury recovery and rehabilitation.

    PubMed

    Rabinowitz, Amanda R; Arnett, Peter A

    2018-01-01

    Recovery from traumatic brain injury (TBI) is heterogeneous, with injury characteristics and neuropathological findings accounting for a relatively modest proportion of the variance in clinical outcome. Furthermore, premorbid personality traits and psychological characteristics may moderate psychosocial recovery. Constructs from the field of positive psychology have been examined in multiple illness populations and are increasingly gaining attention as factors that may influence recovery from TBI. Positive affect, hope, optimism, adaptive coping style, and resilience have all been examined in the context of TBI. These phenomena are of particular interest because they may inform treatment, either by reducing psychological distress and promoting better adjustment, or by augmenting existing therapies to improve engagement. In general, research suggests that higher levels of these factors predict better psychosocial functioning after injury. However, brain injury itself is associated with reduced levels of many of these positive traits, either relative to uninjured control samples or preinjury functioning. There have been proposals for targeting these positive traits in the context of TBI rehabilitation. Although more research is needed, the few controlled trials aimed at improving adaptive coping skills have shown promising results. Other positive psychological phenomena, such as grit, optimism, and positive affect are deserving of further study as potential intervention targets.

  5. Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway.

    PubMed

    Zhang, Li; Wang, Handong; Zhou, Yali; Zhu, Yihao; Fei, Maoxin

    2018-05-22

    Fisetin, a natural flavonoid, has neuroprotection properties in many brain injury models. However, its role in traumatic brain injury (TBI) has not been fully explained. In the present study, we aimed to explore the neuroprotective effects of fisetin in a mouse model of TBI. We found that fisetin improved neurological function, reduced cerebral edema, attenuated brain lesion and ameliorated blood-brain barrier (BBB) disruption after TBI. Moreover, the up-regulation of malondialdehyde (MDA) and the activity of glutathione peroxidase (GPx) were reversed by fisetin treatment. Furthermore, administration of fisetin suppressed neuron cell death and apoptosis, increased the expression of B-cell lymphoma 2 (Bcl-2), while decreased the expression of Bcl-2-associated X protein (Bax) and caspase-3 after TBI. In addition, fisetin activated the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway following TBI. However, fisetin only failed to suppress oxidative stress in Nrf2 -/- mice. In conclusion, our data provided the first evidence that fisetin played a critical role in neuroprotection after TBI partly through the activation of the Nrf2-ARE pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hyperbaric oxygen preconditioning protects against traumatic brain injury at high altitude.

    PubMed

    Hu, S L; Hu, R; Li, F; Liu, Z; Xia, Y Z; Cui, G Y; Feng, H

    2008-01-01

    Recent studies have shown that preconditioning with hyperbaric oxygen (HBO) can reduce ischemic and hemorrhagic brain injury. We investigated effects of HBO preconditioning on traumatic brain injury (TBI) at high altitude and examined the role of matrix metalloproteinase-9 (MMP-9) in such protection. Rats were randomly divided into 3 groups: HBO preconditioning group (HBOP; n = 13), high-altitude group (HA; n = 13), and high-altitude sham operation group (HASO; n = 13). All groups were subjected to head trauma by weight-drop device, except for HASO group. HBOP rats received 5 sessions of HBO preconditioning (2.5 ATA, 100% oxygen, 1 h daily) and then were kept in hypobaric chamber at 0.6 ATA (to simulate pressure at 4000m altitude) for 3 days before operation. HA rats received control pretreatment (1 ATA, room air, 1 h daily), then followed the same procedures as HBOP group. HASO rats were subjected to skull opening only without brain injury. Twenty-four hours after TBI, 7 rats from each group were examined for neurological function and brain water content; 6 rats from each group were killed for analysis by H&E staining and immunohistochemistry. Neurological outcome in HBOP group (0.71 +/- 0.49) was better than HA group (1.57 +/- 0.53; p < 0.05). Preconditioning with HBO significantly reduced percentage of brain water content (86.24 +/- 0.52 vs. 84.60 +/- 0.37; p < 0.01). Brain morphology and structure seen by light microscopy was diminished in HA group, while fewer pathological injuries occurred in HBOP group. Compared to HA group, pretreatment with HBO significantly reduced the number of MMP-9-positive cells (92.25 +/- 8.85 vs. 74.42 +/- 6.27; p < 0.01). HBO preconditioning attenuates TBI in rats at high altitude. Decline in MMP-9 expression may contribute to HBO preconditioning-induced protection of brain tissue against TBI.

  7. Use of brain electrical activity for the identification of hematomas in mild traumatic brain injury.

    PubMed

    Hanley, Daniel F; Chabot, Robert; Mould, W Andrew; Morgan, Timothy; Naunheim, Rosanne; Sheth, Kevin N; Chiang, William; Prichep, Leslie S

    2013-12-15

    This study investigates the potential clinical utility in the emergency department (ED) of an index of brain electrical activity to identify intracranial hematomas. The relationship between this index and depth, size, and type of hematoma was explored. Ten minutes of brain electrical activity was recorded from a limited montage in 38 adult patients with traumatic hematomas (CT scan positive) and 38 mild head injured controls (CT scan negative) in the ED. The volume of blood and distance from recording electrodes were measured by blinded independent experts. Brain electrical activity data were submitted to a classification algorithm independently developed traumatic brain injury (TBI) index to identify the probability of a CT+traumatic event. There was no significant relationship between the TBI-Index and type of hematoma, or distance of the bleed from recording sites. A significant correlation was found between TBI-Index and blood volume. The sensitivity to hematomas was 100%, positive predictive value was 74.5%, and positive likelihood ratio was 2.92. The TBI-Index, derived from brain electrical activity, demonstrates high accuracy for identification of traumatic hematomas. Further, this was not influenced by distance of the bleed from the recording electrodes, blood volume, or type of hematoma. Distance and volume limitations noted with other methods, (such as that based on near-infrared spectroscopy) were not found, thus suggesting the TBI-Index to be a potentially important adjunct to acute assessment of head injury. Because of the life-threatening risk of undetected hematomas (false negatives), specificity was permitted to be lower, 66%, in exchange for extremely high sensitivity.

  8. Cerebrospinal Fluid Cortisol Mediates Brain-Derived Neurotrophic Factor Relationships to Mortality after Severe TBI: A Prospective Cohort Study

    PubMed Central

    Munoz, Miranda J.; Kumar, Raj G.; Oh, Byung-Mo; Conley, Yvette P.; Wang, Zhensheng; Failla, Michelle D.; Wagner, Amy K.

    2017-01-01

    Distinct regulatory signaling mechanisms exist between cortisol and brain derived neurotrophic factor (BDNF) that may influence secondary injury cascades associated with traumatic brain injury (TBI) and predict outcome. We investigated concurrent CSF BDNF and cortisol relationships in 117 patients sampled days 0–6 after severe TBI while accounting for BDNF genetics and age. We also determined associations between CSF BDNF and cortisol with 6-month mortality. BDNF variants, rs6265 and rs7124442, were used to create a gene risk score (GRS) in reference to previously published hypothesized risk for mortality in “younger patients” (<48 years) and hypothesized BDNF production/secretion capacity with these variants. Group based trajectory analysis (TRAJ) was used to create two cortisol groups (high and low trajectories). A Bayesian estimation approach informed the mediation models. Results show CSF BDNF predicted patient cortisol TRAJ group (P = 0.001). Also, GRS moderated BDNF associations with cortisol TRAJ group. Additionally, cortisol TRAJ predicted 6-month mortality (P = 0.001). In a mediation analysis, BDNF predicted mortality, with cortisol acting as the mediator (P = 0.011), yielding a mediation percentage of 29.92%. Mediation effects increased to 45.45% among younger patients. A BDNF*GRS interaction predicted mortality in younger patients (P = 0.004). Thus, we conclude 6-month mortality after severe TBI can be predicted through a mediation model with CSF cortisol and BDNF, suggesting a regulatory role for cortisol with BDNF's contribution to TBI pathophysiology and mortality, particularly among younger individuals with severe TBI. Based on the literature, cortisol modulated BDNF effects on mortality after TBI may be related to known hormone and neurotrophin relationships to neurological injury severity and autonomic nervous system imbalance. PMID:28337122

  9. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    ERIC Educational Resources Information Center

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  10. Impaired Pituitary Axes Following Traumatic Brain Injury

    PubMed Central

    Scranton, Robert A.; Baskin, David S.

    2015-01-01

    Pituitary dysfunction following traumatic brain injury (TBI) is significant and rarely considered by clinicians. This topic has received much more attention in the last decade. The incidence of post TBI anterior pituitary dysfunction is around 30% acutely, and declines to around 20% by one year. Growth hormone and gonadotrophic hormones are the most common deficiencies seen after traumatic brain injury, but also the most likely to spontaneously recover. The majority of deficiencies present within the first year, but extreme delayed presentation has been reported. Information on posterior pituitary dysfunction is less reliable ranging from 3%–40% incidence but prospective data suggests a rate around 5%. The mechanism, risk factors, natural history, and long-term effect of treatment are poorly defined in the literature and limited by a lack of standardization. Post TBI pituitary dysfunction is an entity to recognize with significant clinical relevance. Secondary hypoadrenalism, hypothyroidism and central diabetes insipidus should be treated acutely while deficiencies in growth and gonadotrophic hormones should be initially observed. PMID:26239686

  11. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury.

    PubMed

    Wurzelmann, Mary; Romeika, Jennifer; Sun, Dong

    2017-01-01

    Traumatic brain injury (TBI) is a major health problem worldwide. Following primary mechanical insults, a cascade of secondary injuries often leads to further neural tissue loss. Thus far there is no cure to rescue the damaged neural tissue. Current therapeutic strategies primarily target the secondary injuries focusing on neuroprotection and neuroregeneration. The neurotrophin brain-derived neurotrophic factor (BDNF) has significant effect in both aspects, promoting neuronal survival, synaptic plasticity and neurogenesis. Recently, the flavonoid 7,8-dihydroxyflavone (7,8-DHF), a small TrkB agonist that mimics BDNF function, has shown similar effects as BDNF in promoting neuronal survival and regeneration following TBI. Compared to BDNF, 7,8-DHF has a longer half-life and much smaller molecular size, capable of penetrating the blood-brain barrier, which makes it possible for non-invasive clinical application. In this review, we summarize functions of the BDNF/TrkB signaling pathway and studies examining the potential of BDNF and 7,8-DHF as a therapy for TBI.

  12. Characteristics of Firearm Brain Injury Survivors in the Traumatic Brain Injury Model Systems (TBIMS) National Database: A Comparison of Assault and Self-Inflicted Injury Survivors.

    PubMed

    Bertisch, Hilary; Krellman, Jason W; Bergquist, Thomas F; Dreer, Laura E; Ellois, Valerie; Bushnik, Tamara

    2017-11-01

    To characterize and compare subgroups of survivors with assault-related versus self-inflicted traumatic brain injuries (TBIs) via firearms at the time of inpatient rehabilitation and at 1-, 2-, and 5-year follow-up. Secondary analysis of data from the Traumatic Brain Injury Model Systems National Database (TBIMS NDB), a multicenter, longitudinal cohort study. Retrospective analyses of a subset of individuals enrolled in the TBIMS NDB. Individuals 16 years and older (N=399; 310 via assault, 89 via self-inflicted injury) with a primary diagnosis of TBI caused by firearm injury enrolled in the TBIMS NDB. Not applicable. Disability Rating Scale, Glasgow Outcome Scale-Extended, sociodemographic variables (sex, age, race, marital status), injury-related/acute care information (posttraumatic amnesia, loss of consciousness, time from injury to acute hospital discharge), and mental health variables (substance use history, psychiatric hospitalizations, suicide history, incarcerations). Individuals who survived TBI secondary to a firearm injury differed by injury mechanism (assault vs self-inflicted) on critical demographic, injury-related/acute care, and mental health variables at inpatient rehabilitation and across long-term recovery. Groups differed in terms of geographic area, age, ethnicity, education, marital status, admission Glasgow Coma Scale score, and alcohol abuse, suicide attempts, and psychiatric hospitalizations at various time points. These findings have implications for prevention (eg, mental health programming and access to firearms in targeted areas) and for rehabilitation planning (eg, by incorporating training with coping strategies and implementation of addictions-related services) for firearm-related TBI, based on subtype of injury. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    PubMed

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p < 0.01) and cortical thickness (10% decrease at 1 week, 11% decrease at 12 weeks p < 0.001). There was also a 23% reduction in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p < 0.001). There were no differences in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  14. Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside

    PubMed Central

    Hu, Qin; Manaenko, Anatol; Xu, Ting; Guo, Zhenni; Tang, Jiping; Zhang, John H.

    2016-01-01

    Traumatic brain injury (TBI) is a serious public health problem in the United States. Survivors of TBI are often left with significant cognitive, behavioral, and communicative disabilities. So far there is no effective treatment/intervention in the daily clinical practice for TBI patients. The protective effects of hyperbaric oxygen therapy (HBOT) have been proved in stroke; however, its efficiency in TBI remains controversial. In this review, we will summarize the results of HBOT in experimental and clinical TBI, elaborate the mechanisms, and bring out our current understanding and opinions for future studies. PMID:27867476

  15. Functional Medicine Approach to Traumatic Brain Injury.

    PubMed

    Richer, Alice C

    2017-08-01

    Background: The U.S. military has seen dramatic increases in traumatic brain injuries (TBIs) among military personnel due to the nature of modern-day conflicts. Conventional TBI treatment for secondary brain injuries has suboptimal success rates, and patients, families, and healthcare professionals are increasingly turning to alternative medicine treatments. Objective: Effective treatments for the secondary injury cascades that occur after an initial brain trauma are unclear at this time. The goal of successful treatment options for secondary TBI injuries is to reduce oxidative stress, excitotoxicity, and inflammation while supporting mitochondrial functions and repair of membranes, synapses, and axons. Intervention: A new paradigm of medical care, known as functional medicine, is increasing in popularity and acceptance. Functional medicine combines conventional treatment methods with complementary, genetic, holistic, and nutritional therapies. The approach is to assess the patient as a whole person, taking into account the interconnectedness of the body and its unique reaction to disease, injury, and illness while working to restore balance and optimal health. Functional medicine treatment recommendations often include the use of acupuncture, Ayurveda, chiropractic manipulation, detoxification programs, herbal and homeopathic supplements, specialized diets, massage, meditation and mindfulness practices, neurobiofeedback, nutritional supplements, t'ai chi , and yoga. At present, some of these alternative treatments appear to be beneficial, but more research is needed to validate reported outcomes. Conclusions: Few clinical studies validate the effectiveness of alternative therapies for TBIs. However, further clinical trials and empirical studies warrant further investigation based on some reported positive results from research studies, case histories, anecdotal evidence, and widespread popularity of some approaches. To date, only nutritional therapies and

  16. Functional Medicine Approach to Traumatic Brain Injury

    PubMed Central

    2017-01-01

    Abstract Background: The U.S. military has seen dramatic increases in traumatic brain injuries (TBIs) among military personnel due to the nature of modern-day conflicts. Conventional TBI treatment for secondary brain injuries has suboptimal success rates, and patients, families, and healthcare professionals are increasingly turning to alternative medicine treatments. Objective: Effective treatments for the secondary injury cascades that occur after an initial brain trauma are unclear at this time. The goal of successful treatment options for secondary TBI injuries is to reduce oxidative stress, excitotoxicity, and inflammation while supporting mitochondrial functions and repair of membranes, synapses, and axons. Intervention: A new paradigm of medical care, known as functional medicine, is increasing in popularity and acceptance. Functional medicine combines conventional treatment methods with complementary, genetic, holistic, and nutritional therapies. The approach is to assess the patient as a whole person, taking into account the interconnectedness of the body and its unique reaction to disease, injury, and illness while working to restore balance and optimal health. Functional medicine treatment recommendations often include the use of acupuncture, Ayurveda, chiropractic manipulation, detoxification programs, herbal and homeopathic supplements, specialized diets, massage, meditation and mindfulness practices, neurobiofeedback, nutritional supplements, t'ai chi, and yoga. At present, some of these alternative treatments appear to be beneficial, but more research is needed to validate reported outcomes. Conclusions: Few clinical studies validate the effectiveness of alternative therapies for TBIs. However, further clinical trials and empirical studies warrant further investigation based on some reported positive results from research studies, case histories, anecdotal evidence, and widespread popularity of some approaches. To date, only nutritional therapies and

  17. Isolated traumatic brain injury results in significant pre-hospital derangement of cardiovascular physiology.

    PubMed

    Gavrilovski, M; El-Zanfaly, M; Lyon, R M

    2018-04-20

    Major trauma can result in both life-threatening haemorrhage and traumatic brain injury (TBI). The pre-hospital management of these conditions, particularly in relation to the cardiovascular system, is very different. TBI can result in cardiovascular instability but the exact incidence remains poorly described. This study explores the incidence of cardiovascular instability in patients undergoing pre-hospital anaesthesia for suspected TBI. Retrospective case series of all pre-hospital trauma patients attended by Kent, Surrey & Sussex Air Ambulance Trust (United Kingdom) trauma team during the period 1 January 2015-31 December 2016. Patients were included if they showed clinical signs of TBI, underwent pre-hospital anaesthesia and hospital computed tomography scanning subsequently confirmed an isolated TBI. Out of 121 patients with confirmed isolated TBI, 68 were cardiovascularly stable throughout the pre-anaesthesia phase, whilst 53 (44%) showed signs of instability (HR > 100bpm and/or SBP < 100 mmHg pre-anaesthesia). Hypotension (SBP < 100) with or without tachycardia was present in 14 (12%) patients. 10 (8%) patients with isolated TBI received pre-hospital blood product transfusion. Increased awareness that traumatic brain injury can cause significant derangement to heart rate and blood pressure, even in the absence of major haemorrhage, would allow the pre-hospital clinician to treat cardiovascular instability with the most appropriate means, such as crystalloid and vasopressors, to limit secondary brain injury. Copyright © 2018. Published by Elsevier Ltd.

  18. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease.

    PubMed

    Sundman, Mark H; Chen, Nan-Kuei; Subbian, Vignesh; Chou, Ying-Hui

    2017-11-01

    As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral

  19. Neurotransmitter Systems in a Mild Blast Traumatic Brain Injury Model: Catecholamines and Serotonin.

    PubMed

    Kawa, Lizan; Arborelius, Ulf P; Yoshitake, Takashi; Kehr, Jan; Hökfelt, Tomas; Risling, Mårten; Agoston, Denes

    2015-08-15

    Exposure to improvised explosive devices can result in a unique form of traumatic brain injury--blast-induced traumatic brain injury (bTBI). At the mild end of the spectrum (mild bTBI [mbTBI]), there are cognitive and mood disturbances. Similar symptoms have been observed in post-traumatic stress disorder caused by exposure to extreme psychological stress without physical injury. A role of the monoaminergic system in mood regulation and stress is well established but its involvement in mbTBI is not well understood. To address this gap, we used a rodent model of mbTBI and detected a decrease in immobility behavior in the forced swim test at 1 d post-exposure, coupled with an increase in climbing behavior, but not after 14 d or later, possibly indicating a transient increase in anxiety-like behavior. Using in situ hybridization, we found elevated messenger ribonucleic acid levels of both tyrosine hydroxylase and tryptophan hydroxylase 2 in the locus coeruleus and the dorsal raphe nucleus, respectively, as early as 2 h post-exposure. High-performance liquid chromatography analysis 1 d post-exposure primarily showed elevated noradrenaline levels in several forebrain regions. Taken together, we report that exposure to mild blast results in transient changes in both anxiety-like behavior and brain region-specific molecular changes, implicating the monoaminergic system in the pathobiology of mbTBI.

  20. Effects of lateral fluid percussion injury on cholinergic markers in the newborn piglet brain.

    PubMed

    Donat, Cornelius K; Walter, Bernd; Kayser, Tanja; Deuther-Conrad, Winnie; Schliebs, Reinhard; Nieber, Karen; Bauer, Reinhard; Härtig, Wolfgang; Brust, Peter

    2010-02-01

    Traumatic brain injury is a leading cause of death and disability in children. Studies using adult animal models showed alterations of the central cholinergic neurotransmission as a result of trauma. However, there is a lack of knowledge about consequences of brain trauma on cholinergic function in the immature brain. It is hypothesized that trauma affects the relative acetylcholine esterase activity and causes a loss of cholinergic neurons in the immature brain. Severe fluid percussion trauma (FP-TBI, 3.8+/-0.3atm) was induced in 15 female newborn piglets, monitored for 6h and compared with 12 control animals. The hemispheres ipsilateral to FP-TBI obtained from seven piglets were used for acetylcholine esterase histochemistry on frozen sagittal slices, while regional cerebral blood flow and oxygen availability was determined in the remaining eight FP-TBI animals. Post-fixed slices were immunohistochemically labelled for choline acetyltransferase as well as for low-affinity neurotrophin receptor in order to characterize cholinergic neurons in the basal forebrain. Regional cerebral blood flow and brain oxygen availability were reduced during the first 2h after FP-TBI (P<0.05). In addition, acetylcholine esterase activity was significantly increased in the neocortex, basal forebrain, hypothalamus and medulla after trauma (P<0.05), whereas the number of choline acetyltransferase and low-affinity neurotrophin receptor positive cells in the basal forebrain were unaffected by the injury. Thus, traumatic brain injury evoked an increased relative activity of the acetylcholine esterase in the immature brain early after injury, without loss of cholinergic neurons in the basal forebrain. These changes may contribute to developmental impairments after immature traumatic brain injury. Copyright 2009 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Adult sports-related traumatic brain injury in United States trauma centers.

    PubMed

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α < 0.05, and the Bonferroni correction for multiple comparisons was applied for each outcome analysis. RESULTS From 2003 to 2012, in total, 4788 adult sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic

  2. N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation

    PubMed Central

    Moffett, John R.; Arun, Peethambaran; Ariyannur, Prasanth S.; Namboodiri, Aryan M. A.

    2013-01-01

    N-Acetylaspartate (NAA) is employed as a non-invasive marker for neuronal health using proton magnetic resonance spectroscopy (MRS). This utility is afforded by the fact that NAA is one of the most concentrated brain metabolites and that it produces the largest peak in MRS scans of the healthy human brain. NAA levels in the brain are reduced proportionately to the degree of tissue damage after traumatic brain injury (TBI) and the reductions parallel the reductions in ATP levels. Because NAA is the most concentrated acetylated metabolite in the brain, we have hypothesized that NAA acts in part as an extensive reservoir of acetate for acetyl coenzyme A synthesis. Therefore, the loss of NAA after TBI impairs acetyl coenzyme A dependent functions including energy derivation, lipid synthesis, and protein acetylation reactions in distinct ways in different cell populations. The enzymes involved in synthesizing and metabolizing NAA are predominantly expressed in neurons and oligodendrocytes, respectively, and therefore some proportion of NAA must be transferred between cell types before the acetate can be liberated, converted to acetyl coenzyme A and utilized. Studies have indicated that glucose metabolism in neurons is reduced, but that acetate metabolism in astrocytes is increased following TBI, possibly reflecting an increased role for non-glucose energy sources in response to injury. NAA can provide additional acetate for intercellular metabolite trafficking to maintain acetyl CoA levels after injury. Here we explore changes in NAA, acetate, and acetyl coenzyme A metabolism in response to brain injury. PMID:24421768

  3. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries

    NASA Astrophysics Data System (ADS)

    Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki

    2016-06-01

    Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.

  4. Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury.

    PubMed

    Pischiutta, Francesca; Micotti, Edoardo; Hay, Jennifer R; Marongiu, Ines; Sammali, Eliana; Tolomeo, Daniele; Vegliante, Gloria; Stocchetti, Nino; Forloni, Gianluigi; De Simoni, Maria-Grazia; Stewart, William; Zanier, Elisa R

    2018-02-01

    There is increasing recognition that traumatic brain injury (TBI) may initiate long-term neurodegenerative processes, particularly chronic traumatic encephalopathy. However, insight into the mechanisms transforming an initial biomechanical injury into a neurodegenerative process remain elusive, partly as a consequence of the paucity of informative pre-clinical models. This study shows the functional, whole brain imaging and neuropathological consequences at up to one year survival from single severe TBI by controlled cortical impact in mice. TBI mice displayed persistent sensorimotor and cognitive deficits. Longitudinal T2 weighted magnetic resonance imaging (MRI) showed progressive ipsilateral (il) cortical, hippocampal and striatal volume loss, with diffusion tensor imaging demonstrating decreased fractional anisotropy (FA) at up to one year in the il-corpus callosum (CC: -30%) and external capsule (EC: -21%). Parallel neuropathological studies indicated reduction in neuronal density, with evidence of microgliosis and astrogliosis in the il-cortex, with further evidence of microgliosis and astrogliosis in the il-thalamus. One year after TBI there was also a decrease in FA in the contralateral (cl) CC (-17%) and EC (-13%), corresponding to histopathological evidence of white matter loss (cl-CC: -68%; cl-EC: -30%) associated with ongoing microgliosis and astrogliosis. These findings indicate that a single severe TBI induces bilateral, long-term and progressive neuropathology at up to one year after injury. These observations support this model as a suitable platform for exploring the mechanistic link between acute brain injury and late and persistent neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protective Effects of Cornel Iridoid Glycoside in Rats After Traumatic Brain Injury.

    PubMed

    Ma, Denglei; Wang, Na; Fan, Xiaotong; Zhang, Lan; Luo, Yi; Huang, Rui; Zhang, Li; Li, Yali; Zhao, Guoguang; Li, Lin

    2018-04-01

    Cornel iridoid glycoside (CIG) is the active ingredient extracted from Cornus officinalis. Our previous studies showed that CIG had protective effects on several brain injury models. In the present study, we aimed to examine the effects and elucidate the mechanisms of CIG against traumatic brain injury (TBI). TBI was induced in the right cerebral cortex of male adult rats. The neurological and cognitive functions were evaluated by modified neurological severity score (mNSS) and object recognition test (ORT), respectively. The level of serum S100β was measured by an ELISA method. Nissl staining was used to estimate the neuron survival in the brain. The expression of proteins was determined by western blot and/or immunohistochemical staining. We found that intragastric administration of CIG in TBI rats ameliorated the neurological defects and cognitive impairment, and alleviated the neuronal loss in the injured brain. In the acute stage of TBI (24-72 h), CIG decreased the level of S100β in the serum and brain, increased the ratio of Bcl-2/Bax and decreased the expression of caspase-3 in the injured cortex. Moreover, the treatment with CIG for 30 days increased the levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), enhanced the expression of synapsin I, synaptophysin and postsynaptic density protein 95 (PSD-95), and inhibited the apoptosis-regulating factors in the chronic stage of TBI. The present study demonstrated that CIG had neuroprotective effects against TBI through inhibiting apoptosis in the acute stage and promoting neurorestoration in the chronic stage. The results suggest that CIG may be beneficial to TBI therapy.

  6. Persistent cognitive dysfunction after traumatic brain injury: A dopamine hypothesis

    PubMed Central

    Bales, James W.; Wagner, Amy K.; Kline, Anthony E.; Dixon, C. Edward

    2010-01-01

    Traumatic brain injury (TBI) represents a significant cause of death and disability in industrialized countries. Of particular importance to patients the chronic effect that TBI has on cognitive function. Therapeutic strategies have been difficult to evaluate because of the complexity of injuries and variety of patient presentations within a TBI population. However, pharmacotherapies targeting dopamine (DA) have consistently shown benefits in attention, behavioral outcome, executive function, and memory. Still it remains unclear what aspect of TBI pathology is targeted by DA therapies and what time-course of treatment is most beneficial for patient outcomes. Fortunately, ongoing research in animal models has begun to elucidate the pathophysiology of DA alterations after TBI. The purpose of this review is to discuss clinical and experimental research examining DAergic therapies after TBI, which will in turn elucidate the importance of DA for cognitive function/dysfunction after TBI as well as highlight the areas that require further study. PMID:19580914

  7. Clinical and diagnostic approach to patients with hypopituitarism due to traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and ischemic stroke (IS).

    PubMed

    Karamouzis, Ioannis; Pagano, Loredana; Prodam, Flavia; Mele, Chiara; Zavattaro, Marco; Busti, Arianna; Marzullo, Paolo; Aimaretti, Gianluca

    2016-06-01

    The hypothalamic-pituitary dysfunction attributable to traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (SAH), and ischemic stroke (IS) has been lately highlighted. The diagnosis of TBI-induced-hypopituitarism, defined as a deficient secretion of one or more pituitary hormones, is made similarly to the diagnosis of classical hypopituitarism because of hypothalamic/pituitary diseases. Hypopituitarism is believed to contribute to TBI-associated morbidity and to functional and cognitive final outcome, and quality-of-life impairment. Each pituitary hormone must be tested separately, since there is a variable pattern of hormone deficiency among patients with TBI-induced-hypopituitarism. Similarly, the SAH and IS may lead to pituitary dysfunction although the literature in this field is limited. The drive to diagnose hypopituitarism is the suspect that the secretion of one/more pituitary hormone may be subnormal. This suspicion can be based upon the knowledge that the patient has an appropriate clinical context in which hypopituitarism can be present, or a symptom known as caused by hypopituitarism. Hypopituitarism should be diagnosed as a combination of low peripheral and inappropriately normal/low pituitary hormones although their basal evaluation may be not distinctive due to pulsatile, circadian, or situational secretion of some hormones. Evaluation of the somatotroph and corticotroph axes require dynamic stimulation test (ITT for both axes, GHRH + arginine test for somatotroph axis) in order to clearly separate normal from deficient responses.

  8. Practitioner Review: Beyond Shaken Baby Syndrome--What Influences the Outcomes for Infants following Traumatic Brain Injury?

    ERIC Educational Resources Information Center

    Ashton, Rebecca

    2010-01-01

    Background: Traumatic brain injury (TBI) in infancy is relatively common, and is likely to lead to poorer outcomes than injuries sustained later in childhood. While the headlines have been grabbed by infant TBI caused by abuse, often known as shaken baby syndrome, the evidence base for how to support children following TBI in infancy is thin.…

  9. Simulation of Changes in Diffusion Related to Different Pathologies at Cellular Level After Traumatic Brain Injury

    PubMed Central

    Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui

    2016-01-01

    Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558

  10. Neuroimaging in Pediatric Traumatic Brain Injury: Current and Future Predictors of Functional Outcome

    ERIC Educational Resources Information Center

    Suskauer, Stacy J.; Huisman, Thierry A. G. M.

    2009-01-01

    Although neuroimaging has long played a role in the acute management of pediatric traumatic brain injury (TBI), until recently, its use as a tool for understanding and predicting long-term brain-behavior relationships after TBI has been limited by the relatively poor sensitivity of routine clinical imaging for detecting diffuse axonal injury…

  11. Optimizing Outcome Assessment in Multicenter TBI Trials: Perspectives From TRACK-TBI and the TBI Endpoints Development Initiative.

    PubMed

    Bodien, Yelena G; McCrea, Michael; Dikmen, Sureyya; Temkin, Nancy; Boase, Kim; Machamer, Joan; Taylor, Sabrina R; Sherer, Mark; Levin, Harvey; Kramer, Joel H; Corrigan, John D; McAllister, Thomas W; Whyte, John; Manley, Geoffrey T; Giacino, Joseph T

    Traumatic brain injury (TBI) is a global public health problem that affects the long-term cognitive, physical, and psychological health of patients, while also having a major impact on family and caregivers. In stark contrast to the effective trials that have been conducted in other neurological diseases, nearly 30 studies of interventions employed during acute hospital care for TBI have failed to identify treatments that improve outcome. Many factors may confound the ability to detect true and meaningful treatment effects. One promising area for improving the precision of intervention studies is to optimize the validity of the outcome assessment battery by using well-designed tools and data collection strategies to reduce variability in the outcome data. The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, conducted at 18 sites across the United States, implemented a multidimensional outcome assessment battery with 22 measures aimed at characterizing TBI outcome up to 1 year postinjury. In parallel, through the TBI Endpoints Development (TED) Initiative, federal agencies and investigators have partnered to identify the most valid, reliable, and sensitive outcome assessments for TBI. Here, we present lessons learned from the TRACK-TBI and TED initiatives aimed at optimizing the validity of outcome assessment in TBI.

  12. Brain lesion correlates of fatigue in individuals with traumatic brain injury.

    PubMed

    Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie

    2017-10-01

    The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.

  13. Emergency Interventions After Severe Traumatic Brain Injury in Rats: Effect on Neuropatholgy and Functional Outcome.

    DTIC Science & Technology

    1999-01-01

    practical interventions applicable in the emergency treatment of severe TBI ( respiratory management, temperature control, and sedation) can reduce secondary...during the low cerebral blood flow state immediately after injury coupled with alkalosis may increase the vulnerability of selected neurons to damage...injury. KEYWORDS • head injury • hyperventilation • alkalosis • hippocampus • rat TRAUMATIC brain injury (TBI) is often complicated

  14. Rehospitalization During the 9-Months Following Inpatient Rehabilitation for Traumatic Brain Injury

    PubMed Central

    Hammond, Flora M.; Horn, Susan D.; Smout, Randall J.; Seel, Ronald T.; Beaulieu, Cynthia L.; Corrigan, John D.; Barrett, Ryan S.; Cullen, Nora; Sommerfeld, Teri; Brandstater, Murray E.

    2015-01-01

    Objective To investigate frequency of, causes for, and factors associated with acute rehospitalization following discharge from inpatient rehabilitation during the 9-months after traumatic brain injury (TBI). Design Multi-center observational cohort. Setting Community. Participants 1,850 individuals with TBI admitted for inpatient rehabilitation. Interventions Not applicable. Main Outcome Measure(s) Occurrences of proxy or self-report of post-rehabilitation acute care rehospitalization, and length of and causes for rehospitalizations. Results 510 participants (28%) had experienced 775 acute rehospitalizations. All experienced 1 admission (510 participants; 66%), while 154 (20%) had 2 admissions, 60 (8%) had 3, 23 (3%) had 4, 27 had between 5 and 11, and 1 had 12. The most common rehospitalization causes were: infection (15%), neurologic issues (13%), neurosurgical procedures (11%), injury (7%), psychiatric (7%), and orthopedic (7%). Mean days from rehabilitation discharge to first rehospitalization was 113 days. Mean rehospitalization duration was 6.5 days. Logistic regression revealed increasing age, history of seizures prior to injury or during acute care or rehabilitation, history of previous brain injuries, and non-brain injury medical severity increased the risk of rehospitalization. Injury etiology of motor vehicular crash and high motor functioning at discharge decreased rehospitalization risk. Conclusion(s) Approximately 28% of TBI patients were rehospitalized within 9-months of TBI rehabilitation discharge due to a wide variety of medical and surgical reasons. Future research should evaluate if some of these occurrences may be preventable (such as infections, injuries, and psychiatric readmissions), and should evaluate the extent that persons at risk may benefit from additional screening, surveillance, and treatment protocols. PMID:26212407

  15. Metabolic Acetate Therapy for the Treatment of Traumatic Brain Injury

    PubMed Central

    Arun, Peethambaran; Ariyannur, Prasanth S.; Moffett, John R.; Xing, Guoqiang; Hamilton, Kristen; Grunberg, Neil E.; Ives, John A.

    2010-01-01

    Abstract Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury. PMID:19803785

  16. Metabolic acetate therapy for the treatment of traumatic brain injury.

    PubMed

    Arun, Peethambaran; Ariyannur, Prasanth S; Moffett, John R; Xing, Guoqiang; Hamilton, Kristen; Grunberg, Neil E; Ives, John A; Namboodiri, Aryan M A

    2010-01-01

    Patients suffering from traumatic brain injury (TBI) have decreased markers of energy metabolism, including N-acetylaspartate (NAA) and ATP. In the nervous system, NAA-derived acetate provides acetyl-CoA required for myelin lipid synthesis. Acetate can also be oxidized in mitochondria for the derivation of metabolic energy. In the current study, using the controlled cortical impact model of TBI in rats, we investigated the effects of the hydrophobic acetate precursor, glyceryltriacetate (GTA), as a method of delivering metabolizable acetate to the injured brain. We found that GTA administration significantly increased the levels of both NAA and ATP in the injured hemisphere 4 and 6 days after injury, and also resulted in significantly improved motor performance in rats 3 days after injury.

  17. What’s New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment

    PubMed Central

    Reis, Cesar; Wang, Yuechun; Akyol, Onat; Ho, Wing Mann; Applegate II, Richard; Stier, Gary; Martin, Robert; Zhang, John H.

    2015-01-01

    Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI. PMID:26016501

  18. Interventions for Students with Traumatic Brain Injury: Managing Behavioral Disturbances.

    ERIC Educational Resources Information Center

    Kehle, Thomas J.; And Others

    1996-01-01

    This article discusses behavioral sequelae common in children and adolescents following a traumatic brain injury (TBI) and the design of intervention strategies. Emphasis is on the unique needs of these students and the cognitive sequelae of TBI (such as impaired attention, reasoning, learning, and memory) that can cause further behavioral…

  19. Prospective Evaluation of Posttraumatic Stress Disorder and Depression in Orthopaedic Injury Patients With and Without Concomitant Traumatic Brain Injury.

    PubMed

    Roden-Foreman, Kenleigh; Solis, Jaicus; Jones, Alan; Bennett, Monica; Roden-Foreman, Jacob W; Rainey, Evan E; Foreman, Michael L; Warren, Ann Marie

    2017-09-01

    Psychological morbidities after injury [eg, posttraumatic stress disorder (PTSD) and depression] are increasingly recognized as a significant determinant of overall outcome. Traumatic brain injury (TBI) negatively impacts outcomes of patients with orthopaedic injury, but the association of concurrent TBI, orthopaedic injury, and symptoms of PTSD and depression has not been examined. This study's objective was to examine symptoms of PTSD and depression in patients with orthopaedic trauma with and without TBI. Longitudinal prospective cohort study. Urban Level I Trauma Center in the Southwest United States. Orthopaedic trauma patients older than 18 years admitted for ≥24 hours. Questionnaires examining demographics, injury-related variables, PTSD, and depression were administered during hospitalization and 3, 6, and 12 months later. Orthopaedic injury and TBI were determined based on ICD-9 codes. Generalized linear models determined whether PTSD and depression at follow-up were associated with TBI. Of the total sample (N = 214), 44 (21%) sustained a TBI. Those with TBI had higher rates of PTSD symptoms, 12 months postinjury (P = 0.04). The TBI group also had higher rates of depressive symptoms, 6 months postinjury (P = 0.038). Having a TBI in addition to orthopaedic injury was associated with significantly higher rates of PTSD at 12 months and depression at 6 months postinjury. This suggests that sustaining a TBI in addition to orthopaedic injury places patients at a higher risk for negative psychological outcomes. The findings of this study may help clinicians to identify patients who are in need for psychological screening and could potentially benefit from intervention. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  20. Cerebroprotection of Flavanol (−)-Epicatechin after Traumatic Brain Injury via Nrf2-dependent and –independent Pathways

    PubMed Central

    Cheng, Tian; Wang, Wenzhu; Li, Qian; Han, Xiaoning; Xing, Jing; Qi, Cunfang; Lan, Xi; Wan, Jieru; Potts, Alexa; Guan, Fangxia; Wang, Jian

    2016-01-01

    Traumatic brain injury (TBI), which leads to disability, dysfunction, and even death, is a prominent health problem worldwide with no effective treatment. A brain-permeable flavonoid named (−)-epicatechin (EC) modulates redox/oxidative stress and has been shown to be beneficial for vascular and cognitive function in humans and for ischemic and hemorrhagic stroke in rodents. Here we examined whether EC is able to protect the brain against TBI-induced brain injury in mice and if so, whether it exerts neuroprotection by modulating the NF-E2-related factor (Nrf2) pathway. We used the controlled cortical impact model to mimic TBI. EC was administered orally at 3 h after TBI and then every 24 h for either 3 or 7 days. We evaluated lesion volume, brain edema, white matter injury, neurologic deficits, cognitive performance and emotion-like behaviors, neutrophil infiltration, reactive oxygen species (ROS), and a variety of injury-related protein markers. Nrf2 knockout mice were used to determine the role of the Nrf2 signaling pathway after EC treatment. In wild-type mice, EC significantly reduced lesion volume, edema, and cell death and improved neurologic function on days 3 and 28; cognitive performance and depression-like behaviors were also improved with EC administration. In addition, EC reduced white matter injury, heme oxygenase-1 expression, and ferric iron deposition after TBI. These changes were accompanied by attenuation of neutrophil infiltration and oxidative insults, reduced activity of matrix metalloproteinase 9, decreased Keap 1 expression, increased Nrf2 nuclear accumulation, and increased expression of superoxide dismutase 1 and quinone 1. However, EC did not significantly reduce lesion volume or improve neurologic deficits in Nrf2 knockout mice after TBI. Our results show that EC protects the TBI brain by activating the Nrf2 pathway, inhibiting heme oxygenase-1 protein expression, and reducing iron deposition. The latter two effects could represent an

  1. The neurovascular complexity index as a potential indicator of traumatic brain injury severity: A case-series study.

    PubMed

    Howard, Jeffrey T; Janak, Jud C; Bukhman, Vladislav; Robertson, Claudia; Frolov, Iurii; Nawn, Corinne D; Schiller, Alicia M; Convertino, Victor A

    2017-07-01

    Multimodal monitoring of brain physiology following a traumatic brain injury (TBI) shows promise as a strategy to improve management and outcomes of TBI patients within civilian and military trauma. Valid and reliable measures of different aspects of brain physiology following a TBI could prove critical to accurately capturing these changes. Using a case-series design with a control subject group comparison, we evaluated a new proprietary algorithm called the Neurovascular Complexity Index (NCI) using transcranial Doppler to noninvasively obtain measures of cerebral blood flow variability. Baseline NCI data from 169 control subjects were compared with 12 patients with moderate to severe TBI. Patients with TBI exhibited significantly greater mean and variability in NCI scores compared with control subjects (F = 195.48; p < 0.001). The mean absolute deviation (MAD) of NCI scores increased significantly and in a monotonic fashion with severity of injury, where control subjects exhibited a small MAD of 0.44, patients with moderate TBI had a higher MAD of 4.20, and patients with severe TBI had an MAD of 6.51 (p < 0.001). Advancement in multimodal monitoring of TBI patients is important in reducing the potential risk of secondary injury. This study reports results indicating that a new noninvasive quantifiable assessment of TBI based on a noninvasive measure of cerebral blood flow variability shows potential for continuous monitoring and early identification of brain-injured patients, deployable in far-forward military environments, to better inform individualized management. Case series, level IV.

  2. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    DTIC Science & Technology

    2013-07-01

    collegiate football 7 players: the NCAA Concussion Study. JAMA, 2003. 290(19): p. 2556-2563. 8 50. Naunheim RS, Matero D, Fucetola R, Assessment of...traumatic brain injury (mTBI) or concussion . In the civilian sector, the prolonged neuro-cognitive and functional symptoms following mTBI affects over 1.2...University Brain Concussion Workshop, Oct. 2012. Grants, Honors and Awards A major award (Seed Grant Award) was received by Dr. Zhifeng Kou from the

  3. Life-bombing-injury-life: a qualitative follow-up study of Oklahoma City bombing survivors with TBI.

    PubMed

    Sample, Pat L; Greene, David; Johns, Nikole R

    2012-01-01

    To learn about and come to an understanding of the recovery process and outcomes experienced by the survivors of the 1995 Oklahoma City bombing, who sustained a traumatic brain injury (TBI) along with other injuries in the blast. A phenomenological study was conducted using in-person interviews, document and video-tape review, internet communication and researcher journals as the primary data set. A total of 20 of the 46 bombing survivors with TBI (44%) agreed to be a part of the study. The data collection process focused on stories about service needs, services accessed and long-term outcomes of the participants. The researchers' data analysis yielded four themes (Trauma-Healing-Support; What TBI?; How I went back to work and life; Now I really need assistance!) that represented the content and meanings of the interviews and supplemental data. A common thread running through the interviews of survivors with TBI was their portrayal of life-long medical, emotional, vocational and residential needs since the bombing. What they experienced in the months--extending into years--after the bombing was beyond their own anticipation and that of their families and healthcare professionals.

  4. Computed tomography characteristics in pediatric versus adult traumatic brain injury.

    PubMed

    Sarkar, Korak; Keachie, Krista; Nguyen, UyenThao; Muizelaar, J Paul; Zwienenberg-Lee, Marike; Shahlaie, Kiarash

    2014-03-01

    Traumatic brain injury (TBI) is a leading cause of injury, hospitalization, and death among pediatric patients. Admission CT scans play an important role in classifying TBI and directing clinical care, but little is known about the differences in CT findings between pediatric and adult patients. The aim of this study was to determine if radiographic differences exist between adult and pediatric TBI. The authors retrospectively analyzed TBI registry data from 1206 consecutive patients with nonpenetrating TBI treated at a Level 1 adult and pediatric trauma center over a 30-month period. The distribution of sex, race, and Glasgow Coma Scale (GCS) score was not significantly different between the adult and pediatric populations; however, the distribution of CT findings was significantly different. Pediatric patients with TBI were more likely to have skull fractures (OR 3.21, p < 0.01) and epidural hematomas (OR 1.96, p < 0.01). Pediatric TBI was less likely to be associated with contusion, subdural hematoma, subarachnoid hemorrhage, or compression of the basal cisterns (p < 0.05). Rotterdam CT scores were significantly lower in the pediatric population (2.3 vs 2.6, p < 0.001). There are significant differences in the CT findings in pediatric versus adult TBI, despite statistical similarities with regard to clinical severity of injury as measured by the GCS. These differences may be due to anatomical characteristics, the biomechanics of injury, and/or differences in injury mechanisms between pediatric and adult patients. The unique characteristics of pediatric TBI warrant consideration when formulating a clinical trial design or predicting functional outcome using prognostic models developed from adult TBI data.

  5. The Potential of Stem Cells in Treatment of Traumatic Brain Injury.

    PubMed

    Weston, Nicole M; Sun, Dong

    2018-01-25

    Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

  6. Fatigue in the first year after traumatic brain injury: course, relationship with injury severity, and correlates.

    PubMed

    Beaulieu-Bonneau, Simon; Ouellet, Marie-Christine

    2017-10-01

    The objectives of this study were to document the evolution of fatigue in the first year after traumatic brain injury (TBI), and to explore correlates of fatigue. Participants were 210 adults who were hospitalised following a TBI. They completed questionnaires 4, 8, and 12 months post-injury, including the Multidimensional Fatigue Inventory (MFI). Participants with severe TBI presented greater mental and physical fatigue, and reduced activity compared to participants with moderate TBI. For all MFI subscales except reduced motivation, the general pattern was a reduction of fatigue levels over time after mild TBI, an increase of fatigue after severe TBI, and stable fatigue after moderate TBI. Fatigue was significantly associated with depression, insomnia, cognitive difficulties, and pain at 4 months; the same variables and work status at 8 months; and depression, insomnia, cognitive difficulties, and work status at 12 months. These findings suggest that injury severity could have an impact on the course of fatigue in the first year post-TBI. Depression, insomnia, and cognitive difficulties remain strong correlates of fatigue, while for pain and work status the association with fatigue evolves over time. This could influence the development of intervention strategies for fatigue, implemented at specific times for each severity subgroup.

  7. Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury

    PubMed Central

    Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads

    2014-01-01

    Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556

  8. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers.

    PubMed

    Ojo, Joseph O; Mouzon, Benoit; Algamal, Moustafa; Leary, Paige; Lynch, Cillian; Abdullah, Laila; Evans, James; Mullan, Michael; Bachmeier, Corbin; Stewart, William; Crawford, Fiona

    2016-07-01

    Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  9. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury.

    PubMed

    Eroglu, Binnur; Kimbler, Donald E; Pang, Junfeng; Choi, Justin; Moskophidis, Demetrius; Yanasak, Nathan; Dhandapani, Krishnan M; Mivechi, Nahid F

    2014-09-01

    Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI. © 2014 International Society

  10. When Service Members with Traumatic Brain Injury Become Students: Methods to Advance Learning

    ERIC Educational Resources Information Center

    Helms, Kimberly Turner; Libertz, Daniel

    2014-01-01

    The purpose of this paper is to explain which evidence-based interventions in study strategies have been successful in helping soldiers and veterans with traumatic brain injury (TBI) return to the classroom. Military leaders have specifically identified TBI as one of the signature injuries of the wars in Afghanistan and Iraq with over a quarter of…

  11. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury.

    PubMed

    Russo, Matthew V; Latour, Lawrence L; McGavern, Dorian B

    2018-05-01

    Mild traumatic brain injury (mTBI) can cause meningeal vascular injury and cell death that spreads into the brain parenchyma and triggers local inflammation and recruitment of peripheral immune cells. The factors that dictate meningeal recovery after mTBI are unknown at present. Here we demonstrated that most patients who had experienced mTBI resolved meningeal vascular damage within 2-3 weeks, although injury persisted for months in a subset of patients. To understand the recovery process, we studied a mouse model of mTBI and found extensive meningeal remodeling that was temporally reliant on infiltrating myeloid cells with divergent functions. Inflammatory myelomonocytic cells scavenged dead cells in the lesion core, whereas wound-healing macrophages proliferated along the lesion perimeter and promoted angiogenesis through the clearance of fibrin and production of the matrix metalloproteinase MMP-2. Notably, a secondary injury experienced during the acute inflammatory phase aborted this repair program and enhanced inflammation, but a secondary injury experienced during the wound-healing phase did not. Our findings demonstrate that meningeal vasculature can undergo regeneration after mTBI that is dependent on distinct myeloid cell subsets.

  12. Self-esteem in children after traumatic brain injury: an exploratory study.

    PubMed

    Hawley, Carol A

    2012-01-01

    Children with a traumatic brain injury (TBI) often have difficulties in adjusting to their injury and altered abilities, and may be at risk of low self-esteem and loss of confidence. However, few studies have examined self-esteem in this client group. The current study measured the self-esteem of a group of children who were, on average, two years post-TBI and compared this to their performance on other psychometric measures. Participants were 96 children with TBI and 31 peer controls, their parents and teachers. Self-esteem was measured using the Coopersmith Self-esteem Inventory (CSEI). CSEI scores were compared with performance on Wechsler Intelligence Scales (WISC-III), Hospital Anxiety and Depression Scale (HADS); Children's Memory Scale (CMS), Vineland Adaptive Behaviour Scales (VABS) and Parental Stress Index (PSI). Self-esteem was highly correlated with IQ; HADS anxiety and depression; and parental stress (p< 0.001). Children with TBI had significantly lower self-esteem than controls and population norms (p=0.015). Many children with TBI demonstrate low self-esteem and this is closely linked with anxiety and depression. This may hamper academic performance and could lead to further psychosocial problems. It is recommended that self-esteem is routinely assessed after brain injury and rehabilitation strategies implemented to promote a sense of self-worth.

  13. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  14. Epidemiology of Global Pediatric Traumatic Brain Injury: Qualitative Review.

    PubMed

    Dewan, Michael C; Mummareddy, Nishit; Wellons, John C; Bonfield, Christopher M

    2016-07-01

    Traumatic brain injury (TBI) is a common condition affecting children all over the world, and it represents a global public health concern. It is unclear how geopolitical, societal, and ethnic differences may influence the nature of TBI among children. A comprehensive literature search was conducted incorporating studies with hospital-, regional-, or country-specific pediatric TBI epidemiology data published between 1995 and 2015. Incidence, age, severity, mechanism of injury, and other relevant injury characteristics were extracted and compared across diverse geographic regions. Thirty articles met inclusion criteria, incorporating TBI data from more than 165,000 children on 5 continents. The worldwide incidence of pediatric TBI ranges broadly and varies greatly by country, with most reporting a range between 47 and 280 per 100,000 children. After the age of 3, male children suffered higher rates of TBI than females. A bimodal age distribution is often described, with very young children (0-2 years) and adolescents (15-18) more commonly injured. Mild TBI (Glasgow Coma Scale ≥13) constitutes more than 80% of injuries, and up to 90% of all injuries are associated with negative imaging. Only a small fraction (<10%) requires surgical intervention. Independent of country or region of origin, the vast majority of children suffering TBI achieve a good clinical outcome. Hospital admission rates vary widely, with U.S. patients more commonly admitted than those from other countries. Falls and motor vehicle collisions (MVCs) represent the majority of injury mechanisms. In Africa and Asia, pedestrians were most commonly injured in MVCs, while vehicle occupants were more likely involved among Australian, European, and U.S. For children, nonaccidental trauma was prevalent in developing and developed nations alike. TBI is a relatively common entity stretching across traditional geographic and demographic boundaries and affecting pediatric populations worldwide. Continued civil

  15. Educational, vocational, psychosocial, and quality-of-life outcomes for adult survivors of childhood traumatic brain injury.

    PubMed

    Anderson, Vicki; Brown, Sandra; Newitt, Heidi; Hoile, Hannah

    2009-01-01

    To examine long-term outcomes from child traumatic brain injury (TBI) and relevance of injury severity. A retrospective cross-sectional design. One hundred and twenty-four young adult survivors of childhood TBI (81 men), aged 18 to 30 years at evaluation (mean = 23.5, SD = 2.9), with injury on average 13.7 years prior to evaluation divided according to injury severity: mild (n = 60), moderate (n = 27), and severe (n = 37). Questionnaires assessed educational and employment status, psychosocial function, and quality-of-life issues. Functional difficulties persisted into adulthood. Injury severity was a particularly strong predictor of long-term outcomes, with environmental factors playing a less consistent role. Survivors of severe TBI were particularly vulnerable, demonstrating global impairment: poorer school performance, employment difficulties, poor quality of life, and increased risk of mental health problems. Mild and moderate TBI were more benign, although lower educational attainment and employment status were identified, and moderate TBI was associated with late developing mental health issues. Traumatic brain injury is a lifelong problem, compromising the individual's capacity to meet developmental expectations across a wide range of functional domains.

  16. Traumatic Brain Injury as a Risk Factor for Alzheimer's Disease: Is Inflammatory Signaling a Key Player?

    PubMed

    Djordjevic, Jelena; Sabbir, Mohammad Golam; Albensi, Benedict C

    2016-01-01

    Traumatic brain injury (TBI) has become a significant medical and social concern within the last 30 years. TBI has acute devastating effects, and in many cases, seems to initiate long-term neurodegeneration. With advances in medical technology, many people are now surviving severe brain injuries and their long term consequences. Post trauma effects include communication problems, sensory deficits, emotional and behavioral problems, physical complications and pain, increased suicide risk, dementia, and an increased risk for chronic CNS diseases, such as Alzheimer's disease (AD). In this review, we provide an introduction to TBI and hypothesize how it may lead to neurodegenerative disease in general and AD in particular. In addition, we discuss the evidence that supports the hypothesis that TBI may lead to AD. In particular, we focus on inflammatory responses as key processes in TBI-induced secondary injury, with emphasis on nuclear factor kappa B (NF-κB) signaling.

  17. Late intellectual and academic outcomes following traumatic brain injury sustained during early childhood.

    PubMed

    Ewing-Cobbs, Linda; Prasad, Mary R; Kramer, Larry; Cox, Charles S; Baumgartner, James; Fletcher, Stephen; Mendez, Donna; Barnes, Marcia; Zhang, Xiaoling; Swank, Paul

    2006-10-01

    Although long-term neurological outcomes after traumatic brain injury (TBI) sustained early in life are generally unfavorable, the effect of TBI on the development of academic competencies is unknown. The present study characterizes intelligence quotient (IQ) and academic outcomes an average of 5.7 years after injury in children who sustained moderate to severe TBI prior to 6 years of age. Twenty-three children who suffered inflicted or noninflicted TBI between the ages of 4 and 71 months were enrolled in a prospective, longitudinal cohort study. Their mean age at injury was 21 months; their mean age at assessment was 89 months. The authors used general linear modeling approaches to compare IQ and standardized academic achievement test scores from the TBI group and a community comparison group (21 children). Children who sustained early TBI scored significantly lower than children in the comparison group on intelligence tests and in the reading, mathematical, and language domains of achievement tests. Forty-eight percent of the TBI group had IQs below the 10th percentile. During the approximately 5-year follow-up period, longitudinal IQ testing revealed continuing deficits and no recovery of function. Both IQ and academic achievement test scores were significantly related to the number of intracranial lesions and the lowest postresuscitation Glasgow Coma Scale score but not to age at the time of injury. Nearly 50% of the TBI group failed a school grade and/or required placement in self-contained special education classrooms; the odds of unfavorable academic performance were 18 times higher for the TBI group than the comparison group. Traumatic brain injury sustained early in life has significant and persistent consequences for the development of intellectual and academic functions and deleterious effects on academic performance.

  18. Decreased Leftward ‘Aiming’ Motor-Intentional Spatial Cuing in Traumatic Brain Injury

    PubMed Central

    Wagner, Daymond; Eslinger, Paul J.; Barrett, A. M.

    2016-01-01

    Objective To characterize the mediation of attention and action in space following traumatic brain injury (TBI). Method Two exploratory analyses were performed to determine the influence of spatial ‘Aiming’ motor versus spatial ‘Where’ bias on line bisection in TBI participants. The first experiment compared performance according to severity and location of injury in TBI. The second experiment examined bisection performance in a larger TBI sample against a matched control group. In both experiments, participants bisected lines in near and far space using an apparatus that allowed for the fractionation of spatial Aiming versus Where error components. Results In the first experiment, participants with severe injuries tended to incur rightward error when starting from the right in far space, compared with participants with mild injuries. In the second experiment, when performance was examined at the individual level, more participants with TBI tended to incur rightward motor error compared to controls. Conclusions TBI may cause frontal-subcortical cognitive dysfunction and asymmetric motor perseveration, affecting spatial Aiming bias on line bisection. Potential effects on real-world function need further investigation. PMID:27571220

  19. Hyperbaric oxygen therapy for traumatic brain injury

    PubMed Central

    2011-01-01

    Traumatic brain injury (TBI) is a major public health issue. The complexity of TBI has precluded the use of effective therapies. Hyperbaric oxygen therapy (HBOT) has been shown to be neuroprotective in multiple neurological disorders, but its efficacy in the management of TBI remains controversial. This review focuses on HBOT applications within the context of experimental and clinical TBI. We also discuss its potential neuroprotective mechanisms. Early or delayed multiple sessions of low atmospheric pressure HBOT can reduce intracranial pressure, improve mortality, as well as promote neurobehavioral recovery. The complimentary, synergistic actions of HBOT include improved tissue oxygenation and cellular metabolism, anti-apoptotic, and anti-inflammatory mechanisms. Thus HBOT may serve as a promising neuroprotective strategy that when combined with other therapeutic targets for TBI patients which could improve long-term outcomes. PMID:22146562

  20. Resuscitation from experimental traumatic brain injury by magnolol therapy.

    PubMed

    Wang, Che-Chuan; Lin, Kao-Chang; Lin, Bor-Shyh; Chio, Chung-Ching; Kuo, Jinn-Rung

    2013-10-01

    The purpose of the present study was to determine whether magnolol, a free radical scavenger, mitigates the deleterious effects of traumatic brain injury (TBI). Traumatic brain injuries were induced in anesthetized male Sprague-Dawley rats using fluid percussion, and the rats were divided into groups treated with magnolol (2 mg/kg, intravenously) or vehicle. A group of rats that did not undergo TBI induction was also studied as controls. Biomarkers of TBI, including glycerol and 2,3-dihydroxybenzoic acid, were evaluated by microdialysis. Infraction volume, extent of neuronal apoptosis, and antiapoptosis factor transforming growth factor β1 (TGF-β1) were also measured. Functional outcomes were assessed by motor assays. Compared with the rats without TBI, the animals with TBI exhibited higher hippocampal glycerol and 2,3-dihydroxybenzoic acid. Relative to the vehicle-treated group, the magnolol-treated group showed decreased hippocampal levels of glycerol and hydroxyl radical levels. The magnolol-treated rats also exhibited decreased cerebral infarction volume and neuronal apoptosis and increased antiapoptosis-associated factor TGF-β1 expression. These effects were translated into improved motor function post TBI. Our results suggest that intravenous magnolol injection mitigates the deleterious effects of TBI in rats based on its potent free radical scavenging capability, and the mechanism of anti-neuronal apoptosis is partly due to an increase in TGF-β1 expression in the ischemic cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Methamphetamine potentiates behavioral and electrochemical responses after mild traumatic brain injury in mice.

    PubMed

    Shen, Hui; Harvey, Brandon K; Chiang, Yung-Hsiao; Pick, Chaim G; Wang, Yun

    2011-01-12

    We previously demonstrated that high doses of methamphetamine (MA) exacerbate damage induced by severe brain trauma. The purpose of the present study was to examine if MA, at low dosage, affected abnormalities in locomotor activity and dopamine turnover in a mouse model of mild traumatic brain injury (mTBI). Adult male CD1 mice were treated with MA (5 mg/kgi.p.) or vehicle 30-min prior to mTBI, conducted by dropping a 30 g metal weight onto the temporal skull, anterior the right ear. At 15 min after mTBI, animals were put into locomotor activity chambers for up to 72 h. During the first 3 h, mTBI alone, compared with vehicle control, did not alter total distance travelled. Treatment with MA significantly increased locomotor activity in the control animals during the first 3 h; mTBI reduced MA-induced hyperactivity. In contrast, at 2 and 3 days after injury, mTBI or MA alone reduced locomotor activity. Co-treatment with MA and mTBI further reduced this activity, suggesting a differential and temporal behavioral interaction between MA and mTBI during acute and subacute phases after injury. Dopamine and DOPAC levels in striatal tissue were analyzed using HPLC-ECD. At 1h after mTBI or injection, DA was not altered but DOPAC level and DOPAC/DA turnover ratios were significantly reduced. Co-treatment with MA further reduced the DOPAC/DA ratio. At 36 h after injury, mTBI increased tissue DA levels, but reduced DOPAC levels and DOPAC/DA ratios. Co-treatment with MA further reduced DOPAC/DA ratios in striatum. In conclusion, our data suggest that low dosage of MA worsens the suppression of locomotor responses and striatal dopamine turnover after mTBI. Published by Elsevier B.V.

  2. Neurogenic fever after traumatic brain injury: an epidemiological study

    PubMed Central

    Thompson, H; Pinto-Martin, J; Bullock, M

    2003-01-01

    Objectives: To determine the incidence of neurogenic fever (NF) in a population of patients in the acute phase following severe traumatic brain injury (TBI); to identify factors associated with the development of NF following severe TBI in adults. Methods: Charts of patients admitted from 1996 to 1999 with severe TBI at a large, urban mid-Atlantic teaching hospital were retrospectively evaluated based on diagnostic criteria for each episode of hyperthermia to determine the diagnosis of NF. Data were collected regarding mechanism and area of injury, severity of injury, and demographic factors to determine potential predictors of NF. Results: Diffuse axonal injury (DAI) (OR 9.06, 95% CI 0.99 to 82.7) and frontal lobe injury of any type (OR 6.68, 95% CI 1.1 to 39.3) are independently predictive of an increased risk of development of NF following severe TBI. The presence of a skull fracture and lower initial Glasgow Coma Score (GCS) were individual predictors of development of NF, but did not contribute to the final model. Conclusions: These findings examine known and novel risk factors for this phenomenon in comparison to previously published literature on NF. A set of predictor variables was identified to help clinicians target patients at high risk for development of NF following severe TBI. It is hoped that earlier diagnosis and appropriate intervention for fever in the TBI patient will lead to improved outcomes. PMID:12700304

  3. Procedural discourse performance in adults with severe traumatic brain injury at 3 and 6 months post injury.

    PubMed

    Stubbs, Elin; Togher, Leanne; Kenny, Belinda; Fromm, Davida; Forbes, Margaret; MacWhinney, Brian; McDonald, Skye; Tate, Robyn; Turkstra, Lyn; Power, Emma

    2018-01-01

    There is limited research on communicative recovery during the early stages after a severe traumatic brain injury (TBI) in adults. In the current study 43 people with severe TBI described a simple procedure at 3 and 6 months post injury and this was compared to the description provided by 37 healthy speakers. Linguistic productivity and the presence of macrostructural discourse elements were analysed. No change occurred in productivity in the TBI group between the two time points. There was increased use of relevant information (macrostructure) over time for the TBI group, reflecting improvement. People with TBI differed from controls in speech rate and in two out of three macrostructural categories at both time points, indicating difficulties even after 12 weeks of recovery. Overall, the quality, rather than the quantity of discourse was disordered for participants with TBI. Findings indicate that procedural discourse is sensitive to discourse deficits of people with TBI and can be used to map recovery during the sub-acute phase.

  4. Influence of physical exercise on traumatic brain injury deficits: scaffolding effect.

    PubMed

    Archer, Trevor

    2012-05-01

    Traumatic brain injury (TBI) may be due to a bump, blow, or jolt to the head or a penetrating head injury that disrupts normal brain function; it presents an ever-growing, serious public health problem that causes a considerable number of fatalities and cases of permanent disability annually. Physical exercise restores the healthy homeostatic regulation of stress, affect and the regulation of hypothalamic-pituitary-adrenal axis. Physical activity attenuates or reverses the performance deficits observed in neurocognitive tasks. It induces anti-apoptotic effects and buttresses blood-brain barrier intactness. Exercise offers a unique non-pharmacologic, non-invasive intervention that incorporates different regimes, whether dynamic or static, endurance, or resistance. Exercise intervention protects against vascular risk factors that include hypertension, diabetes, cellular inflammation, and aortic rigidity. It induces direct changes in cerebrovasculature that produce beneficial changes in cerebral blood flow, angiogenesis and vascular disease improvement. The improvements induced by physical exercise regimes in brain plasticity and neurocognitive performance are evident both in healthy individuals and in those afflicted by TBI. The overlap and inter-relations between TBI effects on brain and cognition as related to physical exercise and cognition may provide lasting therapeutic benefits for recovery from TBI. It seems likely that some modification of the notion of scaffolding would postulate that physical exercise reinforces the adaptive processes of the brain that has undergone TBI thereby facilitating the development of existing networks, albeit possibly less efficient, that compensate for those lost through damage. © Springer Science+Business Media, LLC 2011

  5. Training communication partners of people with severe traumatic brain injury improves everyday conversations: a multicenter single blind clinical trial.

    PubMed

    Togher, Leanne; McDonald, Skye; Tate, Robyn; Power, Emma; Rietdijk, Rachael

    2013-07-01

    To determine effectiveness of communication training for partners of people with severe traumatic brain injury. Three arm non-randomized controlled trial comparing communication partner training (JOINT) with individual treatment (TBI SOLO) and a waitlist control group with 6 month follow-up. Forty-four outpatients with severe chronic traumatic brain injuries were recruited. Ten-week conversational skills treatment program encompassing weekly group and individual sessions for both treatment groups. The JOINT condition focused on both the partner and the person with traumatic brain injury while the TBI SOLO condition focused on the individual with TBI only. Primary outcomes were blind ratings of the person with traumatic brain injury's level of participation during conversation on the Measure of Participation in Communication Adapted Kagan scales. Communication partner training improved conversational performance relative to training the person with traumatic brain injury alone and a waitlist control group on the primary outcome measures. Results were maintained at six months post-training. Training communication partners of people with chronic severe traumatic brain injury was more efficacious than training the person with traumatic brain injury alone. The Adapted Kagan scales proved to be a robust and sensitive outcome measure for a conversational skills training program.

  6. Is Electroconvulsive Therapy a Treatment for Depression Following Traumatic Brain Injury?

    PubMed Central

    Srienc, Anja; Sarai, Simrat; Xiong, Yee; Lippmann, Steven

    2018-01-01

    Traumatic brain injury (TBI) can be caused by blunt or penetrating injury to the head. The pathophysiological evolution of TBI involves complex biochemical and genetic changes. Common sequelae of TBI include seizures and psychiatric disorders, particularly depression. In considering pharmacologic interventions for treating post-TBI depression, it is important to remember that TBI patients have a higher risk of seizures; therefore, the benefits of prescribing medications that lower the seizure threshold need to be weighed against the risk of seizures. When post-TBI depression is refractory to pharmacotherapy, electroconvulsive therapy (ECT) could provide an alternative therapeutic strategy. Data remain sparse on using ECT in this seizure-prone population, but three case reports demonstrated good outcomes. Currently, not enough evidence exists to provide clinical recommendations for using ECT for treating post-TBI depression, and more research is needed to generate guidelines on how best to treat depression in TBI patients. However, the preliminary data on using ECT in patients with TBI are promising. If proven safe, ECT could be a powerful tool to treat post-TBI depression. PMID:29707426

  7. Is Electroconvulsive Therapy a Treatment for Depression Following Traumatic Brain Injury?

    PubMed

    Srienc, Anja; Narang, Puneet; Sarai, Simrat; Xiong, Yee; Lippmann, Steven

    2018-04-01

    Traumatic brain injury (TBI) can be caused by blunt or penetrating injury to the head. The pathophysiological evolution of TBI involves complex biochemical and genetic changes. Common sequelae of TBI include seizures and psychiatric disorders, particularly depression. In considering pharmacologic interventions for treating post-TBI depression, it is important to remember that TBI patients have a higher risk of seizures; therefore, the benefits of prescribing medications that lower the seizure threshold need to be weighed against the risk of seizures. When post-TBI depression is refractory to pharmacotherapy, electroconvulsive therapy (ECT) could provide an alternative therapeutic strategy. Data remain sparse on using ECT in this seizure-prone population, but three case reports demonstrated good outcomes. Currently, not enough evidence exists to provide clinical recommendations for using ECT for treating post-TBI depression, and more research is needed to generate guidelines on how best to treat depression in TBI patients. However, the preliminary data on using ECT in patients with TBI are promising. If proven safe, ECT could be a powerful tool to treat post-TBI depression.

  8. Mechanisms of dendritic spine remodeling in a rat model of traumatic brain injury.

    PubMed

    Campbell, John N; Low, Brian; Kurz, Jonathan E; Patel, Sagar S; Young, Matt T; Churn, Severn B

    2012-01-20

    Traumatic brain injury (TBI), a leading cause of death and disability in the United States, causes potentially preventable damage in part through the dysregulation of neural calcium levels. Calcium dysregulation could affect the activity of the calcium-sensitive phosphatase calcineurin (CaN), with serious implications for neural function. The present study used both an in vitro enzymatic assay and Western blot analyses to characterize the effects of lateral fluid percussion injury on CaN activity and CaN-dependent signaling in the rat forebrain. TBI resulted in an acute alteration of CaN phosphatase activity and long-lasting alterations of its downstream effector, cofilin, an actin-depolymerizing protein. These changes occurred bilaterally in the neocortex and hippocampus, appeared to persist for hours after injury, and coincided with synapse degeneration, as suggested by a loss of the excitatory post-synaptic protein PSD-95. Interestingly, the effect of TBI on cofilin in some brain regions was blocked by a single bolus of the CaN inhibitor FK506, given 1 h post-TBI. Overall, these findings suggest a loss of synapse stability in both hemispheres of the laterally-injured brain, and offer evidence for region-specific, CaN-dependent mechanisms.

  9. Improved sensitivity of the rapid screen of mild traumatic brain injury.

    PubMed

    De Monte, Veronica Eileen; Geffen, Gina Malke; May, Christopher Randall; McFarland, Ken

    2010-01-01

    This study aimed to investigate the acute effects of mild traumatic brain injury (mTBI) in an emergency department sample. A total of 246 (186 male, 60 female) cases of mTBI and 102 (65 male and 37 female) cases of orthopedic injuries were tested within 24 hours of injury. Mild TBI patients performed more poorly on all subtests of the Rapid Screen of Concussion (RSC) and completed fewer symbols on Digit Symbol than did orthopedic controls. RSC scores predicted group membership better than chance, and Digit Symbol scores contributed significantly to predicting group membership over and above the contribution of the RSC, resulting in 70.4% sensitivity and 74% specificity for the extended protocol. The results of this study indicate that learning and memory, orientation, and speed of information processing are impaired immediately following mTBI. Furthermore, a brief battery of tests that include word recall, orientation, and the Digit Symbol Substitution Test could assess the severity of dysfunction following mTBI, and assist in clinical decision making regarding discharge, return to routine activities, and management of the effects of injury.

  10. Neuroimmunology of Traumatic Brain Injury: Time for a Paradigm Shift.

    PubMed

    Jassam, Yasir N; Izzy, Saef; Whalen, Michael; McGavern, Dorian B; El Khoury, Joseph

    2017-09-13

    Traumatic brain injury (TBI) is a leading cause of morbidity and disability, with a considerable socioeconomic burden. Heterogeneity of pathoanatomical subtypes and diversity in the pathogenesis and extent of injury contribute to differences in the course and outcome of TBI. Following the primary injury, extensive and lasting damage is sustained through a complex cascade of events referred to as "secondary injury." Neuroinflammation is proposed as an important manipulable aspect of secondary injury in animal and human studies. Because neuroinflammation can be detrimental or beneficial, before developing immunomodulatory therapies, it is necessary to better understand the timing and complexity of the immune responses that follow TBI. With a rapidly increasing body of literature, there is a need for a clear summary of TBI neuroimmunology. This review presents our current understanding of the immune response to TBI in a chronological and compartment-based manner, highlighting early changes in gene expression and initial signaling pathways that lead to activation of innate and adaptive immunity. Based on recent advances in our understanding of innate immune cell activation, we propose a new paradigm to study innate immune cells following TBI that moves away from the existing M1/M2 classification of activation states toward a stimulus- and disease-specific understanding of polarization state based on transcriptomic and proteomic profiling. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Traumatic Brain Injury. An Overview Look at Effects and Strategies for Remediation.

    ERIC Educational Resources Information Center

    Brongiel, Andrea

    This paper provides an overview of traumatic brain injury (TBI), including incidence, definition, characteristics, assessment and identification, remediation, teacher responsibility, and parent involvement. It discusses the eligibility of students with TBI to receive appropriate and related services in school under the Individuals with…

  12. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    DTIC Science & Technology

    2016-12-01

    best uses of the device for naval medicine. 14. SUBJECT TERMS traumatic brain injuries, electroencephalography, EEG, use case study 15. NUMBER OF...Traumatic Brain Injury NCS Non-Convulsive Seizures PD Parkinson’s Disease QEEG Quantitative EEG SPECT Single-Photon Emission Computerized Tomography...INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION This study examines the diagnosis of traumatic brain injuries (TBI). Early detection and diagnosis is

  13. Chapter 6 state of the science of pediatric traumatic brain injury: biomarkers and gene association studies.

    PubMed

    Reuter-Rice, Karin; Eads, Julia K; Berndt, Suzanna Boyce; Bennett, Ellen

    2015-01-01

    Our objective is to review the most widely used biomarkers and gene studies reported in pediatric traumatic brain injury (TBI) literature, to describe their findings, and to discuss the discoveries and gaps that advance the understanding of brain injury and its associated outcomes. Ultimately, we aim to inform the science for future research priorities. We searched PubMed, MEDLINE, CINAHL, and the Cochrane Database of Systematic Reviews for published English language studies conducted in the last 10 years to identify reviews and completed studies of biomarkers and gene associations in pediatric TBI. Of the 131 biomarker articles, only 16 were specific to pediatric TBI patients, whereas of the gene association studies in children with TBI, only four were included in this review. Biomarker and gene attributes are grossly understudied in pediatric TBI in comparison to adults. Although recent advances recognize the importance of biomarkers in the study of brain injury, the limited number of studies and genomic associations in the injured brain has shown the need for common data elements, larger sample sizes, heterogeneity, and common collection methods that allow for greater understanding of the injured pediatric brain. By building on to the consortium of interprofessional scientists, continued research priorities would lead to improved outcome prediction and treatment strategies for children who experience a TBI. Understanding recent advances in biomarker and genomic studies in pediatric TBI is important because these advances may guide future research, collaborations, and interventions. It is also important to ensure that nursing is a part of this evolving science to promote improved outcomes in children with TBIs.

  14. Children with Traumatic Brain Injury: Associations Between Parenting and Social Adjustment

    PubMed Central

    Root, Amy E.; Wimsatt, Maureen; Rubin, Kenneth H.; Bigler, Erin. D.; Dennis, Maureen; Gerhardt, Cynthia A.; Stancin, Terry; Taylor, H. Gerry; Vannatta, Kathryn; Yeates, Keith O.

    2015-01-01

    Similarities and differences in parenting practices of children (Mage = 10; range 8-13 years) with traumatic brain injury (TBI) and socially-typical controls were examined. In addition, parenting practices were examined as moderators between injury group status (TBI or socially-typical) and social adjustment in the peer group. Mothers completed assessments of parenting practices; children's peers reported about children's social adjustment. The mothers of children with TBI reported significantly lower levels of nurturance and significantly higher levels of restrictiveness than mothers of socially-typical children. In addition, mothers’ nurturance moderated the relation between injury group and peer rejection, such that children with TBI were more rejected by classmates compared to their socially-typical peers at low levels of maternal nurturance. The findings are interpreted as supporting the important role parents play in the development of children with a history of TBI, as well as the implications for family-level interventions. PMID:26726276

  15. Mild traumatic brain injury literature review and proposed changes to classification.

    PubMed

    Krainin, Benjamin M; Forsten, Robert D; Kotwal, Russ S; Lutz, Robert H; Guskiewicz, Kevin M

    2011-01-01

    Mild traumatic brain injury (mTBI) reportedly occurs in 8-22% of U.S. servicemembers who conduct combat operations in Afghanistan and Iraq. The current definition for mTBI found in the medical literature, to include the Department of Defense (DoD) and Veterans Administration (VA) clinical practice guidelines is limited by the parameters of loss of consciousness, altered consciousness, or post-traumatic amnesia, and does not account for other constellations of potential symptoms. Although mTBI symptoms typically resolve within seven days, some servicemembers experience symptoms that continue for weeks, months, or years following an injury. Mild TBI is one of few disorders in medicine where a benign and misleading diagnostic classification is bestowed on patients at the time of injury, yet still can be associated with lifelong complications. This article comprehensively reviews the clinical literature over the past 20 years and proposes a new classification for TBI that addresses acute, sub-acute, and chronic phases, and includes neurocognitive, somatic, and psychological symptom presentation. 2011.

  16. Diffusion Tensor Imaging of Incentive Effects in Prospective Memory after Pediatric Traumatic Brain Injury

    PubMed Central

    Wilde, Elisabeth A.; Bigler, Erin D.; Chu, Zili; Yallampalli, Ragini; Oni, Margaret B.; Wu, Trevor C.; Ramos, Marco A.; Pedroza, Claudia; Vásquez, Ana C.; Hunter, Jill V.; Levin, Harvey S.

    2011-01-01

    Abstract Few studies exist investigating the brain-behavior relations of event-based prospective memory (EB-PM) impairments following traumatic brain injury (TBI). To address this, children with moderate-to-severe TBI performed an EB-PM test with two motivational enhancement conditions and underwent concurrent diffusion tensor imaging (DTI) at 3 months post-injury. Children with orthopedic injuries (OI; n = 37) or moderate-to-severe TBI (n = 40) were contrasted. Significant group differences were found for fractional anisotropy (FA) and apparent diffusion coefficient for orbitofrontal white matter (WM), cingulum bundles, and uncinate fasciculi. The FA of these WM structures in children with TBI significantly correlated with EB-PM performance in the high, but not the low motivation condition. Regression analyses within the TBI group indicated that the FA of the left cingulum bundle (p = 0.003), left orbitofrontal WM (p < 0.02), and left (p < 0.02) and right (p < 0.008) uncinate fasciculi significantly predicted EB-PM performance in the high motivation condition. We infer that the cingulum bundles, orbitofrontal WM, and uncinate fasciculi are important WM structures mediating motivation-based EB-PM responses following moderate-to-severe TBI in children. PMID:21250917

  17. Postnatal Neural Stem Cells in Treating Traumatic Brain Injury.

    PubMed

    Gazalah, Hussein; Mantash, Sarah; Ramadan, Naify; Al Lafi, Sawsan; El Sitt, Sally; Darwish, Hala; Azari, Hassan; Fawaz, Lama; Ghanem, Noël; Zibara, Kazem; Boustany, Rose-Mary; Kobeissy, Firas; Soueid, Jihane

    2016-01-01

    Traumatic brain injury (TBI) is one of the leading causes of death and disabilities worldwide. It affects approximately 1.5 million people each year and is associated with severe post-TBI symptoms such as sensory and motor deficits. Several neuro-therapeutic approaches ranging from cell therapy interventions such as the use of neural stem cells (NSCs) to drug-based therapies have been proposed for TBI management. Successful cell-based therapies are tightly dependent on reproducible preclinical animal models to ensure safety and optimal therapeutic benefits. In this chapter, we describe the isolation of NSCs from neonatal mouse brain using the neurosphere assay in culture. Subsequently, dissociated neurosphere-derived cells are used for transplantation into the ipsilateral cortex of a controlled cortical impact (CCI) TBI model in C57BL/6 mice. Following intra-cardiac perfusion and brain removal, the success of NSC transplantation is then evaluated using immunofluorescence in order to assess neurogenesis along with gliosis in the ipsilateral coronal brain sections. Behavioral tests including rotarod and pole climbing are conducted to evaluate the motor activity post-treatment intervention.

  18. Educator Guidelines for Serving Students with Traumatic Brain Injuries. Revised Edition.

    ERIC Educational Resources Information Center

    Utah State Univ., Logan. Mountain Plains Regional Resource Center.

    These guidelines were developed for serving students with traumatic brain injury (TBI) in school settings. An introduction reviews the frequency of TBI, range of severity, and legal responsibility for special education services. Guidelines are offered for creating prevention and awareness programs and for implementing staff development. A section…

  19. Topic Repetitiveness after Traumatic Brain Injury: An Emergent, Jointly Managed Behaviour

    ERIC Educational Resources Information Center

    Body, Richard; Parker, Mark

    2005-01-01

    Topic repetitiveness is a common component of pragmatic impairment and a powerful contributor to social exclusion. Despite this, description, characterization and intervention remain underdeveloped. This article explores the nature of repetitiveness in traumatic brain injury (TBI). A case study of one individual after TBI provides the basis for a…

  20. Leveraging Game Consoles for the Delivery of TBI Rehabilitation

    NASA Technical Reports Server (NTRS)

    Super, Taryn; Mastaglio, Thomas; Shen, Yuzhong; Walker, Robert

    2011-01-01

    Military personnel are at a greater risk for traumatic brain injury (TBI) than the civilian population. In addition, the increase in exposure to explosives, i.e. , improvised explosive devices, in the Afghanistan and Iraq wars, along with more effective body armor, has resulted in far more surviving casualties suffering from TBI than in previous wars. This effort presents the results of a feasibility study and early prototype of a brain injury rehabilitation delivery system (BIRDS). BIRDS is designed to provide medical personnel treating TBI with a capability to prescribe game activities for patients to execute using a commercially available game console, either in a clinical setting or in their homes. These therapeutic activities will contribute to recovery or remediation of the patients' cognitive dysfunctions. Solutions such as this that provide new applications for existing platforms have significant potential to address the growing incidence of TBI today.