Grieve, Stuart M; Korgaonkar, Mayuresh S; Clark, C Richard; Williams, Leanne M
2011-04-01
Magnetic resonance imaging (MRI) studies of structural brain development have suggested that the limbic system is relatively preserved in comparison to other brain regions with healthy aging. The goal of this study was to systematically investigate age-related changes of the limbic system using measures of cortical thickness, volumetric and diffusion characteristics. We also investigated if the "relative preservation" concept is consistent across the individual sub-regions of the limbic system. T1 weighted structural MRI and Diffusion Tensor Imaging data from 476 healthy participants from the Brain Resource International Database was used for this study. Age-related changes in grey matter (GM)/white matter (WM) volume, cortical thickness, diffusional characteristics for the pericortical WM and for the fiber tracts associated with the limbic regions were quantified. A regional variability in the aging patterns across the limbic system was present. Four important patterns of age-related changes were highlighted for the limbic sub-regions: 1. early maturation of GM with late loss in the hippocampus and amygdala; 2. an extreme pattern of GM preservation in the entorhinal cortex; 3. a flat pattern of reduced GM loss in the anterior cingulate and the parahippocampus and; 4. accelerated GM loss in the isthmus and posterior cingulate. The GM volumetric data and cortical thickness measures proved to be internally consistent, while the diffusional measures provided complementary data that seem consistent with the GM trends identified. This heterogeneity can be hypothesized to be associated with age-related changes of cognitive function specialized for that region and direct connections to the other brain regions sub-serving these functions. Copyright © 2011 Elsevier Inc. All rights reserved.
Tröscher, Anna R.; Klang, Andrea; French, Maria; Quemada-Garrido, Lucía; Kneissl, Sibylle Maria; Bien, Christian G.; Pákozdy, Ákos; Bauer, Jan
2017-01-01
Human leucine-rich glioma-inactivated protein 1 encephalitis (LGI1) is an autoimmune limbic encephalitis in which serum and cerebrospinal fluid contain antibodies targeting LGI1, a protein of the voltage gated potassium channel (VGKC) complex. Recently, we showed that a feline model of limbic encephalitis with LGI1 antibodies, called feline complex partial seizures with orofacial involvement (FEPSO), is highly comparable to human LGI1 encephalitis. In human LGI1 encephalitis, neuropathological investigations are difficult because very little material is available. Taking advantage of this natural animal model to study pathological mechanisms will, therefore, contribute to a better understanding of its human counterpart. Here, we present a brain-wide histopathological analysis of FEPSO. We discovered that blood–brain barrier (BBB) leakage was present not only in all regions of the hippocampus but also in other limbic structures such as the subiculum, amygdale, and piriform lobe. However, in other regions, such as the cerebellum, no leakage was observed. In addition, this brain-region-specific immunoglobulin leakage was associated with the breakdown of endothelial tight junctions. Brain areas affected by BBB dysfunction also revealed immunoglobulin and complement deposition as well as neuronal cell death. These neuropathological findings were supported by magnetic resonance imaging showing signal and volume increase in the amygdala and the piriform lobe. Importantly, we could show that BBB disturbance in LGI1 encephalitis does not depend on T cell infiltrates, which were present brain-wide. This finding points toward another, so far unknown, mechanism of opening the BBB. The limbic predilection sites of immunoglobulin antibody leakage into the brain may explain why most patients with LGI1 antibodies have a limbic phenotype even though LGI1, the target protein, is ubiquitously distributed across the central nervous system. PMID:29093718
Tröscher, Anna R; Klang, Andrea; French, Maria; Quemada-Garrido, Lucía; Kneissl, Sibylle Maria; Bien, Christian G; Pákozdy, Ákos; Bauer, Jan
2017-01-01
Human leucine-rich glioma-inactivated protein 1 encephalitis (LGI1) is an autoimmune limbic encephalitis in which serum and cerebrospinal fluid contain antibodies targeting LGI1, a protein of the voltage gated potassium channel (VGKC) complex. Recently, we showed that a feline model of limbic encephalitis with LGI1 antibodies, called feline complex partial seizures with orofacial involvement (FEPSO), is highly comparable to human LGI1 encephalitis. In human LGI1 encephalitis, neuropathological investigations are difficult because very little material is available. Taking advantage of this natural animal model to study pathological mechanisms will, therefore, contribute to a better understanding of its human counterpart. Here, we present a brain-wide histopathological analysis of FEPSO. We discovered that blood-brain barrier (BBB) leakage was present not only in all regions of the hippocampus but also in other limbic structures such as the subiculum, amygdale, and piriform lobe. However, in other regions, such as the cerebellum, no leakage was observed. In addition, this brain-region-specific immunoglobulin leakage was associated with the breakdown of endothelial tight junctions. Brain areas affected by BBB dysfunction also revealed immunoglobulin and complement deposition as well as neuronal cell death. These neuropathological findings were supported by magnetic resonance imaging showing signal and volume increase in the amygdala and the piriform lobe. Importantly, we could show that BBB disturbance in LGI1 encephalitis does not depend on T cell infiltrates, which were present brain-wide. This finding points toward another, so far unknown, mechanism of opening the BBB. The limbic predilection sites of immunoglobulin antibody leakage into the brain may explain why most patients with LGI1 antibodies have a limbic phenotype even though LGI1, the target protein, is ubiquitously distributed across the central nervous system.
Faria, Miguel A.
2013-01-01
Knowledge of neuroscience flourished during and in the wake of the era of frontal lobotomy, as a byproduct of psychosurgery in the late 1930s and 1940s, revealing fascinating neural pathways and neurophysiologic mechanisms of the limbic system for the formulation of emotions, memory, and human behavior. The creation of the Klüver-Bucy syndrome in monkeys opened new horizons in the pursuit of knowledge in human behavior and neuropathology. In the 1950s specialized functional neurosurgery was developed in association with stereotactic neurosurgery; deep brain electrodes were implanted for more precise recording of brain electrical activity in the evaluation and treatment of intractable mental disorders, including schizophrenia, “pathologic aggression,” and psychomotor seizures in temporal lobe epilepsy. Psychosurgical procedures involved deep brain stimulation of the limbic system, as well as ablative procedures, such as cingulotomy and thalamotomy. The history of these developments up to the 21st century will continue in this three-part essay-editorial, exclusively researched and written for the readers of Surgical Neurology International. PMID:23776761
Lee, Tae-Ho; Telzer, Eva H
2016-08-01
Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kisspeptin modulates sexual and emotional brain processing in humans.
Comninos, Alexander N; Wall, Matthew B; Demetriou, Lysia; Shah, Amar J; Clarke, Sophie A; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M; Jayasena, Channa N; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Lundanes, Elsa; Wilson, Steven Ray; Brown, Rachel C; Thomas, Sarah A; Bloom, Stephen R; Dhillo, Waljit S
2017-02-01
Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin's enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).
Bilateral limbic system destruction in man
Feinstein, Justin S.; Rudrauf, David; Khalsa, Sahib S.; Cassell, Martin D.; Bruss, Joel; Grabowski, Thomas J.; Tranel, Daniel
2010-01-01
We report here a case study of a rare neurological patient with bilateral brain damage encompassing a substantial portion of the so-called “limbic system.” The patient, Roger, has been studied in our laboratory for over 14 years and the current article presents his complete neuroanatomical and neuropsychological profiles. The brain damage occurred in 1980 following an episode of herpes simplex encephalitis. The amount of destroyed neural tissue is extensive and includes bilateral damage to core limbic and paralimbic regions, including the hippocampus, amygdala, parahippocampal gyrus, temporal poles, orbitofrontal cortex, basal forebrain, anterior cingulate cortex, and insular cortex. The right hemisphere is more extensively affected than the left, although the lesions are largely bilateral. Despite the magnitude of his brain damage, Roger has a normal IQ, average to above average attention, working memory, and executive functioning skills, and very good speech and language abilities. In fact, his only obvious presenting deficits are a dense global amnesia and a severe anosmia and ageusia. Roger's case presents a rare opportunity to advance our understanding of the critical functions underlying the human limbic system, and the neuropsychological and neuroanatomical data presented here provide a critical foundation for such investigations. PMID:19763994
Wired for behaviors: from development to function of innate limbic system circuitry
Sokolowski, Katie; Corbin, Joshua G.
2012-01-01
The limbic system of the brain regulates a number of behaviors that are essential for the survival of all vertebrate species including humans. The limbic system predominantly controls appropriate responses to stimuli with social, emotional, or motivational salience, which includes innate behaviors such as mating, aggression, and defense. Activation of circuits regulating these innate behaviors begins in the periphery with sensory stimulation (primarily via the olfactory system in rodents), and is then processed in the brain by a set of delineated structures that primarily includes the amygdala and hypothalamus. While the basic neuroanatomy of these connections is well-established, much remains unknown about how information is processed within innate circuits and how genetic hierarchies regulate development and function of these circuits. Utilizing innovative technologies including channel rhodopsin-based circuit manipulation and genetic manipulation in rodents, recent studies have begun to answer these central questions. In this article we review the current understanding of how limbic circuits regulate sexually dimorphic behaviors and how these circuits are established and shaped during pre- and post-natal development. We also discuss how understanding developmental processes of innate circuit formation may inform behavioral alterations observed in neurodevelopmental disorders, such as autism spectrum disorders, which are characterized by limbic system dysfunction. PMID:22557946
An aberrant parasympathetic response: a new perspective linking chronic stress and itch.
Kim, Hei Sung; Yosipovitch, Gil
2013-04-01
Perceived stress has long been known to alter the dynamic equilibrium established between the nervous, endocrine and immune system and is widely recognised to trigger or enhance pruritus. However, the exact mechanism of how the major stress response systems, such as the hypothalamus-pituitary adrenal (HPA) axis and the autonomic nervous system induce or aggravate chronic itch, has not been elucidated. The limbic regions of the brain such as the prefrontal cortex and hippocampus are deeply involved in the regulation of the stress response and intersect with circuits that are responsible for memory and reward. According to the 'Polyvagal Theory', certain limbic structures that serve as a 'higher brain equivalent of the parasympathetic nervous system' play a foremost role in maintaining body homoeostasis by functioning as an active vagal brake. In addition, the limbic system has been postulated to regulate two distinct, yet related aspects of itch: (i) the sensory-discriminative aspect; and (ii) the affective-cognitive aspect. Chronic stress-induced itch is hypothesised to be caused by stress-related changes in limbic structure with subsequent rewiring of both the peripheral and central pruriceptive circuits. Herein, we review data suggesting that a dysfunctional parasympathetic nervous system associated with chronic stress may play a critical role in the regulatory control of key candidate molecules, receptors and brain structures involved in chronic itch. © 2012 John Wiley & Sons A/S.
Kisspeptin modulates sexual and emotional brain processing in humans
Comninos, Alexander N.; Wall, Matthew B.; Demetriou, Lysia; Shah, Amar J.; Clarke, Sophie A.; Narayanaswamy, Shakunthala; Nesbitt, Alexander; Izzi-Engbeaya, Chioma; Prague, Julia K.; Abbara, Ali; Ratnasabapathy, Risheka; Salem, Victoria; Nijher, Gurjinder M.; Jayasena, Channa N.; Tanner, Mark; Bassett, Paul; Mehta, Amrish; Rabiner, Eugenii A.; Hönigsperger, Christoph; Silva, Meire Ribeiro; Brandtzaeg, Ole Kristian; Wilson, Steven Ray; Brown, Rachel C.; Thomas, Sarah A.; Bloom, Stephen R.; Dhillo, Waljit S.
2017-01-01
BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior. METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men. RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood. CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function. FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC). PMID:28112678
Revealing the cerebello-ponto-hypothalamic pathway in the human brain.
Kamali, Arash; Karbasian, Niloofar; Rabiei, Pejman; Cano, Andres; Riascos, Roy F; Tandon, Nitin; Arevalo, Octavio; Ocasio, Laura; Younes, Kyan; Khayat-Khoei, Mahsa; Mirbagheri, Saeedeh; Hasan, Khader M
2018-06-11
The cerebellum is shown to be involved in some limbic functions of the human brain such as emotion and affect. The major connection of the cerebellum with the limbic system is known to be through the cerebello-hypothalamic pathways. The consensus is that the projections from the cerebellar nuclei to the limbic system, and particularly the hypothalamus, or from the hypothalamus to the cerebellar nuclei, are through multisynaptic pathways in the bulbar reticular formation. The detailed anatomy of the pathways responsible for mediating these responses, however, is yet to be determined. Diffusion tensor imaging may be helpful in better visualizing the surgical anatomy of the cerebello-ponto-hypothalamic (CPH) pathway. This study aimed to investigate the utility of high-spatial-resolution diffusion tensor tractography for mapping the trajectory of the CPH tract in the human brain. Fifteen healthy adults were studied. We delineated, for the first time, the detailed trajectory of the CPH tract of the human brain in fifteen normal adult subjects using high-spatial-resolution diffusion tensor tractography. We further revealed the close relationship of the CPH tract with the optic tract, temporo-pontine tract, amygdalofugal tract and the fornix in the human brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of the limbic system in dependence on drugs.
Rodríguez de Fonseca, F; Navarro, M
1998-08-01
The limbic system is a group of structurally and functionally related areas of the brain that provides the anatomical substrate for emotions and motivated behaviour, including the circuitry for the stress response and reward-related events. This system is strongly implicated in drug abuse from the pleasure and/or positive side associated with acute exposure to the dysphoria and craving associated with withdrawal. The contribution of the main cortical and subcortical elements of the limbic system to drug dependence is briefly reviewed in the present work with a focus on the role of the extended amygdala and its connections as well as on the peripheral feedback signals mediated by adrenal glucocorticoids. The elucidation of the neuroadaptive responses of the limbic system to chronic drug exposure will undoubtedly help to design rational strategies for the treatment of addiction.
Regulatory processes of hunger motivated behavior.
Lénárd, L; Karádi, Z
2012-01-01
While food intake and body weight are under homeostatic regulation, eating is a highly motivated and reinforced behavior that induces feelings of gratification and pleasure. The chemical senses (taste and odor) and their evaluation are essential to these functions. Brainstem and limbic glucose-monitoring (GM) neurons receiving neurochemical information from the periphery and from the local brain milieu are important controlling hunger motivation, and brain gut peptides have a modulatory role on this function. The hypothalamic and limbic forebrain areas are responsible for evaluation of reward quality and related emotions. They are innervated by the mesolimbic dopaminergic system (MLDS) and majority of GM neurons are also influenced by dopamine. Via dopamine release, the MLDS plays an essential role in rewarding-reinforcing processes of feeding and addiction. The GM network and the MLDS in the limbic system represent essential elements in the neural substrate of motivation.
Birk, Efrat; Har-Zahav, Adi; Manzini, Chiara M.; Pasmanik-Chor, Metsada; Kornreich, Liora; Walsh, Christopher A.; Noben-Trauth, Konrad; Albin, Adi; Simon, Amos J.; Colleaux, Laurence; Morad, Yair; Rainshtein, Limor; Tischfield, David J.; Wang, Peter; Magal, Nurit; Maya, Idit; Shoshani, Noa; Rechavi, Gideon; Gothelf, Doron; Maydan, Gal; Shohat, Mordechai; Basel-Vanagaite, Lina
2010-01-01
Intellectual disability (ID) affects 1%–3% of the general population. We recently reported on a family with autosomal-recessive mental retardation with anterior maxillary protrusion and strabismus (MRAMS) syndrome. One of the reported patients with ID did not have dysmorphic features but did have temporal lobe epilepsy and psychosis. We report on the identification of a truncating mutation in the SOBP that is responsible for causing both syndromic and nonsyndromic ID in the same family. The protein encoded by the SOBP, sine oculis binding protein ortholog, is a nuclear zinc finger protein. In mice, Sobp (also known as Jxc1) is critical for patterning of the organ of Corti; one of our patients has a subclinical cochlear hearing loss but no gross cochlear abnormalities. In situ RNA expression studies in postnatal mouse brain showed strong expression in the limbic system at the time interval of active synaptogenesis. The limbic system regulates learning, memory, and affective behavior, but limbic circuitry expression of other genes mutated in ID is unusual. By comparing the protein content of the +/jc to jc/jc mice brains with the use of proteomics, we detected 24 proteins with greater than 1.5-fold differences in expression, including two interacting proteins, dynamin and pacsin1. This study shows mutated SOBP involvement in syndromic and nonsyndromic ID with psychosis in humans. PMID:21035105
NASA Technical Reports Server (NTRS)
Kohl, R. L.; Odell, S.
1982-01-01
Performance is characterized in terms of attention and memory, categorizing extrinsic mechanism mediated by ACTH, norepinephrine and dopamine, and intrinsic mechanisms as cholinergic. The cholinergic role in memory and performance was viewed from within the limbic system and related to volitional influences of frontal cortical afferents and behavioral responses of hypothalamic and reticular system efferents. The inhibitory influence of the hippocampus on the autonomic and hormonal responses mediated through the hypothalamus, pituitary, and brain stem are correlated with the actions of such anti-motion sickness drugs as scopolamine and amphetamine. These drugs appear to exert their effects on motion sickness symptomatology through diverse though synergistic neurochemical mechanisms involving the septohippocampal pathway and other limbic system structures. The particular impact of the limbic system on an animal's behavioral and hormonal responses to stress is influenced by ACTH, cortisol, scopolamine, and amphetamine.
Limbic grey matter changes in early Parkinson's disease.
Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P
2017-05-02
The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Guo, Tao; Guan, Xiaojun; Zeng, Qiaoling; Xuan, Min; Gu, Quanquan; Huang, Peiyu; Xu, Xiaojun; Zhang, Minming
2018-01-01
Rapid eye movement sleep behavior disorder (RBD) has a strong association with alpha synucleinpathies such as Parkinson's disease (PD) and PD patients with RBD tend to have a poorer prognosis. However, we still know little about the pathogenesis of RBD in PD. Therefore, we aim to detect the alterations of structural correlation network (SCN) in PD patients with and without RBD. A total of 191 PD patients, including 51 patients with possible RBD (pRBD) and 140 patients with non-possible RBD, and 76 normal controls were included in the present study. Structural brain networks were constructed by thresholding gray matter volume correlation matrices of 116 regions and analyzed using graph theoretical approaches. There was no difference in global properties among the three groups. Significant enhanced regional nodal measures in limbic system, frontal-temporal regions, and occipital regions and decreased nodal measures in cerebellum were found in PD patients with pRBD (PD-pRBD) compared with PD patients without pRBD. Besides, nodes in frontal lobe, temporal lobe, and limbic system were served as hubs in both two PD groups, and PD-pRBD exhibited additionally recruited hubs in limbic regions. Based on the SCN analysis, we found PD-pRBD exhibited a reorganization of nodal properties as well as the remapping of the hub distribution in whole brain especially in limbic system, which may shed light to the pathophysiology of PD with RBD.
Long-Term Effects of Acute Stress on the Prefrontal-Limbic System in the Healthy Adult
Wei, Dongtao; Du, Xue; Zhang, Qinglin; Liu, Guangyuan; Qiu, Jiang
2017-01-01
Most people are exposed to at least one traumatic event during the course of their lives, but large numbers of people do not develop posttraumatic stress disorders. Although previous studies have shown that repeated and chronic stress change the brain’s structure and function, few studies have focused on the long-term effects of acute stressful exposure in a nonclinical sample, especially the morphology and functional connectivity changes in brain regions implicated in emotional reactivity and emotion regulation. Forty-one months after the 5/12 Wenchuan earthquake, we investigated the effects of trauma exposure on the structure and functional connectivity of the brains of trauma-exposed healthy individuals compared with healthy controls matched for age, sex, and education. We then used machine-learning algorithms with the brain structural features to distinguish between the two groups at an individual level. In the trauma-exposed healthy individuals, our results showed greater gray matter density in prefrontal-limbic brain systems, including the dorsal anterior cingulate cortex, medial prefrontal cortex, amygdala and hippocampus, than in the controls. Further analysis showed stronger amygdala-hippocampus functional connectivity in the trauma-exposed healthy compared to the controls. Our findings revealed that survival of traumatic experiences, without developing PTSD, was associated with greater gray matter density in the prefrontal-limbic systems related to emotional regulation. PMID:28045980
Giorgi, F S; Pizzanelli, C; Ferrucci, M; Lazzeri, G; Faetti, M; Giusiani, M; Pontarelli, F; Busceti, C L; Murri, L; Fornai, F
2005-01-01
Seizures represent the most common neurological emergency in ecstasy abusers; however, no study addressed whether (+/-) 3,4-methylenedioxymethamphetamine ("ecstasy") per se might produce long-lasting alterations in brain excitability related to a pro-convulsant effect. C57 Black mice were treated with three regimens of (+/-) 3,4-methylenedioxymethamphetamine (5mg/kg x 2 for 1, 2 or three consecutive days). Following the last dose of (+/-) 3,4-methylenedioxymethamphetamine, during a time interval of 8 weeks, the following procedures were carried out: 1) cortical electroencephalographic recordings, including power-spectrum analysis; 2) administration of sub-threshold doses of kainate; 3) measurement of regional [(14)C]2-deoxyglucose uptake; 4) monoamine assay. We demonstrate that all mice pre-treated with (+/-) 3,4-methylenedioxymethamphetamine showed long-lasting encephalographic changes with frequencies peaking at 3-4.5 Hz at the power-spectrum analysis. This is concomitant with latent brain hyperexcitability within selected limbic brain regions, as shown by seizure facilitation and long-lasting latent metabolic hyperactivity which can be unraveled by phasic glutamate stimulation. This study sheds new light into the brain targets of (+/-) 3,4-methylenedioxymethamphetamine and discloses the occurrence of (+/-) 3,4-methylenedioxymethamphetamine-induced latent hyperexcitability within limbic areas, while it might provide a model to study in controlled experimental conditions limbic seizures and status epilepticus in C57 Black mice. Persistent changes produced by (+/-) 3,4-methylenedioxymethamphetamine in limbic brain excitability might be responsible for seizures and limbic-related disorders in chronic (+/-) 3,4-methylenedioxymethamphetamine abusers.
Lopes, M W; Leal, R B; Guarnieri, R; Schwarzbold, M L; Hoeller, A; Diaz, A P; Boos, G L; Lin, K; Linhares, M N; Nunes, J C; Quevedo, J; Bortolotto, Z A; Markowitsch, H J; Lightman, S L; Walz, R
2016-01-01
Glucocorticoids (GC) released during stress response exert feedforward effects in the whole brain, but particularly in the limbic circuits that modulates cognition, emotion and behavior. GC are the most commonly prescribed anti-inflammatory and immunosuppressant medication worldwide and pharmacological GC treatment has been paralleled by the high incidence of acute and chronic neuropsychiatric side effects, which reinforces the brain sensitivity for GC. Synapses can be bi-directionally modifiable via potentiation (long-term potentiation, LTP) or depotentiation (long-term depression, LTD) of synaptic transmission efficacy, and the phosphorylation state of Ser831 and Ser845 sites, in the GluA1 subunit of the glutamate AMPA receptors, are a critical event for these synaptic neuroplasticity events. Through a quasi-randomized controlled study, we show that a single high dexamethasone dose significantly reduces in a dose-dependent manner the levels of GluA1-Ser831 phosphorylation in the amygdala resected during surgery for temporal lobe epilepsy. This is the first report demonstrating GC effects on key markers of synaptic neuroplasticity in the human limbic system. The results contribute to understanding how GC affects the human brain under physiologic and pharmacologic conditions. PMID:27959333
Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian
2017-07-01
Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF).
Lv, Jun; Liu, Dongdong; Ma, Jing; Wang, Xiaoying; Zhang, Jue
2015-01-01
Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) time series. In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD) images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep. In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.
Noé, Francesco M; Bellistri, Elisa; Colciaghi, Francesca; Cipelletti, Barbara; Battaglia, Giorgio; de Curtis, Marco; Librizzi, Laura
2016-06-01
Systemic administration of kainic acid (KA) is a widely used procedure utilized to develop a model of temporal lobe epilepsy (TLE). Despite its ability to induce status epilepticus (SE) in vivo, KA applied to in vitro preparations induces only interictal-like activity and/or isolated ictal discharges. The possibility that extravasation of the serum protein albumin from the vascular compartment enhances KA-induced brain excitability is investigated here. Epileptiform activity was induced by arterial perfusion of 6 μm KA in the in vitro isolated guinea pig brain preparation. Simultaneous field potential recordings were carried out bilaterally from limbic (CA1, dentate gyrus [DG], and entorhinal cortex) and extralimbic regions (piriform cortex and neocortex). Blood-brain barrier (BBB) breakdown associated with KA-induced epileptiform activity was assessed by parenchymal leakage of intravascular fluorescein-isothiocyanate albumin. Seizure-induced brain inflammation was evaluated by western blot analysis of interleukin (IL)-1β expression in brain tissue. KA infusion caused synchronized activity at 15-30 Hz in limbic (but not extralimbic) cortical areas, associated with a brief, single seizure-like event. A second bolus of KA, 60 min after the induction of the first ictal event, did not further enhance excitability. Perfusion of serum albumin between the two administrations of KA enhanced epileptiform discharges and allowed a recurrent ictal event during the second KA infusion. Our data show that arterial KA administration selectively alters the synchronization of limbic networks. However, KA is not sufficient to generate recurrent seizures unless serum albumin is co-perfused during KA administration. These findings suggest a role of serum albumin in facilitating acute seizure generation. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R
2017-07-04
Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders.
Wang, Y; Wang, J; Jia, Y; Zhong, S; Zhong, M; Sun, Y; Niu, M; Zhao, L; Zhao, L; Pan, J; Huang, L; Huang, R
2017-01-01
Bipolar disorder (BD), particularly BD II, is frequently misdiagnosed as unipolar depression (UD), leading to inappropriate treatment and poor clinical outcomes. Although depressive symptoms may be expressed similarly in UD and BD, the similarities and differences in the architecture of brain functional networks between the two disorders are still unknown. In this study, we hypothesized that UD and BD II patients would show convergent and divergent patterns of disrupted topological organization of the functional connectome, especially in the default mode network (DMN) and the limbic network. Brain resting-state functional magnetic resonance imaging (fMRI) data were acquired from 32 UD-unmedicated patients, 31 unmedicated BD II patients (current episode depressed) and 43 healthy subjects. Using graph theory, we systematically studied the topological organization of their whole-brain functional networks at the following three levels: whole brain, modularity and node. First, both the UD and BD II patients showed increased characteristic path length and decreased global efficiency compared with the controls. Second, both the UD and BD II patients showed disrupted intramodular connectivity within the DMN and limbic system network. Third, decreased nodal characteristics (nodal strength and nodal efficiency) were found predominantly in brain regions in the DMN, limbic network and cerebellum of both the UD and BD II patients, whereas differences between the UD and BD II patients in the nodal characteristics were also observed in the precuneus and temporal pole. Convergent deficits in the topological organization of the whole brain, DMN and limbic networks may reflect overlapping pathophysiological processes in unipolar and bipolar depression. Our discovery of divergent regional connectivity that supports emotion processing could help to identify biomarkers that will aid in differentiating these disorders. PMID:28675389
The Brain: Its Relationship to Learning, Emotional States, and Behavior
ERIC Educational Resources Information Center
Armstrong, Terry
1977-01-01
Outlines findings of contemporary neuro-scientists studying the biological basis of human learning and behavior. Areas of research discussed are: (1) the center of human emotion--the limbic system; (2) brain rhythms; and (3) the molecular basis of learning. (CS)
Semenova, O A; Machinskaya, R I
2015-01-01
A total number of 172 children aged 10-12 were electrophysiologically and neuropsychologically assessed in order to analyze the influence of the functioning of brain regulatory systems onto the voluntary regulation of cognitive performance during the preteen years. EEG patterns associated with the nonoptimal functioning of brain regulatory systems, particularly fronto-thalamic, limbic and fronto-striatal structures were significantly more often observed in children with learning and behavioral difficulties, as compared to the control group. Neuropsychological assessment showed that the nonoptimal functioning of different brain regulatory systems specifically affect the voluntary regulation of cognitive performance. Children with EEG patterns of fronto-thalamic nonoptimal functioning demonstrated poor voluntary regulation such as impulsiveness and difficulties in continuing the same algorithms. Children with EEG patterns of limbic nonoptimal functioning showed a less pronounced executive dysfunction manifested only in poor switching between program units within a task. Children with EEG patterns of fronto-striatal nonoptimal functioning struggled with such executive dysfunctions as motor and tactile perseverations and emotional-motivational deviations such as poor motivation and communicative skills.
Brain limbic system-based intelligent controller application to lane change manoeuvre
NASA Astrophysics Data System (ADS)
Kim, Changwon; Langari, Reza
2011-12-01
This paper presents the application of a novel neuromorphic control strategy for lane change manoeuvres in the highway environment. The lateral dynamics of a vehicle with and without wind disturbance are derived and utilised to implement a control strategy based on the brain limbic system. To show the robustness of the proposed controller, several disturbance conditions including wind, uncertainty in the cornering stiffness, and changes in the vehicle mass are investigated. To demonstrate the performance of the suggested strategy, simulation results of the proposed method are compared with the human driver model-based control scheme, which has been discussed in the literature. The simulation results demonstrate the superiority of the proposed controller in energy efficiency, driving comfort, and robustness.
Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.
2013-01-01
Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535
Moseley, Rachel L.; Shtyrov, Yury; Mohr, Bettina; Lombardo, Michael V.; Baron-Cohen, Simon; Pulvermüller, Friedemann
2015-01-01
Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view ‘emotion actions’ as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed. PMID:25278250
Acupuncture, the limbic system, and the anticorrelated networks of the brain.
Hui, Kathleen K S; Marina, Ovidiu; Liu, Jing; Rosen, Bruce R; Kwong, Kenneth K
2010-10-28
The study of the mechanism of acupuncture action was revolutionized by the use of functional magnetic resonance imaging (fMRI). Over the past decade, our fMRI studies of healthy subjects have contributed substantially to elucidating the central effect of acupuncture on the human brain. These studies have shown that acupuncture stimulation, when associated with sensations comprising deqi, evokes deactivation of a limbic-paralimbic-neocortical network, which encompasses the limbic system, as well as activation of somatosensory brain regions. These networks closely match the default mode network and the anti-correlated task-positive network described in the literature. We have also shown that the effect of acupuncture on the brain is integrated at multiple levels, down to the brainstem and cerebellum. Our studies support the hypothesis that the effect of acupuncture on the brain goes beyond the effect of attention on the default mode network or the somatosensory stimulation of acupuncture needling. The amygdala and hypothalamus, in particular, show decreased activation during acupuncture stimulation that is not commonly associated with default mode network activity. At the same time, our research shows that acupuncture stimulation needs to be done carefully, limiting stimulation when the resulting sensations are very strong or when sharp pain is elicited. When acupuncture induced sharp pain, our studies show that the deactivation was attenuated or reversed in direction. Our results suggest that acupuncture mobilizes the functionally anti-correlated networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response. In this work we also discuss multiple avenues of future research, including the role of neurotransmitters, the effect of different acupuncture techniques, and the potential clinical application of our research findings to disease states including chronic pain, major depression, schizophrenia, autism, and Alzheimer's disease. Published by Elsevier B.V.
Self-averaging in complex brain neuron signals
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Fukayama, D.; Yadid, G.
2002-12-01
Nonlinear statistical properties of Ventral Tegmental Area (VTA) of limbic brain are studied in vivo. VTA plays key role in generation of pleasure and in development of psychological drug addiction. It is shown that spiking time-series of the VTA dopaminergic neurons exhibit long-range correlations with self-averaging behavior. This specific VTA phenomenon has no relation to VTA rewarding function. Last result reveals complex role of VTA in limbic brain.
FNDC5/irisin, a molecular target for boosting reward-related learning and motivation.
Zsuga, Judit; Tajti, Gabor; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf
2016-05-01
Interventions focusing on the prevention and treatment of chronic non-communicable diseases are on rise. In the current article, we propose that dysfunction of the mesocortico-limbic reward system contributes to the emergence of the WHO-identified risk behaviors (tobacco use, unhealthy diet, physical inactivity and harmful use of alcohol), behaviors that underlie the evolution of major non-communicable diseases (e.g. cardiovascular diseases, cancer, diabetes and chronic respiratory diseases). Given that dopaminergic neurons of the mesocortico-limbic system are tightly associated with reward-related processes and motivation, their dysfunction may fundamentally influence behavior. While nicotine and alcohol alter dopamine neuron function by influencing some receptors, mesocortico-limbic system dysfunction was associated with elevation of metabolic set-point leading to hedonic over-eating. Although there is some empirical evidence, precise molecular mechanism for linking physical inactivity and mesocortico-limbic dysfunction per se seems to be missing; identification of which may contribute to higher success rates for interventions targeting lifestyle changes pertaining to physical activity. In the current article, we compile evidence in support of a link between exercise and the mesocortico-limbic system by elucidating interactions on the axis of muscle - irisin - brain derived neurotrophic factor (BDNF) - and dopaminergic function of the midbrain. Irisin is a contraction-regulated myokine formed primarily in skeletal muscle but also in the brain. Irisin stirred considerable interest, when its ability to induce browning of white adipose tissue parallel to increasing thermogenesis was discovered. Furthermore, it may also play a role in the regulation of behavior given it readily enters the central nervous system, where it induces BDNF expression in several brain areas linked to reward processing, e.g. the ventral tegmental area and the hippocampus. BDNF is a neurotropic factor that increases neuronal dopamine content, modulates dopamine release relevant for neuronal plasticity and increased neuronal survival as well as learning and memory. Further linking BDNF to dopaminergic function is BDNF's ability to activate tropomyosin-related kinase B receptor that shares signalization with presynaptic dopamine-3 receptors in the ventral tegmental area. Summarizing, we propose that the skeletal muscle derived irisin may be the link between physical activity and reward-related processes and motivation. Moreover alteration of this axis may contribute to sedentary lifestyle and subsequent non-communicable diseases. Preclinical and clinical experimental models to test this hypothesis are also proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paraneoplastic limbic encephalitis presenting as acute viral encephalitis.
Kararizou, E; Markou, I; Zalonis, I; Gkiatas, K; Triantafyllou, N; Kararizos, G; Likomanos, D; Zambelis, T; Vassilopoulos, D
2005-11-01
To describe a case of limbic encephalitis which initially presented as viral limbic encephalitis and during the clinical evaluation a renal carcinoma was diagnosed. Patient with history of peripheral paresis of right facial nerve, 1 month after symptoms appearance and treatment, developed fever, vomiting, grand mal seizure, decreased level of consciousness, confusion, hallucinations and agitation. The patient initially presented a clinical picture of viral LE. which confirmed by CSF. MRI brain showed areas with pathological intensity signal in the region of limbic system unilateral. During the clinical evaluation a renal carcinoma was discovered and a nephrectomy has been performed. Although PLE typically presents as a chronic or subacute disease, it may be fulminant and clinically indistinguishable from an acute HSVE. This association pose the problem of a possible relation between this two syndromes and the correct diagnosis is very important, because there are effective treatments.
Fornai, F; Bassi, L; Gesi, M; Giorgi, F S; Guerrini, R; Bonaccorsi, I; Alessandrì, M G
2000-01-01
Previous studies have shown that physiological stimulation of brain activity increases anaerobic glucose consumption, both in humans and in experimental animals. To investigate this phenomenon further, we measured extracellular lactate levels within different rat brain regions, using microdialysis. Experiments were performed comparing the effects of natural, physiological olfactory stimulation of the limbic system with experimental limbic seizures. Olfactory stimulation was carried out by using different odors (i.e. both conventional odors: 2-isobutyl-3-methoxypyrazine, green pepper essence; thymol; and 2-sec-butylthiazoline, a sexual pheromone). Limbic seizures were either induced by systemic injection of pilocarpine (200-400 mg/kg) or focally elicited by microinfusions of chemoconvulsants (bicuculline 118 pmol and cychlothiazide 1.2 nmol) within the anterior piriform cortex. Seizures induced by systemic pilocarpine tripled lactic acid within the hippocampus, whereas limbic seizures elicited by focal microinfusion of chemoconvulsants within the piriform cortex produced a less pronounced increase in extracellular lactic acid. Increases in extracellular lactate occurring during olfactory stimulation with the sexual pheromone (three times the baseline levels) were non-significantly different from those occurring after systemic pilocarpine. Increases in lactic acid following natural olfactory stimulation were abolished both by olfactory bulbectomy and by the focal microinfusion of tetrodotoxin, while they were significantly attenuated by the local application of the N-methyl-D-aspartate antagonist AP-5. Increases in hippocampal lactate induced by short-lasting stimuli (olfactory stimulation or microinfusion of subthreshold doses of chemoconvulsants, bicuculline 30 pmol) were reproducible after a short delay (1 h) and cumulated when applied sequentially. In contrast, limbic status epilepticus led to a long-lasting refractoriness to additional lactate-raising stimuli and there was no further increase in lactate levels when the olfactory stimulation was produced during status epilepticus. Increases in lactic acid following olfactory stimulation occurred with site specificity in the rhinencephalon (hippocampus, piriform and entorhinal cortex) but not in the dorsal striatum. Site specificity crucially relied on the quality of the stimulus. For instance, other natural stimuli (i.e. tail pinch) produced a similar increase in extracellular lactate in all brain areas under investigation. The major conclusion of this work is that the presentation of an odor known to be a rat pheromone results in lactate production as great as that induced by the systemic convulsant pylocarpine (maximum: 2.286+/-0.195 mM and 1.803+/-0.108 mM, respectively). This supports the notion that the great magnitude of lactate production known to accompany seizures can result from the intensified neural activity per se ("aerobic gycolysis"), not merely from local anoxia or other pathological changes.
The effects of a virtual reality treatment program for online gaming addiction.
Park, Sung Yong; Kim, Sun Mi; Roh, Sungwon; Soh, Min-Ah; Lee, Sang Hoon; Kim, Hyungjin; Lee, Young Sik; Han, Doug Hyun
2016-06-01
Neuroimaging studies have demonstrated dysfunction in the brain reward circuit in individuals with online gaming addiction (OGA). We hypothesized that virtual reality therapy (VRT) for OGA would improve the functional connectivity (FC) of the cortico-striatal-limbic circuit by stimulating the limbic system. Twenty-four adults with OGA were randomly assigned to a cognitive behavior therapy (CBT) group or VRT group. Before and after the four-week treatment period, the severity of OGA was evaluated with Young's Internet Addiction Scale (YIAS). Using functional magnetic resonance imaging, the amplitude of low-frequency fluctuation (ALFF) and FC from the posterior cingulate cortex (PCC) seed to other brain areas were evaluated. Twelve casual game users were also recruited and underwent only baseline assessment. After treatment, both CBT and VRT groups showed reductions in YIAS scores. At baseline, the OGA group showed a smaller ALFF within the right middle frontal gyrus and reduced FC in the cortico-striatal-limbic circuit. In the VRT group, connectivity from the PCC seed to the left middle frontal and bilateral temporal lobe increased after VRT. VRT seemed to reduce the severity of OGA, showing effects similar to CBT, and enhanced the balance of the cortico-striatal-limbic circuit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Common modulation of limbic network activation underlies musical emotions as they unfold.
Singer, Neomi; Jacoby, Nori; Lin, Tamar; Raz, Gal; Shpigelman, Lavi; Gilam, Gadi; Granot, Roni Y; Hendler, Talma
2016-11-01
Music is a powerful means for communicating emotions among individuals. Here we reveal that this continuous stream of affective information is commonly represented in the brains of different listeners and that particular musical attributes mediate this link. We examined participants' brain responses to two naturalistic musical pieces using functional Magnetic Resonance imaging (fMRI). Following scanning, as participants listened to the musical pieces for a second time, they continuously indicated their emotional experience on scales of valence and arousal. These continuous reports were used along with a detailed annotation of the musical features, to predict a novel index of Dynamic Common Activation (DCA) derived from ten large-scale data-driven functional networks. We found an association between the unfolding music-induced emotionality and the DCA modulation within a vast network of limbic regions. The limbic-DCA modulation further corresponded with continuous changes in two temporal musical features: beat-strength and tempo. Remarkably, this "collective limbic sensitivity" to temporal features was found to mediate the link between limbic-DCA and the reported emotionality. An additional association with the emotional experience was found in a left fronto-parietal network, but only among a sub-group of participants with a high level of musical experience (>5years). These findings may indicate two processing-levels underlying the unfolding of common music emotionality; (1) a widely shared core-affective process that is confined to a limbic network and mediated by temporal regularities in music and (2) an experience based process that is rooted in a left fronto-parietal network that may involve functioning of the 'mirror-neuron system'. Copyright © 2016 Elsevier Inc. All rights reserved.
Neurotrophic Substances and Behavioral Recovery from Brain Damage.
1983-07-01
intracerebral administration of this substance can increase choline acetyltransferase, an enzyme necessary for the production of neurotransmitter. This...from limbic system 1 Hefti, F., Dravid, A. and Hartikka, J. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline ...testing, the animals were killed with an overdose of anesthetic (Nembutal) and perfused intracardially with saline-formalin solution. Their brains
Hypersexuality or altered sexual preference following brain injury.
Miller, B L; Cummings, J L; McIntyre, H; Ebers, G; Grode, M
1986-01-01
Eight patients are described in whom either hypersexuality (four cases) or change in sexual preference (four cases) occurred following brain injury. In this series disinhibition of sexual activity and hypersexuality followed medial basal-frontal or diencephalic injury. This contrasted with the patients demonstrating altered sexual preference whose injuries involved limbic system structures. In some patients altered sexual behaviour may be the presenting or dominant feature of brain injury. Images PMID:3746322
Limbic encephalitis associated with systemic lupus erythematosus.
Kano, O; Arasaki, K; Ikeda, K; Aoyagi, J; Shiraishi, H; Motomura, M; Iwasaki, Y
2009-12-01
A 34-year-old woman with systemic lupus erythematosus (SLE) presented with general fatigue, seizures and memory loss. Magnetic resonance imaging of the brain showed a high signal area in the mesial temporal lobe bilaterally. Computed tomography scan of the chest and abdomen and ultrasound of pelvis detected no malignancy and tumour marker, antibodies to antineuronal antibodies (anti-Hu, anti-Ta and anti-Ma) and antibodies to voltage-gated potassium channels were all negative. The present case is limbic encephalitis (LE) associated with SLE and the pathogenesis may include autoimmunity shared. Our experience indicates that the immunologic spectrum of LE will expand to include additional immune mechanisms.
Ferreira, Daniel; Shams, Sara; Cavallin, Lena; Viitanen, Matti; Martola, Juha; Granberg, Tobias; Shams, Mana; Aspelin, Peter; Kristoffersen-Wiberg, Maria; Nordberg, Agneta; Wahlund, Lars-Olof; Westman, Eric
2018-05-30
We investigated whether subtypes of Alzheimer's disease (AD), that is, typical, limbic-predominant, hippocampal-sparing, and minimal atrophy AD, had a specific signature of small vessel disease and neurodegeneration. Four hundred twenty-three clinically diagnosed AD patients were included (161 typical, 121 limbic-predominant, 70 hippocampal-sparing, 71 minimal atrophy). One hundred fifty-six fulfilled a biomarkers-based AD diagnosis. White matter hyperintensities and cerebral microbleeds (CMB) had the highest prevalence in limbic-predominant AD, and the lowest prevalence in minimal atrophy AD. CMB existed evenly in lobar and deep brain areas in limbic-predominant, typical, and hippocampal-sparing AD. In minimal atrophy AD, CMB were mainly located in brain lobar areas. Perivascular spaces in the centrum semiovale were more prevalent in typical AD. Small vessel disease contributed to the prediction of Mini-Mental State Examination. Minimal atrophy AD showed highly pathological levels of cerebrospinal fluid Aß 1-42 , total tau, and phosphorylated tau, in the absence of overt brain atrophy. Cerebral amyloid angiopathy seems to have a stronger contribution to hippocampal-sparing and minimal atrophy AD, whereas hypertensive arteriopathy may have a stronger contribution to typical and limbic-predominant AD. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Widge, Alik S.; Moritz, Chet T.
2014-04-01
Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.
Kong, Lingtao; Chen, Kaiyuan; Womer, Fay; Jiang, Wenyan; Luo, Xingguang; Driesen, Naomi; Liu, Jie; Blumberg, Hilary; Tang, Yanqing; Xu, Ke; Wang, Fei
2013-06-01
Sex differences are observed in both epidemiological and clinical aspects of major depressive disorder (MDD). The cortico-limbic-striatal neural system, including the prefrontal cortex, amygdala, hippocampus, and striatum, have shown sexually dimorphic morphological features and have been implicated in the dysfunctional regulation of mood and emotion in MDD. In this study, we utilized a whole-brain, voxel-based approach to examine sex differences in the regional distribution of gray matter (GM) morphological abnormalities in medication-naïve participants with MDD. Participants included 29 medication-naïve individuals with MDD (16 females and 13 males) and 33 healthy controls (HC) (17 females and 16 males). Gray matter morphology of the cortico-limbic-striatal neural system was examined using voxel-based morphometry analyzes of high-resolution structural magnetic resonance imaging scans. The main effect of diagnosis and interaction effect of diagnosis by sex on GM morphology were statistically significant (p < 0.05, corrected) in the left ventral prefrontal cortex, right amygdala, right hippocampus and bilateral caudate when comparing the MDD and HC groups. Posthoc analyzes showed that females with MDD had significant GM decreases in limbic regions (p < 0.05, corrected), compared to female HC; while males with MDD demonstrated significant GM reduction in striatal regions, (p < 0.05, corrected), compared to HC males. The observed sex-related patterns of abnormalities within the cortico-limbic-strial neural system, such as predominant prefrontal-limbic abnormalities in MDD females vs. predominant prefrontal-striatal abnormalities in MDD males, suggest differences in neural circuitry that may mediate sex differences in the clinical presentation of MDD and potential targets for sex-differentiated treatment of the disorder. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Limbic encephalitis with antibodies against intracellular antigens].
Morita, Akihiko; Kamei, Satoshi
2010-04-01
Limbic encephalitis is a paraneoplastic syndrome that is often associated with small cell lung cancer (SCLC), breast cancer, testicular tumors, teratoma, Hodgkin's lymphoma and thymoma. The common clinical manifestations of limbic encephalitis are subacute onset, cognitive dysfunction, seizures and psychiatric symptoms. Paraneoplastic neurological disorders are considered to occur because of cytotoxic T cell responses and antibodies against target neuronal proteins that are usually expressed by an underlying tumor. The main intracellular antigens related to limbic encephalitis are Hu, Ma2, and less frequently CV2/CRMP5 and amphiphysin. The anti-Hu antibody, which is involved in cerebellar degeneration and extensive or multifocal encephalomyelitis such as limbic encephalitis is closely associated with a history of smoking and SCLC. The anti-Ma2 antibody is associated with encephalitis of the limbic system, hypothalamus and brain-stem. For this reason, some patients with limbic encephalitis have sleep disorders (including REM sleep abnormalities), severe hypokinesis and gaze palsy in addition to limbic dysfunction. In men aged less than 50 years, anti-Ma2 antibody encephalitis is almost always associated with testicular germ-cell tumors that are occasionally difficult to detect. In older men and women, the most common tumors are non-SCLC and breast cancer. Limbic encephalitis associated with cell-surface antigens (e.g., voltage-gated potassium channels, NMDA receptors) is mediated by antibodies and often improves after a reduction in the antibody titer and after tumor resection. Patients with antibodies against intracellular antigens, except for those with anti-Ma2 antibodies and testicular tumors, are less responsive. Early diagnosis and treatment with immunotherapy, tumor resection or both are important for improving or stabilizing the condition of limbic encephalitis.
Effects of morphine on brain plasticity.
Beltrán-Campos, V; Silva-Vera, M; García-Campos, M L; Díaz-Cintra, S
2015-04-01
Morphine shares with other opiates and drugs of abuse the ability to modify the plasticity of brain areas that regulate the morphology of dendrites and spines, which are the primary sites of excitatory synapses in regions of the brain involved in incentive motivation, rewards, and learning. In this review we discuss the impact of morphine use during the prenatal period of brain development and its long-term consequences in murines, and then link those consequences to similar effects occurring in human neonates and adults. Repeated exposure to morphine as treatment for pain in terminally ill patients produces long-term changes in the density of postsynaptic sites (dendrites and spines) in sensitive areas of the brain, such as the prefrontal cortex, the limbic system (hippocampus, amygdala), and caudate nuclei and nucleus accumbens. This article reviews the cellular mechanisms and receptors involved, primarily dopaminergic and glutamatergic receptors, as well as synaptic plasticity brought about by changes in dendritic spines in these areas. The actions of morphine on both developing and adult brains produce alterations in the plasticity of excitatory postsynaptic sites of the brain areas involved in limbic system functions (reward and learning). Doctors need further studies on plasticity in dendrites and spines and on signaling molecules, such as calcium, in order to improve treatments for addiction. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis.
Dodich, Alessandra; Cerami, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Alongi, Pierpaolo; Crespi, Chiara; Canessa, Nicola; Andreetta, Francesca; Falini, Andrea; Cappa, Stefano F; Perani, Daniela
2016-10-01
Limbic encephalitis (LE) is characterized by an acute or subacute onset with memory impairments, confusional state, behavioral disorders, variably associated with seizures and dystonic movements. It is due to inflammatory processes that selectively affect the medial temporal lobe structures. Voltage-gate potassium channel (VGKC) autoantibodies are frequently observed. In this study, we assessed at the individual level FDG-PET brain metabolic dysfunctions and neuropsychological profiles in three autoimmune LE cases seropositive for neuronal VGKC-complex autoantibodies. LGI1 and CASPR2 potassium channel complex autoantibody subtyping was performed. Cognitive abilities were evaluated with an in-depth neuropsychological battery focused on episodic memory and affective recognition/processing skills. FDG-PET data were analyzed at single-subject level according to a standardized and validated voxel-based Statistical Parametric Mapping (SPM) method. Patients showed severe episodic memory and fear recognition deficits at the neuropsychological assessment. No disorder of mentalizing processing was present. Variable patterns of increases and decreases of brain glucose metabolism emerged in the limbic structures, highlighting the pathology-driven selective vulnerability of this system. Additional involvement of cortical and subcortical regions, particularly in the sensorimotor system and basal ganglia, was found. Episodic memory and fear recognition deficits characterize the cognitive profile of LE. Commonalities and differences may occur in the brain metabolic patterns. Single-subject voxel-based analysis of FDG-PET imaging could be useful in the early detection of the metabolic correlates of cognitive and non-cognitive deficits characterizing LE condition. Copyright © 2016 Elsevier Inc. All rights reserved.
An initial MRI picture of limbic encephalitis in subacute sclerosing panencephalitis.
Lebon, Sébastien; Maeder, Philippe; Maeder-Ingvar, Malin; Poloni, Claudia; Mayor-Dubois, Claire; Roulet-Perez, Eliane; Jeannet, Pierre-Yves
2011-11-01
Subacute sclerosing panencephalitis (SSPE) is a rare and severe long-term complication of measles. Hallmarks of this entity include progressive cognitive decline, myoclonia, a generalized periodic pattern on EEG and deep white matter abnormalities on MRI. However, imaging can be normal in early stages. We report herein the case of a previously healthy 13-years-old girl with an unusual radiological presentation. She presented with unilateral myoclonia, cognitive decline with memory impairment and a first brain MRI with swelling of both hippocampi mimicking limbic encephalitis. Measles antibodies were positive in CSF and the EEG showed slow periodic complexes. This unusual radiological presentation has never been described in SSPE. Relationship between virus and limbic system are discussed. Copyright © 2011 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Neurocircuitry of Mood Disorders
Price, Joseph L; Drevets, Wayne C
2010-01-01
This review begins with a brief historical overview of attempts in the first half of the 20th century to discern brain systems that underlie emotion and emotional behavior. These early studies identified the amygdala, hippocampus, and other parts of what was termed the ‘limbic' system as central parts of the emotional brain. Detailed connectional data on this system began to be obtained in the 1970s and 1980s, as more effective neuroanatomical techniques based on axonal transport became available. In the last 15 years these methods have been applied extensively to the limbic system and prefrontal cortex of monkeys, and much more specific circuits have been defined. In particular, a system has been described that links the medial prefrontal cortex and a few related cortical areas to the amygdala, the ventral striatum and pallidum, the medial thalamus, the hypothalamus, and the periaqueductal gray and other parts of the brainstem. A large body of human data from functional and structural imaging, as well as analysis of lesions and histological material indicates that this system is centrally involved in mood disorders. PMID:19693001
Palkovits, Miklós; Šebeková, Katarína; Klenovics, Kristina Simon; Kebis, Anton; Fazeli, Gholamreza; Bahner, Udo; Heidland, August
2013-01-01
The effect of mild chronic renal failure (CRF) induced by 4/6-nephrectomy (4/6NX) on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus). Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons) and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow) did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances. PMID:23818940
Aberrant topological patterns of brain structural network in temporal lobe epilepsy.
Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William
2015-12-01
Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
The glass ceiling: A biological phenomenon.
Schulpen, Tom W J
2017-09-01
Many brilliant and ambitious young women lose their drive for top careers after childbirth. New maternal impulses are at odds with their original ambitions and for many mothers stress and frustration will be the result as they have to combine child care with workweeks of 60-80h to reach or remain at the top. Pregnancy hormones modify the female's brain as has been demonstrated already for decades in animals. This brain plasticity due to adult neurogenesis in the so called maternal circuitry of the limbic system is long-lasting and perhaps lifelong. In humans hormonal and neuro-imaging studies show ample evidence for fundamental and long lasting pregnancy induced brain changes, not only in the limbic system, but also in the cortical networks like theory of mind and mirror neuron system. Recent research shows pronounced and long lasting brain changes in several of these areas. It can be concluded that there exists a maternal brain that drives mother's behaviour and priorities. Research in men shows that the more fathers are involved in raising their children, the more caring behaviour they develop. Structural anatomical changes are found in neural regions involved in parental motivation. These studies show that brain plasticity in fathers is experience dependent. In Nordic countries, a policy of paid paternal leave followed by a flexible shared parental leave, stimulates fatherly behaviour. This might reduce men's eagerness for top careers, thus creating better opportunities for women. Demolition of women's glass ceiling starts with the father. Copyright © 2017 Elsevier Ltd. All rights reserved.
Limbic system structure volumes and associated neurocognitive functioning in former NFL players.
Lepage, Christian; Muehlmann, Marc; Tripodis, Yorghos; Hufschmidt, Jakob; Stamm, Julie; Green, Katie; Wrobel, Pawel; Schultz, Vivian; Weir, Isabelle; Alosco, Michael L; Baugh, Christine M; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; Coleman, Michael J; Lin, Alexander P; Pasternak, Ofer; Makris, Nikos; Stern, Robert A; Shenton, Martha E; Koerte, Inga K
2018-05-19
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.
Sullivan, Regina; Wilson, Donald A.; Feldon, Joram; Yee, Benjamin K.; Meyer, Urs; Richter-Levin, Gal; Avi, Avital; Michael, Tsoory; Gruss, Michael; Bock, Jörg; Helmeke, Carina; Braun, Katharina
2007-01-01
Decades of research in the area of developmental psychobiology have shown that early life experience alters behavioral and brain development, which canalizes development to suit different environments. Recent methodological advances have begun to identify the mechanisms by which early life experiences cause these diverse adult outcomes. Here we present four different research programs that demonstrate the intricacies of early environmental influences on behavioral and brain development in both pathological and normal development. First, an animal model of schizophrenia is presented that suggests prenatal immune stimulation influences the postpubertal emergence of psychosis-related behavior in mice. Second, we describe a research program on infant rats that demonstrates how early odor learning has unique characteristics due to the unique functioning of the infant limbic system. Third, we present work on the rodent Octodon degus, which shows that early paternal and/or maternal deprivation alters development of limbic system synaptic density that corresponds to heightened emotionality. Fourth, ajuvenile model of stress is presented that suggests this developmental period is important in determining adulthood emotional well being. The approach of each research program is strikingly different, yet all succeed in delineating a specific aspect of early development and its effects on infant and adult outcome that expands our understanding of the developmental impact of infant experiences on emotional and limbic system development. Together, these research programs suggest that the developing organism’s developmental trajectory is influenced by environmental factors beginning in the fetus and extending through adolescence, although the specific timing and nature of the environmental influence has unique impact on adult mental health. PMID:17016842
Roldan-Valadez, Ernesto; Rios, Camilo; Suarez-May, Marcela A; Favila, Rafel; Aguilar-Castañeda, Erika
2013-12-01
Macroanatomical right-left hemispheric differences in the brain are termed asymmetries, although there is no clear information on the global influence of gender and brain-regions. The aim of this study was to evaluate the main effects and interactions of these variables on the measurement of volumetric asymmetry indices (VAIs). Forty-seven healthy young-adult volunteers (23 males, 24 females) agreed to undergo brain magnetic resonance imaging in a 3T scanner. Image post processing using voxel-based volumetry allowed the calculation of 54 VAIs from the frontal, temporal, parietal and occipital lobes, limbic system, basal ganglia, and cerebellum for each cerebral hemisphere. Multivariate ANCOVA analysis calculated the main effects and interactions on VAIs of gender and brain regions controlling the effect of age. The only significant finding was the main effect of brain regions (F (6, 9373.605) 44.369, P < .001; partial η2 = .101, and power of 1.0), with no significant interaction between gender and brain regions (F (6, 50.517) .239, P = .964). Volumetric asymmetries are present across all brain regions, with larger values found in the limbic system and parietal lobe. The absence of a significant influence of gender and age in the evaluation of the numerous measurements generated by multivariate analyses in this study should not discourage researchers to report and interpret similar results, as this topic still deserves further assessment. Copyright © 2013 Wiley Periodicals, Inc.
Pimenta, A F; Reinoso, B S; Levitt, P
1996-11-11
The limbic system-associated membrane protein (LAMP) is a 64-68 kDa neuronal surface glycoprotein expressed in cortical and subcortical regions of the limbic system of the adult and developing rat central nervous system (CNS). LAMP is a member of the immunoglobulin superfamily of cell adhesion molecules with three Ig domains and is highly conserved between rat and human. In this study, the temporal and spatial pattern of lamp gene expression during fetal rat development was analyzed by using Northern blot analysis and in situ hybridization. In Northern blot analysis, two lamp mRNA transcripts, 1.6 kb and 8.0 kb, identical in size to those present in the adult rat nervous system, were detected in developing neural tissue. In situ hybridization analysis showed close correlation, though not identity, between the expression of lamp mRNAs and the distribution of LAMP in limbic regions of the developing rat CNS, indicative of a more complex regulation of gene expression than was previously thought to be the case. The expression of lamp mRNAs is first detected on about embryonic day (E) 13. The hybridization signal is not seen in the proliferative ventricular zone at any level of the neuraxis, indicating that lamp is expressed in postmitotic neurons. In the cerebral cortex, lamp mRNAs are expressed in limbic cortical regions, such as the perirhinal cortex, prefrontal cortex, and cingulate cortex. In the hippocampus, the hybridization signal is observed in Ammon's horn by E18. The neostriatum, amygdaloid complex, and most hypothalamic areas express lamp mRNAs from early stages (E13-E14) in a pattern consistent with the onset of neurogenesis. The emerging patterns of lamp expression at the outset are similar to those seen in adult hypothalamus and dorsal thalamus. Although the hybridization signal is observed in some nonlimbic areas, including midbrain and hindbrain structures, intense labeling is evident in more classic limbic regions. The high levels of expression of lamp in limbic regions, beginning in early developmental stages, combined with the results of previous functional in vitro and in vivo studies, support a role for LAMP as a recognition molecule involved in the formation of limbic connections.
Localized disruption of Narp in medial prefrontal cortex blocks reinforcer devaluation performance
Johnson, Alexander W.; Han, Sungho; Blouin, Ashley M.; Saini, Jasjit; Worley, Paul F.; During, Matthew J.; Holland, Peter C.; Baraban, Jay M.; Reti, Irving M.
2010-01-01
Neuronal activity regulated pentraxin (Narp) is a secreted protein that regulates α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPAR) aggregation and synaptogenesis. Mapping of Narp-positive neurons in brain has revealed it is prominently expressed in several limbic system projection pathways. Consistent with this localization pattern, Narp knockout mice show deficits in using the current value of a reinforcer to guide behavior, a critical function of the limbic system. To help assess whether this behavioral deficit is due to impairment of synaptogenesis during development or in modulating synaptic signaling in the mature brain, we have used a dominant negative Narp viral construct which blocks trafficking of endogenous Narp to axons. Focal injection of this viral construct into the medial prefrontal cortex (mPFC) of adult mice, a region containing Narp-positive projection neurons, blocked reinforcer devaluation. Thus, these results indicate that Narp released from mPFC neurons plays a key role in mediating synaptic changes underlying instrumental reinforcer devaluation. PMID:21127001
[Psychotherapy of Depression as Neurobiological Process - Evidence from Neuroimaging].
Rubart, Antonie; Hohagen, Fritz; Zurowski, Bartosz
2018-06-01
Research on neurobiological effects of psychotherapy in depression facilitates the improvement of treatment strategies. The cortico-limbic dysregulation model serves as a framework for numerous studies on neurobiological changes in depression. In this model, depression is described as hypoactivation of dorsal cortical brain regions in conjunction with hyperactivation of ventral paralimbic regions. This assumption has been supported by various studies of structural and functional brain abnormalities in depression. However, also regions not included in the original cortico-limbic dysregulation model, such as the dorsomedial prefrontal cortex, seem to play an important role in depression. Functional connectivity studies of depression have revealed an enhanced connectivity within the so-called default mode network which is involved in self-referential thinking. Studies also point to a normalization of limbic and cortical brain activity, especially in the anterior cingulate cortex, during psychotherapy. Some neurobiological markers like the activity of the anterior cingulate cortex, striatum and insula as well as hippocampal volume have been proposed to predict treatment response on a group-level. The activity of the anterior insula appears to be a candidate bio-marker for differential indication for psychotherapy or pharmacotherapy. The cortico-limbic dysregulation model and following research have inspired new forms of treatment for depression like deep brain stimulation of the subgenual anterior cingulate cortex, repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex, neurofeedback and attention training. © Georg Thieme Verlag KG Stuttgart · New York.
Organizational effects of diethylstilbestrol on brain vasotocin and sexual behavior in male quail.
Viglietti-Panzica, Carla; Montoncello, Barbara; Mura, Elena; Pessatti, Marzia; Panzica, GianCarlo
2005-04-15
In Japanese quail, we previously described a sexual dimorphism of the parvocellular vasotocin system of the limbic region that, as the reproductive behavior, is steroid-sensitive and is organized during embryonic life by the exposure to estradiol. We verified in this study whether diethylstilbestrol, a chemical xenoestrogen, has analogous organizational effects on the vasotocin system of limbic regions and on copulatory behavior of male Japanese quail. We injected in the yolk sac of 3 day-old quail embryos diethylstilbestrol or estradiol benzoate (a treatment which suppresses male copulatory behavior in adulthood and reduces vasotocin innervation), or sesame oil (control). No further hormonal manipulations were performed after hatching. Sexual behavior was recorded in males at the age of 6 weeks. Estradiol- and diethylstilbestrol-treated males exhibited a total suppression of copulatory behavior. After behavioral tests, all males were sacrificed and brain sections processed for vasotocin immunocytochemistry. Significant decrease in the density of vasotocin immunoreactivity was detected in the medial preoptic nucleus, in the bed nucleus of stria terminalis, and in the lateral septum of diethylstilbestrol-treated males. The magnocellular vasotocin neurons were, in contrast, not affected. In conclusion, the present data demonstrate that embryonic treatment with diethylstilbestrol induces a full sex reversal of behavioral phenotype as well as a significant decrease of vasotocin expression in the preoptic-limbic region in male Japanese quail. Therefore, the parvocellular vasotocin system could represent an optimal model to investigate the effects of pollutants on neural circuits controlling reproductive functions.
Doyle, P; Rohner-Jeanrenaud, F; Jeanrenaud, B
1994-08-29
An animal model often used to investigate the aetiology of obesity is the genetically obese fa/fa rat. It has many abnormalities, including hyperphagia, hyper-insulinemia, insulin resistance, low cerebral glucose utilization and an overactive hypothalamo-pituitary adrenal (HPA) axis with resulting hypercorticism. Due to the latter consideration, the aim of this work was to study the impact of acute adrenalectomy (ADX) on the local cerebral glucose utilization (LCGU) of lean and obese fa/fa rats. ADX resulted in discrete increases in LCGU of regions common to both lean and obese rats. These common regions were found to belong to be related to the limbic system. Within this system, the LCGU of the brain of obese rats was either normalized to lean sham operated values or increased by ADX to a similar degree in both groups on a percentage basis. It was concluded that the LCGU of both lean and obese animals appears to be negatively regulated, albeit to different extents, by glucocorticoids. Such negative regulation is particularly salient within the limbic system of the lean rat and even more so in the fa/fa rat. It is suggested that the long-term hypercorticism of obese fa/fa rats due to abnormal regulation of the HPA axis may result in a decreased LCGU in limbic and related regions of the brain of fa/fa rats and contribute to the expression of the obese phenotype.
Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.; Volkow, N.D.
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and {sup 18}FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo andmore » once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2-5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction.« less
Methylphenidate Attenuates Limbic Brain Inhibition after Cocaine-Cues Exposure in Cocaine Abusers
Volkow, Nora D.; Wang, Gene-Jack; Tomasi, Dardo; Telang, Frank; Fowler, Joanna S.; Pradhan, Kith; Jayne, Millard; Logan, Jean; Goldstein, Rita Z.; Alia-Klein, Nelly; Wong, Christopher
2010-01-01
Dopamine (phasic release) is implicated in conditioned responses. Imaging studies in cocaine abusers show decreases in striatal dopamine levels, which we hypothesize may enhance conditioned responses since tonic dopamine levels modulate phasic dopamine release. To test this we assessed the effects of increasing tonic dopamine levels (using oral methylphenidate) on brain activation induced by cocaine-cues in cocaine abusers. Brain metabolism (marker of brain function) was measured with PET and 18FDG in 24 active cocaine abusers tested four times; twice watching a Neutral video (nature scenes) and twice watching a Cocaine-cues video; each video was preceded once by placebo and once by methylphenidate (20 mg). The Cocaine-cues video increased craving to the same extent with placebo (68%) and with methylphenidate (64%). In contrast, SPM analysis of metabolic images revealed that differences between Neutral versus Cocaine-cues conditions were greater with placebo than methylphenidate; whereas with placebo the Cocaine-cues decreased metabolism (p<0.005) in left limbic regions (insula, orbitofrontal, accumbens) and right parahippocampus, with methylphenidate it only decreased in auditory and visual regions, which also occurred with placebo. Decreases in metabolism in these regions were not associated with craving; in contrast the voxel-wise SPM analysis identified significant correlations with craving in anterior orbitofrontal cortex (p<0.005), amygdala, striatum and middle insula (p<0.05). This suggests that methylphenidate's attenuation of brain reactivity to Cocaine-cues is distinct from that involved in craving. Cocaine-cues decreased metabolism in limbic regions (reflects activity over 30 minutes), which contrasts with activations reported by fMRI studies (reflects activity over 2–5 minutes) that may reflect long-lasting limbic inhibition following activation. Studies to evaluate the clinical significance of methylphenidate's blunting of cue-induced limbic inhibition may help identify potential benefits of this medication in cocaine addiction. PMID:20634975
Itoh, Kouichi; Inamine, Moriyoshi; Oshima, Wataru; Kotani, Masaharu; Chiba, Yoichi; Ueno, Masaki; Ishihara, Yasuhiro
2015-05-22
The management of status epilepticus (SE) is important to prevent mortality and the development of post-SE symptomatic epilepsy. Acquired epilepsy after an initial brain insult by SE can be experimentally reproduced in the murine model of SE induced by pilocarpine. In the present study, we evaluated the possibility of treatment with a high-dose of levetiracetam in this model. Repeated treatment with high-dose levetiracetam after termination of SE by diazepam significantly prevented the incidence of spontaneous recurrent seizures and mortality for at least 28 days. To determine the brain alterations after SE, magnetic resonance imaging was performed. Both T2-weighted imaging and diffusion-weighted imaging showed changes in the limbic regions. These changes in the limbic regions demonstrated the development of cytotoxic edema three hours after SE, followed by the development of vasogenic edema two days after SE. In the pilocarpine-SE model, the incidence of spontaneous recurrent seizures after SE was strongly associated with neuronal damage within a few hours to days after SE by the development of vasogenic edema via the breakdown of the blood-brain barrier in the limbic regions. High-dose levetiracetam significantly suppressed the parameters in the limbic areas. These data indicate that repeated treatment with high-dose levetiracetam for at least two days after SE termination by diazepam is important for controlling the neuronal damage by preventing brain edema. Therefore, these findings suggest that early treatment with high-dose levetiracetam after SE termination by diazepam may protect against adverse sequelae via the inhibition of neurotoxicity induced by brain edema events. Copyright © 2015 Elsevier B.V. All rights reserved.
Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing
ERIC Educational Resources Information Center
Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth
2008-01-01
Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…
Creating an Expressive Performance Mindset
ERIC Educational Resources Information Center
Broomhead, Paul; Skidmore, Jon B.
2014-01-01
Students in performance situations sometimes experience physiological symptoms that inhibit their ability to perform as expressively as they otherwise might possess the understanding and ability to do. As students set out to perform with an expressive mindset, the brain's limbic system may detect some perceived danger in the situation and…
Localized Disruption of Narp in Medial Prefrontal Cortex Blocks Reinforcer Devaluation Performance
ERIC Educational Resources Information Center
Johnson, Alexander W.; Han, Sungho; Blouin, Ashley M.; Saini, Jasjit; Worley, Paul F.; During, Matthew J.; Holland, Peter C.; Baraban, Jay M.; Reti, Irving M.
2010-01-01
Neuronal activity regulated pentraxin (Narp) is a secreted protein that regulates [alpha]-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPAR) aggregation and synaptogenesis. Mapping of Narp-positive neurons in brain has revealed it is prominently expressed in several limbic system projection pathways. Consistent with this…
Schechter, Daniel S; Moser, Dominik A; Wang, Zhishun; Marsh, Rachel; Hao, XueJun; Duan, Yunsuo; Yu, Shan; Gunter, Benjamin; Murphy, David; McCaw, Jaime; Kangarlu, Alayar; Willheim, Erica; Myers, Michael M; Hofer, Myron A; Peterson, Bradley S
2012-11-01
This study tested whether mothers with interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) vs healthy controls (HC) would show greater limbic and less frontocortical activity when viewing young children during separation compared to quiet play. Mothers of 20 children (12-42 months) participated: 11 IPV-PTSD mothers and 9 HC with no PTSD. During fMRI, mothers watched epochs of play and separation from their own and unfamiliar children. The study focused on comparison of PTSD mothers vs HC viewing children in separation vs play, and viewing own vs unfamiliar children in separation. Both groups showed distinct patterns of brain activation in response to viewing children in separation vs play. PTSD mothers showed greater limbic and less frontocortical activity (BA10) than HC. PTSD mothers also reported feeling more stressed than HC when watching own and unfamiliar children during separation. Their self-reported stress was associated with greater limbic and less frontocortical activity. Both groups also showed distinct patterns of brain activation in response to viewing their own vs unfamiliar children during separation. PTSD mothers' may not have access to frontocortical regulation of limbic response upon seeing own and unfamiliar children in separation. This converges with previously reported associations of maternal IPV-PTSD and atypical caregiving behavior following separation.
Zhong, Xue; Pu, Weidan; Yao, Shuqiao
2016-12-01
The neurobiological mechanisms of depression are increasingly being explored through resting-state brain imaging studies. However, resting-state fMRI findings have varied, perhaps because of differences between study populations, which included the disorder course and medication use. The aim of our study was to integrate studies of resting-state fMRI and explore the alterations of abnormal brain activity in first-episode, drug-naïve patients with major depressive disorder. Relevant imaging reports in English were searched, retrieved, selected and subjected to analysis by activation likelihood estimation, a coordinate-based meta-analysis technique (final sample, 31 studies). Coordinates extracted from the original reports were assigned to two categories based on effect directionality. Compared with healthy controls, the first-episode, medication-naïve major depressive disorder patients showed decreased brain activity in the dorsolateral prefrontal cortex, superior temporal gyrus, posterior precuneus, and posterior cingulate, as well as in visual areas within the occipital lobe, lingual gyrus, and fusiform gyrus, and increased activity in the putamen and anterior precuneus. Not every study that has reported relevant data met the inclusion criteria. Resting-state functional alterations were located mainly in the fronto-limbic system, including the dorsolateral prefrontal cortex and putamen, and in the default mode network, namely the precuneus and superior/middle temporal gyrus. Abnormal functional alterations of the fronto-limbic circuit and default mode network may be characteristic of first-episode, drug-naïve major depressive disorder patients. Copyright © 2016 Elsevier B.V. All rights reserved.
From receptor balance to rational glucocorticoid therapy.
de Kloet, E Ron
2014-08-01
Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.
ERIC Educational Resources Information Center
Geva, Ronny; Feldman, Ruth
2008-01-01
Neurobiological models propose an evolutionary, vertical-integrative perspective on emotion and behavior regulation, which postulates that regulatory functions are processed along three core brain systems: the brainstem, limbic, and cortical systems. To date, few developmental studies applied these models to research on prenatal and perinatal…
Guinchard, A-C; Ghazaleh, Naghmeh; Saenz, M; Fornari, E; Prior, J O; Maeder, P; Adib, S; Maire, R
2016-11-01
We studied possible brain changes with functional MRI (fMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) in a patient with a rare, high-intensity "objective tinnitus" (high-level SOAEs) in the left ear of 10 years duration, with no associated hearing loss. This is the first case of objective cochlear tinnitus to be investigated with functional neuroimaging. The objective cochlear tinnitus was measured by Spontaneous Otoacoustic Emissions (SOAE) equipment (frequency 9689 Hz, intensity 57 dB SPL) and is clearly audible to anyone standing near the patient. Functional modifications in primary auditory areas and other brain regions were evaluated using 3T and 7T fMRI and FDG-PET. In the fMRI evaluations, a saturation of the auditory cortex at the tinnitus frequency was observed, but the global cortical tonotopic organization remained intact when compared to the results of fMRI of healthy subjects. The FDG-PET showed no evidence of an increase or decrease of activity in the auditory cortices or in the limbic system as compared to normal subjects. In this patient with high-intensity objective cochlear tinnitus, fMRI and FDG-PET showed no significant brain reorganization in auditory areas and/or in the limbic system, as reported in the literature in patients with chronic subjective tinnitus. Copyright © 2016 Elsevier B.V. All rights reserved.
Prefrontal vulnerabilities and whole brain connectivity in aging and depression.
Lamar, Melissa; Charlton, Rebecca A; Ajilore, Olusola; Zhang, Aifeng; Yang, Shaolin; Barrick, Thomas R; Rhodes, Emma; Kumar, Anand
2013-07-01
Studies exploring the underpinnings of age-related neurodegeneration suggest fronto-limbic alterations that are increasingly vulnerable in the presence of disease including late life depression. Less work has assessed the impact of this specific vulnerability on widespread brain circuitry. Seventy-nine older adults (healthy controls=45; late life depression=34) completed translational tasks shown in non-human primates to rely on fronto-limbic networks involving dorsolateral (Self-Ordered Pointing Task) or orbitofrontal (Object Alternation Task) cortices. A sub-sample of participants also completed diffusion tensor imaging for white matter tract quantification (uncinate and cingulum bundle; n=58) and whole brain tract-based spatial statistics (n=62). Despite task associations to specific white matter tracts across both groups, only healthy controls demonstrated significant correlations between widespread tract integrity and cognition. Thus, increasing Object Alternation Task errors were associated with decreasing fractional anisotropy in the uncinate in late life depression; however, only in healthy controls was the uncinate incorporated into a larger network of white matter vulnerability associating fractional anisotropy with Object Alternation Task errors using whole brain tract-based spatial statistics. It appears that the whole brain impact of specific fronto-limbic vulnerabilities in aging may be eclipsed in the presence of disease-specific neuropathology like that seen in late life depression. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul
2016-03-01
Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Mehta, Mitul A.; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C. R.; Sonuga-Barke, Edmund
2010-01-01
Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous…
Bipolar disorder: a neural network perspective on a disorder of emotion and motivation.
Wessa, Michèle; Kanske, Philipp; Linke, Julia
2014-01-01
Bipolar disorder (BD) is a severe, chronic disease with a heritability of 60-80%. BD is frequently misdiagnosed due to phenomenological overlap with other psychopathologies, an important issue that calls for the identification of biological and psychological vulnerability and disease markers. Altered structural and functional connectivity, mainly between limbic and prefrontal brain areas, have been proposed to underlie emotional and motivational dysregulation in BD and might represent relevant vulnerability and disease markers. In the present laboratory review we discuss functional and structural neuroimaging findings on emotional and motivational dysregulation from our research group in BD patients and healthy individuals at risk to develop BD. As a main result of our studies, we observed altered orbitofrontal and limbic activity and reduced connectivity between dorsal prefrontal and limbic brain regions, as well as reduced integrity of fiber tracts connecting prefrontal and subcortical brain structures in BD patients and high-risk individuals. Our results provide novel insights into pathophysiological mechanisms of bipolar disorder. The current laboratory review provides a specific view of our group on altered brain connectivity and underlying psychological processes in bipolar disorder based on our own work, integrating relevant findings from others. Thereby we attempt to advance neuropsychobiological models of BD.
Cortico-limbic connectivity in MAOA-L carriers is vulnerable to acute tryptophan depletion.
Eisner, Patrick; Klasen, Martin; Wolf, Dhana; Zerres, Klaus; Eggermann, Thomas; Eisert, Albrecht; Zvyagintsev, Mikhail; Sarkheil, Pegah; Mathiak, Krystyna A; Zepf, Florian; Mathiak, Klaus
2017-03-01
A gene-environment interaction between expression genotypes of the monoamine oxidase A (MAOA) and adverse childhood experience increases the risk of antisocial behavior. However, the neural underpinnings of this interaction remain uninvestigated. A cortico-limbic circuit involving the prefrontal cortex (PFC) and the amygdala is central to the suppression of aggressive impulses and is modulated by serotonin (5-HT). MAOA genotypes may modulate the vulnerability of this circuit and increase the risk for emotion regulation deficits after specific life events. Acute tryptophan depletion (ATD) challenges 5-HT regulation and may identify vulnerable neuronal circuits, contributing to the gene-environment interaction. Functional magnetic resonance imaging measured the resting-state state activity in 64 healthy males in a double-blind, placebo-controlled study. Cortical maps of amygdala correlation identified the impact of ATD and its interaction with low- (MAOA-L) and high-expression variants (MAOA-H) of MAOA on cortico-limbic connectivity. Across all Regions of Interest (ROIs) exhibiting an ATD effect on cortico-limbic connectivity, MAOA-L carriers were more susceptible to ATD than MAOA-H carriers. In particular, the MAOA-L group exhibited a larger reduction of amygdala connectivity with the right prefrontal cortex and a larger increase of amygdala connectivity with the insula and dorsal PCC. MAOA-L carriers were more susceptable to a central 5-HT challenge in cortico-limbic networks. Such vulnerability of the cortical serotonergic system may contribute to the emergence of antisocial behavior after systemic challenges, observed as gene-environment interaction. Hum Brain Mapp 38:1622-1635, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Neumann, W-J; Huebl, J; Brücke, C; Gabriëls, L; Bajbouj, M; Merkl, A; Schneider, G-H; Nuttin, B; Brown, P; Kühn, AA
2016-01-01
The role of distinct limbic areas in emotion regulation has been largely inferred from neuroimaging studies. Recently, the opportunity for intracranial recordings from limbic areas has arisen in patients undergoing deep brain stimulation (DBS) for neuropsychiatric disorders including major depressive disorder (MDD) and obsessive compulsive disorder (OCD). Here we test the hypothesis that distinct temporal patterns of local field potential (LFP) activity in the human limbic system reflect disease state and symptom severity in MDD and OCD patients. To this end, we recorded LFPs via implanted DBS electrodes from the bed nucleus of stria terminalis (BNST area) in 12 patients (5 OCD, 7 MDD) and from the subgenual cingulate cortex in 7 MDD patients (CG25 area). We found a distinct pattern of oscillatory activity with significantly higher α-power in MDD compared with OCD in the BNST area (broad α-band 8–14 Hz; P<0.01) and a similar level of α-activity in the CG25 area as in the BNST area in MDD patients. The mean α-power correlated with severity of depressive symptoms as assessed by the Beck depression inventory in MDD (n = 14, r = 0.55, P = 0.042) but not with severity of obsessive compulsive symptoms in OCD. Here we show larger α-band activity in MDD patients compared with OCD recorded from intracranial DBS targets. Our results suggest that α-activity in the limbic system may be a signature of symptom severity in MDD and may serve as a potential state biomarker for closed loop DBS in MDD. PMID:24514569
Esch, Tobias; Guarna, Massimo; Bianchi, Enrica; Zhu, Wei; Stefano, George B
2004-06-01
Currently, complementary and alternative medicine (CAM) are experiencing growing popularity, especially in former industrialized countries. However, most of the underlying physiological and molecular mechanisms as well as participating biological structures are still speculative. Specific and non-specific effects may play a role in CAM. Moreover, trust, belief, and expectation may be of importance, pointing towards common central nervous system (CNS) pathways involved in CAM. Four CAM approaches (acupuncture, meditation, music therapy, and massage therapy) were examined with regard to the CNS activity pattern involved. CNS commonalities between different approaches were investigated. Frontal/prefrontal and limbic brain structures play a role in CAM. Particularly, left-anterior regions of the brain and reward or motivation circuitry constituents are involved, indicating positive affect and emotion-related memory processing--accompanied by endocrinologic and autonomic functions--as crucial components of CAM effects. Thus, trust and belief in a therapist or positive therapy expectations seem to be important. However, besides common non-specific or subjective effects, specific (objective) physiological components also exist. Non-specific CNS commonalities are involved in various CAM therapies. Different therapeutic approaches physiologically overlap in the brain. However, molecular correspondents of the detected CNS analogies still have to be specified. In particular, fast acting autoregulatory signaling molecules presumably play a role. These may also be involved in the placebo response.
Morphological brain measures of cortico-limbic inhibition related to resilience.
Gupta, Arpana; Love, Aubrey; Kilpatrick, Lisa A; Labus, Jennifer S; Bhatt, Ravi; Chang, Lin; Tillisch, Kirsten; Naliboff, Bruce; Mayer, Emeran A
2017-09-01
Resilience is the ability to adequately adapt and respond to homeostatic perturbations. Although resilience has been associated with positive health outcomes, the neuro-biological basis of resilience is poorly understood. The aim of the study was to identify associations between regional brain morphology and trait resilience with a focus on resilience-related morphological differences in brain regions involved in cortico-limbic inhibition. The relationship between resilience and measures of affect were also investigated. Forty-eight healthy subjects completed structural MRI scans. Self-reported resilience was measured using the Connor and Davidson Resilience Scale. Segmentation and regional parcellation of images was performed to yield a total of 165 regions. Gray matter volume (GMV), cortical thickness, surface area, and mean curvature were calculated for each region. Regression models were used to identify associations between morphology of regions belonging to executive control and emotional arousal brain networks and trait resilience (total and subscales) while controlling for age, sex, and total GMV. Correlations were also conducted between resilience scores and affect scores. Significant associations were found between GM changes in hypothesized brain regions (subparietal sulcus, intraparietal sulcus, amygdala, anterior mid cingulate cortex, and subgenual cingulate cortex) and resilience scores. There were significant positive correlations between resilience and positive affect and negative correlations with negative affect. Resilience was associated with brain morphology of regions involved in cognitive and affective processes related to cortico-limbic inhibition. Brain signatures associated with resilience may be a biomarker of vulnerability to disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The neural circuitry of visual artistic production and appreciation: A proposition.
Chakravarty, Ambar
2012-04-01
The nondominant inferior parietal lobule is probably a major "store house" of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo-amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously.
The neural circuitry of visual artistic production and appreciation: A proposition
Chakravarty, Ambar
2012-01-01
The nondominant inferior parietal lobule is probably a major “store house” of artistic creativity. The ventromedial prefrontal lobe (VMPFL) is supposed to be involved in creative cognition and the dorsolateral prefrontal lobe (DLPFL) in creative output. The conceptual ventral and dorsal visual system pathways likely represent the inferior and superior longitudinal fasciculi. During artistic production, conceptualization is conceived in the VMPFL and the executive part is operated through the DLFPL. The latter transfers the concept to the visual brain through the superior longitudinal fasciculus (SLF), relaying on its path to the parietal cortex. The conceptualization at VMPFL is influenced by activity from the anterior temporal lobe through the uncinate fasciculus and limbic system pathways. The final visual image formed in the visual brain is subsequently transferred back to the DLPFL through the SLF and then handed over to the motor cortex for execution. During art appreciation, the image at the visual brain is transferred to the frontal lobe through the SLF and there it is matched with emotional and memory inputs from the anterior temporal lobe transmitted through the uncinate fasiculus. Beauty is perceived at the VMPFL and transferred through the uncinate fasciculus to the hippocampo–amygdaloid complex in the anterior temporal lobe. The limbic system (Papez circuit) is activated and emotion of appreciation is evoked. It is postulated that in practice the entire circuitry is activated simultaneously. PMID:22566716
Moser, Dominik A.; Wang, Zhishun; Marsh, Rachel; Hao, XueJun; Duan, Yunsuo; Yu, Shan; Gunter, Benjamin; Murphy, David; McCaw, Jaime; Kangarlu, Alayar; Willheim, Erica; Myers, Michael M.; Hofer, Myron A.; Peterson, Bradley S.
2012-01-01
This study tested whether mothers with interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) vs healthy controls (HC) would show greater limbic and less frontocortical activity when viewing young children during separation compared to quiet play. Mothers of 20 children (12–42 months) participated: 11 IPV-PTSD mothers and 9 HC with no PTSD. During fMRI, mothers watched epochs of play and separation from their own and unfamiliar children. The study focused on comparison of PTSD mothers vs HC viewing children in separation vs play, and viewing own vs unfamiliar children in separation. Both groups showed distinct patterns of brain activation in response to viewing children in separation vs play. PTSD mothers showed greater limbic and less frontocortical activity (BA10) than HC. PTSD mothers also reported feeling more stressed than HC when watching own and unfamiliar children during separation. Their self-reported stress was associated with greater limbic and less frontocortical activity. Both groups also showed distinct patterns of brain activation in response to viewing their own vs unfamiliar children during separation. PTSD mothers’ may not have access to frontocortical regulation of limbic response upon seeing own and unfamiliar children in separation. This converges with previously reported associations of maternal IPV-PTSD and atypical caregiving behavior following separation. PMID:22021653
Frontal glutamate and reward processing in adolescence and adulthood.
Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen
2015-11-01
The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.
Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier
2010-03-01
The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.
A Primary Role for Nucleus Accumbens and Related Limbic Network in Vocal Tics.
McCairn, Kevin W; Nagai, Yuji; Hori, Yukiko; Ninomiya, Taihei; Kikuchi, Erika; Lee, Ju-Young; Suhara, Tetsuya; Iriki, Atsushi; Minamimoto, Takafumi; Takada, Masahiko; Isoda, Masaki; Matsumoto, Masayuki
2016-01-20
Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain PET imaging identified prominent, bilateral limbic cortico-subcortical activation. Local field potentials (LFPs) developed abnormal spikes in the NAc and the anterior cingulate cortex (ACC). Vocalization could occur without obvious LFP spikes, however, when phase-phase coupling of alpha oscillations were accentuated between the NAc, ACC, and the primary motor cortex. These findings contrasted with myoclonic motor tics induced by disinhibition of the dorsolateral putamen, where PET activity was confined to the ipsilateral sensorimotor system and LFP spikes always preceded motor tics. We propose that vocal tics emerge as a consequence of dysrhythmic alpha coupling between critical nodes in the limbic and motor networks. VIDEO ABSTRACT. Copyright © 2016 Elsevier Inc. All rights reserved.
Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley.
Richard, Jocelyn M; Castro, Daniel C; Difeliceantonio, Alexandra G; Robinson, Mike J F; Berridge, Kent C
2013-11-01
Ann Kelley was a scientific pioneer in reward neuroscience. Her many notable discoveries included demonstrations of accumbens/striatal circuitry roles in eating behavior and in food reward, explorations of limbic interactions with hypothalamic regulatory circuits, and additional interactions of motivation circuits with learning functions. Ann Kelley's accomplishments inspired other researchers to follow in her footsteps, including our own laboratory group. Here we describe results from several lines of our research that sprang in part from earlier findings by Kelley and colleagues. We describe hedonic hotspots for generating intense pleasure 'liking', separate identities of 'wanting' versus 'liking' systems, a novel role for dorsal neostriatum in generating motivation to eat, a limbic keyboard mechanism in nucleus accumbens for generating intense desire versus intense dread, and dynamic limbic transformations of learned memories into motivation. We describe how origins for each of these themes can be traced to fundamental contributions by Ann Kelley. Copyright © 2013 Elsevier Ltd. All rights reserved.
Aberrant paralimbic gray matter in criminal psychopathy.
Ermer, Elsa; Cope, Lora M; Nyalakanti, Prashanth K; Calhoun, Vince D; Kiehl, Kent A
2012-08-01
Psychopaths impose large costs on society, as they are frequently habitual, violent criminals. The pervasive nature of emotional and behavioral symptoms in psychopathy suggests that several associated brain regions may contribute to the disorder. Studies employing a variety of methods have converged on a set of brain regions in paralimbic cortex and limbic areas that appear to be dysfunctional in psychopathy. The present study further tests this hypothesis by investigating structural abnormalities using voxel-based morphometry in a sample of incarcerated men (N=296). Psychopathy was associated with decreased regional gray matter in several paralimbic and limbic areas, including bilateral parahippocampal, amygdala, and hippocampal regions, bilateral temporal pole, posterior cingulate cortex, and orbitofrontal cortex. The consistent identification of paralimbic cortex and limbic structures in psychopathy across diverse methodologies strengthens the interpretation that these regions are crucial for understanding neural dysfunction in psychopathy. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Yun, Richard J; Krystal, John H; Mathalon, Daniel H
2010-03-01
The human working memory system provides an experimentally useful model for examination of neural overload effects on subsequent functioning of the overloaded system. This study employed functional magnetic resonance imaging in conjunction with a parametric working memory task to characterize the behavioral and neural effects of cognitive overload on subsequent cognitive performance, with particular attention to cognitive-limbic interactions. Overloading the working memory system was associated with varying degrees of subsequent decline in performance accuracy and reduced activation of brain regions central to both task performance and suppression of negative affect. The degree of performance decline was independently predicted by three separate factors operating during the overload condition: the degree of task failure, the degree of amygdala activation, and the degree of inverse coupling between the amygdala and dorsolateral prefrontal cortex. These findings suggest that vulnerability to overload effects in cognitive functioning may be mediated by reduced amygdala suppression and subsequent amygdala-prefrontal interaction.
Anatomy of the Limbic White Matter Tracts as Revealed by Fiber Dissection and Tractography.
Pascalau, Raluca; Popa Stănilă, Roxana; Sfrângeu, Silviu; Szabo, Bianca
2018-05-01
The limbic tracts are involved in crucial cerebral functions such as memory, emotion, and behavior. The complex architecture of the limbic circuit makes it harder to approach compared with other white matter networks. Our study aims to describe the 3-dimensional anatomy of the limbic white matter by the use of 2 complementary study methods, namely ex vivo fiber dissection and in vivo magnetic resonance imaging-based tractography. Three fiber dissection protocols were performed using blunt wooden instruments and a surgical microscope on formalin-fixed brains prepared according to the Klingler method. Diffusion tensor imaging acquisitions were done with a 3-Tesla magnetic resonance scanner on patients with head and neck pathology that did not involve the brain. Fiber tracking was performed with manually selected regions of interest. Cingulum, fornix, the anterior thalamic peduncle, the accumbofrontal bundle, medial forebrain bundle, the uncinate fasciculus, the mammillothalamic tract, ansa peduncularis, and stria terminalis were dissected and fiber tracked. For each tract, location, configuration, segmentation, dimensions, dissection and tractography particularities, anatomical relations, and terminations are described. The limbic white matter tracts were systematized as 2 concentric rings around the thalamus. The inner ring is formed by fornix, mammillothalamic tract, ansa peduncularis, stria terminalis, accumbofrontal fasciculus, and medial forebrain bundle and anterior thalamic peduncle, and the outer ring is formed by the cingulum and uncinate fasciculus. This paper proposes a fiber-tracking protocol for the limbic tracts inspired and validated by fiber dissection findings that can be used routinely in the clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
Wiring Pathways to Replace Aggression
ERIC Educational Resources Information Center
Bath, Howard
2006-01-01
The previous article in this series introduced the triune brain, the three components of which handle specialized life tasks. The survival brain, or brain stem, directs automatic physiological functions, such as heartbeat and breathing, and mobilizes fight/flight behaviour in times of threat. The emotional (or limbic) brain activates positive or…
Can Decision Making Research Provide a Better Understanding of Chemical and Behavioral Addictions?
Engel, Anzhelika; Cáceda, Ricardo
2015-01-01
We reviewed the cognitive and neurobiological commonalities between chemical and behavioral addictions. Poor impulse control, limited executive function and abnormalities in reward processing are seen in both group of entities. Brain imaging shows consistent abnormalities in frontoparietal regions and the limbic system. In drug addiction, exaggerated risk taking behavior and temporal discounting may reflect an imbalance between a hyperactive mesolimbic and hypoactive executive systems. Several cognitive distortions are found in pathological gambling that seems to harness the brain reward system that has evolved to face situations related to skill, not random chance. Abnormalities in risk assessment and impulsivity are found in variety of eating disorders, in particularly related to eating behavior. Corresponding findings in eating disorder patients include abnormalities in the limbic system, i.e. orbitofrontal cortex (OFC), striatum and insula. Similarly, internet addiction disorder is associated with risky decision making and increased choice impulsivity with corresponding discrepant activation in the dorsolateral prefrontal cortex, OFC, anterior cingulate cortex, caudate and insula. Sexual addictions are in turn associated with exaggerated impulsive choice and suggestive evidence of abnormalities in reward processing. In sum, exploration of executive function and decision making abnormalities in chemical and behavioral addictions may increase understanding in their psychopathology and yield valuable targets for therapeutic interventions.
Neural control of chronic stress adaptation
Herman, James P.
2013-01-01
Stress initiates adaptive processes that allow the organism to physiologically cope with prolonged or intermittent exposure to real or perceived threats. A major component of this response is repeated activation of glucocorticoid secretion by the hypothalamo-pituitary-adrenocortical (HPA) axis, which promotes redistribution of energy in a wide range of organ systems, including the brain. Prolonged or cumulative increases in glucocorticoid secretion can reduce benefits afforded by enhanced stress reactivity and eventually become maladaptive. The long-term impact of stress is kept in check by the process of habituation, which reduces HPA axis responses upon repeated exposure to homotypic stressors and likely limits deleterious actions of prolonged glucocorticoid secretion. Habituation is regulated by limbic stress-regulatory sites, and is at least in part glucocorticoid feedback-dependent. Chronic stress also sensitizes reactivity to new stimuli. While sensitization may be important in maintaining response flexibility in response to new threats, it may also add to the cumulative impact of glucocorticoids on the brain and body. Finally, unpredictable or severe stress exposure may cause long-term and lasting dysregulation of the HPA axis, likely due to altered limbic control of stress effector pathways. Stress-related disorders, such as depression and PTSD, are accompanied by glucocorticoid imbalances and structural/ functional alterations in limbic circuits that resemble those seen following chronic stress, suggesting that inappropriate processing of stressful information may be part of the pathological process. PMID:23964212
Compulsive sexual behavior: Prefrontal and limbic volume and interactions.
Schmidt, Casper; Morris, Laurel S; Kvamme, Timo L; Hall, Paula; Birchard, Thaddeus; Voon, Valerie
2017-03-01
Compulsive sexual behaviors (CSB) are relatively common and associated with significant personal and social dysfunction. The underlying neurobiology is still poorly understood. The present study examines brain volumes and resting state functional connectivity in CSB compared with matched healthy volunteers (HV). Structural MRI (MPRAGE) data were collected in 92 subjects (23 CSB males and 69 age-matched male HV) and analyzed using voxel-based morphometry. Resting state functional MRI data using multi-echo planar sequence and independent components analysis (ME-ICA) were collected in 68 subjects (23 CSB subjects and 45 age-matched HV). CSB subjects showed greater left amygdala gray matter volumes (small volume corrected, Bonferroni adjusted P < 0.01) and reduced resting state functional connectivity between the left amygdala seed and bilateral dorsolateral prefrontal cortex (whole brain, cluster corrected FWE P < 0.05) compared with HV. CSB is associated with elevated volumes in limbic regions relevant to motivational salience and emotion processing, and impaired functional connectivity between prefrontal control regulatory and limbic regions. Future studies should aim to assess longitudinal measures to investigate whether these findings are risk factors that predate the onset of the behaviors or are consequences of the behaviors. Hum Brain Mapp 38:1182-1190, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Caspr2 antibody limbic encephalitis is associated with Hashimoto thyroiditis and thymoma.
Lee, Chih-Hong; Lin, Jainn-Jim; Lin, Kun-Ju; Chang, Bao-Luen; Hsieh, Hsiang-Yao; Chen, Wei-Hsun; Lin, Kuang-Lin; Fung, Hon-Chung; Wu, Tony
2014-06-15
Contactin-associated protein 2 (Caspr2) antibody is a neuronal surface antibody (NSAb) capable of causing disorders involving central and peripheral nervous systems (PNS). Thymoma can be found in patients with Caspr2 antibodies and is most frequently associated with PNS symptoms. Myasthenia gravis can be found in these patients, but Hashimoto thyroiditis (HT) has not been reported. A 76-year-old woman presented with sub-acute-onset changes in mental status. Further investigations revealed thymoma and HT. The presence of NSAb was tested by immunofluorescence on human embryonic kidney-293 cells. Treatment included corticosteroids, azathioprine, thyroxine, plasmapheresis, and thymectomy. Caspr2 antibody was positive in serum but absent in CSF. Brain magnetic resonance imaging (MRI) showed diffuse cortical atrophy, but did not change significantly after treatments. Brain positron emission tomography (PET) revealed diffuse hypometabolism over the cerebral cortex. The patient's mental status only partially improved. In Caspr2 antibody-associated syndromes, thymoma can occur in patients presenting only with LE, and HT can be an accompanying disease. Brain MRI and PET may not show specific lesions in limbic area. Patients with Caspr2 antibodies and thymoma may not have good prognosis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Trost, Wiebke; Frühholz, Sascha
2015-06-01
The proposed quartet theory of human emotions by Koelsch and colleagues [1] identifies four different affect systems to be involved in the processing of particular types of emotions. Moreover, the theory integrates both basic emotions and more complex emotion concepts, which include also aesthetic emotions such as musical emotions. The authors identify a particular brain system for each kind of emotion type, also by contrasting them to brain structures that are generally involved in emotion processing irrespective of the type of emotion. A brain system that has been less regarded in emotion theories, but which represents one of the four systems of the quartet to induce attachment related emotions, is the hippocampus.
van den Heuvel, O A; Mataix-Cols, D; Zwitser, G; Cath, D C; van der Werf, Y D; Groenewegen, H J; van Balkom, A J L M; Veltman, D J
2011-11-01
Direct comparisons of brain function between obsessive compulsive disorder (OCD) and other anxiety or OCD spectrum disorders are rare. This study aimed to investigate the specificity of altered frontal-striatal and limbic activations during planning in OCD, a prototypical anxiety disorder (panic disorder) and a putative OCD spectrum disorder (hypochondriasis). The Tower of London task, a 'frontal-striatal' task, was used during functional magnetic resonance imaging measurements in 50 unmedicated patients, diagnosed with OCD (n=22), panic disorder (n=14) or hypochondriasis (n=14), and in 22 healthy subjects. Blood oxygen level-dependent (BOLD) signal changes were calculated for contrasts of interest (planning versus baseline and task load effects). Moreover, correlations between BOLD responses and both task performance and state anxiety were analysed. Overall, patients showed a decreased recruitment of the precuneus, caudate nucleus, globus pallidus and thalamus, compared with healthy controls. There were no statistically significant differences in brain activation between the three patient groups. State anxiety was negatively correlated with dorsal frontal-striatal activation. Task performance was positively correlated with dorsal frontal-striatal recruitment and negatively correlated with limbic and ventral frontal-striatal recruitment. Multiple regression models showed that adequate task performance was best explained by independent contributions from dorsolateral prefrontal cortex (positive correlation) and amygdala (negative correlation), even after controlling for state anxiety. Patients with OCD, panic disorder and hypochondriasis share similar alterations in frontal-striatal brain regions during a planning task, presumably partly related to increased limbic activation.
Toyota, Tomoko; Akamatsu, Naoki; Tsuji, Sadatoshi; Nishizawa, Shigeru
2014-06-01
Recently, some reports have indicated that limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies (VGKC-Ab) is a cause of adult-onset mesial temporal lobe epilepsy (MTLE). We report a 53-year-old woman who had her first epileptic seizure at the age of 50 years old. Examination by 3-Tesla brain MRI revealed left hippocampal high signal intensity and swelling on fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging at 2 months after her first seizure. The patient received intravenous methylprednisolone and carbamazepine 300 mg/day. One month later, MRI revealed improvement of her left hippocampal abnormalities. Thereafter, she had no seizures, however, three years after her first seizure, EEG revealed a seizure pattern in the left temporal region. Brain MRI revealed left hippocampal high signal intensity and brain fluorodeoxyglucose positron emission tomography revealed hypermetabolism. Her serum VGKC-Ab levels were 118 pM(normal < 100 pM). Intravenous methylprednisolone therapy was reinitiated. Two months later, her hippocampal abnormalities had improved and 3 months later her VGKC-Ab levels decreased to 4.4 pM. Remission of the epileptic seizures was also observed. This MTLE in the middle age was considered as limbic encephalitis associated with anti- VGKC-Ab. In cases of unexplained adult-onset MTLE, limbic encephalitis associated with anti-VGKC-Ab, which responds well to immunotherapy, should be considered in the differential diagnosis.
Schreckenberger, M F; Egle, U T; Drecker, S; Buchholz, H G; Weber, M M; Bartenstein, P; Kahaly, G J
2006-12-01
Hyperthyroidism is frequently associated with emotional distress. The underlying cerebral processes of the endocrine-induced mood changes are unclear. The objective of this study was to investigate, for the first time, the neuronal correlates of thyrotoxicosis-associated psychic symptoms using positron emission tomography (PET). The study was designed as a cross-sectional trial. The study was performed at joint nuclear medicine and thyroid clinics. Twelve patients with untreated Graves' hyperthyroidism were evaluated. Levels of emotional distress were self-rated by means of the Hospital Anxiety and Depression Scale. Both patients and 20 age- and gender-matched euthyroid controls underwent a brain fluorodeoxyglucose PET scan. Subsequently, the functional relationship between brain metabolism and the psychometric scores was analyzed. Compared with controls and visualized by fluorodeoxyglucose PET, hyperthyroid patients showed a decreased (P < 0.0001) glucose metabolism in the limbic system (uncus and inferior temporal gyrus). Activation foci in the posterior cingulate and in the inferior parietal lobe were correlated with both anxiety and depression scales (P < 0.001). Compared with patients with normal anxiety levels, those with increased anxiety yielded an enhanced glucose metabolism (P < 0.001) in the bilateral sensory association cortex. Serum free T3/free T4 levels negatively correlated with regional glucose metabolism in the medial posterior cingulate. Thyrotoxicosis and associated psychic symptoms are correlated to regional metabolic changes in the main structures of the limbic/paralimbic system.
Intergenerational neural mediators of early-life anxious temperament.
Fox, Andrew S; Oler, Jonathan A; Shackman, Alexander J; Shelton, Steven E; Raveendran, Muthuswamy; McKay, D Reese; Converse, Alexander K; Alexander, Andrew; Davidson, Richard J; Blangero, John; Rogers, Jeffrey; Kalin, Ned H
2015-07-21
Understanding the heritability of neural systems linked to psychopathology is not sufficient to implicate them as intergenerational neural mediators. By closely examining how individual differences in neural phenotypes and psychopathology cosegregate as they fall through the family tree, we can identify the brain systems that underlie the parent-to-child transmission of psychopathology. Although research has identified genes and neural circuits that contribute to the risk of developing anxiety and depression, the specific neural systems that mediate the inborn risk for these debilitating disorders remain unknown. In a sample of 592 young rhesus monkeys that are part of an extended multigenerational pedigree, we demonstrate that metabolism within a tripartite prefrontal-limbic-midbrain circuit mediates some of the inborn risk for developing anxiety and depression. Importantly, although brain volume is highly heritable early in life, it is brain metabolism-not brain structure-that is the critical intermediary between genetics and the childhood risk to develop stress-related psychopathology.
NASA Technical Reports Server (NTRS)
Herskovits, Edward H.; Gerring, Joan P.; Davatzikos, Christos; Bryan, R. Nick
2002-01-01
PURPOSE: To determine whether there is an association between the spatial distributions of lesions detected at magnetic resonance (MR) imaging of the brain in children, adolescents, and young adults after closed-head injury (CHI) and development of the reexperiencing symptoms of posttraumatic stress disorder (PTSD). MATERIALS AND METHODS: Data obtained in 94 subjects without a history of PTSD as determined by parental interview were analyzed. MR images were obtained 3 months after CHI. Lesions were manually delineated and registered to the Talairach coordinate system. Mann-Whitney analysis of lesion distribution and PTSD status at 1 year (again, as determined by parental interview) was performed, consisting of an analysis of lesion distribution versus the major symptoms of PTSD: reexperiencing, hyperarousal, and avoidance. RESULTS: Of the 94 subjects, 41 met the PTSD reexperiencing criterion and nine met all three PTSD criteria. Subjects who met the reexperiencing criterion had fewer lesions in limbic system structures (eg, the cingulum) on the right than did subjects who did not meet this criterion (Mann-Whitney, P =.003). CONCLUSION: Lesions induced by CHI in the limbic system on the right may inhibit subsequent manifestation of PTSD reexperiencing symptoms in children, adolescents, and young adults. Copyright RSNA, 2002.
The correlated network of acupuncture effect: a functional connectivity study.
Qin, Wei; Tian, Jie; Pan, Xiaohong; Yang, Lin; Zhen, Zonglei
2006-01-01
A functional connectivity, which are temporally correlated in functionally related brain regions, before and after acupuncture manipulation was measured by MRI. Amygdala, as the control system of endogenetic analgesia, was selected for "seed" point. We found that compelling similarity existed in the network of resting state before and after acupuncture manipulation. A paired student t-test was implemented to investigate under the different conditions. The main difference was found in the limbic system, brainstem and cerebellum. We conclude that the default endogenous analgesia functional network exists in human brain at a low level, and it could be increased to a higher level by acupuncture modulation.
Virtual reality adaptive stimulation of limbic networks in the mental readiness training.
Cosić, Kresimir; Popović, Sinisa; Kostović, Ivica; Judas, Milos
2010-01-01
A significant proportion of severe psychological problems in recent large-scale peacekeeping operations underscores the importance of effective methods for strengthening the stress resilience. Virtual reality (VR) adaptive stimulation, based on the estimation of the participant's emotional state from physiological signals, may enhance the mental readiness training (MRT). Understanding neurobiological mechanisms by which the MRT based on VR adaptive stimulation can affect the resilience to stress is important for practical application in the stress resilience management. After the delivery of a traumatic audio-visual stimulus in the VR, the cascade of events occurs in the brain, which evokes various physiological manifestations. In addition to the "limbic" emotional and visceral brain circuitry, other large-scale sensory, cognitive, and memory brain networks participate with less known impact in this physiological response. The MRT based on VR adaptive stimulation may strengthen the stress resilience through targeted brain-body interactions. Integrated interdisciplinary efforts, which would integrate the brain imaging and the proposed approach, may contribute to clarifying the neurobiological foundation of the resilience to stress.
Normative brain size variation and brain shape diversity in humans.
Reardon, P K; Seidlitz, Jakob; Vandekar, Simon; Liu, Siyuan; Patel, Raihaan; Park, Min Tae M; Alexander-Bloch, Aaron; Clasen, Liv S; Blumenthal, Jonathan D; Lalonde, Francois M; Giedd, Jay N; Gur, Ruben C; Gur, Raquel E; Lerch, Jason P; Chakravarty, M Mallar; Satterthwaite, Theodore D; Shinohara, Russell T; Raznahan, Armin
2018-06-15
Brain size variation over primate evolution and human development is associated with shifts in the proportions of different brain regions. Individual brain size can vary almost twofold among typically developing humans, but the consequences of this for brain organization remain poorly understood. Using in vivo neuroimaging data from more than 3000 individuals, we find that larger human brains show greater areal expansion in distributed frontoparietal cortical networks and related subcortical regions than in limbic, sensory, and motor systems. This areal redistribution recapitulates cortical remodeling across evolution, manifests by early childhood in humans, and is linked to multiple markers of heightened metabolic cost and neuronal connectivity. Thus, human brain shape is systematically coupled to naturally occurring variations in brain size through a scaling map that integrates spatiotemporally diverse aspects of neurobiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Current hypotheses on the mechanisms of alcoholism.
Vetreno, R P; Crews, F T
2014-01-01
Chronic use of alcohol results in progressive changes to brain and behavior that often lead to the development of alcohol dependence and alcoholism. Although the mechanisms underlying the development of alcoholism remain to be fully elucidated, diminished executive functioning due to hypoactive prefrontal cortex executive control and hyperactive limbic system anxiety and negative emotion might contribute mechanistically to the shift from experimental use to alcoholism and dependence. In the chapter that follows, behavioral deficits associated with cortical dysfunction and neurodegeneration will be related to the behavioral characteristics of alcoholism (e.g., diminished executive function, impulsivity, altered limbic modulation). We will provide evidence that alterations in cyclic AMP-responsive element binding protein (CREB: neurotrophic) and NF-κB (neuroimmune) signaling contribute to the development and persistence of alcoholism. In addition, genetic predispositions and an earlier age of drinking onset will be discussed as contributing factors to the development of alcohol dependence and alcoholism. Overall chronic ethanol-induced neuroimmune gene induction is proposed to alter limbic and frontal neuronal networks contributing to the development and persistence of alcoholism. © 2014 Elsevier B.V. All rights reserved.
Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng
2017-07-07
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Ebdlahad, Sommer; Nofzinger, Eric A.; James, Jeffrey A.; Buysse, Daniel J.; Price, Julie C.; Germain, Anne
2013-01-01
Rapid eye movement (REM) sleep disturbances predict poor clinical outcomes in posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). In MDD, REM sleep is characterized by activation of limbic and paralimbic brain regions compared to wakefulness. The neural correlates of PTSD during REM sleep remain scarcely explored, and comparisons of PTSD and MDD have not been conducted. The present study sought to compare brain activity patterns during wakefulness and REM sleep in 13 adults with PTSD and 12 adults with MDD using [18F]-fluoro-2-deoxy-D-glucose positron emission tomography (PET). PTSD was associated with greater increases in relative regional cerebral metabolic rate of glucose (rCMRglc) in limbic and paralimbic structures in REM sleep compared to wakefulness. Post-hoc comparisons indicated that MDD was associated with greater limbic and paralimbic rCMRglc during wakefulness but not REM sleep compared to PTSD. Our findings suggest that PTSD is associated with increased REM sleep limbic and paralimbic metabolism, whereas MDD is associated with wake and REM hypermetabolism in these areas. These observations suggest that PTSD and MDD disrupt REM sleep through different neurobiological processes. Optimal sleep treatments between the two disorders may differ: REM-specific therapy may be more effective in PTSD. PMID:24367137
Altered intrinsic functional brain architecture in female patients with bulimia nervosa
Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun’Ai; Correll, Christoph U.; Mitchell, Philip B.; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei
2017-01-01
Background Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. Methods We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. Results We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. Limitations We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Conclusion Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa. PMID:28949286
Altered intrinsic functional brain architecture in female patients with bulimia nervosa.
Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei
2017-11-01
Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities contribute to more comprehensive understanding of the neural mechanism underlying pathological eating and body perception in women with bulimia nervosa.
Bernasconi, Fosco; Schmidt, André; Pokorny, Thomas; Kometer, Michael; Seifritz, Erich; Vollenweider, Franz X
2014-12-01
Emotional face processing is critically modulated by the serotonergic system. For instance, emotional face processing is impaired by acute psilocybin administration, a serotonin (5-HT) 1A and 2A receptor agonist. However, the spatiotemporal brain mechanisms underlying these modulations are poorly understood. Here, we investigated the spatiotemporal brain dynamics underlying psilocybin-induced modulations during emotional face processing. Electrical neuroimaging analyses were applied to visual evoked potentials in response to emotional faces, following psilocybin and placebo administration. Our results indicate a first time period of strength (i.e., Global Field Power) modulation over the 168-189 ms poststimulus interval, induced by psilocybin. A second time period of strength modulation was identified over the 211-242 ms poststimulus interval. Source estimations over these 2 time periods further revealed decreased activity in response to both neutral and fearful faces within limbic areas, including amygdala and parahippocampal gyrus, and the right temporal cortex over the 168-189 ms interval, and reduced activity in response to happy faces within limbic and right temporo-occipital brain areas over the 211-242 ms interval. Our results indicate a selective and temporally dissociable effect of psilocybin on the neuronal correlates of emotional face processing, consistent with a modulation of the top-down control. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Hypothalamic tumors impact gray and white matter volumes in fronto-limbic brain areas.
Özyurt, Jale; Müller, Hermann L; Warmuth-Metz, Monika; Thiel, Christiane M
2017-04-01
Patients with hypothalamic involvement of a sellar/parasellar tumor often suffer from cognitive and social-emotional deficits that a lesion in the hypothalamus cannot fully explain. It is conceivable that these deficits are partly due to distal changes in hypothalamic networks, evolving secondary to a focal lesion. Focusing on childhood-onset craniopharyngioma patients, we aimed at investigating the impact of hypothalamic lesions on gray and white matter areas densely connected to the hypothalamus, and to relate structural changes to neuropsychological deficits frequently observed in patients. We performed a voxel-based morphometric analysis based on data of 11 childhood-onset craniopharyngioma patients with hypothalamic tumor involvement, and 18 healthy controls (median age: 17.2 and 17.4 yrs.). Whole-brain analyses were used to test for volumetric differences between the groups (T-tests) and subsequent regression analyses were used to correlate neuropsychological performance with gray and white matter volumes within the patient group. Patients compared to controls had significantly reduced gray matter volumes in areas of the anterior and posterior limbic subsystems which are densely connected with the hypothalamus. In addition, a reduction in white matter volumes was observed in tracts connecting the hypothalamus to other limbic areas. Worse long-term memory retrieval was correlated with smaller gray matter volumes in the posterior cingulate cortex. Our data provide the first evidence that hypothalamic tumor involvement impacts gray and white matter volumes in limbic areas, outside the area of tumor growth. Notably, the functional range of the two limbic subsystems affected, strikingly parallels the two major domains of psychological complaints in patients i.e., deficits in episodic memory and in socio-emotional functioning. We suggest that focal hypothalamic lesions may trigger distal changes in connected brain areas, which then contribute to the impairments in cognitive, social and emotional performance often observable in patients, and not explicable by a hypothalamic lesion alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Olejarczyk, Elzbieta
2007-01-01
Functional magnetic resonance imaging (fMRI) allows to investigate the amplitude of activation in neural networks of brain. In this work we present the results of fMRI time-series analysis performed to identify the process of dysregulation of dynamic interaction between different limbic system regions in healthy adults in state of increased anxiety. The results obtain for 65 healthy adults using nonlinear dynamics methods like fractal dimension confirm the key roles of the bilateral amygdala, bilateral hippocampus, BA9 (dorsolateral prefrontal cortex), and BA45 (ventromedial prefrontal cortex) in modulating emotional response in healthy adults. For different regions of interest (ROIs) significant correlations were found not only for the neutral respective rest but also for fear and angry contrasts.
Computing the Social Brain Connectome Across Systems and States.
Alcalá-López, Daniel; Smallwood, Jonathan; Jefferies, Elizabeth; Van Overwalle, Frank; Vogeley, Kai; Mars, Rogier B; Turetsky, Bruce I; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Bzdok, Danilo
2017-05-18
Social skills probably emerge from the interaction between different neural processing levels. However, social neuroscience is fragmented into highly specialized, rarely cross-referenced topics. The present study attempts a systematic reconciliation by deriving a social brain definition from neural activity meta-analyses on social-cognitive capacities. The social brain was characterized by meta-analytic connectivity modeling evaluating coactivation in task-focused brain states and physiological fluctuations evaluating correlations in task-free brain states. Network clustering proposed a functional segregation into (1) lower sensory, (2) limbic, (3) intermediate, and (4) high associative neural circuits that together mediate various social phenomena. Functional profiling suggested that no brain region or network is exclusively devoted to social processes. Finally, nodes of the putative mirror-neuron system were coherently cross-connected during tasks and more tightly coupled to embodied simulation systems rather than abstract emulation systems. These first steps may help reintegrate the specialized research agendas in the social and affective sciences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
2014-01-01
One line summary Metabolic syndrome and obesity-related co-morbidities are largely explained by co-adaptations to the energy use of the large human brain in the cortico-limbic-striatal and NRF2 systems. The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A ‘dual system’ is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing ‘common or garden’ food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and metabolic inflammation, or metaflammation, allow susceptibility to infectious, degenerative atherosclerotic cardiovascular, autoimmune, neurodegenerative and dysplastic diseases. Other relevant human-specific co-adaptations are examined, and encompass the unusual ability to store fat, certain vitamin pathways, the generalised but flexible intestine and microbiota, and slow development and longevity. This theory has significant past and future corollaries, which are explored in a separate article by McGill, A-T, in Archives of Public Health, 72: 31. PMID:25708524
Son, Ji Hyun; Lee, Sang Hoon; Seok, Ju Won; Kee, Baik Seok; Lee, Hyun Woong; Kim, Hyung Joon; Lee, Tae Kyung; Han, Doug Hyun
2015-07-01
Virtual reality therapy (VRT) uses multimodal stimulation that includes visual, auditory, olfactory, and gustatory stimuli. The aim of this study was to assess the effectiveness of VRT in treating subjects with alcohol dependence (AD) by evaluating changes in brain metabolism. The VRT protocol consisted of three steps: relaxation, presentation of a high-risk situation, and presentation of an aversive situation. Twelve alcohol-dependent subjects underwent 10 sessions of VRT. The alcohol-dependent subjects were assessed with 18F-fluorodeoxyglucose positron emission tomography images before and after VRT, whereas the control group underwent imaging according to the same protocol only at baseline. Compared with the healthy control group, AD subjects showed higher metabolism in the right lentiform nucleus and right temporal lobe (BA20) at baseline (P(FDR < .05) = .026). In addition, the metabolism in the left anterior cingulate was lower in subjects with AD (P(uncorr) = .001). After VRT, alcohol-dependent subjects showed decreased brain metabolism in the right lentiform nucleus (P(FDR < .05) = .026) and right temporal lobe (BA38, P(FDR < .05) = .032) relative to that at baseline. Our results suggest a neurobiological imbalance, notably, a high sensitivity to stimuli, in the limbic system in subjects with AD. Furthermore, we determined that metabolism decreased in the basal ganglia after VRT, which may explain the limbic-regulated responses of reward and regulation. Therefore, we tentatively recommend VRT to treat AD through its regulating effect on limbic circuits.
Neural mechanisms of genetic risk for impulsivity and violence in humans.
Meyer-Lindenberg, Andreas; Buckholtz, Joshua W; Kolachana, Bhaskar; R Hariri, Ahmad; Pezawas, Lukas; Blasi, Giuseppe; Wabnitz, Ashley; Honea, Robyn; Verchinski, Beth; Callicott, Joseph H; Egan, Michael; Mattay, Venkata; Weinberger, Daniel R
2006-04-18
Neurobiological factors contributing to violence in humans remain poorly understood. One approach to this question is examining allelic variation in the X-linked monoamine oxidase A (MAOA) gene, previously associated with impulsive aggression in animals and humans. Here, we have studied the impact of a common functional polymorphism in MAOA on brain structure and function assessed with MRI in a large sample of healthy human volunteers. We show that the low expression variant, associated with increased risk of violent behavior, predicted pronounced limbic volume reductions and hyperresponsive amygdala during emotional arousal, with diminished reactivity of regulatory prefrontal regions, compared with the high expression allele. In men, the low expression allele is also associated with changes in orbitofrontal volume, amygdala and hippocampus hyperreactivity during aversive recall, and impaired cingulate activation during cognitive inhibition. Our data identify differences in limbic circuitry for emotion regulation and cognitive control that may be involved in the association of MAOA with impulsive aggression, suggest neural systems-level effects of X-inactivation in human brain, and point toward potential targets for a biological approach toward violence.
Hernández-Hernández, Elizabeth Monserrat; Caporal Hernandez, Karen; Vázquez-Roque, Rubén Antonio; Díaz, Alfonso; de la Cruz, Fidel; Florán, Benjamin; Flores, Gonzalo
2018-08-01
Aging is a stage of life where cognitive and motor functions are impaired. This is because oxidative and inflammatory processes exacerbate neurodegeneration, which affects dendritic morphology and neuronal communication of limbic regions with memory loss. Recently, the use of trophic substances has been proposed to prevent neuronal deterioration. The neuropeptide-12 (N-PEP-12) has been evaluated in elderly patients with dementia, showing improvements in cognitive tasks due to acts as a neurotrophic factor. In the present work, we evaluated the effect of N-PEP-12 on motor activity and recognition memory, as well as its effects on dendritic morphology and the immunoreactivity of GFAP, Synaptophysin (SYP), and BDNF in neurons of the prefrontal cortex (PFC), dorsal hippocampus (DH) and nucleus accumbens (NAcc) of aged rats. The results show that N-PEP-12 improved the recognition memory, but the motor activity was not modified compared to the control animals. N-PEP-12 increases the density of dendritic spines and the total dendritic length in neurons of the PFC (layers 3 and 5) and in DH (CA1 and CA3). Interestingly NAcc neurons showed a reduction in the number of dendritic spines. In the N-PEP-12 animals, when evaluating the immunoreactivity for SYP and BDNF, there was an increase in the three brain regions, while the mark for GFAP decreased significantly. Our results suggest that N-PEP-12 promotes neuronal plasticity in the limbic system of aged animals, which contributes to improving recognition memory. In this sense, N-PEP-12 can be considered as a pharmacological alternative to prevent or delay brain aging and control senile dementias. © 2018 Wiley Periodicals, Inc.
Stress and the developing adolescent brain.
Eiland, L; Romeo, R D
2013-09-26
Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. In this review, we discuss the short- and long-term effects of periadolescent stress exposure on the structure and function of the brain. More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Zhao, Jizheng; Li, Mintong; Zhang, Yi; Song, Huaibo; von Deneen, Karen M; Shi, Yinggang; Liu, Yijun; He, Dongjian
2017-02-01
Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.
Berridge, Kent C.; Kringelbach, Morten L.
2015-01-01
Pleasure is mediated by well-developed mesocorticolimbic circuitry, and serves adaptive functions. In affective disorders anhedonia (lack of pleasure) or dysphoria (negative affect) can result from breakdowns of that hedonic system. Human neuroimaging studies indicate that surprisingly similar circuitry is activated by quite diverse pleasures, suggesting a common neural currency shared by all. Wanting for rewards is generated by a large and distributed brain system. Liking, or pleasure itself, is generated by a smaller set of hedonic hotspots within limbic circuitry. Those hotspots also can be embedded in broader anatomical patterns of valence organization, such as in a keyboard pattern of nucleus accumbens generators for desire versus dread. In contrast, some of the best known textbook candidates for pleasure generators, including classic pleasure electrodes and the mesolimbic dopamine system, may not generate pleasure after all. These emerging insights into brain pleasure mechanisms may eventually facilitate better treatments for affective disorders. PMID:25950633
Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto
2006-02-15
Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.
Limbic encephalitis following immunotherapy against metastatic malignant melanoma
Salam, Sharfaraz; Lavin, Timothy; Turan, Ayse
2016-01-01
Novel immunotherapies are increasingly being used to treat malignant melanoma. The use of such agents has been associated with triggering autoimmunity. However, there has been a paucity in reports of limbic encephalitis associated with these immunotherapies. Pembrolizumab, a monoclonal antibody against programmed cell death antigen (PD-1), is currently being trialled in the UK to treat malignant melanoma. We report a unique case of antibody-negative limbic encephalitis presenting 1 year after starting pembrolizumab, in the context of malignant melanoma. The patient presented with progressive cognitive decline. MRI of the brain revealed signal change within the limbic structures. Cerebrospinal fluid studies confirmed evidence of inflammation with raised white cell count and protein. We were able to prevent further progression of symptoms by stopping pembrolizumab and treating the patient instead with steroids. We advocate considering autoimmune neuroinflammation as a differential for neurological disorders presenting in patients receiving PD-1 antagonist treatment and immunotherapy in general. PMID:27009198
Neuropharmacological Specificity of Brain Structures Involved in Soman-Induced Seizures
2012-01-01
Bernabé Burckhart M-F, Lallement G. Efficacy of the ketamine-atropine combination in the delayed treatment of soman- induced status epilepticus ...The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and fos immunochemistry. Journal of...Neuroscience 1993a;13(11):4787–801. White LE, Price JL. The functional anatomy of limbic status epilepticus in the rat. II. The effects of focal deactivation
Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna; Müller, Ralph-Axel
2018-01-01
The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8-17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. © The Author (2017). Published by Oxford University Press.
Abbott, Angela E; Linke, Annika C; Nair, Aarti; Jahedi, Afrooz; Alba, Laura A; Keown, Christopher L; Fishman, Inna
2018-01-01
Abstract The neural underpinnings of repetitive behaviors (RBs) in autism spectrum disorders (ASDs), ranging from cognitive to motor characteristics, remain unknown. We assessed RB symptomatology in 50 ASD and 52 typically developing (TD) children and adolescents (ages 8–17 years), examining intrinsic functional connectivity (iFC) of corticostriatal circuitry, which is important for reward-based learning and integration of emotional, cognitive and motor processing, and considered impaired in ASDs. Connectivity analyses were performed for three functionally distinct striatal seeds (limbic, frontoparietal and motor). Functional connectivity with cortical regions of interest was assessed for corticostriatal circuit connectivity indices and ratios, testing the balance of connectivity between circuits. Results showed corticostriatal overconnectivity of limbic and frontoparietal seeds, but underconnectivity of motor seeds. Correlations with RBs were found for connectivity between the striatal motor seeds and cortical motor clusters from the whole-brain analysis, and for frontoparietal/limbic and motor/limbic connectivity ratios. Division of ASD participants into high (n = 17) and low RB subgroups (n = 19) showed reduced frontoparietal/limbic and motor/limbic circuit ratios for high RB compared to low RB and TD groups in the right hemisphere. Results suggest an association between RBs and an imbalance of corticostriatal iFC in ASD, being increased for limbic, but reduced for frontoparietal and motor circuits. PMID:29177509
Gudayol-Ferré, Esteve; Peró-Cebollero, Maribel; González-Garrido, Andrés A.; Guàrdia-Olmos, Joan
2015-01-01
Depression is a mental illness that presents alterations in brain connectivity in the Default Mode Network (DMN), the Affective Network (AN) and other cortical-limbic networks, and the Cognitive Control Network (CCN), among others. In recent years the interest in the possible effect of the different antidepressant treatments on functional connectivity has increased substantially. The goal of this paper is to conduct a systematic review of the studies on the relationship between the treatment of depression and brain connectivity. Nineteen studies were found in a systematic review on this topic. In all of them, there was improvement of the clinical symptoms after antidepressant treatment. In 18 out of the 19 studies, clinical improvement was associated to changes in brain connectivity. It seems that both DMN and the connectivity between cortical and limbic structures consistently changes after antidepressant treatment. However, the current evidence does not allow us to assure that the treatment of depression leads to changes in the CCN. In this regard, some papers report a positive correlation between changes in brain connectivity and improvement of depressive symptomatology, particularly when they measure cortical-limbic connectivity, whereas the changes in DMN do not significantly correlate with clinical improvement. Finally, some papers suggest that changes in connectivity after antidepressant treatment might be partly related to the mechanisms of action of the treatment administered. This effect has been observed in two studies with stimulation treatment (one with rTMS and one with ECT), and in two papers that administered three different pharmacological treatments. Our review allows us to make a series of recommendations that might guide future researchers exploring the effect of anti-depression treatments on brain connectivity. PMID:26578927
Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella
2016-01-01
The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597
Walters, Glenn D; Kiehl, Kent A
2015-12-15
The purpose of this study was to determine whether scores on two temperament dimensions (fearlessness and disinhibition) correlated differentially with gray matter volumes in two limbic regions (amygdala and hippocampus). It was predicted that the fearlessness dimension would correlate with low gray matter volumes in the amygdala and the disinhibition dimension would correlate with low gray matter volumes in the hippocampus after controlling for age, IQ, regular substance use, and total brain volume. Participants were 191 male adolescents (age range=13-19 years) incarcerated in a maximum-security juvenile facility. Structural magnetic resonance imaging (MRI) analysis of the limbic and paralimbic regions of the brain was conducted. The temperament dimensions were estimated with items from the Psychopathy Checklist: Youth Version (PCL: YV: Forth et al., 2003). Analyses showed that the fearlessness dimension correlated negatively with gray matter volumes in the amygdala and the disinhibition dimension correlated negatively with gray matter volumes in the hippocampus but not vice versa. These findings provide preliminary support for the construct validity of the fearlessness and disinhibition temperament dimensions and offer confirmatory evidence for involvement of the amygdala and hippocampus in fear conditioning and behavioral inhibition, respectively. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Psychosis: Atypical Limbic Epilepsy versus Limbic Hyperexcitability with Onset at Puberty?
Sharp, Frank R.; Hendren, Robert L.
2009-01-01
Phencyclidine (PCP), Ketamine (Special K) and MK-801 are non-competitive NMDA antagonists that produce acute psychosis in humans. The psychosis produced by these psychomimetic drugs is indistinguishable from schizophrenia and includes both positive and negative symptoms. This drug-induced psychosis occurs after puberty in humans. This brief review argues that this psychosis is an atypical form of limbic epilepsy based upon MK-801 induced spike-and-wave activity in rats and based upon increased blood flow and metabolism in brain of patients with psychosis caused by these psychomimetics. Moreover, there is a specific limbic thalamcortical psychosis circuit that mediates cell injury in limbic cortex of rodents and may mediate this PCP-induced psychosis in humans. It is proposed that this thalamocortical psychosis circuit develops at puberty and can mediate psychosis at puberty and in adulthood by PCP and ketamine-induced psychosis, and possibly in schizophrenia, bipolar disease and other psychotic states. Finally, based upon this developmentally regulated psychosis-epilepsy related thalamocortical circuitry, it is proposed that anti-epileptic drugs that promote GABAergic mechanisms might decrease the probability of episodic psychosis from any cause. PMID:17416210
The role of the medial temporal limbic system in processing emotions in voice and music.
Frühholz, Sascha; Trost, Wiebke; Grandjean, Didier
2014-12-01
Subcortical brain structures of the limbic system, such as the amygdala, are thought to decode the emotional value of sensory information. Recent neuroimaging studies, as well as lesion studies in patients, have shown that the amygdala is sensitive to emotions in voice and music. Similarly, the hippocampus, another part of the temporal limbic system (TLS), is responsive to vocal and musical emotions, but its specific roles in emotional processing from music and especially from voices have been largely neglected. Here we review recent research on vocal and musical emotions, and outline commonalities and differences in the neural processing of emotions in the TLS in terms of emotional valence, emotional intensity and arousal, as well as in terms of acoustic and structural features of voices and music. We summarize the findings in a neural framework including several subcortical and cortical functional pathways between the auditory system and the TLS. This framework proposes that some vocal expressions might already receive a fast emotional evaluation via a subcortical pathway to the amygdala, whereas cortical pathways to the TLS are thought to be equally used for vocal and musical emotions. While the amygdala might be specifically involved in a coarse decoding of the emotional value of voices and music, the hippocampus might process more complex vocal and musical emotions, and might have an important role especially for the decoding of musical emotions by providing memory-based and contextual associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Affective Brain-Computer Interfaces As Enabling Technology for Responsive Psychiatric Stimulation
Widge, Alik S.; Dougherty, Darin D.; Moritz, Chet T.
2014-01-01
There is a pressing clinical need for responsive neurostimulators, which sense a patient’s brain activity and deliver targeted electrical stimulation to suppress unwanted symptoms. This is particularly true in psychiatric illness, where symptoms can fluctuate throughout the day. Affective BCIs, which decode emotional experience from neural activity, are a candidate control signal for responsive stimulators targeting the limbic circuit. Present affective decoders, however, cannot yet distinguish pathologic from healthy emotional extremes. Indiscriminate stimulus delivery would reduce quality of life and may be actively harmful. We argue that the key to overcoming this limitation is to specifically decode volition, in particular the patient’s intention to experience emotional regulation. Those emotion-regulation signals already exist in prefrontal cortex (PFC), and could be extracted with relatively simple BCI algorithms. We describe preliminary data from an animal model of PFC-controlled limbic brain stimulation and discuss next steps for pre-clinical testing and possible translation. PMID:25580443
A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction.
Kiehl, Kent A
2006-06-15
Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed 'the paralimbic system'. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy.
Neural correlates of conscious self-regulation of emotion.
Beauregard, M; Lévesque, J; Bourgouin, P
2001-09-15
A fundamental question about the relationship between cognition and emotion concerns the neural substrate underlying emotional self-regulation. To address this issue, brain activation was measured in normal male subjects while they either responded in a normal manner to erotic film excerpts or voluntarily attempted to inhibit the sexual arousal induced by viewing erotic stimuli. Results demonstrated that the sexual arousal experienced, in response to the erotic film excerpts, was associated with activation in "limbic" and paralimbic structures, such as the right amygdala, right anterior temporal pole, and hypothalamus. In addition, the attempted inhibition of the sexual arousal generated by viewing the erotic stimuli was associated with activation of the right superior frontal gyrus and right anterior cingulate gyrus. No activation was found in limbic areas. These findings reinforce the view that emotional self-regulation is normally implemented by a neural circuit comprising various prefrontal regions and subcortical limbic structures. They also suggest that humans have the capacity to influence the electrochemical dynamics of their brains, by voluntarily changing the nature of the mind processes unfolding in the psychological space.
Dong, Debo; Wang, Yulin; Jia, Xiaoyan; Li, Yingjia; Chang, Xuebin; Vandekerckhove, Marie; Luo, Cheng; Yao, Dezhong
2017-11-15
Impairment of face perception in schizophrenia is a core aspect of social cognitive dysfunction. This impairment is particularly marked in threatening face processing. Identifying reliable neural correlates of the impairment of threatening face processing is crucial for targeting more effective treatments. However, neuroimaging studies have not yet obtained robust conclusions. Through comprehensive literature search, twenty-one whole brain datasets were included in this meta-analysis. Using seed-based d-Mapping, in this voxel-based meta-analysis, we aimed to: 1) establish the most consistent brain dysfunctions related to threating face processing in schizophrenia; 2) address task-type heterogeneity in this impairment; 3) explore the effect of potential demographic or clinical moderator variables on this impairment. Main meta-analysis indicated that patients with chronic schizophrenia demonstrated attenuated activations in limbic emotional system along with compensatory over-activation in medial prefrontal cortex (MPFC) during threatening faces processing. Sub-task analyses revealed under-activations in right amygdala and left fusiform gyrus in both implicit and explicit tasks. The remaining clusters were found to be differently involved in different types of tasks. Moreover, meta-regression analyses showed brain abnormalities in schizophrenia were partly modulated by age, gender, medication and severity of symptoms. Our results highlighted breakdowns in limbic-MPFC circuit in schizophrenia, suggesting general inability to coordinate and contextualize salient threat stimuli. These findings provide potential targets for neurotherapeutic and pharmacological interventions for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
Kibleur, Astrid; Polosan, Mircea; Favre, Pauline; Rudrauf, David; Bougerol, Thierry; Chabardès, Stéphan; David, Olivier
2017-02-01
Deep brain stimulation (DBS) of the subgenual cingulate gyrus (area CG25) is beneficial in treatment resistant depression. Though the mechanisms of action of Cg25 DBS remain largely unknown, it is commonly believed that Cg25 DBS modulates limbic activity of large networks to achieve thymic regulation of patients. To investigate how emotional attention is influenced by Cg25 DBS, we assessed behavioral and electroencephalographic (EEG) responses to an emotional Stroop task in 5 patients during ON and OFF stimulation conditions. Using EEG source localization, we found that the main effect of DBS was a reduction of neuronal responses in limbic regions (temporal pole, medial prefrontal and posterior cingulate cortices) and in ventral visual areas involved in face processing. In the dynamic causal modeling (DCM) approach, the changes of the evoked response amplitudes are assumed to be due to changes of long range connectivity induced by Cg25 DBS. Here, using a simplified neural mass model that did not take explicitly into account the cytoarchitecture of the considered brain regions, we showed that the remote action of Cg25 DBS could be explained by a reduced top-down effective connectivity of the amygdalo-temporo-polar complex. Overall, our results thus indicate that Cg25 DBS during the emotional Stroop task causes a decrease of top-down limbic influence on the ventral visual stream itself, rather than a modulation of prefrontal cognitive processes only. Tuning down limbic excitability in relation to sensory processing might be one of the biological mechanisms through which Cg25 DBS produces positive clinical outcome in the treatment of resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, Jianying; Xu, Cheng; Cao, Xiaohua; Gao, Qiang; Wang, Yan; Wang, Yanfang; Peng, Juyi; Zhang, Kerang
2013-01-01
A large number of studies have demonstrated that depression patients have cognitive dysfunction. With recently developed brain functional imaging, studies have focused on changes in brain function to investigate cognitive changes. However, there is still controversy regarding abnormalities in brain functions or correlation between cognitive impairment and brain function changes. Thus, it is important to design an emotion-related task for research into brain function changes. We selected positive, neutral, and negative pictures from the International Affective Picture System. Patients with major depressive disorder were asked to judge emotion pictures. In addition, functional MRI was performed to synchronously record behavior data and imaging data. Results showed that the total correct rate for recognizing pictures was lower in patients compared with normal controls. Moreover, the consistency for recognizing pictures for depressed patients was worse than normal controls, and they frequently recognized positive pictures as negative pictures. The consistency for recognizing pictures was negatively correlated with the Hamilton Depression Rating Scale. Functional MRI suggested that the activation of some areas in the frontal lobe, temporal lobe, parietal lobe, limbic lobe, and cerebellum was enhanced, but that the activation of some areas in the frontal lobe, parietal lobe and occipital lobe was weakened while the patients were watching positive and neutral pictures compared with normal controls. The activation of some areas in the frontal lobe, temporal lobe, parietal lobe, and limbic lobe was enhanced, but the activation of some areas in the occipital lobe were weakened while the patients were watching the negative pictures compared with normal controls. These findings indicate that patients with major depressive disorder have negative cognitive disorder and extensive brain dysfunction. Thus, reduced activation of the occipital lobe may be an initiating factor for cognitive disorder in depressed patients. PMID:25206466
Wagner, Jan; Schoene-Bake, Jan-Christoph; Witt, Juri-Alexander; Helmstaedter, Christoph; Malter, Michael P; Stoecker, Winfried; Probst, Christian; Weber, Bernd; Elger, Christian E
2016-03-01
Autoantibodies against glutamic acid decarboxylase (GAD) and the voltage-gated potassium channel (VGKC) complex are associated with distinct subtypes of limbic encephalitis regarding clinical presentation, response to therapy, and outcome. The aim of this study was to investigate white matter changes in these two limbic encephalitis subtypes by means of diffusion tensor imaging (DTI). Diffusion data were obtained in 14 patients with GAD antibodies and 16 patients with VGKC-complex antibodies and compared with age- and gender-matched control groups. Voxelwise statistical analysis was carried out using tract-based spatial statistics. The results were furthermore compared with those of 15 patients with unilateral histologically confirmed hippocampal sclerosis and correlated with verbal and figural memory performance. We found widespread changes of fractional anisotropy and all diffusivity parameters in GAD-associated limbic encephalitis, whereas no changes were found in VGKC-complex-associated limbic encephalitis. The changes observed in the GAD group were even more extensive when compared against those of the hippocampal sclerosis group, although the disease duration was markedly shorter in patients with GAD antibodies. Correlation analysis revealed areas with a trend toward a negative correlation of diffusivity parameters with figural memory performance located mainly in the right temporal lobe in the GAD group as well. The present study provides further evidence that, depending on the associated antibody, limbic encephalitis features clearly distinct imaging characteristics by showing widespread white matter changes in GAD-associated limbic encephalitis and preserved white matter integrity in VGKC-complex-associated limbic encephalitis. Furthermore, our results contribute to a better understanding of the specific pathophysiologic properties in these two subforms of limbic encephalitis by revealing that patients with GAD antibodies show widespread affections of white matter across various regions of the brain. In contrast to this, the inflammatory process seems to be more localized in VGKC-complex-associated limbic encephalitis, primarily affecting mesiotemporal gray matter. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Zhang, Yuzhen; Gao, Yu; Zhou, Minxiong; Wu, Jie; Zee, Chishing; Wang, Dengbin
2016-10-01
To investigate brain abnormalities in children with a clinical diagnosis of idiopathic generalized epilepsy (IGE) and unilateral interictal epileptiform discharges (IED) demonstrated on electroencephalography (EEG) by diffusional kurtosis imaging (DKI). DKI images were obtained from 18 patients (n=9 each in the left and right hemispheres). Fractional anisotropy (FA), mean diffusivity (MD), and mean kurtosis (MK) maps were estimated through voxel-based analyses, and compared with 18 normal controls matched for age and sex. In the left side group, the significant differences of FA were in the left fusiform gyrus and occipital lobe of the white matter (WM). The significant differences of MD were in the left pons. The significant differences of MK were in the anterior cingulate gyrus, limbic lobe, gray matter (GM) and WM of the right cerebrum. In the right side group, the significant differences of FA were in the WM of the left cerebrum. MD identified differences in the frontal, temporal, occipital, and parietal lobes of both hemispheres, especially in the limbic system, fusiform gyrus, uncus, and parahippocampal gyrus. The significant differences of MK were in the GM of the right cerebrum, particularly in the rolandic operculum and frontal lobe. DKI is sensitive for the detection of diffusion abnormalities in both WM and GM of IGE in children. Secondary brain abnormalities may exist in regions outside the unilateral epileptogenic zone through the limbic epileptic network, and can be detected by DKI indices FA, MD and MK. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Szkandera, Joanna; Ploner, Ferdin; Bauernhofer, Thomas; Kasparek, Anne-Katrin; Payer, Franz; Balic, Marija; Knechtel, Gudrun; Gerger, Armin; Gallè, Günter; Samonigg, Hellmut; Hofmann, Günter
2010-01-01
Paraneoplastic limbic or brainstem encephalitis is considered to be an autoimmune-mediated disorder of the nervous system associated with different types of cancer including germ cell tumors. We report on a 31-year-old patient presenting with eye motility dysfunction, dysarthrophonia, lethargy, depression, slow mentation, disorientation, dysgraphia, and retarded motion sequence. Neurologic tests, brain imaging, and blood chemistry tests failed to determine the cause of the symptoms. Further examinations including ultrasound of the abdomen led to the detection of a retroperitoneal mass. The biopsy of this mass showed fractions of a choriocarcinoma. The patient underwent curative chemotherapy, but although the cancer therapy was successful, the neurologic disorders did not improve. Concurrent examination for anti-Ma2 antibodies in the serum was positive and confirmed the paraneoplastic origin of these symptoms. Patients with symptoms of limbic or brainstem encephalitis, especially young men, should be tested for anti-Ma2 antibodies in the serum to elucidate their origin. The detection of these antibodies supports the diagnosis of a paraneoplastic syndrome, and may lead to the earlier identification of an otherwise hidden extragonadal germ cell tumor. Copyright © 2010 S. Karger AG, Basel.
Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair
2014-06-01
Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.
Aberrant Paralimbic Gray Matter in Incarcerated Male Adolescents with Psychopathic Traits
ERIC Educational Resources Information Center
Ermer, Elsa; Cope, Lora M.; Nyalakanti, Prashanth K.; Calhoun, Vince D.; Kiehl, Kent A.
2013-01-01
Objective: To investigate the relationship between brain structure and psychopathic traits in maximum-security incarcerated male adolescents, and to examine whether the associations between brain volumes in paralimbic and limbic regions and psychopathic traits observed in incarcerated adult men extend to an independent sample of incarcerated male…
Molecular and Cellular Sex Differences at the Intersection of Stress and Arousal
Valentino, Rita J.; Reyes, Beverly; Van Bockstaele, Elisabeth; Bangasser, Debra
2011-01-01
Elucidating the mechanisms underlying sex biases in the prevalence and severity of diseases can advance our understanding of their pathophysiological basis and serve as a guide for developing treatments. A well-established sex difference in psychiatry is the higher incidence of mood and anxiety disorders in females. These disorders share stress as a potential etiological contributor and hyperarousal as a core symptom, suggesting that the distinction between sexes lies at the intersection of stress and arousal systems. This review focuses on the link between the stress axis and the brain norepinephrine arousal system as a key point at which sex differences occur and are translated to differences in the expression of mood disorders. Evidence for a circuit designed to relay emotion-related information via the limbic corticotropin-releasing factor (CRF) system to the locus coeruleus (LC)–norepinephrine arousal system is reviewed. This is followed by recent novel findings of sex differences in CRF receptor signaling and trafficking that would result in an enhanced arousal response and a compromised ability to adapt to chronic stress in females. Finally, we discuss evidence for sex differences in LC dendritic structure that allow for increased receipt and processing of limbic information in females compared to males. Together these complementary sets of data suggest that in females, the LC arousal system is poised to process more limbic information and to respond to some of this information in an enhanced manner compared to males. The clinical and therapeutic considerations arising from this perspective are discussed. PMID:21712048
Kober, Hedy; Barrett, Lisa Feldman; Joseph, Josh; Bliss-Moreau, Eliza; Lindquist, Kristen; Wager, Tor D.
2009-01-01
We performed an updated quantitative meta-analysis of 162 neuroimaging studies of emotion using a novel multi-level kernel-based approach, focusing on locating brain regions consistently activated in emotional tasks and their functional organization into distributed functional groups, independent of semantically defined emotion category labels (e.g., “anger,” “fear”). Such brain-based analyses are critical if our ways of labeling emotions are to be evaluated and revised based on consistency with brain data. Consistent activations were limited to specific cortical sub-regions, including multiple functional areas within medial, orbital, and inferior lateral frontal cortices. Consistent with a wealth of animal literature, multiple subcortical activations were identified, including amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray. We used multivariate parcellation and clustering techniques to identify groups of co-activated brain regions across studies. These analyses identified six distributed functional groups, including medial and lateral frontal groups, two posterior cortical groups, and paralimbic and core limbic/brainstem groups. These functional groups provide information on potential organization of brain regions into large-scale networks. Specific follow-up analyses focused on amygdala, periaqueductal gray (PAG), and hypothalamic (Hy) activations, and identified frontal cortical areas co-activated with these core limbic structures. While multiple areas of frontal cortex co-activated with amygdala sub-regions, a specific region of dorsomedial prefrontal cortex (dmPFC, Brodmann’s Area 9/32) was the only area co-activated with both PAG and Hy. Subsequent mediation analyses were consistent with a pathway from dmPFC through PAG to Hy. These results suggest that medial frontal areas are more closely associated with core limbic activation than their lateral counterparts, and that dmPFC may play a particularly important role in the cognitive generation of emotional states. PMID:18579414
[The neurobiology of antisocial behaviour].
Loomans, M M; Tulen, J H M; van Marle, H J C
2010-01-01
Neuro-imaging is being used increasingly to provide explanations for antisocial behaviour. To make a neurobiological contribution to the diagnosis of many types of antisocial behaviour. The literature was searched using PubMed and combinations of the keywords 'psychopathy', 'antisocial', 'neurobiology' and 'neuro-anatomy' for the period 1990-2009. Impairments in the prefrontal cortex, amygdala, hippocampus, superior temporal gyrus, corpus callosum and anterior cingulate cortex provide a possible explanation for a large number of the symptoms associated with antisocial behaviour. The concept of psychopathy is connected mainly with impairments in a prefrontal-temporal-limbic system. CONCLUSION Combinations of deficiencies in the associated brain areas and malfunctioning of the communication between the various brain structures seem to play a more important role than deficiencies in the separate brain structures.
Albaugh, Matthew D; Ducharme, Simon; Collins, D Louis; Botteron, Kelly N; Althoff, Robert R; Evans, Alan C; Karama, Sherif; Hudziak, James J
2013-05-01
Recent functional connectivity studies have demonstrated that, in resting humans, activity in a dorsally-situated neocortical network is inversely associated with activity in the amygdalae. Similarly, in human neuroimaging studies, aspects of emotion regulation have been associated with increased activity in dorsolateral, dorsomedial, orbital and ventromedial prefrontal regions, as well as concomitant decreases in amygdalar activity. These findings indicate the presence of two countervailing systems in the human brain that are reciprocally related: a dorsally-situated cognitive control network, and a ventrally-situated limbic network. We investigated the extent to which this functional reciprocity between limbic and dorsal neocortical regions is recapitulated from a purely structural standpoint. Specifically, we hypothesized that amygdalar volume would be related to cerebral cortical thickness in cortical regions implicated in aspects of emotion regulation. In 297 typically developing youths (162 females, 135 males; 572 MRIs), the relationship between cortical thickness and amygdalar volume was characterized. Amygdalar volume was found to be inversely associated with thickness in bilateral dorsolateral and dorsomedial prefrontal, inferior parietal, as well as bilateral orbital and ventromedial prefrontal cortices. Our findings are in line with previous work demonstrating that a predominantly dorsally-centered neocortical network is reciprocally related to core limbic structures such as the amygdalae. Future research may benefit from investigating the extent to which such cortical-limbic morphometric relations are qualified by the presence of mood and anxiety psychopathology. Copyright © 2012 Elsevier Inc. All rights reserved.
Descending motor pathways and the spinal motor system - Limbic and non-limbic components
NASA Technical Reports Server (NTRS)
Holstege, Gert
1991-01-01
Research on descending motor pathways to caudal brainstem and spinal cord in the spinal motor system is reviewed. Particular attention is given to somatic and autonomic motoneurons in the spinal cord and brainstem, local projections to motoneurons, bulbospinal interneurons projecting to motoneurons, descending pathways of somatic motor control systems, and descending pathways involved in limbic motor control systems.
Electro-acupuncture at different acupoints modulating the relative specific brain functional network
NASA Astrophysics Data System (ADS)
Fang, Jiliang; Wang, Xiaoling; Wang, Yin; Liu, Hesheng; Hong, Yang; Liu, Jun; Zhou, Kehua; Wang, Lei; Xue, Chao; Song, Ming; Liu, Baoyan; Zhu, Bing
2010-11-01
Objective: The specific brain effects of acupoint are important scientific concern in acupuncture. However, previous acupuncture fMRI studies focused on acupoints in muscle layer on the limb. Therefore, researches on acupoints within connective tissue at trunk are warranted. Material and Methods: Brain effects of acupuncture on abdomen at acupoints Guanyuan (CV4) and Zhongwan (CV12) were tested using fMRI on 21 healthy volunteers. The data acquisition was performed at resting state, during needle retention, electroacupuncture (EA) and post-EA resting state. Needling sensations were rated after every electroacupuncture (EA) procedure. The needling sensations and the brain functional activity and connectivity were compared between CV4 and CV12 using SPSS, SPM2 and the local and remote connectivity maps. Results and conclusion: EA at CV4 and CV12 induced apparent deactivation effects in the limbic-paralimbic-neocortical network. The default mode of the brain was modified by needle retention and EA, respectively. The functional brain network was significantly changed post EA. However, the minor differences existed between these two acupoints. The results demonstrated similarity between functional brain network mode of acupuncture modulation and functional circuits of emotional and cognitive regulation. Acupuncture may produce analgesia, anti-anxiety and anti-depression via the limbic-paralimbic-neocortical network (LPNN).
The Neuroendocrine System and Stress, Emotions, Thoughts and Feelings**
Vaillant, George E.
2011-01-01
The philosophy of mind is intimately connected with the philosophy of action. Therefore, concepts like free will, motivation, emotions (especially positive emotions), and also the ethical issues related to these concepts are of abiding interest. However, the concepts of consciousness and free will are usually discussed solely in linguistic, ideational and cognitive (i.e. “left brain”) terms. Admittedly, consciousness requires language and the left-brain, but the aphasic right brain is equally conscious; however, what it “hears” are more likely to be music and emotions. Joy can be as conscious as the conscious motivation produced by the left-brain reading a sign that says, “Danger mines!!” However, look in the index of a Western textbook of psychology, psychiatry or philosophy for positive emotions located in the limbic system. Notice how discussion of positive spiritual/emotional issues in consciousness and motivation are scrupulously ignored. For example, the popular notions of “love” being either Eros (raw, amoral instinct) or agape (noble, non-specific valuing of all other people) miss the motivational forest for the trees. Neither Eros (hypothalamic) nor agape (cortical) has a fraction of the power to relieve stress as attachment (limbic love), yet until the 1950s attachment was neither appreciated nor discussed by academic minds. This paper will point out that the prosocial, “spiritual” positive emotions like hope, faith, forgiveness, joy, compassion and gratitude are extremely important in the relief of stress and in regulation of the neuroendocrine system, protecting us against stress. The experimental work reviewed by Antonio Damasio and Barbara Fredrickson, and the clinical example of Alcoholics Anonymous, will be used to illustrate these points. PMID:21694965
Tuleasca, Constantin; Régis, Jean; Najdenovska, Elena; Witjas, Tatiana; Girard, Nadine; Champoudry, Jérôme; Faouzi, Mohamed; Thiran, Jean-Philippe; Cuadra, Meritxell Bach; Levivier, Marc; Van De Ville, Dimitri
2018-04-01
To correlate pretherapeutic resting-state functional magnetic resonance imaging (rs-fMRI) measures with pretherapeutic head tremor presence and/or further improvement 1 year after stereotactic radiosurgical thalamotomy (SRS-T) for essential tremor (ET). We prospectively collected head tremor scores (range, 0-3) and rs-fMRI data for a cohort of 17 consecutive ET patients in pretherapeutic and 1 year after SRS-T states. We additionally acquired rs-fMRI data for a healthy control (HC) group (n = 12). Group-level independent component analysis (n = 17 for pretherapeutic rs-fMRI) was applied to decompose neuroimaging data into 20 large-scale brain networks using a standard approach. Through spatial regression, we projected 1 year after SRS-T and HC rs-fMRI time points, on the same 20 brain networks. Pretherapeutic interconnectivity (IC) strength between the network including bilateral thalamus and limbic system with left supplementary motor area predicted head tremor improvement at 1 year after SRS-T (family-wise corrected P < 0.001, cluster size K c = 146). For the statistically significant cluster, IC strength was strongest in HCs (mean, 4.6; median, 3.8) compared with pre- (mean, 0.1; median, 0.2) or posttherapeutic (mean, -0.2; median, 0.09) states. Baseline measures of IC between bilateral thalamus and limbic system with left supplementary motor area may predict head tremor arrest after thalamotomy. However, procedures such as SRS-T, for this particular clinical feature, do not align patients to HCs in terms of functional brain connectivity. We postulate that supplementary motor area is modulating head tremor appearance, by abnormal connectivity with the thalamolimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.
Sex differences in effective fronto-limbic connectivity during negative emotion processing.
Lungu, Ovidiu; Potvin, Stéphane; Tikàsz, Andràs; Mendrek, Adrianna
2015-12-01
In view of the greater prevalence of depression and anxiety disorders in women than in men, functional magnetic resonance imaging (fMRI) studies have examined sex-differences in brain activations during emotion processing. Comparatively, sex-differences in brain connectivity received little attention, despite evidence for important fronto-limbic connections during emotion processing across sexes. Here, we investigated sex-differences in fronto-limbic connectivity during negative emotion processing. Forty-six healthy individuals (25 women, 21 men) viewed negative, positive and neutral images during an fMRI session. Effective connectivity between significantly activated regions was examined using Granger causality and psychophysical interaction analyses. Sex steroid hormones and feminine-masculine traits were also measured. Subjective ratings of negative emotional images were higher in women than in men. Across sexes, significant activations were observed in the dorso-medial prefrontal cortex (dmPFC) and the right amygdala. Granger connectivity from right amygdala was significantly greater than that from dmPFC during the 'high negative' condition, an effect driven by men. Magnitude of this effect correlated negatively with highly negative image ratings and feminine traits and positively with testosterone levels. These results highlight critical sex differences in brain connectivity during negative emotion processing and point to the fact that both biological (sex steroid hormones) and psychosocial (gender role and identity) variables contribute to them. As the dmPFC is involved in social cognition and action planning, and the amygdala-in threat detection, the connectivity results suggest that compared to women, men have a more evaluative, rather than purely affective, brain response during negative emotion processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abnormal regional cerebral blood flow in childhood autism.
Ohnishi, T; Matsuda, H; Hashimoto, T; Kunihiro, T; Nishikawa, M; Uema, T; Sasaki, M
2000-09-01
Neuroimaging studies of autism have shown abnormalities in the limbic system and cerebellar circuits and additional sites. These findings are not, however, specific or consistent enough to build up a coherent theory of the origin and nature of the brain abnormality in autistic patients. Twenty-three children with infantile autism and 26 non-autistic controls matched for IQ and age were examined using brain-perfusion single photon emission computed tomography with technetium-99m ethyl cysteinate dimer. In autistic subjects, we assessed the relationship between regional cerebral blood flow (rCBF) and symptom profiles. Images were anatomically normalized, and voxel-by-voxel analyses were performed. Decreases in rCBF in autistic patients compared with the control group were identified in the bilateral insula, superior temporal gyri and left prefrontal cortices. Analysis of the correlations between syndrome scores and rCBF revealed that each syndrome was associated with a specific pattern of perfusion in the limbic system and the medial prefrontal cortex. The results confirmed the associations of (i) impairments in communication and social interaction that are thought to be related to deficits in the theory of mind (ToM) with altered perfusion in the medial prefrontal cortex and anterior cingulate gyrus, and (ii) the obsessive desire for sameness with altered perfusion in the right medial temporal lobe. The perfusion abnormalities seem to be related to the cognitive dysfunction observed in autism, such as deficits in ToM, abnormal responses to sensory stimuli, and the obsessive desire for sameness. The perfusion patterns suggest possible locations of abnormalities of brain function underlying abnormal behaviour patterns in autistic individuals.
Aversive stimuli exacerbate defensive motor behaviour in motor conversion disorder.
Blakemore, Rebekah L; Sinanaj, Indrit; Galli, Silvio; Aybek, Selma; Vuilleumier, Patrik
2016-12-01
Conversion disorder or functional neurological symptom disorder (FND) can affect the voluntary motor system, without an organic cause. Functional symptoms are thought to be generated unconsciously, arising from underlying psychological stressors. However, attempts to demonstrate a direct relationship between the limbic system and disrupted motor function in FND are lacking. We tested whether negative affect would exacerbate alterations of motor control and corresponding brain activations in individuals with FND. Ten patients and ten healthy controls produced an isometric precision-grip contraction at 10% of maximum force while either viewing visual feedback of their force output, or unpleasant or pleasant emotional images (without feedback). Force magnitude was continuously recorded together with change in brain activity using fMRI. For controls, force output decayed from the target level while viewing pleasant and unpleasant images. Patients however, maintained force at the target level without decay while viewing unpleasant images, indicating a pronounced effect of negative affect on force output in FND. This emotional modulation of force control was associated with different brain activation patterns between groups. Contrasting the unpleasant with the pleasant condition, controls showed increased activity in the inferior frontal cortex and pre-supplementary motor area, whereas patients had greater activity in the cerebellum (vermis), posterior cingulate cortex, and hippocampus. Engagement of a cerebellar-limbic network in patients is consistent with heightened processing of emotional salience, and supports the role of the cerebellum in freezing responses in the presence of aversive events. These data highlight a possible neural circuit through which psychological stressors elicit defensive behaviour and modulate motor function in FND. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nicotine increases brain functional network efficiency.
Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R
2012-10-15
Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.
Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain
Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana
2009-01-01
Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application candidates as an innovative methodology for the study and development of drugs targeting brain estrogen receptors. PMID:19123998
Nicotine Increases Brain Functional Network Efficiency
Wylie, Korey P.; Rojas, Donald C.; Tanabe, Jody; Martin, Laura F.; Tregellas, Jason R.
2012-01-01
Despite the use of cholinergic therapies in Alzheimer’s disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting-state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network’s tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer’s disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. PMID:22796985
Molecular imaging provides novel insights on estrogen receptor activity in mouse brain.
Stell, Alessia; Belcredito, Silvia; Ciana, Paolo; Maggi, Adriana
2008-01-01
Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.
Mutic, Smiljana; Brünner, Yvonne F; Rodriguez-Raecke, Rea; Wiesmann, Martin; Freiherr, Jessica
2017-05-01
Although the sense of smell is involved in numerous survival functions, the processing of body odor emitted by dangerous individuals is far from understood. The aim of the study was to explore how human fight chemosignals communicating aggression can alter brain activation related to an attentional bias and danger detection. While the anterior cingulate cortex (ACC) was seen involved in processing threat-related emotional information, danger detection and error evaluation, it still remains unknown whether human chemosignals communicating aggression can potentially modulate this activation. In the fMRI experiment, healthy male and female normosmic odor recipients (n=18) completed a higher-order processing task (emotional Stroop task with the word categories anger, anxiety, happiness and neutral) while exposed to aggression and exercise chemosignals (collected from a different group of healthy male donors; n=16). Our results provide first evidence that aggression chemosignals induce a time-sensitive attentional bias in chemosensory danger detection and modulate limbic system activation. During exposure to aggression chemosignals compared to exercise chemosignals, functional imaging data indicates an enhancement of thalamus, hypothalamus and insula activation (p<.05, FWE-corrected). Together with the thalamus, the ACC was seen activated in response to threat-related words (p<.001). Chemosensory priming and habituation to body odor signals are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
González-Pardo, Héctor; Conejo, Nélida M; Arias, Jorge L
2006-08-30
The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.
Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan
2017-01-01
It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal-subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD.
Lu, Yi; Shen, Zonglin; Cheng, Yuqi; Yang, Hui; He, Bo; Xie, Yue; Wen, Liang; Zhang, Zhenguang; Sun, Xuejin; Zhao, Wei; Xu, Xiufeng; Han, Dan
2017-01-01
It is crucial to explore the pathogenesis of major depressive disorder (MDD) at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM) alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year) and drug-naïve depression patients, and 25 healthy control (HC) subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ). Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal–subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD. PMID:29118724
Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing
2013-09-01
Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.
Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.
Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís
2015-11-01
Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The tempted brain eats: Pleasure and desire circuits in obesity and eating disorders
Berridge, Kent C.; Ho, Chao-Yi; Richard, Jocelyn M.; DiFeliceantonio, Alexandra G.
2010-01-01
What we eat, when and how much, all are influenced by brain reward mechanisms that generate ‘liking’ and ‘wanting’ for foods. As a corollary, dysfunction in reward circuits might contribute to the recent rise of obesity and eating disorders. Here we assess brain mechanisms known to generate ‘liking’ and ‘wanting’ for foods, and evaluate their interaction with regulatory mechanisms of hunger and satiety, relevant to clinical issues. ‘Liking’ mechanisms include hedonic circuits that connect together cubic-millimeter hotspots in forebrain limbic structures such as nucleus accumbens and ventral pallidum (where opioid/endocannabinoid/orexin signals can amplify sensory pleasure). ‘Wanting’ mechanisms include larger opioid networks in nucleus accumbens, striatum, and amygdala that extend beyond the hedonic hotspots, as well as mesolimbic dopamine systems, and corticolimbic glutamate signals that interact with those systems. We focus on ways in which these brain reward circuits might participate in obesity or in eating disorders. PMID:20388498
Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers.
Culbertson, Christopher S; Bramen, Jennifer; Cohen, Mark S; London, Edythe D; Olmstead, Richard E; Gan, Joanna J; Costello, Matthew R; Shulenberger, Stephanie; Mandelkern, Mark A; Brody, Arthur L
2011-05-01
Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Randomized, double-blind, before-after controlled trial. Academic brain imaging center. Thirty nicotine-dependent smokers (paid volunteers). Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions.
Citicoline Affects Appetite and Cortico-Limbic Responses to Images of High Calorie Foods
Killgore, William D. S.; Ross, Amy J.; Kamiya, Toshi; Kawada, Yoko; Renshaw, Perry F.; Yurgelun-Todd, Deborah A.
2011-01-01
Cytidine-5’-diphosphocholine (citicoline) has a variety of cognitive enhancing, neuroprotective, and neuroregenerative properties. In cocaine-addicted individuals, citicoline has been shown to increase brain dopamine levels and reduce cravings. The effects of this compound on appetite, food cravings, and brain responses to food are unknown. We compared the effects of treatment with citicoline (500 mg/day versus 2000 mg/day) for six weeks on changes in appetite ratings, weight, and cortico-limbic responses to images of high calorie foods using functional magnetic resonance imaging (fMRI). After six weeks, there was no significant change in weight status, although significant declines in appetite ratings were observed for the 2000 mg/day group. The higher dose group also showed significant increases in functional brain responses to food stimuli within the amygdala, insula, and lateral orbitofrontal cortex. Increased activation in these regions correlated with declines in appetite ratings. These preliminary findings suggest a potential usefulness of citicoline in modulating appetite, but further research is warranted. PMID:19260039
Yanes, Julio A; Riedel, Michael C; Ray, Kimberly L; Kirkland, Anna E; Bird, Ryan T; Boeving, Emily R; Reid, Meredith A; Gonzalez, Raul; Robinson, Jennifer L; Laird, Angela R; Sutherland, Matthew T
2018-03-01
Lagging behind rapid changes to state laws, societal views, and medical practice is the scientific investigation of cannabis's impact on the human brain. While several brain imaging studies have contributed important insight into neurobiological alterations linked with cannabis use, our understanding remains limited. Here, we sought to delineate those brain regions that consistently demonstrate functional alterations among cannabis users versus non-users across neuroimaging studies using the activation likelihood estimation meta-analysis framework. In ancillary analyses, we characterized task-related brain networks that co-activate with cannabis-affected regions using data archived in a large neuroimaging repository, and then determined which psychological processes may be disrupted via functional decoding techniques. When considering convergent alterations among users, decreased activation was observed in the anterior cingulate cortex, which co-activated with frontal, parietal, and limbic areas and was linked with cognitive control processes. Similarly, decreased activation was observed in the dorsolateral prefrontal cortex, which co-activated with frontal and occipital areas and linked with attention-related processes. Conversely, increased activation among users was observed in the striatum, which co-activated with frontal, parietal, and other limbic areas and linked with reward processing. These meta-analytic outcomes indicate that cannabis use is linked with differential, region-specific effects across the brain.
Smolders, I
2005-01-01
Several researchers are currently trying to unravel neurobiological relationships between epilepsy and depression. After all, these disorders often develop in the same vulnerable brain regions and the importance of comorbid depression and epilepsy is still underscored. Facilitation of central serotonin (5-HT), dopamine (DA) and noradrenaline (NAD) release seems to be associated with both anticonvulsant and antidepressant effects. We show that selective ionotropic and metabotropic glutamate receptor ligands with anticonvulsant properties differentially modulate NAD, DA and 5-HT in rat limbic lobe structures.
Neurobiology of Wisdom?: A Literature Overview
Meeks, Thomas W.; Jeste, Dilip V.
2013-01-01
Context Wisdom is a unique psychological trait noted since antiquity, long discussed in humanities disciplines, recently operationalized by psychology and sociology researchers, but largely unexamined in psychiatry or biology. Objective We discuss recent neurobiological studies related to subcomponents of wisdom identified from several published definitions/descriptions of wisdom by clinical investigators in the field – i.e., prosocial attitudes/behaviors, social decision-making/pragmatic knowledge of life, emotional homeostasis, reflection/self-understanding, value relativism/tolerance, and acknowledgement of and dealing effectively with uncertainty. Design Literature overview focusing primarily on neuroimaging/brain localization and secondarily on neurotransmitters, including their genetic determinants. Results Functional neuroimaging permits exploration of neural correlates of complex psychological attributes such as those proposed to comprise wisdom. The prefrontal cortex figures prominently in several wisdom subcomponents (e.g., emotional regulation, decision-making, value relativism), primarily via top-down regulation of limbic and striatal regions. The lateral prefrontal cortex facilitates calculated, reason-based decision-making, whereas the medial prefrontal cortex is implicated in emotional valence and prosocial attitudes/behaviors. Reward neurocircuitry (ventral striatum, nucleus accumbens) also appears important for promoting prosocial attitudes/behaviors. Monoaminergic activity (especially dopaminergic and serotonergic), influenced by several genetic polymorphisms, is critical to certain subcomponents of wisdom such as emotional regulation (including impulse control), decision-making, and prosocial behaviors. Conclusions We have proposed a speculative model of the neurobiology of wisdom involving fronto-striatal and fronto-limbic circuits and monoaminergic pathways. Wisdom may involve optimal balance between functions of phylogenetically more primitive brain regions (limbic system) and newer ones (prefrontal cortex). Limitations of the putative model are stressed. It is hoped that this review will stimulate further research in characterization, assessment, neurobiology, and interventions related to wisdom. PMID:19349305
Molecular and cellular sex differences at the intersection of stress and arousal.
Valentino, Rita J; Reyes, Beverly; Van Bockstaele, Elisabeth; Bangasser, Debra
2012-01-01
Elucidating the mechanisms underlying sex biases in the prevalence and severity of diseases can advance our understanding of their pathophysiological basis and serve as a guide for developing treatments. A well-established sex difference in psychiatry is the higher incidence of mood and anxiety disorders in females. These disorders share stress as a potential etiological contributor and hyperarousal as a core symptom, suggesting that the distinction between sexes lies at the intersection of stress and arousal systems. This review focuses on the link between the stress axis and the brain norepinephrine arousal system as a key point at which sex differences occur and are translated to differences in the expression of mood disorders. Evidence for a circuit designed to relay emotion-related information via the limbic corticotropin-releasing factor (CRF) system to the locus coeruleus (LC)-norepinephrine arousal system is reviewed. This is followed by recent novel findings of sex differences in CRF receptor signaling and trafficking that would result in an enhanced arousal response and a compromised ability to adapt to chronic stress in females. Finally, we discuss the evidence for sex differences in LC dendritic structure that allow for an increased receipt and processing of limbic information in females compared to males. Together these complementary sets of data suggest that in females, the LC arousal system is poised to process more limbic information and to respond to some of this information in an enhanced manner compared to males. The clinical and therapeutic considerations arising from this perspective are discussed. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sahashi, K; Sakai, K; Mano, K; Hirose, G
2003-09-01
A 69 year old woman presented with cognitive impairment and supranuclear gaze palsy caused by paraneoplastic limbic/brain stem encephalitis associated with atypical medullary breast carcinoma. The cerebrospinal fluid from the patient harboured an anti-neuronal cell antibody against Ma2 antigen, but not against Ma1 or Ma3 antigen. Despite the antibody being restricted to the Ma2 antigen, the patient's cancer tissue expressed Ma1, Ma2, and Ma3 mRNAs. These results, and the expression of Ma2 mRNA in an atypical medullar breast carcinoma in another patient without paraneoplastic encephalitis, indicate that the induction of anti-Ma2 antibody depends on host immunoreponsiveness and not on the presence of the antigen itself in the cancer.
Ferrier, I N; Roberts, G W; Crow, T J; Johnstone, E C; Owens, D G; Lee, Y C; O'Shaughnessy, D; Adrian, T E; Polak, J M; Bloom, S R
1983-08-01
Cholecystokinin-like immunoreactivity (CCK) and somatostatin-like immunoreactivity (SRIF) were determined in fourteen brains from patients dying with a diagnosis of schizophrenia and in twelve brains from control cases. The schizophrenics had been rated during life and were divided into two groups on the basis of the presence or absence of negative symptoms (affective flattening and poverty of speech). CCK was reduced in temporal cortex of the schizophrenics and in hippocampus and amygdala of those patients with negative symptoms. SRIF was reduced in the hippocampus in samples from the latter group. The selectivity of these changes to limbic lobe may reflect the presence of a degenerative process in that area. The association of changes in hippocampus and amygdala with negative symptoms of schizophrenia suggests a separate mechanism underlying these symptoms.
Kubota, Akihiro; Tajima, Takashi; Narukawa, Shinya; Yamazato, Masamizu; Fukaura, Hikoaki; Takahashi, Yukitoshi; Tanaka, Keiko; Shimizu, Jun; Nomura, Kyoichi
2012-01-01
A 36-year-old man presented with cognitive impairment and disturbance of short-term memory functions with character change. Cerebrospinal fluid analysis revealed no abnormalities; however, brain MRI revealed high-signal intensity from bilateral hippocampus lesions on fluid attenuated inversion recovery (FLAIR) images and T(2) weighted images. The 18F-fluorodeoxyglucose PET demonstrated high glucose uptake in the bilateral hippocampus lesions. He was diagnosed as limbic encephalitis, and was administered high-dose intravenous methylprednisolone and immune adsorption plasma therapy followed by intravenous immunoglobulin therapy. MRI abnormalities improved after treatment but recent memory disturbance remained. Ma2 antibody, NMDA-receptor antibody, and GluRε2 antibody were positive. Eleven months atter the onset of disease, the tumor was identified in left testicle by ultrasound and removed the tumor. The pathological findings were seminoma. We experienced a case of paraneoplastic limbic encephalitis associated with seminoma with short-term memory disturbance. The occurrence of paraneoplastic limbic encephalitis with antibodies against cell membrane (NMDA-receptor antibody and GluRε2 antibody) and intracellular (Ma2 antibody) is rare even in the literature.
The time-course of cortico-limbic neural responses to air hunger.
Binks, Andrew P; Evans, Karleyton C; Reed, Jeffrey D; Moosavi, Shakeeb H; Banzett, Robert B
2014-12-01
Several studies have mapped brain regions associated with acute dyspnea perception. However, the time-course of brain activity during sustained dyspnea is unknown. Our objective was to determine the time-course of neural activity when dyspnea is sustained. Eight healthy subjects underwent brain blood oxygen level dependent functional magnetic imaging (BOLD-fMRI) during mechanical ventilation with constant mild hypercapnia (∼ 45 mm Hg). Subjects rated dyspnea (air hunger) via visual analog scale (VAS). Tidal volume (V(T)) was alternated every 90 s between high VT (0.96 ± 0.23 L) that provided respiratory comfort (12 ± 6% full scale) and low V(T) (0.48 ± 0.08 L) which evoked air hunger (56 ± 11% full scale). BOLD signal was extracted from a priori brain regions and combined with VAS data to determine air hunger related neural time-course. Air hunger onset was associated with BOLD signal increases that followed two distinct temporal profiles within sub-regions of the anterior insula, anterior cingulate and prefrontal cortices (cortico-limbic circuitry): (1) fast, BOLD signal peak <30s and (2) slow, BOLD signal peak >40s. BOLD signal during air hunger offset followed fast and slow temporal profiles symmetrical, but inverse (signal decreases) to the time-courses of air hunger onset. We conclude that differential cortico-limbic circuit elements have unique contributions to dyspnea sensation over time. We suggest that previously unidentified sub-regions are responsible for either the acute awareness or maintenance of dyspnea. These data enhance interpretation of previous studies and inform hypotheses for future dyspnea research. Copyright © 2014 Elsevier B.V. All rights reserved.
Carriero, Giovanni; Uva, Laura; Gnatkovsky, Vadym; Avoli, Massimo; de Curtis, Marco
2016-01-01
In vitro studies performed on brain slices demonstrate that the potassium channel blocker 4-aminopyridine (4AP, 50 μM) discloses electrographic seizure activity and interictal discharges. These epileptiform patterns have been further analyzed here in a isolated whole guinea pig brain in vitro by using field potential recordings in olfactory and limbic structures. In 8 of 13 experiments runs of fast oscillatory activity (fast runs, FRs) in the piriform cortex (PC) propagated to the lateral entorhinal cortex (EC), hippocampus and occasionally to the medial EC. Early and late FRs were asynchronous in the hemispheres showed different duration [1.78 ± 0.51 and 27.95 ± 4.55 (SD) s, respectively], frequency of occurrence (1.82 ± 0.49 and 34.16 ± 6.03 s) and frequency content (20–40 vs. 40–60 Hz). Preictal spikes independent from the FRs appeared in the hippocampus/EC and developed into ictal-like discharges that did not propagate to the PC. Ictal-like activity consisted of fast activity with onset either in the hippocampus (n = 6) or in the mEC (n = 2), followed by irregular spiking and sequences of diffusely synchronous bursts. Perfusion of the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid (100 μM) did not prevent FRs, increased the duration of limbic ictal-like discharges and favored their propagation to olfactory structures. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (50 μM) blocked ictal-like events and reduced FRs. In conclusion, 4AP-induced epileptiform activities are asynchronous and independent in olfactory and hippocampal-entorhinal regions. Epileptiform discharges in the isolated guinea pig brain show different pharmacological properties compared with rodent in vitro slices. PMID:20220076
Suzuki, Hideo; Luby, Joan L; Botteron, Kelly N; Dietrich, Rachel; McAvoy, Mark P; Barch, Deanna M
2014-07-01
Previous studies have examined the relationships between structural brain characteristics and early life stress in adults. However, there is limited evidence for functional brain variation associated with early life stress in children. We hypothesized that early life stress and trauma would be associated with increased functional brain activation response to negative emotional faces in children with and without a history of depression. Psychiatric diagnosis and life events in children (starting at age 3-5 years) were assessed in a longitudinal study. A follow-up magnetic resonance imaging (MRI) study acquired data (N = 115 at ages 7-12, 51% girls) on functional brain response to fearful, sad, and happy faces relative to neutral faces. We used a region-of-interest mask within cortico-limbic areas and conducted regression analyses and repeated-measures analysis of covariance. Greater activation responses to fearful, sad, and happy faces in the amygdala and its neighboring regions were found in children with greater life stress. Moreover, an association between life stress and left hippocampal and globus pallidus activity depended on children's diagnostic status. Finally, all children with greater life trauma showed greater bilateral amygdala and cingulate activity specific to sad faces but not the other emotional faces, although right amygdala activity was moderated by psychiatric status. These findings suggest that limbic hyperactivity may be a biomarker of early life stress and trauma in children and may have implications in the risk trajectory for depression and other stress-related disorders. However, this pattern varied based on emotion type and history of psychopathology. Copyright © 2014 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Emotions and hemispheric specialization.
Kyle, N L
1988-09-01
Studies of lateralization and specialization of brain function have increased our understanding of emotional processes in the brain. It has been said that the way in which we understand the emotional interrelatedness of brain layers and segments may have important effects on human society. Earlier studies of brain function, especially of limbic effects, suggested a dichotomous state of affairs between the phylogenetically older brain and the newer cortical areas--between affect and cognition. Such concepts are considered here in the light of specialization studies. From the beginning hemispheric laterality research has implicated emotionality and emotional pathology. It also appears that some limbic functions may be mediated in a lateralized fashion. Neuropsychologists have directed much work toward localization of function from its earliest stage; since the 1960s an emphasis has been on "mapping" of cortical functions in terms of psychopathologic disabilities. Various disability groups have been studied in this way, and it may be concluded that neuropsychologic measures are sensitive to changes in cerebral functioning and may have effective lateralizing and localizing ability under specified conditions. Studies of limbic effects in the brain emphasize their importance in emotional behavior but also their interrelatedness with other structures, for example, the frontal and temporal lobes, and particularly the right hemisphere. Studies of commissurotomy (split-brain) patients tend to bear out these relationships. In split-brain subjects the marked reduction in affective verbal and nonverbal behavior reflects the interruption of transcallosal impulses that normally permit emotional infusion of cortical structures to take place. These effects include verbal, visual, and auditory patterns that mediate the ability to decode complex nonverbal patterns and may result in a reduction of "inner speech," that is, symbollexia. They may further lead to a condition of "functional commissurotomy" in psychiatric patients with presumably intact brains. It would also appear that lateralization may be variable in terms of inhibitory and facilitative effects; emotional factors may play a part in this variability in some clinical cases in which functional or reactive features predominate, for example, in alexithymia. Ideas of hemispheric specialization have been extended to other areas of individual and social behavior. Creative ability has been understood by some authors to be a product of the relatively dynamic relationships existing between specialized areas of the brain.(ABSTRACT TRUNCATED AT 400 WORDS)
1986-06-01
33). Evidence exists that shows an increase in environmental stimulation has an impact on the number of nerve calls produced by the brain and the...language, auditory discriminatioh, somasensory functions, olfactory, visual processes, and motor control related to the higher functions. In some...shown to control emotions and motivation. The limbic system can be thought of as controlling "the four F’s--feeding, fighting, fleeing, and sexual
Gut vagal afferents differentially modulate innate anxiety and learned fear.
Klarer, Melanie; Arnold, Myrtha; Günther, Lydia; Winter, Christine; Langhans, Wolfgang; Meyer, Urs
2014-05-21
Vagal afferents are an important neuronal component of the gut-brain axis allowing bottom-up information flow from the viscera to the CNS. In addition to its role in ingestive behavior, vagal afferent signaling has been implicated modulating mood and affect, including distinct forms of anxiety and fear. Here, we used a rat model of subdiaphragmatic vagal deafferentation (SDA), the most complete and selective vagal deafferentation method existing to date, to study the consequences of complete disconnection of abdominal vagal afferents on innate anxiety, conditioned fear, and neurochemical parameters in the limbic system. We found that compared with Sham controls, SDA rats consistently displayed reduced innate anxiety-like behavior in three procedures commonly used in preclinical rodent models of anxiety, namely the elevated plus maze test, open field test, and food neophobia test. On the other hand, SDA rats exhibited increased expression of auditory-cued fear conditioning, which specifically emerged as attenuated extinction of conditioned fear during the tone re-exposure test. The behavioral manifestations in SDA rats were associated with region-dependent changes in noradrenaline and GABA levels in key areas of the limbic system, but not with functional alterations in the hypothalamus-pituitary-adrenal grand stress. Our study demonstrates that innate anxiety and learned fear are both subjected to visceral modulation through abdominal vagal afferents, possibly via changing limbic neurotransmitter systems. These data add further weight to theories emphasizing an important role of afferent visceral signals in the regulation of emotional behavior. Copyright © 2014 the authors 0270-6474/14/347067-10$15.00/0.
Wu, Jia-Jia; Lu, Ye-Chen; Hua, Xu-Yun; Ma, Shu-Jie; Xu, Jian-Guang
2018-06-01
We used functional magnetic resonance imaging to provide a longitudinal description of cortical plasticity caused by electroacupuncture (EA) of sciatic nerve transection and direct anastomosis in rats. Sixteen rats in a sciatic nerve transection and direct anastomosis model were randomly divided into intervention and control groups. EA intervention in the position of ST-36, GB-30 was conducted continuously for 4 months in the intervention group. Functional magnetic resonance imaging and gait assessment were performed every month after intervention. The somatosensory area was more activated in the first 2 months and then deactivated in the rest 2 months when EA was applied. The pain-related areas had the same activation pattern as the somatosensory area. The limbic/paralimbic areas fluctuated more during the EA intervention, which was not constantly activated or deactivated as previous studies reported. We attributed such changes in somatosensory and pain-related areas to the gradual reduction of sensory afferentation. The alterations in limbic/paralimbic system might be associated with the confrontation between the upregulating effect of paresthesia or pain and the downregulating effect of EA intervention through the autonomic nerve system. The gait analysis showed significantly higher maximum contact mean intensity in the intervention group. The alterations in the brain brought about by the long-term therapeutic effect of EA could be described as a synchronized activation pattern in the somatosensory and pain-related areas and a fluctuating pattern in the limbic/paralimbic system. Copyright © 2018 Elsevier Inc. All rights reserved.
Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C
2018-06-01
Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Methylphenidate administration determines enduring changes in neuroglial network in rats.
Cavaliere, Carlo; Cirillo, Giovanni; Bianco, Maria Rosaria; Adriani, Walter; De Simone, Antonietta; Leo, Damiana; Perrone-Capano, Carla; Papa, Michele
2012-01-01
Repeated exposure to psychostimulant drugs induces complex molecular and structural modifications in discrete brain regions of the meso-cortico-limbic system. This structural remodeling is thought to underlie neurobehavioral adaptive responses. Administration to adolescent rats of methylphenidate (MPH), commonly used in attention deficit and hyperactivity disorder (ADHD), triggers alterations of reward-based behavior paralleled by persistent and plastic synaptic changes of neuronal and glial markers within key areas of the reward circuits. By immunohistochemistry, we observe a marked increase of glial fibrillary acidic protein (GFAP) and neuronal nitric oxide synthase (nNOS) expression and a down-regulation of glial glutamate transporter GLAST in dorso-lateral and ventro-medial striatum. Using electron microscopy, we find in the prefrontal cortex a significant reduction of the synaptic active zone length, paralleled by an increase of dendritic spines. We demonstrate that in limbic areas the MPH-induced reactive astrocytosis affects the glial glutamatergic uptake system that in turn could determine glutamate receptor sensitization. These processes could be sustained by NO production and synaptic rearrangement and contribute to MPH neuroglial induced rewiring. Copyright © 2011. Published by Elsevier B.V.
Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder
McDonald, Colm
2015-01-01
Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064
Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder.
McDonald, Colm
2015-01-01
Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies.
Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian
2018-01-01
Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. PMID:29423004
Molecular and clinical diversity in paraneoplastic immunity to Ma proteins.
Rosenfeld, M R; Eichen, J G; Wade, D F; Posner, J B; Dalmau, J
2001-09-01
Antibodies to Ma1 and Ma2 proteins identify a paraneoplastic disorder that affects the limbic system, brain stem, and cerebellum. Preliminary studies suggested the existence of other Ma proteins and different patterns of immune response associated with distinct neurologic symptoms and cancers. In this study, our aim was to isolate the full-length sequence of Ma2 and new family members, identify the major autoantigen of the disorder, and extend the dinical-immunological analysis to 29 patients. Sera from selected patients were used to probe a brainstem cDNA library and isolate the entire Ma2 gene and a new family member, Ma3. Ma3 mRNA is ubiquitously expressed in brain, testis, and several systemic tissues. The variable cellular expression of Ma proteins and analysis of protein motifs suggest that these proteins play roles in the biogenesis of mRNA. Immunoblot studies identify Ma2 as the major autoantigen with unique epitopes recognized by all patients' sera. Eighteen patients had antibodies limited to Ma2: they developed limbic, hypothalamic, and brainstem encephalitis, and 78% had germ-cell tumors of the testis. Eleven patients had antibodies to Ma2 and additional antibodies to Ma1 and/or Ma3; they usually developed additional cerebellar symptoms and more intense brainstem dysfunction, and 82% of these patients had tumors other than germ-cell neoplasms. Overall, 17 of 24 patients (71%) with brain magnetic resonance imaging studies had abnormalities within or outside the temporal lobes, some as contrast-enhancing nodular lesions. A remarkable finding of immunity to Ma proteins is that neurologic symptoms may improve or resolve. This improvement segregated to a group of patients with antibodies limited to Ma2.
Cyders, Melissa A.; Dzemidzic, Mario; Eiler, William J.; Coskunpinar, Ayca; Karyadi, Kenny A.; Kareken, David A.
2015-01-01
The tendency toward impulsive behavior under emotional duress (negative and positive urgency) predicts a wide range of maladaptive risk-taking and behavioral disorders. However, it remains unclear how urgency relates to limbic system activity as induced from emotional provocation. This study used functional magnetic resonance imaging to examine the relationship between brain responses to visual emotional stimuli and urgency traits. Twenty-seven social drinkers (mean age = 25.2, 14 males) viewed negative (Neg), neutral (Neu), and positive (Pos) images during 6 fMRI scans. Brain activation was extracted from a priori limbic regions previously identified in studies of emotional provocation. The right posterior orbitofrontal cortex (OFC) and left amygdala were activated in the [Neg>Neu] contrast, whereas the left posterior OFC was activated in the [Pos>Neu] contrast. Negative urgency was related to the right lateral OFC (r = 0.43, P = 0.03) and the left amygdala (r = 0.39, P = 0.04) [Neg>Neu] activation. Negative urgency also mediated the relationship between [Neg>Neu] activation and general risk-taking (regression weights = 3.42 for right OFC and 2.75 for the left amygdala). Emotional cue-induced activation in right lateral OFC and left amygdala might relate to emotion-based risk-taking through negative urgency. PMID:24904065
Carbachol-induced network oscillations in an in vitro limbic system brain slice.
Lévesque, Maxime; Cataldi, Mauro; Chen, Li-Yuan; Hamidi, Shabnam; Avoli, Massimo
2017-04-21
We employed simultaneous field potential recordings from CA3, subiculum and entorhinal cortex in an in vitro brain slice preparation to understand the involvement of these limbic areas in the generation of the field potential oscillations that are induced by bath application of the muscarinic receptor agonist carbachol. Regularly spaced oscillations that mainly presented at theta frequency range (5-12Hz) occurred synchronously in all three structures in the presence of carbachol. These oscillations, which disappeared when slices were perfused with pirenzepine or with glutamatergic receptor antagonists, were categorized as short (<4s) and long (>4s) with short events oscillating at higher frequencies than long events. Field oscillations were highly synchronized between regions and latency analysis revealed that they often initiated in the entorhinal cortex later than in the other two structures. Blocking GABA A receptors modified the activity patterns of both short and long oscillations and decreased their coherence in the theta frequency range. Finally, blocking KCC2 activity disclosed a pattern of recurrent short oscillations. Our results suggest that in the presence of carbachol both subiculum and CA3 most often drive theta generators in the entorhinal cortex and that these oscillations are influenced but not abolished by altering GABA A receptor signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
A revised limbic system model for memory, emotion and behaviour.
Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel
2013-09-01
Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of Bupropion Treatment on Brain Activation Induced by Cigarette-Related Cues in Smokers
Culbertson, Christopher S.; Bramen, Jennifer; Cohen, Mark S.; London, Edythe D.; Olmstead, Richard E.; Gan, Joanna J.; Costello, Matthew R.; Shulenberger, Stephanie; Mandelkern, Mark A.; Brody, Arthur L.
2011-01-01
Context Nicotine-dependent smokers exhibit craving and brain activation in the prefrontal and limbic regions when presented with cigarette-related cues. Bupropion hydrochloride treatment reduces cue-induced craving in cigarette smokers; however, the mechanism by which bupropion exerts this effect has not yet been described. Objective To assess changes in regional brain activation in response to cigarette-related cues from before to after treatment with bupropion (vs placebo). Design Randomized, double-blind, before-after controlled trial. Setting Academic brain imaging center. Participants Thirty nicotine-dependent smokers (paid volunteers). Interventions Participants were randomly assigned to receive 8 weeks of treatment with either bupropion or a matching placebo pill (double-blind). Main Outcome Measures Subjective cigarette craving ratings and regional brain activations (blood oxygen level-dependent response) in response to viewing cue videos. Results Bupropion-treated participants reported less craving and exhibited reduced activation in the left ventral striatum, right medial orbitofrontal cortex, and bilateral anterior cingulate cortex from before to after treatment when actively resisting craving compared with placebo-treated participants. When resisting craving, reduction in self-reported craving correlated with reduced regional brain activation in the bilateral medial orbitofrontal and left anterior cingulate cortices in all participants. Conclusions Treatment with bupropion is associated with improved ability to resist cue-induced craving and a reduction in cue-induced activation of limbic and prefrontal brain regions, while a reduction in craving, regardless of treatment type, is associated with reduced activation in prefrontal brain regions. PMID:21199957
[Oxytocin: the hormone of love, trust and social bond. Clinical use in autism and social phobia].
Martin-Du Pan, R C
2012-03-21
Oxytocin, an octapeptide synthesized in the hypothalamus, stimulates milk election and uterine contractions. In the brain this hormone acts as a neuropeptide. It could inhibit through the GABAergic system the activity of limbic amygdala, which is involved in the response to fear. Oxytocin could also induce the protective behaviour of the mother towards its offspring through the dopaminergic system. In mankind, oxytocin plays a role in trust, empathy, generosity, stress and sexuality. Clinical studies are testing potential benefits of oxytocin administration in autism, depression and social phobia. Results are still preliminary.
Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis.
Jastreboff, Pawel J; Jastreboff, Margaret M
2015-01-01
Definitions, potential mechanisms, and treatments for decreased sound tolerance, hyperacusis, misophonia, and diplacousis are presented with an emphasis on the associated physiologic and neurophysiological processes and principles. A distinction is made between subjects who experience these conditions versus patients who suffer from them. The role of the limbic and autonomic nervous systems and other brain systems involved in cases of bothersome decreased sound tolerance is stressed. The neurophysiological model of tinnitus is outlined with respect to how it may contribute to our understanding of these phenomena and their treatment. © 2015 Elsevier B.V. All rights reserved.
Abraham, Eyal; Hendler, Talma; Zagoory-Sharon, Orna; Feldman, Ruth
2016-11-01
The cross-generational transmission of mammalian sociality, initiated by the parent's postpartum brain plasticity and species-typical behavior that buttress offspring's socialization, has not been studied in humans. In this longitudinal study, we measured brain response of 45 primary-caregiving parents to their infant's stimuli, observed parent-infant interactions, and assayed parental oxytocin (OT). Intra- and inter-network connectivity were computed in three main networks of the human parental brain: core limbic, embodied simulation and mentalizing. During preschool, two key child social competencies were observed: emotion regulation and socialization. Parent's network integrity in infancy predicted preschoolers' social outcomes, with subcortical and cortical network integrity foreshadowing simple evolutionary-based regulatory tactics vs complex self-regulatory strategies and advanced socialization. Parent-infant synchrony mediated the links between connectivity of the parent's embodied simulation network and preschoolers' ability to use cognitive/executive emotion regulation strategies, highlighting the inherently dyadic nature of this network and its long-term effects on tuning young to social life. Parent's inter-network core limbic-embodied simulation connectivity predicted children's OT as moderated by parental OT. Findings challenge solipsistic neuroscience perspectives by demonstrating how the parent-offspring interface enables the brain of one human to profoundly impact long-term adaptation of another. © The Author (2016). Published by Oxford University Press.
Abraham, Eyal; Hendler, Talma; Zagoory-Sharon, Orna
2016-01-01
The cross-generational transmission of mammalian sociality, initiated by the parent’s postpartum brain plasticity and species-typical behavior that buttress offspring’s socialization, has not been studied in humans. In this longitudinal study, we measured brain response of 45 primary-caregiving parents to their infant’s stimuli, observed parent–infant interactions, and assayed parental oxytocin (OT). Intra- and inter-network connectivity were computed in three main networks of the human parental brain: core limbic, embodied simulation and mentalizing. During preschool, two key child social competencies were observed: emotion regulation and socialization. Parent’s network integrity in infancy predicted preschoolers’ social outcomes, with subcortical and cortical network integrity foreshadowing simple evolutionary-based regulatory tactics vs complex self-regulatory strategies and advanced socialization. Parent–infant synchrony mediated the links between connectivity of the parent’s embodied simulation network and preschoolers' ability to use cognitive/executive emotion regulation strategies, highlighting the inherently dyadic nature of this network and its long-term effects on tuning young to social life. Parent’s inter-network core limbic-embodied simulation connectivity predicted children’s OT as moderated by parental OT. Findings challenge solipsistic neuroscience perspectives by demonstrating how the parent–offspring interface enables the brain of one human to profoundly impact long-term adaptation of another. PMID:27369068
A voxel-based lesion study on facial emotion recognition after penetrating brain injury
Dal Monte, Olga; Solomon, Jeffrey M.; Schintu, Selene; Knutson, Kristine M.; Strenziok, Maren; Pardini, Matteo; Leopold, Anne; Raymont, Vanessa; Grafman, Jordan
2013-01-01
The ability to read emotions in the face of another person is an important social skill that can be impaired in subjects with traumatic brain injury (TBI). To determine the brain regions that modulate facial emotion recognition, we conducted a whole-brain analysis using a well-validated facial emotion recognition task and voxel-based lesion symptom mapping (VLSM) in a large sample of patients with focal penetrating TBIs (pTBIs). Our results revealed that individuals with pTBI performed significantly worse than normal controls in recognizing unpleasant emotions. VLSM mapping results showed that impairment in facial emotion recognition was due to damage in a bilateral fronto-temporo-limbic network, including medial prefrontal cortex (PFC), anterior cingulate cortex, left insula and temporal areas. Beside those common areas, damage to the bilateral and anterior regions of PFC led to impairment in recognizing unpleasant emotions, whereas bilateral posterior PFC and left temporal areas led to impairment in recognizing pleasant emotions. Our findings add empirical evidence that the ability to read pleasant and unpleasant emotions in other people's faces is a complex process involving not only a common network that includes bilateral fronto-temporo-limbic lobes, but also other regions depending on emotional valence. PMID:22496440
Paquola, Casey; Bennett, Maxwell R; Lagopoulos, Jim
2016-10-01
Childhood trauma has been associated with long term effects on prefrontal-limbic grey matter. A literature search was conducted to identify structural magnetic resonance imaging studies of adults with a history of childhood trauma. We performed three meta-analyses. Hedges' g effect sizes were calculated for each study providing hippocampal or amygdala volumes of trauma and non-trauma groups. Seed based differential mapping was utilised to synthesise whole brain voxel based morphometry (VBM) studies. A total of 38 articles (17 hippocampus, 13 amygdala, 19 whole brain VBM) were included in the meta-analyses. Trauma cohorts exhibited smaller hippocampus and amygdala volumes bilaterally. The most robust findings of the whole brain VBM meta-analysis were reduced grey matter in the right dorsolateral prefrontal cortex and right hippocampus amongst adults with a history of childhood trauma. Subgroup analyses and meta-regressions showed results were moderated by age, gender, the cohort's psychiatric health and the study's definition of childhood trauma. We provide evidence of abnormal grey matter in prefrontal-limbic brain regions of adults with a history of childhood maltreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Croll, S D; Suri, C; Compton, D L; Simmons, M V; Yancopoulos, G D; Lindsay, R M; Wiegand, S J; Rudge, J S; Scharfman, H E
1999-01-01
Transgenic mice overexpressing brain-derived neurotrophic factor from the beta-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a significant passive avoidance deficit. This deficit was dependent on continued overexpression, and resolved with age as brain-derived neurotrophic factor transcripts decreased. In addition, the brain-derived neurotrophic factor transgenic mice showed increased seizure severity in response to kainic acid. Hippocampal slices from brain-derived neurotrophic factor transgenic mice showed hyperexcitability in area CA3 and entorhinal cortex, but not in dentate gyrus. Finally, area CA1 long-term potentiation was disrupted, indicating abnormal plasticity. Our data suggest that overexpression of brain-derived neurotrophic factor in the brain can interfere with normal brain function by causing learning impairments and increased excitability. The results also support the hypothesis that excess brain-derived neurotrophic factor could be pro-convulsant in the limbic system.
Cognition, emotion, and attention.
Müller-Oehring, Eva M; Schulte, Tilman
2014-01-01
Deficits of attention, emotion, and cognition occur in individuals with alcohol abuse and addiction. This review elucidates the concepts of attention, emotion, and cognition and references research on the underlying neural networks and their compromise in alcohol use disorder. Neuroimaging research on adolescents with family history of alcoholism contributes to the understanding of pre-existing brain structural conditions and characterization of cognition and attention processes in high-risk individuals. Attention and cognition interact with other brain functions, including perceptual selection, salience, emotion, reward, and memory, through interconnected neural networks. Recent research reports compromised microstructural and functional network connectivity in alcoholism, which can have an effect on the dynamic tuning between brain systems, e.g., the frontally based executive control system, the limbic emotion system, and the midbrain-striatal reward system, thereby impeding cognitive flexibility and behavioral adaptation to changing environments. Finally, we introduce concepts of functional compensation, the capacity to generate attentional resources for performance enhancement, and brain structure recovery with abstinence. An understanding of the neural mechanisms of attention, emotion, and cognition will likely provide the basis for better treatment strategies for developing skills that enhance alcoholism therapy adherence and quality of life, and reduce the propensity for relapse. © 2014 Elsevier B.V. All rights reserved.
Lindquist, Kristen A.; Satpute, Ajay B.; Wager, Tor D.; Weber, Jochen; Barrett, Lisa Feldman
2016-01-01
The ability to experience pleasant or unpleasant feelings or to represent objects as “positive” or “negative” is known as representing hedonic “valence.” Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. PMID:25631056
Dosha brain-types: A neural model of individual differences.
Travis, Frederick T; Wallace, Robert Keith
2015-01-01
This paper explores brain patterns associated with the three categories of regulatory principles of the body, mind, and behavior in Ayurveda, called Vata, Pitta, and Kapha dosha. A growing body of research has reported patterns of blood chemistry, genetic expression, physiological states, and chronic diseases associated with each dosha type. Since metabolic and growth factors are controlled by the nervous system, each dosha type should be associated with patterns of functioning of six major areas of the nervous system: The prefrontal cortex, the reticular activating system, the autonomic nervous system, the enteric nervous system, the limbic system, and the hypothalamus. For instance, the prefrontal cortex, which includes the anterior cingulate, ventral medial, and the dorsal lateral cortices, would exhibit a high range of functioning in the Vata brain-type leading to the possibility of being easily overstimulated. The Vata brain-type performs activity quickly. Learns quickly and forgets quickly. Their fast mind gives them an edge in creative problem solving. The Pitta brain-type reacts strongly to all challenges leading to purposeful and resolute actions. They never give up and are very dynamic and goal oriented. The Kapha brain-type is slow and steady leading to methodical thinking and action. They prefer routine and needs stimulation to get going. A model of dosha brain-types could provide a physiological foundation to understand individual differences. This model could help individualize treatment modalities to address different mental and physical dysfunctions. It also could explain differences in behavior seen in clinical as well as in normal populations.
Kyeong, Sunghyon; Kim, Eunjoo; Park, Hae-Jeong; Hwang, Dong-Uk
2014-08-05
Novelty seeking (NS) and harm avoidance (HA) are two major dimensions of temperament in Cloninger׳s neurobiological model of personality. Previous neurofunctional and biological studies on temperament dimensions of HA and NS suggested that the temperamental traits have significant correlations with cortical and subcortical brain regions. However, no study to date has investigated the functional network modular organization as a function of the temperament dimension. The temperament dimensions were originally proposed to be independent of one another. However, a meta-analysis based on 16 published articles found a significant negative correlation between HA and NS (Miettunen et al., 2008). Based on this negative correlation, the current study revealed the whole-brain connectivity modular architecture for two contrasting temperament groups. The k-means clustering algorithm, with the temperamental traits of HA and NS as an input, was applied to divide the 40 subjects into two temperament groups: 'high HA and low NS' versus 'low HA and high NS'. Using the graph theoretical framework, we found a functional segregation of whole brain network architectures derived from resting-state functional MRI. In the 'high HA and low NS' group, the regulatory brain regions, such as the prefrontal cortex (PFC), are clustered together with the limbic system. In the 'low HA and high NS' group, however, brain regions lying on the dopaminergic pathways, such as the PFC and basal ganglia, are partitioned together. These findings suggest that the neural basis of inhibited, passive, and inactive behaviors in the 'high HA and low NS' group was derived from the increased network associations between the PFC and limbic clusters. In addition, supporting evidence of topological differences between the two temperament groups was found by analyzing the functional connectivity density and gray matter volume, and by computing the relationships between the morphometry and function of the brain. Copyright © 2014 Elsevier B.V. All rights reserved.
The human parental brain: In vivo neuroimaging
Swain, James E.
2015-01-01
Interacting parenting thoughts and behaviors, supported by key brain circuits, critically shape human infants’ current and future behavior. Indeed, the parent–infant relationship provides infants with their first social environment, forming templates for what they can expect from others, how to interact with them and ultimately how they go on to themselves to be parents. This review concentrates on magnetic resonance imaging experiments of the human parent brain, which link brain physiology with parental thoughts and behaviors. After reviewing brain imaging techniques, certain social cognitive and affective concepts are reviewed, including empathy and trust—likely critical to parenting. Following that is a thorough study-by-study review of the state-of-the-art with respect to human neuroimaging studies of the parental brain—from parent brain responses to salient infant stimuli, including emotionally charged baby cries and brief visual stimuli to the latest structural brain studies. Taken together, this research suggests that networks of highly conserved hypothalamic–midbrain–limbic–paralimbic–cortical circuits act in concert to support parental brain responses to infants, including circuits for limbic emotion response and regulation. Thus, a model is presented in which infant stimuli activate sensory analysis brain regions, affect corticolimbic limbic circuits that regulate emotional response, motivation and reward related to their infant, ultimately organizing parenting impulses, thoughts and emotions into coordinated behaviors as a map for future studies. Finally, future directions towards integrated understanding of the brain basis of human parenting are outlined with profound implications for understanding and contributing to long term parent and infant mental health. PMID:21036196
The changing landscape of functional brain networks for face processing in typical development.
Joseph, Jane E; Swearingen, Joshua E; Clark, Jonathan D; Benca, Chelsie E; Collins, Heather R; Corbly, Christine R; Gathers, Ann D; Bhatt, Ramesh S
2012-11-15
Greater expertise for faces in adults than in children may be achieved by a dynamic interplay of functional segregation and integration of brain regions throughout development. The present study examined developmental changes in face network functional connectivity in children (5-12 years) and adults (18-43 years) during face-viewing using a graph-theory approach. A face-specific developmental change involved connectivity of the right occipital face area. During childhood, this node increased in strength and within-module clustering based on positive connectivity. These changes reflect an important role of the ROFA in segregation of function during childhood. In addition, strength and diversity of connections within a module that included primary visual areas (left and right calcarine) and limbic regions (left hippocampus and right inferior orbitofrontal cortex) increased from childhood to adulthood, reflecting increased visuo-limbic integration. This integration was pronounced for faces but also emerged for natural objects. Taken together, the primary face-specific developmental changes involved segregation of a posterior visual module during childhood, possibly implicated in early stage perceptual face processing, and greater integration of visuo-limbic connections from childhood to adulthood, which may reflect processing related to development of perceptual expertise for individuation of faces and other visually homogenous categories. Copyright © 2012 Elsevier Inc. All rights reserved.
Limbic hyperconnectivity in the vegetative state.
Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco
2013-10-15
To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.
Bludau, Sebastian; Mühleisen, Thomas W; Eickhoff, Simon B; Hawrylycz, Michael J; Cichon, Sven; Amunts, Katrin
2018-06-01
Decoding the chain from genes to cognition requires detailed insights how areas with specific gene activities and microanatomical architectures contribute to brain function and dysfunction. The Allen Human Brain Atlas contains regional gene expression data, while the JuBrain Atlas offers three-dimensional cytoarchitectonic maps reflecting interindividual variability. To date, an integrated framework that combines the analytical benefits of both scientific platforms towards a multi-level brain atlas of adult humans was not available. We have, therefore, developed JuGEx, a new method for integrating tissue transcriptome and cytoarchitectonic segregation. We investigated differential gene expression in two JuBrain areas of the frontal pole that we have structurally and functionally characterized in previous studies. Our results show a significant upregulation of MAOA and TAC1 in the medial area frontopolaris which is a node in the limbic-cortical network and known to be susceptible for gray matter loss and behavioral dysfunction in patients with depression. The MAOA gene encodes an enzyme which is involved in the catabolism of dopamine, norepinephrine, serotonin, and other monoaminergic neurotransmitters. The TAC1 locus generates hormones that play a role in neuron excitations and behavioral responses. Overall, JuGEx provides a new tool for the scientific community that empowers research from basic, cognitive and clinical neuroscience in brain regions and disease models with regard to gene expression.
Wang, Xindi; Lin, Qixiang; Xia, Mingrui; He, Yong
2018-04-01
Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome. © 2018 Wiley Periodicals, Inc.
Gene expression links functional networks across cortex and striatum.
Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J
2018-04-12
The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.
Athauda, Dilan; Delamont, R S; Pablo-Fernandez, E De
2014-01-01
Though raised titres of voltage gated potassium channel (VGKC) complex antibodies have been occasionally associated with extracranial tumours, mainly presenting as Morvan's Syndrome or neuromyotonia, they have not yet been reported to be associated with an intracranial malignancy. This is especially important as misdiagnosis of these conditions and delay of the appropriate treatment can have important prognostic implications. We describe a patient with a high grade glioma presenting with clinical, radiological, and serological features consistent with the diagnosis of VGKC antibody associated limbic encephalitis (LE). This is the first association between a primary brain tumour and high titre of VGKC complex antibodies. Clinicoradiological progression despite effective immunosuppressive treatment should prompt clinicians to look for alternative diagnoses. Further studies to elucidate a possible association between VGKC complex and other surface antigen antibodies with primary brain tumours should be carried out.
Wegbreit, Ezra; Pavuluri, Mani
2012-01-01
Recent neuroimaging studies have uncovered much about the specific neural deficits in adult bipolar disorder (ABD), but despite promising results, neuroimaging research for pediatric bipolar disorder (PBD) is still developing. The neuroimaging literature is highly heterogeneous, varying in the paradigms used and in participants' mood states and medication status. Despite this variability, several dominant patterns emerge. In response to emotional stimuli, both ABD and PBD show limbic hyperactivity coupled with hypoactivity in ventral prefrontal emotion regulation systems. This pattern occurred most robustly in response to negative incidental stimuli and was especially apparent in manic PBD. ABD showed more variability in ventral prefrontal activity, possibly due to maturational and medication factors. On numerous cognitive paradigms, PBD showed dorsal prefrontal hypoactivity linked to ventral dysfunction, whereas ABD showed compensatory frontal, parietal, and temporal activity with paradigm-specific variations. In emotion-cognition interaction paradigms, patients show dysregulation in regions interfacing between cognitive and emotional brain systems (e.g., ventral prefrontal and cingulate cortices), which expend extra effort to process emotional stimuli effectively and recruit additional posterior attention systems to cope with affective instability. In addition, novel functional connectivity techniques have uncovered connectivity deficits between frontal and limbic regions in ABD and PBD at rest and during active emotional and cognitive tasks. Finally, the neuroimaging literature currently lacks cross-sectional studies comparing PBD with ABD and longitudinal studies following children and adolescents with BD into adulthood. Such studies would provide important insights into patients' prognosis and would determine targets for early interventions in the evolving illness diathesis.
Tsavoussis, Areti; Stawicki, Stanislaw P. A.; Stoicea, Nicoleta; Papadimos, Thomas J.
2014-01-01
There is substantial evidence indicating that children who witness domestic violence (DV) have psychosocial maladaptation that is associated with demonstrable changes in the anatomic and physiological make up of their central nervous system. Individuals with these changes do not function well in society and present communities with serious medical, sociological, and economic dilemmas. In this focused perspective, we discuss the psychosocially induced biological alterations (midbrain, cerebral cortex, limbic system, corpus callosum, cerebellum, and the hypothalamic, pituitary, and adrenal axis) that are related to maladaptation (especially post-traumatic stress disorder) in the context of child-witnessed DV, and provide evidence for these physical alterations to the brain. Herein, we hope to stimulate the necessary political discourse to encourage legal systems around the world to make the act of DV in the presence of a child, including a first time act, a stand-alone felony. PMID:25346927
White Matter Integrity, Substance Use, and Risk Taking in Adolescence
Jacobus, Joanna; Thayer, Rachel E.; Trim, Ryan S.; Bava, Sunita; Frank, Lawrence R.; Tapert, Susan F.
2012-01-01
White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n=47) and demographically similar non-users (n=49) received diffusion tensor imaging at baseline (ages 16–19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17–20). Brain regions of interest were: fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance using youth (n=47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 =10–12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic system fibers and future substance use frequency. Subcortical white matter coherence along with an imbalance between the maturation levels in cognitive control and reward systems may disadvantage the resistance to engage in risk taking behaviors during adolescence. PMID:22564204
White matter integrity, substance use, and risk taking in adolescence.
Jacobus, Joanna; Thayer, Rachel E; Trim, Ryan S; Bava, Sunita; Frank, Lawrence R; Tapert, Susan F
2013-06-01
White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n = 47) and demographically similar nonusers (n = 49) received diffusion tensor imaging at baseline (ages 16-19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17-20). Brain regions of interest were the fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance-using youth (n = 47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 = 10-12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic-system fibers and future substance-use frequency. Subcortical white matter coherence, along with an imbalance between the maturation levels in cognitive control and reward systems, may disadvantage the resistance to engage in risk taking behaviors during adolescence. 2013 APA, all rights reserved
Frey, Benicio N; Skelin, Ivan; Sakai, Yojiro; Nishikawa, Masami; Diksic, Mirko
2010-08-30
Women are at higher risk than men for developing major depressive disorder (MDD), but the mechanisms underlying this higher risk are unknown. Here, we report proportionally normalized alpha-[(11)C]methyl-L-tryptophan brain trapping constant (alpha-[(11)C]MTrp K*(N)), an index of serotonin synthesis, in 25 medication-free individuals with MDD and in 25 gender- and age-matched healthy subjects who were studied using positron emission tomography (PET). Comparisons of alpha-[(11)C]MTrp K*(N) values between the men and women were conducted at the voxel and cluster levels using Statistical Parametric Mapping 2 (SPM2) analysis. In addition, the alpha-[(11)C]MTrp K*(N) values on both sides of the brain were extracted and compared to identify the left to right differences, as well as the gender differences. Women with MDD displayed higher alpha-[(11)C]MTrp K*(N) than men in the inferior frontal gyrus, anterior cingulate cortex (ACC), parahippocampal gyrus, precuneus, superior parietal lobule, and occipital lingual gyrus. In a matched group of normal subjects the gender differences were opposite from those found in MDD patients. Significant hemispheric differences in fronto-limbic structures between men and women with MDD were also observed. The K*(N) extracted from the volumes identified in MDD patients and in male and female normal subjects suggested no significant differences between males and females. In conclusion, depressed women have higher serotonin synthesis in multiple regions of the prefrontal cortex and limbic system involved with mood regulation, as compared with depressed men. Gender differences in brain serotonin synthesis may be related to higher risk for MDD in women. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar
2014-01-01
Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571
Cannabis and alcohol use, and the developing brain.
Meruelo, A D; Castro, N; Cota, C I; Tapert, S F
2017-05-15
Sex hormones and white (and grey) matter in the limbic system, cortex and other brain regions undergo changes during adolescence. Some of these changes include ongoing white matter myelination and sexually dimorphic features in grey and white matter. Adolescence is also a period of vulnerability when many are first exposed to alcohol and cannabis, which appear to influence the developing brain. Neuropsychological studies have provided considerable understanding of the effects of alcohol and cannabis on the brain. Advances in neuroimaging have allowed examination of neuroanatomic changes, metabolic and neurotransmitter activity, and neuronal activation during adolescent brain development and substance use. In this review, we examine major differences in brain development between users and non-users, and recent findings on the influence of cannabis and alcohol on the adolescent brain. We also discuss associations that appear to resolve following short-term abstinence, and attentional deficits that appear to persist. These findings can be useful in guiding earlier educational interventions for adolescents, and clarifying the neural sequelae of early alcohol and cannabis use to the general public. Copyright © 2017 Elsevier B.V. All rights reserved.
Cannabis and Alcohol Use, and the Developing Brain
Meruelo, AD; Castro, N; Cota, CI; Tapert, SF
2017-01-01
Sex hormones and white (and grey) matter in the limbic system, cortex and other brain regions undergo changes during adolescence. Some of these changes include ongoing white matter myelination and sexually dimorphic features in grey and white matter. Adolescence is also a period of vulnerability when many are first exposed to alcohol and cannabis, which appear to influence the developing brain. Neuropsychological studies have provided considerable understanding of the effects of alcohol and cannabis on the brain. Advances in neuroimaging have allowed examination of neuroanatomic changes, metabolic and neurotransmitter activity, and neuronal activation during adolescent brain development and substance use. In this review, we examine major differences in brain development between users and non-users, and recent findings on the influence of cannabis and alcohol on the adolescent brain. We also discuss associations that appear to resolve following short-term abstinence, and attentional deficits that appear to persist. These findings can be useful in guiding earlier educational interventions for adolescents, and clarifying the neural sequelae of early alcohol and cannabis use to the general public. PMID:28223098
Predator Cat Odors Activate Sexual Arousal Pathways in Brains of Toxoplasma gondii Infected Rats
House, Patrick K.; Vyas, Ajai; Sapolsky, Robert
2011-01-01
Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor. PMID:21858053
Relationship between body mass index and hippocampal glutamate/glutamine in bipolar disorder.
Bond, David J; da Silveira, Leonardo Evangelista; MacMillan, Erin L; Torres, Ivan J; Lang, Donna J; Su, Wayne; Honer, William G; Lam, Raymond W; Yatham, Lakshmi N
2016-02-01
We previously reported that patients with early-stage bipolar disorder, but not healthy comparison controls, had body mass index (BMI)-related volume reductions in limbic brain areas, suggesting that the structural brain changes characteristic of bipolar disorder were more pronounced with increased weight. To determine whether the most consistently reported neurochemical abnormality in bipolar disorder, increased glutamate/glutamine (Glx), was also more prominent with higher BMI. We used single-voxel proton magnetic resonance spectroscopy to measure hippocampal Glx in 51 patients with first-episode mania (mean BMI = 24.1) and 28 healthy controls (mean BMI = 23.3). In patients, but not healthy controls, linear regression demonstrated that higher BMI predicted greater Glx. Factorial ANCOVA showed a significant BMI × diagnosis interaction, confirming a distinct effect of weight on Glx in patients. Together with our volumetric studies, these results suggest that higher BMI is associated with more pronounced structural and neurochemical limbic brain changes in bipolar disorder, even in early-stage patients with low obesity rates. © The Royal College of Psychiatrists 2016.
Predator cat odors activate sexual arousal pathways in brains of Toxoplasma gondii infected rats.
House, Patrick K; Vyas, Ajai; Sapolsky, Robert
2011-01-01
Cat odors induce rapid, innate and stereotyped defensive behaviors in rats at first exposure, a presumed response to the evolutionary pressures of predation. Bizarrely, rats infected with the brain parasite Toxoplasma gondii approach the cat odors they typically avoid. Since the protozoan Toxoplasma requires the cat to sexually reproduce, this change in host behavior is thought to be a remarkable example of a parasite manipulating a mammalian host for its own benefit. Toxoplasma does not influence host response to non-feline predator odor nor does it alter behavior on olfactory, social, fear or anxiety tests, arguing for specific manipulation in the processing of cat odor. We report that Toxoplasma infection alters neural activity in limbic brain areas necessary for innate defensive behavior in response to cat odor. Moreover, Toxoplasma increases activity in nearby limbic regions of sexual attraction when the rat is exposed to cat urine, compelling evidence that Toxoplasma overwhelms the innate fear response by causing, in its stead, a type of sexual attraction to the normally aversive cat odor.
Induction of innate immune genes in brain create the neurobiology of addiction.
Crews, F T; Zou, Jian; Qin, Liya
2011-06-01
Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Induction of Innate Immune Genes in Brain Create the Neurobiology of Addiction
Crews, FT; Zou, Jian; Qin, Liya
2013-01-01
Addiction occurs through repeated abuse of drugs that progressively reduce behavioral control and cognitive flexibility while increasing limbic negative emotion. Recent discoveries indicate neuroimmune signaling underlies addiction and co-morbid depression. Low threshold microglia undergo progressive stages of innate immune activation involving astrocytes and neurons with repeated drug abuse, stress, and/or cell damage signals. Increased brain NF-κB transcription of proinflammatory chemokines, cytokines, oxidases, proteases, TLR and other genes create loops amplifying NF-κB transcription and innate immune target gene expression. Human post-mortem alcoholic brain has increased NF-κB and NF-κB target gene message, increased microglial markers and chemokine-MCP1. Polymorphisms of human NF-κB1 and other innate immune genes contribute to genetic risk for alcoholism. Animal transgenic and genetic studies link NF-κB innate immune gene expression to alcohol drinking. Human drug addicts show deficits in behavioral flexibility modeled pre-clinically using reversal learning. Binge alcohol, chronic cocaine, and lesions link addiction neurobiology to frontal cortex, neuroimmune signaling and loss of behavioral flexibility. Addiction also involves increasing limbic negative emotion and depression-like behavior that is reflected in hippocampal neurogenesis. Innate immune activation parallels loss of neurogenesis and increased depression-like behavior. Protection against loss of neurogenesis and negative affect by anti-oxidant, anti-inflammatory, anti-depressant, opiate antagonist and abstinence from ethanol dependence link limbic affect to changes in innate immune signaling. The hypothesis that innate immune gene induction underlies addiction and affective disorders creates new targets for therapy. PMID:21402143
Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan
Dong, Jianxin; Jing, Bin; Ma, Xiangyu; Liu, Han; Mo, Xiao; Li, Haiyun
2018-01-01
Exploring functional information among various brain regions across time enables understanding of healthy aging process and holds great promise for age-related brain disease diagnosis. This paper proposed a method to explore fractal complexity of the resting-state functional magnetic resonance imaging (rs-fMRI) signal in the human brain across the adult lifespan using Hurst exponent (HE). We took advantage of the examined rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females) from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to investigate the effects of age, gender, and their interaction on complexity. In region-wise analysis, we found that the healthy aging is accompanied by a loss of complexity in frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe. Meanwhile, differences in HE between genders were found to be significant in parietal lobe (p = 0.04, corrected). However, there was no interaction between gender and age. In voxel-wise analysis, the significant complexity decrease with aging was found in frontal and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe, and temporal lobe with aging. Meanwhile, differences in HE between genders were found to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex interaction in right parahippocampal gyrus (p = 0.04, corrected). Our findings reveal HE variations of the rs-fMRI signal across the human adult lifespan and show that HE may serve as a new parameter to assess healthy aging process. PMID:29456489
Hyper-resting brain entropy within chronic smokers and its moderation by Sex.
Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze
2016-07-05
Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers' brains, however less is known about the temporal dynamics within smokers' brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking.
Neuroanatomical abnormalities in chronic tinnitus in the human brain
Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.
2014-01-01
In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904
CONTROL OF SLEEP AND WAKEFULNESS
Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.
2013-01-01
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426
Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.
Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R
2017-05-01
Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
The brain endocannabinoid system in the regulation of energy balance.
Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena
2009-02-01
The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.
Limbic system seizures and aggressive behavior (superkindling effects).
Andy, O J; Velamati, S
1978-01-01
This study was done to further analyze the neural mechanisms underlying aggressive behavior associated with psychomotor or temporal lobe seizures. The studies revealed that superkindling the aggressive system by sequential stimulations at seizure-inducing thresholds, of two or more sites in the limbic, hypothalamic, and basal ganglia structures facilitated the production of aggressive seizures. Aggressive behavior in the freely moving cat was evaluated in relation to the occurrence of hissing and growling during stimulation, after-discharge and postictal period. The behavior was correlated with the frequency of the elicited seizures and the seizure durations. Aggression did develop as a component behavioral manifestation of the limbic (psychomotor) seizure. Development of aggressive seizures was facilitated by "priming" the aggressive system. Optimum levels of aggressive behavior occurred with seizures of medium duration. Catecholamine blockers tended to attentuate the occurrence of aggression, whereas the agonist tended to facilitate it. Once the aggressive system was rendered hyperexcitable, exteroceptive stimuli also evoked aggressive attack behavior. It was concluded that repeatedly recurring limbic system seizures through superkindling mechanisms can eventually render the limbic-basal ganglia-preoptico-hypothalamic aggressive system hyper-responsive to both recurring seizures and to exteroceptive stimuli with resulting aggressive behavior with or without an accompanying seizure.
Idris, Zamzuri
2014-07-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on 'the origin' based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of "from God back to God".
Neural signatures of cognitive and emotional biases in depression
Fossati, Philippe
2008-01-01
Functional brain imaging studies suggest that depression is a system-level disorder affecting discrete but functionally linked cortical and limbic structures, with abnormalities in the anterior cingulate, lateral, ami medial prefrontal cortex, amygdala, ami hippocampus. Within this circuitry, abnormal corticolimbic interactions underlie cognitive deficits ami emotional impairment in depression. Depression involves biases toward processing negative emotional information and abnormal self-focus in response to emotional stimuli. These biases in depression could reflect excessive analytical self-focus in depression, as well as impaired cognitive control of emotional response to negative stimuli. By combining structural and functional investigations, brain imaging studies mav help to generate novel antidepressant treatments that regulate structural and factional plasticity within the neural network regulating mood and affective behavior.
Central Nervous System Control of Voice and Swallowing
Ludlow, Christy L.
2015-01-01
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238
Melendez-Ferro, Miguel; Perez-Costas, Emma; Glover, Matthew E.; Jackson, Nateka L.; Stringfellow, Sara A.; Pugh, Phyllis C.; Fant, Andrew D.; Clinton, Sarah M.
2016-01-01
Individual differences in human temperament can increase risk for psychiatric disorders like depression and anxiety. Our laboratory utilized a rat model of temperamental differences to assess neurodevelopmental factors underlying emotional behavior differences. Rats selectively bred for low novelty exploration (Low Responders, LR) display high levels of anxiety- and depression-like behavior compared to High Novelty Responder (HR) rats. Using transcriptome profiling, the present study uncovered vast gene expression differences in the early postnatal HR versus LR limbic brain, including changes in genes involved in cellular metabolism. These data led us to hypothesize that rats prone to high (versus low) anxiety/depression-like behavior exhibit distinct patterns of brain metabolism during the first weeks of life, which may reflect disparate patterns of synaptogenesis and brain circuit development. Thus, in a second experiment we examined activity of Cytochrome C Oxidase (COX), an enzyme responsible for ATP production and a correlate of metabolic activity, to explore functional energetic differences in HR/LR early postnatal brain. We found that HR rats display higher COX activity in the amygdala and specific hippocampal subregions compared to LRs during the first 2 weeks of life. Correlational analysis examining COX levels across several brain regions and multiple early postnatal time points suggested desynchronization in the developmental timeline of the limbic HR versus LR brain during the first two postnatal weeks. These early divergent COX activity levels may reflect altered circuitry or synaptic activity in the early postnatal HR/LR brain, which could contribute to the emergence of their distinct behavioral phenotypes. PMID:26979051
Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes
Bonilha, Leonardo
2015-01-01
Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome. PMID:25853080
Malpetti, Maura; Ballarini, Tommaso; Presotto, Luca; Garibotto, Valentina; Tettamanti, Marco; Perani, Daniela
2017-08-01
Cognitive reserve (CR) and brain reserve (BR) are protective factors against age-associated cognitive decline and neurodegenerative disorders. Very limited evidence exists about gender effects on brain aging and on the effect of CR on brain modulation in healthy aging and Alzheimer's Dementia (AD). We investigated gender differences in brain metabolic activity and resting-state network connectivity, as measured by 18 F-FDG-PET, in healthy aging and AD, also considering the effects of education and occupation. The clinical and imaging data were retrieved from large datasets of healthy elderly subjects (HE) (225) and AD patients (282). In HE, males showed more extended age-related reduction of brain metabolism than females in frontal medial cortex. We also found differences in brain modulation as metabolic increases induced by education and occupation, namely in posterior associative cortices in HE males and in the anterior limbic-affective and executive networks in HE females. In AD patients, the correlations between education and occupation levels and brain hypometabolism showed gender differences, namely a posterior temporo-parietal association in males and a frontal and limbic association in females, indicating the involvement of different networks. Finally, the metabolic connectivity in both HE and AD aligned with these results, suggesting greater efficiency in the posterior default mode network for males, and in the anterior frontal executive network for females. The basis of these brain gender differences in both aging and AD, obtained exploring cerebral metabolism, metabolic connectivity and the effects of education and occupation, is likely at the intersection between biological and sociodemographic factors. Hum Brain Mapp 38:4212-4227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Garrison, Kathleen A; Sinha, Rajita; Lacadie, Cheryl M; Scheinost, Dustin; Jastreboff, Ania M; Constable, R Todd; Potenza, Marc N
2016-09-01
Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sinha, Rajita; Lacadie, Cheryl M.; Scheinost, Dustin; Jastreboff, Ania M.; Constable, R. Todd; Potenza, Marc N.
2016-01-01
Introduction: Tobacco-use disorder is a complex condition involving multiple brain networks and presenting with multiple behavioral correlates including changes in diet and stress. In a previous functional magnetic resonance imaging (fMRI) study of neural responses to favorite-food, stress, and neutral-relaxing imagery, smokers versus nonsmokers demonstrated blunted corticostriatal-limbic responses to favorite-food cues. Based on other recent reports of alterations in functional brain networks in smokers, the current study examined functional connectivity during exposure to favorite-food, stress, and neutral-relaxing imagery in smokers and nonsmokers, using the same dataset. Methods: The intrinsic connectivity distribution was measured to identify brain regions that differed in degree of functional connectivity between groups during each imagery condition. Resulting clusters were evaluated for seed-to-voxel connectivity to identify the specific connections that differed between groups during each imagery condition. Results: During exposure to favorite-food imagery, smokers versus nonsmokers showed lower connectivity in the supramarginal gyrus, and differences in connectivity between the supramarginal gyrus and the corticostriatal-limbic system. During exposure to neutral-relaxing imagery, smokers versus nonsmokers showed greater connectivity in the precuneus, and greater connectivity between the precuneus and the posterior insula and rolandic operculum. During exposure to stress imagery, smokers versus nonsmokers showed lower connectivity in the cerebellum. Conclusions: These findings provide data-driven insights into smoking-related alterations in brain functional connectivity patterns related to appetitive, relaxing, and stressful states. Implications: This study uses a data-driven approach to demonstrate that smokers and nonsmokers show differential patterns of functional connectivity during guided imagery related to personalized favorite-food, stress, and neutral-relaxing cues, in brain regions implicated in attention, reward-related, emotional, and motivational processes. For smokers, these differences in connectivity may impact appetite, stress, and relaxation, and may interfere with smoking cessation. PMID:26995796
Farr, Olivia M; Upadhyay, Jagriti; Gavrieli, Anna; Camp, Michelle; Spyrou, Nikolaos; Kaye, Harper; Mathew, Hannah; Vamvini, Maria; Koniaris, Anastasia; Kilim, Holly; Srnka, Alexandra; Migdal, Alexandra; Mantzoros, Christos S
2016-10-01
Lorcaserin is a serotonin 5-hydroxytryptamine 2c receptor agonist effective in treating obesity. Studies in rodents have shown that lorcaserin acts in the brain to exert its weight-reducing effects, but this has not yet been studied in humans. We performed a randomized, placebo-controlled, double-blind trial with 48 obese participants and used functional MRI to study the effects of lorcaserin on the brain. Subjects taking lorcaserin had decreased brain activations in the attention-related parietal and visual cortices in response to highly palatable food cues at 1 week in the fasting state and in the parietal cortex in response to any food cues at 4 weeks in the fed state. Decreases in emotion- and salience-related limbic activity, including the insula and amygdala, were attenuated at 4 weeks. Decreases in caloric intake, weight, and BMI correlated with activations in the amygdala, parietal, and visual cortices at baseline. These data suggest that lorcaserin exerts its weight-reducing effects by decreasing attention-related brain activations to food cues (parietal and visual cortices) and emotional and limbic activity (insula, amygdala). Results indicating that baseline activation of the amygdala relates to increased efficacy suggest that lorcaserin would be of particular benefit to emotional eaters. © 2016 by the American Diabetes Association.
Farr, Olivia M.; Upadhyay, Jagriti; Gavrieli, Anna; Camp, Michelle; Spyrou, Nikolaos; Kaye, Harper; Mathew, Hannah; Vamvini, Maria; Koniaris, Anastasia; Kilim, Holly; Srnka, Alexandra; Migdal, Alexandra
2016-01-01
Lorcaserin is a serotonin 5-hydroxytryptamine 2c receptor agonist effective in treating obesity. Studies in rodents have shown that lorcaserin acts in the brain to exert its weight-reducing effects, but this has not yet been studied in humans. We performed a randomized, placebo-controlled, double-blind trial with 48 obese participants and used functional MRI to study the effects of lorcaserin on the brain. Subjects taking lorcaserin had decreased brain activations in the attention-related parietal and visual cortices in response to highly palatable food cues at 1 week in the fasting state and in the parietal cortex in response to any food cues at 4 weeks in the fed state. Decreases in emotion- and salience-related limbic activity, including the insula and amygdala, were attenuated at 4 weeks. Decreases in caloric intake, weight, and BMI correlated with activations in the amygdala, parietal, and visual cortices at baseline. These data suggest that lorcaserin exerts its weight-reducing effects by decreasing attention-related brain activations to food cues (parietal and visual cortices) and emotional and limbic activity (insula, amygdala). Results indicating that baseline activation of the amygdala relates to increased efficacy suggest that lorcaserin would be of particular benefit to emotional eaters. PMID:27385157
Tired and misconnected: A breakdown of brain modularity following sleep deprivation.
Ben Simon, Eti; Maron-Katz, Adi; Lahav, Nir; Shamir, Ron; Hendler, Talma
2017-06-01
Sleep deprivation (SD) critically affects a range of cognitive and affective functions, typically assessed during task performance. Whether such impairments stem from changes to the brain's intrinsic functional connectivity remain largely unknown. To examine this hypothesis, we applied graph theoretical analysis on resting-state fMRI data derived from 18 healthy participants, acquired during both sleep-rested and sleep-deprived states. We hypothesized that parameters indicative of graph connectivity, such as modularity, will be impaired by sleep deprivation and that these changes will correlate with behavioral outcomes elicited by sleep loss. As expected, our findings point to a profound reduction in network modularity without sleep, evident in the limbic, default-mode, salience and executive modules. These changes were further associated with behavioral impairments elicited by SD: a decrease in salience module density was associated with worse task performance, an increase in limbic module density was predictive of stronger amygdala activation in a subsequent emotional-distraction task and a shift in frontal hub lateralization (from left to right) was associated with increased negative mood. Altogether, these results portray a loss of functional segregation within the brain and a shift towards a more random-like network without sleep, already detected in the spontaneous activity of the sleep-deprived brain. Hum Brain Mapp 38:3300-3314, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal
2017-11-22
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. Copyright © 2017 the authors 0270-6474/17/3711441-14$15.00/0.
Feng, Li; Motelow, Joshua E.; Ma, Chanthia; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro
2017-01-01
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. PMID:29066556
Preliminary fMRI findings concerning the influence of 5-HTP on food selection.
Ioannou, Stephanos; Williams, Adrian L
2017-01-01
This functional magnetic resonance imaging study was designed to observe how physiological brain states can alter food preferences. A primary goal was to observe food-sensitive regions and moreover examine whether 5-HTP intake would activate areas which have been associated with appetite suppression, anorexia, satiety, and weight loss. Fourteen healthy male and female participants took part in the study, of which half of them received the supplement 5-HTP and the rest vitamin C (control) on an empty stomach. During the scanning session, they passively observed food (high calories, proteins, carbohydrates) and nonfood movie stimuli. Within the 5-HTP group, a comparison of food and nonfood stimuli showed significant responses that included the limbic system, the basal ganglia, and the prefrontal, temporal, and parietal cortices. For the vitamin C group, activity was mainly located in temporal and occipital regions. Compared to the vitamin C group, the 5-HTP group in response to food showed increased activation on the VMPFC, the DLPFC, limbic, and temporal regions. For the 5-HTP group, activity in response to food high in protein content compared to food high in calories and carbohydrates was located in the limbic system and the right caudomedial OFC, whereas for the vitamin C group, activity was mainly located at the inferior parietal lobes, the anterior cingulate gyri, and the left ventrolateral OFC. Greater responses to carbohydrates and high calorie stimuli in the vitamin C group were located at the right temporal gyrus, the occipital gyrus, the right VLPFC, whereas for the 5-HTP group, activity was observed at the left VMPFC, the parahippocampal gyrus bilaterally, the occipital lobe, and middle temporal gyri. In line with the hypotheses, 5-HTP triggered cortical responses associated with healthy body weight as well as cerebral preferences for protein-rich stimuli. The brain's activity is altered by macronutrients rich or deprived in the body. By reading the organisms physiological states and combining them with memory experiences, it constructs behavioral strategies steering an individual toward or in opposition to a particular food.
Chen, Jianhuai; Chen, Yun; Gao, Qingqiang; Chen, Guotao; Dai, Yutian; Yao, Zhijian; Lu, Qing
2018-05-01
Despite increasing understanding of the cerebral functional changes and structural abnormalities in erectile dysfunction, alterations in the topological organization of brain networks underlying psychogenic erectile dysfunction remain unclear. Here, based on the diffusion tensor image data of 25 patients and 26 healthy controls, we investigated the topological organization of brain structural networks and its correlations with the clinical variables using the graph theoretical analysis. Patients displayed a preserved overall small-world organization and exhibited a less connectivity strength in the left inferior frontal gyrus, amygdale and the right inferior temporal gyrus. Moreover, an abnormal hub pattern was observed in patients, which might disturb the information interactions of the remaining brain network. Additionally, the clustering coefficient of the left hippocampus was positively correlated with the duration of patients and the normalized betweenness centrality of the right anterior cingulate gyrus and the left calcarine fissure were negatively correlated with the sum scores of the 17-item Hamilton Depression Rating Scale. These findings suggested that the damaged white matter and the abnormal hub distribution of the left prefrontal and limbic cortex might contribute to the pathogenesis of psychogenic erectile dysfunction and provided new insights into the understanding of the pathophysiological mechanisms of psychogenic erectile dysfunction.
Heritability of the limbic networks
Kawadler, Jamie M.; Dell'Acqua, Flavio; Rijsdijk, Frühling V.; Kane, Fergus; Picchioni, Marco; McGuire, Philip; Toulopoulou, Timothea; Georgiades, Anna; Kalidindi, Sridevi; Kravariti, Eugenia; Murray, Robin M.; Murphy, Declan G.; Craig, Michael C.; Catani, Marco
2016-01-01
Individual differences in cognitive ability and social behaviour are influenced by the variability in the structure and function of the limbic system. A strong heritability of the limbic cortex has been previously reported, but little is known about how genetic factors influence specific limbic networks. We used diffusion tensor imaging tractography to investigate heritability of different limbic tracts in 52 monozygotic and 34 dizygotic healthy adult twins. We explored the connections that contribute to the activity of three distinct functional limbic networks, namely the dorsal cingulum (‘medial default-mode network’), the ventral cingulum and the fornix (‘hippocampal-diencephalic-retrosplenial network’) and the uncinate fasciculus (‘temporo-amygdala-orbitofrontal network’). Genetic and environmental variances were mapped for multiple tract-specific measures that reflect different aspects of the underlying anatomy. We report the highest heritability for the uncinate fasciculus, a tract that underpins emotion processing, semantic cognition, and social behaviour. High to moderate genetic and shared environmental effects were found for pathways important for social behaviour and memory, for example, fornix, dorsal and ventral cingulum. These findings indicate that within the limbic system inheritance of specific traits may rely on the anatomy of distinct networks and is higher for fronto-temporal pathways dedicated to complex social behaviour and emotional processing. PMID:26714573
AlRyalat, Saif Aldeen
2017-01-01
Gender similarities and differences have long been a matter of debate in almost all human research, especially upon reaching the discussion about brain functions. This large scale meta-analysis was performed on functional MRI studies. It included more than 700 active brain foci from more than 70 different experiments to study gender related similarities and differences in brain activation strategies for three of the main brain functions: Visual-spatial cognition, memory, and emotion. Areas that are significantly activated by both genders (i.e. core areas) for the tested brain function are mentioned, whereas those areas significantly activated exclusively in one gender are the gender specific areas. During visual-spatial cognition task, and in addition to the core areas, males significantly activated their left superior frontal gyrus, compared with left superior parietal lobule in females. For memory tasks, several different brain areas activated by each gender, but females significantly activated two areas from the limbic system during memory retrieval tasks. For emotional task, males tend to recruit their bilateral prefrontal regions, whereas females tend to recruit their bilateral amygdalae. This meta-analysis provides an overview based on functional MRI studies on how males and females use their brain.
History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation.
El-Falougy, H; Benuska, J
2006-01-01
The complex structures in the cerebral hemispheres is included under one term, the limbic system. Our conception of this system and its special functions rises from the comparative neuroanatomical and neurophysiological studies. The components of the limbic system are the hippocampus, gyrus parahippocampalis, gyrus dentatus, gyrus cinguli, corpus amygdaloideum, nuclei anteriores thalami, hypothalamus and gyrus paraterminalis Because of its unique macroscopic and microscopic structure, the hippocampus is a conspicuous part of the limbic system. During phylogenetic development, the hippocampus developed from a simple cortical plate in amphibians into complex three-dimensional convoluted structure in mammals. In the last few decades, structures of the limbic system were extensively studied. Attention was directed to the physiological functions and pathological changes of the hippocampus. Experimental studies proved that the hippocampus has a very important role in the process of learning and memory. Another important functions of the hippocampus as a part of the limbic system is its role in regulation of sexual and emotional behaviour. The term "hippocampal formation" is defined as the complex of six structures: gyrus dentatus, hippocampus proprius, subiculum proprium, presubiculum, parasubiculum and area entorhinalis In this work we attempt to present a brief review of knowledge about the hippocampus from the point of view of history, anatomical nomenclature, comparative anatomy and functions (Tab. 1, Fig. 2, Ref. 33).
Lindquist, Kristen A; Satpute, Ajay B; Wager, Tor D; Weber, Jochen; Barrett, Lisa Feldman
2016-05-01
The ability to experience pleasant or unpleasant feelings or to represent objects as "positive" or "negative" is known as representing hedonic "valence." Although scientists overwhelmingly agree that valence is a basic psychological phenomenon, debate continues about how to best conceptualize it scientifically. We used a meta-analysis of 397 functional magnetic resonance imaging (fMRI) and positron emission tomography studies (containing 914 experimental contrasts and 6827 participants) to test 3 competing hypotheses about the brain basis of valence: the bipolarity hypothesis that positive and negative affect are supported by a brain system that monotonically increases and/or decreases along the valence dimension, the bivalent hypothesis that positive and negative affect are supported by independent brain systems, and the affective workspace hypothesis that positive and negative affect are supported by a flexible set of valence-general regions. We found little evidence for the bipolar or bivalent hypotheses. Findings instead supported the hypothesis that, at the level of brain activity measurable by fMRI, valence is flexibly implemented across instances by a set of valence-general limbic and paralimbic brain regions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Reduced serotonin receptor subtypes in a limbic and a neocortical region in autism.
Oblak, Adrian; Gibbs, Terrell T; Blatt, Gene J
2013-12-01
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of 3. Abnormalities in social-emotional behaviors are a core deficit in autism, and are characterized by impaired reciprocal-social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5-HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5-HT systems have been implicated in several psychiatric disorders, including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5-HT in autism, there is emerging evidence that 5-HT systems in the central nervous system, including various 5-HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5-HT1A receptor-binding density in superficial and deep layers of the PCC and FG, and in the density of 5-HT(2A) receptors in superficial layers of the PCC and FG. A significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. This study provides potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.
Kirkham, Tim C; Williams, Claire M; Fezza, Filomena; Marzo, Vincenzo Di
2002-01-01
Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated.We measured anandamide and 2-arachidonoyl glycerol (2-AG) levels in feeding-associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum, at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2-AG in the limbic forebrain and, to a lesser extent, of 2-AG in the hypothalamus. By contrast, hypothalamic 2-AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were unaffected by any manipulation.As 2-AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural effects of 2-AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2-AG potently, and dose-dependently, stimulated feeding. This effect was attenuated by the CB1 receptor antagonist SR141716.These findings provide the first direct evidence of altered brain levels of endocannabinoids, and of 2-AG in particular, during fasting and feeding. The nature of these effects supports a role for endocannabinoids in the control of appetitive motivation. PMID:12055133
Progressive neurostructural changes in adolescent and adult patients with bipolar disorder.
Lisy, Megan E; Jarvis, Kelly B; DelBello, Melissa P; Mills, Neil P; Weber, Wade A; Fleck, David; Strakowski, Stephen M; Adler, Caleb M
2011-06-01
Several lines of evidence suggest that bipolar disorder is associated with progressive changes in gray matter volume (GMV), particularly in brain structures involved in emotional regulation and expression. The majority of these studies however, have been cross-sectional in nature. In this study we compared baseline and follow-up scans in groups of bipolar disorder and healthy subjects. We hypothesized bipolar disorder subjects would demonstrate significant GMV changes over time. A total of 58 bipolar disorder and 48 healthy subjects participated in structural magnetic resonance imaging (MRI). Subjects were rescanned 3-34 months after their baseline MRI. MRI images were segmented, normalized to standard stereotactic space, and compared voxel-by-voxel using statistical parametrical mapping software (SPM2). A model was developed to investigate differences in GMV at baseline, and associated with time and episodes, as well as in comparison to healthy subjects. We observed increases in GMV in bipolar disorder subjects across several brain regions at baseline and over time, including portions of the prefrontal cortex as well as limbic and subcortical structures. Time-related changes differed to some degree between adolescent and adult bipolar disorder subjects. The interval between scans positively correlated with GMV increases in bipolar disorder subjects in portions of the prefrontal cortex, and both illness duration and number of depressive episodes were associated with increased GMV in subcortical and limbic structures. Our findings support suggestions that widely observed progressive neurofunctional changes in bipolar disorder patients may be related to structural brain abnormalities in anterior limbic structures. Abnormalities largely involve regions previously noted to be integral to emotional expression and regulation, and appear to vary by age. © 2011 John Wiley and Sons A/S.
An fMRI study of emotional face processing in adolescent major depression.
Hall, Leah M J; Klimes-Dougan, Bonnie; Hunt, Ruskin H; Thomas, Kathleen M; Houri, Alaa; Noack, Emily; Mueller, Bryon A; Lim, Kelvin O; Cullen, Kathryn R
2014-10-01
Major depressive disorder (MDD) often begins during adolescence when the brain is still maturing. To better understand the neurobiological underpinnings of MDD early in development, this study examined brain function in response to emotional faces in adolescents with MDD and healthy (HC) adolescents using functional magnetic resonance imaging (fMRI). Thirty-two unmedicated adolescents with MDD and 23 healthy age- and gender-matched controls completed an fMRI task viewing happy and fearful faces. Fronto-limbic regions of interest (ROI; bilateral amygdala, insula, subgenual and rostral anterior cingulate cortices) and whole-brain analyses were conducted to examine between-group differences in brain function. ROI analyses revealed that patients had greater bilateral amygdala activity than HC in response to viewing fearful versus happy faces, which remained significant when controlling for comorbid anxiety. Whole-brain analyses revealed that adolescents with MDD had lower activation compared to HC in a right hemisphere cluster comprised of the insula, superior/middle temporal gyrus, and Heschl׳s gyrus when viewing fearful faces. Brain activity in the subgenual anterior cingulate cortex was inversely correlated with depression severity. Limitations include a cross-sectional design with a modest sample size and use of a limited range of emotional stimuli. Results replicate previous studies that suggest emotion processing in adolescent MDD is associated with abnormalities within fronto-limbic brain regions. Findings implicate elevated amygdalar arousal to negative stimuli in adolescents with depression and provide new evidence for a deficit in functioning of the saliency network, which may be a future target for early intervention and MDD treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
Limbic responses to reward cues correlate with antisocial trait density in heavy drinkers.
Oberlin, Brandon G; Dzemidzic, Mario; Bragulat, Veronique; Lehigh, Cari A; Talavage, Thomas; O'Connor, Sean J; Kareken, David A
2012-03-01
Antisocial traits are common among alcoholics- particularly in certain subtypes. Although people with antisocial tendencies show atypical brain activation in some emotion and reward paradigms, how the brain reward systems of heavy drinkers (HD) are influenced by antisocial traits remains unclear. We used subjects' preferred alcohol drink odors (AO), appetitive (ApCO) and non-appetitive (NApO) control odors in functional magnetic resonance imaging (fMRI) to determine if reward system responses varied as a function of antisocial trait density (ASD). In this retrospective analysis, we examined 30 HD who had participated in imaging twice: once while exposed to clamped intravenous alcohol infusion targeted to 50mg%, and once during placebo saline infusion. Under placebo, there were positive correlations between ASD and blood oxygenation level dependent (BOLD) activation in the [AO>ApCO] contrast in the left dorsal putamen, while negative correlations were present in medial orbitofrontal cortex (OFC) and the bilateral amygdala. A similar pattern was observed in the correlation with the [AO>NApO] contrast. This inverse relationship between ASD and activation in OFC and amygdala was specific to AO. However, negative correlations between ASD and the [ApCO>NApO] contrast were also present in the insula, putamen, and medial frontal cortex. These data suggest that frontal and limbic reward circuits of those with significant ASD are less responsive to reward cues in general, and particularly to alcohol cues in medial OFC and amygdala. These findings are broadly consistent with the reward deficiency syndrome hypothesis, although positive correlation in the striatum suggests regional variability. Copyright © 2011 Elsevier Inc. All rights reserved.
Amir, Shimon; Stewart, Jane
2009-05-15
Key molecular components of the mammalian circadian clock are expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on rhythms of expression of the clock protein Period2 (PER2) in four regions of the limbic forebrain known to be important in the regulation of motivational and emotional states. These regions include the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). Daily rhythms in the expression of PER2 in these regions are controlled by the master circadian pacemaker, the suprachiasmatic nucleus (SCN), but, importantly, they are also sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior. Thus, circadian information from the SCN and homeostatic signals are integrated in these regions of the limbic forebrain to affect the temporal organization of motivational and emotional processes.
Diurnal cortisol amplitude and fronto-limbic activity in response to stressful stimuli
Cunningham-Bussel, Amy C.; Root, James C.; Butler, Tracy; Tuescher, Oliver; Pan, Hong; Epstein, Jane; Weisholtz, Daniel S.; Pavony, Michelle; Silverman, Michael E.; Goldstein, Martin S.; Altemus, Margaret; Cloitre, Marylene; LeDoux, Joseph; McEwen, Bruce; Stern, Emily; Silbersweig, David
2014-01-01
Summary The development and exacerbation of many psychiatric and neurologic conditions are associated with dysregulation of the hypothalamic pituitary adrenal (HPA) axis as measured by aberrant levels of cortisol secretion. Here we report on the relationship between the amplitude of diurnal cortisol secretion, measured across 3 typical days in 18 healthy individuals, and blood oxygen level dependant (BOLD) response in limbic fear/stress circuits, elicited by in-scanner presentation of emotionally negative stimuli, specifically, images of the World Trade Center (WTC) attack. Results indicate that subjects who secrete a greater amplitude of cortisol diurnally demonstrate less brain activation in limbic regions, including the amygdala and hippocampus/parahippocampus, and hypothalamus during exposure to traumatic WTC-related images. Such initial findings can begin to link our understanding, in humans, of the relationship between the diurnal amplitude of a hormone integral to the stress response, and those neuroanatomical regions that are implicated as both modulating and being modulated by that response. PMID:19135805
Hultman, Rainbo; Mague, Stephen D.; Li, Qiang; Katz, Brittany M.; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K.; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D.; Dzirasa, Kafui
2016-01-01
Summary Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social-defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. PMID:27346529
Fronto-Limbic Functioning in Children and Adolescents with and without Autism
ERIC Educational Resources Information Center
Loveland, Katherine A.; Bachevalier, Jocelyne; Pearson, Deborah A.; Lane, David M.
2008-01-01
We used neuropsychological tasks to investigate integrity of brain circuits linking orbitofrontal cortex and amygdala (orbitofrontal-amygdala), and dorsolateral prefrontal cortex and hippocampus (dorsolateral prefrontal-hippocampus), in 138 individuals aged 7-18 years, with and without autism. We predicted that performance on…
Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST
Alterations in hypothalamic–pituitary–adrenal axis function contribute to many of the adverse behavioral effects of chronic voluntary alcohol drinking, including alcohol dependence and mood disorders; limbic brain structures such as the bed nucleus of the stria termin...
Limbic encephalitis and antibodies to Ma2: a paraneoplastic presentation of breast cancer
Sutton, I.; Winer, J.; Rowlands, D.; Dalmau, J.
2000-01-01
A patient with atypical medullary breast cancer is described who presented with symptoms of limbic encephalitis. The patient's serum and CSF contained antibodies that reacted with the nervous system and the tumour. These antibodies recognised Ma2, a neuronal protein related to paraneoplastic limbic and brainstem encephalitis in men with testicular tumours. This report highlights the importance of testing for paraneoplastic antineuronal antibodies in cases of unexplained limbic encephalitis and suggests screening for breast cancer in women with antibodies predominantly directed to Ma2. PMID:10896708
Limbic encephalitis and antibodies to Ma2: a paraneoplastic presentation of breast cancer.
Sutton, I; Winer, J; Rowlands, D; Dalmau, J
2000-08-01
A patient with atypical medullary breast cancer is described who presented with symptoms of limbic encephalitis. The patient's serum and CSF contained antibodies that reacted with the nervous system and the tumour. These antibodies recognised Ma2, a neuronal protein related to paraneoplastic limbic and brainstem encephalitis in men with testicular tumours. This report highlights the importance of testing for paraneoplastic antineuronal antibodies in cases of unexplained limbic encephalitis and suggests screening for breast cancer in women with antibodies predominantly directed to Ma2.
Review. Neurobiology of nicotine dependence.
Markou, Athina
2008-10-12
Nicotine is a psychoactive ingredient in tobacco that significantly contributes to the harmful tobacco smoking habit. Nicotine dependence is more prevalent than dependence on any other substance. Preclinical research in animal models of the various aspects of nicotine dependence suggests a critical role of glutamate, gamma-aminobutyric acid (GABA), cholinergic and dopamine neurotransmitter interactions in the ventral tegmental area and possibly other brain sites, such as the central nucleus of the amygdala and the prefrontal cortex, in the effects of nicotine. Specifically, decreasing glutamate transmission or increasing GABA transmission with pharmacological manipulations decreased the rewarding effects of nicotine and cue-induced reinstatement of nicotine seeking. Furthermore, early nicotine withdrawal is characterized by decreased function of presynaptic inhibitory metabotropic glutamate 2/3 receptors and increased expression of postsynaptic glutamate receptor subunits in limbic and frontal brain sites, while protracted abstinence may be associated with increased glutamate response to stimuli associated with nicotine administration. Finally, adaptations in nicotinic acetylcholine receptor function are also involved in nicotine dependence. These neuroadaptations probably develop to counteract the decreased glutamate and cholinergic transmission that is hypothesized to characterize early nicotine withdrawal. In conclusion, glutamate, GABA and cholinergic transmission in limbic and frontal brain sites are critically involved in nicotine dependence.
Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context☆
Romer, Daniel; Reyna, Valerie F.; Satterthwaite, Theodore D.
2017-01-01
Recent neuroscience models of adolescent brain development attribute the morbidity and mortality of this period to structural and functional imbalances between more fully developed limbic regions that subserve reward and emotion as opposed to those that enable cognitive control. We challenge this interpretation of adolescent development by distinguishing risk-taking that peaks during adolescence (sensation seeking and impulsive action) from risk taking that declines monotonically from childhood to adulthood (impulsive choice and other decisions under known risk). Sensation seeking is primarily motivated by exploration of the environment under ambiguous risk contexts, while impulsive action, which is likely to be maladaptive, is more characteristic of a subset of youth with weak control over limbic motivation. Risk taking that declines monotonically from childhood to adulthood occurs primarily under conditions of known risks and reflects increases in executive function as well as aversion to risk based on increases in gist-based reasoning. We propose an alternative Lifespan Wisdom Model that highlights the importance of experience gained through exploration during adolescence. We propose, therefore, that brain models that recognize the adaptive roles that cognition and experience play during adolescence provide a more complete and helpful picture of this period of development. PMID:28777995
Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music
Liu, Chao; Brattico, Elvira; Abu-jamous, Basel; Pereira, Carlos S.; Jacobsen, Thomas; Nandi, Asoke K.
2017-01-01
People can experience different emotions when listening to music. A growing number of studies have investigated the brain structures and neural connectivities associated with perceived emotions. However, very little is known about the effect of an explicit act of judgment on the neural processing of emotionally-valenced music. In this study, we adopted the novel consensus clustering paradigm, called binarisation of consensus partition matrices (Bi-CoPaM), to study whether and how the conscious aesthetic evaluation of the music would modulate brain connectivity networks related to emotion and reward processing. Participants listened to music under three conditions – one involving a non-evaluative judgment, one involving an explicit evaluative aesthetic judgment, and one involving no judgment at all (passive listening only). During non-evaluative attentive listening we obtained auditory-limbic connectivity whereas when participants were asked to decide explicitly whether they liked or disliked the music excerpt, only two clusters of intercommunicating brain regions were found: one including areas related to auditory processing and action observation, and the other comprising higher-order structures involved with visual processing. Results indicate that explicit evaluative judgment has an impact on the neural auditory-limbic connectivity during affective processing of music. PMID:29311874
Kerimov, B F
2002-01-01
The activities of key enzymes of pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G-6 PD) and 6-phosphogluconate dehydrogenase (6-PGD), were studied in cytoplasmatic fractions of brain cortical (limbic, orbital, sensorimotor cortex) and subcortical (myelencefalon, mesencefalon, hypothalamus) structures of rats subjected to starvation for 1, 2, 3, 5 and 7 days. Short-term starvation (1-3 days) caused activation of 6-GPD and 6-PGD both in cortical and subcortical structures. Long-term starvation for 5-7 days caused a decrease of activities of the pentose phosphate pathway enzymes in all studied structures. It is suggested that enzymes of pentose phosphate pathway in nervous tissues are functionally and metabolically related to glutathione system and during starvation they indirectly participate in the regulation lipid peroxidation processes.
Function and Dysfunction of Prefrontal Brain Circuitry in Alcoholic Korsakoff’s Syndrome
Oscar-Berman, Marlene
2013-01-01
The signature symptom of alcohol-induced persisting amnestic disorder, more commonly referred to as alcoholic Korsakoff’s syndrome (KS), is anterograde amnesia, or memory loss for recent events, and until the mid 20th Century, the putative brain damage was considered to be in diencephalic and medial temporal lobe structures. Overall intelligence, as measured by standardized IQ tests, usually remains intact. Preservation of IQ occurs because memories formed before the onset of prolonged heavy drinking — the types of information and abilities tapped by intelligence tests — remain relatively well preserved compared with memories recently acquired. However, clinical and experimental evidence has shown that neurobehavioral dysfunction in alcoholic patients with KS does include nonmnemonic abilities, and further brain damage involves extensive frontal and limbic circuitries. Among the abnormalities are confabulation, disruption of elements of executive functioning and cognitive control, and emotional impairments. Here, we discuss the relationship between neurobehavioral impairments in KS and alcoholism-related brain damage. More specifically, we examine the role of damage to prefrontal brain systems in the neuropsychological profile of alcoholic KS. PMID:22538385
Brain Neurons as Quantum Computers:
NASA Astrophysics Data System (ADS)
Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.
The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.
Natural and Artificial Intelligence, Language, Consciousness, Emotion, and Anticipation
NASA Astrophysics Data System (ADS)
Dubois, Daniel M.
2010-11-01
The classical paradigm of the neural brain as the seat of human natural intelligence is too restrictive. This paper defends the idea that the neural ectoderm is the actual brain, based on the development of the human embryo. Indeed, the neural ectoderm includes the neural crest, given by pigment cells in the skin and ganglia of the autonomic nervous system, and the neural tube, given by the brain, the spinal cord, and motor neurons. So the brain is completely integrated in the ectoderm, and cannot work alone. The paper presents fundamental properties of the brain as follows. Firstly, Paul D. MacLean proposed the triune human brain, which consists to three brains in one, following the species evolution, given by the reptilian complex, the limbic system, and the neo-cortex. Secondly, the consciousness and conscious awareness are analysed. Thirdly, the anticipatory unconscious free will and conscious free veto are described in agreement with the experiments of Benjamin Libet. Fourthly, the main section explains the development of the human embryo and shows that the neural ectoderm is the whole neural brain. Fifthly, a conjecture is proposed that the neural brain is completely programmed with scripts written in biological low-level and high-level languages, in a manner similar to the programmed cells by the genetic code. Finally, it is concluded that the proposition of the neural ectoderm as the whole neural brain is a breakthrough in the understanding of the natural intelligence, and also in the future design of robots with artificial intelligence.
Hyper-resting brain entropy within chronic smokers and its moderation by Sex
Li, Zhengjun; Fang, Zhuo; Hager, Nathan; Rao, Hengyi; Wang, Ze
2016-01-01
Cigarette smoking is a chronic relapsing brain disorder, and remains a premier cause of morbidity and mortality. Functional neuroimaging has been used to assess differences in the mean strength of brain activity in smokers’ brains, however less is known about the temporal dynamics within smokers’ brains. Temporal dynamics is a key feature of a dynamic system such as the brain, and may carry information critical to understanding the brain mechanisms underlying cigarette smoking. We measured the temporal dynamics of brain activity using brain entropy (BEN) mapping and compared BEN between chronic non-deprived smokers and non-smoking controls. Because of the known sex differences in neural and behavioral smoking characteristics, comparisons were also made between males and females. Associations between BEN and smoking related clinical measures were assessed in smokers. Our data showed globally higher BEN in chronic smokers compared to controls. The escalated BEN was associated with more years of smoking in the right limbic area and frontal region. Female nonsmokers showed higher BEN than male nonsmokers in prefrontal cortex, insula, and precuneus, but the BEN sex difference in smokers was less pronounced. These findings suggest that BEN mapping may provide a useful tool for probing brain mechanisms related to smoking. PMID:27377552
Reeves, Suzanne J; Polling, Catherine; Stokes, Paul R A; Lappin, Julia M; Shotbolt, Paul P; Mehta, Mitul A; Howes, Oliver D; Egerton, Alice
2012-04-30
Positron emission tomography (PET) studies have reported an association between reduced striatal dopamine D2/3 receptor availability and higher scores on self-report measures of trait impulsivity in healthy adults. However, impulsivity is a multi-faceted construct, and it is unclear which aspect(s) of impulsivity might be driving these associations. The current study aimed to investigate the relationship between limbic (ventral) striatal D2/3 receptor availability and individual components of impulsivity (attentional, motor and non-planning) using the Barratt Impulsiveness Scale (BIS-11) and [(11)C]raclopride PET in 23 healthy volunteers. A partial correlational analysis showed a significant association between non-planning impulsiveness (lack of forethought or 'futuring') and limbic D2/3 receptor availability, which was only apparent after the exclusion of potential dissimulators (indexed by high scores on impression management). Our findings suggest that non-planning impulsiveness is associated with individual variation in limbic striatal D2/3 receptor availability and that different facets of impulsivity may have specific neurochemical correlates. Future studies that combine D2/3 receptor imaging with behavioral measures of impulsivity are required to further elucidate the precise relationship between individual components of trait impulsivity and brain dopaminergic function. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis
Ng, Adeline S.L.; Kramer, Joel; Centurion, Alejandro; Dalmau, Josep; Huang, Eric; Cotter, Jennifer A.; Geschwind, Michael D.
2016-01-01
Autoantibodies associated with autoimmune limbic encephalitis (ALE) have been well-characterized, with intracellular neuronal antibodies being less responsive to immunotherapy than antibodies to cell surface antigens. Adenylate kinase 5 (AK5) is a nucleoside monophosphate kinase vital for neuronal-specific metabolism and is located intracellularly in the cytosol and expressed exclusively in the brain. Antibodies to AK5 had been previously identified but were not known to be associated with human disease prior to the report of two patients with AK5-related ALE (Tuzun et al., 2007). We present the complete clinical picture for one of these patients and the first reported neuropathology for AK5 ALE. PMID:26439959
A Brain Centred View of Psychiatric Comorbidity in Tinnitus: From Otology to Hodology
Minichino, Amedeo; Panico, Roberta; Testugini, Valeria; Altissimi, Giancarlo; Cianfrone, Giancarlo
2014-01-01
Introduction. Comorbid psychiatric disorders are frequent among patients affected by tinnitus. There are mutual clinical influences between tinnitus and psychiatric disorders, as well as neurobiological relations based on partially overlapping hodological and neuroplastic phenomena. The aim of the present paper is to review the evidence of alterations in brain networks underlying tinnitus physiopathology and to discuss them in light of the current knowledge of the neurobiology of psychiatric disorders. Methods. Relevant literature was identified through a search on Medline and PubMed; search terms included tinnitus, brain, plasticity, cortex, network, and pathways. Results. Tinnitus phenomenon results from systemic-neurootological triggers followed by neuronal remapping within several auditory and nonauditory pathways. Plastic reorganization and white matter alterations within limbic system, arcuate fasciculus, insula, salience network, dorsolateral prefrontal cortex, auditory pathways, ffrontocortical, and thalamocortical networks are discussed. Discussion. Several overlapping brain network alterations do exist between tinnitus and psychiatric disorders. Tinnitus, initially related to a clinicoanatomical approach based on a cortical localizationism, could be better explained by an holistic or associationist approach considering psychic functions and tinnitus as emergent properties of partially overlapping large-scale neural networks. PMID:25018882
IDRIS, Zamzuri
2014-01-01
Cerebrospinal fluid (CSF) serves buoyancy. The buoyancy thought to play crucial role in many aspects of the central nervous system (CNS). Weightlessness is produced mainly by the CSF. This manuscript is purposely made to discuss its significance which thought contributing towards an ideal environment for the CNS to develop and function normally. The idea of microgravity environment for the CNS is supported not only by the weightlessness concept of the brain, but also the noted anatomical position of the CNS. The CNS is positioned in bowing position (at main cephalic flexure) which is nearly similar to an astronaut in a microgravity chamber, fetus in the amniotic fluid at early gestation, and animals and plants in the ocean or on the land. Therefore, this microgravity position can bring us closer to the concept of origin. The hypothesis on ‘the origin’ based on the microgravity were explored and their similarities were identified including the brainwaves and soul. Subsequently a review on soul was made. Interestingly, an idea from Leonardo da Vinci seems in agreement with the notion of seat of the soul at the greater limbic system which has a distinctive feature of “from God back to God”. PMID:25977615
Patel, Dipan C; Wallis, Glenna; Dahle, E Jill; McElroy, Pallavi B; Thomson, Kyle E; Tesi, Raymond J; Szymkowski, David E; West, Peter J; Smeal, Roy M; Patel, Manisha; Fujinami, Robert S; White, H Steve; Wilcox, Karen S
2017-01-01
Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler's murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2 -/- mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection.
Patel, Dipan C.; Wallis, Glenna; Dahle, E. Jill; McElroy, Pallavi B.; Thomson, Kyle E.; West, Peter J.; Smeal, Roy M.; Patel, Manisha; Fujinami, Robert S.; White, H. Steve
2017-01-01
Abstract Central nervous system infection can induce epilepsy that is often refractory to established antiseizure drugs. Previous studies in the Theiler’s murine encephalomyelitis virus (TMEV)-induced mouse model of limbic epilepsy have demonstrated the importance of inflammation, especially that mediated by tumor necrosis factor-α (TNFα), in the development of acute seizures. TNFα modulates glutamate receptor trafficking via TNF receptor 1 (TNFR1) to cause increased excitatory synaptic transmission. Therefore, we hypothesized that an increase in TNFα signaling after TMEV infection might contribute to acute seizures. We found a significant increase in both mRNA and protein levels of TNFα and the protein expression ratio of TNF receptors (TNFR1:TNFR2) in the hippocampus, a brain region most likely involved in seizure initiation, after TMEV infection, which suggests that TNFα signaling, predominantly through TNFR1, may contribute to limbic hyperexcitability. An increase in hippocampal cell-surface glutamate receptor expression was also observed during acute seizures. Although pharmacological inhibition of TNFR1-mediated signaling had no effect on acute seizures, several lines of genetically modified animals deficient in either TNFα or TNFRs had robust changes in seizure incidence and severity after TMEV infection. TNFR2–/– mice were highly susceptible to developing acute seizures, suggesting that TNFR2-mediated signaling may provide beneficial effects during the acute seizure period. Taken together, the present results suggest that inflammation in the hippocampus, caused predominantly by TNFα signaling, contributes to hyperexcitability and acute seizures after TMEV infection. Pharmacotherapies designed to suppress TNFR1-mediated or augment TNFR2-mediated effects of TNFα may provide antiseizure and disease-modifying effects after central nervous system infection. PMID:28497109
Lifespan anxiety is reflected in human amygdala cortical connectivity
He, Ye; Xu, Ting; Zhang, Wei
2016-01-01
Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26859312
Mehta, Mitul A; Gore-Langton, Emma; Golembo, Nicole; Colvert, Emma; Williams, Steven C R; Sonuga-Barke, Edmund
2010-10-01
Severe deprivation in the first few years of life is associated with multiple difficulties in cognition and behavior. However, the brain basis for these difficulties is poorly understood. Structural and functional neuroimaging studies have implicated limbic system structures as dysfunctional, and one functional imaging study in a heterogeneous group of maltreated individuals has confirmed the presence of abnormalities in the basal ganglia. Based on these studies and known dopaminergic abnormalities from studies in experimental animals using social isolation, we used a task of monetary reward anticipation to examine the functional integrity of brain regions previously shown to be implicated in reward processing. Our sample included a group of adolescents (n = 12) who had experienced global deprivation early in their lives in Romania prior to adoption into UK families. In contrast to a nonadopted comparison group (n = 11), the adoptees did not recruit the striatum during reward anticipation despite comparable performance accuracy and latency. These results show, for the first time, an association between early institutional deprivation and brain reward systems in humans and highlight potential neural vulnerabilities resulting from such exposures.
Testosterone in the brain: neuroimaging findings and the potential role for neuropsychopharmacology.
Höfer, Peter; Lanzenberger, Rupert; Kasper, Siegfried
2013-02-01
Testosterone plays a substantial role in a number of physiological processes in the brain. It is able to modulate the expression of certain genes by binding to androgen receptors. Acting via neurotransmitter receptors, testosterone shows the potential to mediate a non-genomic so-called "neuroactive effect". Various neurotransmitter systems are also influenced by the aromatized form of testosterone, estradiol. The following article summarizes the findings of preclinical and clinical neuroimaging studies including structural and functional magnetic resonance imaging (MRI/fMRI), voxel based morphometry (VBM), as well as pharmacological fMRI (phfMRI) and positron emission tomography (PET) regarding the effects of testosterone on the human brain. The impact of testosterone on the pathogenesis of psychiatric disorders and on sex-related prevalence differences have been supported by a wide range of clinical studies. An antidepressant effect of testosterone can be implicitly explained by its effects on the limbic system--especially amygdala, a major target in the treatment of depression--solidly demonstrated by a large body of neuroimaging findings. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.
[The limbic system and the motivation process].
Karli, P
1968-01-01
Understanding the part played by the limbic system in the shaping of overall behaviour is assisted by the previous study of that system's involvement in the mechanisms underlying certain sections of behaviour. a) Limbic structures contribute to the dynamic synthesis of contemporary information, by reason of their share in mechanisms: I. of modulatory central control in the production and transmission of sensory messages, 2. in the genesis of states of vigilance, especially the focussing of attention. On the other hand, they have an inhibitory role in somatic motility by way of progressive elimination of all inadequate motor response. b) Limbic structures participate in the elaboration of emotional states, in the initiation of both positive and negative reinforcement. That is to say they participate in the processes by which: I. "appetitive" or "aversive" significance is progressively conferred upon a given stimulus or situation, 2. behaviour is subjected to a positive or negative reinforcement, assuring its stabilization or its extinction. c) The comparison of the present situation with experience, enabling the organism to foresee the results of its behaviour; and similarly the comparison of results achieved with those anticipated, imply information storage, and the formation of lasting memory traces. It appears that the limbic system by integration of cognitive and affective components of sensory information, contributes to the compilation of experience which can be drawn upon in recognition or evocation. When the lasting results of different limbic lesions upon total behaviour are studied, it is clear that these effects are all the more profound as, among the motivational factors involved, those due to experience and to adaptation to environment, play the more important part. Behavioural deficits appear especially due to the absence of inhibition of certain inadequate responses, which results in a "maladaptation" of behavior as much towards present environmental conditions as to the experience of the organism. a) Regarding alimentary behaviour, the limbic system seems only to have importance in fixing the various individual attitudes towards feeding (competition, feeding habits, time to repletion, etc.). b) Sexually, experimental facts suggest that the limbic system plays an essential part in facilitation and especially selective inhibition which, by the exclusion of inadequate responses, may differentiate adult heterosexual conduct from ambivalent sexuality. Thus, in the adult, sexual behaviour can appear which is adapted to the environment, and consistent with the genetic sex and certain individual behavioural characteristics of the organism.(ABSTRACT TRUNCATED AT 400 WORDS)
Klemm, W R
1976-01-01
This review presents an analysis of the sensory and motor mechanisms as they are now understood that cause the immobility reflex (IR). Of the sensory systems that conceivably could trigger and sustain the IR, as commonly induced experimentally by inversion and manual restraint, evidence has been presented to eliminate some senses (vestibular, vision, sound, many visceral sensations, olfaction, taste, temperature), while incriminating tactile and proprioceptive influences. Of the motor systems which could cause the profound immobility during IR, neurosurgical and electrophysiological evidence identifies the locus of the inhibitory neurons in the brain stem and/or spinal cord. The evidence reviewed leads to a unified working hypothesis of IR mechanisms. IR is considered to be caused by a group of neurons in the brain stem which inhibit spinal motoneurons, either directly or indirectly, when those inhibitory neurons are activated by a specific pattern of tactile and proprioceptive input. Modulation of the IR control system appears to come from the limbic system, which under fear-producing conditions, potentiates the IR in part by release of epinephrine. Inhibition of the IR control system appears to come from the neocortex, as well as the brain stem reticulum, when it is activated by nonspecific, arousing somaesthetic sensations that produce generalized activation of the neocortex and skeletal muscle.
Dai, Xi-Jian; Nie, Xiao; Liu, Xuming; Pei, Li; Jiang, Jian; Peng, De-chang; Gong, Hong-Han; Zeng, Xian-Jun; Wáng, Yì-Xiáng J; Zhan, Yang
2016-03-01
To explore the regional brain activities in patients with chronic primary insomnia (PCPIs) and their sex differences. Forty-two PCPIs (27 females, 15 males) and 42 good sleepers (GSs; 24 females, 18 males) were recruited. Six PCPIs (3 males, 3 females) were scanned twice by MRI to examine the test-retest reliability. Amplitude of low frequency fluctuation (ALFF) method was used to assess the local brain features. The mean signal values of the different ALFF areas were analyzed with a receiver operating characteristic (ROC) curve. Simple linear regression analysis was performed to investigate the relationships between clinical features and different brain areas. Both female and male PCPIs showed higher ALFF in the temporal lobe and occipital lobe, especially in female PCPIs. Female PCPIs had lower ALFF in the bilateral cerebellum posterior lobe, left dorsolateral prefrontal cortex, and bilateral limbic lobe; however, male PCPIs showed lower ALFF in the left occipital gyrus. The mean signal value of the cerebellum in female PCPIs showed negative correlations with negative emotions. Compared with male PCPIs, female PCPIs showed higher ALFF in the bilateral middle temporal gyrus and lower ALFF in the left limbic lobe. The different areas showed high test-retest stability (Clusters of contiguous volumes ≥ 1080 mm(3) with an intraclass correlation coefficient ≥ 0.80) and high degree of sensitivity and specificity. Female PCPIs showed more regional brain differences with higher and lower ALFF responses than male PCPIs. However, they shared analogous excessive hyperarousal mechanism and wide variations in aberrant brain areas. © 2016 American Academy of Sleep Medicine.
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.
Uva, Laura; Breschi, Gian Luca; Gnatkovsky, Vadym; Taverna, Stefano; de Curtis, Marco
2015-02-18
Interictal spikes in models of focal seizures and epilepsies are sustained by the synchronous activation of glutamatergic and GABAergic networks. The nature of population spikes associated with seizure initiation (pre-ictal spikes; PSs) is still undetermined. We analyzed the networks involved in the generation of both interictal and PSs in acute models of limbic cortex ictogenesis induced by pharmacological manipulations. Simultaneous extracellular and intracellular recordings from both principal cells and interneurons were performed in the medial entorhinal cortex of the in vitro isolated guinea pig brain during focal interictal and ictal discharges induced in the limbic network by intracortical and brief arterial infusions of either bicuculline methiodide (BMI) or 4-aminopyridine (4AP). Local application of BMI in the entorhinal cortex did not induce seizure-like events (SLEs), but did generate periodic interictal spikes sensitive to the glutamatergic non-NMDA receptor antagonist DNQX. Unlike local applications, arterial perfusion of either BMI or 4AP induced focal limbic SLEs. PSs just ahead of SLE were associated with hyperpolarizing potentials coupled with a complete blockade of firing in principal cells and burst discharges in putative interneurons. Interictal population spikes recorded from principal neurons between two SLEs correlated with a depolarizing potential. We demonstrate in two models of acute limbic SLE that PS events are different from interictal spikes and are sustained by synchronous activation of inhibitory networks. Our findings support a prominent role of synchronous network inhibition in the initiation of a focal seizure. Copyright © 2015 the authors 0270-6474/15/353048-08$15.00/0.
Chronic Pain and Chronic Stress: Two Sides of the Same Coin?
Abdallah, Chadi G; Geha, Paul
2017-02-01
Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.
Applying Neurodevelopmental Theory to School-Based Drug Misuse Prevention during Adolescence
ERIC Educational Resources Information Center
Riggs, Nathaniel R.; Black, David S.; Ritt-Olson, Anamara
2014-01-01
Adolescence is characterized by incredible development in the prefrontal cortex of the brain, which is responsible for behavioral and emotional self-regulation, and higher order cognitive decision-making skills (that is, executive function). Typically late prefrontal cortical development and its integration with limbic areas of the brain…
Cognitive control of drug craving inhibits brain reward regions in cocaine abusers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Fowler, J.; Wang, G.J.
Loss of control over drug taking is considered a hallmark of addiction and is critical in relapse. Dysfunction of frontal brain regions involved with inhibitory control may underlie this behavior. We evaluated whether addicted subjects when instructed to purposefully control their craving responses to drug-conditioned stimuli can inhibit limbic brain regions implicated in drug craving. We used PET and 2-deoxy-2[18F]fluoro-D-glucose to measure brain glucose metabolism (marker of brain function) in 24 cocaine abusers who watched a cocaine-cue video and compared brain activation with and without instructions to cognitively inhibit craving. A third scan was obtained at baseline (without video). Statisticalmore » parametric mapping was used for analysis and corroborated with regions of interest. The cocaine-cue video increased craving during the no-inhibition condition (pre 3 {+-} 3, post 6 {+-} 3; p < 0.001) but not when subjects were instructed to inhibit craving (pre 3 {+-} 2, post 3 {+-} 3). Comparisons with baseline showed visual activation for both cocaine-cue conditions and limbic inhibition (accumbens, orbitofrontal, insula, cingulate) when subjects purposefully inhibited craving (p < 0.001). Comparison between cocaine-cue conditions showed lower metabolism with cognitive inhibition in right orbitofrontal cortex and right accumbens (p < 0.005), which was associated with right inferior frontal activation (r = -0.62, p < 0.005). Decreases in metabolism in brain regions that process the predictive (nucleus accumbens) and motivational value (orbitofrontal cortex) of drug-conditioned stimuli were elicited by instruction to inhibit cue-induced craving. This suggests that cocaine abusers may retain some ability to inhibit craving and that strengthening fronto-accumbal regulation may be therapeutically beneficial in addiction.« less
Colver, Allan; Longwell, Sarah
2013-11-01
Whether or not adolescence should be treated as a special period, there is now no doubt that the brain changes much during adolescence. From an evolutionary perspective, the idea of an under developed brain which is not fit for purpose until adulthood is illogical. Rather, the adolescent brain is likely to support the challenges specific to that period of life. New imaging techniques show striking changes in white and grey matter between 11 and 25 years of age, with increased connectivity between brain regions, and increased dopaminergic activity in the pre-frontal cortices, striatum and limbic system and the pathways linking them. The brain is dynamic, with some areas developing faster and becoming more dominant until other areas catch up. Plausible mechanisms link these changes to cognitive and behavioural features of adolescence. The changing brain may lead to abrupt behavioural change with attendant risks, but such a brain is flexible and can respond quickly and imaginatively. Society allows adolescent exuberance and creativity to be bounded and explored in relative safety. In healthcare settings these changes are especially relevant to young people with long term conditions as they move to young adult life; such young people need to learn to manage their health conditions with the support of their healthcare providers.
Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation
Israelashvili, Michal; Loewenstern, Yocheved
2015-01-01
Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326
TRIMETHYLTIN, A SELECTIVE LIMBIC SYSTEM NEUROTOXICANT, IMPAIRS RADIAL-ARM MAZE PERFORMANCE
Rats were trained for fifteen sessions in an automated eight arm radial maze prior to treatment with 6 mg/kg trimethyltin chloride. This compound is a neurotoxicant which primarily damages the limbic system, in particular pyramidal cells in the CA3 region of the hippocampus. Foll...
Alcázar-Córcoles, M A; Verdejo-García, A; Bouso-Saiz, J C
The relationship between frontal lobe damage and criminality is especially complex. The neural substrates of psychopathic behavior seem to involve structural and functional abnormalities in the frontal lobes and the limbic system. AIM. To analyze the repercussions that brain structural and functional abnormalities in psychopathic individuals may have for forensic neuropsychology. Consistent evidence indicate that response inhibition problems in psychopathic subjects are linked to structural or functional damage in the frontal cortex. Furthermore, the prefrontal cortex, along with the amygdala and the hippocampus forms the limbic system, which is an important neural substrate of emotion processing; therefore the psychopath's capacity of affective processing could also be impaired. The theoretical frameworks of the somatic marker and mirror neuron hypotheses, along with the empirical study of executive functions may contribute to explain the inability of the psychopathic subjects to feel empathy, which is one of the main inhibitors of violence and antisocial behavior. The relationship between frontal lobe dysfunction and antisocial behavior arises an important legal issue. In order to consider some type of minor liability in the case of psychopaths it is suggested to gather further research data about the relationship between frontal lobe dysfunction and the ability to inhibit antisocial behavior by making an adequate use of empathy and emotional ties.
Pontius, A A
1993-10-01
Proust detailed inexplicable behavior long before the neurobiologists Goddard and McIntyre in 1972 demonstrated that intermittent repetition of harmless stimuli can cause "kindling" of a seizure (with or without motor convulsions). Such brief seizures can occur especially in the evolutionarily old limbic system which mediates basic drives, their concomitant emotions, and certain aspects of memory. It appears that in humans the influence of specific external stimuli that revive the memory of repeated past experiences may "kindle" a transient episode of limbic overactivation. Thereupon the normal balance between the limbic and frontal lobe systems is disturbed (for a few minutes) as are normal human decision making and control of action. Linked with such a transient frontolimbic imbalance is out-of-character behavior, psychosis (hallucinations or delusions), autonomic activation, and severe distortion of affect and of action, culminating in extreme cases in a "Limbic Psychotic Trigger Reaction," as proposed by Pontius in 1981, in motiveless homicidal acts with mostly preserved consciousness and memory for the acts.
Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea
2017-02-01
Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson's disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Reduced Serotonin Receptor Subtypes in a Limbic and a Neocortical Region in Autism
Oblak, Adrian; Gibbs, Terrell T.; Blatt, Gene J.
2013-01-01
Autism is a behaviorally defined, neurological disorder with symptom onset before the age of three. Abnormalities in social-emotional behaviors are a core deficit in autism and are characterized by impaired reciprocal social interaction, lack of facial expressions, and the inability to recognize familiar faces. The posterior cingulate cortex (PCC) and fusiform gyrus (FG) are two regions within an extensive limbic-cortical network that contribute to social-emotional behaviors. Evidence indicates that changes in brains of individuals with autism begin prenatally. Serotonin (5HT) is one of the earliest expressed neurotransmitters, and plays an important role in synaptogenesis, neurite outgrowth, and neuronal migration. Abnormalities in 5HT systems have been implicated in several psychiatric disorders including autism, as evidenced by immunology, imaging, genetics, pharmacotherapy, and neuropathology. Although information is known regarding peripheral 5HT in autism, there is emerging evidence that 5HT systems in the CNS, including various 5HT receptor subtypes and transporters, are affected in autism. The present study demonstrated significant reductions in 5HT1A receptor binding density in superficial and deep layers of the PCC and FG, and in the density of 5HT2A receptors in superficial layers of the PCC and FG. Significant reduction in the density of serotonin transporters (5-HTT) was also found in the deep layers of the FG, but normal levels were demonstrated in both layers of the PCC and superficial layers of the FG. These studies provide potential substrates for decreased 5-HT modulation/innervation in the autism brain, and implicate two 5-HT receptor subtypes as potential neuromarkers for novel or existing pharmacotherapies. PMID:23894004
Hypothermia in VGKC antibody-associated limbic encephalitis.
Jacob, S; Irani, S R; Rajabally, Y A; Grubneac, A; Walters, R J; Yazaki, M; Clover, L; Vincent, A
2008-02-01
Voltage-gated potassium channel antibody (VGKC-Ab)-associated limbic encephalitis (LE) is a recently described syndrome that broadens the spectrum of immunotherapy-responsive central nervous system disorders. Limbic encephalitis is typically characterised by a sub-acute onset of disorientation, amnesia and seizures, but the clinical spectrum is not yet fully defined and the syndrome could be under-diagnosed. We here describe the clinical profile of four patients with VGKC-Ab-associated LE who had intermittent, episodic hypothermia. One of the patients also described a prodrome of severe neuropathic pain preceding the development of limbic symptoms. Both of these novel symptoms responded well to immunosuppressive therapy, with concurrent amelioration of amnesia/seizures.
[Neuroimmunological diseases associated with VGKC complex antibodies].
Watanabe, Osamu
2013-05-01
Antibodies to voltage-gated potassium channels(VGKC) were first identified by radioimmunoassay of radioisotope labeled alpha-dendrotoxin-VGKCs solubilized from rabbit brain. These antibodies were found only in a proportion of patients with acquired neuromyotonia (Isaacs' syndrome). VGKC antibodies were also detected in Morvan's syndrome and in a form of autoimmune limbic encephalitis. Recent studies indicated that the "VGKC" antibodies are mainly directed toward associated proteins(for example LGI-1, Caspr-2) that complex with the VGKCs themselves. The "VGKC" antibodies are now usually known as VGKC-complex antibodies. In general, LGI-1 antibodies are most common in limbic encephalitis with SIADH. Caspr-2 antibodies are present in the majority of patients with Morvan's syndrome. These patients develop combinations of CNS symptoms, autonomic dysfunction, and peripheral nerve hyperexcitability.
[The clinical phenomenology of Rett's syndrome].
Calderón-González, R; Calderón-Sepulveda, R F; Treviño-Welsh, J
1999-01-01
The work was done to facilitate the clinical diagnosis and understanding of Rett syndrome (RS) by grouping the symptoms and signs in areas of neurological disfunction. This is a retrospective, longitudinal and observational study of 30 young females whose clinical manifestations were grouped using a modified Fitzgerald et al. scale for motor and behavior evaluation of patients with RS. All patients were videotaped at least during one or several appointments during their follow-up for a period of 1 to 10 years. All patients and videotapes were reviewed independently by the three authors. We followed the clinical diagnostic criteria of classic RS, and grouped the symptoms and signs in 12 groups of clinical phenomenology that represented specific areas of central or peripheral nervous system involvement: 1) dementia syndrome (fronto-temporo-parietal and limbic dysfunction); 2) extrapyramidal syndrome (basal ganglia dysfunction); 3) respiratory function disorders (brain stem reticular system disfunction); 4) sleep disorders (reticular system and limbic dysfunction); 5) epilepsy (cortico-subcortical paroxysmal bioelectrical dysfunction); 6) lower motor neuron syndrome (neuropathic dysfunction and/or peripheral neuropathy); 7) body growth retardation; 8) tonic-postural skeletal deformities; 9) deficit of pain sensation (nociceptive deficit); 10) pseudobulbar dysfunction; 11) autonomic dysfunction and 12) others (microcephaly and bruxism). In clinical practice, we recommend the use of this grouping of symptoms and signs because it makes facilities the clinical study, definition of areas of dysfunction and diagnosis of the patient with RS.
Booij, Linda; Tremblay, Richard E.; Szyf, Moshe; Benkelfat, Chawki
2015-01-01
Background Despite more than 60 years of research in the role of serotonin (5-HT) in psychopathology, many questions still remain. From a developmental perspective, studies have provided more insight into how 5-HT dysfunctions acquired in utero or early in life may modulate brain development. This paper discusses the relevance of the developmental role of 5-HT for the understanding of psychopathology. We review developmental milestones of the 5-HT system, how genetic and environmental 5-HT disturbances could affect brain development and the potential role of DNA methylation in 5-HT genes for brain development. Methods Studies were identified using common databases (e.g., PubMed, Google Scholar) and reference lists. Results Despite the widely supported view that the 5-HT system matures in early life, different 5-HT receptors, proteins and enzymes have different developmental patterns, and development is brain region–specific. A disruption in 5-HT homeostasis during development may lead to structural and functional changes in brain circuits that modulate emotional stress responses, including subcortical limbic and (pre)frontal areas. This may result in a predisposition to psychopathology. DNA methylation might be one of the underlying physiologic mechanisms. Limitations There is a need for prospective studies. The impact of stressors during adolescence on the 5-HT system is understudied. Questions regarding efficacy of drugs acting on 5-HT still remain. Conclusion A multidisciplinary and longitudinal approach in designing studies on the role of 5-HT in psychopathology might help to bring us closer to the understanding of the role of 5-HT in psychopathology. PMID:25285876
Hultman, Rainbo; Mague, Stephen D; Li, Qiang; Katz, Brittany M; Michel, Nadine; Lin, Lizhen; Wang, Joyce; David, Lisa K; Blount, Cameron; Chandy, Rithi; Carlson, David; Ulrich, Kyle; Carin, Lawrence; Dunson, David; Kumar, Sunil; Deisseroth, Karl; Moore, Scott D; Dzirasa, Kafui
2016-07-20
Circuits distributed across cortico-limbic brain regions compose the networks that mediate emotional behavior. The prefrontal cortex (PFC) regulates ultraslow (<1 Hz) dynamics across these networks, and PFC dysfunction is implicated in stress-related illnesses including major depressive disorder (MDD). To uncover the mechanism whereby stress-induced changes in PFC circuitry alter emotional networks to yield pathology, we used a multi-disciplinary approach including in vivo recordings in mice and chronic social defeat stress. Our network model, inferred using machine learning, linked stress-induced behavioral pathology to the capacity of PFC to synchronize amygdala and VTA activity. Direct stimulation of PFC-amygdala circuitry with DREADDs normalized PFC-dependent limbic synchrony in stress-susceptible animals and restored normal behavior. In addition to providing insights into MDD mechanisms, our findings demonstrate an interdisciplinary approach that can be used to identify the large-scale network changes that underlie complex emotional pathologies and the specific network nodes that can be used to develop targeted interventions. Copyright © 2016 Elsevier Inc. All rights reserved.
The Subthalamic Nucleus, Limbic Function, and Impulse Control.
Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S
2015-12-01
It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.
Structural bases for neurophysiological investigations of amygdaloid complex of the brain
NASA Astrophysics Data System (ADS)
Kalimullina, Liliya B.; Kalkamanov, Kh. A.; Akhmadeev, Azat V.; Zakharov, Vadim P.; Sharafullin, Ildus F.
2015-11-01
Amygdala (Am) as a part of limbic system of the brain defines such important functions as adaptive behavior of animals, formation of emotions and memory, regulation of endocrine and visceral functions. We worked out, with the help of mathematic modelling of the pattern recognition theory, principles for organization of neurophysiological and neuromorphological studies of Am nuclei, which take into account the existing heterogeneity of its formations and optimize, to a great extent, the protocol for carrying out of such investigations. The given scheme of studies of Am’s structural-functional organization at its highly-informative sections can be used as a guide for precise placement of electrodes’, cannulae’s and microsensors into particular Am nucleus in the brain with the registration not only the nucleus itself, but also its extensions. This information is also important for defining the number of slices covering specific Am nuclei which must be investigated to reveal the physiological role of a particular part of amygdaloid complex.
Zhao, Youjin; Du, Meimei; Gao, Xin; Xiao, Yuan; Shah, Chandan; Sun, Huaiqiang; Chen, Fuqin; Yang, Lili; Yan, Zhihan; Fu, Yuchuan; Lui, Su
2016-12-01
Whether a lack of direct parental care affects brain function in children is an important question, particularly in developing countries where hundreds of millions of children are left behind when their parents migrate for economic or political reasons. In this study, we investigated changes in the topological architectures of brain functional networks in left-behind children (LBC). Resting-state functional magnetic resonance imaging data were obtained from 26 LBC and 21 children living within their nuclear family (non-LBC). LBC showed a significant increase in the normalized characteristic path length (λ), suggesting a decrease in efficiency in information access, and altered nodal centralities in the fronto-limbic regions and motor and sensory systems. Moreover, a decreased nodal degree and the nodal betweenness of the right rectus gyrus were positively correlated with annual family income. The present study provides the first empirical evidence that suggests that a lack of direct parental care could affect brain functional development in children, particularly involving emotional networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context.
Romer, Daniel; Reyna, Valerie F; Satterthwaite, Theodore D
2017-10-01
Recent neuroscience models of adolescent brain development attribute the morbidity and mortality of this period to structural and functional imbalances between more fully developed limbic regions that subserve reward and emotion as opposed to those that enable cognitive control. We challenge this interpretation of adolescent development by distinguishing risk-taking that peaks during adolescence (sensation seeking and impulsive action) from risk taking that declines monotonically from childhood to adulthood (impulsive choice and other decisions under known risk). Sensation seeking is primarily motivated by exploration of the environment under ambiguous risk contexts, while impulsive action, which is likely to be maladaptive, is more characteristic of a subset of youth with weak control over limbic motivation. Risk taking that declines monotonically from childhood to adulthood occurs primarily under conditions of known risks and reflects increases in executive function as well as aversion to risk based on increases in gist-based reasoning. We propose an alternative Life-span Wisdom Model that highlights the importance of experience gained through exploration during adolescence. We propose, therefore, that brain models that recognize the adaptive roles that cognition and experience play during adolescence provide a more complete and helpful picture of this period of development. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Loss of hippocampal serine protease BSP1/neuropsin predisposes to global seizure activity.
Davies, B; Kearns, I R; Ure, J; Davies, C H; Lathe, R
2001-09-15
Serine proteases in the adult CNS contribute both to activity-dependent structural changes accompanying learning and to the regulation of excitotoxic cell death. Brain serine protease 1 (BSP1)/neuropsin is a trypsin-like serine protease exclusively expressed, within the CNS, in the hippocampus and associated limbic structures. To explore the role of this enzyme, we have used gene targeting to disrupt this gene in mice. Mutant mice were viable and overtly normal; they displayed normal hippocampal long-term synaptic potentiation (LTP) and exhibited no deficits in spatial navigation (water maze). Nevertheless, electrophysiological studies revealed that the hippocampus of mice lacking this specifically expressed protease possessed an increased susceptibility for hyperexcitability (polyspiking) in response to repetitive afferent stimulation. Furthermore, seizure activity on kainic acid administration was markedly increased in mutant mice and was accompanied by heightened immediate early gene (c-fos) expression throughout the brain. In view of the regional selectivity of BSP1/neuropsin brain expression, the observed phenotype may selectively reflect limbic function, further implicating the hippocampus and amygdala in controlling cortical activation. Within the hippocampus, our data suggest that BSP1/neuropsin, unlike other serine proteases, has little effect on physiological synaptic remodeling and instead plays a role in limiting neuronal hyperexcitability induced by epileptogenic insult.
Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; Morrow, Danielle H.; McKinley, Raechel E.; Cook, Jason B.; O’Buckley, Todd K.
2014-01-01
Rationale Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. Objectives The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. Methods Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 µm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. Results FSS decreased circulating 3α,5α-THP (−41.6± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (−15.2±5.7 %), lateral amygdala (LA, −31.1±13.4 %), and nucleus accumbens (NAcc) shell (−31.9±14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. Conclusions The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/ metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity. PMID:24744202
A neurophysiologic model for aggressive behavior in the cat.
Andy, O J; Giurintano, L P; Giurintano, S L
1978-01-01
A neurophysiologic model for aggressive behavior in the cat is proposed. Stimulus-bound and seizure-bound aggression was evaluated in relation to limbic and basal ganglia induced seizures (after-discharges). Electrically induced limbic and basal ganglia after-discharges were used because they are known to implicate septohypothalamic sites from which aggression can be elicited by direct stimulation. The occurrence of behavioral aggression is correlated with the discharge characteristics of a single discharging system and with two interacting discharging systems. Aggression is composed of autonomic and somato-motor components which poses relatively low and high thresholds, respectively, for their activation. Aggression occurring during a combined septum and amygdala discharge was more intense and prolonged than with a septum discharge alone. Participation of a slow frequency discharging basal ganglia system activated seizure-bound aggression in an otherwise nonaggressive limbic seizure. The limbic and basal ganglia stimulations and after-discharges lowered the excitability threshold of the aggression system and made it more vulnerable to being activated by external stimuli, such as visual and auditory stimuli. These observations are reminiscent of patients with aggressive behavior associated with psychomotor seizures.
Neuroanatomy of the killer whale (Orcinus orca) from magnetic resonance images.
Marino, Lori; Sherwood, Chet C; Delman, Bradley N; Tang, Cheuk Y; Naidich, Thomas P; Hof, Patrick R
2004-12-01
This article presents the first series of MRI-based anatomically labeled sectioned images of the brain of the killer whale (Orcinus orca). Magnetic resonance images of the brain of an adult killer whale were acquired in the coronal and axial planes. The gross morphology of the killer whale brain is comparable in some respects to that of other odontocete brains, including the unusual spatial arrangement of midbrain structures. There are also intriguing differences. Cerebral hemispheres appear extremely convoluted and, in contrast to smaller cetacean species, the killer whale brain possesses an exceptional degree of cortical elaboration in the insular cortex, temporal operculum, and the cortical limbic lobe. The functional and evolutionary implications of these features are discussed. (c) 2004 Wiley-Liss, Inc.
Oxytocin and Serotonin Brain Mechanisms in the Nonhuman Primate.
Lefevre, Arthur; Richard, Nathalie; Jazayeri, Mina; Beuriat, Pierre-Aurélien; Fieux, Sylvain; Zimmer, Luc; Duhamel, Jean-René; Sirigu, Angela
2017-07-12
Oxytocin (OT) is increasingly studied for its therapeutic potential in psychiatric disorders, which are associated with the deregulation of several neurotransmission systems. Studies in rodents demonstrated that the interaction between OT and serotonin (5-HT) is critical for several aspects of social behavior. Using PET scan in humans, we have recently found that 5-HT 1A receptor (5-HT 1A R) function is modified after intranasal oxytocin intake. However, the underlying mechanism between OT and 5-HT remains unclear. To understand this interaction, we tested 3 male macaque monkeys using both [ 11 C]DASB and [ 18 F]MPPF, two PET radiotracers, marking the serotonin transporter and the 5-HT 1A R, respectively. Oxytocin (1 IU in 20 μl of ACSF) or placebo was injected into the brain lateral ventricle 45 min before scans. Additionally, we performed postmortem autoradiography. Compared with placebo, OT significantly reduced [ 11 C]DASB binding potential in right amygdala, insula, and hippocampus, whereas [ 18 F]MPPF binding potential increased in right amygdala and insula. Autoradiography revealed that [ 11 C]DASB was sensitive to physiological levels of 5-HT modification, and that OT does not act directly on the 5-HT 1A R. Our results show that oxytocin administration in nonhuman primates influences serotoninergic neurotransmission via at least two ways: (1) by provoking a release of serotonin in key limbic regions; and (2) by increasing the availability of 5-HT 1A R receptors in the same limbic areas. Because these two molecules are important for social behavior, our study sheds light on the specific nature of their interaction, therefore helping to develop new mechanisms-based therapies for psychiatric disorders. SIGNIFICANCE STATEMENT Social behavior is largely controlled by brain neuromodulators, such as oxytocin and serotonin. While these are currently targeted in the context of psychiatric disorders such as autism and schizophrenia, a new promising pharmaceutical strategy is to study the interaction between these systems. Here we depict the interplay between oxytocin and serotonin in the nonhuman primate brain. We found that oxytocin provokes the release of serotonin, which in turn impacts on the serotonin 1A receptor system, by modulating its availability. This happens in several key brain regions for social behavior, such as the amygdala and insula. This novel finding can open ways to advance treatments where drugs are combined to influence several neurotransmission networks. Copyright © 2017 the authors 0270-6474/17/376741-10$15.00/0.
Default network connectivity decodes brain states with simulated microgravity.
Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen
2016-04-01
With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.
Size Matters: Increased Grey Matter in Boys with Conduct Problems and Callous-Unemotional Traits
ERIC Educational Resources Information Center
De Brito, Stephane A.; Mechelli, Andrea; Wilke, Marko; Laurens, Kristin R.; Jones, Alice P.; Barker, Gareth J.; Hodgins, Sheilagh; Viding, Essi
2009-01-01
Brain imaging studies of adults with psychopathy have identified structural and functional abnormalities in limbic and prefrontal regions that are involved in emotion recognition, decision-making, morality and empathy. Among children with conduct problems, a small subgroup presents callous-unemotional traits thought to be antecedents of…
Brain Metabolism during Hallucination-Like Auditory Stimulation in Schizophrenia
Horga, Guillermo; Fernández-Egea, Emilio; Mané, Anna; Font, Mireia; Schatz, Kelly C.; Falcon, Carles; Lomeña, Francisco; Bernardo, Miguel; Parellada, Eduard
2014-01-01
Auditory verbal hallucinations (AVH) in schizophrenia are typically characterized by rich emotional content. Despite the prominent role of emotion in regulating normal perception, the neural interface between emotion-processing regions such as the amygdala and auditory regions involved in perception remains relatively unexplored in AVH. Here, we studied brain metabolism using FDG-PET in 9 remitted patients with schizophrenia that previously reported severe AVH during an acute psychotic episode and 8 matched healthy controls. Participants were scanned twice: (1) at rest and (2) during the perception of aversive auditory stimuli mimicking the content of AVH. Compared to controls, remitted patients showed an exaggerated response to the AVH-like stimuli in limbic and paralimbic regions, including the left amygdala. Furthermore, patients displayed abnormally strong connections between the amygdala and auditory regions of the cortex and thalamus, along with abnormally weak connections between the amygdala and medial prefrontal cortex. These results suggest that abnormal modulation of the auditory cortex by limbic-thalamic structures might be involved in the pathophysiology of AVH and may potentially account for the emotional features that characterize hallucinatory percepts in schizophrenia. PMID:24416328
Kraus, Kari Suzanne; Canlon, Barbara
2012-06-01
Acoustic experience such as sound, noise, or absence of sound induces structural or functional changes in the central auditory system but can also affect limbic regions such as the amygdala and hippocampus. The amygdala is particularly sensitive to sound with valence or meaning, such as vocalizations, crying or music. The amygdala plays a central role in auditory fear conditioning, regulation of the acoustic startle response and can modulate auditory cortex plasticity. A stressful acoustic stimulus, such as noise, causes amygdala-mediated release of stress hormones via the HPA-axis, which may have negative effects on health, as well as on the central nervous system. On the contrary, short-term exposure to stress hormones elicits positive effects such as hearing protection. The hippocampus can affect auditory processing by adding a temporal dimension, as well as being able to mediate novelty detection via theta wave phase-locking. Noise exposure affects hippocampal neurogenesis and LTP in a manner that affects structural plasticity, learning and memory. Tinnitus, typically induced by hearing malfunctions, is associated with emotional stress, depression and anatomical changes of the hippocampus. In turn, the limbic system may play a role in the generation as well as the suppression of tinnitus indicating that the limbic system may be essential for tinnitus treatment. A further understanding of auditory-limbic interactions will contribute to future treatment strategies of tinnitus and noise trauma. Copyright © 2012 Elsevier B.V. All rights reserved.
A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia.
Wojtalik, Jessica A; Smith, Matthew J; Keshavan, Matcheri S; Eack, Shaun M
2017-10-21
Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Brain perfusion alterations in depressed patients with Parkinson's disease.
Kim, Young-Do; Jeong, Hyeonseok S; Song, In-Uk; Chung, Yong-An; Namgung, Eun; Kim, Yong-Duk
2016-12-01
Although Parkinson's disease (PD) is frequently accompanied by depression, brain perfusion deficits in PD with depression remain unclear. This study aimed to assess alterations in regional cerebral blood flow (rCBF) in depressed PD patients using 99m Tc hexamethyl-propylene-amine-oxime single-photon emission computed tomography (SPECT). Among 78 patients with PD, 35 patients were classified into the depressed PD group, while the rest (43 patients) was assigned to the nondepressed PD group based on the scores of the Geriatric Depressive Scale (GDS). All participants underwent brain SPECT imaging. The voxel-wise whole-brain analysis and region-of-interest (ROI) analysis of the limbic areas were conducted to compare rCBF between the depressed and nondepressed PD groups. The depressed PD patients demonstrated higher GDS scores than nondepressed patients, whereas between-group differences in the PD severity and cognitive function were not significant. Perfusion in the left cuneus was increased, while that in the right superior temporal gyrus and right medial orbitofrontal cortex was reduced in the depressed PD patients as compared with nondepressed PD patients. In addition, the ROI analysis demonstrated rCBF decreases in the amygdala, anterior cingulate cortex, hippocampus, and parahippocampal gyrus in the depressed PD group. A positive correlation was found between the GDS scores and rCBF in the left cuneus cluster in the depressed PD patients. This study identified the regional pattern of brain perfusion that distinguished depressed from nondepressed PD patients. Hyperperfusion in the occipital areas and hypoperfusion in the fronto-temporo-limbic regions may be potential imaging biomarkers for depression in PD.
Gehricke, Jean-G; Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L Tugan
2017-01-01
This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker.
Brakowski, Janis; Spinelli, Simona; Dörig, Nadja; Bosch, Oliver Gero; Manoliu, Andrei; Holtforth, Martin Grosse; Seifritz, Erich
2017-09-01
The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across studies and implementation of functional connectivity as a scientifically and clinically useful biomarker. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kruggel, Frithjof; Thampipop, Tanyaporn; Alejo, Sharina Dyan; Tatos, Erik; Fallon, James; Muftuler, L. Tugan
2017-01-01
Background This is one of the first studies to examine the structural brain anatomy and connectivity associated with an ADHD diagnosis and child as well as adult ADHD symptoms in young adults. It was hypothesized that an adult ADHD diagnosis and in particular childhood symptoms, are associated with widespread changes in the brain macro- and microstructure, which can be used to develop a morphometric biomarker for ADHD. Methods Voxel-wise linear regression models were used to examine structural and diffusion-weighted MRI data in 72 participants (31 young adults with ADHD and 41 controls without ADHD) in relation to diagnosis and the number of self-reported child and adult symptoms. Results Findings revealed significant associations between ADHD diagnosis and widespread changes to the maturation of white matter fiber bundles and gray matter density in the brain, such as structural shape changes (incomplete maturation) of the middle and superior temporal gyrus, and fronto-basal portions of both frontal lobes. ADHD symptoms in childhood showed the strongest association with brain macro- and microstructural abnormalities. At the brain circuitry level, the superior longitudinal fasciculus (SLF) and cortico-limbic areas are dysfunctional in individuals with ADHD. The morphometric findings predicted an ADHD diagnosis correctly up to 83% of all cases. Conclusion An adult ADHD diagnosis and in particular childhood symptoms are associated with widespread micro- and macrostructural changes. The SLF and cortico-limbic findings suggest complex audio-visual, motivational, and emotional dysfunctions associated with ADHD in young adults. The sensitivity of the morphometric findings in predicting an ADHD diagnosis was sufficient, which indicates that MRI-based assessments are a promising strategy for the development of a biomarker. PMID:28406942
Pu, Weidan; Luo, Qiang; Jiang, Yali; Gao, Yidian; Ming, Qingsen; Yao, Shuqiao
2017-09-12
Psychopathic traits of conduct disorder (CD) have a core callous-unemotional (CU) component and an impulsive-antisocial component. Previous task-driven fMRI studies have suggested that psychopathic traits are associated with dysfunction of several brain areas involved in different cognitive functions (e.g., empathy, reward, and response inhibition etc.), but the relationship between psychopathic traits and intrinsic brain functional architecture has not yet been explored in CD. Using a holistic brain-wide functional connectivity analysis, this study delineated the alterations in brain functional networks in patients with conduct disorder. Compared with matched healthy controls, we found decreased anti-synchronization between the fronto-parietal network (FPN) and default mode network (DMN), and increased intra-network synchronization within the frontothalamic-basal ganglia, right frontoparietal, and temporal/limbic/visual networks in CD patients. Correlation analysis showed that the weakened FPN-DMN interaction was associated with CU traits, while the heightened intra-network functional connectivity was related to impulsivity traits in CD patients. Our findings suggest that decoupling of cognitive control (FPN) with social understanding of others (DMN) is associated with the CU traits, and hyper-functions of the reward and motor inhibition systems elevate impulsiveness in CD.
Adolescent brain development in normality and psychopathology
LUCIANA, MONICA
2014-01-01
Since this journal’s inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical–cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology–context interactions, represent the field’s most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled. PMID:24342843
Adolescent brain development in normality and psychopathology.
Luciana, Monica
2013-11-01
Since this journal's inception, the field of adolescent brain development has flourished, as researchers have investigated the underpinnings of adolescent risk-taking behaviors. Explanations based on translational models initially attributed such behaviors to executive control deficiencies and poor frontal lobe function. This conclusion was bolstered by evidence that the prefrontal cortex and its interconnections are among the last brain regions to structurally and functionally mature. As substantial heterogeneity of prefrontal function was revealed, applications of neuroeconomic theory to adolescent development led to dual systems models of behavior. Current epidemiological trends, behavioral observations, and functional magnetic resonance imaging based brain activity patterns suggest a quadratic increase in limbically mediated incentive motivation from childhood to adolescence and a decline thereafter. This elevation occurs in the context of immature prefrontal function, so motivational strivings may be difficult to regulate. Theoretical models explain this patterning through brain-based accounts of subcortical-cortical integration, puberty-based models of adolescent sensation seeking, and neurochemical dynamics. Empirically sound tests of these mechanisms, as well as investigations of biology-context interactions, represent the field's most challenging future goals, so that applications to psychopathology can be refined and so that developmental cascades that incorporate neurobiological variables can be modeled.
Yang, Bao-Zhu; Balodis, Iris M; Lacadie, Cheryl M; Xu, Jiansong; Potenza, Marc N
2016-06-01
Background and aims Corticostriatal-limbic neurocircuitry, emotional and motivational processing, dopaminergic and noradrenergic systems and genetic factors have all been implicated in pathological gambling (PG). However, allelic variants of genes influencing dopaminergic and noradrenergic neurotransmitters have not been investigated with respect to the neural correlates of emotional and motivational states in PG. Dopamine beta-hydroxylase (DBH) converts dopamine to norepinephrine; the T allele of a functional single-nucleotide polymorphism rs1611115 (C-1021T) in the DBH gene is associated with less DBH activity and has been linked to emotional processes and addiction. Here, we investigate the influence of rs1611115 on the neural correlates of emotional and motivational processing in PG and healthy comparison (HC) participants. Methods While undergoing functional magnetic resonance imaging, 18 PG and 25 HC participants, all European Americans, viewed gambling-, sad-, and cocaine-related videotapes. Analyses focused on brain activation differences related to DBH genotype (CC/T-carrier [i.e., CT and TT]) and condition (sad/gambling/cocaine). Results CC participants demonstrated greater recruitment of corticostriatal-limbic regions, relative to T-carriers. DBH variants were also associated with altered corticostriatal-limbic activations across the different videotape conditions, and this association appeared to be driven by greater activation in CC participants relative to T-carriers during the sad condition. CC relative to T-carrier subjects also reported greater subjective sadness to the sad videotapes. Conclusions Individual differences in genetic composition linked to aminergic function contribute significantly to emotional regulation across diagnostic groups and warrant further investigation in PG.
Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W
2014-10-01
The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.
McGill, Anne-Thea
2014-01-01
The medical, research and general community is unable to effect significantly decreased rates of central obesity and related type II diabetes mellitus (TIIDM), cardiovascular disease (CVD) and cancer. All conditions seem to be linked by the concept of the metabolic syndrome (MetS), but the underlying causes are not known. MetS markers may have been mistaken for causes, thus many treatments are destined to be suboptimal. The current paper aims to critique current paradigms, give explanations for their persistence, and to return to first principles in an attempt to determine and clarify likely causes of MetS and obesity related comorbidities. A wide literature has been mined, study concepts analysed and the basics of human evolution and new biochemistry reviewed. A plausible, multifaceted composite unifying theory is formulated. The basis of the theory is that the proportionately large, energy-demanding human brain may have driven co-adaptive mechanisms to provide, or conserve, energy for the brain. A 'dual system' is proposed. 1) The enlarged, complex cortico-limbic-striatal system increases dietary energy by developing strong neural self-reward/motivation pathways for the acquisition of energy dense food, and (2) the nuclear factor-erythroid 2-related factor 2 (NRF2) cellular protection system amplifies antioxidant, antitoxicant and repair activity by employing plant chemicals, becoming highly energy efficient in humans. The still-evolving, complex human cortico-limbic-striatal system generates strong behavioural drives for energy dense food procurement, including motivating agricultural technologies and social system development. Addiction to such foods, leading to neglect of nutritious but less appetizing 'common or garden' food, appears to have occurred. Insufficient consumption of food micronutrients prevents optimal human NRF2 function. Inefficient oxidation of excess energy forces central and non-adipose cells to store excess toxic lipid. Oxidative stress and metabolic inflammation, or metaflammation, allow susceptibility to infectious, degenerative atherosclerotic cardiovascular, autoimmune, neurodegenerative and dysplastic diseases. Other relevant human-specific co-adaptations are examined, and encompass the unusual ability to store fat, certain vitamin pathways, the generalised but flexible intestine and microbiota, and slow development and longevity. This theory has significant past and future corollaries, which are explored in a separate article by McGill, A-T, in Archives of Public Health, 72: 31.
The frontoparietal control system: A central role in mental health
Cole, Michael W.; Repovs, Grega; Anticevic, Alan
2014-01-01
Recent findings suggest the existence of a frontoparietal control system consisting of ‘flexible hubs’ that regulate distributed systems (e.g., visual, limbic, motor) according to current task goals. A growing number of studies are reporting alterations of this control system across a striking range of mental diseases. We suggest this may reflect a critical role for the control system in promoting and maintaining mental health. Specifically, we propose that this system implements feedback control to regulate symptoms as they arise (e.g., excessive anxiety reduced via regulation of amygdala), such that an intact control system is protective against a variety of mental illnesses. Consistent with this possibility, recent results indicate that several major mental illnesses involve altered brain-wide connectivity of the control system, likely altering its ability to regulate symptoms. These results suggest that this ‘immune system of the mind’ may be an especially important target for future basic and clinical research. PMID:24622818
The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease
Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia
2011-01-01
Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273
Chu, Shuilian; Xiao, Dan; Wang, Shuangkun; Peng, Peng; Xie, Teng; He, Yong; Wang, Chen
2014-01-01
Nicotine is primarily rsponsible for the highly addictive properties of cigarettes. Similar to other substances, nicotine dependence is related to many important brain regions, particular in mesolimbic reward circuit. This study was to further reveal the alteration of brain function activity during resting state in chronic smokers by fractional amplitude of low frequency fluctuation (fALFF) based on functional magnetic resonance imaging (fMRI), in order to provide the evidence of neurobiological mechanism of smoking. This case control study involved twenty healthy smokers and nineteen healthy nonsmokers recruited by advertisement. Sociodemographic, smoking related characteristics and fMRI images were collected and the data analyzed. Compared with nonsmokers, smokers showed fALFF increased significantly in the left middle occipital gyrus, left limbic lobe and left cerebellum posterior lobe but decreases in the right middle frontal gyrus, right superior temporal gyrus, right extra nuclear, left postcentral gyrus and left cerebellum anterior lobe (cluster size >100 voxels). Compared with light smokers (pack years ≤ 20), heavy smokers (pack years >20) showed fALFF increased significantly in the right superior temporal gyrus, right precentral gyrus, and right occipital lobe/cuneus but decreased in the right/left limbic lobe/cingulate gyrus, right/left frontal lobe/sub gyral, right/left cerebellum posterior lobe (cluster size >50 voxels). Compared with nonsevere nicotine dependent smokers (Fagerstrőm test for nicotine dependence, score ≤ 6), severe nicotine dependent smokers (score >6) showed fALFF increased significantly in the right/left middle frontal gyrus, right superior frontal gyrus and left inferior parietal lobule but decreased in the left limbic lobe/cingulate gyrus (cluster size >25 voxels). In smokers during rest, the activity of addiction related regions were increased and the activity of smoking feeling, memory, related regions were also changed. The resting state activity changes in many regions were associated with the cumulative amount of nicotine intake and the severity of nicotine dependence.
Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.
2013-01-01
Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation. PMID:24278239
Kisler, Lee-Bareket; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone; Weissman-Fogel, Irit
2016-11-01
Behavioral studies found greater pain sensitivity in females that vanishes fully or partially when controlling for the emotional state. Furthermore, pain-related brain activation hints at the role of limbic structures in sex differences in pain processing. We aimed to investigate the role of pain-related limbic structures in mediating the relation between subjects' affective state (i.e., anxiety) and pain. Contact heat-evoked potentials (CHEPs) were recorded in 26 healthy subjects (13 males) simultaneously with innocuous (42 °C) baseline and target noxious (52 °C) series of stimuli administered to the left non-dominant volar forearm. The N2 and P2 components were analyzed, and their generators' activity was estimated using standardized low-resolution brain electromagnetic tomography. Thereafter, structural equation modeling (SEM) was applied separately for females and males, examining the mediatory role of the CHEPs' limbic structures generators [posterior midcingulate cortex (pMCC), insula, amygdala, and hippocampus] in the anxiety-pain sensitivity association. Females exhibited greater P2 amplitudes that were highly associated with larger pMCC activity (r = 0.910, p < 0.001). This correlation was also evident in males, though with less strength (r = 0.578, p = 0.039). Moreover, the P2 amplitudes were associated both in females (r = 0.645, p = 0.017) and males (r = 0.608, p = 0.028) with the activity of the amygdala\\hippocampus\\insula. SEM revealed that the relationship between state anxiety and pain ratings was only in females fully mediated via the effect of the pMCC on the P2 amplitude. These findings suggest that sexual dimorphism in anxiety-related brain activity may explain the differences found in CHEPs and the sex-related association between anxiety and pain.
Ross, Erika K; Kim, Joo Pyung; Settell, Megan L; Han, Seong Rok; Blaha, Charles D; Min, Hoon-Ki; Lee, Kendall H
2016-03-01
Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimer's disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of large-scale functional brain networks in children.
Supekar, Kaustubh; Musen, Mark; Menon, Vinod
2009-07-01
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.
Development of Large-Scale Functional Brain Networks in Children
Supekar, Kaustubh; Musen, Mark; Menon, Vinod
2009-01-01
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066
The functional neuroanatomy of decision-making.
Rosenbloom, Michael H; Schmahmann, Jeremy D; Price, Bruce H
2012-01-01
Decision-making is a complex executive function that draws on past experience, present goals, and anticipation of outcome, and which is influenced by prevailing and predicted emotional tone and cultural context. Functional imaging investigations and focal lesion studies identify the orbitofrontal, anterior cingulate, and dorsolateral prefrontal cortices as critical to decision-making. The authors review the connections of these prefrontal regions with the neocortex, limbic system, basal ganglia, and cerebellum, highlight current ideas regarding the cognitive processes of decision-making that these networks subserve, and present a novel integrated neuroanatomical model for decision-making. Finally, clinical relevance of this circuitry is illustrated through a discussion of frontotemporal dementia, traumatic brain injury, and sociopathy.
Preferential suppression of limbic Fos expression by intermittent hypoxia in obese diabetic mice.
Mukai, Takahiro; Nagao, Yuki; Nishioka, Satoshi; Hayashi, Tetsuya; Shimizu, Saki; Ono, Asuka; Sakagami, Yoshihisa; Watanabe, Sho; Ueda, Yoko; Hara, Madoka; Tokudome, Kentaro; Kato, Ryuji; Matsumura, Yasuo; Ohno, Yukihiro
2013-12-01
Sleep apnea (SA) causes not only sleep disturbances, but also neurocognitive impairments and/or psychoemotional disorders. Here, we studied the effects of intermittent hypoxia (IH) on forebrain Fos expression using obese diabetic db/db mice to explore the pathophysiological alterations in neural activities and the brain regions related to SA syndrome. Male db/db mice were exposed to IH stimuli (repetitive 6-min cycles of 1min with 5% oxygen followed by 5min with 21% oxygen) for 8h (80 cycles) per day or normoxic condition (control group) for 14 days. Fos protein expression was immunohistochemically examined a day after the last IH exposure. Mapping analysis revealed a significant reduction of Fos expression by IH in limbic and paralimbic structures, including the cingulate and piriform cortices, the core part of the nucleus accumbens and most parts of the amygdala (i.e., the basolateral and basomedial amygdaloid nuclei, cortical amygdaloid area and medial amygdaloid nucleus). In the brain stem regions, Fos expression was region-specifically reduced in the ventral tegmental area while other regions including the striatum, thalamus and hypothalamus, were relatively resistant against IH. In addition, db/db mice exposed to IH showed a trend of sedative and/or depressive behavioral signs in the open field and forced swim tests. The present results illustrate that SA in the obese diabetic model causes neural suppression preferentially in the limbic and paralimbic regions, which may be related to the neuropsychological disturbances associated with SA. Copyright © 2013. Published by Elsevier Ireland Ltd.
Mashin, V A; Mashina, M N
2004-12-01
In the paper, outcomes of the researches devoted to factor analysis of heart rate variability parameters and definition of the most informative parameters for diagnostics of functional states and an evaluation of level of stability to mental loads, are presented. The factor structure of parameters, which unclude integral level of heart rate variability (1), balance between activity of vagus and brain cortical-limbic systems (2), integrated level of cardiovascular system functioning (3), is substantiated. Factor analysis outcomes have been used for construction of functional state classification, for their differential diagnostics, and for development and check of algorithm for evaluation of the stability level in mental loads.
Kim, Joo Pyung; Min, Hoon-Ki; Knight, Emily J; Duffy, Penelope S; Abulseoud, Osama A; Marsh, Michael P; Kelsey, Katherine; Blaha, Charles D; Bennet, Kevin E; Frye, Mark A; Lee, Kendall H
2013-12-15
Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Mannewitz, A; Bock, J; Kreitz, S; Hess, A; Goldschmidt, J; Scheich, H; Braun, Katharina
2018-05-01
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Skouras, Stavros; Lohmann, Gabriele
2018-01-01
Sound is a potent elicitor of emotions. Auditory core, belt and parabelt regions have anatomical connections to a large array of limbic and paralimbic structures which are involved in the generation of affective activity. However, little is known about the functional role of auditory cortical regions in emotion processing. Using functional magnetic resonance imaging and music stimuli that evoke joy or fear, our study reveals that anterior and posterior regions of auditory association cortex have emotion-characteristic functional connectivity with limbic/paralimbic (insula, cingulate cortex, and striatum), somatosensory, visual, motor-related, and attentional structures. We found that these regions have remarkably high emotion-characteristic eigenvector centrality, revealing that they have influential positions within emotion-processing brain networks with “small-world” properties. By contrast, primary auditory fields showed surprisingly strong emotion-characteristic functional connectivity with intra-auditory regions. Our findings demonstrate that the auditory cortex hosts regions that are influential within networks underlying the affective processing of auditory information. We anticipate our results to incite research specifying the role of the auditory cortex—and sensory systems in general—in emotion processing, beyond the traditional view that sensory cortices have merely perceptual functions. PMID:29385142
Sex differences in structural brain asymmetry predict overt aggression in early adolescents.
Visser, Troy A W; Ohan, Jeneva L; Whittle, Sarah; Yücel, Murat; Simmons, Julian G; Allen, Nicholas B
2014-04-01
The devastating social, emotional and economic consequences of human aggression are laid bare nightly on newscasts around the world. Aggression is principally mediated by neural circuitry comprising multiple areas of the prefrontal cortex and limbic system, including the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), amygdala and hippocampus. A striking characteristic of these regions is their structural asymmetry about the midline (i.e. left vs right hemisphere). Variations in these asymmetries have been linked to clinical disorders characterized by aggression and the rate of aggressive behavior in psychiatric patients. Here, we show for the first time that structural asymmetries in prefrontal cortical areas are also linked to aggression in a normal population of early adolescents. Our findings indicate a relationship between parent reports of aggressive behavior in adolescents and structural asymmetries in the limbic and paralimbic ACC and OFC, and moreover, that this relationship varies by sex. Furthermore, while there was no relationship between aggression and structural asymmetries in the amygdala or hippocampus, hippocampal volumes did predict aggression in females. Taken together, the results suggest that structural asymmetries in the prefrontal cortex may influence human aggression, and that the anatomical basis of aggression varies substantially by sex.
Elevated immunoglobulin levels in the cerebrospinal fluid from lupus-prone mice
Sidor, Michelle M.; Sakic, Boris; Malinowski, Paul M.; Ballok, David A.; Oleschuk, Curtis J.; Macri, Joseph
2006-01-01
The systemic autoimmune disease lupus erythematosus (SLE) is frequently accompanied by neuropsychiatric manifestations and brain lesions of unknown etiology. The MRL-lpr mice show behavioral dysfunction concurrent with progression of a lupus-like disease, thus providing a valuable model in understanding the pathogenesis of autoimmunity-induced CNS damage. Profound neurodegeneration in the limbic system of MRL-lpr mice is associated with cytotoxicity of their cerebrospinal fluid (CSF) to mature and immature neurons. We have recently shown that IgG-rich CSF fraction largely accounts for this effect. The present study examines IgG levels in serum and CSF, as well as the permeability of the blood–brain barrier in mice that differ in immune status, age, and brain morphology. In comparison to young MRL-lpr mice and age-matched congenic controls, a significant elevation of IgG and albumin levels were detected in the CSF of aged autoimmune MRL-lpr mice. Two-dimensional gel electrophoresis and MALDI-TOF MS confirmed elevation in IgG heavy and Ig light chain isoforms in the CSF. Increased permeability of the blood–brain barrier correlated with neurodegeneration (as revealed by Fluoro Jade B staining) in periventricular areas. Although the source and specificity of neuropathogenic antibodies remain to be determined, these results support the hypothesis that a breached blood–brain barrier and IgG molecules are involved in the etiology of CNS damage during SLE-like disease. PMID:15972238
A Role for the Motor System in Binding Abstract Emotional Meaning
Carota, Francesca; Hauk, Olaf; Mohr, Bettina; Pulvermüller, Friedemann
2012-01-01
Sensorimotor areas activate to action- and object-related words, but their role in abstract meaning processing is still debated. Abstract emotion words denoting body internal states are a critical test case because they lack referential links to objects. If actions expressing emotion are crucial for learning correspondences between word forms and emotions, emotion word–evoked activity should emerge in motor brain systems controlling the face and arms, which typically express emotions. To test this hypothesis, we recruited 18 native speakers and used event-related functional magnetic resonance imaging to compare brain activation evoked by abstract emotion words to that by face- and arm-related action words. In addition to limbic regions, emotion words indeed sparked precentral cortex, including body-part–specific areas activated somatotopically by face words or arm words. Control items, including hash mark strings and animal words, failed to activate precentral areas. We conclude that, similar to their role in action word processing, activation of frontocentral motor systems in the dorsal stream reflects the semantic binding of sign and meaning of abstract words denoting emotions and possibly other body internal states. PMID:21914634
Reward deficiency and anti-reward in pain chronification.
Borsook, D; Linnman, C; Faria, V; Strassman, A M; Becerra, L; Elman, I
2016-09-01
Converging lines of evidence suggest that the pathophysiology of pain is mediated to a substantial degree via allostatic neuroadaptations in reward- and stress-related brain circuits. Thus, reward deficiency (RD) represents a within-system neuroadaptation to pain-induced protracted activation of the reward circuits that leads to depletion-like hypodopaminergia, clinically manifested anhedonia, and diminished motivation for natural reinforcers. Anti-reward (AR) conversely pertains to a between-systems neuroadaptation involving over-recruitment of key limbic structures (e.g., the central and basolateral amygdala nuclei, the bed nucleus of the stria terminalis, the lateral tegmental noradrenergic nuclei of the brain stem, the hippocampus and the habenula) responsible for massive outpouring of stressogenic neurochemicals (e.g., norepinephrine, corticotropin releasing factor, vasopressin, hypocretin, and substance P) giving rise to such negative affective states as anxiety, fear and depression. We propose here the Combined Reward deficiency and Anti-reward Model (CReAM), in which biopsychosocial variables modulating brain reward, motivation and stress functions can interact in a 'downward spiral' fashion to exacerbate the intensity, chronicity and comorbidities of chronic pain syndromes (i.e., pain chronification). Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Arnsten, Amy F T; Rubia, Katya
2012-04-01
This article aims to review basic and clinical studies outlining the roles of prefrontal cortical (PFC) networks in the behavior and cognitive functions that are compromised in childhood neurodevelopmental disorders and how these map into the neuroimaging evidence of circuit abnormalities in these disorders. Studies of animals, normally developing children, and patients with neurodevelopmental disorders were reviewed, with focus on neuroimaging studies. The PFC provides "top-down" regulation of attention, inhibition/cognitive control, motivation, and emotion through connections with posterior cortical and subcortical structures. Dorsolateral and inferior PFC regulate attention and cognitive/inhibitory control, whereas orbital and ventromedial structures regulate motivation and affect. PFC circuitries are very sensitive to their neurochemical environment, and small changes in the underlying neurotransmitter systems, e.g. by medications, can produce large effects on mediated function. Neuroimaging studies of children with neurodevelopmental disorders show altered brain structure and function in distinctive circuits respecting this organization. Children with attention-deficit/hyperactivity disorder show prominent abnormalities in the inferior PFC and its connections to striatal, cerebellar, and parietal regions, whereas children with conduct disorder show alterations in the paralimbic system, comprising ventromedial, lateral orbitofrontal, and superior temporal cortices together with specific underlying limbic regions, regulating motivation and emotion control. Children with major depressive disorder show alterations in ventral orbital and limbic activity, particularly in the left hemisphere, mediating emotions. Finally, children with obsessive-compulsive disorder appear to have a dysregulation in orbito-fronto-striatal inhibitory control pathways, but also deficits in dorsolateral fronto-parietal systems of attention. Altogether, there is a good correspondence between anatomical circuitry mediating compromised functions and patterns of brain structure and function changes in children with neuropsychiatric disorders. Medications may optimize the neurochemical environment in PFC and associated circuitries, and improve structure and function. Copyright © 2012 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Imai, Emiko; Katagiri, Yoshitada; Seki, Keiko; Kawamata, Toshio
2011-06-01
We present a neural model of the production of modulated speech streams in the brain, referred to as prosody, which indicates the limbic structure essential for producing prosody both linguistically and emotionally. This model suggests that activating the fundamental brain including monoamine neurons at the basal ganglia will potentially contribute to helping patients with prosodic disorders coming from functional defects of the fundamental brain to overcome their speech problem. To establish effective clinical treatment for such prosodic disorders, we examine how sounds affect the fundamental activity by using electroencephalographic measurements. Throughout examinations with various melodious sounds, we found that some melodies with lilting rhythms successfully give rise to the fast alpha rhythms at the electroencephalogram which reflect the fundamental brain activity without any negative feelings.
Impaired modulation of attention and emotion in schizophrenia.
Dichter, Gabriel S; Bellion, Carolyn; Casp, Michael; Belger, Aysenil
2010-05-01
Fronto-limbic interactions facilitate the generation of task-relevant responses while inhibiting interference from emotionally distracting information. Schizophrenia is associated with deficits in both executive attention and affective regulation. This study aims to elucidate the neural correlates of emotion-attention regulation and shifting in schizophrenia. We employed functional magnetic resonance imaging to probe the fronto-limbic regions in 16 adults with schizophrenia and 13 matched adults with no history of psychiatric illness. Subjects performed a forced-choice visual oddball task where they detected infrequent target circles embedded in a series of infrequent nontarget aversive and neutral pictures and frequent squares. In control participants, target events activated a dorsal frontoparietal network, whereas these regions were deactivated by aversive stimuli. Conversely, ventral frontolimbic brain regions were activated by aversive stimuli and deactivated by target events. In the patient group, regional hemodynamic timecourses revealed not only reduced activation to target and aversive events in dorsal executive and ventral limbic regions, respectively, but also reduced deactivation to target and aversive stimuli in ventral and dorsal regions, respectively, relative to the control group. Patients further showed reduced spatial extent of activation in the right inferior frontal gyrus during the target and aversive conditions. Activation of the anterior cingulate to aversive images was inversely related to severity of avolition and anhedonia symptoms in the schizophrenia group. These results suggest both frontal and limbic dysfunction in schizophrenia as well as aberrant reciprocal inhibitions between these regions during attention-emotion modulation in this disorder.
Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L
2011-05-03
Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.
Yang, Xun; Kendrick, Keith Maurice; Wu, Qizhu; Chen, Taolin; Lama, Sunima; Cheng, Bochao; Li, Shiguang; Huang, Xiaoqi; Gong, Qiyong
2013-01-01
Shyness and social anxiety are correlated to some extent and both are associated with hyper-responsivity to social stimuli in the frontal cortex and limbic system. However to date no studies have investigated whether common structural and functional connectivity differences in the brain may contribute to these traits. We addressed this issue in a cohort of 61 healthy adult subjects. Subjects were first assessed for their levels of shyness (Cheek and Buss Shyness scale) and social anxiety (Liebowitz Social Anxiety scale) and trait anxiety. They were then given MRI scans and voxel-based morphometry and seed-based, resting-state functional connectivity analysis investigated correlations with shyness and anxiety scores. Shyness scores were positively correlated with gray matter density in the cerebellum, bilateral superior temporal gyri and parahippocampal gyri and right insula. Functional connectivity correlations with shyness were found between the superior temporal gyrus, parahippocampal gyrus and the frontal gyri, between the insula and precentral gyrus and inferior parietal lobule, and between the cerebellum and precuneus. Additional correlations were found for amygdala connectivity with the medial frontal gyrus, superior frontal gyrus and inferior parietal lobule, despite the absence of any structural correlation. By contrast no structural or functional connectivity measures correlated with social or trait anxiety. Our findings show that shyness is specifically associated with structural and functional connectivity changes in cortical and limbic regions involved with processing social stimuli. These associations are not found with social or trait anxiety in healthy subjects despite some behavioral correlations with shyness.
Goelman, G; Ilinca, R; Zohar, I; Weinstock, M
2014-09-01
Stress during pregnancy in humans is known to be a risk factor for neuropsychiatric disorders in the offspring. Prenatal stress in rats caused depressive-like behavior that was restored to that of controls by maternal treatment with ladostigil (8.5 mg/kg per day), a brain-selective monoamine oxidase (MAO) inhibitor that prevented increased anxiety-like behavior in stressed mothers. Ladostigil inhibited maternal striatal MAO-A and -B by 45-50% at the time the pups were weaned. Using resting state-functional connectivity magnetic resonance imaging on rat male offspring of control mothers, and mothers stressed during gestation with and without ladostigil treatment, we identified neuronal connections that differed between these groups. The percentage of significant connections within a predefined predominantly limbic network in control rats was 23.3 within the right and 22.0 within the left hemisphere. Prenatal stress disturbed hemispheric symmetry, resulting in 30.2 and 21.6%, significant connections in the right and left hemispheres, respectively, but this was fully restored in the maternal ladostigil group to 24.6% in both hemispheres. All connections that were modified in prenatally stressed rats and restored by maternal drug treatment were associated with the dopaminergic system. Specifically, we observed that restoration of the connections of the right nucleus accumbens shell with frontal areas, the cingulate, septum and motor and sensory cortices, and those of the right globus pallidus with the infra-limbic and the dentate gyrus, were most important for prevention of depressive-like behavior. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Rifkin-Graboi, A; Kong, L; Sim, L W; Sanmugam, S; Broekman, B F P; Chen, H; Wong, E; Kwek, K; Saw, S-M; Chong, Y-S; Gluckman, P D; Fortier, M V; Pederson, D; Meaney, M J; Qiu, A
2015-01-01
Mechanisms underlying the profound parental effects on cognitive, emotional and social development in humans remain poorly understood. Studies with nonhuman models suggest variations in parental care affect the limbic system, influential to learning, autobiography and emotional regulation. In some research, nonoptimal care relates to decreases in neurogenesis, although other work suggests early-postnatal social adversity accelerates the maturation of limbic structures associated with emotional learning. We explored whether maternal sensitivity predicts human limbic system development and functional connectivity patterns in a small sample of human infants. When infants were 6 months of age, 20 mother–infant dyads attended a laboratory-based observational session and the infants underwent neuroimaging at the same age. After considering age at imaging, household income and postnatal maternal anxiety, regression analyses demonstrated significant indirect associations between maternal sensitivity and bilateral hippocampal volume at six months, with the majority of associations between sensitivity and the amygdala demonstrating similar indirect, but not significant results. Moreover, functional analyses revealed direct associations between maternal sensitivity and connectivity between the hippocampus and areas important for emotional regulation and socio-emotional functioning. Sensitivity additionally predicted indirect associations between limbic structures and regions related to autobiographical memory. Our volumetric results are consistent with research indicating accelerated limbic development in response to early social adversity, and in combination with our functional results, if replicated in a larger sample, may suggest that subtle, but important, variations in maternal care influence neuroanatomical trajectories important to future cognitive and emotional functioning. PMID:26506054
The functional neuroanatomy of bipolar disorder: a consensus model
Strakowski, Stephen M; Adler, Caleb M; Almeida, Jorge; Altshuler, Lori L; Blumberg, Hilary P; Chang, Kiki D; DelBello, Melissa P; Frangou, Sophia; McIntosh, Andrew; Phillips, Mary L; Sussman, Jessika E; Townsend, Jennifer D
2013-01-01
Objectives Functional neuroimaging methods have proliferated in recent years, such that functional magnetic resonance imaging, in particular, is now widely used to study bipolar disorder. However, discrepant findings are common. A workgroup was organized by the Department of Psychiatry, University of Cincinnati (Cincinnati, OH, USA) to develop a consensus functional neuroanatomic model of bipolar I disorder based upon the participants’ work as well as that of others. Methods Representatives from several leading bipolar disorder neuroimaging groups were organized to present an overview of their areas of expertise as well as focused reviews of existing data. The workgroup then developed a consensus model of the functional neuroanatomy of bipolar disorder based upon these data. Results Among the participants, a general consensus emerged that bipolar I disorder arises from abnormalities in the structure and function of key emotional control networks in the human brain. Namely, disruption in early development (e.g., white matter connectivity, prefrontal pruning) within brain networks that modulate emotional behavior leads to decreased connectivity among ventral prefrontal networks and limbic brain regions, especially amygdala. This developmental failure to establish healthy ventral prefrontal–limbic modulation underlies the onset of mania and ultimately, with progressive changes throughout these networks over time and with affective episodes, a bipolar course of illness. Conclusions This model provides a potential substrate to guide future investigations and areas needing additional focus are identified. PMID:22631617
Miquel, Marta; Vazquez-Sanroman, Dolores; Carbo-Gas, María; Gil-Miravet, Isis; Sanchis-Segura, Carla; Carulli, Daniela; Manzo, Jorge; Coria-Avila, Genaro A
2016-01-01
Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick
2010-09-01
Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours.
Raine, Adrian; Lee, Lydia; Yang, Yaling; Colletti, Patrick
2010-01-01
Background Antisocial personality disorder and psychopathy have been hypothesised to have a neurodevelopmental basis, but this proposition has not been formally tested. Aims This study tests the hypothesis that individuals with cavum septum pellucidum (CSP), a marker of limbic neural maldevelopment, will show higher levels of psychopathy and antisocial personality. Method Cavum septum pellucidum was assessed using anatomical magnetic resonance imaging in a community sample. Those with CSP (n = 19) were compared with those lacking CSP (n = 68) on antisocial personality, psychopathy and criminal offending. Results Those with CSP had significantly higher levels of antisocial personality, psychopathy, arrests and convictions compared with controls. The pervasiveness of this association was indicated by the fact that those lacking a diagnosis of antisocial personality disorder, but who were charged or convicted for an offence, had a more extensive CSP than non-antisocial controls. Results could not be attributed to prior trauma exposure, head injury, demographic factors or comorbid psychiatric conditions. Conclusions Our findings appear to be the first to provide evidence for a neurodevelopmental brain abnormality in those with antisocial personality disorder and psychopathy, and support the hypothesis that early maldevelopment of limbic and septal structures predisposes to the spectrum of antisocial behaviours. PMID:20807962
Impaired Frontal-Limbic White Matter Maturation in Children at Risk for Major Depression.
Hung, Yuwen; Saygin, Zeynep M; Biederman, Joseph; Hirshfeld-Becker, Dina; Uchida, Mai; Doehrmann, Oliver; Han, Michelle; Chai, Xiaoqian J; Kenworthy, Tara; Yarmak, Pavel; Gaillard, Schuyler L; Whitfield-Gabrieli, Susan; Gabrieli, John D E
2017-09-01
Depression is among the most common neuropsychiatric disorders. It remains unclear whether brain abnormalities associated with depression reflect the pathological state of the disease or neurobiological traits predisposing individuals to depression. Parental history of depression is a risk factor that more than triples the risk of depression. We compared white matter (WM) microstructure cross-sectionally in 40 children ages 8-14 with versus without parental history of depression (At-Risk vs. Control). There were significant differences in age-related changes of fractional anisotropy (FA) between the groups, localized in the anterior fronto-limbic WM pathways, including the anterior cingulum and the genu of the corpus callosum. Control children exhibited typical increasing FA with age, whereas At-Risk children exhibited atypical decreasing FA with age in these fronto-limbic regions. Furthermore, dorsal cingulate FA significantly correlated with depressive symptoms for At-Risk children. The results suggest maturational WM microstructure differences in mood-regulatory neurocircuitry that may contribute to neurodevelopmental risk for depression. The study provides new insights into neurodevelopmental susceptibility to depression and related disabilities that may promote early preventive intervention approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kofke, W A; Garman, R H; Janosky, J; Rose, M E
1996-07-01
We tested the hypotheses that convulsant doses of opioids would produce limbic system damage exacerbated by hexamethonium. Ventilated paralyzed rats received intravenous (IV) isovolumic infusion of fentanyl loading dose (LD) 1000 micrograms/kg, maintenance dose (MD) 40 micrograms.kg-1.min-1 (n = 10), sufentanil LD 400 micrograms/kg, MD 13.3 micrograms.kg-1.min-1 (n = 10), alfentanil LD 1500 micrograms/kg, MD 150 micrograms.kg-1.min-1 (n = 10), or 0.9% saline control LD 4 mliter/kg, MD 4 mliter.kg-1.h-1 (n = 10), with O2/N2 30%/70% during opioid infusion and O2/N2O in controls during saline infusion. Hexamethonium (LD 20 mg/kg, MD 40-120 mg.kg-1.h-1) was given IV during opioid infusion to half of the rats. Cerebral perfusion-fixation with formalin was performed 24 h later, followed by histopathologic assessment. None of the control rats showed any histologic abnormalities. Overall summed neuropathologic severity was worse in opioid treated groups (P = 0.01). Lesions occurred primarily in cortical regions and limbic system structures. When arterial blood pressure was controlled to a lower level with hexamethonium (147 vs 100 mm Hg), rats had less severe lesions (P = 0.02). These data indicate that fentanyl, sufentanil, and alfentanil all can produce histopathologic evidence of brain injury in rats mitigated by hexamethonium.
Van Vugt, Dean A; Krzemien, Alicja; Alsaadi, Hanin; Frank, Tamar C; Reid, Robert L
2014-04-16
We postulate that insulin regulation of food intake is compromised when insulin resistance is present. In order to investigate the effect of insulin sensitivity on appetitive brain responses, we conducted functional magnetic resonance imaging studies in a group of women diagnosed with polycystic ovary syndrome (PCOS) in which insulin sensitivity ranged from normal to resistant. Subjects (n=19) were imaged while viewing pictures of high calorie (HC) foods and low calorie (LC) foods after ingesting either 75 g glucose or an equivalent volume of water. The insulin sensitive group showed reduced blood oxygen level dependent (BOLD) signal in response to food pictures following glucose ingestion in numerous corticolimbic brain regions, whereas the insulin resistant group did not. There was a significant interaction between insulin sensitivity (sensitive vs resistant) and condition (water vs glucose). The largest clusters identified included the left insula, bilateral limbic/parahippocampal gyrus/culmen/midbrain, bilateral limbic lobe/precuneus, and left superior/mid temporal gyrus/parietal for HC and LC stimuli combined, the left parahippocampal gyrus/fusiform/pulvinar/midbrain for HC pictures, and the left superior/mid temporal gyrus/parietal and middle/inferior frontal gyrus/orbitofrontal cortex for LC pictures. Furthermore, BOLD signal in the anterior cingulate, medial frontal gyrus, posterior cingulate/precuneus, and parietal cortex during a glucose challenge correlated negatively with insulin sensitivity. We conclude the PCOS women with insulin resistance have an impaired brain response to a glucose challenge. The inability of postprandial hyperinsulinemia to inhibit brain responsiveness to food cues in insulin resistant subjects may lead to greater non-homeostatic eating. Copyright © 2014 Elsevier B.V. All rights reserved.
Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan
2018-01-01
Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.
Dai, Xi-Jian; Nie, Xiao; Liu, Xuming; Pei, Li; Jiang, Jian; Peng, De-chang; Gong, Hong-Han; Zeng, Xian-Jun; Wáng, Yì-Xiáng J.; Zhan, Yang
2016-01-01
Study Objectives: To explore the regional brain activities in patients with chronic primary insomnia (PCPIs) and their sex differences. Methods: Forty-two PCPIs (27 females, 15 males) and 42 good sleepers (GSs; 24 females, 18 males) were recruited. Six PCPIs (3 males, 3 females) were scanned twice by MRI to examine the test-retest reliability. Amplitude of low frequency fluctuation (ALFF) method was used to assess the local brain features. The mean signal values of the different ALFF areas were analyzed with a receiver operating characteristic (ROC) curve. Simple linear regression analysis was performed to investigate the relationships between clinical features and different brain areas. Results: Both female and male PCPIs showed higher ALFF in the temporal lobe and occipital lobe, especially in female PCPIs. Female PCPIs had lower ALFF in the bilateral cerebellum posterior lobe, left dorsolateral prefrontal cortex, and bilateral limbic lobe; however, male PCPIs showed lower ALFF in the left occipital gyrus. The mean signal value of the cerebellum in female PCPIs showed negative correlations with negative emotions. Compared with male PCPIs, female PCPIs showed higher ALFF in the bilateral middle temporal gyrus and lower ALFF in the left limbic lobe. The different areas showed high test-retest stability (Clusters of contiguous volumes ≥ 1080 mm3 with an intraclass correlation coefficient ≥ 0.80) and high degree of sensitivity and specificity. Conclusions: Female PCPIs showed more regional brain differences with higher and lower ALFF responses than male PCPIs. However, they shared analogous excessive hyperarousal mechanism and wide variations in aberrant brain areas. Citation: Dai XJ, Nie X, Liu X, Pei L, Jiang J, Peng D, Gong HH, Zeng XJ, Wáng YX, Zhan Y. Gender differences in regional brain activity in patients with chronic primary insomnia: evidence from a resting-state fMRI study. J Clin Sleep Med 2016;12(3):363–374. PMID:26715399
Developmental effects of androgens in the human brain.
Nguyen, T-V
2018-02-01
Neuroendocrine theories of brain development posit that androgens play a crucial role in sex-specific cortical growth, although little is known about the differential effects of testosterone and dehydroepiandrosterone (DHEA) on cortico-limbic development and cognition during adolescence. In this context, the National Institutes of Health Study of Normal Brain Development, a longitudinal study of typically developing children and adolescents aged 4-24 years (n=433), offers a unique opportunity to examine the developmental effects of androgens on cortico-limbic maturation and cognition. Using data from this sample, our group found that higher testosterone levels were associated with left-sided decreases in cortical thickness (CTh) in post-pubertal boys, particularly in the prefrontal cortex, compared to right-sided increases in CTh in somatosensory areas in pre-pubertal girls. Prefrontal-amygdala and prefrontal-hippocampal structural covariance (considered to reflect structural connectivity) also varied according to testosterone levels, with the testosterone-related brain phenotype predicting higher aggression levels and lower executive function, particularly in boys. By contrast, DHEA was associated with a pre-pubertal increase in CTh of several regions involved in cognitive control in both boys and girls. Covariance within several cortico-amygdalar structural networks also varied as a function of DHEA levels, with the DHEA-related brain phenotype predicting improvements in visual attention in both boys and girls. DHEA-related cortico-hippocampal structural covariance, on the other hand, predicted higher scores on a test of working memory. Interestingly, there were significant interactions between testosterone and DHEA, such that DHEA tended to mitigate the anti-proliferative effects of testosterone on brain structure. In sum, testosterone-related effects on the developing brain may lead to detrimental effects on cortical functions (ie, higher aggression and lower executive function), whereas DHEA-related effects may optimise cortical functions (ie, better attention and working memory), perhaps by decreasing the influence of amygdalar and hippocampal afferents on cortical functions. © 2017 British Society for Neuroendocrinology.
Swain, JE; Kim, P; Spicer, J; Ho, SS; Dayton, CJ; Elmadih, A; Abel, KM
2014-01-01
Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting of offspring enable formation of each individual’s first social bonds and critically shape infants’ behavior. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits toward long-term influence of early-life experiences on offspring. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Known deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses – commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain, and consider a current model and future directions that may have profound implications for intervention long term outcomes in families across risk and resilience profiles. PMID:24637261
Psychophysiological correlates of aggression and violence: an integrative review.
Patrick, Christopher J
2008-08-12
This paper reviews existing psychophysiological studies of aggression and violent behaviour including research employing autonomic, electrocortical and neuroimaging measures. Robust physiological correlates of persistent aggressive behaviour evident in this literature include low baseline heart rate, enhanced autonomic reactivity to stressful or aversive stimuli, enhanced EEG slow wave activity, reduced P300 brain potential response and indications from structural and functional neuroimaging studies of dysfunction in frontocortical and limbic brain regions that mediate emotional processing and regulation. The findings are interpreted within a conceptual framework that draws on two integrative models in the literature. The first is a recently developed hierarchical model of impulse control (externalizing) problems, in which various disinhibitory syndromes including aggressive and addictive behaviours of different kinds are seen as arising from common as well as distinctive aetiologic factors. This model represents an approach to organizing these various interrelated phenotypes and investigating their common and distinctive aetiologic substrates. The other is a neurobiological model that posits impairments in affective regulatory circuits in the brain as a key mechanism for impulsive aggressive behaviour. This model provides a perspective for integrating findings from studies employing different measures that have implicated varying brain structures and physiological systems in violent and aggressive behaviour.
Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.
Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S
2005-01-01
Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, B.A.; Gabriel, M.; Vogt, L.J.
Training-induced neuronal activity develops in the mammalian limbic system during discriminative avoidance conditioning. This study explores behaviorally relevant changes in muscarinic ACh receptor binding in 52 rabbits that were trained to one of five stages of conditioned response acquisition. Sixteen naive and 10 animals yoked to criterion performance served as control cases. Upon reaching a particular stage of training, the brains were removed and autoradiographically assayed for 3H-oxotremorine-M binding with 50 nM pirenzepine (OxO-M/PZ) or for 3H-pirenzepine binding in nine limbic thalamic nuclei and cingulate cortex. Specific OxO-M/PZ binding increased in the parvocellular division of the anterodorsal nucleus early inmore » training when the animals were first exposed to pairing of the conditional and unconditional stimuli. Elevated binding in this nucleus was maintained throughout subsequent training. In the parvocellular division of the anteroventral nucleus (AVp), OxO-M/PZ binding progressively increased throughout training, reached a peak at the criterion stage of performance, and returned to control values during extinction sessions. Peak OxO-M/PZ binding in AVp was significantly elevated over that for cases yoked to criterion performance. In the magnocellular division of the anteroventral nucleus (AVm), OxO-M/PZ binding was elevated only during criterion performance of the task, and it was unaltered in any other limbic thalamic nuclei. Specific OxO-M/PZ binding was also elevated in most layers in rostral area 29c when subjects first performed a significant behavioral discrimination. Training-induced alterations in OxO-M/PZ binding in AVp and layer Ia of area 29c were similar and highly correlated.« less
Schmidt, André; Zimak, Nina; Peterli, Ralph; Beglinger, Christoph; Borgwardt, Stefan
2015-01-01
Previous research has revealed that glucose and fructose ingestion differentially modulate release of satiation hormones. Recent studies have begun to elucidate brain-gut interactions with neuroimaging approaches such as magnetic resonance imaging (MRI), but the neural mechanism underlying different behavioral and physiological effects of glucose and fructose are unclear. In this paper, we have used resting state functional MRI to explore whether acute glucose and fructose ingestion also induced dissociable effects in the neural system. Using a cross-over, double-blind, placebo-controlled design, we compared resting state functional connectivity (rsFC) strengths within the basal ganglia/limbic network in 12 healthy lean males. Each subject was administered fructose, glucose and placebo on three separate occasions. Subsequent correlation analysis was used to examine relations between rsFC findings and plasma concentrations of satiation hormones and subjective feelings of appetite. Glucose ingestion induced significantly greater elevations in plasma glucose, insulin, GLP-1 and GIP, while feelings of fullness increased and prospective food consumption decreased relative to fructose. Furthermore, glucose increased rsFC of the left caudatus and putamen, precuneus and lingual gyrus more than fructose, whereas within the basal ganglia/limbic network, fructose increased rsFC of the left amygdala, left hippocampus, right parahippocampus, orbitofrontal cortex and precentral gyrus more than glucose. Moreover, compared to fructose, the increased rsFC after glucose positively correlated with the glucose-induced increase in insulin. Our findings suggest that glucose and fructose induce dissociable effects on rsFC within the basal ganglia/limbic network, which are probably mediated by different insulin levels. A larger study would be recommended in order to confirm these findings. PMID:26107810
Chen, Kang; Neu, Axel; Howard, Allyson L; Földy, Csaba; Echegoyen, Julio; Hilgenberg, Lutz; Smith, Martin; Mackie, Ken; Soltesz, Ivan
2007-01-03
Depolarization-induced suppression of inhibition (DSI) is an endocannabinoid-mediated short-term plasticity mechanism that couples postsynaptic Ca2+ rises to decreased presynaptic GABA release. Whether the gain of this retrograde synaptic mechanism is subject to long-term modulation by glutamatergic excitatory inputs is not known. Here, we demonstrate that activity-dependent long-term DSI potentiation takes place in hippocampal slices after tetanic stimulation of Schaffer collateral synapses. This activity-dependent, long-term plasticity of endocannabinoid signaling was specific to GABAergic synapses, as it occurred without increases in the depolarization-induced suppression of excitation. Induction of tetanus-induced DSI potentiation in vitro required a complex pathway involving AMPA/kainate and metabotropic glutamate receptor as well as CB1 receptor activation. Because DSI potentiation has been suggested to play a role in persistent limbic hyperexcitability after prolonged seizures in the developing brain, we used these mechanistic insights into activity-dependent DSI potentiation to test whether interference with the induction of DSI potentiation prevents seizure-induced long-term hyperexcitability. The results showed that the in vitro, tetanus-induced DSI potentiation was occluded by previous in vivo fever-induced (febrile) seizures, indicating a common pathway. Accordingly, application of CB1 receptor antagonists during febrile seizures in vivo blocked the seizure-induced persistent DSI potentiation, abolished the seizure-induced upregulation of CB1 receptors, and prevented the emergence of long-term limbic hyperexcitability. These results reveal a new form of activity-dependent, long-term plasticity of endocannabinoid signaling at perisomatic GABAergic synapses, and demonstrate that blocking the induction of this plasticity abolishes the long-term effects of prolonged febrile seizures in the developing brain.
Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric
2015-11-01
Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain structures for human empathy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma
2018-05-09
Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.
Bystrowska, Beata; Smaga, Irena; Frankowska, Małgorzata; Filip, Małgorzata
2014-04-03
Preclinical investigations have demonstrated that drugs of abuse alter the levels of lipid-based signalling molecules, including endocannabinoids (eCBs) and N-acylethanolamines (NAEs), in the rodent brain. In addition, several drugs targeting eCBs and/or NAEs are implicated in reward and/or seeking behaviours related to the stimulation of dopamine systems in the brain. In our study, the brain levels of eCBs (anandamide (AEA) and 2-arachidonoylglycerol (2-AG)) and NAEs (oleoylethanolamide (OEA) and palmitoylethanolamide (PEA)) were analyzed via an LC-MS/MS method in selected brain structures of rats during cocaine self-administration and after extinction training according to the "yoked" control procedure. Repeated (14days) cocaine (0.5mg/kg/infusion) self-administration and yoked drug delivery resulted in a significant decrease (ca. 52%) in AEA levels in the cerebellum, whereas levels of 2-AG increased in the frontal cortex, the hippocampus and the cerebellum and decreased in the hippocampus and the dorsal striatum. In addition, we detected increases (>150%) in the levels of OEA and PEA in the limbic areas in both cocaine treated groups, as well as an increase in the tissue levels of OEA in the dorsal striatum in only the yoked cocaine group and increases in the tissue levels of PEA in the dorsal striatum (both cocaine groups) and the nucleus accumbens (yoked cocaine group only). Compared to the yoked saline control group, extinction training (10days) resulted in a potent reduction in AEA levels in the frontal cortex, the hippocampus and the nucleus accumbens and in 2-AG levels in the hippocampus, the dorsal striatum and the cerebellum. The decreases in the limbic and subcortical areas were more apparent for rats that self-administered cocaine. Following extinction, there was a region-specific change in the levels of NAEs in rats previously injected with cocaine; a potent increase (ca. 100%) in the levels of OEA and PEA was detected in the prefrontal cortex and the hippocampus, whilst a drop was noted in the striatal areas versus yoked saline yoked animals. Our findings support the previous pharmacological evidence that the eCB system and NAEs are involved in reinforcement and extinction of positively reinforced behaviours and that these lipid-derived molecules may represent promising targets for the development of new treatments for drug addiction. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Pagani, Marco; Manouilenko, Irina; Stone-Elander, Sharon; Odh, Richard; Salmaso, Dario; Hatherly, Robert; Brolin, Fredrik; Jacobsson, Hans; Larsson, Stig A.; Bejerot, Susanne
2012-01-01
Specific biological markers for Autism Spectrum Disorder (ASD) have not yet been established. Functional studies have shown abnormalities in the anatomo-functional connectivity of the limbic-striatal "social" brain. This study aimed to investigate regional cerebral blood flow (rCBF) at rest. Thirteen patients with ASD of normal intelligence and…
Neugebauer, Volker
2015-01-01
A limbic brain area the amygdala plays a key role in emotional responses and affective states and disorders such as learned fear, anxiety and depression. The amygdala has also emerged as an important brain center for the emotional-affective dimension of pain and for pain modulation. Hyperactivity in the laterocapsular division of the central nucleus of the amygdala (CeLC, also termed the “nociceptive amygdala”) accounts for pain-related emotional responses and anxiety-like behavior. Abnormally enhanced output from the CeLC is the consequence of an imbalance between excitatory and inhibitory mechanisms. Impaired inhibitory control mediated by a cluster of GABAergic interneurons in the intercalated cell masses (ITC) allows the development of glutamate- and neuropeptide-driven synaptic plasticity of excitatory inputs from the brainstem (parabrachial area) and from the lateral-basolateral amygdala network (LA-BLA, site of integration of polymodal sensory information). BLA hyperactivity also generates abnormally enhanced feedforward inhibition of principal cells in the medial prefrontal cortex (mPFC), a limbic cortical area that is strongly interconnected with the amygdala. Pain-related mPFC deactivation results in cognitive deficits and failure to engage cortically driven ITC-mediated inhibitory control of amygdala processing. Impaired cortical control allows the uncontrolled persistence of amygdala pain mechanisms. PMID:25846623
Addiction, Adolescence, and Innate Immune Gene Induction
Crews, Fulton T.; Vetreno, Ryan Peter
2011-01-01
Repeated drug use/abuse amplifies psychopathology, progressively reducing frontal lobe behavioral control, and cognitive flexibility while simultaneously increasing limbic temporal lobe negative emotionality. The period of adolescence is a neurodevelopmental stage characterized by poor behavioral control as well as strong limbic reward and thrill seeking. Repeated drug abuse and/or stress during this stage increase the risk of addiction and elevate activator innate immune signaling in the brain. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a key glial transcription factor that regulates proinflammatory chemokines, cytokines, oxidases, proteases, and other innate immune genes. Induction of innate brain immune gene expression (e.g., NF-κB) facilitates negative affect, depression-like behaviors, and inhibits hippocampal neurogenesis. In addition, innate immune gene induction alters cortical neurotransmission consistent with loss of behavioral control. Studies with anti-oxidant, anti-inflammatory, and anti-depressant drugs as well as opiate antagonists link persistent innate immune gene expression to key behavioral components of addiction, e.g., negative affect-anxiety and loss of frontal–cortical behavioral control. This review suggests that persistent and progressive changes in innate immune gene expression contribute to the development of addiction. Innate immune genes may represent a novel new target for addiction therapy. PMID:21629837
The temporolimbic system theory of paranoid schizophrenia.
Casanova, M F
1997-01-01
The hippocampus serves as a funnel for heavily processed sensory information that has converged at the entorhinal cortex. Lesions of the hippocampus do not alter incoming sensory or motor information but, rather, alter their integration with our baggage of emotional experiences and social values. According to Bogerts, such a lesion would be ideally situated to result in laboriously processed sensory information that is out of context to our outside environment. In this regard, Bogerts describes the pathological findings of a patient with a gross delusional disorder. The salient finding at autopsy was a developmental lesion in the left posterior parahippocampal gyrus. Although a number of lesions have been described in the brains of patients with schizophrenia, Bogerts believes that those in the limbic system appear critical to the expression of paranoid symptoms.
Ventral pallidum roles in reward and motivation.
Smith, Kyle S; Tindell, Amy J; Aldridge, J Wayne; Berridge, Kent C
2009-01-23
In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that (1) an intact ventral pallidum is necessary for normal reward and motivation, (2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and (3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important 'limbic final common pathway' for mesocorticolimbic processing of many rewards.
A rare case of autoimmune limbic encephalitis: an uncharted territory!
Ibrahim, Hatim; Al Jasser, Abdulelah N.; Khan, Sonia A.; Tlili, Kalthoum G.
2017-01-01
Autoimmune encephalitis is rare. Several auto- antibodies are described in autoimmune encephalitis. We describe a case of autoimmune limbic encephalitis associated with positive voltage gated potassium channel (VGKC) antibodies and positive leucine-rich glioma inactivated protein 1 antibodies (LGI1). A 33-year-old Saudi housewife, she presented with 2 months history of cognitive deterioration and recurrent left facio-brachial dystonic seizures followed by generalized tonic clonic seizures. At times the seizures are preceded by rising epigastric aura and shortness of breath. The neurological examination was normal apart from upgoing left plantar reflex. She had borderline IQ of 76 with impaired verbal fluency and impaired visual and verbal memory. Magnetic resonance imaging of the brain showed right mesial temporal non-enhancing lesion. Cerebrospinal fluid examination was positive for LGI1 and VGKC. Optimal seizure control was achieved with immunotherapy. PMID:29057855
A rare case of autoimmune limbic encephalitis: an uncharted territory!
Ibrahim, Hatim; Al Jasser, Abdulelah N; Khan, Sonia A; Tlili, Kalthoum G
2017-10-01
Autoimmune encephalitis is rare. Several auto- antibodies are described in autoimmune encephalitis. We describe a case of autoimmune limbic encephalitis associated with positive voltage gated potassium channel (VGKC) antibodies and positive leucine-rich glioma inactivated protein 1 antibodies (LGI1). A 33-year-old Saudi housewife, she presented with 2 months history of cognitive deterioration and recurrent left facio-brachial dystonic seizures followed by generalized tonic clonic seizures. At times the seizures are preceded by rising epigastric aura and shortness of breath. The neurological examination was normal apart from upgoing left plantar reflex. She had borderline IQ of 76 with impaired verbal fluency and impaired visual and verbal memory. Magnetic resonance imaging of the brain showed right mesial temporal non-enhancing lesion. Cerebrospinal fluid examination was positive for LGI1 and VGKC. Optimal seizure control was achieved with immunotherapy.
Aizawa, Hidenori; Bianco, Isaac H; Hamaoka, Takanori; Miyashita, Toshio; Uemura, Osamu; Concha, Miguel L; Russell, Claire; Wilson, Stephen W; Okamoto, Hitoshi
2005-02-08
The habenulae are part of an evolutionarily highly conserved limbic-system conduction pathway that connects telencephalic nuclei to the interpeduncular nucleus (IPN) of the midbrain . In zebrafish, unilateral activation of the Nodal signaling pathway in the left brain specifies the laterality of the asymmetry of habenular size . We show "laterotopy" in the habenulo-interpeduncular projection in zebrafish, i.e., the stereotypic, topographic projection of left-sided habenular axons to the dorsal region of the IPN and of right-sided habenular axons to the ventral IPN. This asymmetric projection is accounted for by a prominent left-right (LR) difference in the size ratio of the medial and lateral habenular sub-nuclei, each of which specifically projects either to ventral or dorsal IPN targets. Asymmetric Nodal signaling directs the orientation of laterotopy but is dispensable for the establishment of laterotopy itself. Our results reveal a mechanism by which information distributed between left and right sides of the brain can be transmitted bilaterally without loss of LR coding, which may play a crucial role in functional lateralization of the vertebrate brain .
The von Economo neurons in fronto-insular and anterior cingulate cortex
Allman, John M.; Tetreault, Nicole A.; Hakeem, Atiya Y.; Manaye, Kebreten F.; Semendeferi, Katerina; Erwin, Joseph M.; Park, Soyoung; Goubert, Virginie; Hof, Patrick R.
2011-01-01
The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging. PMID:21534993
Motivation and affect in REM sleep and the mentation reporting process.
Smith, Mark R; Antrobus, John S; Gordon, Evelyn; Tucker, Matthew A; Hirota, Yasutaka; Wamsley, Erin J; Ross, Lars; Doan, Tieu; Chaklader, Annie; Emery, Rebecca N
2004-09-01
Although the emotional and motivational characteristics of dreaming have figured prominently in folk and psychoanalytic conceptions of dream production, emotions have rarely been systematically studied, and motivation, never. Because emotions during sleep lack the somatic components of waking emotions, and they change as the sleeper awakens, their properties are difficult to assess. Recent evidence of limbic system activation during REM sleep suggests a basis in brain architecture for the interaction of motivational and cognitive properties in dreaming. Motivational and emotional content in REM and NREM laboratory mentation reports from 25 participants were compared. Motivational and emotional content was significantly greater in REM than NREM sleep, even after controlling for the greater word count of REM reports.
Reptilian behavioural patterns in childhood autism.
Thong, Y H
1984-04-01
Childhood autism may be caused by damage to three phylogenetically distinct regions of the brain, or their major pathways and connections. Injury to the neocortex results in loss of language and cognitive function, while injury to the limbic cortex results in autistic withdrawal and abolition of play behaviour. Injury to the more primitive striatal complex, mammalian counterpart of the brain of reptiles, results in a bizarre and truncated form of stereotyped and ritualistic behaviour. The causes of brain injury in childhood autism could be those common in the perinatal period including cerebral anoxia, haemorrhage, phenylketonuria, neurolipidoses , meningitis, toxoplasmosis, and congenital rubella. All these conditions have previously been shown to be associated with childhood autism.
Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y
1999-03-20
Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.
Brain norepinephrine system as a target for antidepressant and mood stabilizing medications.
Dremencov, Eliyahu; el Mansari, Mostafa; Blier, Pierre
2009-11-01
There are numerous lines of evidence pointing to norepinephrine being of crucial importance in pathophysiology of anxiety and mood disorders. First, norepinephrine projections innervate the limbic system, suggesting the involvement of norepinephrine in the regulation of emotions and cognition. Second, norepinephrine closely interacts with serotonin and dopamine systems, which also play very important roles in the regulation of mood. Third, it has been shown that various agents which increase norepinephrine availability, such as norepinephrine reuptake inhibitors, are also effective antidepressant drugs. And fourth, the depletion of norepinephrine causes a resurgence of depressive symptoms after successful treatment with antidepressant drugs. These observations suggest that the intensification of norepinephrine transmission can be beneficial in the treatment of affective disorders. However, various psychotropic medications have indirect effect on norepinephrine transmission. This review examines the effects of psychiatric medications on the norepinephrine system and proposes how they might be used to improve treatment outcome.
Schroeder, Jason P.; Spanos, Marina; Stevenson, Jennie R.; Besheer, Joyce; Salling, Michael; Hodge, Clyde W.
2008-01-01
Relapse to alcohol use after periods of abstinence is a hallmark behavioral pathology of alcoholism and a major clinical problem. Emerging evidence indicates that metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate relapse to alcohol-seeking behavior but the molecular mechanisms of this potential therapeutic effect remain unexplored. The extracellular signal-regulated kinase (ERK1/2) pathway is downstream of mGluR5 and has been implicated in addiction. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior, and its reduction by an mGluR5 antagonist, is associated with changes in ERK1/2 activation in reward-related limbic brain regions. Selectively bred alcohol-preferring (P) rats were trained to lever press on a concurrent schedule of alcohol (15% v/v) vs. water reinforcement. Following 9 days of extinction, rats were given an additional extinction trial or injected with the mGluR5 antagonist MPEP (0, 1, 3, or 10 mg/kg) and tested for cue-induced reinstatement. Brains were removed 90-min later from the rats in the extinction and MPEP (0 or 10 mg/kg) conditions for analysis of p-ERK1/2, total ERK1/2, and p-ERK5 immunoreactivity (IR). Cue-induced reinstatement of alcohol-seeking behavior was associated with a 3–5 fold increase in p-ERK1/2 IR in the basolateral amygdala and nucleus accumbens shell. MPEP administration blocked both the relapse-like behavior and increase in p-ERK1/2 IR. P-ERK1/2 IR in the central amygdala and NAcb core was dissociated with the relapse-like behavior and the pharmacological effect of mGluR5 blockade. No changes in total ERK or p-ERK5 were observed. These results suggest that exposure to cues previously associated with alcohol self-administration is sufficient to produce concomitant increases in relapse-like behavior and ERK1/2 activation in specific limbic brain regions. Pharmacological compounds, such as mGluR5 antagonists, that reduce cue-induced ERK1/2 activation may be useful for treatment of relapse in alcoholics that is triggered by exposure to environmental events. PMID:18619984
[Why do we call the brain 'brain'?
Garcia-Molina, A; Ensenat, A
2017-01-16
Every day millions of professionals use a countless number of technical words to refer to the different structures inside the skull. But few of them would know how to explain their origin. In this study we take an in-depth look into the etymological origins of some of these neuroanatomical terms. The study takes an etymological tour of the central nervous system. It is in no way meant to be an exhaustive, detailed review of the terms currently in use, but instead a means to familiarise the reader with the linguistic past of words like brain, hippocampus, thalamus, claustrum, fornix, corpus callosum or limbic system. All of them come from either Greek or Latin, which were used for centuries as the lingua francas of science. The study also analyses the evolution of the word meninges, originally of Greco-Latin origin, although its current usages derive from Arabic. The neuroanatomical terms that are in use today do not come from words that associate a particular brain structure with its function, but instead from words that reflect the formal or conceptual similarity between a structure and a familiar or everyday entity (for example, an object or a part of the human body). In other cases, these words indicate the spatial location of the neuroanatomical structure with respect to a third, or they may be terms derived from characters in Greco-Latin mythology.
Toll-like receptor signaling and stages of addiction.
Crews, Fulton T; Walter, T Jordan; Coleman, Leon G; Vetreno, Ryan P
2017-05-01
Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.
Design of optimal nonlinear network controllers for Alzheimer's disease.
Sanchez-Rodriguez, Lazaro M; Iturria-Medina, Yasser; Baines, Erica A; Mallo, Sabela C; Dousty, Mehdy; Sotero, Roberto C
2018-05-01
Brain stimulation can modulate the activity of neural circuits impaired by Alzheimer's disease (AD), having promising clinical benefit. However, all individuals with the same condition currently receive identical brain stimulation, with limited theoretical basis for this generic approach. In this study, we introduce a control theory framework for obtaining exogenous signals that revert pathological electroencephalographic activity in AD at a minimal energetic cost, while reflecting patients' biological variability. We used anatomical networks obtained from diffusion magnetic resonance images acquired by the Alzheimer's Disease Neuroimaging Initiative (ADNI) as mediators for the interaction between Duffing oscillators. The nonlinear nature of the brain dynamics is preserved, given that we extend the so-called state-dependent Riccati equation control to reflect the stimulation objective in the high-dimensional neural system. By considering nonlinearities in our model, we identified regions for which control inputs fail to correct abnormal activity. There are changes to the way stimulated regions are ranked in terms of the energetic cost of controlling the entire network, from a linear to a nonlinear approach. We also found that limbic system and basal ganglia structures constitute the top target locations for stimulation in AD. Patients with highly integrated anatomical networks-namely, networks having low average shortest path length, high global efficiency-are the most suitable candidates for the propagation of stimuli and consequent success on the control task. Other diseases associated with alterations in brain dynamics and the self-control mechanisms of the brain can be addressed through our framework.
Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis
Miller, Thomas D.; Chong, Trevor T.-J.; Aimola Davies, Anne M.; Ng, Tammy W.C.; Johnson, Michael R.; Irani, Sarosh R.; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A.
2017-01-01
Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. PMID:28369215
The psychopath magnetized: insights from brain imaging
Anderson, Nathaniel E.; Kiehl, Kent A.
2014-01-01
Psychopaths commit a disproportionate amount of violent crime, and this places a substantial economic and emotional burden on society. Elucidation of the neural correlates of psychopathy may lead to improved management and treatment of the condition. Although some methodological issues remain, the neuroimaging literature is generally converging on a set of brain regions and circuits that are consistently implicated in the condition: the orbitofrontal cortex, amygdala, and the anterior and posterior cingulate and adjacent (para)limbic structures. We discuss these findings in the context of extant theories of psychopathy and highlight the potential legal and policy implications of this body of work. PMID:22177031
Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong
2016-01-01
Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193
Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei
2018-03-15
To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.
López-Jaramillo, Carlos; Vargas, Cristian; Díaz-Zuluaga, Ana M; Palacio, Juan David; Castrillón, Gabriel; Bearden, Carrie; Vieta, Eduard
2017-02-01
Magnetic resonance imaging (MRI) studies in bipolar I disorder (BD-I) suggest that lithium is associated with increased volumes of cortico-limbic structures. However, more rigorous control of confounding factors is needed to obtain further support for this hypothesis. The aim of the present study was to assess differences in brain volumes among long-term lithium-treated BD-I patients, unmedicated BD-I patients, and healthy controls. This was a cross-sectional study with 32 euthymic BD-I patients (16 on lithium monotherapy for a mean of 180 months, and 16 receiving no medication for at least the 2 months prior to the study) and 20 healthy controls. Patients were euthymic (Hamilton Depression Rating Scale [HDRS] <6 and Young Mania Rating Scale [YMRS] <7) and had not taken psychotropic medications other than lithium for at least 6 months. Brain images were acquired on a 1.5 Tesla MRI (Phillips, Amsterdam, The Netherlands) and segmented to generate volumetric measures of cortical and subcortical brain areas, ventricles and global brain. Significant differences were found in the volumes of the left amygdala (P=.0003), right amygdala (P=.030), left hippocampus (P=.022), left thalamus (P=.022), and right thalamus (P=.019) in long-term lithium-treated BD-I patients, compared to unmedicated patients and controls, after multivariable adjustment. No differences were observed in global brain volume or in ventricular size among the three groups. Likewise, there was no correlation between serum lithium levels and the increase in size in the described brain areas. The structural differences found among the three groups, and specifically those between long-term lithium-treated and unmedicated BD-I patients, indicate increased limbic structure volumes in lithium-treated patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tendilla-Beltrán, Hiram; Arroyo-García, Luis Enrique; Diaz, Alfonso; Camacho-Abrego, Israel; de la Cruz, Fidel; Rodríguez-Moreno, Antonio; Flores, Gonzalo
2016-11-01
Amphetamines (AMPH) are psychostimulants widely used for therapy as well as for recreational purposes. Previous results of our group showed that AMPH exposure in pregnant rats induces physiological and behavioral changes in the offspring at prepubertal and postpubertal ages. In addition, several reports have shown that AMPH are capable of modifying the morphology of neurons in some regions of the limbic system. These modifications can cause some psychiatric conditions. However, it is still unclear if there are changes to behavioral and morphological levels when low doses of AMPH are administered at a juvenile age. The aim of this study was to assess the effect of AMPH administration (1mg/kg) in Sprague-Dawley rats (postnatal day, PD21-PD35) on locomotor activity in a novel environment and compare the neuronal morphology of limbic system areas at three different ages: prepubertal (PD 36), pubertal (PD50) and postpubertal (PD 62). We found that AMPH altered locomotor activity in the prepubertal group, but did not have an effect on the other two age groups. The Golgi-Cox staining method was used to describe the neural morphology of five limbic regions: (Layers 3 and 5) the medial prefrontal cortex (mPFC), the dorsal and ventral hippocampus, the nucleus accumbens and the amygdala, showing that AMPH induced changes at pubertal ages in arborization and spine density of these neurons, but interestingly these changes did not persist at postpubertal ages. Our findings suggest that even early-life AMPH exposure does not induce long-term behavioral and morphological changes, however it causes alterations at pubertal ages in the limbic system networks, a stage of life strongly associated with the development of substance abuse behaviors. Copyright © 2016. Published by Elsevier B.V.
[Neuroarchitecture of musical emotions].
Sel, Alejandra; Calvo-Merino, Beatriz
2013-03-01
The emotional response to music, or musical emotion, is a universal response that draws on diverse psychological processes implemented in a large array of neural structures and mechanisms. Studies using electroencephalography, functional magnetic resonance, lesions and individuals with extent musical training have begun to elucidate some of these mechanisms. The objective of this article is reviewing the most relevant studies that have tried to identify the neural correlates of musical emotion from the more automatic to the more complex processes, and to understand how these correlates interact in the brain. The article describes how the presentation of music perceived as emotional is associated with a rapid autonomic response in thalamic and subthalamic structures, accompanied by changes in the electrodermal and endocrine responses. It also explains how musical emotion processing activates auditory cortex, as well as a series of limbic and paralimbic structures, such as the amygdala, the anterior cingulate cortex or the hippocampus, demonstrating the relevant contribution of the limbic system to musical emotion. Further, it is detailed how musical emotion depends to a great extent on semantic and syntactic process carried out in temporal and parietofrontal areas, respectively. Some of the recent works demonstrating that musical emotion highly relies on emotional simulation are also mentioned. Finally, a summary of these studies, their limitations, and suggestions for further research on the neuroarchitecture of musical emotion are given.
Clinical analysis of anti-Ma2-associated encephalitis.
Dalmau, Josep; Graus, Francesc; Villarejo, Alberto; Posner, Jerome B; Blumenthal, Deborah; Thiessen, Brian; Saiz, Albert; Meneses, Patricio; Rosenfeld, Myrna R
2004-08-01
Increasing experience indicates that anti-Ma2-associated encephalitis differs from classical paraneoplastic limbic or brainstem encephalitis, and therefore may be unrecognized. To facilitate its diagnosis we report a comprehensive clinical analysis of 38 patients with anti-Ma2 encephalitis. Thirty-four (89%) patients presented with isolated or combined limbic, diencephalic or brainstem dysfunction, and four with other syndromes. Considering the clinical and MRI follow-up, 95% of the patients developed limbic, diencephalic or brainstem encephalopathy. Only 26% had classical limbic encephalitis. Excessive daytime sleepiness affected 32% of the patients, sometimes with narcolepsy-cataplexy and low CSF hypocretin. Additional hormonal or MRI abnormalities indicated diencephalic-hypothalamic involvement in 34% of the patients. Eye movement abnormalities were prominent in 92% of the patients with brainstem dysfunction, but those with additional limbic or diencephalic deficits were most affected; 60% of these patients had vertical gaze paresis that sometimes evolved to total external ophthalmoplegia. Three patients developed atypical parkinsonism, and two a severe hypokinetic syndrome with a tendency to eye closure and dramatic reduction of verbal output. Neurological symptoms preceded the tumour diagnosis in 62% of the patients. Brain MRI abnormalities were present in 74% of all patients and 89% of those with limbic or diencephalic dysfunction. Among the 34 patients with cancer, 53% had testicular germ-cell tumours. Two patients without evidence of cancer had testicular microcalcification and one cryptorchidism, risk factors for testicular germ-cell tumours. After neurological syndrome development, 17 of 33 patients received oncological treatment (nine also immunotherapy), 10 immunotherapy alone, and six no treatment. Overall, 33% of the patients had neurological improvement, three with complete recovery; 21% had long-term stabilization, and 46% deteriorated. Features significantly associated with improvement or stabilization included, male gender, age <45 years, testicular tumour with complete response to treatment, absence of anti-Ma1 antibodies and limited CNS involvement. Immunosuppression was not found to be associated with improvement but was clearly effective in some patients. Fifteen patients (10 women, five men) had additional antibodies to Ma1. These patients were more likely to have tumours other than testicular cancer and to develop ataxia, and had a worse prognosis than patients with only anti-Ma2 antibodies (two women, 21 men); 67% of deceased patients had anti-Ma1 antibodies. Anti-Ma2 encephalitis (with or without anti-Ma1 antibodies) should be suspected in patients with limbic, diencephalic or brainstem dysfunction, MRI abnormalities in these regions, and inflammatory changes in the CSF. In young male patients, the primary tumour is usually in the testis, in other patients the leading neoplasm is lung cancer.
[Ma2 antibody and multiple mononeuropathies].
Ayrignac, X; Castelnovo, G; Landrault, E; Fayolle, H; Pers, Y-M; Honnorat, J; Campello, C; Figarella-Branger, D; Labauge, P
2008-01-01
Anti-Ma2 antibodies belong to a family of onconeuronal antibodies that target proteins expressed in brain, testis and several tumors. Previously observed in patients presenting with limbic encephalitis, they seem to be associated with several other paraneoplastic syndromes. We report the case of a 73-year-old woman presenting sensory and motor neuropathy associated with non-small-cell lung cancer who had Ma2-antibodies.
New insights into the impact of neuro-inflammation in rheumatoid arthritis
Fuggle, Nicholas R.; Howe, Franklyn A.; Allen, Rachel L.; Sofat, Nidhi
2014-01-01
Rheumatoid arthritis (RA) is considered to be, in many respects, an archetypal autoimmune disease that causes activation of pro-inflammatory pathways resulting in joint and systemic inflammation. RA remains a major clinical problem with the development of several new therapies targeted at cytokine inhibition in recent years. In RA, biologic therapies targeted at inhibition of tumor necrosis factor alpha (TNFα) have been shown to reduce joint inflammation, limit erosive change, reduce disability and improve quality of life. The cytokine TNFα has a central role in systemic RA inflammation and has also been shown to have pro-inflammatory effects in the brain. Emerging data suggests there is an important bidirectional communication between the brain and immune system in inflammatory conditions like RA. Recent work has shown how TNF inhibitor therapy in people with RA is protective for Alzheimer's disease. Functional MRI studies to measure brain activation in people with RA to stimulus by finger joint compression, have also shown that those who responded to TNF inhibition showed a significantly greater activation volume in thalamic, limbic, and associative areas of the brain than non-responders. Infections are the main risk of therapies with biologic drugs and infections have been shown to be related to disease flares in RA. Recent basic science data has also emerged suggesting that bacterial components including lipopolysaccharide induce pain by directly activating sensory neurons that modulate inflammation, a previously unsuspected role for the nervous system in host-pathogen interactions. In this review, we discuss the current evidence for neuro-inflammation as an important factor that impacts on disease persistence and pain in RA. PMID:25414636
A Functional MRI Study of Happy and Sad Emotions in Music with and without Lyrics.
Brattico, Elvira; Alluri, Vinoo; Bogert, Brigitte; Jacobsen, Thomas; Vartiainen, Nuutti; Nieminen, Sirke; Tervaniemi, Mari
2011-01-01
Musical emotions, such as happiness and sadness, have been investigated using instrumental music devoid of linguistic content. However, pop and rock, the most common musical genres, utilize lyrics for conveying emotions. Using participants' self-selected musical excerpts, we studied their behavior and brain responses to elucidate how lyrics interact with musical emotion processing, as reflected by emotion recognition and activation of limbic areas involved in affective experience. We extracted samples from subjects' selections of sad and happy pieces and sorted them according to the presence of lyrics. Acoustic feature analysis showed that music with lyrics differed from music without lyrics in spectral centroid, a feature related to perceptual brightness, whereas sad music with lyrics did not diverge from happy music without lyrics, indicating the role of other factors in emotion classification. Behavioral ratings revealed that happy music without lyrics induced stronger positive emotions than happy music with lyrics. We also acquired functional magnetic resonance imaging data while subjects performed affective tasks regarding the music. First, using ecological and acoustically variable stimuli, we broadened previous findings about the brain processing of musical emotions and of songs versus instrumental music. Additionally, contrasts between sad music with versus without lyrics recruited the parahippocampal gyrus, the amygdala, the claustrum, the putamen, the precentral gyrus, the medial and inferior frontal gyri (including Broca's area), and the auditory cortex, while the reverse contrast produced no activations. Happy music without lyrics activated structures of the limbic system and the right pars opercularis of the inferior frontal gyrus, whereas auditory regions alone responded to happy music with lyrics. These findings point to the role of acoustic cues for the experience of happiness in music and to the importance of lyrics for sad musical emotions.
A Functional MRI Study of Happy and Sad Emotions in Music with and without Lyrics
Brattico, Elvira; Alluri, Vinoo; Bogert, Brigitte; Jacobsen, Thomas; Vartiainen, Nuutti; Nieminen, Sirke; Tervaniemi, Mari
2011-01-01
Musical emotions, such as happiness and sadness, have been investigated using instrumental music devoid of linguistic content. However, pop and rock, the most common musical genres, utilize lyrics for conveying emotions. Using participants’ self-selected musical excerpts, we studied their behavior and brain responses to elucidate how lyrics interact with musical emotion processing, as reflected by emotion recognition and activation of limbic areas involved in affective experience. We extracted samples from subjects’ selections of sad and happy pieces and sorted them according to the presence of lyrics. Acoustic feature analysis showed that music with lyrics differed from music without lyrics in spectral centroid, a feature related to perceptual brightness, whereas sad music with lyrics did not diverge from happy music without lyrics, indicating the role of other factors in emotion classification. Behavioral ratings revealed that happy music without lyrics induced stronger positive emotions than happy music with lyrics. We also acquired functional magnetic resonance imaging data while subjects performed affective tasks regarding the music. First, using ecological and acoustically variable stimuli, we broadened previous findings about the brain processing of musical emotions and of songs versus instrumental music. Additionally, contrasts between sad music with versus without lyrics recruited the parahippocampal gyrus, the amygdala, the claustrum, the putamen, the precentral gyrus, the medial and inferior frontal gyri (including Broca’s area), and the auditory cortex, while the reverse contrast produced no activations. Happy music without lyrics activated structures of the limbic system and the right pars opercularis of the inferior frontal gyrus, whereas auditory regions alone responded to happy music with lyrics. These findings point to the role of acoustic cues for the experience of happiness in music and to the importance of lyrics for sad musical emotions. PMID:22144968
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence. PMID:21818311
Food and drug reward: overlapping circuits in human obesity and addiction.
Volkow, N D; Wang, G J; Fowler, J S; Tomasi, D; Baler, R
2012-01-01
Both drug addiction and obesity can be defined as disorders in which the saliency value of one type of reward (drugs and food, respectively) becomes abnormally enhanced relative to, and at the expense of others. This model is consistent with the fact that both drugs and food have powerful reinforcing effects-partly mediated by dopamine increases in the limbic system-that, under certain circumstances or in vulnerable individuals, could overwhelm the brain's homeostatic control mechanisms. Such parallels have generated significant interest in understanding the shared vulnerabilities and trajectories between addiction and obesity. Now, brain imaging discoveries have started to uncover common features between these two conditions and to delineate some of the overlapping brain circuits whose dysfunctions may explain stereotypic and related behavioral deficits in human subjects. These results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning (memory/learning), impulse control (behavioural inhibition), stress reactivity, and interoceptive awareness. Here, we integrate findings predominantly derived from positron emission tomography that shed light on the role of dopamine in drug addiction and in obesity, and propose an updated working model to help identify treatment strategies that may benefit both of these conditions.
Zhao, Hua; Zhang, Bei-Lin; Yang, Shao-Jun; Rusak, Benjamin
2015-01-15
Serotonergic neurons in the dorsal raphe nucleus (DRN) play an important role in regulation of many physiological functions. The lateral nucleus of the habenular complex (LHb) is closely connected to the DRN both morphologically and functionally. The LHb is a key regulator of the activity of DRN serotonergic neurons, and it also receives reciprocal input from the DRN. The LHb is also a major way-station that receives limbic system input via the stria medullaris and provides output to the DRN and thereby indirectly connects a number of other brain regions to the DRN. The complex interactions of the LHb and DRN contribute to the regulation of numerous important behavioral and physiological mechanisms, including those regulating cognition, reward, pain sensitivity and patterns of sleep and waking. Disruption of these functions is characteristic of major psychiatric illnesses, so there has been a great deal of interest in how disturbed LHb-DRN interactions may contribute to the symptoms of these illnesses. This review summarizes recent research related to the roles of the LHb-DRN system in regulation of higher brain functions and the possible role of disturbed LHb-DRN function in the pathogenesis of psychiatric disorders, especially depression. Copyright © 2014 Elsevier B.V. All rights reserved.
Food and drug reward: overlapping circuits in human obesity and addiction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow N. D.; Wang G.; Volkow, N.D.
Both drug addiction and obesity can be defined as disorders in which the saliency value of one type of reward (drugs and food, respectively) becomes abnormally enhanced relative to, and at the expense of others. This model is consistent with the fact that both drugs and food have powerful reinforcing effects - partly mediated by dopamine increases in the limbic system - that, under certain circumstances or in vulnerable individuals, could overwhelm the brain's homeostatic control mechanisms. Such parallels have generated significant interest in understanding the shared vulnerabilities and trajectories between addiction and obesity. Now, brain imaging discoveries have startedmore » to uncover common features between these two conditions and to delineate some of the overlapping brain circuits whose dysfunctions may explain stereotypic and related behavioral deficits in human subjects. These results suggest that both obese and drug addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning (memory/learning), impulse control (behavioral inhibition), stress reactivity and interoceptive awareness. Here, we integrate findings predominantly derived from positron emission tomography that investigate the role of dopamine in drug addiction and in obesity and propose an updated working model to help identify treatment strategies that may benefit both of these conditions.« less
[Anti-VGKC antibody-associated limbic encephalitis/Morvan syndrome].
Misawa, Tamako; Mizusawa, Hidehiro
2010-04-01
Anti-voltage-gated potassium channel antibodies (anti-VGKC-Ab) cause hyperexcitability of the peripheral nerve and central nervous system. Peripheral nerve hyperexcitability is the chief manifestation of Issacs syndrome and cramp-fasciculation syndrome. Morvan syndrome is characterized by neuromyotonia with autonomic and CNS involvement. Manifestations involving the CNS without peripheral involvement are characteristic of limbic encephalitis and epilepsy. The clinical features of anti-VGKC-Ab-associated limbic encephalitis are subacute onset of episodic memory impairment, disorientation and agitation. Hyponatremia is also noted in most patients. Cortico-steroid therapy, plasma exchange and intravenous immunoglobulin are effective in treating to not only the clinical symptoms but also hyponatremia. Unlike other anti-VGKC-Ab-associated neurological disorders, paraneoplastic cases are rare. Thus, anti-VGKC-Ab-associated limbic encephalopathy is considered to be an autoimmune, non-paraneoplastic, potentially treatable encephalitis. Morvan syndrome is characterized by widespread neurological symptoms involving the peripheral nervous system (neuromyotonia), autonomic system (hyperhidrosis, severe constipation, urinary incontinence, and cardiac arrhythmia) and the CNS (severe insomnia, hallucinations, impairment of short-term memory and epilepsy). Many patients have an underlying tumor, for example thymoma, lung cancer, testicular cancer and lymphoma; this indicates the paraneoplastic nature of the disease. Needle electro-myography reveals myokimic discharge. In nerve conduction study, stimulus-induced repetitive descharges are frequently demonstrated in involved muscles. Plasma exchange is an effective treatment approach, and tumor resection also improves symptoms. Both VGKC-Ab-associated limbic encephalitis and Morvan syndrome can be successfully treated. Therefore, when these diseases are suspected, it's important to measure the anti-VGKC-Ab level.
Brain and spinal cord metabolic activity during propofol anaesthesia.
Cavazzuti, M; Porro, C A; Barbieri, A; Galetti, A
1991-04-01
We have investigated the effects of propofol anaesthesia on the metabolic activity pattern of 35 regions of the rat brain and cervical spinal cord using the 14C-2-deoxyglucose technique. Anaesthesia was produced by an i.v. bolus of the commercial preparation of the drug (8 mg kg-1) and maintained with successive bolus administrations of 6 mg kg-1. Functional activity values (expressed as rates of local utilization of glucose) were reduced in 31 grey matter and two white matter structures in a propofol group relative both to saline-injected and vehicle-injected (aqueous emulsion containing 10% soya bean oil, 1.2% egg phosphatide and 2.25% glycerol) controls. Values from the two control groups did not differ significantly. Propofol-induced depression of metabolic activity was present in central nervous system regions belonging to sensory (auditory, visual and somatosensory), motor and limbic systems, including spinal cord grey matter. Mean percentage decreases ranged from 40% (vestibular nuclei) to 76% (cingulate cortex). Although these values may be slightly overestimated because of the modest increase in PaCo2 in the anaesthetized group, propofol appeared to elicit generalized reduction of central nervous system functional activity.
Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus
Seydell-Greenwald, Anna; Leaver, Amber M.; Turesky, Ted K.; Morgan, Susan; Kim, Hung J.; Rauschecker, Josef P.
2012-01-01
It has long been known that subjective tinnitus, a constant or intermittent phantom sound perceived by 10 to 15 % of the adult population, is not a purely auditory phenomenon but is also tied to limbic-related brain regions. Supporting evidence comes from data indicating that stress and emotion can modulate tinnitus, and from brain imaging studies showing functional and anatomical differences in limbic-related brain regions of tinnitus patients and controls. Recent studies from our lab revealed altered blood oxygen level-dependent (BOLD) responses to stimulation at the tinnitus frequency in the ventral striatum (specifically, the nucleus accumbens) and gray-matter reductions (i.e. anatomical changes) in ventromedial prefrontal cortex (vmPFC), of tinnitus patients compared to controls. The present study extended these findings by demonstrating functional differences in vmPFC between 20 tinnitus patients and 20 age-matched controls. Importantly, the observed BOLD response in vmPFC was positively correlated with tinnitus characteristics such as subjective loudness and the percent of time during which the tinnitus was perceived, whereas correlations with Tinnitus Handicap Inventory scores and other variables known to be affected in tinnitus (e.g. depression, anxiety, noise sensitivity, hearing loss) were weaker or absent. This suggests that the observed group differences are indeed related to the tinnitus percept and not to an affective reaction to tinnitus. The results further corroborate vmPFC as a region of high interest for tinnitus research. PMID:22982009
Ventral Pallidum Roles in Reward and Motivation
Smith, Kyle S.; Tindell, Amy J.; Aldridge, J. Wayne; Berridge, Kent C.
2008-01-01
In recent years the ventral pallidum has become a focus of great research interest as a mechanism of reward and incentive motivation. As a major output for limbic signals, the ventral pallidum was once associated primarily with motor functions rather than regarded as a reward structure in its own right. However, ample evidence now suggests that ventral pallidum function is a major mechanism of reward in the brain. We review data indicating that 1) an intact ventral pallidum is necessary for normal reward and motivation, 2) stimulated activation of ventral pallidum is sufficient to cause reward and motivation enhancements, and 3) activation patterns in ventral pallidum neurons specifically encode reward and motivation signals via phasic bursts of excitation to incentive and hedonic stimuli. We conclude that the ventral pallidum may serve as an important ‘limbic final common pathway’ for mesocorticolimbic processing of many rewards. PMID:18955088
The piriform, perirhinal, and entorhinal cortex in seizure generation
Vismer, Marta S.; Forcelli, Patrick A.; Skopin, Mark D.; Gale, Karen; Koubeissi, Mohamad Z.
2015-01-01
Understanding neural network behavior is essential to shed light on epileptogenesis and seizure propagation. The interconnectivity and plasticity of mammalian limbic and neocortical brain regions provide the substrate for the hypersynchrony and hyperexcitability associated with seizure activity. Recurrent unprovoked seizures are the hallmark of epilepsy, and limbic epilepsy is the most common type of medically-intractable focal epilepsy in adolescents and adults that necessitates surgical evaluation. In this review, we describe the role and relationships among the piriform (PIRC), perirhinal (PRC), and entorhinal cortex (ERC) in seizure-generation and epilepsy. The inherent function, anatomy, and histological composition of these cortical regions are discussed. In addition, the neurotransmitters, intrinsic and extrinsic connections, and the interaction of these regions are described. Furthermore, we provide evidence based on clinical research and animal models that suggest that these cortical regions may act as key seizure-trigger zones and, even, epileptogenesis. PMID:26074779
MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia
NASA Astrophysics Data System (ADS)
Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.
2011-09-01
The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.
Klang, Andrea; Schmidt, Peter; Kneissl, Sibylle; Bagó, Zoltán; Vincent, Angela; Lang, Bethan; Moloney, Teresa; Bien, Christian G; Halász, Péter; Bauer, Jan; Pákozdy, Akos
2014-05-01
Voltage-gated potassium channel complex (VGKC-complex) antibody (Ab) encephalitis is a well-recognized form of limbic encephalitis in humans, usually occurring in the absence of an underlying tumor. The patients have a subacute onset of seizures, magnetic resonance imaging findings suggestive of hippocampal inflammation, and high serum titers of Abs against proteins of the VGKC-complex, particularly leucine-rich, glioma-inactivated 1 (LGI1). Most patients are diagnosed promptly and recover substantially with immunotherapies; consequently, neuropathological data are limited. We have recently shown that feline complex partial cluster seizures with orofacial involvement (FEPSO) in cats can also be associated with Abs against VGKC-complexes/LGI1. Here we examined the brains of cats with FEPSO and compared the neuropathological findings with those in a human with VGKC-complex-Ab limbic encephalitis. Similar to humans, cats with VGKC-complex-Ab and FEPSO have hippocampal lesions with only moderate T-cell infiltrates but with marked IgG infiltration and complement C9neo deposition on hippocampal neurons, associated with neuronal loss. These findings provide further evidence that FEPSO is a feline form of VGKC-complex-Ab limbic encephalitis and provide a model for increasing understanding of the human disease.
Bertocchi, Ilaria; Oberto, Alessandra; Longo, Angela; Mele, Paolo; Sabetta, Marianna; Bartolomucci, Alessandro; Palanza, Paola; Sprengel, Rolf; Eva, Carola
2011-01-01
Neuropeptide Y (NPY) plays an important role in stress, anxiety, obesity, and energy homeostasis via activation of NPY-Y1 receptors (Y1Rs) in the brain. However, global knockout of the Npy1r gene has low or no impact on anxiety and body weight. To uncover the role of limbic Y1Rs, we generated conditional knockout mice in which the inactivation of the Npy1r gene was restricted to excitatory neurons of the forebrain, starting from juvenile stages (Npy1rrfb). Npy1rrfb mice exhibited increased anxiety and reduced body weight, less adipose tissue, and lower serum leptin levels. Npy1rrfb mutants also had a hyperactive hypothalamic–pituitary–adrenocortical axis, as indicated by higher peripheral corticosterone and higher density of NPY immunoreactive fibers and corticotropin releasing hormone immunoreactive cell bodies in the paraventricular hypothalamic nucleus. Importantly, through fostering experiments, we determined that differences in phenotype between Npy1rrfb and Npy1r2lox mice became apparent when both genotypes were raised by FVB/J but not by C57BL/6J dams, suggesting that limbic Y1Rs are key targets of maternal care-induced programming of anxiety and energy homeostasis. PMID:22084082
The teen brain: insights from neuroimaging.
Giedd, Jay N
2008-04-01
Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.
Brain structural plasticity in survivors of a major earthquake
Lui, Su; Chen, Long; Yao, Li; Xiao, Yuan; Wu, Qi-Zhu; Zhang, Jun-Ran; Huang, Xiao-Qi; Zhang, Wei; Wang, Yu-Qin; Chen, Hua-Fu; Chan, Raymond C.K.; Sweeney, John A.; Gong, Qi-Yong
2013-01-01
Background Stress responses have been studied extensively in animal models, but effects of major life stress on the human brain remain poorly understood. The aim of this study was to determine whether survivors of a major earthquake, who were presumed to have experienced extreme emotional stress during the disaster, demonstrate differences in brain anatomy relative to individuals who have not experienced such stressors. Methods Healthy survivors living in an area devastated by a major earthquake and matched healthy controls underwent 3-dimentional high-resolution magnetic resonance imaging (MRI). Survivors were scanned 13–25 days after the earthquake; controls had undergone MRI for other studies not long before the earthquake. We used optimized voxel-based morphometry analysis to identify regional differences of grey matter volume between the survivors and controls. Results We included 44 survivors (17 female, mean age 37 [standard deviation (SD) 10.6] yr) and 38 controls (14 female, mean age 35.3 [SD 11.2] yr) in our analysis. Compared with controls, the survivors showed significantly lower grey matter volume in the bilateral insula, hippocampus, left caudate and putamen, and greater grey matter volume in the bilateral orbitofrontal cortex and the parietal lobe (all p < 0.05, corrected for multiple comparison). Limitations Differences in the variance of survivor and control data could impact study findings. Conclusion Acute anatomic alterations could be observed in earthquake survivors in brain regions where functional alterations after stress have been described. Anatomic changes in the present study were observed earlier than previously reported and were seen in prefrontal–limbic, parietal and striatal brain systems. Together with the results of previous functional imaging studies, our observations suggest a complex pattern of human brain response to major life stress affecting brain systems that modulate and respond to heightened affective arousal. PMID:23710694
Fractionation of social brain circuits in autism spectrum disorders.
Gotts, Stephen J; Simmons, W Kyle; Milbury, Lydia A; Wallace, Gregory L; Cox, Robert W; Martin, Alex
2012-09-01
Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits.
Fractionation of social brain circuits in autism spectrum disorders
Simmons, W. Kyle; Milbury, Lydia A.; Wallace, Gregory L.; Cox, Robert W.; Martin, Alex
2012-01-01
Autism spectrum disorders are developmental disorders characterized by impairments in social and communication abilities and repetitive behaviours. Converging neuroscientific evidence has suggested that the neuropathology of autism spectrum disorders is widely distributed, involving impaired connectivity throughout the brain. Here, we evaluate the hypothesis that decreased connectivity in high-functioning adolescents with an autism spectrum disorder relative to typically developing adolescents is concentrated within domain-specific circuits that are specialized for social processing. Using a novel whole-brain connectivity approach in functional magnetic resonance imaging, we found that not only are decreases in connectivity most pronounced between regions of the social brain but also they are selective to connections between limbic-related brain regions involved in affective aspects of social processing from other parts of the social brain that support language and sensorimotor processes. This selective pattern was independently obtained for correlations with measures of social symptom severity, implying a fractionation of the social brain in autism spectrum disorders at the level of whole circuits. PMID:22791801
Are Amygdalar Volume Alterations in Children with Tourette Syndrome Due to ADHD Comorbidity?
ERIC Educational Resources Information Center
Ludolph, Andrea G.; Pinkhardt, Elmar H.; van Elst, Ludger Tebartz; Libal, Gerhard; Ludolph, Albert C.; Fegert, Jorg M.; Kassubek, Jan
2008-01-01
Recent studies have shown that changes in the basal ganglia circuitry and limbic loops may play an important role both in Tourette syndrome (TS) and attention-deficit-hyperactivity disorder (ADHD). This study aimed to investigate in vivo possible morphological alterations of the amygdala as a key component of the limbic system. Amygdalar and total…
Altruistic behavior: mapping responses in the brain
Filkowski, Megan M; Cochran, R Nick; Haas, Brian W
2016-01-01
Altruism is an important social construct related to human relationships and the way many interpersonal and economic decisions are made. Recent progress in social neuroscience research shows that altruism is associated with a specific pattern of brain activity. The tendency to engage in altruistic behaviors is associated with greater activity within limbic regions such as the nucleus accumbens and anterior cingulate cortex in addition to cortical regions such as the medial prefrontal cortex and temporoparietal junction. Here, we review existing theoretical models of altruism as well as recent empirical neuroimaging research demonstrating how altruism is processed within the brain. This review not only highlights the progress in neuroscience research on altruism but also shows that there exist several open questions that remain unexplored. PMID:28580317
Rabinak, Christine A.; Angstadt, Mike; Lyons, Maryssa; Mori, Shoko; Milad, Mohammed R.; Liberzon, Israel; Phan, K. Luan
2013-01-01
Pre-extinction administration of ∆9-tetrahydrocannibinol (THC) facilitates recall of extinction in healthy humans, and evidence from animal studies suggest that this likely involves via enhancement of the cannabinoid system within the ventromedial prefrontal cortex (vmPFC) and hippocampus (HIPP), brain structures critical to fear extinction. However, the effect of cannabinoids on the underlying neural circuitry of extinction memory recall in humans has not been demonstrated. We conducted a functional magnetic resonance imaging (fMRI) study using a randomized, double-blind, placebo-controlled, between-subjects design (N=14/group) coupled with a standard Pavlovian fear extinction paradigm and an acute pharmacological challenge with oral dronabinol (synthetic THC) in healthy adult volunteers. We examined the effects of THC on vmPFC and HIPP activation when tested for recall of extinction learning 24 hours after extinction learning. Compared to subjects who received placebo, participants who received THC showed increased vmPFC and HIPP activation to a previously extinguished conditioned stimulus (CS+E) during extinction memory recall. This study provides the first evidence that pre-extinction administration of THC modulates prefrontal-limbic circuits during fear extinction in humans and prompts future investigation to test if cannabinoid agonists can rescue or correct the impaired behavioral and neural function during extinction recall in patients with PTSD. Ultimately, the cannabinoid system may serve as a promising target for innovative intervention strategies (e.g. pharmacological enhancement of exposure-based therapy) in PTSD and other fear learning-related disorders. PMID:24055595
Cookey, Jacob; Bernier, Denise; Tibbo, Philip G
2014-07-01
The impact of cannabis use on the brain tissue is still unclear, both in the healthy developing brain and in people with schizophrenia. The focus of this review is on white matter, the primary connective infrastructure of the brain. We systematically reviewed diffusion tensor imaging (DTI) studies of early phase schizophrenia (illness effect), of cannabis use in otherwise healthy brains (drug effect), and of early phase schizophrenia with cannabis use (combined effects). Studies had to include a healthy, non-cannabis using, control group as well as report on fractional anisotropy as it is the most commonly used DTI index. We excluded cohorts with heavy alcohol or illicit drug use and studies with a sample size of less than 20 in the clinical group. We retained 17 studies of early phase schizophrenia, which together indicate deficits in white matter integrity observed in all fiber tract families, but most frequently in association, callosal and projection fibers. In otherwise healthy cannabis users (2 studies), deficits in white matter tracts were reported mainly in callosal fibers, but also in projection and limbic fibers. In cannabis users with early phase schizophrenia (1 study), deficits in white matter integrity were also observed in all fiber tract families, except for limbic fibers. The current literature points to several families of white matter tracts being differentially affected in early phase schizophrenia. Further work is required to reveal the impact of cannabis use in otherwise healthy people as well as those with schizophrenia. Paucity of available studies as well as restricting analysis to FA values represent the main limitations of this review. Copyright © 2014 Elsevier B.V. All rights reserved.
Monsa, R; Peer, M; Arzy, S
2018-06-01
Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.
Moran-Santa Maria, Megan M; Vanderweyen, Davy C; Camp, Christopher C; Zhu, Xun; McKee, Sherry A; Cosgrove, Kelly P; Hartwell, Karen J; Brady, Kathleen T; Joseph, Jane E
2018-06-07
The goal of this study was to conduct a preliminary network analysis (using graph-theory measures) of intrinsic functional connectivity in adult smokers, with an exploration of sex differences in smokers. Twenty-seven adult smokers (13 males; mean age = 35) and 17 sex and age-matched controls (11 males; mean age = 35) completed a blood oxygen level-dependent resting state functional magnetic resonance imaging experiment. Data analysis involved preprocessing, creation of connectivity matrices using partial correlation, and computation of graph-theory measures using the Brain Connectivity Toolbox. Connector hubs and additional graph-theory measures were examined for differences between smokers and controls and correlations with nicotine dependence. Sex differences were examined in a priori regions of interest based on prior literature. Compared to nonsmokers, connector hubs in smokers emerged primarily in limbic (parahippocampus) and salience network (cingulate cortex) regions. In addition, global influence of the right insula and left nucleus accumbens was associated with higher nicotine dependence. These trends were present in male but not female smokers. Network communication was altered in smokers, primarily in limbic and salience network regions. Network topology was associated with nicotine dependence in male but not female smokers in regions associated with reinforcement (nucleus accumbens) and craving (insula), consistent with the idea that male smokers are more sensitive to the reinforcing aspects of nicotine than female smokers. Identifying alterations in brain network communication in male and female smokers can help tailor future behavioral and pharmacological smoking interventions. Male smokers showed alterations in brain networks associated with the reinforcing effects of nicotine more so than females, suggesting that pharmacotherapies targeting reinforcement and craving may be more efficacious in male smokers.
Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers.
Djordjevic, Jelena; Djordjevic, Ana; Adzic, Miroslav; Radojcic, Marija B
2012-01-01
Chronic stress is a contributing risk factor in the development of psychiatric illnesses, including depressive disorders. The mechanisms of their psychopathology are multifaceted and include, besides others, alterations in the brain plasticity. Previously, we investigated the effects of chronic social stress in the limbic brain structures of Wistar rats (hippocampus, HIPPO, and prefrontal cortex, PFC) and found multiple characteristics that resembled alterations described in some clinical studies of depression. We extended our investigations and followed the behavior of stressed animals by the open field test (OFT) and forced swimming test (FST), and the expression and polysialylation of synaptic plasticity markers, neural cell adhesion molecule (NCAM) and L1, in the HIPPO and PFC. We also determined the adrenal gland mass and plasma corticosterone (CORT) as a terminal part of the hypothalamic-pituitary-adrenal axis activity. Our data indicated that stressed animals avoided the central zone in the OFT and displayed decreased swimming, but prolonged immobility in the FST. The animals exhibited marked hypertrophy of the adrenal gland cortex, in spite of decreased serum CORT. Simultaneously, the stressed animals exhibited an increase in NCAM mRNA expression in the HIPPO, but not in the PFC. The synaptosomal NCAM of the HIPPO was markedly polysialylated, while cortical PSA-NCAM was significantly decreased. The results showed that chronic social isolation of Wistar rats causes both anxiety-like and depression-like behavior. These alterations are parallel with molecular changes in the limbic brain, including diminished NCAM sialylation in the PFC. Together with our previous results, the current observations suggest that a chronic social isolation model may potentially be used to study molecular mechanisms that underlie depressive symptomatology. Copyright © 2012 S. Karger AG, Basel.
McDaid, John; Graham, Martin P; Napier, T Celeste
2006-12-01
Enhancements in behavior that accompany repeated, intermittent administration of abused drugs (sensitization) endure long after drug administration has ceased. Such persistence reflects changes in intracellular signaling cascades and associated gene transcription factors in brain regions that are engaged by abused drugs. This process is not characterized for the most potent psychomotor stimulant, methamphetamine. Using motor behavior as an index of brain state in rats, we verified that five once-daily injections of 2.5 mg/kg methamphetamine induced behavioral sensitization that was demonstrated (expressed) 3 and 14 days later. Using immunoblot procedures, limbic brain regions implicated in behavioral sensitization were assayed for extracellular signal-regulated kinase and its phosphorylated form (pERK/ERK, a signal transduction kinase), cAMP response element binding protein and its phosphorylated form (pCREB/CREB, a constitutively expressed transcriptional regulator), and DeltaFosB (a long-lasting transcription factor). pERK, ERK, and CREB levels were not changed for any region assayed. In the ventral tegmental area, pCREB and DeltaFosB also were not changed. pCREB (activated CREB) was elevated in the frontal cortex at 3 days withdrawal, but not at 14 days. pCREB levels were decreased at 14 days withdrawal in the nucleus accumbens and ventral pallidum. Accumbal and pallidal levels of DeltaFosB were increased at 3 days withdrawal, and this increase persisted to 14 days in the pallidum. Thus, only the ventral pallidum showed changes in molecular processes that consistently correlated with motor sensitization, revealing that this region may be associated with this enduring behavioral phenotype initiated by methamphetamine. The present findings expand our understanding of the neuroanatomical and molecular substrates that may play a role in the persistence of druginduced sensitization.
Holschneider, Daniel P.; Wang, Zhuo; Pang, Raina D.
2014-01-01
Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [14C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas–findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture. PMID:24966831
Holschneider, Daniel P; Wang, Zhuo; Pang, Raina D
2014-01-01
Rodent cortical midline structures (CMS) are involved in emotional, cognitive and attentional processes. Tract tracing has revealed complex patterns of structural connectivity demonstrating connectivity-based integration and segregation for the prelimbic, cingulate area 1, retrosplenial dysgranular cortices dorsally, and infralimbic, cingulate area 2, and retrosplenial granular cortices ventrally. Understanding of CMS functional connectivity (FC) remains more limited. Here we present the first subregion-level FC analysis of the mouse CMS, and assess whether fear results in state-dependent FC changes analogous to what has been reported in humans. Brain mapping using [(14)C]-iodoantipyrine was performed in mice during auditory-cued fear conditioned recall and in controls. Regional cerebral blood flow (CBF) was analyzed in 3-D images reconstructed from brain autoradiographs. Regions-of-interest were selected along the CMS anterior-posterior and dorsal-ventral axes. In controls, pairwise correlation and graph theoretical analyses showed strong FC within each CMS structure, strong FC along the dorsal-ventral axis, with segregation of anterior from posterior structures. Seed correlation showed FC of anterior regions to limbic/paralimbic areas, and FC of posterior regions to sensory areas-findings consistent with functional segregation noted in humans. Fear recall increased FC between the cingulate and retrosplenial cortices, but decreased FC between dorsal and ventral structures. In agreement with reports in humans, fear recall broadened FC of anterior structures to the amygdala and to somatosensory areas, suggesting integration and processing of both limbic and sensory information. Organizational principles learned from animal models at the mesoscopic level (brain regions and pathways) will not only critically inform future work at the microscopic (single neurons and synapses) level, but also have translational value to advance our understanding of human brain architecture.
Douet, Vanessa; Chang, Linda
2015-01-01
The fornix is a part of the limbic system and constitutes the major efferent and afferent white matter tracts from the hippocampi. The underdevelopment of or injuries to the fornix are strongly associated with memory deficits. Its role in memory impairments was suggested long ago with cases of surgical forniceal transections. However, recent advances in brain imaging techniques, such as diffusion tensor imaging, have revealed that macrostructural and microstructural abnormalities of the fornix correlated highly with declarative and episodic memory performance. This structure appears to provide a robust and early imaging predictor for memory deficits not only in neurodegenerative and neuroinflammatory diseases, such as Alzheimer's disease and multiple sclerosis, but also in schizophrenia and psychiatric disorders, and during neurodevelopment and “typical” aging. The objective of the manuscript is to present a systematic review regarding published brain imaging research on the fornix, including the development of its tracts, its role in various neurological diseases, and its relationship to neurocognitive performance in human studies. PMID:25642186
Guo, Hao; Cao, Xiaohua; Liu, Zhifen; Li, Haifang; Chen, Junjie; Zhang, Kerang
2012-12-05
Resting state functional brain networks have been widely studied in brain disease research. However, it is currently unclear whether abnormal resting state functional brain network metrics can be used with machine learning for the classification of brain diseases. Resting state functional brain networks were constructed for 28 healthy controls and 38 major depressive disorder patients by thresholding partial correlation matrices of 90 regions. Three nodal metrics were calculated using graph theory-based approaches. Nonparametric permutation tests were then used for group comparisons of topological metrics, which were used as classified features in six different algorithms. We used statistical significance as the threshold for selecting features and measured the accuracies of six classifiers with different number of features. A sensitivity analysis method was used to evaluate the importance of different features. The result indicated that some of the regions exhibited significantly abnormal nodal centralities, including the limbic system, basal ganglia, medial temporal, and prefrontal regions. Support vector machine with radial basis kernel function algorithm and neural network algorithm exhibited the highest average accuracy (79.27 and 78.22%, respectively) with 28 features (P<0.05). Correlation analysis between feature importance and the statistical significance of metrics was investigated, and the results revealed a strong positive correlation between them. Overall, the current study demonstrated that major depressive disorder is associated with abnormal functional brain network topological metrics and statistically significant nodal metrics can be successfully used for feature selection in classification algorithms.
Whole-brain functional connectivity identification of functional dyspepsia.
Nan, Jiaofen; Liu, Jixin; Li, Guoying; Xiong, Shiwei; Yan, Xuemei; Yin, Qing; Zeng, Fang; von Deneen, Karen M; Liang, Fanrong; Gong, Qiyong; Qin, Wei; Tian, Jie
2013-01-01
Recent neuroimaging studies have shown local brain aberrations in functional dyspepsia (FD) patients, yet little attention has been paid to the whole-brain resting-state functional network abnormalities. The purpose of this study was to investigate whether FD disrupts the patterns of whole-brain networks and the abnormal functional connectivity could reflect the severity of the disease. The dysfunctional interactions between brain regions at rest were investigated in FD patients as compared with 40 age- and gender- matched healthy controls. Multivariate pattern analysis was used to evaluate the discriminative power of our results for classifying patients from controls. In our findings, the abnormal brain functional connections were mainly situated within or across the limbic/paralimbic system, the prefrontal cortex, the tempo-parietal areas and the visual cortex. About 96% of the subjects among the original dataset were correctly classified by a leave one-out cross-validation approach, and 88% accuracy was also validated in a replication dataset. The classification features were significantly associated with the patients' dyspepsia symptoms, the self-rating depression scale and self-rating anxiety scale, but it was not correlated with duration of FD patients (p>0.05). Our results may indicate the effectiveness of the altered brain functional connections reflecting the disease pathophysiology underling FD. These dysfunctional connections may be the epiphenomena or causative agents of FD, which may be affected by clinical severity and its related emotional dimension of the disease rather than the clinical course.
El Hamrani, Dounia; Gin, Henri; Gallis, Jean-Louis; Bouzier-Sore, Anne-Karine; Beauvieux, Marie-Christine
2018-01-01
Alcopops are flavored alcoholic beverages sweetened by sodas, known to contain fructose. These drinks have the goal of democratizing alcohol among young consumers (12-17 years old) and in the past few years have been considered as fashionable amongst teenagers. Adolescence, however, is a key period for brain maturation, occurring in the prefrontal cortex and limbic system until 21 years old. Therefore, this drinking behavior has become a public health concern. Despite the extensive literature concerning the respective impacts of either fructose or ethanol on brain, the effects following joint consumption of these substrates remains unknown. Our objective was to study the early brain modifications induced by a combined diet of high fructose (20%) and moderate amount of alcohol in young rats by 13 C Nuclear Magnetic Resonance (NMR) spectroscopy. Wistar rats had isocaloric pair-fed diets containing fructose (HF, 20%), ethanol (Et, 0.5 g/day/kg) or both substrates at the same time (HFEt). After 6 weeks of diet, the rats were infused with 13 C-glucose and brain perchloric acid extracts were analyzed by NMR spectroscopy ( 1 H and 13 C). Surprisingly, the most important modifications of brain metabolism were observed under fructose diet. Alterations, observed after only 6 weeks of diet, show that the brain is vulnerable at the metabolic level to fructose consumption during late-adolescence throughout adulthood in rats. The main result was an increase in oxidative metabolism compared to glycolysis, which may impact lactate levels in the brain and may, at least partially, explain memory impairment in teenagers consuming alcopops.
The effects of lithium and anticonvulsants on brain structure in bipolar disorder.
Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S
2010-12-01
To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.
Exercise, Obesity and CNS Control of Metabolic Homeostasis: A Review
Smith, John K.
2018-01-01
This review details the manner in which the central nervous system regulates metabolic homeostasis in normal weight and obese rodents and humans. It includes a review of the homeostatic contributions of neurons located in the hypothalamus, the midbrain and limbic structures, the pons and the medullary area postrema, nucleus tractus solitarius, and vagus nucleus, and details how these brain regions respond to circulating levels of orexigenic hormones, such as ghrelin, and anorexigenic hormones, such as glucagon-like peptide 1 and leptin. It provides an insight as to how high intensity exercise may improve homeostatic control in overweight and obese subjects. Finally, it provides suggestions as to how further progress can be made in controlling the current pandemic of obesity and diabetes. PMID:29867590
Ladouceur, Cecile D; Schlund, Michael W; Segreti, Anna-Maria
2018-02-15
Fronto-limbic systems play an important role in supporting resistance to emotional distraction to promote goal-directed behavior. Despite evidence that alterations in the functioning of these systems are implicated in developmental trajectories of psychopathology, most studies have been conducted in adults. This study examined the functioning of fronto-limbic systems subserving emotional interference in adolescents and whether differential reinforcement of correct responding can modulate these neural systems in ways that could promote resistance to emotional distraction. Fourteen healthy adolescents (ages 9-15) completed an emotional delayed working memory task during fMRI with emotional distracters (none, neutral, negative) while positive reinforcement (i.e., monetary reward) was provided for correct responses under some conditions. Adolescents showed slightly reduced behavioral performance and greater activation in amygdala and prefrontal cortical regions (ventrolateral, ventromedial, dorsolateral) on correct trials with negative distracters compared to those with no or neutral distracters. Positive reinforcement yielded an overall improvement in accuracy and reaction times and counteracted the effects of negative distracters as evidenced by significant reductions in activation in key fronto-limbic regions. The present findings extend results on emotional interference from adults to adolescents and suggest that positive reinforcement could be used to potentially promote insulation from emotional distraction. A challenge for the future will be to build upon these findings for constructing reinforcement-based attention training programs that could be used to reduce emotional attention biases in anxious youth. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.F.; Lear, J.L.
We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered ({sup 18}F)fluorodeoxyglucose (FDG) and ({sup 14}C)-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the {sup 14}C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the {sup 14}C label is lost frommore » the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum.« less
Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease.
van der Werff, Steven J A; Pannekoek, J Nienke; Andela, Cornelie D; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A
2015-07-01
Glucocorticoid disturbance can be a cause of psychiatric symptoms. Cushing's disease represents a unique model for examining the effects of prolonged exposure to high levels of endogenous cortisol on the human brain as well as for examining the relation between these effects and psychiatric symptomatology. This study aimed to investigate resting-state functional connectivity (RSFC) of the limbic network, the default mode network (DMN), and the executive control network in patients with long-term remission of Cushing's disease. RSFC of these three networks of interest was compared between patients in remission of Cushing's disease (n=24; 4 male, mean age=44.96 years) and matched healthy controls (n=24; 4 male, mean age=46.5 years), using probabilistic independent component analysis to extract the networks and a dual regression method to compare both groups. Psychological and cognitive functioning was assessed with validated questionnaires and interviews. In comparison with controls, patients with remission of Cushing's disease showed an increased RSFC between the limbic network and the subgenual subregion of the anterior cingulate cortex (ACC) as well as an increased RSFC of the DMN in the left lateral occipital cortex. However, these findings were not associated with psychiatric symptoms in the patient group. Our data indicate that previous exposure to hypercortisolism is related to persisting changes in brain function.
Ontogenesis of the angiotensin II (ANGII) receptor system in the duck brain.
Müller, A R; Gerstberger, R
1994-03-18
The ontogenetic development of the central nervous angiotensin II (ANGII) receptor system in the duck was studied at embryonic days E20 and E27 and at postnatal days P3 and P14 by computerized semiquantitative autoradiography employing the receptor antagonist 125I[1Sar,8Ile]ANGII as radioligand. For circumventricular structures involved in the sensing of brain-intrinsic (AV3V region) or blood-borne (subfornical organ, SFO) ANGII, binding sites for 125I[1Sar,8Ile]ANGII were first detectable at E27, with a steady rise in binding density up to P14. The choroid plexus of the lateral (PCVL) and third (PCVIII) cerebral ventricles responsible for cerebrospinal fluid (CSF) production were endowed with maximal ANGII receptor densities at E20 with subsequent reduction to constant medium (PCVIII) or low (PCVL) values. Besides the choroid plexus, the magnocellular paraventricular nucleus (PVN) was the only structure presenting ANGII specific binding sites at E20, although at low density. As for the SFO and AV3V region, labelling of ANGII binding sites in the PVN increased continuously during development to high values at P14. Nuclear components of the limbic system (archistriatum, amygdala and habenular complex) did not reveal specific labelling by the radioligand at E20 with constant, moderate binding densities evaluated for E27, P3 and P14. In the duck brain, functionally related structures exhibited a homogeneous ontogenetic development of their ANGII receptor system.
How demanding is the brain on a reversal task under day and night conditions?
Arias, N; Fidalgo, C; Méndez, M; Arias, J L
2015-07-23
Reversal learning has been studied as the process of learning to inhibit previously rewarded actions. These behavioral studies are usually performed during the day, when animals are in their daily period rest. However, how day or night affects spatial reversal learning and the brain regions involved in the learning process are still unknown. We conducted two experiments using the Morris Water Maze under different light-conditions: naïve group (CN, n=8), day group (DY, n=8), control DY group (CDY, n=8) night group (NG, n=8), and control NG group (CNG, n=7). Distance covered, velocity and latencies to reach the platform were examined. After completing these tasks, cytochrome c-oxidase activity (CO) in several brain limbic system structures was compared between groups. There were no behavioral differences in the time of day when the animals were trained. However, the metabolic brain consumption was higher in rats trained in the day condition. This CO increase was supported by the prefrontal cortex, thalamus, dorsal and ventral striatum, hippocampus and entorhinal cortex, revealing their role in the performance of the spatial reversal learning task. Finally, the orbitofrontal cortex has been revealed as a key structure in reversal learning execution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Swain, J E; Kim, P; Spicer, J; Ho, S S; Dayton, C J; Elmadih, A; Abel, K M
2014-09-11
Brain networks that govern parental response to infant signals have been studied with imaging techniques over the last 15 years. The complex interaction of thoughts and behaviors required for sensitive parenting enables the formation of each individual's first social bonds and critically shapes development. This review concentrates on magnetic resonance imaging experiments which directly examine the brain systems involved in parental responses to infant cues. First, we introduce themes in the literature on parental brain circuits studied to date. Next, we present a thorough chronological review of state-of-the-art fMRI studies that probe the parental brain with a range of baby audio and visual stimuli. We also highlight the putative role of oxytocin and effects of psychopathology, as well as the most recent work on the paternal brain. Taken together, a new model emerges in which we propose that cortico-limbic networks interact to support parental brain responses to infants. These include circuitry for arousal/salience/motivation/reward, reflexive/instrumental caring, emotion response/regulation and integrative/complex cognitive processing. Maternal sensitivity and the quality of caregiving behavior are likely determined by the responsiveness of these circuits during early parent-infant experiences. The function of these circuits is modifiable by current and early-life experiences, hormonal and other factors. Severe deviation from the range of normal function in these systems is particularly associated with (maternal) mental illnesses - commonly, depression and anxiety, but also schizophrenia and bipolar disorder. Finally, we discuss the limits and extent to which brain imaging may broaden our understanding of the parental brain given our current model. Developments in the understanding of the parental brain may have profound implications for long-term outcomes in families across risk, resilience and possible interventions. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2014 Elsevier B.V. All rights reserved.
Winawer, Melodie R.; Klassen, Tara L.; Teed, Sarah; Shipman, Marissa; Leung, Emily H.; Palmer, Abraham A.
2014-01-01
Identification of genes contributing to mouse seizure susceptibility can reveal novel genes or pathways that provide insight into human epilepsy. Using mouse chromosome substitution strains and interval-specific congenic strains (ISCS), we previously identified an interval conferring pilocarpine-induced limbic seizure susceptibility on distal mouse Chromosome 10 (Ch10). We narrowed the region by generating subcongenics with smaller A/J Ch10 segments on a C57BL/6J (B6) background and tested them with pilocarpine. We also tested pilocarpine susceptible congenics for 6Hz ECT, another model of limbic seizure susceptibility, to determine whether the susceptibility locus might have a broad effect on neuronal hyperexcitability across more than one mode of limbic seizure induction. ISCS Line 1, which contained the distal 2.7 Mb segment from A/J (starting at rs29382217), was more susceptible to both pilocarpine and ECT. Line 2, which was a subcongenic of Line1 (starting at rs13480828), was not susceptible; thus defining a 1.0 Mb critical region that was unique to Line1. Bioinformatic approaches identified 52 human orthologues within the unique Line 1 susceptibility region, the majority syntenic to human Ch12. Applying an epilepsy network analysis of known and suspected excitability genes and examination of interstrain genomic and brain expression differences revealed novel candidates within the region. These include Stat2, which plays a role in hippocampal GABA receptor expression after status epilepticus, and novel candidates Pan2, Cdk2, Gls2, and Cs, which are involved in neural cell differentiation, cellular remodeling, and embryonic development. Our strategy may facilitate discovery of novel human epilepsy genes. PMID:24373497
Masui, Kenta; Nakata, Yukako; Fujii, Naoki; Iwaki, Toru
2012-02-01
We describe herein an autopsied case of multiple system atrophy (MSA) with prolonged clinical course of 18 years, and evaluate the extent of neurodegeneration and glial cytoplasmic inclusions (GCIs) in the entire brain of this rare case. A 64-year-old woman presented with typical neurological symptoms and imaging features of MSA. Thereafter, she became bedridden, and breathing was assisted through a tracheostomy for 12 years. She died at the age of 82 after 18 years from the initial symptom. Post mortem examination revealed severe neurodegeneration in the inferior olive, pontine nuclei, substantia nigra, locus ceruleus, putamen and cerebellum. Notably, phosphorylated α-synuclein (p-α-syn)-positive GCIs were found in these areas, but their number was very low. In contrast, the density of GCIs was much higher in such regions as the tectum/tegmentum of the brainstem, pyramidal tracts, neocortices and limbic system, which usually contain a small number of GCIs. Another constituent of GCIs, ubiquitin (Ub) and Ub-associated autophagy substrate p62, were also positive in some GCIs, and distribution of Ub/p62 immunoreactivity was proportionate to that of p-α-syn+ GCIs despite the very long duration of the disease. Furthermore, this case had complicated hypoxic encephalopathy, but p-α-syn+ GCIs were also found in the damaged white matter, indicating the contribution of α-syncleinopathy as well as hypoxic effect to the secondary myelin and axonal loss in the white matter. Together, this rare case suggests the contribution of the disease duration to the prevalence of GCIs, and the possible involvement of the limbic system in extensive-stage disease. © 2011 Japanese Society of Neuropathology.
Sherlin, Leslie; Budzynski, Thomas; Kogan Budzynski, Helen; Congedo, Marco; Fischer, Mary E; Buchwald, Dedra
2007-02-15
Previous work using quantified EEG has suggested that brain activity in individuals with chronic fatigue syndrome (CFS) and normal persons differs. Our objective was to investigate if specific frequency band-pass regions and spatial locations are associated with CFS using low-resolution electromagnetic brain tomography (LORETA). We conducted a co-twin control study of 17 pairs of monozygotic twins where 1 twin met criteria for CFS and the co-twin was healthy. Twins underwent an extensive battery of tests including a structured psychiatric interview and a quantified EEG. Eyes closed EEG frequency-domain analysis was computed and the entire brain volume was compared of the CFS and healthy twins using a multiple comparison procedure. Compared with their healthy co-twins, twins with CFS differed in current source density. The CFS twins had higher delta in the left uncus and parahippocampal gyrus and higher theta in the cingulate gyrus and right superior frontal gyrus. These findings suggest that neurophysiological activity in specific areas of the brain may differentiate individuals with CFS from those in good health. The study corroborates that slowing of the deeper structures of the limbic system is associated with affect. It also supports the neurobiological model that the right forebrain is associated with sympathetic activity and the left forebrain with the effective management of energy. These preliminary findings await replication.
Müller, Jürgen L; Sommer, Monika; Wagner, Verena; Lange, Kirsten; Taschler, Heidrun; Röder, Christian H; Schuierer, Gerhardt; Klein, Helmfried E; Hajak, Göran
2003-07-15
Neurobiology of psychopathy is important for our understanding of current neuropsychiatric questions. Despite a growing interest in biological research in psychopathy, its neural underpinning remains obscure. We used functional magnetic resonance imaging to study the influence of affective contents on brain activation in psychopaths. Series containing positive and negative pictures from the International Affective Picture System were shown to six male psychopaths and six male control subjects while 100 whole-brain echo-planar-imaging measurements were acquired. Differences in brain activation were evaluated using BrainVoyager software 4.6. In psychopaths, increased activation through negative contents was found right-sided in prefrontal regions and amygdala. Activation was reduced right-sided in the subgenual cingulate and the temporal gyrus, and left-sided in the dorsal cingulate and the parahippocampal gyrus. Increased activation through positive contents was found left-sided in the orbitofrontal regions. Activation was reduced in right medial frontal and medial temporal regions. These findings underline the hypotheses that psychopathy is neurobiologically reflected by dysregulation and disturbed functional connectivity of emotion-related brain regions. These findings may be interpreted within a framework including prefrontal regions that provide top-down control to and regulate bottom-up signals from limbic areas. Because of the small sample size, the results of this study have to be regarded as preliminary.
The evolving neurobiology of gut feelings.
Mayer, E A; Naliboff, B; Munakata, J
2000-01-01
The bi-directional communication between limbic regions and the viscera play a central role in the generation and expression of emotional responses and associated emotional feelings. The response of different viscera to distinct, emotion-specific patterns of autonomic output is fed back to the brain, in particular to the cingulofrontal convergence region. Even though this process unfolds largely without conscious awareness, it plays an important role in emotional function and may influence rational decision making in the healthy individual. Alterations in this bi-directional process such as peripheral pathologies within the gut or alterations at the brain level may explain the close association between certain affective disorders and functional visceral syndromes.
French, E D; Siggins, G R
1980-10-01
Iontophoretic and micropressure drug application and lesion techniques were used to investigate the cellular source of rat limbic system epileptiform responses to opioid peptides [19]. Iontophoretically applied morphine, methionine enkephalin or beta-endorphin inhibited the spontaneous or glutamate-activated firing of the great majority of single neurons in medial and lateral septum, amygdala and cingulate cortex. These inhibitions in firing were antagonized by iontophoresis of naloxone. In contrast to inhibitory effects in other limbic areas, morphine and the opioid peptides predominantly excited CA1 and CA3 pyramidal neurons in a naloxone-sensitive manner, as previously reported [36]. On rare occasions, iontophoretically applied beta-endorphin evoked repetitive waveforms similar to interictal population EPSPs or spikes. Micropressure application of opiates and peptides also excited hippocampal neurons indicating such responses were not current-induced artefacts. The possible role of the excitatory cholinergic septal hippocampal pathway in the facilitatory response of hippocampal units to the opiates was tested with iontophoretically applied atropine and scopolamine, or lesions of septal nuclei. None of these manipulations reduced the opioid-induced excitations; rather, septal lesions enhanced excitatory and epileptiform responses to the opiates. These results support the hypothesis that opiate-evoked epileptiform activity in the limbic system arises from enhanced pyramidal cell activity in the hippocampal formation, probably by a non-cholinergic mechanism.
Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila
2016-07-20
Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early diagnosis of small tumors, such as a cholangiocarcinoma, is discussed in the context of the clinical utility of early cerebral hypometabolism detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography in patients with rapidly progressive dementia.
Konishi, Jun; Asami, Takeshi; Hayano, Fumi; Yoshimi, Asuka; Hayasaka, Shunsuke; Fukushima, Hiroshi; Whitford, Thomas J.; Inoue, Tomio; Hirayasu, Yoshio
2014-01-01
Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD. PMID:24663245
Mazza, Monica; Pino, Maria Chiara; Tempesta, Daniela; Catalucci, Alessia; Masciocchi, Carlo; Ferrara, Michele
2016-01-01
Post-Traumatic Stress Disorder (PTSD) is a chronic anxiety disorder. The continued efforts to control the distressing memories by traumatized individuals, together with the reduction of responsiveness to the outside world, are called Emotional Numbing (EN). The EN is one of the central symptoms in PTSD and it plays an integral role not only in the development and maintenance of post-traumatic symptomatology, but also in the disability of emotional regulation. This disorder shows an abnormal response of cortical and limbic regions which are normally involved in understanding emotions since the very earliest stages of the development of processing ability. Patients with PTSD exhibit exaggerated brain responses to emotionally negative stimuli. Identifying the neural correlates of emotion regulation in these subjects is important for elucidating the neural circuitry involved in emotional and empathic dysfunction. We showed that PTSD patients, all survivors of the L'Aquila 2009 earthquake, have a higher sensitivity to negative emotion and lower empathy levels. These emotional and empathic deficits are accompanied by neural brain functional correlates. Indeed PTSD subjects exhibit functional abnormalities in brain regions that are involved in stress regulation and emotional responses. The reduced activation of the frontal areas and a stronger activation of the limbic areas when responding to emotional stimuli could lead the subjects to enact coping strategies aimed at protecting themselves from the re-experience of pain related to traumatic events. This would result in a dysfunctional hyperactivation of subcortical areas, which may cause emotional distress and, consequently, impaired social relationships often reported by PTSD patients.
Sowell, Elizabeth R.; Leow, Alex D.; Bookheimer, Susan Y.; Smith, Lynne M.; O’Connor, Mary J.; Kan, Eric; Rosso, Carly; Houston, Suzanne; Dinov, Ivo D.; Thompson, Paul M.
2010-01-01
Here we investigate the effects of prenatal exposure to methamphetamine (MA) on local brain volume using magnetic resonance imaging. Because many who use MA during pregnancy also use alcohol, a known teratogen, we examined whether local brain volumes differed among 61 children (ages 5 to 15), 21 with prenatal MA exposure, 18 with concomitant prenatal alcohol exposure (the MAA group), 13 with heavy prenatal alcohol but not MA exposure (ALC group), and 27 unexposed controls (CON group). Volume reductions were observed in both exposure groups relative to controls in striatal and thalamic regions bilaterally, and right prefrontal and left occipitoparietal cortices. Striatal volume reductions were more severe in the MAA group than in the ALC group, and within the MAA group, a negative correlation between full-scale IQ (FSIQ) scores and caudate volume was observed. Limbic structures including the anterior and posterior cingulate, the inferior frontal gyrus (IFG) and ventral and lateral temporal lobes bilaterally were increased in volume in both exposure groups. Further, cingulate and right IFG volume increases were more pronounced in the MAA than ALC group. Discriminant function analyses using local volume measurements and FSIQ were used to predict group membership, yielding factor scores that correctly classified 72% of participants in jackknife analyses. These findings suggest that striatal and limbic structures, known to be sites of neurotoxicity in adult MA abusers, may be more vulnerable to prenatal MA exposure than alcohol exposure, and that more severe striatal damage is associated with more severe cognitive deficit. PMID:20237258
Pang, E W; Sedge, P; Grodecki, R; Robertson, A; MacDonald, M J; Jetly, R; Shek, P N; Taylor, M J
2014-08-05
Posttraumatic stress disorder (PTSD) is a mental disorder that stems from exposure to one or more traumatic events. While PTSD is thought to result from a dysregulation of emotional neurocircuitry, neurocognitive difficulties are frequently reported. Mental flexibility is a core executive function that involves the ability to shift and adapt to new information. It is essential for appropriate social-cognitive behaviours. Magnetoencephalography (MEG), a neuroimaging modality with high spatial and temporal resolution, has been used to track the progression of brain activation during tasks of mental flexibility called set-shifting. We hypothesized that the sensitivity of MEG would be able to capture the abnormal neurocircuitry implicated in PTSD and this would negatively impact brain regions involved in set-shifting. Twenty-two soldiers with PTSD and 24 matched control soldiers completed a colour-shape set-shifting task. MEG data were recorded and source localized to identify significant brain regions involved in the task. Activation latencies were obtained by analysing the time course of activation in each region. The control group showed a sequence of activity that involved dorsolateral frontal cortex, insula and posterior parietal cortices. The soldiers with PTSD showed these activations but they were interrupted by activations in paralimbic regions. This is consistent with models of PTSD that suggest dysfunctional neurocircuitry is driven by hyper-reactive limbic areas that are not appropriately modulated by prefrontal cortical control regions. This is the first study identifying the timing and location of atypical neural responses in PTSD with set-shifting and supports the model that hyperactive limbic structures negatively impact cognitive function.
Mohr, Margaret A; Sisk, Cheryl L
2013-03-19
During puberty, the brain goes through extensive remodeling, involving the addition of new neurons and glia to brain regions beyond the canonical neurogenic regions (i.e., dentate gyrus and olfactory bulb), including limbic and hypothalamic cell groups associated with sex-typical behavior. Whether these pubertally born cells become functionally integrated into neural circuits remains unknown. To address this question, we gave male Syrian hamsters daily injections of the cell birthdate marker bromodeoxyuridine throughout puberty (postnatal day 28-49). Half of the animals were housed in enriched environments with access to a running wheel to determine whether enrichment increased the survival of pubertally born cells compared with the control environment. At 4 wk after the last BrdU injection, animals were allowed to interact with a receptive female and were then killed 1 h later. Triple-label immunofluorescence for BrdU, the mature neuron marker neuronal nuclear antigen, and the astrocytic marker glial fibrillary acidic protein revealed that a proportion of pubertally born cells in the medial preoptic area, arcuate nucleus, and medial amygdala differentiate into either mature neurons or astrocytes. Double-label immunofluorescence for BrdU and the protein Fos revealed that a subset of pubertally born cells in these regions is activated during sociosexual behavior, indicative of their functional incorporation into neural circuits. Enrichment affected the survival and activation of pubertally born cells in a brain region-specific manner. These results demonstrate that pubertally born cells located outside of the traditional neurogenic regions differentiate into neurons and glia and become functionally incorporated into neural circuits that subserve sex-typical behaviors.
Fleck, David E; Welge, Jeffrey A; Eliassen, James C; Adler, Caleb M; DelBello, Melissa P; Strakowski, Stephen M
2018-07-01
The neurophysiological substrates of cognition and emotion, as seen with fMRI, are generally explained using modular structures. The present study was designed to probe the modular structure of cognitive-emotional processing in bipolar and healthy individuals using factor analysis and compare the results with current conceptions of the neurophysiology of bipolar disorder. Exploratory factor analysis was used to assess patterns of covariation among brain regions-of-interest activated during the Continuous Performance Task with Emotional and Neutral Distractors in healthy and bipolar individuals without a priori constraints on the number or composition of latent factors. Results indicated a common cognitive-emotional network consisting of prefrontal, medial temporal, limbic, parietal, anterior cingulate and posterior cingulate modules. However, reduced brain activation to emotional stimuli in the frontal, medial temporal and limbic modules was apparent in the bipolar relative to the healthy group, potentially accounting for emotional dysregulation in bipolar disorder. This study is limited by a relatively small sample size recruited at a single site. The results have yet to be validated on a larger independent sample. Although the modular structure of cognitive-emotional processing is similar in bipolar and healthy individuals, activation in response to emotional/neutral cues varies. These findings are not only consistent with recent conceptions of mood regulation in bipolar disorder, but also suggest that regional activation can be considered within tighter modular structures without compromising data interpretation. This demonstration may serve as a template for data reduction in future region-of-interest analyses to increase statistical power. Copyright © 2018 Elsevier B.V. All rights reserved.
Koutsouleris, Nikolaos; Gaser, Christian; Jäger, Markus; Bottlender, Ronald; Frodl, Thomas; Holzinger, Silvia; Schmitt, Gisela J E; Zetzsche, Thomas; Burgermeister, Bernhard; Scheuerecker, Johanna; Born, Christine; Reiser, Maximilian; Möller, Hans-Jürgen; Meisenzahl, Eva M
2008-02-15
Structural neuroimaging has substantially advanced the neurobiological research of schizophrenia by describing a range of focal brain alterations as possible neuroanatomical underpinnings of the disease. Despite this progress, a considerable heterogeneity of structural findings persists that may reflect the phenomenological diversity of schizophrenia. It is unclear whether the range of possible clinical disease manifestations relates to a core structural brain deficit or to distinct structural correlates. Therefore, gray matter density (GMD) differences between 175 schizophrenic patients (SZ) and 177 matched healthy control subjects (HC) were examined in a three-step approach using cross-sectional and conjunctional voxel-based morphometry (VBM): (1) analysis of structural alterations irrespective of symptomatology; (2) subdivision of the patient sample according to a three-dimensional factor model of the PANSS and investigation of structural differences between these subsamples and healthy controls; (3) analysis of a common pattern of structural alterations present in all patient subsamples compared to healthy controls. Significant GMD reductions in patients compared to controls were identified within the prefrontal, limbic, paralimbic, temporal and thalamic regions. The disorganized symptom dimension was associated with bilateral alterations in temporal, insular and medial prefrontal cortices. Positive symptoms were associated with left-pronounced alterations in perisylvian regions and extended thalamic GMD losses. Negative symptoms were linked to the most extended alterations within orbitofrontal, medial prefrontal, lateral prefrontal and temporal cortices as well as limbic and subcortical structures. Thus, structural heterogeneity in schizophrenia may relate to specific patterns of GMD reductions that possibly share a common prefrontal-perisylvian pattern of structural brain alterations.
Cope, Lora M; Shane, Matthew S; Segall, Judith M; Nyalakanti, Prashanth K; Stevens, Michael C; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A
2012-11-30
Psychopathy is believed to be associated with brain abnormalities in both paralimbic (i.e., orbitofrontal cortex, insula, temporal pole, parahippocampal gyrus, posterior cingulate) and limbic (i.e., amygdala, hippocampus, anterior cingulate) regions. Recent structural imaging studies in both community and prison samples are beginning to support this view. Sixty-six participants, recruited from community corrections centers, were administered the Hare psychopathy checklist-revised (PCL-R), and underwent magnetic resonance imaging (MRI). Voxel-based morphometry was used to test the hypothesis that psychopathic traits would be associated with gray matter reductions in limbic and paralimbic regions. Effects of lifetime drug and alcohol use on gray matter volume were covaried. Psychopathic traits were negatively associated with gray matter volumes in right insula and right hippocampus. Additionally, psychopathic traits were positively associated with gray matter volumes in bilateral orbital frontal cortex and right anterior cingulate. Exploratory regression analyses indicated that gray matter volumes within right hippocampus and left orbital frontal cortex combined to explain 21.8% of the variance in psychopathy scores. These results support the notion that psychopathic traits are associated with abnormal limbic and paralimbic gray matter volume. Furthermore, gray matter increases in areas shown to be functionally impaired suggest that the structure-function relationship may be more nuanced than previously thought. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Diminished fronto-limbic functional connectivity in child sexual offenders.
Kneer, Jonas; Borchardt, Viola; Kärgel, Christian; Sinke, Christopher; Massau, Claudia; Tenbergen, Gilian; Ponseti, Jorge; Walter, Henrik; Beier, Klaus M; Schiffer, Boris; Schiltz, Kolja; Walter, Martin; Kruger, Tillmann H C
2018-02-22
Child sexual abuse and neglect have been related to an increased risk for the development of a wide range of behavioral, psychological, and sexual problems and increased rates of suicidal behavior. Contrary to the large amount of research focusing on the negative mental health consequences of child sexual abuse, very little is known about the characteristics of child sexual offenders and the neuronal underpinnings contributing to child sexual offending. This study investigates differences in resting state functional connectivity (rs-FC) between non-pedophilic child sexual offenders (N = 20; CSO-P) and matched healthy controls (N = 20; HC) using a seed-based approach. The focus of this investigation of rs-FC in CSO-P was put on prefrontal and limbic regions highly relevant for emotional and behavioral processing. Results revealed a significant reduction of rs-FC between the right centromedial amygdala and the left dorsolateral prefrontal cortex in child sexual offenders compared to controls. Given that, in the healthy brain, there is a strong top-down inhibitory control of prefrontal over limbic structures, these results suggest that diminished rs-FC between the amygdala and the dorsolateral prefrontal cortex and may foster sexual deviance and sexual offending. A profound understanding of these concepts should contribute to a better understanding of the occurrence of child sexual offending, as well as further development of more differentiated and effective interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reduced limbic and hypothalamic volumes correlate with bone density in early Alzheimer's disease.
Loskutova, Natalia; Honea, Robyn A; Brooks, William M; Burns, Jeffrey M
2010-01-01
Accelerated bone loss is associated with Alzheimer's disease (AD). Although the central nervous system plays a direct role in regulating bone mass, primarily through the actions of the hypothalamus, there is little work investigating the possible role of neurodegeneration in bone loss. In this cross-sectional study, we examined the association between bone mineral density (BMD) and neuroimaging markers of neurodegeneration (i.e., global and regional measures of brain volume) in early AD and non-demented aging. Fifty-five non-demented and 63 early AD participants underwent standard neurological and neuropsychological assessment, structural MRI scanning, and dual energy x-ray absorptiometry. In early AD, voxel-based morphometry analyses demonstrated that low BMD was associated with low volume in limbic grey matter (GM) including the hypothalamus, cingulate, and parahippocampal gyri and in the left superior temporal gyrus and left inferior parietal cortex. No relationship between BMD and regional GM volume was found in non-demented controls. The hypothesis-driven region of interest analysis further isolating the hypothalamus demonstrated a positive relationship between BMD and hypothalamic volume after controlling for age and gender in the early AD group but not in non-demented controls. These results demonstrate that lower BMD is associated with lower hypothalamic volume in early AD, suggesting that central mechanisms of bone remodeling may be disrupted by neurodegeneration.
Modoni, Anna; Masciullo, Marcella; Spinelli, Pietro; Marra, Camillo; Tartaglione, Tommaso; Andreetta, Francesca; Tonali, Pietro; Silvestri, Gabriella
2009-03-01
To describe a case of acute nonherpetic limbic encephalitis (LE) with negative testing for antibodies directed against onconeuronal and cell membrane antigens, including voltage-gated potassium channels and N-methyl-D-aspartate receptor, that showed a dramatic response to immune therapy. A 30-year-old woman manifested generalized seizures, altered consciousness, and memory impairment shortly after a prodromal viral illness. Few days later the patient developed a drug-resistant epileptic status. Electroencephalograph showed bitemporal slowing and paroxysmal slow wave bursts. Brain magnetic resonance imaging showed bilateral swelling in the medial temporal lobes. Cerebrospinal fluid analysis ruled out viral etiologies. A diagnostic search for cancer, including serum testing for known onconeuronal antibodies proved negative. Screening for cell membrane antigen antibodies, including voltage-gated potassium channels and N-methyl-D-aspartate receptor, was also negative. Suspecting an autoimmune etiology, we started an immunomodulatory treatment with intravenous immunoglobulin followed by a short course of oral prednisone, obtaining a full clinical recovery. Our report confirms previous observations of "seronegative" autoimmune LE, suggesting the presence of other, still unknown central nervous system antigens representing a target of a postinfectious, autoimmune response in these patients. Moreover, it emphasizes the importance of early recognition and treatment of acute autoimmune LE, to reduce the risk of intensive care unit-related complications and the occurrence of permanent cognitive or behavioral defects.
Cranial electrotherapy stimulation for the treatment of depression.
Gunther, Mary; Phillips, Kenneth D
2010-11-01
More prevalent in women than men, clinical depression affects approximately 15 million American adults in a given year. Psychopharmaceutical therapy accompanied by psychotherapy and wellness interventions (e.g., nutrition, exercise, counseling) is effective in 80% of diagnosed cases. A lesser known adjunctive therapy is that of cranial electrotherapy stimulation (CES). The major hypothesis for the use of CES in depression is that it may reset the brain to pre-stress homeostasis levels. It is conjectured that the pulsed electrical currents emitted by cranial electrical stimulators affect changes in the limbic system, the reticular activating system, and/or the hypothalamus that result in neurotransmitter secretion and downstream hormone production. While evidence is good for applied research, basic research about the mechanisms of action for CES remains in its infancy. A review of the literature provides an overview of current research findings and implications for clinical mental health practice.
Biological substrates of schizophrenia.
Kovelman, J A; Scheibel, A B
1986-01-01
Schizophrenia is increasingly believed to represent a group of organic disorders which primarily, although not exclusively, affect the central nervous system. Our purpose is to review a representative sample of twentieth-century literature which speaks to the biological substrates of the syndrome. Subjects reviewed include genetic and environmental contributions to the onset of illness, early and recent findings of gross structural anomalies, and apparent histopathological alterations in cerebral cortex, cerebellar vermis, limbic system, and brain stem, as well as problems of cerebral asymmetry. Data from a diverse group of electrophysiological studies reveal several promising correlates of these areas of investigation. Despite the inconsistent nature of the findings to date, several themes have begun to emerge, including patterns of hypofrontal/hyperparietal regional cerebral flow and glucose utilization, left hemispheric dysfunction, and deficits of interhemispheric information processing. The interpretation and significance of these emerging patterns remains unclear and must await more profound insights into the nature of normal and abnormal cerebral function.
Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.
Bannai, M; Torii, K
2013-05-01
Gustatory and visceral stimulation from food regulates digestion and nutrient use. Free L-glutamate (Glu) release from digested protein is responsible for umami taste perception in the gut. Moreover, monosodium Glu (MSG) is widely used as a flavor enhancer to add umami taste in various cuisines. Recent studies indicate that dietary Glu sensors and their signal transduction system exist in both gut mucosa and taste cells. Oral Glu sensing has been well studied. In this review, we focus on the role of Glu on digestion and absorption of food. Infusion of Glu into the stomach and intestine increase afferent nerve activity of the gastric and the celiac branches of the vagus nerve, respectively. Luminal Glu also evokes efferent nerve activation of the abdominal vagus nerve branches simultaneously. Additionally, intragastric infusion of Glu activates the insular cortex, limbic system, hypothalamus, nucleus tractus solitaries, and amygdala, as determined by functional magnetic resonance imaging, and is able to induce flavor-preference learning as a result of postingestive effects in rats. These results indicate that Glu signaling via gustatory and visceral pathways plays an important role in the processes of digestion, absorption, metabolism, and other physiological functions via activation of the brain.
Changes in reward-induced brain activation in opiate addicts.
Martin-Soelch, C; Chevalley, A F; Künig, G; Missimer, J; Magyar, S; Mino, A; Schultz, W; Leenders, K L
2001-10-01
Many studies indicate a role of the cerebral dopaminergic reward system in addiction. Motivated by these findings, we examined in opiate addicts whether brain regions involved in the reward circuitry also react to human prototypical rewards. We measured regional cerebral blood flow (rCBF) with H(2)(15)O positron emission tomography (PET) during a visuo-spatial recognition task with delayed response in control subjects and in opiate addicts participating in a methadone program. Three conditions were defined by the types of feedback: nonsense feedback; nonmonetary reinforcement; or monetary reward, received by the subjects for a correct response. We found in the control subjects rCBF increases in regions associated with the meso-striatal and meso-corticolimbic circuits in response to both monetary reward and nonmonetary reinforcement. In opiate addicts, these regions were activated only in response to monetary reward. Furthermore, nonmonetary reinforcement elicited rCBF increases in limbic regions of the opiate addicts that were not activated in the control subjects. Because psychoactive drugs serve as rewards and directly affect regions of the dopaminergic system like the striatum, we conclude that the differences in rCBF increases between controls and addicts can be attributed to an adaptive consequence of the addiction process.
Blatt, Gene J.
2012-01-01
Autism is a behaviorally defined neurodevelopmental disorder that affects over 1% of new births in the United States and about 2% of boys. The etiologies are unknown and they are genetically complex. There may be epigenetic effects, environmental influences, and other factors that contribute to the mechanisms and affected neural pathway(s). The underlying neuropathology of the disorder has been evolving in the literature to include specific brain areas in the cerebellum, limbic system, and cortex. Part(s) of structures appear to be affected most rather than the entire structure, for example, select nuclei of the amygdala, the fusiform face area, and so forth. Altered cortical organization characterized by more frequent and narrower minicolumns and early overgrowth of the frontal portion of the brain, affects connectivity. Abnormalities include cytoarchitectonic laminar differences, excess white matter neurons, decreased numbers of GABAergic cerebellar Purkinje cells, and other events that can be traced developmentally and cause anomalies in circuitry. Problems with neurotransmission are evident by recent receptor and binding site studies especially in the inhibitory GABA system likely contributing to an imbalance of excitatory/inhibitory transmission. As postmortem findings are related to core behavior symptoms, and technology improves, researchers are gaining a much better perspective of contributing factors to the disorder. PMID:24278731
Neurobiological factors in aggressive behavior.
Garza-Treviño, E S
1994-07-01
The author's aim was to review literature in the neurosciences and psychiatric clinical research reports about biological factors in aggression and the pathophysiological mechanisms that accompany aggression in neuropsychiatric syndromes. Studies were located through computer searches of relevant experimental reports and review articles mainly from the last 25 years. Several studies using neuroimaging and neurophysiological and neuropathological research techniques have identified lesions in the limbic structures, temporal lobes, and frontal lobes of the brain in abnormally aggressive individuals. Several reports have associated deficiency or dysregulation of serotonin with homicidal, suicidal, and impulsive behavior. However, few studies have focused on polypeptides or second messenger systems, although abnormalities in these systems have been reported in patients with neuropsychiatric syndromes who have shown aggressive behavior. Even fewer studies focus on the correlation of brain structures and metabolic markers. The understanding of aggressive behavior in psychiatric patients is fragmented. Some explanations are speculative and extrapolated to clinical psychiatric syndromes from experimental data on the neurophysiology of cats, rats, and other mammals. Identification of biochemical markers that can be used in predicting patients' response to pharmacological interventions may be the next step in developing more rational treatment of violent patients.
Soeiro-de-Souza, Márcio Gerhardt; Otaduy, Maria Concepción Garcia; Dias, Carolina Zadres; Bio, Danielle S; Machado-Vieira, Rodrigo; Moreno, Ricardo Alberto
2012-12-01
Impairments in facial emotion recognition (FER) have been reported in bipolar disorder (BD) during all mood states. FER has been the focus of functional magnetic resonance imaging studies evaluating differential activation of limbic regions. Recently, the α1-C subunit of the L-type voltage-gated calcium channel (CACNA1C) gene has been described as a risk gene for BD and its Met allele found to increase CACNA1C mRNA expression. In healthy controls, the CACNA1C risk (Met) allele has been reported to increase limbic system activation during emotional stimuli and also to impact on cognitive function. The aim of this study was to investigate the impact of CACNA1C genotype on FER scores and limbic system morphology in subjects with BD and healthy controls. Thirty-nine euthymic BD I subjects and 40 healthy controls were submitted to a FER recognition test battery and genotyped for CACNA1C. Subjects were also examined with a 3D 3-Tesla structural imaging protocol. The CACNA1C risk allele for BD was associated to FER impairment in BD, while in controls nothing was observed. The CACNA1C genotype did not impact on amygdala or hippocampus volume neither in BD nor controls. Sample size. The present findings suggest that a polymorphism in calcium channels interferes FER phenotype exclusively in BD and doesn't interfere on limbic structures morphology. Copyright © 2012 Elsevier B.V. All rights reserved.
Limbic circuitry of the midline thalamus.
Vertes, Robert P; Linley, Stephanie B; Hoover, Walter B
2015-07-01
The thalamus was subdivided into three major groups: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Limbic nuclei of thalamus (or 'limbic thalamus') consist of the anterior nuclei, midline nuclei, medial division of the mediodorsal nucleus (MDm) and central medial nucleus (CM) of the intralaminar complex. The midline nuclei include the paraventricular (PV) and paratenial (PT) nuclei, dorsally, and the reuniens (RE) and rhomboid (RH) nuclei, ventrally. The 'limbic' thalamic nuclei predominantly connect with limbic-related structures and serve a direct role in limbic-associated functions. Regarding the midline nuclei, RE/RH mainly target limbic cortical structures, particularly the hippocampus and the medial prefrontal cortex. Accordingly, RE/RH participate in functions involving interactions of the HF and mPFC. By contrast, PV/PT mainly project to limbic subcortical structures, particularly the amygdala and nucleus accumbens, and hence are critically involved in affective behaviors such as stress/anxiety, feeding behavior, and drug seeking activities. The anatomical/functional characteristics of MDm and CM are very similar to those of the midline nuclei and hence the collection of nuclei extending dorsoventrally along the midline/paramidline of the thalamus constitute the core of the 'limbic thalamus'. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bosch, Oliver J
2011-02-01
The maternal brain undergoes remarkable physiological and behavioral changes in the peripartum period to meet the demands of the offspring. Here, the brain neuropeptides oxytocin and vasopressin, together with prolactin, play important roles. These neuropeptides are critically involved in the regulation of maternal behavior. Furthermore, reduced anxiety in lactation is another adaptation of the maternal brain. Therefore, a link between maternal behavior and maternal anxiety has been repeatedly postulated. This is supported by our studies in rats bred for high (HAB) and low (LAB) anxiety-related behavior. While female HAB rats become less anxious in lactation, their anxiety level is still four times higher compared with LAB dams. Interestingly, HAB dams display an intense and protective mothering style including increased arched back nursing and pup retrieval whereas LAB dams display only low levels of maternal care. The amount of maternal care directed towards the pups correlates with the mother's innate anxiety. In addition to differences in maternal care, HAB dams are also more protective as they show heightened aggression against a virgin intruder compared with the less aggressive LAB dams. The level of maternal aggression correlates with both their innate anxiety level as well as with the release of oxytocin and vasopressin in hypothalamic and limbic brain areas. Importantly, manipulations of the brain oxytocin and vasopressin systems alter maternal behavior and - depending on the brain region - can also alter the dam's anxiety. Thus, the mother's innate anxiety determines her maternal performance and oxytocin and vasopressin are involved in both parameters. Copyright © 2010 Elsevier Inc. All rights reserved.
Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain
2014-09-01
Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seydell-Greenwald, Anna; Raven, Erika P.; Leaver, Amber M.; Turesky, Ted K.; Rauschecker, Josef P.
2014-01-01
Subjective tinnitus, or “ringing in the ears,” is perceived by 10 to 15 percent of the adult population and causes significant suffering in a subset of patients. While it was originally thought of as a purely auditory phenomenon, there is increasing evidence that the limbic system influences whether and how tinnitus is perceived, far beyond merely determining the patient's emotional reaction to the phantom sound. Based on functional imaging and electrophysiological data, recent articles frame tinnitus as a “network problem” arising from abnormalities in auditory-limbic interactions. Diffusion-weighted magnetic resonance imaging is a noninvasive method for investigating anatomical connections in vivo. It thus has the potential to provide anatomical evidence for the proposed changes in auditory-limbic connectivity. However, the few diffusion imaging studies of tinnitus performed to date have inconsistent results. In the present paper, we briefly summarize the results of previous studies, aiming to reconcile their results. After detailing analysis methods, we then report findings from a new dataset. We conclude that while there is some evidence for tinnitus-related increases in auditory and auditory-limbic connectivity that counteract hearing-loss related decreases in auditory connectivity, these results should be considered preliminary until several technical challenges have been overcome. PMID:25050181
High frequency oscillations are associated with cognitive processing in human recognition memory.
Kucewicz, Michal T; Cimbalnik, Jan; Matsumoto, Joseph Y; Brinkmann, Benjamin H; Bower, Mark R; Vasoli, Vincent; Sulc, Vlastimil; Meyer, Fred; Marsh, W R; Stead, S M; Worrell, Gregory A
2014-08-01
High frequency oscillations are associated with normal brain function, but also increasingly recognized as potential biomarkers of the epileptogenic brain. Their role in human cognition has been predominantly studied in classical gamma frequencies (30-100 Hz), which reflect neuronal network coordination involved in attention, learning and memory. Invasive brain recordings in animals and humans demonstrate that physiological oscillations extend beyond the gamma frequency range, but their function in human cognitive processing has not been fully elucidated. Here we investigate high frequency oscillations spanning the high gamma (50-125 Hz), ripple (125-250 Hz) and fast ripple (250-500 Hz) frequency bands using intracranial recordings from 12 patients (five males and seven females, age 21-63 years) during memory encoding and recall of a series of affectively charged images. Presentation of the images induced high frequency oscillations in all three studied bands within the primary visual, limbic and higher order cortical regions in a sequence consistent with the visual processing stream. These induced oscillations were detected on individual electrodes localized in the amygdala, hippocampus and specific neocortical areas, revealing discrete oscillations of characteristic frequency, duration and latency from image presentation. Memory encoding and recall significantly modulated the number of induced high gamma, ripple and fast ripple detections in the studied structures, which was greater in the primary sensory areas during the encoding (Wilcoxon rank sum test, P = 0.002) and in the higher-order cortical association areas during the recall (Wilcoxon rank sum test, P = 0.001) of memorized images. Furthermore, the induced high gamma, ripple and fast ripple responses discriminated the encoded and the affectively charged images. In summary, our results show that high frequency oscillations, spanning a wide range of frequencies, are associated with memory processing and generated along distributed cortical and limbic brain regions. These findings support an important role for fast network synchronization in human cognition and extend our understanding of normal physiological brain activity during memory processing. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Externalizing proneness and brain response during pre-cuing and viewing of emotional pictures
Foell, Jens; Brislin, Sarah J.; Strickland, Casey M.; Seo, Dongju; Sabatinelli, Dean
2016-01-01
Externalizing proneness, or trait disinhibition, is a concept relevant to multiple high-impact disorders involving impulsive-aggressive behavior. Its mechanisms remain disputed: major models posit hyperresponsive reward circuitry or heightened threat-system reactivity as sources of disinhibitory tendencies. This study evaluated alternative possibilities by examining relations between trait disinhibition and brain reactivity during preparation for and processing of visual affective stimuli. Forty females participated in a functional neuroimaging procedure with stimuli presented in blocks containing either pleasurable or aversive pictures interspersed with neutral, with each picture preceded by a preparation signal. Preparing to view elicited activation in regions including nucleus accumbens, whereas visual regions and bilateral amygdala were activated during viewing of emotional pictures. High disinhibition predicted reduced nucleus accumbens activation during preparation within pleasant/neutral picture blocks, along with enhanced amygdala reactivity during viewing of pleasant and aversive pictures. Follow-up analyses revealed that the augmented amygdala response was related to reduced preparatory activation. Findings indicate that participants high in disinhibition are less able to process implicit cues and mentally prepare for upcoming stimuli, leading to limbic hyperreactivity during processing of actual stimuli. This outcome is helpful for integrating findings from studies suggesting reward-system hyperreactivity and others suggesting threat-system hyperreactivity as mechanisms for externalizing proneness. PMID:26113614
Hanlon, C A; Dowdle, L T; Jones, J L
2016-01-01
Cocaine dependence is one of the most difficult substance use disorders to treat. While the powerful effects of cocaine use on behavior were documented in the 19th century, it was not until the late 20th century that we realized cocaine use was affecting brain tissue and function. Following a brief introduction (Section 1), this chapter will summarize our current knowledge regarding alterations in neural circuit function typically observed in chronic cocaine users (Section 2) and highlight an emerging body of literature which suggests that pretreatment limbic circuit activity may be a reliable predictor of clinical outcomes among individuals seeking treatment for cocaine (Section 3). Finally, as the field of addiction research strives to translate this neuroimaging data into something clinically meaningful, we will highlight several new brain stimulation approaches which utilize functional brain imaging data to design noninvasive brain stimulation interventions for individuals seeking treatment for substance dependence disorders (Section 4). © 2016 Elsevier Inc. All rights reserved.
Tendler, Alex; Wagner, Shlomo
2015-02-16
Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.
Information fusion via isocortex-based Area 37 modeling
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-08-01
A simplified model of information processing in the brain can be constructed using primary sensory input from two modalities (auditory and visual) and recurrent connections to the limbic subsystem. Information fusion would then occur in Area 37 of the temporal cortex. The creation of meta concepts from the low order primary inputs is managed by models of isocortex processing. Isocortex algorithms are used to model parietal (auditory), occipital (visual), temporal (polymodal fusion) cortex and the limbic system. Each of these four modules is constructed out of five cortical stacks in which each stack consists of three vertically oriented six layer isocortex models. The input to output training of each cortical model uses the OCOS (on center - off surround) and FFP (folded feedback pathway) circuitry of (Grossberg, 1) which is inherently a recurrent network type of learning characterized by the identification of perceptual groups. Models of this sort are thus closely related to cognitive models as it is difficult to divorce the sensory processing subsystems from the higher level processing in the associative cortex. The overall software architecture presented is biologically based and is presented as a potential architectural prototype for the development of novel sensory fusion strategies. The algorithms are motivated to some degree by specific data from projects on musical composition and autonomous fine art painting programs, but only in the sense that these projects use two specific types of auditory and visual cortex data. Hence, the architectures are presented for an artificial information processing system which utilizes two disparate sensory sources. The exact nature of the two primary sensory input streams is irrelevant.
Satterthwaite, Theodore D.; Wolf, Daniel H.; Loughead, James; Ruparel, Kosha; Valdez, Jeffrey N.; Siegel, Steven J.; Kohler, Christian G.; Gur, Raquel E.; Gur, Ruben C.
2014-01-01
Objective Recognition memory of faces is impaired in patients with schizophrenia, as is the neural processing of threat-related signals, but how these deficits interact to produce symptoms is unclear. Here we used an affective face recognition paradigm to examine possible interactions between cognitive and affective neural systems in schizophrenia. Methods fMRI (3T) BOLD response was examined in 21 controls and 16 patients during a two-choice recognition task using images of human faces. Each target face had previously been displayed with a threatening or non-threatening affect, but here were displayed with neutral affect. Responses to successful recognition and for the effect of previously threatening vs. non-threatening affect were evaluated, and correlations with total BPRS examined. Functional connectivity analyses examined the relationship between activation in the amygdala and cortical regions involved in recognition memory. Results Patients performed the task more slowly than controls. Controls recruited the expected cortical regions to a greater degree than patients, and patients with more severe symptoms demonstrated proportionally less recruitment. Increased symptoms were also correlated with augmented amygdala and orbitofrontal cortex response to threatening faces. Controls exhibited a negative correlation between activity in the amygdala and cortical regions involved in cognition, while patients showed a weakening of that relationship. Conclusions Increased symptoms were related to an enhanced threat response in limbic regions and a diminished recognition memory response in cortical regions, supporting a link between two brain systems often examined in isolation. This finding suggests that abnormal processing of threat-related signals in the environment may exacerbate cognitive impairment in schizophrenia. PMID:20194482
Eraslan, Evren; Akyazi, Ibrahim; Erg L-Ekiz, Elif; Matur, Erdal
2015-01-01
Noise is a psychological, environmental stressor that activates limbic sites in the brain. Limbic sites such as the amygdala and the amygdaloid corticotropin-releasing hormone (CRH) system play an important role in integrating stress response. We investigated the association between noise exposures, CRH-related molecules in the amygdala, and behavioral alterations. In total 54 Sprague-Dawley rats were divided into the following three groups: Control (CON), acute noise exposure (ANE), and chronic noise exposure (CNE). The ANE group was exposed to 100 dB white noise only once in 4 h and the CNE group was exposed to the same for 4 h per day for 30 days. Expression profiles of CRH and its receptors CRH-R1 and CRH-R2 were analyzed by quantitative real-time polymerase chain reaction (qPCR). The same stress procedure was applied to the ANE and CNE groups for behavior testing. The anxiety responses of the animals after acute and chronic stress exposure were measured in the defensive withdrawal test. CNE upregulated CRH and CRH-R1 mRNA levels but downregulated CRH-R2 mRNA levels. ANE led to a decrease in both CRH-R1 and CRH-R2 expression. In the defensive withdrawal test, while the ANE increased, CNE reduced anxiety-like behaviors. The present study shows that the exposure of rats to white noise (100 dB) leads to behavioral alterations and molecule-specific changes in the CRH system. Behavioral alterations can be related to these molecular changes in the amygdala.
Zhang, Guang-Wei; Sun, Wen-Jian; Zingg, Brian; Shen, Li; He, Jufang; Xiong, Ying; Tao, Huizhong W; Zhang, Li I
2018-01-17
In the mammalian brain, auditory information is known to be processed along a central ascending pathway leading to auditory cortex (AC). Whether there exist any major pathways beyond this canonical auditory neuraxis remains unclear. In awake mice, we found that auditory responses in entorhinal cortex (EC) cannot be explained by a previously proposed relay from AC based on response properties. By combining anatomical tracing and optogenetic/pharmacological manipulations, we discovered that EC received auditory input primarily from the medial septum (MS), rather than AC. A previously uncharacterized auditory pathway was then revealed: it branched from the cochlear nucleus, and via caudal pontine reticular nucleus, pontine central gray, and MS, reached EC. Neurons along this non-canonical auditory pathway responded selectively to high-intensity broadband noise, but not pure tones. Disruption of the pathway resulted in an impairment of specifically noise-cued fear conditioning. This reticular-limbic pathway may thus function in processing aversive acoustic signals. Copyright © 2017 Elsevier Inc. All rights reserved.
Distinct processing of social and monetary rewards in late adolescents with trait anhedonia.
Chan, Raymond C K; Li, Zhi; Li, Ke; Zeng, Ya-Wei; Xie, Wei-Zhen; Yan, Chao; Cheung, Eric F C; Jin, Zhen
2016-03-01
Anticipatory and consummatory dissociation of hedonic experience may manifest as trait anhedonia in healthy and clinical populations. It is still unclear whether the underlying neural mechanisms of the monetary-based and affect-based incentive delay paradigms are distinct from each other. The present study aimed to examine the similarities and differences between the Affect Incentive Delay (AID) and the Monetary Incentive Delay (MID) imaging paradigms in relation to brain activations. We administered the AID and the MID imaging tasks to 28 adolescent participants. A cue signaling the type of forthcoming feedback (reward or punishment) was displayed to the participants, followed by a target-hit task with corresponding reward or punishment. The striatal and limbic regions were activated during the anticipatory phase of MID, while there was no brain activation during the anticipatory phase of AID. In the consummatory phase, the MID task activated the medial frontal cortex, while the AID task activated the frontal and dorsal limbic regions. We further found that the anhedonic group exhibited significant hypoactivation than the nonanhedonic group at the left pulvinar, the left claustrum and the left insula to positive cues in the anticipatory phase of the AID task. The results suggest that the AID and the MID tasks have unique activation patterns. Our findings also suggest that the AID task may be more sensitive in detecting anhedonia in people with trait anhedonia. (c) 2016 APA, all rights reserved).
Gibson, William S; Cho, Shinho; Abulseoud, Osama A; Gorny, Krzysztof R; Felmlee, Joel P; Welker, Kirk M; Klassen, Bryan T; Min, Hoon-Ki; Lee, Kendall H
2017-01-01
Abstract Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is an investigational therapy for treatment-resistant obsessive-compulsive disorder. The ability of VC/VS DBS to evoke spontaneous mirth in patients, often accompanied by smiling and laughter, is clinically well documented. However, the neural correlates of DBS-evoked mirth remain poorly characterized. Patients undergoing VC/VS DBS surgery underwent intraoperative evaluation in which mirth-inducing and non-mirth-inducing stimulation localizations were identified. Using dynamic causal modeling (DCM) for fMRI, the effect of mirth-inducing DBS on functional and effective connectivity among established nodes in limbic cortico-striato-thalamo-cortical (CSTC) circuitry was investigated. Both mirth-inducing and non-mirth-inducing VC/VS DBS consistently resulted (conjunction, global null, family-wise error-corrected P < 0.05) in activation of amygdala, ventral striatum, and mediodorsal thalamus. However, only mirth-inducing DBS resulted in functional inhibition of anterior cingulate cortex. Dynamic causal modeling revealed that mirth-inducing DBS enhanced effective connectivity from anterior cingulate to ventral striatum, while attenuating connectivity from thalamus to ventral striatum relative to non-mirth-inducing stimulation. These results suggest that DBS-evoked mood elevation is accompanied by distinct patterns of limbic thalamocortical connectivity. Using the novel combination of DBS-evoked mood alteration and functional MRI in human subjects, we provide new insights into the network-level mechanisms that influence affect. PMID:27001680
Resting-State Functional Connectivity in Patients with Long-Term Remission of Cushing's Disease
van der Werff, Steven J A; Pannekoek, J Nienke; Andela, Cornelie D; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A
2015-01-01
Glucocorticoid disturbance can be a cause of psychiatric symptoms. Cushing's disease represents a unique model for examining the effects of prolonged exposure to high levels of endogenous cortisol on the human brain as well as for examining the relation between these effects and psychiatric symptomatology. This study aimed to investigate resting-state functional connectivity (RSFC) of the limbic network, the default mode network (DMN), and the executive control network in patients with long-term remission of Cushing's disease. RSFC of these three networks of interest was compared between patients in remission of Cushing's disease (n=24; 4 male, mean age=44.96 years) and matched healthy controls (n=24; 4 male, mean age=46.5 years), using probabilistic independent component analysis to extract the networks and a dual regression method to compare both groups. Psychological and cognitive functioning was assessed with validated questionnaires and interviews. In comparison with controls, patients with remission of Cushing's disease showed an increased RSFC between the limbic network and the subgenual subregion of the anterior cingulate cortex (ACC) as well as an increased RSFC of the DMN in the left lateral occipital cortex. However, these findings were not associated with psychiatric symptoms in the patient group. Our data indicate that previous exposure to hypercortisolism is related to persisting changes in brain function. PMID:25652248
Van Schuerbeek, Peter; Baeken, Chris; De Raedt, Rudi; De Mey, Johan; Luypaert, Rob
2011-01-31
The psychobiological personality model of Cloninger distinguishes four heritable temperament traits (harm avoidance (HA), novelty seeking (NS), reward dependence (RD) and persistence (P)) and three character traits (self-directedness (SD), cooperativeness (CO) and self-transcendence (ST)) which develop during lifetime. Prior research already showed that individual differences in temperament are reflected in structural variances in specific brain areas. In this study, we used voxel-based morphometry (VBM) to correlate the different temperament and character traits with local gray and white matter volumes (GMV and WMV) in young healthy female volunteers. We found correlations between the temperament traits and GMV and WMV in the frontal, temporal and limbic regions involved in controlling and generating the corresponding behavior as proposed in Cloninger's theory: anxious for HA, impulsive for NS, reward-directed for RD and goal-directed for P. The character traits correlated with GMV and WMV in the frontal, temporal and limbic regions involved in the corresponding cognitive tasks: self-reflection for SD, mentalizing and empathizing with others for CO and religious belief for ST. This study shows that individual variations in brain morphology can be related to the temperament and character dimensions, and lends support to the hypothesis of a neurobiological basis of personality traits. Copyright © 2010 Elsevier B.V. All rights reserved.
Human alcohol-related neuropathology
Kril, Jillian J.
2015-01-01
Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions. PMID:24370929
Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach.
Cui, Zaixu; Xia, Zhichao; Su, Mengmeng; Shu, Hua; Gong, Gaolang
2016-04-01
Developmental dyslexia has been hypothesized to result from multiple causes and exhibit multiple manifestations, implying a distributed multidimensional effect on human brain. The disruption of specific white-matter (WM) tracts/regions has been observed in dyslexic children. However, it remains unknown if developmental dyslexia affects the human brain WM in a multidimensional manner. Being a natural tool for evaluating this hypothesis, the multivariate machine learning approach was applied in this study to compare 28 school-aged dyslexic children with 33 age-matched controls. Structural magnetic resonance imaging (MRI) and diffusion tensor imaging were acquired to extract five multitype WM features at a regional level: white matter volume, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. A linear support vector machine (LSVM) classifier achieved an accuracy of 83.61% using these MRI features to distinguish dyslexic children from controls. Notably, the most discriminative features that contributed to the classification were primarily associated with WM regions within the putative reading network/system (e.g., the superior longitudinal fasciculus, inferior fronto-occipital fasciculus, thalamocortical projections, and corpus callosum), the limbic system (e.g., the cingulum and fornix), and the motor system (e.g., the cerebellar peduncle, corona radiata, and corticospinal tract). These results were well replicated using a logistic regression classifier. These findings provided direct evidence supporting a multidimensional effect of developmental dyslexia on WM connectivity of human brain, and highlighted the involvement of WM tracts/regions beyond the well-recognized reading system in dyslexia. Finally, the discriminating results demonstrated a potential of WM neuroimaging features as imaging markers for identifying dyslexic individuals. © 2016 Wiley Periodicals, Inc.
Systems Neuroscience of Psychosis: Mapping Schizophrenia Symptoms onto Brain Systems.
Strik, Werner; Stegmayer, Katharina; Walther, Sebastian; Dierks, Thomas
2017-01-01
Schizophrenia research has been in a deadlock for many decades. Despite important advances in clinical treatment, there are still major concerns regarding long-term psychosocial reintegration and disease management, biological heterogeneity, unsatisfactory predictors of individual course and treatment strategies, and a confusing variety of controversial theories about its etiology and pathophysiological mechanisms. In the present perspective on schizophrenia research, we first discuss a methodological pitfall in contemporary schizophrenia research inherent in the attempt to link mental phenomena with the brain: we claim that the time-honored phenomenological method of defining mental symptoms should not be contaminated with the naturalistic approach of modern neuroscience. We then describe our Systems Neuroscience of Psychosis (SyNoPsis) project, which aims to overcome this intrinsic problem of psychiatric research. Considering schizophrenia primarily as a disorder of interindividual communication, we developed a neurobiologically informed semiotics of psychotic disorders, as well as an operational clinical rating scale. The novel psychopathology allows disentangling the clinical manifestations of schizophrenia into behavioral domains matching the functions of three well-described higher-order corticobasal brain systems involved in interindividual human communication, namely, the limbic, associative, and motor loops, including their corticocortical sensorimotor connections. The results of several empirical studies support the hypothesis that the proposed three-dimensional symptom structure, segregated into the affective, the language, and the motor domain, can be specifically mapped onto structural and functional abnormalities of the respective brain systems. New pathophysiological hypotheses derived from this brain system-oriented approach have helped to develop and improve novel treatment strategies with noninvasive brain stimulation and practicable clinical parameters. In clinical practice, the novel psychopathology allows confining the communication deficits of the individual patient, shifting attention from the symptoms to the intact resources. We have studied this approach and observed important advantages for therapeutic alliances, personalized treatment, and de-escalation strategies. Future studies will further conjoin clinical definitions of psychotic symptoms with brain structures and functions, and disentangle structural and functional deficit patterns within these systems to identify neurobiologically distinct subsyndromes. Neurobiologically homogeneous patient groups may provide new momentum for treatment research. Finally, lessons learned from schizophrenia research may contribute to developing a comprehensive perspective on human experience and behavior that integrates methodologically distinct, but internally consistent, insights from humanities and neuroscience. © 2017 S. Karger AG, Basel.
Wilkie, Mary Beth; Besheer, Joyce; Kelley, Stephen P.; Kumar, Sandeep; O’Buckley, Todd K.; Morrow, A. Leslie; Hodge, Clyde W.
2010-01-01
Background Protein kinase C (PKC) is a family of isoenzymes that regulate a variety of functions in the central nervous system including neurotransmitter release, ion channel activity, and cell differentiation. Growing evidence suggests that specific isoforms of PKC influence a variety of behavioral, biochemical, and physiological effects of ethanol in mammals. The purpose of this study was to determine whether acute ethanol exposure alters phosphorylation of conventional PKC isoforms at a threonine 674 (p-cPKC) site in the hydrophobic domain of the kinase, which is required for its catalytic activity. Methods Male rats were administered a dose range of ethanol (0, 0.5, 1, or 2 g/kg, intragastric) and brain tissue was removed 10 minutes later for evaluation of changes in p-cPKC expression using immunohistochemistry and Western blot methods. Results Immunohistochemical data show that the highest dose of ethanol (2 g/kg) rapidly increases p-cPKC immunoreactivity specifically in the nucleus accumbens (core and shell), lateral septum, and hippocampus (CA3 and dentate gyrus). Western blot analysis further showed that ethanol (2 g/kg) increased p-cPKC expression in the P2 membrane fraction of tissue from the nucleus accumbens and hippocampus. Although p-cPKC was expressed in numerous other brain regions, including the caudate nucleus, amygdala, and cortex, no changes were observed in response to acute ethanol. Total PKCγ immunoreactivity was surveyed throughout the brain and showed no change following acute ethanol injection. Conclusions These results suggest that ethanol rapidly promotes phosphorylation of cPKC in limbic brain regions, which may underlie effects of acute ethanol on the nervous system and behavior. PMID:17511744
Perinatal programming of emotional brain circuits: an integrative view from systems to molecules
Bock, Jörg; Rether, Kathy; Gröger, Nicole; Xie, Lan; Braun, Katharina
2014-01-01
Environmental influences such as perinatal stress have been shown to program the developing organism to adapt brain and behavioral functions to cope with daily life challenges. Evidence is now accumulating that the specific and individual effects of early life adversity on the functional development of brain and behavior emerge as a function of the type, intensity, timing and the duration of the adverse environment, and that early life stress (ELS) is a major risk factor for developing behavioral dysfunctions and mental disorders. Results from clinical as well as experimental studies in animal models support the hypothesis that ELS can induce functional “scars” in prefrontal and limbic brain areas, regions that are essential for emotional control, learning and memory functions. On the other hand, the concept of “stress inoculation” is emerging from more recent research, which revealed positive functional adaptations in response to ELS resulting in resilience against stress and other adversities later in life. Moreover, recent studies indicate that early life experiences and the resulting behavioral consequences can be transmitted to the next generation, leading to a transgenerational cycle of adverse or positive adaptations of brain function and behavior. In this review we propose a unifying view of stress vulnerability and resilience by connecting genetic predisposition and programming sensitivity to the context of experience-expectancy and transgenerational epigenetic traits. The adaptive maturation of stress responsive neural and endocrine systems requires environmental challenges to optimize their functions. Repeated environmental challenges can be viewed within the framework of the match/mismatch hypothesis, the outcome, psychopathology or resilience, depends on the respective predisposition and on the context later in life. PMID:24550772
Ehrlich, Stefan; Geisler, Daniel; Ritschel, Franziska; King, Joseph A; Seidel, Maria; Boehm, Ilka; Breier, Marion; Clas, Sabine; Weiss, Jessika; Marxen, Michael; Smolka, Michael N; Roessner, Veit; Kroemer, Nils B
2015-09-01
Individuals with anorexia nervosa are thought to exert excessive self-control to inhibit primary drives. This study used functional MRI (fMRI) to interrogate interactions between the neural correlates of cognitive control and motivational processes in the brain reward system during the anticipation of monetary reward and reward-related feedback. In order to avoid confounding effects of undernutrition, we studied female participants recovered from anorexia nervosa and closely matched healthy female controls. The fMRI analysis (including node-to-node functional connectivity) followed a region of interest approach based on models of the brain reward system and cognitive control regions implicated in anorexia nervosa: the ventral striatum, medial orbitofrontal cortex (mOFC) and dorsolateral prefrontal cortex (DLPFC). We included 30 recovered patients and 30 controls in our study. There were no behavioural differences and no differences in hemodynamic responses of the ventral striatum and the mOFC in the 2 phases of the task. However, relative to controls, recovered patients showed elevated DLPFC activity during the anticipation phase, failed to deactivate this region during the feedback phase and displayed greater functional coupling between the DLPFC and mOFC. Recovered patients also had stronger associations than controls between anticipation-related DLPFC responses and instrumental responding. The results we obtained using monetary stimuli might not generalize to other forms of reward. Unaltered neural responses in ventral limbic reward networks but increased recruitment of and connectivity with lateral-frontal brain circuitry in recovered patients suggests an elevated degree of selfregulatory processes in response to rewarding stimuli. An imbalance between brain systems subserving bottom-up and top-down processes may be a trait marker of the disorder.
Functional neuroimaging insights into the physiology of human sleep.
Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre
2010-12-01
Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.
Deep-Brain Stimulation for Basal Ganglia Disorders.
Wichmann, Thomas; Delong, Mahlon R
2011-07-01
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.
Brain Oscillations, Hypnosis, and Hypnotizability.
Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin
2015-01-01
This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.
Bladder control, urgency, and urge incontinence: evidence from functional brain imaging.
Griffiths, Derek; Tadic, Stasa D
2008-01-01
To review brain imaging studies of bladder control in subjects with normal control and urge incontinence; to define a simple model of supraspinal bladder control; and to propose a neural correlate of urgency and possible origins of urge incontinence. Review of published reports of brain imaging relevant to urine storage, and secondary analyses of our own recent observations. In a simple model of normal urine storage, bladder and urethral afferents received in the periaqueductal gray (PAG) are mapped in the insula, forming the basis of sensation; the anterior cingulate gyrus (ACG) provides monitoring and control; the prefrontal cortex makes voiding decisions. The net result, as the bladder fills, is inhibition of the pontine micturition center (PMC) and of voiding, together with gradual increase in insular response, corresponding to increasing desire to void. In urge-incontinent subjects, brain responses differ. At large bladder volumes and strong sensation, but without detrusor overactivity (DO), most cortical responses become exaggerated, especially in ACG. This may be both a learned reaction to previous incontinence episodes and the neural correlate of urgency. The neural signature of DO itself seems to be prefrontal deactivation. Possible causes of urge incontinence include dysfunction of prefrontal cortex or limbic system, suggested by weak responses and/or deactivation, as well as abnormal afferent signals or re-emergence of infantile reflexes. Bladder control depends on an extensive network of brain regions. Dysfunction in various parts may contribute to urge incontinence, suggesting that there are different phenotypes requiring different treatments. (c) 2007 Wiley-Liss, Inc.
Treatment-responsive limbic encephalitis identified by neuropil antibodies: MRI and PET correlates
Ances, Beau M.; Vitaliani, Roberta; Taylor, Robert A.; Liebeskind, David S.; Voloschin, Alfredo; Houghton, David J.; Galetta, Steven L.; Dichter, Marc; Alavi, Abass; Rosenfeld, Myrna R.; Dalmau, Josep
2007-01-01
We report seven patients, six from a single institution, who developed subacute limbic encephalitis initially considered of uncertain aetiology. Four patients presented with symptoms of hippocampal dysfunction (i.e. severe short-term memory loss) and three with extensive limbic dysfunction (i.e. confusion, seizures and suspected psychosis). Brain MRI and [18F]fluorodeoxyglucose (FDG)-PET complemented each other but did not overlap in 50% of the patients. Combining both tests, all patients had temporal lobe abnormalities, five with additional areas involved. In one patient, FDG hyperactivity in the brainstem that was normal on MRI correlated with central hypoventilation; in another case, hyperactivity in the cerebellum anticipated ataxia. All patients had abnormal CSF: six pleocytosis, six had increased protein concentration, and three of five examined had oligoclonal bands. A tumour was identified and removed in four patients (mediastinal teratoma, thymoma, thymic carcinoma and thyroid cancer) and not treated in one (ovarian teratoma). An immunohistochemical technique that facilitates the detection of antibodies to cell surface or synaptic proteins demonstrated that six patients had antibodies to the neuropil of hippocampus or cerebellum, and one to intraneuronal antigens. Only one of the neuropil antibodies corresponded to voltage-gated potassium channel (VGKC) antibodies; the other five (two with identical specificity) reacted with antigens concentrated in areas of high dendritic density or synaptic-enriched regions of the hippocampus or cerebellum. Preliminary characterization of these antigens indicates that they are diverse and expressed on the neuronal cell membrane and dendrites; they do not co-localize with VGKCs, but partially co-localize with spinophilin. A target autoantigen in one of the patients co-localizes with a cell surface protein involved in hippocampal dendritic development. All patients except the one with antibodies to intracellular antigens had dramatic clinical and neuroimaging responses to immunotherapy or tumour resection; two patients had neurological relapse and improved with immunotherapy. Overall, the phenotype associated with the novel neuropil antibodies includes dominant behavioural and psychiatric symptoms and seizures that often interfere with the evaluation of cognition and memory, and brain MRI or FDG-PET abnormalities less frequently restricted to the medial temporal lobes than in patients with classical paraneoplastic or VGKC antibodies. When compared with patients with VGKC antibodies, patients with these novel antibodies are more likely to have CSF inflammatory abnormalities and systemic tumours (teratoma and thymoma), and they do not develop SIADH-like hyponatraemia. Although most autoantigens await characterization, all share intense expression by the neuropil of hippocampus, with patterns of immunolabelling characteristic enough to suggest the diagnosis of these disorders and predict response to treatment. PMID:15888538
Persistent neural activity in head direction cells
NASA Technical Reports Server (NTRS)
Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)
2003-01-01
Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.
Brain evolution relating to family, play, and the separation call.
MacLean, P D
1985-04-01
Mammals stem from the mammal-like reptiles (therapsids) that were widely prevalent in Pangaea 250 million years ago. In the evolutionary transition from reptiles to mammals, three key developments were (1) nursing, in conjunction with maternal care; (2) audiovocal communication for maintaining maternal-offspring contact; and (3) play. The separation call perhaps ranks as the earliest and most basic mammalian vocalization, while play may have functioned originally to promote harmony in the nest. How did such family related behavior develop? In its evolution, the forebrain of advanced mammals has expanded as a triune structure that anatomically and chemically reflects ancestral commonalities with reptiles, early mammals, and late mammals. Recent findings suggest that the development of the behavioral triad in question may have depended on the evolution of the thalamocingulate division of the limbic system, a derivative from early mammals. The thalamocingulate division (which has no distinctive counterpart in the reptilian brain) is, in turn, geared in with the prefrontal neocortex that, in human beings, may be inferred to play a key role in familial acculturation.
Moutsimilli, Larissa; Farley, Severine; El Khoury, Marie-Anne; Chamot, Christophe; Sibarita, Jean-Baptiste; Racine, Victor; El Mestikawy, Salah; Mathieu, Flavie; Dumas, Sylvie; Giros, Bruno; Tzavara, Eleni T
2008-03-01
Recently the two vesicular-glutamate-transporters VGLUT1 and VGLUT2 have been cloned and characterized. VGLUT1 and VGLUT2 together label all glutamatergic neurons, but because of their distinct expression patterns in the brain they facilitate our ability to define between a VGLUT1-positive cortical and a VGLUT2-positive subcortical glutamatergic systems. We have previously demonstrated an increased cortical VGLUT1 expression as marker of antidepressant activity. Here, we assessed the effects of different psychotropic drugs on brain VGLUT2 mRNA and protein expression. The typical antipsychotic haloperidol, and the atypicals clozapine and risperidone increased VGLUT2 mRNA selectively in the central medial/medial parafascicular, paraventricular and intermediodorsal thalamic nuclei; VGLUT2 protein was accordingly amplified in paraventricular and ventral striatum and in prefrontal cortex. The antidepressants fluoxetine and desipramine and the sedative anxiolytic diazepam had no effect. These results highlight the implication of thalamo-limbic glutamatergic pathways in the action of antipsychotics. Increased VGLUT2 expression in these neurons might constitute a marker for antipsychotic activity and subcortical glutamate neurotransmission might be a possible novel target for future generation antipsychotics.
[Memory and brain--neurobiological correlates of memory disturbances].
Calabrese, P; Markowitsch, H J
2003-04-01
A differentiation of memory is possible on the basis of chronological and contents-related aspects. Furthermore, it is possible to make process-specific subdivisions (encoding, transfer, consolidation, retrieval). The time-related division on the one hand refers to the general differentiation into short-term and long-term memory, and, on the other, to that between anterograde and retrograde memory ("new" and "old memory"; measured from a given time point, usually that when brain damage occurred). Anterograde memory means the successful encoding and storing of new information; retrograde the ability to retrieve successfully acquired and/or stored information. On the contents-based level, memory can be divided into five basic long-term systems--episodic memory, the knowledge system, perceptual, procedural and the priming form of memory. Neural correlates for these divisions are discussed with special emphasis of the episodic and the knowledge systems, based both on normal individuals and brain-damaged subjects. It is argued that structures of the limbic system are important for encoding of information and for its transfer into long-term memory. For this, two independent, but interacting memory circuits are proposed--one of them controlling and integrating primarily the emotional, and the other primarily the cognitive components of newly incoming information. For information storage principally neocortical structures are regarded as important and for the recall of information from the episodic and semantic memory systems the combined action of portions of prefrontal and anterior temporal regions is regarded as essential. Within this fronto-temporal agglomerate, a moderate hemispheric-specificity is assumed to exist with the right-hemispheric combination being mainly engaged in episodic memory retrieval and the left-hemispheric in that of semantic information. Evidence for this specialization comes from the results from focally brain-damaged patients as well as from that functional brain imaging in normal human subjects. Comparing results from imaging studies in memory disturbed patients with brain damage and from patients with a psychiatric diagnosis (e. g., psychogenic amnesia) revealed that both patient groups demonstrate comparable metabolic changes on the brain level. It can therefore be concluded that in neurological patients distinct, identifiable tissue damage is existent, while in psychiatric patients changes in the brain's biochemistry (release of stress hormones, and transmitters) constitute the physiological bases for the memory disturbances.
Evoked bioelectrical brain activity following exposure to ionizing radiation.
Loganovsky, K; Kuts, K
2017-12-01
The article provides an overview of modern physiological evidence to support the hypothesis on cortico limbic sys tem dysfunction due to the hippocampal neurogenesis impairment as a basis of the brain interhemispheric asym metry and neurocognitive deficit after radiation exposure. The importance of the research of both evoked poten tials and fields as a highly sensitive and informative method is emphasized.Particular attention is paid to cerebral sensor systems dysfunction as a typical effect of ionizing radiation. Changes in functioning of the central parts of sensory analyzers of different modalities as well as the violation of brain integrative information processes under the influence of small doses of ionizing radiation can be critical when determining the radiation risks of space flight. The possible long term prospects for manned flights into space, including to Mars, given the effects identified are discussed. Potential risks to the central nervous system during space travel comprise cognitive functions impairment, including the volume of short term memory short ening, impaired motor functions, behavioral changes that could affect human performance and health. The remote risks for CNS are considered to be the following possible neuropsychiatric disorders: accelerated brain aging, Alzheimer's disease and other types of dementia. The new radiocerebral dose dependent effect, when applied cog nitive auditory evoked potentials P300 technique with a possible threshold dose of 0.05 Gy, manifesting in a form of disruption of information processing in the Wernicke's area is under discussion. In order to identify neurophys iological biological markers of ionizing radiation further international researches with adequate dosimetry support are necessary. K. Loganovsky, K. Kuts.
Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function
Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A.
2016-01-01
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2–12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16–0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. SIGNIFICANCE STATEMENT Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. PMID:27927961
Nasal Respiration Entrains Human Limbic Oscillations and Modulates Cognitive Function.
Zelano, Christina; Jiang, Heidi; Zhou, Guangyu; Arora, Nikita; Schuele, Stephan; Rosenow, Joshua; Gottfried, Jay A
2016-12-07
The need to breathe links the mammalian olfactory system inextricably to the respiratory rhythms that draw air through the nose. In rodents and other small animals, slow oscillations of local field potential activity are driven at the rate of breathing (∼2-12 Hz) in olfactory bulb and cortex, and faster oscillatory bursts are coupled to specific phases of the respiratory cycle. These dynamic rhythms are thought to regulate cortical excitability and coordinate network interactions, helping to shape olfactory coding, memory, and behavior. However, while respiratory oscillations are a ubiquitous hallmark of olfactory system function in animals, direct evidence for such patterns is lacking in humans. In this study, we acquired intracranial EEG data from rare patients (Ps) with medically refractory epilepsy, enabling us to test the hypothesis that cortical oscillatory activity would be entrained to the human respiratory cycle, albeit at the much slower rhythm of ∼0.16-0.33 Hz. Our results reveal that natural breathing synchronizes electrical activity in human piriform (olfactory) cortex, as well as in limbic-related brain areas, including amygdala and hippocampus. Notably, oscillatory power peaked during inspiration and dissipated when breathing was diverted from nose to mouth. Parallel behavioral experiments showed that breathing phase enhances fear discrimination and memory retrieval. Our findings provide a unique framework for understanding the pivotal role of nasal breathing in coordinating neuronal oscillations to support stimulus processing and behavior. Animal studies have long shown that olfactory oscillatory activity emerges in line with the natural rhythm of breathing, even in the absence of an odor stimulus. Whether the breathing cycle induces cortical oscillations in the human brain is poorly understood. In this study, we collected intracranial EEG data from rare patients with medically intractable epilepsy, and found evidence for respiratory entrainment of local field potential activity in human piriform cortex, amygdala, and hippocampus. These effects diminished when breathing was diverted to the mouth, highlighting the importance of nasal airflow for generating respiratory oscillations. Finally, behavioral data in healthy subjects suggest that breathing phase systematically influences cognitive tasks related to amygdala and hippocampal functions. Copyright © 2016 the authors 0270-6474/16/3612448-20$15.00/0.
Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer
2014-01-01
Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. PMID:24825898
Grothe, Michel J; Teipel, Stefan J
2016-01-01
Recent neuroimaging studies of Alzheimer's disease (AD) have emphasized topographical similarities between AD-related brain changes and a prominent cortical association network called the default-mode network (DMN). However, the specificity of distinct imaging abnormalities for the DMN compared to other intrinsic connectivity networks (ICNs) of the limbic and heteromodal association cortex has not yet been examined systematically. We assessed regional amyloid load using AV45-PET, neuronal metabolism using FDG-PET, and gray matter volume using structural MRI in 473 participants from the Alzheimer's Disease Neuroimaging Initiative, including preclinical, predementia, and clinically manifest AD stages. Complementary region-of-interest and voxel-based analyses were used to assess disease stage- and modality-specific changes within seven principle ICNs of the human brain as defined by a standardized functional connectivity atlas. Amyloid deposition in AD dementia showed a preference for the DMN, but high effect sizes were also observed for other neocortical ICNs, most notably the frontoparietal-control network. Atrophic changes were most specific for an anterior limbic network, followed by the DMN, whereas other neocortical networks were relatively spared. Hypometabolism appeared to be a mixture of both amyloid- and atrophy-related profiles. Similar patterns of modality-dependent network specificity were also observed in the predementia and, for amyloid deposition, in the preclinical stage. These quantitative data confirm a high vulnerability of the DMN for multimodal imaging abnormalities in AD. However, rather than being selective for the DMN, imaging abnormalities more generally affect higher order cognitive networks and, importantly, the vulnerability profiles of these networks markedly differ for distinct aspects of AD pathology. © 2015 Wiley Periodicals, Inc.
Frodl, Thomas; Szyf, Moshe; Carballedo, Angela; Ly, Victoria; Dymov, Sergiy; Vaisheva, Farida; Morris, Derek; Fahey, Ciara; Meaney, James; Gill, Michael; Booij, Linda
2015-09-01
The aim of the present study was to investigate the association of fMRI blood oxygen-level dependent (BOLD) reactivity with the level of epigenetic methylation of SLC6A4 in blood DNA from a sample of healthy participants and patients with major depressive disorder (MDD). We investigated patients with MDD and healthy controls using fMRI and an emotional attention-shifting task. We assessed site-specific DNA methylation of a previously characterized SLC6A4 region in peripheral blood DNA using pyrosequencing. Our study involved 25 patients with MDD and 35 healthy controls. Activation in the anterior insula elicited by negative emotional content was significantly positively associated with the degree of SLC6A4 methylation. Significantly negative associations were observed between activation in the posterior insula and the degree of SLC6A4 methylation when judging the geometry of pictures after seeing negative in contrast to positive emotional stimuli. Healthy controls with a high degree of SLC6A4 methylation depicted significantly more activity elicited by positive stimuli in limbic regions and more activity elicited by negative stimuli in limbic as well as cognitive control regions than those with a low degree of SLC6A4 methylation. It is impossible to measure methylation directly in the brain and thus we assessed peripheral methylation of SLC6A4. Since the association was cross-sectional, no conclusion about cause and effect can be drawn. Our study provides further support to the hypothesis that particular DNA methylation states that are associated with brain function during emotion processing are detectable in the periphery.
Morphological patterns of the collateral sulcus in the human brain.
Huntgeburth, Sonja C; Petrides, Michael
2012-04-01
The collateral sulcal complex is an important landmark on the medial surface of the temporal lobe. Anteriorly, it delineates the limbic regions of the parahippocampal gyrus from the visual-processing areas of the fusiform gyrus. Posteriorly, it continues into the occipital lobe, bearing no relationship to the memory-related limbic regions. Given the considerable extent of the sulcus and functional heterogeneity of the surrounding cortex, an investigation of the morphology of this sulcus was carried out to examine whether it is continuous or a series of sulcal parts, i.e. independent sulci classified together under the name collateral sulcus. We investigated the collateral sulcal complex using magnetic resonance images taking into account the three-dimensional nature of the brain. Our examination demonstrated three separate sulcal segments: (i) an anterior segment, the rhinal sulcus, delineating the uncus from the adjacent temporal neocortex, (ii) a middle segment, the collateral sulcus proper, forming the lateral border of the posterior parahippocampal cortex, and (iii) a caudal segment, the occipital extent of the collateral sulcus, within the occipital lobe. Three relationships exist between the rhinal sulcus and collateral sulcus proper, only one being clearly identifiable from the surface. Posteriorly, the collateral sulcus proper and the occipital collateral sulcus, although appearing continuous on the brain surface, can be separated in the depth of the sulcus in all cases. These results provide quantification of the location and variability within standard stereotaxic space for the three collateral sulcus segments that could be used to aid accurate identification of functional activation peaks derived from neuroimaging studies. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Vollstädt-Klein, Sabine; Loeber, Sabine; Kirsch, Martina; Bach, Patrick; Richter, Anne; Bühler, Mira; von der Goltz, Christoph; Hermann, Derik; Mann, Karl; Kiefer, Falk
2011-06-01
In alcohol-dependent patients, alcohol-associated cues elicit brain activation in mesocorticolimbic networks involved in relapse mechanisms. Cue-exposure based extinction training (CET) has been shown to be efficacious in the treatment of alcoholism; however, it has remained unexplored whether CET mediates its therapeutic effects via changes of activity in mesolimbic networks in response to alcohol cues. In this study, we assessed CET treatment effects on cue-induced responses using functional magnetic resonance imaging (fMRI). In a randomized controlled trial, abstinent alcohol-dependent patients were randomly assigned to a CET group (n = 15) or a control group (n = 15). All patients underwent an extended detoxification treatment comprising medically supervised detoxification, health education, and supportive therapy. The CET patients additionally received nine CET sessions over 3 weeks, exposing the patient to his/her preferred alcoholic beverage. Cue-induced fMRI activation to alcohol cues was measured at pretreatment and posttreatment. Compared with pretreatment, fMRI cue-reactivity reduction was greater in the CET relative to the control group, especially in the anterior cingulate gyrus and the insula, as well as limbic and frontal regions. Before treatment, increased cue-induced fMRI activation was found in limbic and reward-related brain regions and in visual areas. After treatment, the CET group showed less activation than the control group in the left ventral striatum. The study provides first evidence that an exposure-based psychotherapeutic intervention in the treatment of alcoholism impacts on brain areas relevant for addiction memory and attentional focus to alcohol-associated cues and affects mesocorticolimbic reward pathways suggested to be pathophysiologically involved in addiction. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.
Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi
2014-12-01
To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.
Shpaner, Marina; Kelly, Clare; Lieberman, Greg; Perelman, Hayley; Davis, Marcia; Keefe, Francis J.; Naylor, Magdalena R.
2014-01-01
Chronic pain is a complex physiological and psychological phenomenon. Implicit learning mechanisms contribute to the development of chronic pain and to persistent changes in the central nervous system. We hypothesized that these central abnormalities can be remedied with Cognitive Behavioral Therapy (CBT). Specifically, since regions of the anterior Default Mode Network (DMN) are centrally involved in emotional regulation via connections with limbic regions, such as the amygdala, remediation of maladaptive behavioral and cognitive patterns as a result of CBT for chronic pain would manifest itself as a change in the intrinsic functional connectivity (iFC) between these prefrontal and limbic regions. Resting-state functional neuroimaging was performed in patients with chronic pain before and after 11-week CBT (n = 19), as well as a matched (ages 19–59, both sexes) active control group of patients who received educational materials (n = 19). Participants were randomized prior to the intervention. To investigate the differential impact of treatment on intrinsic functional connectivity (iFC), we compared pre–post differences in iFC between groups. In addition, we performed exploratory whole brain analyses of changes in fractional amplitude of low frequency fluctuations (fALFF). The course of CBT led to significant improvements in clinical measures of pain and self-efficacy for coping with chronic pain. Significant group differences in pre–post changes in both iFC and fALFF were correlated with clinical outcomes. Compared to control patients, iFC between the anterior DMN and the amygdala/periaqueductal gray decreased following CBT, whereas iFC between the basal ganglia network and the right secondary somatosensory cortex increased following CBT. CBT patients also had increased post-therapy fALFF in the bilateral posterior cingulate and the cerebellum. By delineating neuroplasticity associated with CBT-related improvements, these results add to mounting evidence that CBT is a valuable treatment option for chronic pain. PMID:26958466
Neurobiology of wisdom: a literature overview.
Meeks, Thomas W; Jeste, Dilip V
2009-04-01
Wisdom is a unique psychological trait noted since antiquity, long discussed in humanities disciplines, recently operationalized by psychology and sociology researchers, but largely unexamined in psychiatry or biology. To discuss recent neurobiological studies related to subcomponents of wisdom identified from several published definitions/descriptions of wisdom by clinical investigators in the field, ie, prosocial attitudes/behaviors, social decision making/pragmatic knowledge of life, emotional homeostasis, reflection/self-understanding, value relativism/tolerance, and acknowledgment of and dealing effectively with uncertainty. Literature focusing primarily on neuroimaging/brain localization and secondarily on neurotransmitters, including their genetic determinants. Studies involving functional neuroimaging or neurotransmitter functioning, examining human (rather than animal) subjects, and identified via a PubMed search using keywords from any of the 6 proposed subcomponents of wisdom were included. Studies were reviewed by both of us, and data considered to be potentially relevant to the neurobiology of wisdom were extracted. Functional neuroimaging permits exploration of neural correlates of complex psychological attributes such as those proposed to comprise wisdom. The prefrontal cortex figures prominently in several wisdom subcomponents (eg, emotional regulation, decision making, value relativism), primarily via top-down regulation of limbic and striatal regions. The lateral prefrontal cortex facilitates calculated, reason-based decision making, whereas the medial prefrontal cortex is implicated in emotional valence and prosocial attitudes/behaviors. Reward neurocircuitry (ventral striatum, nucleus accumbens) also appears important for promoting prosocial attitudes/behaviors. Monoaminergic activity (especially dopaminergic and serotonergic), influenced by several genetic polymorphisms, is critical to certain subcomponents of wisdom such as emotional regulation (including impulse control), decision making, and prosocial behaviors. We have proposed a speculative model of the neurobiology of wisdom involving frontostriatal and frontolimbic circuits and monoaminergic pathways. Wisdom may involve optimal balance between functions of phylogenetically more primitive brain regions (limbic system) and newer ones (prefrontal cortex). Limitations of the putative model are stressed. It is hoped that this review will stimulate further research in characterization, assessment, neurobiology, and interventions related to wisdom.
Driving and driven architectures of directed small-world human brain functional networks.
Yan, Chaogan; He, Yong
2011-01-01
Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.
Kim, Dae-Eun; Shin, Jung-Hyun; Kim, Young-Hoon; Eom, Tae-Hoon; Kim, Sung-Hun; Kim, Jung-Min
2016-01-01
Acute confusional migraine (ACM) shows typical electroencephalography (EEG) patterns of diffuse delta slowing and frontal intermittent rhythmic delta activity (FIRDA). The pathophysiology of ACM is still unclear but these patterns suggest neuronal dysfunction in specific brain areas. We performed source localization analysis of IRDA (in the frequency band of 1-3.5 Hz) to better understand the ACM mechanism. Typical IRDA EEG patterns were recorded in a patient with ACM during the acute stage. A second EEG was obtained after recovery from ACM. To identify source localization of IRDA, statistical non-parametric mapping using standardized low-resolution brain electromagnetic tomography was performed for the delta frequency band comparisons between ACM attack and non-attack periods. A difference in the current density maximum was found in the dorsal anterior cingulated cortex (ACC). The significant differences were widely distributed over the frontal, parietal, temporal and limbic lobe, paracentral lobule and insula and were predominant in the left hemisphere. Dorsal ACC dysfunction was demonstrated for the first time in a patient with ACM in this source localization analysis of IRDA. The ACC plays an important role in the frontal attentional control system and acute confusion. This dysfunction of the dorsal ACC might represent an important ACM pathophysiology.
The temporolimbic system theory of positive schizophrenic symptoms.
Bogerts, B
1997-01-01
This article proposes that subtle structural and functional disturbance of limbic key structures in the medial temporal lobe-especially of the left hippocampal formation and parahippocampal gyrus-can explain the so-called positive symptoms of schizophrenia. After presenting pathophysiological considerations linking limbic dysfunction to schizophrenia, the article reviews evidence from structural, biochemical, and functional studies supporting the theory. Also discussed here are neurodevelopmental and laterality aspects, as well as predictions, questions, and future tasks derived from the theory.