Science.gov

Sample records for brain liver mitochondria

  1. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria.

    PubMed

    Cunha-Oliveira, Teresa; Silva, Lisbeth; Silva, Ana Maria; Moreno, António J; Oliveira, Catarina R; Santos, Maria S

    2013-06-01

    Mitochondrial function and energy metabolism are affected in brains of human cocaine abusers. Cocaine is known to induce mitochondrial dysfunction in cardiac and hepatic tissues, but its effects on brain bioenergetics are less documented. Furthermore, the combination of cocaine and opioids (speedball) was also shown to induce mitochondrial dysfunction. In this work, we compared the effects of cocaine and/or morphine on the bioenergetics of isolated brain and liver mitochondria, to understand their specific effects in each tissue. Upon energization with complex I substrates, cocaine decreased state-3 respiration in brain (but not in liver) mitochondria and decreased uncoupled respiration and mitochondrial potential in both tissues, through a direct effect on complex I. Morphine presented only slight effects on brain and liver mitochondria, and the combination cocaine+morphine had similar effects to cocaine alone, except for a greater decrease in state-3 respiration. Brain and liver mitochondrial respirations were differentially affected, and liver mitochondria were more prone to proton leak caused by the drugs or their combination. This was possibly related with a different dependence on complex I in mitochondrial populations from these tissues. In summary, cocaine and cocaine+morphine induce mitochondrial complex I dysfunction in isolated brain and liver mitochondria, with specific effects in each tissue. PMID:23542814

  2. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria

    PubMed Central

    Baran, Halina; Staniek, Katrin; Bertignol-Spörr, Melanie; Attam, Martin; Kronsteiner, Carina; Kepplinger, Berthold

    2016-01-01

    Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3), respiratory control index (RC) and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM) or succinate (10 mM) and in the presence of L-tryptophan metabolites (1 mM) or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver and heart

  3. Effects of Various Kynurenine Metabolites on Respiratory Parameters of Rat Brain, Liver and Heart Mitochondria.

    PubMed

    Baran, Halina; Staniek, Katrin; Bertignol-Spörr, Melanie; Attam, Martin; Kronsteiner, Carina; Kepplinger, Berthold

    2016-01-01

    Previously, we demonstrated that the endogenous glutamate receptor antagonist kynurenic acid dose-dependently and significantly affected rat heart mitochondria. Now we have investigated the effects of L-tryptophan, L-kynurenine, 3-hydroxykynurenine and kynurenic, anthranilic, 3-hydroxyanthranilic, xanthurenic and quinolinic acids on respiratory parameters (ie, state 2, state 3), respiratory control index (RC) and ADP/oxygen ratio in brain, liver and heart mitochondria of adult rats. Mitochondria were incubated with glutamate/malate (5 mM) or succinate (10 mM) and in the presence of L-tryptophan metabolites (1 mM) or in the absence, as control. Kynurenic and anthranilic acids significantly reduced RC values of heart mitochondria in the presence of glutamate/malate. Xanthurenic acid significantly reduced RC values of brain mitochondria in the presence of glutamate/malate. Furthermore, 3-hydroxykynurenine and 3-hydroxyanthranilic acid decreased RC values of brain, liver and heart mitochondria using glutamate/malate. In the presence of succinate, 3-hydroxykynurenine and 3-hydroxyanthranilic acid affected RC values of brain mitochondria, whereas in liver and heart mitochondria only 3-hydroxykynurenine lowered RC values significantly. Furthermore, lowered ADP/oxygen ratios were observed in brain mitochondria in the presence of succinate with 3-hydroxykynurenine and 3-hydroxyanthranilic acid, and to a lesser extent with glutamate/malate. In addition, 3-hydroxyanthranilic acid significantly lowered the ADP/oxygen ratio in heart mitochondria exposed to glutamate/malate, while in the liver mitochondria only a mild reduction was found. Tests of the influence of L-tryptophan and its metabolites on complex I in liver mitochondria showed that only 3-hydroxykynurenine, 3-hydroxyanthranilic acid and L-kynurenine led to a significant acceleration of NADH-driven complex I activities. The data indicate that L-tryptophan metabolites had different effects on brain, liver and heart

  4. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    PubMed

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  5. An analysis of the effects of Mn{sup 2+} on oxidative phosphorylation in liver, brain, and heart mitochondria using state 3 oxidation rate assays

    SciTech Connect

    Gunter, Thomas E.; Gerstner, Brent; Lester, Tobias; Wojtovich, Andrew P.; Malecki, Jon; Swarts, Steven G.; Brookes, Paul S.; Gavin, Claire E. Gunter, Karlene K.

    2010-11-15

    Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays-a measure of ATP production-under rapid phosphorylation conditions to explore sites of Mn{sup 2+} inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which do not affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn{sup 2+} inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn{sup 2+} inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F{sub 1}F{sub 0} ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn{sup 2+} inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase.

  6. An Analysis of the Effects of Mn2+ on Oxidative Phosphorylation in Liver, Brain, and Heart Mitochondria Using State 3 Oxidation Rate Assays

    PubMed Central

    Gunter, Thomas E.; Gerstner, Brent; Lester, Tobias; Wojtovich, Andrew P.; Malecki, Jon; Swarts, Steven G.; Brookes, Paul S.; Gavin, Claire E.; Gunter, Karlene K.

    2010-01-01

    Manganese (Mn) toxicity is partially mediated by reduced ATP production. We have used oxidation rate assays - a measure of ATP production - under rapid phosphorylation conditions to explore sites of Mn2+ inhibition of ATP production in isolated liver, brain, and heart mitochondria. This approach has several advantages. First, the target tissue for Mn toxicity in the basal ganglia is energetically active and should be studied under rapid phosphorylation conditions. Second, Mn may inhibit metabolic steps which don’t affect ATP production rate. This approach allows identification of inhibitions that decrease this rate. Third, mitochondria from different tissues contain different amounts of the components of the metabolic pathways potentially resulting in different patterns of ATP inhibition. Our results indicate that Mn2+ inhibits ATP production with very different patterns in liver, brain, and heart mitochondria. The primary Mn2+ inhibition site in liver and heart mitochondria, but not in brain mitochondria, is the F1F0 ATP synthase. In mitochondria fueled by either succinate or glutamate + malate, ATP production is much more strongly inhibited in brain than in liver or heart mitochondria; moreover, Mn2+ inhibits two independent sites in brain mitochondria. The primary site of Mn-induced inhibition of ATP production in brain mitochondria when succinate is substrate is either fumarase or complex II, while the likely site of the primary inhibition when glutamate plus malate are the substrates is either the glutamate/aspartate exchanger or aspartate aminotransferase. PMID:20800605

  7. Age and heat exposure-dependent changes in antioxidant enzymes activities in rat's liver and brain mitochondria: role of alpha-tocopherol.

    PubMed

    Stojkovski, V; Hadzi-Petrushev, N; Ilieski, V; Sopi, R; Gjorgoski, I; Mitrov, D; Jankulovski, N; Mladenov, M

    2013-01-01

    To investigate the role of mitochondrial antioxidant capacity during increased susceptibility to heat accompanied by the aging, young and aged Wistar rats were exposed on heat for 60 min. After heat exposure, hepatic and brain mitochondria were isolated. Our results revealed changes in antioxidant enzyme activities in liver and brain mitochondria from young and to a greater extent in aged rats. Our measurements of MnSOD, GPx and GR activity indicate greater reactive oxygen species production from the mitochondria of aged heat exposed in comparison to young heat exposed rats. Also in the aged rats, the effect of alpha-tocopherol treatment in the prevention of oxidative stress occurred as a result of heat exposure, is less pronounced. Taken together, our data suggest that mitochondria in aged rats are more vulnerable and less able to prevent oxidative changes that occur in response to acute heat exposure.

  8. Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain.

    PubMed

    Jastroch, Martin; Buckingham, Julie A; Helwig, Michael; Klingenspor, Martin; Brand, Martin D

    2007-10-01

    Mammalian uncoupling protein 1 (UCP1) mediates nonshivering thermogenesis in brown adipose tissue. We previously reported on the presence of a UCP1 orthologue in ectothermic fish and observed downregulation of UCP1 gene expression in the liver of the common carp. Neither the function of UCP1, nor the mode of UCP1 activation is known in carp liver mitochondria. Here, we compared the proton conductance at 25 degrees C of liver mitochondria isolated from carp either maintained at 20 degrees C (warm-acclimated, WA) or exposed to 8 degrees C (cold-acclimated, CA) water temperature for 7-10 days. Liver mitochondria from WA carp had higher state four rates of oxygen consumption and greater proton conductance at high membrane potential. Liver mitochondria from WA, but not from CA, carp showed a strong increase in proton conductance when palmitate (or 4-hydroxy-trans-2-nonenal, HNE) was added, and this inducible proton conductance was prevented by addition of GDP. This fatty acid sensitive proton leak is likely due to the expression of UCP1 in the liver of WA carp. The observed biochemical properties of proton leak strongly suggest that carp UCP1 is a functional uncoupling protein with broadly the same activatory and inhibitory characteristics as mammalian UCP1. Significant UCP1 expression was also detected in our previous study in whole brain of the carp. We here observed a twofold increase of UCP1 mRNA in carp brain following cold exposure, suggesting a role of UCP1 in the thermal adaptation of brain metabolism. In situ hybridization located the UCP1 gene expression to the optic tectum responsible for visual system control, the descending trigeminal tract and the solitary tract. Taken together, this study characterises uncoupling protein activity in an ectotherm for the first time.

  9. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    PubMed

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (P<0.001) protected the lipid peroxidation in all the tissue homogenate/mitochondria. The extract at 2 and 0.5 mg/ml could protect 92 % of the lipid peroxidation in brain homogenate and liver mitochondria respectively. The percent inhibition of lipid peroxidation at 1mg/ml of Z. officinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments. PMID:23105887

  10. Effect of the non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activity toward medium-chain, long-chain and polyunsaturated fatty acids in mitochondria of mouse liver and brain.

    PubMed

    Kasuya, Fumiyo; Kazuhiro, Misumi; Tatsuya, Hasegawa; Nakamoto, Kazuo; Tokuyama, Shogo; Masuyama, Teiichi

    2013-02-01

    Effect of eleven non-steroidal anti-inflammatory drugs on the acyl-CoA synthetase activities toward octanoic, palmitic, arachidonic and docosahexaenoic acids was evaluated in mouse liver and brain mitochondria. The drugs tested were aspirin, salicylic acid, diflunisal, mefenamic acid, indomethacin, etodolac, ibuprofen, ketoprofen, naproxen, loxoprofen, flurbiprofen. In mouse liver mitochondria, diflunisal and mefenamic acid exhibited the inhibitory activities not only for octanoic acid (IC(50) = 78.7 and 64.7 µM) and but also for palmitic acid (IC(50) = 236.5 and 284.4 µM), respectively. Aspirin was an inhibitor for the activation of octanoic acid only (IC(50) = 411.0 µM). In the brain, mefenamic acid and diflunisal inhibited strongly palmitoyl-CoA formation (IC(50) = 57.3 and 114.0 µM), respectively. The activation of docosahexaenoic acid in brain was sensitive to inhibition by diflunisal and mefenamic acid compared with liver.

  11. Acrolein induces oxidative stress in brain mitochondria.

    PubMed

    Luo, Jian; Shi, Riyi

    2005-02-01

    Acrolein, a byproduct of lipid peroxidation, has been shown to inflict significant structural and functional damage to isolated guinea pig spinal cord. Reactive oxygen species (ROS) are thought to mediate such detrimental effects. The current study demonstrates that acrolein can directly stimulate mitochondrial oxidative stress. Specifically, exposure of purified brain mitochondria to acrolein resulted in a dose-dependent increase of ROS and decreases in glutathione content and aconitase activity. This effect was not accompanied by significant intramitochondrial calcium influx or mitochondrial permeability transition, but rather by impaired function of the mitochondrial electron transport system. As well, we detected a significant inhibition of mitochondrial adenine nucleotide translocase (ANT) in the presence of acrolein. This inhibition of ANT likely contributes to acrolein-induced ROS elevation since application of atractyloside, a specific ANT inhibitor, induced significant increase of ROS. We hypothesize that inhibition of ANT may mediate, in part, the acrolein-induced ROS increase in mitochondria.

  12. Species- and tissue-specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice.

    PubMed

    Panov, Alexander; Dikalov, Sergey; Shalbuyeva, Natalia; Hemendinger, Richelle; Greenamyre, John T; Rosenfeld, Jeffrey

    2007-02-01

    In animal models of neurodegenerative diseases pathological changes vary with the type of organ and species of the animals. We studied differences in the mitochondrial permeability transition (mPT) and reactive oxygen species (ROS) generation in the liver (LM) and brain (BM) of Sprague-Dawley rats and C57Bl mice. In the presence of ADP mouse LM and rat LM required three times less Ca(2+) to initiate mPT than the corresponding BM. Mouse LM and BM sequestered 70% and 50% more Ca(2+) phosphate than the rat LM and BM. MBM generated 50% more ROS with glutamate than the RBM, but not with succinate. With the NAD substrates, generation of ROS do not depend on the energy state of the BM. Organization of the respiratory complexes into the respirasome is a possible mechanism to prevent ROS generation in the BM. With BM oxidizing succinate, 80% of ROS generation was energy dependent. Induction of mPT does not affect ROS generation with NAD substrates and inhibit with succinate as a substrate. The relative insensitivity of the liver to systemic insults is associated with its high regenerative capacity. Neuronal cells with low regenerative capacity and a long life span protect themselves by minimizing ROS generation and by the ability to withstand very large Ca(2+) insults. We suggest that additional factors, such as oxidative stress, are required to initiate neurodegeneration. Thus the observed differences in the Ca(2+)-induced mPT and ROS generation may underlie both the organ-specific and species-specific variability in the animal models of neurodegenerative diseases.

  13. [Protomitohondria of Liver Cells, Their Similarities and Differences between Mitochondria].

    PubMed

    Begunova, E A; Vekshin, N L

    2015-01-01

    In this paper we continue the study of a number of properties of protomitochondria--small young mitochondrial organelles in the animal cells. Protomitochondria were obtained by filtration of total suspension of mitochondria of rat liver through Millipore filters. Protomitochondria contain an active respiratory chain as evidenced by the high rate of oxygen consumption during succinate and NADH oxidation. A shunt succinate:tetrazolium-reductase activity of protomitochondria was lower and NADH-tetrazolium-reductase activity was higher than that in mitochondria. Electrophoresis and gel filtration found no qualitative differences between protomitochondria, 0.25-0.45 μm in diameter, and mitochondria in major protein composition, but some quantitative differences in several bands were found. Perhaps, these differences reflect the process of intracellular maturation of protomitochondria to mitochondria. The data obtained are important for understanding the mitochondriogenesis in the animal cells. PMID:26841504

  14. Systems proteomics of liver mitochondria function.

    PubMed

    Williams, Evan G; Wu, Yibo; Jha, Pooja; Dubuis, Sébastien; Blattmann, Peter; Argmann, Carmen A; Houten, Sander M; Amariuta, Tiffany; Wolski, Witold; Zamboni, Nicola; Aebersold, Ruedi; Auwerx, Johan

    2016-06-10

    Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis. PMID:27284200

  15. Systems proteomics of liver mitochondria function.

    PubMed

    Williams, Evan G; Wu, Yibo; Jha, Pooja; Dubuis, Sébastien; Blattmann, Peter; Argmann, Carmen A; Houten, Sander M; Amariuta, Tiffany; Wolski, Witold; Zamboni, Nicola; Aebersold, Ruedi; Auwerx, Johan

    2016-06-10

    Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis.

  16. D-Lactate transport and metabolism in rat liver mitochondria.

    PubMed Central

    de Bari, Lidia; Atlante, Anna; Guaragnella, Nicoletta; Principato, Giovanni; Passarella, Salvatore

    2002-01-01

    In the present study we investigated whether isolated rat liver mitochondria can take up and metabolize D-lactate. We found the following: (1) externally added D-lactate causes oxygen uptake by mitochondria [P/O ratio (the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation)=2] and membrane potential (Delta(psi)) generation in processes that are rotenone-insensitive, but inhibited by antimycin A and cyanide, and proton release from coupled mitochondria inhibited by alpha-cyanocinnamate, but not by phenylsuccinate; (2) the activity of the putative flavoprotein (D-lactate dehydrogenase) was detected in inside-out submitochondrial particles, but not in mitochondria and mitoplasts, as it is localized in the matrix phase of the mitochondrial inner membrane; (3) three novel separate translocators exist to mediate D-lactate traffic across the mitochondrial inner membrane: the D-lactate/H(+) symporter, which was investigated by measuring fluorimetrically the rate of endogenous flavin reduction, the D-lactate/oxoacid antiporter (which mediates both the D-lactate/pyruvate and D-lactate/oxaloacetate exchanges) and D-lactate/malate antiporter studied by monitoring photometrically the appearance of the D-lactate counteranions outside mitochondria. The D-lactate translocators, in the light of their different inhibition profiles separate from the monocarboxylate carrier, were found to differ from each other in the V(max) values and in the inhibition and pH profiles and were shown to regulate mitochondrial D-lactate metabolism in vitro. The D-lactate translocators and the D-lactate dehydrogenase could account for the removal of the toxic methylglyoxal from cytosol, as well as for D-lactate-dependent gluconeogenesis. PMID:11955284

  17. Accumulation of D-arginine by rat liver mitochondria.

    PubMed

    Villalobos-Molina, R; Pardo, J P; Saavedra-Molina, A; Piña, E

    1987-12-01

    The permeability of the inner mitochondrial membrane from rat liver to D-arginine was studied. By using safranin as a probe of the membrane potential, depolarization of energized liver mitochondria occurred in a dose-dependent fashion starting at 3.3 mmol/L of D- or DL-arginine. When ethidium bromide fluorescence was employed, a decrease in the membrane potential due to D- or DL-arginine was observed. A parallel significant change in succinate-induced respiration in rat liver mitochondria was found in response to osmotic swelling in 125 mmol/L of D-arginine salts. L-Arginine, L-glutamine, L-asparagine, L-ornithine, D-ornithine, and L-lysine did not modify the membrane potential at the concentrations tested. D-Arginine was not transformed into citrulline, but 1.0 mmol/L of the D-amino acid inhibited, by 42%, the state 3 of mitochondrial respiration using succinate as substrate. When D-arginine was used in combination with nigericin, a 40% inhibition of mitochondrial respiration in state 3 was recorded with succinate and with glutamate-malate as substrates. PMID:3454185

  18. Hormone-initiated maturation of rat liver mitochondria after birth.

    PubMed Central

    Sutton, R; Pollak, J K

    1980-01-01

    1. The injection of adrenaline, glucagon or cyclic AMP into foetal rats in utero initiates the maturation of energy transduction in rat liver mitochondria before birth. 2. The injection of the beta-blocker, propranolol, prevents this maturation process. 3. The maturation of mitochondrial energy transduction is measured in terms of the increase in the respiratory control index and mitochondrial adenine nucleotide concentration. 4. It is postulated that the actions of the hormones, acting through cyclic AMP, affect glycogenolysis and glycolysis to give rise to transient localized high concentrations of ATP. 5. It is the ATP that acts as the molecular trigger, effecting mitochondrial maturation. PMID:6245641

  19. Some properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1977-01-01

    Aldehyde dehydrogenase from sheep liver mitochondria was purified to homogeneity as judged by electrophoresis on polyacrylamide gels, and by sedimentation-equilibrium experiments in the analytical ultracentrifuge. The enzyme has a molecular weight of 198000 and a subunit size of 48000, indicating that the molecule is a tetramer. Fluorescence and spectrophotometric titrations indicate that each subunit can bind 1 molecule of NADH. Enzymic activity is completely blocked by reaction of 4mol of 5,5'-dithiobis-(2-nitrobenzoate)/mol of enzyme. Excess of disulfiram or iodoacetamide decreases activity to only 50% of the control value, and only two thiol groups per molecule are apparently modified by these reagents. PMID:194582

  20. Glycyrrhetinic acid-induced permeability transition in rat liver mitochondria.

    PubMed

    Salvi, Mauro; Fiore, Cristina; Armanini, Decio; Toninello, Antonio

    2003-12-15

    Glycyrrhetinic acid, a hydrolysis product of one of the main constituents of licorice, the triterpene glycoside of glycyrrhizic acid, when added to rat liver mitochondria at micromolar concentrations induces swelling, loss of membrane potential, pyridine nucleotide oxidation, and release of cytochrome c and apoptosis inducing factor. These changes are Ca(2+) dependent and are prevented by cyclosporin A, bongkrekic acid, and N-ethylmaleimide. All these observations indicate that glycyrrhetinic acid is a potent inducer of mitochondrial permeability transition and can trigger the pro-apoptotic pathway. PMID:14637195

  1. Interaction of the antibiotic minocycline with liver mitochondria - role of membrane permeabilization in the impairment of respiration.

    PubMed

    Schönfeld, Peter; Siemen, Detlef; Kreutzmann, Peter; Franz, Claudia; Wojtczak, Lech

    2013-12-01

    Several studies have proposed that the antibiotic minocycline (MC) has cytoprotective activities. Nevertheless, when cells have been exposed to MC at micromolar concentrations, detrimental effects have been also observed. Despite the known inhibitory activity of MC on ATP synthesis and the Ca(2+) retention capacity of isolated rat liver and brain mitochondria, the underlying mechanism is still debated. Here, we present further arguments supporting our concept that MC acting on rat liver mitochondria suspended in KCl medium permeabilizes the inner membrane. Supplementation of the medium with cytochrome c and NAD(+) strongly enhanced the respiration of MC-treated mitochondria, thus partly preventing or reversing the inhibitory effect of MC on state 3 or uncoupled respiration. These results indicate that MC produced depletion of mitochondrial cytochrome c and NAD(+) , thus impairing mitochondrial respiration. In addition, NADH oxidation by alamethicin-permeabilized mitochondria supplemented with cytochrome c was insensitive to 200 μm MC, arguing against direct impairment of respiratory chain complexes by MC. Finally, a surprising feature of MC was its accumulation or binding by intact rat liver mitochondria, but not by mitochondria permeabilized with alamethicin or disrupted by freezing and thawing.

  2. Brain aging, Alzheimer's disease, and mitochondria

    PubMed Central

    Swerdlow, Russell H.

    2011-01-01

    The relationship between brain aging and Alzheimer’s disease (AD) is contentious. One view holds AD results when brain aging surpasses a threshold. The other view postulates AD is not a consequence of brain aging. This review discusses this conundrum from the perspective of different investigative lines that have tried to address it, as well as from the perspective of the mitochondrion, an organelle that appears to play a role in both AD and brain aging. Specific issues addressed include the question of whether AD and brain aging should be conceptually lumped or split, the extent to which AD and brain aging potentially share common molecular mechanisms, whether beta amyloid should be primarily considered a marker of AD or simply brain aging, and the definition of AD itself. PMID:21920438

  3. The biosynthesis of glycerides by mitochondria from rat liver

    PubMed Central

    Smith, Margaret E.; Hübscher, G.

    1966-01-01

    1. The synthesis of glycerides from l-3-glycerophosphate and palmitic acid by mitochondrial preparations from rat liver was shown to be stimulated markedly by a soluble factor from the supernatant fraction of the liver. 2. That the soluble factor was a protein was indicated by its inactivation after treatment with papain and after boiling for 3min. at 100°, its precipitation by ammonium sulphate and its behaviour on Sephadex G-200. The soluble factor was purified by ammonium sulphate fractionation and gel filtration. 3. Bovine serum albumin and lipoprotein fractions from rat and human serum also stimulated glyceride biosynthesis but the stimulations were one-twentieth to one-third of that obtained with the soluble factor. 4. The function of the soluble factor could not be explained by assuming a leakage of acyl-CoA synthetase, phosphatidate phosphatase or diglyceride acyltransferase from the mitochondria into the supernatant during preparation of the mitochondrial fraction. 5. Palmitic acid, in the presence of the soluble factor and optimum amounts of ATP and CoA, was a more effective substrate than palmitoyl-CoA or palmitoylcarnitine for the biosynthesis of glycerides by mitochondria. PMID:4290720

  4. Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria.

    PubMed

    Senior, D J; Tsai, C S

    1988-04-01

    Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. PMID:3355167

  5. Scavenging of H2O2 by mouse brain mitochondria.

    PubMed

    Starkov, Anatoly A; Andreyev, Alexander Yu; Zhang, Steven F; Starkova, Natalia N; Korneeva, Maria; Syromyatnikov, Mikhail; Popov, Vasily N

    2014-12-01

    Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation. This raises a question whether brain mitochondria are a source or a sink of ROS. We studied the interaction between ROS generation and scavenging in mouse brain mitochondria by measuring the rate of removal of H2O2 added at a concentration of 0.4 μM, which is close to the reported physiological H2O2 concentrations in tissues, under conditions of low and high levels of mitochondrial H2O2 generation. With NAD-linked substrates, the rate of H2O2 generation by mitochondria was ~50-70 pmol/min/mg. The H2O2 scavenging dynamics was best approximated by the first order reaction equation. H2O2 scavenging was not affected by the uncoupling of mitochondria, phosphorylation of added ADP, or the genetic ablation of glutathione peroxidase 1, but decreased in the absence of respiratory substrates, in the presence of thioredoxin reductase inhibitor auranofin, or in partially disrupted mitochondria. With succinate, the rate of H2O2 generation was ~2,200-2,900 pmol/min/mg; the scavenging of added H2O2 was masked by a significant accumulation of generated H2O2 in the assay medium. The obtained data were fitted into a simple model that reasonably well described the interaction between H2O2 scavenging and production. It showed that mitochondria are neither a sink nor a source of H2O2, but can function as both at the same time, efficiently stabilizing exogenous H2O2 concentration at a level directly proportional to the ratio of the H2O2 generation rate to the rate constant of the first order scavenging reaction.

  6. Selective permeability of rat liver mitochondria to purified aspartate aminotransferases in vitro.

    PubMed Central

    Marra, E; Doonan, S; Saccone, C; Quagliariello, E

    1977-01-01

    1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo. PMID:883959

  7. Giant Mitochondria as Possible Bioindicators of Environmental Injuries in Fish Liver.

    PubMed

    Benedeczky, István; Nemcsók, János

    1997-01-01

    The effect of hypoxia (80 pHg) and simultaneously applied paraquat (1,1'-dimethyl-4,4-bipyridynum dichloride) was investigated on carp liver using electron microscopic methods. The appearance of giant mitochondria was the most conspicuous alteration in the liver cells. Most of the giant mitochondria were elongated and rod-shaped, often arranged side by side forming clusters beside the nucleus. Crook-like and irregular forms also occured among giant mitochondria. The lenght of the giant mitochondria often was greater than the diameter of nucleus: namely 5-10 µm. The outer membrane of the giant mitochondria was well preserved, but inner membranes (cristae) were usually absent, and a high density matrix filled in the inner space of mitochondria. High power magnification often revealed a regular, filamentous paracristal arrangement in the dense material of the matrix. Swollen giant mitochondria with light matrix and tubular elements also occured in low number. Although fine structural characteristics of carp liver giant mitochondria are not specific for inducing agents (hypoxia + paraquat treatment) the appearance of altered giant mitochondria may be a useful signal for monitoring cell damaging enviromental xenobiotics. PMID:11173631

  8. Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds.

    PubMed Central

    Brand, Martin D; Turner, Nigel; Ocloo, Augustine; Else, Paul L; Hulbert, A J

    2003-01-01

    The proton conductance of isolated liver mitochondria correlates significantly with body mass in mammals, but not in ectotherms. To establish whether the correlation in mammals is general for endotherms or mammal-specific, we measured proton conductance in mitochondria from birds, the other main group of endotherms, using birds varying in mass over a wide range (nearly 3000-fold), from 13 g zebra finches to 35 kg emus. Respiratory control ratios were higher in mitochondria from larger birds. Mitochondrial proton conductance in liver mitochondria from birds correlated strongly with body mass [respiration rate per mg of protein driving proton leak at 170 mV being 44.7 times (body mass in g)(-0.19)], thus suggesting a general relationship between body mass and proton conductance in endotherms. Mitochondria from larger birds had the same or perhaps greater surface area per mg of protein than mitochondria from smaller birds. Hence, the lower proton conductance was caused not by surface area changes but by some change in the properties of the inner membrane. Liver mitochondria from larger birds had phospholipid fatty acyl chains that were less polyunsaturated and more monounsaturated when compared with those from smaller birds. Phospholipid fatty acyl polyunsaturation correlated positively and monounsaturation correlated negatively with proton conductance. These correlations echo those seen in mammalian liver mitochondria, suggesting that they too are general for endotherms. PMID:12943530

  9. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  10. Kinetic properties of aldehyde dehydrogenase from sheep liver mitochondria.

    PubMed Central

    Hart, G J; Dickinson, F M

    1978-01-01

    The kinetics of the NAD+-dependent oxidation of aldehydes, catalysed by aldehyde dehydrogenase purified from sheep liver mitochondria, were studied in detail. Lag phases were observed in the assays, the length of which were dependent on the enzyme concentration. The measured rates after the lag phase was over were directly proportional to the enzyme concentration. If enzyme was preincubated with NAD+, the lag phase was eliminated. Double-reciprocal plots with aldehyde as the variable substrate were non-linear, showing marked substrate activation. With NAD+ as the variable substrate, double-reciprocal plots were linear, and apparently parallel. Double-reciprocal plots with enzyme modified with disulfiram (tetraethylthiuram disulphide) or iodoacetamide, such that at pH 8.0 the activity was decreased to 50% of the control value, showed no substrate activation, and the plots were linear. At pH 7.0, the kinetic parameters Vmax. and Km NAD+- for the oxidation of acetaldehyde and butyraldehyde by the native enzyme are almost identical. Formaldehyde and propionaldehyde show the same apparent maximum rate. Aldehyde dehydrogenase is able to catalyse the hydrolysis of p-nitrophenyl esters. This esterase activity was stimulated by both NAD+ and NADH, the maximum rate for the NAD+ stimulated esterase reaction being roughly equal to the maximum rate for the oxidation of aldehydes. The mechanistic implications of the above behaviour are discussed. PMID:217355

  11. Role of Mitochondria in Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Lu, Yujiao; Tucker, Donovan; Dong, Yan; Zhao, Ningjun; Zhuo, Xiaoying; Zhang, Quanguang

    2016-01-01

    Hypoxic-ischemia (HI) causes severe brain injury in neonates. It’s one of the leading causes to neonatal death and pediatric disability, resulting in devastating consequences, emotionally and economically, to their families. A series of events happens in this process, e.g. excitatory transmitter release, extracelluar Ca2+ influxing, mitochondrial dysfunction, energy failure, and neuron death. There are two forms of neuron death after HI insult: necrosis and apoptosis, apoptosis being the more prevalent form. Mitochondria handle a series of oxidative reactions, and yield energy for various cellular activities including the maintainance of membrane potential and preservation of intracellular ionic homeostasis. Therefore mitochondria play a critical role in neonatal neurodegeneration following HI, and mitochondrial dysfunction is the key point in neurodegenerative evolution. Because of this, exploring effective mitochondria-based clinical strategies is crucial. Today the only efficacious clinic treatment is hypothermia. However, due to its complex management, clinical complication and autoimmune decrease, its clinical application is limited. So far, many mitochondria-based strategies have been reported neuroprotective in animal models, which offers promise on neonatal therapy. However, since their clinical effectiveness are still unclear, plenty of studies need to be continued in the future. According to recent reports, two novel strategies have been proposed: methylene blue (MB) and melatonin. Although they are still in primary stage, the underlying mechanisms indicate promising clinical applications. Every neurological therapeutic strategy has its intrinsic deficit and limited efficacy, therefore in the long run, the perfect clinical therapy for hypoxic-ischemic neonatal brain injury will be based on the combination of multiple strategies. PMID:27441209

  12. Paradoxical effect of methimazole on liver mitochondria: In vitro and in vivo.

    PubMed

    Niknahad, Hossein; Jamshidzadeh, Akram; Heidari, Reza; Hosseini, Zeynab; Mobini, Keivan; Khodaei, Forouzan; Ommati, Mohammad Mehdi; Abdoli, Narges; Keshavarz, Nahid; Bazyari, Mandana; Najibi, Asma

    2016-09-30

    Methimazole is the most frequently prescribed antithyroid agent. On the other hand, several cases of liver injury are attributed to this drug. The mechanism of methimazole-induced liver injury is obscure. Hepatocytes mitochondria seem to be a target for methimazole cytotoxicity. Current investigation aimed to evaluate the effects of methimazole on the hepatocytes mitochondria in different experimental models. In the in vivo model, methimazole (100, 200 and 400mg/kg, i.p) was administered to mice and liver mitochondria were isolated and assessed. In the in vitro experiments, intact isolated liver mitochondria were incubated with increasing methimazole concentrations (10μM-100mM). It was found that methimazole decreased liver mitochondrial ATP and glutathione, increased mitochondrial swelling, lipid peroxidation and reactive oxygen species (ROS), and collapsed mitochondrial membrane potential when administered to mice. Paradoxically, methimazole not only caused no significant injury toward isolated liver mitochondria in vitro but improved mitochondrial function and protected this organelle. The differences between two investigated models in the current study might be associated with drug bioactivation and reactive metabolites formation. These findings suggest mitochondrial dysfunction as a mechanism for methimazole-induced liver injury. Moreover, methimazole seems to be a novel mitochondrial protecting agent in vitro.

  13. Paradoxical effect of methimazole on liver mitochondria: In vitro and in vivo.

    PubMed

    Niknahad, Hossein; Jamshidzadeh, Akram; Heidari, Reza; Hosseini, Zeynab; Mobini, Keivan; Khodaei, Forouzan; Ommati, Mohammad Mehdi; Abdoli, Narges; Keshavarz, Nahid; Bazyari, Mandana; Najibi, Asma

    2016-09-30

    Methimazole is the most frequently prescribed antithyroid agent. On the other hand, several cases of liver injury are attributed to this drug. The mechanism of methimazole-induced liver injury is obscure. Hepatocytes mitochondria seem to be a target for methimazole cytotoxicity. Current investigation aimed to evaluate the effects of methimazole on the hepatocytes mitochondria in different experimental models. In the in vivo model, methimazole (100, 200 and 400mg/kg, i.p) was administered to mice and liver mitochondria were isolated and assessed. In the in vitro experiments, intact isolated liver mitochondria were incubated with increasing methimazole concentrations (10μM-100mM). It was found that methimazole decreased liver mitochondrial ATP and glutathione, increased mitochondrial swelling, lipid peroxidation and reactive oxygen species (ROS), and collapsed mitochondrial membrane potential when administered to mice. Paradoxically, methimazole not only caused no significant injury toward isolated liver mitochondria in vitro but improved mitochondrial function and protected this organelle. The differences between two investigated models in the current study might be associated with drug bioactivation and reactive metabolites formation. These findings suggest mitochondrial dysfunction as a mechanism for methimazole-induced liver injury. Moreover, methimazole seems to be a novel mitochondrial protecting agent in vitro. PMID:27506418

  14. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    PubMed

    Fišar, Z; Hroudová, J

    2016-01-01

    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  15. Propofol Attenuates Toxic Oxidative Stress by CCl4 in Liver Mitochondria and Blood in Rat

    PubMed Central

    Ranjbar, Akram; Sharifzadeh, Mohammad; Karimi, Jamshid; Tavilani, Heidar; Baeeri, Maryam; Heidary shayesteh, Tavakol; Abdollahi, Mohammad

    2014-01-01

    Anti-oxidant effects of propofol (2, 6-diisopropylphenol) were evaluated agains carbon tetrachloridet CCl4 -induced oxidative stress in rat liver. 30 male rats were equally divided in to 6 groups (5 rats each). Group I (control), while Group II was given CCl4 (3 mL /Kg/day, IP). Animals of Groups III received only propofol (10 mg/Kg/day, IP). Group IV was given propofol+ CCl4. Group V was administered vitamin E (alpha-tocopherol acetate 15 mg/Kg/day, SC) .Animals of Group VII received alpha-tocopherol acetate + CCl4 once daily for two weeks. After treatment, blood and liver mitochondria were isolated. Anti-oxidant enzymes activity such as glutathione peroxidase (GPx), superoxide dismutase (SOD) and oxidative stress marker such as reduced glutathione (GSH) and lipid peroxidation (LPO) concentration were measured. Oxidative stress induced with CCl4 in liver mitochondria was evident by a significant increase in enzymatic activities of GPx, SOD, and LPO and decreased of GSH and vailability of mitochondria. Propofol and vitamin E restored CCl4-induced changes in GSH, GPx, SOD and LPO in blood and liver mitochondria. CCl4 decreased viability of mitochondria that was recovered by propofol and vitamin E. It is concluded that oxidative damage is the mechanism of toxicity of CCl4 in the mitochondria that can be recovered by propofol comparable to vitamin E. PMID:24734078

  16. Metabolism of brain cortex and cardiac muscle mitochondria in hibernating 13-lined ground squirrels Ictidomys tridecemlineatus.

    PubMed

    Gallagher, Kirsten; Staples, James F

    2013-01-01

    During bouts of torpor, mitochondrial metabolism is known to be suppressed in the liver and skeletal muscle of hibernating mammals. This suppression is rapidly reversed during interbout euthermic (IBE) phases, when whole-animal metabolic rate and body temperature (T(b)) return spontaneously to euthermic levels. Such mitochondrial suppression may contribute significantly to energy savings, but the capacity of other tissues to suppress mitochondrial metabolism remains unclear. In this study we compared the metabolism of mitochondria from brain cortex and left ventricular cardiac muscle between animals sampled while torpid (stable T(b) near 5°C) and in IBE (stable T(b) near 37°C). Instead of isolating mitochondria using the traditional methods of homogenization and centrifugation, we permeabilized tissue slices with saponin, allowing energetic substrates and inhibitors to access mitochondria. No significant differences in state 3 or state 4 respiration were observed between torpor and IBE in either tissue. In general, succinate produced the highest oxidation rates followed by pyruvate and then glutamate, palmitoyl carnitine, and β-hydroxybutyrate. These findings suggest that there is no suppression of mitochondrial metabolism or change in substrate preference in these two tissues despite the large changes in whole-animal metabolism seen between torpor and IBE. PMID:23303316

  17. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia.

    PubMed

    Lukyanova, Ludmila D; Kirova, Yulia I

    2015-01-01

    The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was

  18. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia

    PubMed Central

    Lukyanova, Ludmila D.; Kirova, Yulia I.

    2015-01-01

    The article is focused on the role of the cell bioenergetic apparatus, mitochondria, involved in development of immediate and delayed molecular mechanisms for adaptation to hypoxic stress in brain cortex. Hypoxia induces reprogramming of respiratory chain function and switching from oxidation of NAD-related substrates (complex I) to succinate oxidation (complex II). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of immediate adaptation to hypoxia necessary for (1) succinate-related energy synthesis in the conditions of oxygen deficiency and formation of urgent resistance in the body; (2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; (3) succinate-related activation of the succinate-specific receptor, GPR91. This mechanism participates in at least four critical regulatory functions: (1) sensor function related with changes in kinetic properties of complex I and complex II in response to a gradual decrease in ambient oxygen concentration; this function is designed for selection of the most efficient pathway for energy substrate oxidation in hypoxia; (2) compensatory function focused on formation of immediate adaptive responses to hypoxia and hypoxic resistance of the body; (3) transcriptional function focused on activated synthesis of HIF-1 and the genes providing long-term adaptation to low pO2; (4) receptor function, which reflects participation of mitochondria in the intercellular signaling system via the succinate-dependent receptor, GPR91. In all cases, the desired result is achieved by activation of the succinate-dependent oxidation pathway, which allows considering succinate as a signaling molecule. Patterns of mitochondria-controlled activation of GPR-91- and HIF-1-dependent reaction were considered, and a possibility of their participation in cellular-intercellular-systemic interactions in hypoxia and adaptation was

  19. Cannabinoid-induced changes in respiration of brain mitochondria.

    PubMed

    Fišar, Zdeněk; Singh, Namrata; Hroudová, Jana

    2014-11-18

    Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist.

  20. The endocannabinoid 2-arachidonoylglicerol decreases calcium induced cytochrome c release from liver mitochondria.

    PubMed

    Zaccagnino, Patrizia; D'Oria, Susanna; Romano, Luigi Luciano; Di Venere, Almerinda; Sardanelli, Anna Maria; Lorusso, Michele

    2012-04-01

    2-Arachidonoylglicerol (2-AG) is an endocannabinoid that mimics the pharmacological effects of Δ⁹ tetrahydrocannabinol, the psychoactive component of the plant Cannabis sativa. It is present in many mammalian tissues, such as brain, liver, spleen, heart and kidney, where it exerts different biological effects either receptor mediated or independently of receptor activation. This work analyzes the effects of 2-AG on liver mitochondrial functions. It is shown that 2-AG causes a relevant decrease of calcium induced cyclosporine A sensitive cytochrome c release from mitochondria, a process representing an early event of the apoptotic program. Cyclosporin sensitive matrix swelling and ROS production measured under the same conditions are, on the contrary, almost unaffected or even enhanced, respectively, by 2-AG. Furthemore, 2-AG is found to stimulate resting state succinate oxidase activity and to inhibit oligomycin sensitive F₀F₁ ATP synthase activity. All these effects are apparently associated with 2-AG dependent alteration in the fluidity of the mitochondrial membranes, which was measured as generalized polarization of laurdan fluorescence. PMID:22437740

  1. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment

    PubMed Central

    2004-01-01

    The present investigation was undertaken in order to evaluate the contributions of ATP synthesis and proton leak reactions to the rate of active respiration of liver mitochondria, which is altered following dexamethasone treatment (1.5 mg/kg per day for 5 days). We applied top-down metabolic control analysis and its extension, elasticity analysis, to gain insight into the mechanisms of glucocorticoid regulation of mitochondrial bioenergetics. Liver mitochondria were isolated from dexamethasone-treated, pair-fed and control rats when in a fed or overnight fasted state. Injection of dexamethasone for 5 days resulted in an increase in the fraction of the proton cycle of phosphorylating liver mitochondria, which was associated with a decrease in the efficiency of the mitochondrial oxidative phosphorylation process in liver. This increase in proton leak activity occurred with little change in the mitochondrial membrane potential, despite a significant decrease in the rate of oxidative phosphorylation. Regulation analysis indicates that mitochondrial membrane potential homoeostasis is achieved by equal inhibition of the mitochondrial substrate oxidation and phosphorylation reactions in rats given dexamethasone. Our results also suggest that active liver mitochondria from dexamethasone-treated rats are capable of maintaining phosphorylation flux for cellular purposes, despite an increase in the energetic cost of mitochondrial ATP production due to increased basal proton permeability of the inner membrane. They also provide a complete description of the effects of dexamethasone treatment on liver mitochondrial bioenergetics. PMID:15175015

  2. Effect of phenylpyruvate on pyruvate dehydrogenase activity in rat brain mitochondria

    PubMed Central

    Land, John M.; Clark, John B.

    1973-01-01

    1. The effects of phenylpyruvate, a metabolite produced in phenylketonuria, on the pyruvate dehydrogenase-complex activity were investigated in rat brain mitochondria. 2. Pyruvate dehydrogenase activity was measured by two methods, one measuring the release of 14CO2 from [1-14C]pyruvate and the other measuring the acetyl-CoA formed by means of the coupling enzyme, pigeon liver arylamine acetyltransferase (EC 2.3.1.5). In neither case was there significant inhibition of the pyruvate dehydrogenase complex by phenylpyruvate at concentrations below 2mm. 3. However, phenylpyruvate acted as a classical competitive inhibitor of the coupling enzyme arylamine acetyltransferase, with a Ki of 100μm. 4. It was concluded that the inhibition of pyruvate dehydrogenase by phenylpyruvate is unlikely to be a primary enzyme defect in phenylketonuria. PMID:16742815

  3. Absence of Nitric-oxide Synthase in Sequentially Purified Rat Liver Mitochondria*

    PubMed Central

    Venkatakrishnan, Priya; Nakayasu, Ernesto S.; Almeida, Igor C.; Miller, R. Timothy

    2009-01-01

    Data, both for and against the presence of a mitochondrial nitric-oxide synthase (NOS) isoform, is in the refereed literature. However, irrefutable evidence has not been forthcoming. In light of this controversy, we designed studies to investigate the existence of the putative mitochondrial NOS. Using repeated differential centrifugation followed by Percoll gradient fractionation, ultrapure, never frozen rat liver mitochondria and submitochondrial particles were obtained. Following trypsin digestion and desalting, the mitochondrial samples were analyzed by nano-HPLC-coupled linear ion trap-mass spectrometry. Linear ion trap-mass spectrometry analyses of rat liver mitochondria as well as submitochondrial particles were negative for any peptide from any NOS isoform. However, recombinant neuronal NOS-derived peptides from spiked mitochondrial samples were easily detected, down to 50 fmol on column. The protein calmodulin (CaM), absolutely required for NOS activity, was absent, whereas peptides from CaM-spiked samples were detected. Also, l-[14C]arginine to l-[14C]citrulline conversion assays were negative for NOS activity. Finally, Western blot analyses of rat liver mitochondria, using NOS (neuronal or endothelial) and CaM antibodies, were negative for any NOS isoform or CaM. In conclusion, and in light of our present limits of detection, data from carefully conducted, properly controlled experiments for NOS detection, utilizing three independent yet complementary methodologies, independently as well as collectively, refute the claim that a NOS isoform exists within rat liver mitochondria. PMID:19372221

  4. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA.

    PubMed

    GREENAWALT, J W; ROSSI, C S; LEHNINGER, A L

    1964-10-01

    Rat liver mitochondria allowed to accumulate maximal amounts of Ca(++) and HPO(4) (=) ions from the suspending medium in vitro during respiration have a considerably higher specific gravity than normal mitochondria and may be easily separated from the latter by isopycnic centrifugation in density gradients of sucrose or cesium chloride. When the mitochondria are allowed to accumulate less than maximal amounts of Ca(++) and HPO(4) (=) from the medium, they have intermediate specific gravities which are roughly proportional to their content of calcium phosphate. Maximally "loaded" mitochondria are relatively homogeneous with respect to specific gravity. Correlated biochemical and electron microscopic studies show that Ca(++)-loaded mitochondria contain numerous dense granules, of which some 85 per cent are over 500 A in diameter. These granules are electron-opaque not only following fixation and staining with heavy metal reagents, but also following fixation with formaldehyde, demonstrating that the characteristic granules in Ca(++)-loaded mitochondria have intrinsic electron-opacity. The dense granules are almost always located within the inner compartment of the mitochondria and not in the space between the inner and outer membranes. They are frequently located at or near the cristae and they often show electron-transparent "cores." Such granules appear to be made up of clusters of smaller dense particles, but preliminary x-ray diffraction analysis and electron diffraction studies have revealed no evidence of crystallinity in the deposits. The electron-opaque granules decrease in number when the Ca(++)-loaded mitochondria are incubated with 2,4-dinitrophenol; simultaneously there is discharge of Ca(++) and phosphate from the mitochondria into the medium.

  5. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    SciTech Connect

    Santra, Amal . E-mail: asantra2000@yahoo.co.in; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-04-15

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects.

  6. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine.

    PubMed

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-04-15

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects.

  7. Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat.

    PubMed

    Lakroun, Zhoura; Kebieche, Mohamed; Lahouel, Asma; Zama, Djamila; Desor, Frederique; Soulimani, Rachid

    2015-05-01

    The neurological damages resulted by endosulfan poisoning is not completely elucidated, especially in cellular organelles such as mitochondria. In the present study, the pro-oxidant effect of endosulfan on brain mitochondria was first investigated. Gavages of endosulfan into rats at the dose of 2 mg/kg induced oxidative stress in this organelle since it provokes a significant reduction of catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) level. In addition, a significant increase in mitochondria swelling and malondialdehyde (MDA) levels were observed in neuronal mitochondria, indicating clearly an intense peroxidation within mitochondria. Second, the protective effect of quercetin (QE) (10 mg/kg) against endosulfan-induced oxidative stress in mitochondria was also assessed. Indeed, the pretreatment of rats with QE protects brain mitochondria from oxidative stress, lipid peroxidation, and mitochondria swelling induced by endosulfan. The activities of antioxidant enzymes and the mitochondrial content of GSH and MDA were returned to control values. Thus, although endosulfan can have neurotoxic effects in brain rats, this toxicity can be prevented by quercetin.

  8. Membrane effects of Vitamin E deficiency: bioenergetic and surface-charge-density studies of skeletal muscle and liver mitochondria

    SciTech Connect

    Quintanilha, A.T.; Packer, L.; Szyszlo Davies, J.M.; Racanelli, T.L.; Davies, K.J.A.

    1981-12-01

    Vitamin E (dl-..cap alpha..-tocopherol) deficiency in rats increased the sensitivity of liver and muscle mitochondria to damage during incubation at various temperatures, irradiation with visible light, or steady state respiration with substrates. In all cases, vitamin E deficient mitochondria exhibited increased lipid peroxidation, reduced transmembrane potential, decreased respiratory coupling, and lower rates of electron transport, compared to control mitochondria. Muscle mitochondria always showed greater negative inner membrane surface charge density, and were also more sensitive to damage than were liver mitochondria. Vitamin E deficient mitochondria also showed slightly more negative inner membrane surface charge density compared to controls. The relationship between greater negative surface potential and increased sensitivity to damage observed, provides for a new and sensitive method to further probe the role of surface charge in membrane structure and function. Implications of these new findings for the well known human muscle myopathies and those experimentally induced by Vitamin E deficiency in animals, are discussed.

  9. Proteomic analysis of changes in protein expression in liver mitochondria in apoE knockout mice.

    PubMed

    Suski, Maciej; Olszanecki, Rafał; Madej, Józef; Totoń-Żurańska, Justyna; Niepsuj, Anna; Jawień, Jacek; Bujak-Giżycka, Beata; Okoń, Krzysztof; Korbut, Ryszard

    2011-05-16

    The involvement of both apolipoprotein E (apoE) and mitochondria in lipid metabolism is widely recognized, however there is surprisingly scarce data about the putative mitochondrial action(s) of this protein. The aim of the study was to screen the alterations in liver mitochondrial proteome caused by apoE deficiency. We applied 2DE-LC-MS/MS methodology to investigate the changes in liver mitochondrial protein expression in 6-months old apoE(-/-) mice as compared to C57BL/6J controls. ApoE(-/-), but not C57BL/6J mice developed visible atherosclerotic changes in aorta and mild, diffuse steatosis of the liver. Collectively, 18 differentially expressed proteins were identified in mitochondria, related to apoptosis, antioxidant and detoxifying mechanisms of mitochondria, as well as lipid metabolism and transport. In conclusion, differential proteomic approach revealed several lines of proteomic evidence that mitochondrial function in the liver of apoE(-/-) mice could be altered as a result of overlapping of pathological and compensatory changes in expression of proteins.

  10. Phosphorylation and hydrolysis of 7-deazaadenine nucleotides by rat liver and beef heart mitochondria.

    PubMed

    Petrescu, I; Lascu, I; Goia, I; Markert, M; Schmidt, F H; Deaciuc, I V; Kezdi, M; Bârzu, O

    1982-03-01

    Tubercidin nucleotides [tubercidin 5'-mono-phosphate (TuMP), 5'-diphosphate (TuDP), and 5'-triphosphate (TuTP)] were tested as potential substrates for the mitochondrial phosphotransferases from rat liver and beef heart. TuDP is recognized by the mitochondrial translocase and phosphorylated by the respiratory chain enzymes in both mitochondria and submitochondrial particles from rat liver and beef heart; the low transport rate of the analogue into the matrix space of the intact organelles seems to be not a limiting step in the formation of TuTP. The phosphorylation of TuDP is significantly lower in beef heart mitochondria because of a higher specificity for ADP of the heart oxidative phosphorylation system. On the basis of the kinetic parameters of the partially purified liver mitochondrial adenylate kinase, one can conclude that the liver mitochondria are able to phosphorylate in vivo TuMP at a rate practically equal to the rate of AMP phosphorylation. The liver mitochondrial NDP kinase ensures a further fast phosphorylation of TuDP without the direct involvement of respiratory chain enzymes. In the case of heart mitochondria, two factors limit the rate of TuMP phosphorylation to TuTP: the lower acceptor activity of adenylate kinase with TuMP as compared with AMP and the different localization of heart NDP kinase situated on the inner face of the inner mitochondrial membrane. TuDP and TuTP preserve the ability of the natural nucleotides to interact with the "tight" nucleotide binding sites of isolated or membrane-bound F1. The low hydrolytic rate of TuTP with F1 may be related to the unusual flexibility of the glycosyl bond of tubercidin nucleotides in aqueous solution, with a high accessibility to syn conformation.

  11. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    PubMed

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna

    2014-01-01

    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses.

  12. Nonalcoholic Fatty Liver Disease: Pathogenesis and Therapeutics from a Mitochondria-Centric Perspective

    PubMed Central

    Gusdon, Aaron M.; Song, Ke-xiu; Qu, Shen

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) describes a spectrum of disorders characterized by the accumulation of triglycerides within the liver. The global prevalence of NAFLD has been increasing as the obesity epidemic shows no sign of relenting. Mitochondria play a central role in hepatic lipid metabolism and also are affected by upstream signaling pathways involved in hepatic metabolism. This review will focus on the role of mitochondria in the pathophysiology of NAFLD and touch on some of the therapeutic approaches targeting mitochondria as well as metabolically important signaling pathways. Mitochondria are able to adapt to lipid accumulation in hepatocytes by increasing rates of beta-oxidation; however increased substrate delivery to the mitochondrial electron transport chain (ETC) leads to increased reactive oxygen species (ROS) production and eventually ETC dysfunction. Decreased ETC function combined with increased rates of fatty acid beta-oxidation leads to the accumulation of incomplete products of beta-oxidation, which combined with increased levels of ROS contribute to insulin resistance. Several related signaling pathways, nuclear receptors, and transcription factors also regulate hepatic lipid metabolism, many of which are redox sensitive and regulated by ROS. PMID:25371775

  13. ENERGY-LINKED ULTRASTRUCTURAL TRANSFORMATIONS IN ISOLATED LIVER MITOCHONDRIA AND MITOPLASTS

    PubMed Central

    Hackenbrock, Charles R.

    1972-01-01

    An investigation was carried out in which microsamples of isolated rat liver mitochondria and freshly prepared mitoplasts in defined energy states were freeze-cleaved. Parallel microsamples were fixed with osmium tetroxide and with glutaraldehyde followed by osmium tetroxide as previously used in this laboratory for the preservation of energy-linked mitochondrial configurations. The details of the orthodox configuration of energized mitochondria and the condensed configuration of de-energized mitochondria, as revealed previously by chemical fixation, are confirmed in this report for nonfixed, freeze-cleaved mitochondria. The precise agreement in preservation of configuration obtained by the physical fixation of rapid freezing and by chemical fixation establishes unequivocally that mitochondria undergo energy-linked ultrastructural transformation between the condensed and the orthodox configurations which are thus natural structural states related to the metabolic activity of the mitochondrion. Configurations observed by freeze-cleaving and by chemical fixation reveal that mitoplasts also undergo a specific and dramatic ultrastructural transformation with the induction of oxidative phosphorylation. The transformation appears to be isovolumetric and therefore is thought to be mediated through energized conformational activity in the surface electron-transport membrane of the mitoplast. Passively swollen, spherical, osmotically active mitoplasts could not be fixed rapidly enough by chemical fixatives as normally used without altering the spherical form. In this special case preservation of configurational form required rapid freezing or chemical fixatives of low osmolar concentration. PMID:4554366

  14. Cytochrome c release from rat liver mitochondria is compromised by increased saturated cardiolipin species induced by sucrose feeding.

    PubMed

    Ruiz-Ramírez, Angélica; Barrios-Maya, Miguel-Angel; López-Acosta, Ocarol; Molina-Ortiz, Dora; El-Hafidi, Mohammed

    2015-11-01

    Cytochrome c release from mitochondria has been described to be related to reactive oxygen species (ROS) generation. With ROS generation being increased in fatty liver from sucrose-fed (SF) rats, we hypothesized that cytochrome c release might be positively associated with H2O2 generation from SF mitochondria. Surprisingly, cytochrome c release from mitochondria of SF liver was found to be significantly lower compared with control (C) mitochondria oxidizing pyruvate/malate or succinate. Exposure of mitochondria to exogenous superoxide radical generated by the xanthine/xanthine oxidase system elicits a dose-response cytochrome c release in both control and SF mitochondria, but cytochrome c release remains lower in SF mitochondria compared with C mitochondria. Furthermore, the addition of ebselen, PEG-catalase, or catalase, a H2O2 scavenger, significantly reduces cytochrome c release from C and SF mitochondria. Our results suggest that both intra- and extramitochondrial H2O2 are involved in cytochrome c release, but the persisting difference between C and SF levels can be attributed to the differences in cardiolipin compositions. Indeed, the ratio of palmitic acid-rich cardiolipin species was found to be increased in lipid membrane from SF mitochondria compared with C mitochondria, whereas that of linoleic acid-rich cardiolipin species was found decreased. In addition, the content of tafazzin, a protein responsible for cardiolipin remodeling, was decreased in SF mitochondria. Therefore, we conclude that the changes observed in the composition of cardiolipin molecular species in SF mitochondria may be involved in cytochrome c interaction with mitochondrial inner membrane lipid and in its reduced release from SF mitochondria.

  15. Resveratrol affects differently rat liver and brain mitochondrial bioenergetics and oxidative stress in vitro: investigation of the role of gender.

    PubMed

    Moreira, Ana C; Silva, Ana M; Santos, Maria S; Sardão, Vilma A

    2013-03-01

    Resveratrol (3,5,4'-trihydroxy-trans stilbene) is commonly recognized by its antioxidant properties. Despite its beneficial qualities, the toxic effects of this natural compound are still unknown. Since mitochondria are essential to support the energy-dependent regulation of several cell functions, the objective of this study was to evaluate resveratrol effects on rat brain and liver mitochondrial fractions from male and females regarding oxidative stress and bioenergetics. No basal differences were observed between mitochondrial fractions from males and females, except in liver mitochondria, the generation of H(2)O(2) by the respiratory chain is lower for female preparations. Resveratrol inhibited lipid peroxidation in preparations from both genders and organs. Furthermore, brain mitochondria in both gender groups appeared susceptible to resveratrol as seen by a decrease in state 3 respiration and alterations in mitochondrial membrane potential fluctuations during ADP phosphorylation. As opposed, liver mitochondria were less affected by resveratrol. Our data also demonstrates that resveratrol inhibits complex I activity in all mitochondrial preparations. The results suggest that brain mitochondria appear to be more susceptible to resveratrol effects, and gender appears to play a minor role. It remains to be determined if resveratrol effects on brain mitochondria contribute to deterioration of mitochondrial function or instead to mediate hormesis-mediated events.

  16. The localization of some coenzyme A-dependant enzymes in rat liver mitochondria

    PubMed Central

    Haddock, B. A.; Yates, D. W.; Garland, P. B.

    1970-01-01

    1. CoA, acetyl-CoA, l-carnitine and acetyl-l-carnitine when added to rat liver mitochondria equilibrate with approximately two-thirds of the total intramitochondrial water. The mitochondrial space calculated to be freely permeable to these solutes was identical with that obtained for sucrose. 2. Acetyl-CoA is rapidly deacylated by rat liver mitochondria at 0°C, and special precautions are required to measure its mitochondrial permeation. 3. Rat liver mitochondria were separated into fractions that correspond to the inner membrane, the outer membrane, and the soluble proteins of the matrix and intermembrane compartment. Soluble enzymes considered to be located in the matrix were citrate synthase (EC 4.1.3.7), palmitoyl-CoA dehydrogenase (EC 1.3.2.2), electron-transferring flavoprotein, medium-chain-length ATP-specific fatty acyl-CoA synthetase (EC 6.2.1.2), l-3-hydroxybutyryl-CoA dehydrogenase (EC 1.1.1.35) and 3-keto-acyl-CoA thiolase (EC 2.3.1.16). Carnitine palmitoyltransferase (EC 2.3.1.–) is largely associated with the inner-membrane fraction. A long-chain-length ATP-specific fatty acyl-CoA synthetase (EC 6.2.1.3) is associated with the outer-membrane fraction. PMID:5500317

  17. The Cooperative Effect of Local Angiotensin-II in Liver with Adriamycin Hepatotoxicity on Mitochondria

    PubMed Central

    Taskin, Eylem; Guven, Celal; Sahin, Leyla; Dursun, Nurcan

    2016-01-01

    Background Adriamycin (ADR) is a drug used clinically for anticancer treatment; however, it causes adverse effects in the liver. The mechanism by which these adverse effects occur remains unclear, impeding efforts to enhance the therapeutic effects of ADR. Its hepatotoxicity might be related to increasing reactive oxygen species (ROS) and mitochondrial dysfunction. The interaction between ADR and the local renin-angiotensin system (RAS) in the liver is unclear. ADR might activate the RAS. Angiotensin-II (Ang-II) leads to ROS production and mitochondrial dysfunction. In the present study we investigated whether ADR’s hepatotoxicity interacts with local RAS in causing oxidative stress resulting from mitochondrial dysfunction in the rat liver. Material/Methods Rats were divided into 5 groups: control, ADR, co-treated ADR with captopril, co-treated ADR with Aliskiren, and co-treated ADR with both captopril and Aliskiren. Mitochondria and cytosol were separated from the liver, then biochemical measurements were made from them. Mitochondrial membrane potential (MMP) and ATP levels were evaluated. Results ADR remarkably decreased MMP and ATP in liver mitochondria (p<0.05). Co-administration with ADR and Aliskiren and captopril improved the dissipation of MMP (p<0.05). The decreased ATP level was restored by treatment with inhibitors of ACE and renin. Conclusions Angiotensin-II may contribute to hepatotoxicity of in the ADR via mitochondrial oxidative production, resulting in the attenuation of MMP and ATP production. PMID:27019222

  18. Respiration-driven proton translocation in rat liver mitochondria

    PubMed Central

    Mitchell, Peter; Moyle, Jennifer

    1967-01-01

    1. Pulses of acidity of the outer aqueous phase of rat liver mitochondrial suspensions induced by pulses of respiration are due to the translocation of H+ (or OH−) ions across the osmotic barrier (M phase) of the cristae membrane and cannot be attributed to the formation (with acid production) of a chemical intermediate that subsequently decomposes. 2. The effective quantity of protons translocated per bivalent reducing equivalent passing through the succinate-oxidizing and β-hydroxybutyrate-oxidizing spans of the respiratory chain are very close to 4 and 6 respectively. These quotients are constant between pH5·5 and 8·5 and are independent of changes in the ionic composition of the mitochondrial suspension medium provided that the conditions permit the accurate experimental measurement of the proton translocation. 3. Apparent changes in the →H+/O quotients may be induced by conditions preventing the occurrence of the usual backlash; these apparent changes of →H+/O are attributable to a very fast electrically driven component of the decay of the acid pulses that is not included in the experimental extrapolations. 4. Apparent changes in the →H+/O quotients may also be induced by the presence of anions, such as succinate, malonate and phosphate, or by cations such as Na+. These apparent changes of →H+/O are due to an increase in the rate of the pH-driven decay of the acid pulses. 5. The uncoupling agents, 2,4-dinitrophenol, carbonyl cyanide p-trifluoromethoxyphenylhydrazone and gramicidin increase the effective proton conductance of the M phase and thus increase the rate of decay of the respiration-driven acid pulses, but do not change the initial →H+/O quotients. The increase in effective proton conductance of the M phase caused by these uncouplers accounts quantitatively for their uncoupling action; and the fact that the initial →H+/O quotients are unchanged shows that uncoupler-sensitive chemical intermediates do not exist between the respiratory

  19. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria

    PubMed Central

    Han, Derick; Dara, Lily; Win, Sanda; Than, Tin Aung; Yuan, Liyun; Abbasi, Sadeea Q; Liu, Zhang-Xu; Kaplowitz, Neil

    2013-01-01

    Drugs that cause liver injury often “stress” mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Due to adaptation, drugs alone rarely cause liver injury, with acetaminophen being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause “stressed” hepatocytes to become injured; leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as JNK become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI. PMID:23453390

  20. Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria.

    PubMed

    Han, Derick; Dara, Lily; Win, Sanda; Than, Tin Aung; Yuan, Liyun; Abbasi, Sadeea Q; Liu, Zhang-Xu; Kaplowitz, Neil

    2013-04-01

    Drugs that cause liver injury often 'stress' mitochondria and activate signal transduction pathways important in determining cell survival or death. In most cases, hepatocytes adapt to the drug-induced stress by activating adaptive signaling pathways, such as mitochondrial adaptive responses and nuclear factor erythroid 2-related factor 2 (Nrf-2), a transcription factor that upregulates antioxidant defenses. Owing to adaptation, drugs alone rarely cause liver injury, with acetaminophen (APAP) being the notable exception. Drug-induced liver injury (DILI) usually involves other extrinsic factors, such as the adaptive immune system, that cause 'stressed' hepatocytes to become injured, leading to idiosyncratic DILI, the rare and unpredictable adverse drug reaction in the liver. Hepatocyte injury, due to drug and extrinsic insult, causes a second wave of signaling changes associated with adaptation, cell death, and repair. If the stress and injury reach a critical threshold, then death signaling pathways such as c-Jun N-terminal kinase (JNK) become dominant and hepatocytes enter a failsafe mode to undergo self-destruction. DILI can be seen as an active process involving recruitment of death signaling pathways that mediate cell death rather than a passive process due to overwhelming biochemical injury. In this review, we highlight the role of signal transduction pathways, which frequently involve mitochondria, in the development of DILI. PMID:23453390

  1. Selective permeability of rat liver mitochondria to purified malate dehydrogenase isoenzymes in vitro.

    PubMed Central

    Passarella, S; Marra, E; Doonan, S; Quagliariello, E

    1980-01-01

    1. The mitochondrial malate dehydrogenase from rat liver has been purified to a state of homogeneity as judged by starch-gel electrophoresis and the cytoplasmic isoenzyme has been obtained in a partically purified state. 2. Inhibition of the isoenzymes by sulphite has been studied. 3. In mitochondria loaded with sulphite, the catalytic activity of the (partially inhibited) internal malate dehydrogenase has been measured by addition of oxaloacetate to the suspension medium and observation of the consequent decrease in fluorescence of NADH. 4. Addition of mitochondrial malate dehydrogenase to suspensions of mitochondria loaded with sulphite resulted in an increase in the level of intramitochondrial enzymic activity as measured by the above technique. Addition of the cytoplasmic isoenzyme did not result in such an increase. 5. These results show that mitochondria in suspension are permeable to the mitochondrial malate dehydrogenase but not to the cytoplasmic isoenzyme. 6. This conclusion has been confirmed by direct measurement of a decrease of enzyme activity in solution and an increase inside the mitochondria after incubation of organelles in solutions containing mitochondrial malate dehydrogenase. No such effect was observed with the cytoplasmic isoenzyme. 7. Some features of the permeation process have been studied. PMID:7236231

  2. Thyroid hormones regulate the onset of osmotic activity of rat liver mitochondria after birth.

    PubMed

    Almeida, A; Lopez-Mediavilla, C; Medina, J M

    1997-02-01

    The effect of thyroid hormone deprivation on the osmotic activity of liver mitochondria from early newborn rats was studied. Experimentally induced hypothyroidism prevented the increase in the osmotic activity of mitochondria observed immediately after birth. Osmotic activity was restored by T4 and T3 treatment to hypothyroid newborns but not when this treatment was supplemented with cycloheximide. Under the same circumstances, streptomycin had no effect. Hypothyroidism abolished the change in the slope of the osmotic curve (plot of inverse absorbance of mitochondrial suspensions incubated in sucrose solutions vs. inverse sucrose concentration) observed in mitochondria from euthyroid newborns at 110-120 mOsm sucrose, suggesting that hypothyroidism prevents the formation of tight physical connections between mitochondrial outer and inner membranes. Thyroid hormone deprivation increased the passive permeability of the mitochondrial inner membrane to protons, resulting in a decreased respiratory control ratio. Hypothyroidism prevented the sharp decrease in the affinity of mitochondria for ATP observed in euthyroid newborns immediately after birth. These results corroborate our previous suggestion (Endocrinology, 1995, 136:4448) that, during the early neonatal period, thyroid hormones control the synthesis of some nucleus-coded protein(s) involved in the assembly of F0,F1-ATPase.

  3. Mitochondria-associated microRNAs in rat hippocampus following traumatic brain injury.

    PubMed

    Wang, Wang-Xia; Visavadiya, Nishant P; Pandya, Jignesh D; Nelson, Peter T; Sullivan, Patrick G; Springer, Joe E

    2015-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. However, the molecular events contributing to the pathogenesis are not well understood. Mitochondria serve as the powerhouse of cells, respond to cellular demands and stressors, and play an essential role in cell signaling, differentiation, and survival. There is clear evidence of compromised mitochondrial function following TBI; however, the underlying mechanisms and consequences are not clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post-transcriptionally, and function as important mediators of neuronal development, synaptic plasticity, and neurodegeneration. Several miRNAs show altered expression following TBI; however, the relevance of mitochondria in these pathways is unknown. Here, we present evidence supporting the association of miRNA with hippocampal mitochondria, as well as changes in mitochondria-associated miRNA expression following a controlled cortical impact (CCI) injury in rats. Specifically, we found that the miRNA processing proteins Argonaute (AGO) and Dicer are present in mitochondria fractions from uninjured rat hippocampus, and immunoprecipitation of AGO associated miRNA from mitochondria suggests the presence of functional RNA-induced silencing complexes. Interestingly, RT-qPCR miRNA array studies revealed that a subset of miRNA is enriched in mitochondria relative to cytoplasm. At 12h following CCI, several miRNAs are significantly altered in hippocampal mitochondria and cytoplasm. In addition, levels of miR-155 and miR-223, both of which play a role in inflammatory processes, are significantly elevated in both cytoplasm and mitochondria. We propose that mitochondria-associated miRNAs may play an important role in regulating the response to TBI.

  4. Expression of mitochondria-related genes is elevated in overfeeding-induced goose fatty liver.

    PubMed

    Osman, Rashid H; Shao, Dan; Liu, Long; Xia, Lili; Sun, Xiaoxian; Zheng, Yun; Wang, Laidi; Zhang, Rui; Zhang, Yihui; Zhang, Jun; Gong, Daoqing; Geng, Tuoyu

    2016-02-01

    Mitochondrion, the power house of the cell, is an important organelle involving in energy homeostasis. Change in mitochondrial mass and function may lead to metabolic disorders. Previous studies indicate that mitochondrial mass loss and dysfunction are associated with non-alcoholic fatty liver disease (NAFLD) in human and mouse. However, it is unclear whether mitochondrial genes are involved in the development of goose fatty liver. To address this, we determined the response of goose mitochondrial genes to overfeeding and other fatty liver-related factors (e.g., hyperinsulinemia, hyperglycemia, and hyperlipidemia). We first employed RNA-seq technology to determine the differentially expressed genes in the livers from normally-fed vs. overfed geese, followed by bioinformatics analysis and quantitative PCR validation. Data indicated that a majority of mitochondrial genes in the liver were induced by overfeeding. To understand how these genes are regulated in the context of fatty liver, we treated goose primary hepatocytes with high levels of glucose, fatty acids and insulin. The results indicated that these factors had an influence on the expression of some mitochondria related genes. Together, these findings suggest that the induction of mitochondrial gene expression by overfeeding is required for the development of goose fatty liver, and this induction is partially attributable to hyperglycemia, hyperlipidemia and hyperinsulinemia.

  5. Electromagnetic pulse reduces free radical generation in rat liver mitochondria in vitro.

    PubMed

    Wang, C; Zhou, H; Peng, R; Wang, L; Su, Z; Chen, P; Wang, S; Wang, S; Liu, Y; Cong, J; Wu, K; Hu, X; Fan, E

    2013-04-01

    Non-ionizing radiation electromagnetic pulse (EMP) is generally recorded to induce the generation of free radicals in vivo. Though mitochondria are the primary site to produce free radicals, a rare report is designed to directly investigate the EMP effects on free radical generation at mitochondrial level. Thus the present work was designed to study how EMP induces free radical generation in rat liver mitochondria in vitro using electron paramagnetic resonance technique. Surprisingly, our data suggest that EMP prevents free radical generation by activating antioxidant enzyme activity and reducing oxygen consumption and therefore free radical generation. Electron spin resonance measurements clearly demonstrate that disordering of mitochondrial lipid fluidity and membrane proteins mobility are the underlying contributors to this decreased oxygen consumption. Therefore, our results suggest that EMP might hold the potentiality to be developed as a non-invasive means to benefit certain diseases.

  6. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria.

    PubMed

    Brand, M D; Lehninger, A L

    1975-10-10

    The nature of the energy store causing rapid superstoichiometric leads to H+/2e minus ejection and leads to Ca2+/2e minus uptake ratios in rat liver mitochondria pulsed with Ca2+ has been investigated. The extent and the rate of the initial fast superstoichiometric phase of H plus ejection were greatly reduced by oligomycin and other ATPase inhibitors; the subsequent shoichiometric phase was unaffected. No such inhibition was seen with atractyloside. Similarly, the initial fast phase of Ca2+ uptake was reduced in extent by oligomycin, whereas the slower stoichiometric phase was unaffected. Moreover, the ATP content of mitochondria previously incubated with succinate decreased by about 80% within 5 s after pulsing with Ca2+. The energy store for superstoichiometric Ca2+ uptake and H plus injection is thus identified as endogenous ATP.

  7. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    PubMed

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance.

  8. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations.

  9. Characterization of calciphorin, the low molecular weight calcium ionophore, from rat liver mitochondria.

    PubMed

    Ambudkar, I S; Kima, P E; Shamoo, A E

    1984-04-11

    Calciphorin, the putative mitochondrial calcium ionophore from rat liver mitochondria, exhibits the inherent properties of the mitochondrial calcium transport system and is similar to the calf heart preparation reported earlier. The protein has a strong selectivity for Ca2+, and has a Kd for Ca2+ of 56.5 +/- 6.6 microM and 13.9 +/- 2.1 microM in organic extraction and flow dialysis experiments, respectively. Reduction of the contaminating lipids from 23 +/- 6.5 to 1.73 +/- 0.4 moles per mole protein does not alter the affinities, Ca2+/protein stoichiometry or selectivity for Ca2+.

  10. Sensitivity of mitochondria isolated from liver and kidney of rat and bovine to lipid peroxidation: a comparative study of light emission and fatty acid profiles.

    PubMed

    Gavazza, Mariana; Marmunti, Mónica; Catalá, Angel

    2005-12-01

    Much work has been carried out on non-enzymatic-induced lipid peroxidation of mitochondria obtained from different tissues of monogastric animals, but little information is available about this process in poligastric animals. Studies were carried out to determine the sensitivity of mitochondria isolated from liver and kidney of rat and bovine to lipid peroxidation (ascorbate-Fe2+ dependent) by comparison of light emission and fatty acid profiles. Mitochondria from both species were susceptible to lipid peroxidation. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria from rat liver than in the organelle obtained from bovine, whereas changes were not observed in mitochondria from rat and bovine kidney. The fatty acid composition of total lipids isolated from liver and kidney mitochondria of both species was substantially modified when subjected to non-enzymatic lipid peroxidation with a decrease of arachidonic and docosahexaenoic acids. The polyunsaturated fatty acid (PUFA) composition was higher in mitochondria obtained from rat liver (43.11+/- 4.16) than in bovine (15.78 +/- 0.76). As a consequence, the unsaturation index (UI), was higher in mitochondria of rat liver than in bovine. Nevertheless, the PUFA composition of kidney mitochondria from both species was similar; therefore, statistically significant differences in the UI were not observed. The results suggest that mainly the PUFAs present in hepatic and kidney mitochondria were sensitive to oxidative damage. The lipid peroxidation process was more effective in rat liver mitochondria than in bovine.

  11. Analysis of Brain Mitochondria Using Serial Block-Face Scanning Electron Microscopy.

    PubMed

    Mukherjee, Konark; Clark, Helen R; Chavan, Vrushali; Benson, Emily K; Kidd, Grahame J; Srivastava, Sarika

    2016-01-01

    Human brain is a high energy consuming organ that mainly relies on glucose as a fuel source. Glucose is catabolized by brain mitochondria via glycolysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways to produce cellular energy in the form of adenosine triphosphate (ATP). Impairment of mitochondrial ATP production causes mitochondrial disorders, which present clinically with prominent neurological and myopathic symptoms. Mitochondrial defects are also present in neurodevelopmental disorders (e.g. autism spectrum disorder) and neurodegenerative disorders (e.g. amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases). Thus, there is an increased interest in the field for performing 3D analysis of mitochondrial morphology, structure and distribution under both healthy and disease states. The brain mitochondrial morphology is extremely diverse, with some mitochondria especially those in the synaptic region being in the range of <200 nm diameter, which is below the resolution limit of traditional light microscopy. Expressing a mitochondrially-targeted green fluorescent protein (GFP) in the brain significantly enhances the organellar detection by confocal microscopy. However, it does not overcome the constraints on the sensitivity of detection of relatively small sized mitochondria without oversaturating the images of large sized mitochondria. While serial transmission electron microscopy has been successfully used to characterize mitochondria at the neuronal synapse, this technique is extremely time-consuming especially when comparing multiple samples. The serial block-face scanning electron microscopy (SBFSEM) technique involves an automated process of sectioning, imaging blocks of tissue and data acquisition. Here, we provide a protocol to perform SBFSEM of a defined region from rodent brain to rapidly reconstruct and visualize mitochondrial morphology. This technique could also be used to provide accurate information on

  12. Effects of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria.

    PubMed

    Kukoyi, B I

    2006-01-01

    The inhibitory effect of extracellular zinc ion on the rate of oxygen consumption of rat brain mitochondria pre-incubated in 1.0 mMol Ca(2+)EDTA were determined. There was a significant increase [P < 0.01] in the rate of oxygen consumption in the rat brain mitochondria pre-incubated in 1.0 mMol Ca(2+)EDTA in a succinate initiated reaction. The reverse was the case when the concentration of Ca(2+)EDTA was increased to 10 mMol. A 20 microMol zinc-aspartate was found to have no inhibitory effect on the rate of oxygen consumption of the brain mitochondria pre-incubated with 1.0 mMol Ca(2+)EDTA when compared with the control that lacked 1.0 mMol Ca(2+)EDTA, however there was a significant decrease [P < 0.01] in the rate of oxygen consumption of the rat brain mitochondria in the control experiment.

  13. The Role of Mitochondria in Brain Aging and the Effects of Melatonin

    PubMed Central

    Escames, Germaine; López, Ana; García, José Antonio; García, Laura; Acuña-Castroviejo, Darío; García, José Joaquín; López, Luis Carlos

    2010-01-01

    Melatonin is an endogenous indoleamine present in different tissues, cellular compartments and organelles including mitochondria. When melatonin is administered orally, it is readily available to the brain where it counteracts different processes that occur during aging and age-related neurodegenerative disorders. These aging processes include oxidative stress and oxidative damage, chronic and acute inflammation, mitochondrial dysfunction and loss of neural regeneration. This review summarizes age related changes in the brain and the importance of oxidative/nitrosative stress and mitochondrial dysfunction in brain aging. The data and mechanisms of action of melatonin in relation to aging of the brain are reviewed as well. PMID:21358969

  14. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum.

    PubMed

    Becker, G L; Fiskum, G; Lehninger, A L

    1980-10-10

    Electrode measurements were made of the free Ca2+ concentration maintained by suspensions of isolated rat liver mitochondria and microsomes, as well as by hepatocytes whose plasma membranes had been made permeable by treatment with digitonin. When the KCl, ATP, Mg2+, and phosphate concentrations were made similar to that of cytosol, the steady state free Ca2+ concentration in the presence of respiring mitochondria alone was about 0.5 microM. The additional presence of rat liver microsomes resulted in a steady state level of close to 0.2 microM, which was maintaied for greater than 1 h at 25 degrees C. This concentration of Ca2+ was also maintained by suspensions of hepatocytes permeabilized by digitonin and thus may approximate the actual cytosolic free Ca2+ concentration in vivo. The "set point" for free Ca2+ homeostasis in these systems is determined by mitochondrial Ca2+ influx-efflux cycling, which is dependent on the level of intramitochondrial Ca2+ and can be adjusted by sequestration of Ca2+ in microsomes.

  15. On the mechanism of A23187-induced potassium efflux in rat liver mitochondria.

    PubMed

    Dordick, R S; Brierley, G P; Garlid, K D

    1980-11-10

    1. Rat liver mitochondria undergo a spontaneous, respiration-dependent K+ extrusion which is accelerated by citrate. This K+ efflux is electroneutral and is considered to occur on an endogenous K/H exchanger. The spontaneous efflux, but not nigericin-induced K/H exchange, is always preceded by a lag phase, suggesting that the lag phase is a characteristic property of the endogenous exchange reaction. 2. K+ extrusion induced by ionophore A23187 also has the characteristics of K/H exchange. The rate of K+ efflux is faster and the lag time is shorter when compared to endogenous K+ efflux. The effects of A23187 on the lag phase suggest that the ionophore acts by unmasking the endogenous exchanger. This conclusion is supported by the finding that K+ efflux rates reach a maximum which cannot be exceeded by increasing the dose of A23187 but is exceeded by adding nigericin. 3. Steady state perturbation studies were carried out on respiring mitochondria in which electrophoretic K+ influx was balanced by electroneutral K+ efflux. These steady states were appropriately shifted in opposite directions by additions of nigericin or valinomycin. In contrast, addition of A23187 had no effect. It is concluded that A23187 is incapable of transporting K+ in rat liver mitochondria. 4. These results are consistent with a model in which free matrix Mg2+ acts as a K/H carrier "brake." The proposed role of this carrier-brake mechanism is to provide volume homeostasis with minimal energy expenditure. According to this model, both citrate and A23187 stimulate K/H exchange by reducing Mg2+ activity within the matrix. Citrate acts by complexation of Mg2+, while A23187 acts by transporting Mg2+ out of the matrix.

  16. Comparison of three methods for mitochondria isolation from the human liver cell line (HepG2)

    PubMed Central

    Azimzadeh, Pedram; Asadzadeh Aghdaei, Hamid; Tarban, Peyman; Akhondi, Mohammad Mahdi; Shirazi, Abolfazl; Khorram Khorshid, Hamid Reza

    2016-01-01

    Aim: The aim of this study was to evaluate and compare three available methods for mitochondrial isolation from a human cell line to predict the best method for each probable application. Background: Organelle isolation is gaining importance in experimental laboratory settings. Mitochondrial dysfunction may affect tumorgenesis process. There are some evidences that transplantation of healthy, intact and active mitochondria into cells containing defective mitochondria may reduce the proliferation. Therefore, isolated mitochondria could be considered as an effective tool for assessment and management of mitochondrial related disorders. Patients and methods: Mitochondrial isolation from the human liver cell line (HepG2) was performed using two commercially available kits, including Qproteome (Qiagen) and MITOISO2 (Sigma-Aldrich), as well as a manual method. Integrity of inner membrane of mitochondria was assessed by JC-1 staining. Activity of isolated mitochondria was evaluated by DCFH-DA staining, and total yield of isolated mitochondria determined by micro-Lowry method. Finally, relative quantification using Real-time PCR was conducted to compare the mtDNA copy number of mitochondria isolated by three different methods. Results: Compared to other methods, manual kit resulted in higher yields of total amount of mitochondrial protein and mtDNA copy numbers. Isolated mitochondria by Qproteome kit, showed a higher activity. Finally, the integrity of inner-membrane of isolated mitochondria was significantly higher in Qproteome when compared with the other two methods. Conclusion: Due to differences in quality, quantity and activity of isolated mitochondria using three techniques discussed here, the method in which best-suited to each research project should be selected according to the distinct features of isolated mitochondria. PMID:27099670

  17. Allosteric properties of phosphate-activated glutaminase of human liver mitochondria.

    PubMed

    Snodgrass, P J; Lund, P

    1984-03-22

    The kinetics of human liver phosphate-activated glutaminase were studied in mitochondria isolated from surgical biopsies. The pH profile and activation by phosphate closely resembled rat liver glutaminase and differed clearly from human or rat kidney mitochondrial glutaminases. The activity responses to glutamine or phosphate were allosteric, showing positive cooperativity, as in the rat liver enzyme. Exogenous 1 mM NH4Cl shifted the glutamine concentration at half-maximal velocity, [Gln]0.5, to lower values without changing Vmax or sigmoidicity. Hill plots showed a parallel shift to the left with NH4Cl and the apparent number of binding sites, nH, was 2-3. 25 mM KHCO3 gave the same effects as NH4Cl on [Gln]0.5, Vmax, sigmoidicity and nH. The combination of the two activators was less than additive. Glutamate did not inhibit. We postulate that liver glutaminase is allosteric in its kinetics because it plays a key role in urea synthesis by regulating provision of glutamate for synthesis of N-acetylglutamate, the obligatory co-factor of carbamoylphosphate synthetase. PMID:6704422

  18. Brain aging and mitochondria-targeted plastoquinone antioxidants of SkQ-type.

    PubMed

    Isaev, N K; Stelmashook, E V; Stelmashook, N N; Sharonova, I N; Skrebitsky, V G

    2013-03-01

    Normal brain aging leads to decrease in cognitive functions, shrink in brain volume, loss of nerve fibers and degenerating myelin, reduction in length and branching of dendrites, partial loss of synapses, and reduction in expression of genes that play central roles in synaptic plasticity, vesicular transport, and mitochondrial functioning. Impaired mitochondrial functions and mitochondrial reactive oxygen species can contribute to the damage of these genes in aging cerebral cortex. This review discusses the possibility of using mitochondria-targeted antioxidants to slow the processes of brain aging. PMID:23586724

  19. Demethyleneberberine, a natural mitochondria-targeted antioxidant, inhibits mitochondrial dysfunction, oxidative stress, and steatosis in alcoholic liver disease mouse model.

    PubMed

    Zhang, Pengcheng; Qiang, Xiaoyan; Zhang, Miao; Ma, Dongshen; Zhao, Zheng; Zhou, Cuisong; Liu, Xie; Li, Ruiyan; Chen, Huan; Zhang, Yubin

    2015-01-01

    Excessive alcohol consumption induces oxidative stress and lipid accumulation in the liver. Mitochondria have long been recognized as the key target for alcoholic liver disease (ALD). Recently, the artificial mitochondria-targeted antioxidant MitoQ has been used to treat ALD effectively in mice. Here, we introduce the natural mitochondria-targeted antioxidant demethyleneberberine (DMB), which has been found in Chinese herb Cortex Phellodendri chinensis. The protective effect of DMB on ALD was evaluated with HepG2 cells and acutely/chronically ethanol-fed mice, mimicking two common patterns of drinking in human. The results showed that DMB, which is composed of a potential antioxidant structure, could penetrate the membrane of mitochondria and accumulate in mitochondria either in vitro or in vivo. Consequently, the acute drinking-caused oxidative stress and mitochondrial dysfunction were significantly ameliorated by DMB. Moreover, we also found that DMB suppressed CYP2E1, hypoxia inducible factor α, and inducible nitric oxide synthase, which contributed to oxidative stress and restored sirtuin 1/AMP-activated protein kinase/peroxisome proliferator-activated receptor-γ coactivator-1α pathway-associated fatty acid oxidation in chronic ethanol-fed mice, which in turn ameliorated lipid peroxidation and macrosteatosis in the liver. Taking these findings together, DMB could serve as a novel and potential therapy for ALD in human beings.

  20. Ca(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's disease.

    PubMed

    Pellman, Jessica J; Hamilton, James; Brustovetsky, Tatiana; Brustovetsky, Nickolay

    2015-08-01

    We investigated Ca(2+) handling in isolated brain synaptic and non-synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non-synaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca(2+) uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca(2+) capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca(2+) uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen because of mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca(2+) followed by recovery to near resting levels. Following recovery of cytosolic Ca(2+), mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca(2+), suggesting similar Ca(2+) release and, consequently, Ca(2+) loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca(2+) handling in brain mitochondria of YAC128 mice. We demonstrate that mutant huntingtin (mHtt) binds to brain synaptic and nonsynaptic mitochondria and the amount of mitochondria-bound mHtt correlates with increased mitochondrial Ca(2+) uptake capacity. We propose that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage.

  1. Protein targets for carbonylation by 4-hydroxy-2-nonenal in rat liver mitochondria

    PubMed Central

    Guo, Jia; Prokai-Tatrai, Katalin; Ngyuen, Vien; Rauniyar, Navin; Ughy, Bettina; Prokai, Laszlo

    2011-01-01

    Protein carbonylation has been associated with various pathophysiological processes. A representative reactive carbonyl species (RCS), 4-hydroxy-2-nonenal (HNE), has been implicated specifically as a causative factor for the initiation and/or progression of various diseases. To date, however, little is known about the proteins and their modification sites susceptible to “carbonyl stress” by this RCS, especially in the liver. Using chemoprecipitation based on a solid phase hydrazine chemistry coupled with LC-MS/MS bottom-up approach and database searching, we identified several protein-HNE adducts in isolated rat liver mitochondria upon HNE exposure. The identification of selected major protein targets, such as the ATP synthase β-subunit, was further confirmed by immunoblotting and a gel-based approach in combination with LC–MS/MS. A network was also created based on the identified protein targets that showed that the main protein interactions were associated with cell death, tumor morphology and drug metabolism, implicating the toxic nature of HNE in the liver mitoproteome. The functional consequence of carbonylation was illustrated by its detrimental impact on the activity of ATP synthase, a representative major mitochondrial protein target for HNE modifications. PMID:21801862

  2. Proteomic analysis of liver mitochondria of apolipoprotein E knockout mice treated with metformin.

    PubMed

    Stachowicz, Aneta; Suski, Maciej; Olszanecki, Rafał; Madej, Józef; Okoń, Krzysztof; Korbut, Ryszard

    2012-12-21

    Nonalcoholic fatty liver disease (NAFLD) is strongly associated with insulin resistance. Metformin, a widely known anti-diabetic drug, used for patients with type 2 diabetes mellitus, is also claimed to be useful in treatment of NAFLD. However, both the clinical efficacy and the putative mechanisms underlying the clinical effects of metformin in treating NAFLD are unclear. Adenosine monophosphate-activated protein kinase (AMPK), the primary molecular target for metformin, is a known regulator of mitochondrial function. Thus, we used a proteomic approach to investigate the effect of metformin on liver mitochondria of apolipoprotein E knockout (apoE(-/-)) mice, an animal model of NAFLD. Two-dimensional electrophoresis coupled with mass spectrometry was applied to study the changes in liver mitochondrial protein expression in 6-month old metformin-treated apoE(-/-) mice as compared to non-treated animals. Collectively, 25 differentially expressed proteins were indentified upon metformin treatment including proteins related to metabolism, oxidative stress and cellular respiration. The most up-regulated protein was glycine N-methyltransferase (GNMT) - an enzyme, whose deficiency was shown to be directly related to the development of NAFLD. Our results clearly point to the strong mitochondrial action of metformin in NAFLD. Up-regulation of GNMT may represent an important mechanism of beneficial action of metformin in NAFLD treatment.

  3. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties.

    PubMed

    Drahota, Z; Palenickova, E; Endlicher, R; Milerova, M; Brejchova, J; Vosahlikova, M; Svoboda, P; Kazdova, L; Kalous, M; Cervinkova, Z; Cahova, M

    2014-01-01

    In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.

  4. IN VITRO STUDIES OF P32 UPTAKE IN MOUSE LIVER MITOCHONDRIA

    PubMed Central

    Edmunds, Arthur B.

    1959-01-01

    Isolated mouse liver mitochondria were incubated in two types of P32-labelled sucrose-phosphate buffers. The first contained no added ATP or oxidizable substrate. The second contained added ATP. Samples were taken at specified times, up to 60 minutes, and analyses were made of the mitochondrial TCA-soluble inorganic P32 and the total mitochondrial residue P31 and P32. The results of the analyses showed that when the phosphorus inhibition index (the ratio of the amount of incubation inorganic phosphorus to the square of the amount of tyrosine in the mitochondria) was high, inorganic P32 uptake was low and vice versa. In accordance with established data, increased P32 uptake was obtained when ATP was added. ATP was found to stabilize the turnover of TCA-insoluble residue phosphorus as well as to maintain the TCA-soluble orthophosphate pool. These results support findings regarding the inhibitory and controlling effects of incubation medium phosphate in the regulation of inorganic phosphorus uptake. PMID:13620888

  5. Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening.

    PubMed

    Eskandari, M R; Mashayekhi, Vida; Aslani, Majid; Hosseini, Mir-Jamal

    2015-02-01

    Thallium(I) is a highly toxic heavy metal; however, up to now, its mechanisms are poorly understood. The authors' previous studies showed that this compound could induce reactive oxygen species (ROS) formation, reduced glutathione (GSH) oxidation, membrane lipid peroxidation, and mitochondrial membrane potential (MMP) collapse in isolated rat hepatocyte. Because the liver is the storage site of thallium, it seems that the liver mitochondria are one of the important targets for hepatotoxicity. In this investigation, the effects of thallium on mitochondria were studied to investigate its mechanisms of toxicity. Mitochondria were isolated from rat liver and incubated with different concentrations of thallium (25-200 µM). Thallium(I)-treated mitochondria showed a marked elevation in oxidative stress parameters accompanied by MMP collapse when compared with the control group. These results showed that different concentrations of thallium (25-200 µM) induced a significant (P < 0.05) increase in mitochondrial ROS formation, ATP depletion, GSH oxidation, mitochondrial outer membrane rupture, mitochondrial swelling, MMP collapse, and cytochrome c release. In general, these data strongly supported that the thallium(I)-induced liver toxicity is a result of the disruptive effect of this metal on the mitochondrial respiratory complexes (I, II, and IV), which are the obvious causes of metal-induced ROS formation and ATP depletion. The latter two events, in turn, trigger cell death signaling via opening of mitochondrial permeability transition pore and cytochrome c expulsion.

  6. [Effect of cold and cool herbs on liver mitochondria proteome of rats with heat symptom].

    PubMed

    Li, Yi; Lu, De-Zhao; Tang, Li-Hua; Wo, Xing-De; Yang, Zhen

    2013-12-01

    In the 1960s, modern science began involving the essence of heat syndrome, but there have still no in-depth systematic studies on pathological mechanisms of heat syndrome and action mechanisms of cold and cool herbs. In this study, the animal model with heat syndrome was set up by feeding herbs with hot property, and then cold and cool herbs was applied in the experimental therapy. The two-dimensional electrophoresis and mass spectrometry technologies were adopted to compare the liver mitochondria proteome of the rats of the heat syndrome model and the ones treated with cold and cool herbs, so as to discover specificity-related proteins after heat syndrome and treatment with cold and cool herbs.

  7. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats

    PubMed Central

    Kim, Junhwan; Perales Villarroel, José Paul; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W.; Becker, Lance B.

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest. PMID:26770657

  8. The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats.

    PubMed

    Kim, Junhwan; Villarroel, José Paul Perales; Zhang, Wei; Yin, Tai; Shinozaki, Koichiro; Hong, Angela; Lampe, Joshua W; Becker, Lance B

    2016-01-01

    Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.

  9. Refsum disease diagnostic marker phytanic acid alters the physical state of membrane proteins of liver mitochondria.

    PubMed

    Schönfeld, P; Struy, H

    1999-08-27

    Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid), a branched chain fatty acid accumulating in Refsum disease to high levels throughout the body, induces uncoupling of rat liver mitochondria similar to non-branched fatty acids (e.g. palmitic acid), but the contribution of the ADP/ATP carrier or the aspartate/glutamate carrier in phytanic acid-induced uncoupling is of minor importance. Possible deleterious effects of phytanic acid on membrane-linked energy coupling processes were studied by ESR spectroscopy using rat liver mitochondria and a membrane preparation labeled with the lipid-specific spin probe 5-doxylstearic acid (5-DSA) or the protein-specific spin probe MAL-TEMPO (4-maleimido-2,2,6, 6-tetramethyl-piperidine-1-oxyl). The effects of phytanic acid on phospholipid molecular dynamics and on the physical state of membrane proteins were quantified by estimation of the order parameter or the ratio of the amplitudes of the weakly to strongly immobilized MAL-TEMPO binding sites (W/S ratio), respectively. It was found, that phytanic acid (1) increased the mobility of phospholipid molecules (indicated by a decrease in the order parameter) and (2) altered the conformational state and/or the segmental mobility of membrane proteins (indicated by a drastic decrease in the W/S ratio). Unsaturated fatty acids with multiple cis-double bonds (e.g. linolenic or arachidonic acid), but not non-branched FFA (ranging from chain length C10:0 to C18:0), also decrease the W/S ratio. It is hypothesized that the interaction of phytanic acid with transmembrane proteins might stimulate the proton permeability through the mitochondrial inner membrane according to a mechanism, different to a protein-supported fatty acid cycling.

  10. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Castilho, Roger Frigério; Wajner, Moacir

    2016-04-01

    Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which

  11. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; Castilho, Roger Frigério; Wajner, Moacir

    2016-04-01

    Accumulation of 2-methylcitric acid (2MCA) is observed in methylmalonic and propionic acidemias, which are clinically characterized by severe neurological symptoms. The exact pathogenetic mechanisms of brain abnormalities in these diseases are poorly established and very little has been reported on the role of 2MCA. In the present work we found that 2MCA markedly inhibited ADP-stimulated and uncoupled respiration in mitochondria supported by glutamate, with a less significant inhibition in pyruvate plus malate respiring mitochondria. However, no alterations occurred when α-ketoglutarate or succinate was used as respiratory substrates, suggesting a defect on glutamate oxidative metabolism. It was also observed that 2MCA decreased ATP formation in glutamate plus malate or pyruvate plus malate-supported mitochondria. Furthermore, 2MCA inhibited glutamate dehydrogenase activity at concentrations as low as 0.5 mM. Kinetic studies revealed that this inhibitory effect was competitive in relation to glutamate. In contrast, assays of osmotic swelling in non-respiring mitochondria suggested that 2MCA did not significantly impair mitochondrial glutamate transport. Finally, 2MCA provoked a significant decrease in mitochondrial membrane potential and induced swelling in Ca(2+)-loaded mitochondria supported by different substrates. These effects were totally prevented by cyclosporine A plus ADP or ruthenium red, indicating induction of mitochondrial permeability transition. Taken together, our data strongly indicate that 2MCA behaves as a potent inhibitor of glutamate oxidation by inhibiting glutamate dehydrogenase activity and as a permeability transition inducer, disturbing mitochondrial energy homeostasis. We presume that 2MCA-induced mitochondrial deleterious effects may contribute to the pathogenesis of brain damage in patients affected by methylmalonic and propionic acidemias. We propose that brain glutamate oxidation is disturbed by 2-methylcitric acid (2MCA), which

  12. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice.

    PubMed

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  13. The mitochondria-targeted antioxidant MitoQ attenuates liver fibrosis in mice

    PubMed Central

    Rehman, Hasibur; Liu, Qinlong; Krishnasamy, Yasodha; Shi, Zengdun; Ramshesh, Venkat K; Haque, Khujista; Schnellmann, Rick G; Murphy, Michael P; Lemasters, John J; Rockey, Don C; Zhong, Zhi

    2016-01-01

    Oxidative stress plays an essential role in liver fibrosis. This study investigated whether MitoQ, an orally active mitochondrial antioxidant, decreases liver fibrosis. Mice were injected with corn oil or carbon tetrachloride (CCl4, 1:3 dilution in corn oil; 1 µl/g, ip) once every 3 days for up to 6 weeks. 4-Hydroxynonenal adducts increased markedly after CCl4 treatment, indicating oxidative stress. MitoQ attenuated oxidative stress after CCl4. Collagen 1α1 mRNA and hydroxyproline increased markedly after CCl4 treatment, indicating increased collagen formation and deposition. CCl4 caused overt pericentral fibrosis as revealed by both the sirius red staining and second harmonic generation microscopy. MitoQ blunted fibrosis after CCl4. Profibrotic transforming growth factor-β1 (TGF-β1) mRNA and expression of smooth muscle α-actin, an indicator of hepatic stellate cell (HSC) activation, increased markedly after CCl4 treatment. Smad 2/3, the major mediator of TGF-β fibrogenic effects, was also activated after CCl4 treatment. MitoQ blunted HSC activation, TGF-β expression, and Smad2/3 activation after CCl4 treatment. MitoQ also decreased necrosis, apoptosis and inflammation after CCl4 treatment. In cultured HSCs, MitoQ decreased oxidative stress, inhibited HSC activation, TGF-β1 expression, Smad2/3 activation, and extracellular signal-regulated protein kinase activation. Taken together, these data indicate that mitochondrial reactive oxygen species play an important role in liver fibrosis and that mitochondria-targeted antioxidants are promising potential therapies for prevention and treatment of liver fibrosis. PMID:27186319

  14. Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs.

    PubMed

    Roussel, Damien; Salin, Karine; Dumet, Adeline; Romestaing, Caroline; Rey, Benjamin; Voituron, Yann

    2015-10-01

    Body size is a central biological parameter affecting most biological processes (especially energetics) and the mitochondrion is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frog (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen because of their differences in adult body mass. We found that mitochondrial coupling efficiency was markedly increased with animal size, which led to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared with the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher reactive oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower levels of radical oxygen species than those from the smaller frogs. Collectively, the data show that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms.

  15. Effect of potential-dependent potassium uptake on calcium accumulation in rat brain mitochondria.

    PubMed

    Akopova, O V; Kolchinskaya, L I; Nosar, V I; Bouryi, V A; Mankovskaya, I N; Sagach, V F

    2013-01-01

    The effect of potential-dependent potassium uptake at 0-120 mM K+ on matrix Ca2+ accumulation in rat brain mitochondria was studied. An increase in oxygen consumption and proton extrusion rates as well as increase in matrix pH with increase in K+ content in the medium was observed due to K+ uptake into the mitochondria. The accumulation of Ca2+ was shown to depend on K+ concentration in the medium. At K+ concentration ≤30 mM, Ca2+ uptake is decreased due to K+-induced membrane depolarization, whereas at higher K+ concentrations, up to 120 mM K+, Ca2+ uptake is increased in spite of membrane depolarization caused by matrix alkalization due to K+ uptake. Mitochondrial K+(ATP)-channel blockers (glibenclamide and 5-hydroxydecanoic acid) diminish K+ uptake as well as K+-induced depolarization and matrix alkalization, which results in attenuation of the potassium-induced effects on matrix Ca2+ uptake, i.e. increase in Ca2+ uptake at low K+ content in the medium due to the smaller membrane depolarization and decrease in Ca2+ uptake at high potassium concentrations because of restricted rise in matrix pH. The results show the importance of potential-dependent potassium uptake, and especially the K+(ATP) channel, in the regulation of calcium accumulation in rat brain mitochondria.

  16. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain.

    PubMed

    Hamberger, A; Blomstrand, C; Lehninger, A L

    1970-05-01

    Fractions enriched in neuronal and glial cells were obtained from dispersions of whole beef brain and rabbit cerebral cortex by large-scale density gradient centrifugation procedures. The fractions were characterized by appropriate microscopic observation. Mitochondria were then isolated from these fractions by differential centrifugation of their homogenates. The two different types of mitochondria were characterized with respect to certain enzyme activities, respiratory rate, rate of protein synthesis, and their buoyant density in sucrose gradients. The mitochondria from the neuron-enriched fraction were distinguished by a higher rate of incorporation of amino acids into protein, higher cytochrome oxidase activity, and a higher buoyant density in sucrose density gradients. Mitochondria from the glia-enriched fraction showed relatively high monoamine oxidase and Na(+)- and K(+)-stimulated ATPase activities. The rates of oxidation of various substrates and the acceptor control ratios did not differ appreciably between the two types of mitochondria. The difference in the buoyant density of mitochondria isolated from the neuron-enriched and glia-enriched cell fractions was utilized in attempts to separate neuronal and glial mitochondria from the mixed mitochondria obtained from whole brain homogenates in shallow sucrose gradients. The appearance of two peaks of cytochrome oxidase, monoamine oxidase, and protein concentration in such gradients shows the potential feasibility of such an approach.

  17. Complex I Function and Supercomplex Formation Are Preserved in Liver Mitochondria Despite Progressive Complex III Deficiency

    PubMed Central

    Davoudi, Mina; Kotarsky, Heike; Hansson, Eva; Fellman, Vineta

    2014-01-01

    Functional oxidative phosphorylation requires appropriately assembled mitochondrial respiratory complexes and their supercomplexes formed mainly of complexes I, III and IV. BCS1L is the chaperone needed to incorporate the catalytic subunit, Rieske iron-sulfur protein, into complex III at the final stage of its assembly. In cell culture studies, this subunit has been considered necessary for supercomplex formation and for maintaining the stability of complex I. Our aim was to assess the importance of fully assembled complex III for supercomplex formation in intact liver tissue. We used our transgenic mouse model with a homozygous c.232A>G mutation in Bcs1l leading to decreased expression of BCS1L and progressive decrease of Rieske iron-sulfur protein in complex III, resulting in hepatopathy. We studied supercomplex formation at different ages using blue native gel electrophoresis and complex activity using high-resolution respirometry. In isolated liver mitochondria of young and healthy homozygous mutant mice, we found similar supercomplexes as in wild type. In homozygotes aged 27–29 days with liver disorder, complex III was predominantly a pre-complex lacking Rieske iron-sulfur protein. However, the main supercomplex was clearly detected and contained complex III mainly in the pre-complex form. Oxygen consumption of complex IV was similar and that of complex I was twofold compared with controls. These complexes in free form were more abundant in homozygotes than in controls, and the mRNA of complex I subunits were upregulated. In conclusion, when complex III assembly is deficient, the pre-complex without Rieske iron-sulfur protein can participate with available fully assembled complex III in supercomplex formation, complex I function is preserved, and respiratory chain stability is maintained. PMID:24466228

  18. Acetaldehyde metabolism by brain mitochondria from UChA and UChB rats.

    PubMed

    Quintanilla, M E; Tampier, L

    1995-01-01

    The acetaldehyde (AcH) oxidizing capacity of total brain homogenates from the genetically high-ethanol consumer (UChB) appeared to be greater than that of the low-ethanol consumer (UChA) rats. To gain further information about this strain difference, the activity of aldehyde dehydrogenase (AIDH) in different subcellular fractions of whole brain homogenates from naive UChA and UChB rat strains of both sexes has been studied by measuring the rate of AcH disappearance and by following the reduction of NAD to NADH. The results demonstrated that the higher capacity of brain homogenates from UChB rats to oxidize AcH when compared to UChA ones was because the UChB mitochondrial low Km AIDH exhibits a much greater affinity for NAD than that of the UChA rats, as evidenced by four-to fivefold differences in the Km values for NAD. But the dehydrogenases from both strains exhibited a similar maximum rate at saturating NAD concentrations. Because intact brain mitochondria isolated from UChB rats oxidized AcH at a higher rate than did mitochondria from UChA rats only in state 4, but not in state 3, this strain difference in AIDH activity might be restricted in vivo to NAD disposition.

  19. Dietary L-methionine restriction decreases oxidative stress in porcine liver mitochondria.

    PubMed

    Ying, Yang; Yun, Ji; Guoyao, Wu; Kaiji, Sun; Zhaolai, Dai; Zhenlong, Wu

    2015-05-01

    Dietary methionine restriction (MetR) has been reported to improve hepatocyte function in mammals. However, the underlying mechanisms remain largely unknown. This study was conducted with a swine model to test the hypothesis that MetR decreases generation of reactive oxygen species (ROS) and attenuates oxidative damage in hepatic mitochondria. Twenty-four 35-day old pigs were fed a control diet or a Met-restricted diet for two weeks. Liver mitochondria were isolated to determine: 8-oxodG in mitochondrial DNA, oxidative-derived proteins markers, including glutamic semialdehyde (GSA), aminoadipic semialdehydes (AASA), carboxyethyl-lysine (CEL), carboxymethyl-lysine (CML), and malondialdehyde lysine (MDAL), mitochondrial H2O2 generation rate; rates of oxygen consumption; free radical leak (FRL); anti-oxidative capacity, electron transport complex activity; and protein abundances of respiratory chain complex subunits (NDUFA9, SDHA, Core 2, and Cox 1), manganese superoxide dismutase (MnSOD), and apoptosis-inducing factor (AIF). Compared with the control, MetR decreased mitochondrial 8-oxodG content, H2O2 generation, FRL (P<0.05), and increased rates of oxygen consumption. Abundances of markers for protein oxidative damage, including GSA, AASA, CEL, and CML, were decreased (P<0.05) by 40%, 30%, 32%, and 28%, respectively, compared with the control. Western blot analysis revealed that MetR decreased (P<0.05) the protein abundances of complex subunits, NDUFA9 and AIF without affecting expression of SDHA, Core 2, Cox 1 or MnSOD. The complex I activity (P<0.05) were lowered in MetR group as compared with that of control. Collectively, our findings indicate that dietary MetR decreases mitochondrial ROS generation primarily via inhibiting complex I activity and ROS generation rather than augmenting anti-oxidative capacity, thereby ameliorating oxidative damage to hepatic mitochondrial DNA and proteins.

  20. Hemin inhibits the large conductance potassium channel in brain mitochondria: a putative novel mechanism of neurodegeneration.

    PubMed

    Augustynek, Bartłomiej; Kudin, Alexei P; Bednarczyk, Piotr; Szewczyk, Adam; Kunz, Wolfram S

    2014-07-01

    Intracerebral hemorrhage (ICH) is a pathological condition that accompanies certain neurological diseases like hemorrhagic stroke or brain trauma. Its effects are severely destructive to the brain and can be fatal. There is an entire spectrum of harmful factors which are associated with the pathogenesis of ICH. One of them is a massive release of hemin from the decomposed erythrocytes. It has been previously shown, that hemin can inhibit the large-conductance Ca(2+)-regulated potassium channel in the plasma membrane. However, it remained unclear whether this phenomenon applies also to the mitochondrial large-conductance Ca(2+)-regulated potassium channel. The aim of the present study was to determine the impact of hemin on the activity of the large conductance Ca(2+)-regulated potassium channel in the brain mitochondria (mitoBKCa). In order to do so, we have used a patch-clamp technique and shown that hemin inhibits mitoBKCa in human astrocytoma U-87 MG cell line mitochondria. Since opening of the mitochondrial potassium channels is known to be cytoprotective, we have elucidated whether hemin can attenuate some of the beneficiary effects of potassium channel opening. We have studied the effect of hemin on reactive oxygen species synthesis, and mild mitochondrial uncoupling in isolated rat brain mitochondria. Taken together, our data show that hemin inhibits mitoBKCa and partially abolishes some of the cytoprotective properties of potassium channel opening. Considering the role of the mitoBKCa in cytoprotection, it can be presumed that its inhibition by hemin may be a novel mechanism contributing to the severity of the ICH symptoms. However, the validity of the presented results shall be further verified in an experimental model of ICH.

  1. [Activity of NAD.H-generating enzymes and cytochrome content in mitochondria from rat liver and myocardium under artificial hypobiosis].

    PubMed

    Mel'nychuk, S D; Khyzhniak, S V; Morozova, V S; Voĭtsits'kyĭ, V M

    2013-01-01

    The modification particularities of the structural and functional state of the inner mitochondrial membrane of the rat liver and myocardium were observed in conditions of artificial hypobiosis, which was created using hypoxic and hypercapnic gas medium with a body temperature reduction. Under the artificial hypobiosis the activity of NAD.H-generating enzymes of the Krebs cycle of the liver mitochondria decreases. The established changes of the enzymes activity and cytochromes content of the inner mitochondrial membrane indicate the decrease of the oxidative activity of a respiratory chain, that can be limited on a terminal (cytochrome c oxidase) site and leads to the decrease (by 49% at an average) of the H+-ATPase activity of the liver mitochondria. Under the artificial hypobiosis the detected increase of the succinate-KoQ-oxidoreductase activity (by 65% at average) causes the maintaining of the functional activity of a mitochondrial respiratory chain, considering the high (relative to control) cytochrome c oxidase and H+-ATPase activities of the mitochondria of the rats' myocardium. The structural changes of the inner mitochondrial membrane of the liver and myocardium in experimental conditions are accompanied by the increase of hydrophobicity of tryptophan residues microenvironment and the intramolecular modifications of protein molecules.

  2. Prediction of Liver Injury Induced by Chemicals in Human With a Multiparametric Assay on Isolated Mouse Liver Mitochondria

    PubMed Central

    Porceddu, Mathieu; Buron, Nelly; Borgne-Sanchez, Annie

    2012-01-01

    Drug-induced liver injury (DILI) in humans is difficult to predict using classical in vitro cytotoxicity screening and regulatory animal studies. This explains why numerous compounds are stopped during clinical trials or withdrawn from the market due to hepatotoxicity. Thus, it is important to improve early prediction of DILI in human. In this study, we hypothesized that this goal could be achieved by investigating drug-induced mitochondrial dysfunction as this toxic effect is a major mechanism of DILI. To this end, we developed a high-throughput screening platform using isolated mouse liver mitochondria. Our broad spectrum multiparametric assay was designed to detect the global mitochondrial membrane permeabilization (swelling), inner membrane permeabilization (transmembrane potential), outer membrane permeabilization (cytochrome c release), and alteration of mitochondrial respiration driven by succinate or malate/glutamate. A pool of 124 chemicals (mainly drugs) was selected, including 87 with documented DILI and 37 without reported clinical hepatotoxicity. Our screening assay revealed an excellent sensitivity for clinical outcome of DILI (94 or 92% depending on cutoff) and a high positive predictive value (89 or 82%). A highly significant relationship between drug-induced mitochondrial toxicity and DILI occurrence in patients was calculated (p < 0.001). Moreover, this multiparametric assay allowed identifying several compounds for which mitochondrial toxicity had never been described before and even helped to clarify mechanisms with some drugs already known to be mitochondriotoxic. Investigation of drug-induced loss of mitochondrial integrity and function with this multiparametric assay should be considered for integration into basic screening processes at early stage to select drug candidates with lower risk of DILI in human. This assay is also a valuable tool for assessing the mitochondrial toxicity profile and investigating the mechanism of action of new

  3. On the Mechanism(s) of Membrane Permeability Transition in Liver Mitochondria of Lamprey, Lampetra fluviatilis L.: Insights from Cadmium

    PubMed Central

    Belyaeva, Elena A.; Emelyanova, Larisa V.; Korotkov, Sergey M.; Brailovskaya, Irina V.; Savina, Margarita V.

    2014-01-01

    Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L.) during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring). To further elucidate the mechanism(s) of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd2+ and Ca2+ plus Pi as the pore inducers. We found that Ca2+ plus Pi induced the high-amplitude swelling of the isolated “winter” mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd2+ did not produce the mitochondrial swelling in these media. Low Cd2+ enhanced the inhibition of basal respiration rate of the “winter” mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd2+ or Ca2+ plus Pi in the “winter” mitochondria were only weakly (if so) sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore) added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent). Under monitoring of the transmembrane potential of the “spring” lamprey liver mitochondria, we revealed that Cd2+ produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed. PMID:24995321

  4. On the mechanism(s) of membrane permeability transition in liver mitochondria of lamprey, Lampetra fluviatilis L.: insights from cadmium.

    PubMed

    Belyaeva, Elena A; Emelyanova, Larisa V; Korotkov, Sergey M; Brailovskaya, Irina V; Savina, Margarita V

    2014-01-01

    Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L.) during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring). To further elucidate the mechanism(s) of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd(2+) and Ca(2+) plus Pi as the pore inducers. We found that Ca(2+) plus Pi induced the high-amplitude swelling of the isolated "winter" mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd(2+) did not produce the mitochondrial swelling in these media. Low Cd(2+) enhanced the inhibition of basal respiration rate of the "winter" mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd(2+) or Ca(2+) plus Pi in the "winter" mitochondria were only weakly (if so) sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore) added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent). Under monitoring of the transmembrane potential of the "spring" lamprey liver mitochondria, we revealed that Cd(2+) produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed.

  5. THE LARGE-SCALE SEPARATION OF PEROXISOMES, MITOCHONDRIA, AND LYSOSOMES FROM THE LIVERS OF RATS INJECTED WITH TRITON WR-1339

    PubMed Central

    Leighton, Federico; Poole, Brian; Beaufay, Henri; Baudhuin, Pierre; Coffey, John W.; Fowler, Stanley; De Duve, Christian

    1968-01-01

    Improved, largely automated methods are described for the purification and analysis o peroxisomes, lysosomes, and mitochondria from the livers of rats injected with Triton WR-1339. With these new methods, it has become possible to obtain, in less than 6 hr and with reliable reproducibility, mitochondria practically free of contaminants, as well as the rarer cytoplasmic particles in amounts (about 100 mg of protein) and in a state of purity (95%) that make them suitable for detailed biochemical studies. The results obtained so far on these preparations have made more conclusive and precise previous estimates of the biochemical and morphological properties of the three groups of cytoplasmic particles. In addition, peroxisomes were found to contain essentially all the L-α-hydroxy acid oxidase of the liver, as well as a small, but significant fraction of its NADP-linked isocitrate dehydrogenase activity. Another small fraction of the latter enzyme is present in the mitochondria, the remainder being associated with the cell sap. The mitochondrial localization of the metabolically active cytoplasmic DNA could be verified. The relative content of the fractions in mitochondria, whole peroxisomes, peroxisome cores, lysosomes, and endoplasmic reticulum was estimated independently by direct measurements on electron micrographs, and by linear programming (based on the assumption that the particles are biochemically homogeneous) of the results of enzyme assays. The two types of estimates agreed very well, except for one fraction in which low cytochrome oxidase activity was associated with mitochondrial damage. PMID:4297786

  6. Entry and exit pathways of CO2 in rat liver mitochondria respiring in a bicarbonate buffer system.

    PubMed

    Balboni, E; Lehninger, A L

    1986-03-15

    The dynamics and pathways of CO2 movements across the membranes of mitochondria respiring in vitro in a CO2/HCO-3 buffer at concentrations close to that in intact rat tissues were continuously monitored with a gas-permeable CO2-sensitive electrode. O2 uptake and pH changes were monitored simultaneously. Factors affecting CO2 entry were examined under conditions in which CO2 uptake was coupled to electrophoretic influx of K+ (in the presence of valinomycin) or Ca2+. The role of mitochondrial carbonic anhydrase (EC 4.2.1.1) in CO2 entry was evaluated by comparison of CO2 uptake by rat liver mitochondria, which possess carbonic anhydrase, versus rat heart mitochondria, which lack carbonic anhydrase. Such studies showed that matrix carbonic anhydrase activity is essential for rapid net uptake of CO2 with K+ or Ca2+. Studies with acetazolamide (Diamox), a potent inhibitor of carbonic anhydrase, confirmed the requirement of matrix carbonic anhydrase for net CO2 uptake. It was shown that at pH 7.2 the major species leaving respiring mitochondria is dissolved CO2, rather than HCO-3 or H2CO3 suggested by earlier reports. Efflux of endogenous CO2/HCO-3 is significantly inhibited by inhibitors of the dicarboxylate and tricarboxylate transport systems of the rat liver inner membrane. The possibility that these anion carriers mediate outward transport of HCO-3 is discussed.

  7. Ultrastructural mitochondria changes in perihematomal brain and neuroprotective effects of Huperzine A after acute intracerebral hemorrhage

    PubMed Central

    Lu, Haiying; Jiang, Mei; Lu, Lei; Zheng, Guo; Dong, Qiang

    2015-01-01

    Aim The purpose of the study was to observe the ultrastructural changes of neuronal mitochondria in perihematomal brain tissue and assess the therapeutic potential of Huperzine A (HA, a mitochondrial protector) following intracerebral hemorrhage (ICH). Methods Brain hemorrhage was induced in adult Sprague Dawley rats by injecting autologous blood into the striatum and then removing the brains 3, 6, 12, 24, or 48 hours later to analyze mitochondrial ultrastructure in a blinded manner. Parallel groups of ICH rats were treated with HA or saline immediately after ICH. Perihematomal apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), caspase-3 activation and cytochrome C translocation were tracked by immunoblots, and neurobehavioral test results were compared between the groups. Results Mitochondria in perihematomal neurons demonstrated dramatic changes including mitochondrial swelling, intracristal dilation, and decreased matrix density. HA treatment decreased mitochondrial injury and apoptosis, inhibited caspase-3 activation and cytochrome C translocation, and improved behavioral recovery. Conclusion These data show that ICH induces dramatic mitochondrial damage, and HA exhibits protective effects possibly through ameliorating mitochondrial injury and apoptosis. Collectively, these findings suggest a new direction for novel therapeutics. PMID:26508860

  8. MOAP-1 Mediates Fas-Induced Apoptosis in Liver by Facilitating tBid Recruitment to Mitochondria.

    PubMed

    Tan, Chong Teik; Zhou, Qi-Ling; Su, Yu-Chin; Fu, Nai Yang; Chang, Hao-Chun; Tao, Ran N; Sukumaran, Sunil K; Baksh, Shairaz; Tan, Yee-Joo; Sabapathy, Kanaga; Yu, Chun-Dong; Yu, Victor C

    2016-06-28

    Fas apoptotic signaling regulates diverse physiological processes. Acute activation of Fas signaling triggers massive apoptosis in liver. Upon Fas receptor stimulation, the BH3-only protein Bid is cleaved into the active form, tBid. Subsequent tBid recruitment to mitochondria, which is facilitated by its receptor MTCH2 at the outer mitochondrial membrane (OMM), is a critical step for commitment to apoptosis via the effector proteins Bax or Bak. MOAP-1 is a Bax-binding protein enriched at the OMM. Here, we show that MOAP-1-deficient mice are resistant to Fas-induced hepatocellular apoptosis and lethality. In the absence of MOAP-1, mitochondrial accumulation of tBid is markedly impaired. MOAP-1 binds to MTCH2, and this interaction appears necessary for MTCH2 to engage tBid. These findings reveal a role for MOAP-1 in Fas signaling in the liver by promoting MTCH2-mediated tBid recruitment to mitochondria. PMID:27320914

  9. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibits proton motive force in energized liver mitochondria

    SciTech Connect

    Singh, Y.; Bhatnagar, R.; Sidhu, G.S.; Batra, J.K.; Krishna, G. )

    1989-05-15

    It is known that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which induces Parkinson's-like disease in primates and humans, depletes hepatocytes of ATP and subsequently causes cell death. Incubation of rat liver mitochondria with MPTP and 1-methyl-4-phenyl pyridinium ion (MPP+) significantly inhibited incorporation of {sup 32}Pi into ATP. MPTP and MPP+ inhibited the development of membrane potential and pH gradient in energized rat liver mitochondria, suggesting that reduction of the proton motive force may have reduced ATP synthesis. Since deprenyl, an inhibitor of monoamine oxidase, prevented the formation of MPP+ and inhibited the decrease in membrane potential caused by MPTP, but not that caused by MPP+, these effects of MPTP, as well as cell death, probably were mediated by MPP+. This mechanism may play a role in the specific loss of dopaminergic neurons resulting in MPTP-induced Parkinson's disease.

  10. Protein synthesis by synaptosomes from rat brain. Contribution by the intraterminal mitochondria

    PubMed Central

    Hernández, A. G.

    1974-01-01

    (1) The characteristics of protein synthesis in microsomal and synaptosomal fractions from rat brain were examined. A high sensitivity to ribonuclease and to cycloheximide, and the need for the presence of pH5 enzymes distinguished protein synthesis in microsomal fractions from protein synthesis in synaptosomes. (2) Under various conditions of incubation synaptosomal fractions prepared in sucrose showed limited protein synthesis compared with synaptosomal fractions prepared by using Ficoll. Such discrepancies could not be attributed to: (i) animal age, (ii) the metabolic state of the synaptosomal fraction, (iii) the absence of bivalent cations in the incubation medium or (iv) the temperature. (3) Protein synthesis in synaptosomal fractions was inhibited 50–65% by cycloheximide, 38–50% by chloramphenicol, 95% by puromycin, 70% by azide and 40% by deoxyglucose; ribonuclease had only a negligible inhibitory effect. (4) As a first approximation to the localization of the protein-synthetic machinery present in the synaptosomal fraction, the distribution of enzymes and radioactivity in subfractions of prelabelled synaptosomes was determined after osmotic shock with water. Approximately 60% of the total protein synthesis in the synaptosomal fraction occurred in the intraterminal mitochondria. (5) Protein synthesis in the intraterminal mitochondria did not show any fundamental difference from synthesis in somatic mitochondria, with respect to inhibition by cycloheximide and chloramphenicol. (6) It was concluded that if extramitochondrial protein synthesis occurs in synaptosomes, it must be very low. PMID:4441374

  11. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  12. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water

    PubMed Central

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury. PMID:26316710

  13. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    PubMed

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  14. Effect of cyclosporin A and trifluoperazine on rat liver mitochondria swelling and lipid peroxidation.

    PubMed

    Nepomuceno, M F; Pereira-da-Silva, L

    1993-10-01

    The effect of cyclosporin A (CsA) or trifluoperazine (TFP) on lipid peroxidation and mitochondrial swelling was determined using liver mitochondria incubated with 30 microM Ca2+ and 250 microM t-butylhydroperoxide or 5 mM inorganic phosphate (P(i)). Lipid peroxidation was not modified by either 1 microM CsA or 40 microM TFP. These compounds presented a distinct effect on mitochondrial permeability. Under oxidative conditions, CsA only showed a transient protective effect whereas TFP completely inhibited mitochondrial swelling. Conversely, CsA was very efficient when Ca2+ and P(i) were used, a condition under which TFP was unable to prevent the swelling. These data are consistent with our previous results (M.F. Nepomuceno, D.V. Macedo and L. Pereira-da-Silva (1991). Brazilian Journal of Medical and Biological Research, 24: 833-836) showing that lipid peroxidation is one among other different components of the permeabilization process. The data suggest that lipid peroxidation is independent of swelling, occurring later than swelling, presumably when the mitochondrial reductant systems are depleted. The differential effects of CsA and TFP suggest that these compounds can be used as specific probes in the elucidation of the two distinct mechanisms responsible for mitochondrial swelling.

  15. Purification and characterization of a benzene hydroxylase: A cytochrome P-450 from rat liver mitochondria

    SciTech Connect

    Karaszkiewicz, J.W.

    1989-01-01

    This laboratory previously demonstrated that incubation of ({sup 14}C)benzene with isolated mitochondria resulted in the formation of mtDNA adducts. Since benzene is incapable of spontaneously covalently binding to nuclei acids, it was hypothesized that enzyme(s) present in the organelle metabolized benzene to reactive derivatives. We have purified, to electrophoretic homogeneity, a 52 kDa cytochrome P-450 from liver mitoplasts which metabolizes benzene to phenol. The enzyme has a K{sub M} for benzene of 0.012 mM, and a V{sub MAX} of 22.6 nmol phenol/nmol P-450/10 min, and requires NADPH, adrenodoxin, and adrenodoxin reductase for activity. Activity also can be reconstituted with microsomal cytochrome P-450 reductase. Benzene hydroxylase activity could be inhibited by carbon monoxide and SKF-525A, and by specific inhibitors of microsomal benzene metabolism. The purified enzyme oxidized phenol, forming catechol; aminopyrine N-demethylase activity was also demonstrated. These data confirm that a cytochrome P-450 of mitochondrial origin is involved in benzene metabolism, and indicate a role for the mitochondrion in xenobiotic activation.

  16. Carbenoxolone induces oxidative stress in liver mitochondria, which is responsible for transition pore opening.

    PubMed

    Salvi, Mauro; Fiore, Cristina; Battaglia, Valentina; Palermo, Mario; Armanini, Decio; Toninello, Antonio

    2005-05-01

    Carbenoxolone (Cbx), a derivative of glycyrrhetinic acid, which has been found to affect mineralocorticoid and glucocorticoid receptors, induces swelling and membrane potential collapse when added to Ca(2+)-loaded liver mitochondria at 10 microM concentrations. These effects are strictly correlated with hydrogen peroxide generation, increase in oxygen uptake, and sulfhydryl and pyridine nucleotide oxidation. Cyclosporin A, bongkrekic acid, and N-ethylmaleimide completely abolish all the above-described effects, suggesting that Cbx can be considered an inducer of mitochondrial permeability transition by means of oxidative stress. Cbx can also trigger the apoptotic pathway because the above events are also correlated with the loss of cytochrome c. These effects are probably related to the conjugated carbonyl oxygen in C-11, which produces reactive oxygen species by interacting with the mitochondrial respiratory chain, mainly at the level of complex I but, most likely, also with complex III. The oxidative stress induced by Cbx, which is responsible for pore opening, excludes that this is related to a genomic effect of the compound. PMID:15677764

  17. Thyroidal regulation of substrate kinetics properties of cytochrome oxidase in rat liver mitochondria.

    PubMed

    Modi, Hiren R; Katyare, Surendra S; Patel, Samir P

    2008-07-01

    Effects of thyroidectomy (T(x)) and subsequent treatment with 3,5,3'-triiodothyronine (T(3)), and combined treatment (T(R)) with T(3) + thyroxine (T(4)) on substrate kinetics properties of cytochrome oxidase of rat liver mitochondria were examined. T(x) resulted in lowering of cytochromes content with decrease in the enzyme activity, and K(m) and V(max). T(3) and T(R) regimens restored the cytochromes contents and the V(max) values to normal. In control, T(3) and T(R) groups the enzyme activity resolved in two kinetic components; in T(x) group three kinetic components were evident. The K(m) values for all components decreased significantly in the experimental groups with concomitant increase in catalytic efficiency, K(cat)/K(m). Significant alterations in the contents of total phospholipid and of cholesterol were noted while the changes in the phospholipids composition were only of restricted nature. Regression analysis revealed that total phospholipid, cholesterol and phosphatidylcholine, phosphatidylethanolamine play significant role in fine tuning the enzyme activity. PMID:23105769

  18. Stoichiometry of H+ ejection during respiration-dependent accumulation of Ca2+ by rat liver mitochondria.

    PubMed

    Brand, M D; Chen, C H; Lehninger, A L

    1976-02-25

    We have investigated the energy-dependent uptake of Ca2+ by rat liver mitochondria with succinate as respiratory substrate with rotenone added to block NAD-linked electron transport. In the presence of 3-hydroxybutyric or other permeant monocarboxylic acids Ca2+ was taken up to extents approaching those seen in the presence of phosphate. The quantitative relationship between cation and anion uptake was determined from the slope of a plot of 3-hydroxybutyrate uptake against Ca2+ uptake, a method which allowed determination of the stoichiometry without requiring ambiguous corrections for early nonenergized or nonstoichiometric binding events. This procedure showed that 2 molecules of 3-hydroxtbutyrate were accumulated with each Ca2+ ion. Under these conditions close to 2 Ca2+ ions and 4 molecules of 3-hydroxybutyrate were accumulated per pair of electrons per energy-conserving site of the respiratory chain. Since 3-hydroxybutyrate must be protonated to pass the membrane as the undissociated free acid, it is concluded that 4 protons were ejected (and subsequently reabsorbed) per pair of electrons per energy-conserving site, in contrast to the value 2.0 postulated by the chemiosmotic hypothesis.

  19. Increased Potassium Conductance of Brain Mitochondria Induces Resistance to Permeability Transition by Enhancing Matrix Volume*

    PubMed Central

    Hansson, Magnus J.; Morota, Saori; Teilum, Maria; Mattiasson, Gustav; Uchino, Hiroyuki; Elmér, Eskil

    2010-01-01

    Modulation of K+ conductance of the inner mitochondrial membrane has been proposed to mediate preconditioning in ischemia-reperfusion injury. The mechanism is not entirely understood, but it has been linked to a decreased activation of mitochondrial permeability transition (mPT). In the present study K+ channel activity was mimicked by picomolar concentrations of valinomycin. Isolated brain mitochondria were exposed to continuous infusions of calcium. Monitoring of extramitochondrial Ca2+ and mitochondrial respiration provided a quantitative assay for mPT sensitivity by determining calcium retention capacity (CRC). Valinomycin and cyclophilin D inhibition separately and additively increased CRC. Comparable degrees of respiratory uncoupling induced by increased K+ or H+ conductance had opposite effects on mPT sensitivity. Protonophores dose-dependently decreased CRC, demonstrating that so-called mild uncoupling was not beneficial per se. The putative mitoKATP channel opener diazoxide did not mimic the effect of valinomycin. An alkaline matrix pH was required for mitochondria to retain calcium, but increased K+ conductance did not result in augmented ΔpH. The beneficial effect of valinomycin on CRC was not mediated by H2O2-induced protein kinase Cϵ activation. Rather, increased K+ conductance reduced H2O2 generation during calcium infusion. Lowering the osmolarity of the buffer induced an increase in mitochondrial volume and improved CRC similar to valinomycin without inducing uncoupling or otherwise affecting respiration. We propose that increased potassium conductance in brain mitochondria may cause a direct physiological effect on matrix volume inducing resistance to pathological calcium challenges. PMID:19880514

  20. Alcohol stimulates Na sup + /Ca sup 2+ exchange in brain mitochondria

    SciTech Connect

    Rottenberg, H.; Marbach, M. )

    1991-01-01

    Ethanol, at low concentrations, specifically stimulates the Na{sup +}-dependent Ca{sup 2+}-efflux in brain mitochondria. In addition, at higher concentrations, ethanol inhibits the Na{sup +}-independent Ca{sup 2+}-efflux. The electrogenic Ca{sup 2+}-uptake system is not affected by ethanol. The specific stimulation of Na{sup +}/Ca{sup 2+} exchange reaches a maximum of 60% stimulation, with half-maximal stimulation at 130 mM ethanol. The inhibition of the Na{sup +}-independent efflux is proportional to the ethanol concentration, becoming significant only above 200 mM, with 50% inhibition at 0.5 M. The inhibition of the Na{sup +}-independent efflux is, in large part, due to an inhibition of the activation of the Cyclosporin-sensitive pore. Long-term ethanol-feeding had no effect on the Ca{sup 2+} transport systems and their sensitivity to acute ethanol treatment. It is suggested that the stimulation of the Na{sup +}-dependent Ca{sup 2+}-efflux, which is the dominant Ca{sup 2+} efflux pathway in brain mitochondria, contributes to the intoxicating effects of ethanol.

  1. Brain death and marginal grafts in liver transplantation

    PubMed Central

    Jiménez-Castro, M B; Gracia-Sancho, J; Peralta, C

    2015-01-01

    It is well known that most organs for transplantation are currently procured from brain-dead donors; however, the presence of brain death is an important risk factor in liver transplantation. In addition, one of the mechanisms to avoid the shortage of liver grafts for transplant is the use of marginal livers, which may show higher risk of primary non-function or initial poor function. To our knowledge, very few reviews have focused in the field of liver transplantation using brain-dead donors; moreover, reviews that focused on both brain death and marginal grafts in liver transplantation, both being key risk factors in clinical practice, have not been published elsewhere. The present review aims to describe the recent findings and the state-of-the-art knowledge regarding the pathophysiological changes occurring during brain death, their effects on marginal liver grafts and summarize the more controversial topics of this pathology. We also review the therapeutic strategies designed to date to reduce the detrimental effects of brain death in both marginal and optimal livers, attempting to explain why such strategies have not solved the clinical problem of liver transplantation. PMID:26043077

  2. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes.

    PubMed Central

    Brand, M D; Harper, M E; Taylor, H C

    1993-01-01

    The control exerted by substrate oxidation reactions, by ATP turnover and by the proton leak over the oxygen consumption rate, the phosphorylation rate, the proton leak rate and the protonmotive force (delta p) in isolated rat liver mitochondria under a range of conditions between non-phosphorylating (State 4) and maximum phosphorylation (State 3) was investigated by using the top-down approach of metabolic control analysis. The experiments were carried out with saturating concentrations of the substrates succinate, glutamate with malate, or pyruvate with malate. The distribution of control was very similar with each of the three substrates. The effective P/O ratio (i.e. not corrected for leak reactions) was also measured; it varied from zero in State 4 to 80-90% of the maximum theoretical P/O ratio in State 3. Under most conditions control over the effective P/O ratio was shared between proton leak (which had negative control) and the phosphorylating subsystem (which had roughly equal positive control); near State 4, substrate oxidation reactions also acquired some control over this ratio. In resting hepatocytes the effective P/O ratio was only 50% of its maximum theoretical value, corresponding to an effective P/O ratio of only 1.3 for complete oxidation of glucose. The effective P/O ratio for intracellular mitochondrial oxygen consumption was 64% of the maximum value. The control coefficient of the mitochondrial proton leak over the effective P/O ratio in cells was -0.34; the control coefficient of phosphorylation reactions over this ratio was 0.31 and the control coefficient of substrate oxidation reactions over the ratio was 0.03, showing how the coupling efficiency in cells can respond sensitively to agents that change the proton leak or the ATP demand, but not to those that change substrate oxidation. PMID:8489502

  3. Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status.

    PubMed

    Cardoso, Susana; Carvalho, Cristina; Marinho, Ricardo; Simões, Anabel; Sena, Cristina M; Matafome, Paulo; Santos, Maria S; Seiça, Raquel M; Moreira, Paula I

    2014-10-01

    Advanced glycation end products (AGEs) and methylglyoxal (MG), an important intermediate in AGEs synthesis, are thought to contribute to protein aging and to the pathogenesis of age-and diabetes-associated complications. This study was intended to investigate brain mitochondria bioenergetics and oxidative status of rats previously exposed to chronic treatment with MG and/or with pyridoxamine (PM), a glycation inhibitor. Brain mitochondrial fractions were obtained and several parameters were analyzed: respiratory chain [states 3 and 4 of respiration, respiratory control ratio (RCR), and ADP/O index] and phosphorylation system [transmembrane potential (ΔΨm), ADP-induced depolarization, repolarization lag phase, and ATP levels]; hydrogen peroxide (H2O2) production levels, mitochondrial aconitase activity, and malondialdehyde levels as well as non-enzymatic antioxidant defenses (vitamin E and glutathione levels) and enzymatic antioxidant defenses (glutathione disulfide reductase (GR), glutathione peroxidase (GPx), and manganese superoxide dismutase (MnSOD) activities). MG treatment induced a statistical significant decrease in RCR, aconitase and GR activities, and an increase in H2O2 production levels. The administration of PM did not counteract MG-induced effects and caused a significant decrease in ΔΨm. In mitochondria from control animals, PM caused an adaptive mechanism characterized by a decrease in aconitase and GR activities as well as an increase in both α-tocopherol levels and GPx and MnSOD activities. Altogether our results show that high levels of MG promote brain mitochondrial impairment and PM is not able to reverse MG-induced effects. PMID:24831520

  4. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria.

    PubMed

    Caro, Pilar; Gomez, Jose; Sanchez, Ines; Naudi, Alba; Ayala, Victoria; López-Torres, Monica; Pamplona, Reinald; Barja, Gustavo

    2009-12-01

    Eighty percent dietary methionine restriction (MetR) in rodents (without calorie restriction), like dietary restriction (DR), increases maximum longevity and strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative stress. Eighty percent MetR also lowers the degree of membrane fatty acid unsaturation in rat liver. Mitochondrial ROS generation and the degree of fatty acid unsaturation are the only two known factors linking oxidative stress with longevity in vertebrates. However, it is unknown whether 40% MetR, the relevant methionine restriction degree to clarify the mechanisms of action of standard (40%) DR can reproduce these effects in mitochondria from vital tissues of strong relevance for aging. Here we study the effect of 40% MetR on ROS production and oxidative stress in rat brain and kidney mitochondria. Male Wistar rats were fed during 7 weeks semipurified diets differing only in their methionine content: control or 40% MetR diets. It was found that 40% MetR decreases mitochondrial ROS production and percent free radical leak (by 62-71%) at complex I during forward (but not during reverse) electron flow in both brain and kidney mitochondria, increases the oxidative phosphorylation capacity of brain mitochondria, lowers oxidative damage to kidney mitochondrial DNA, and decreases specific markers of mitochondrial protein oxidation, lipoxidation, and glycoxidation in both tissues. Forty percent MetR also decreased the amount of respiratory complexes I, III, and IV and apoptosis-inducing factor (AIF) in brain mitochondria and complex IV in kidney mitochondria, without changing the degree of mitochondrial membrane fatty acid unsaturation. Forty percent MetR, differing from 80% MetR, did not inhibit the increase in rat body weight. These changes are very similar to the ones previously found during dietary and protein restriction in rats. We conclude that methionine is the only dietary factor responsible for the decrease in

  5. Increased Susceptibility of Gracilinanus microtarsus Liver Mitochondria to Ca2+-Induced Permeability Transition Is Associated with a More Oxidized State of NAD(P)

    PubMed Central

    Ronchi, Juliana A.; Henning, Barbara; Ravagnani, Felipe G.; Figueira, Tiago R.; Castilho, Roger F.; dos Reis, Sergio F.; Vercesi, Anibal E.

    2015-01-01

    In addition to be the cell's powerhouse, mitochondria also contain a cell death machinery that includes highly regulated processes such as the membrane permeability transition pore (PTP) and reactive oxygen species (ROS) production. In this context, the results presented here provide evidence that liver mitochondria isolated from Gracilinanus microtarsus, a small and short life span (one year) marsupial, when compared to mice, are much more susceptible to PTP opening in association with a poor NADPH dependent antioxidant capacity. Liver mitochondria isolated from the marsupial are well coupled and take up Ca2+ but exhibited a much lower Ca2+ retention capacity than mouse mitochondria. Although the known PTP inhibitors cyclosporin A, ADP, and ATP significantly increased the marsupial mitochondria capacity to retain Ca2+, their effects were much larger in mice than in marsupial mitochondria. Both fluorescence and HPLC analysis of mitochondrial nicotinamide nucleotides showed that both content and state of reduction (mainly of NADPH) were lower in the marsupial mitochondria than in mice mitochondria despite the similarity in the activity of the glutathione peroxidase/reductase system. Overall, these data suggest that PTP opening is an important event in processes of Ca2+ signalling to cell death mediated by mitochondrial redox imbalance in G. microtarsus. PMID:26583063

  6. [State of the energy-supply system of the liver mitochondria under the conditions of alimentary deficiency of protein].

    PubMed

    voloshchuk, O N; Kopyl'chuk, G P; Kadaĭskaia, T G

    2014-01-01

    The NADH-dehydrogenase and succinate dehydrogenase activity of the rats' liver mitochondria under the conditions of alimentary deprivation of protein has been studied. Research was carried out on 65 white non-linear rats divided according to the diet protein content into three groups: 1--rats fed a hypoprotein diet (7% of protein, 10% of fat u 83% of carbohydrates; n = 26); 2--rats fed a protein-free diet (n = 26); 3--rats fed a complete semi-synthetic ration (14% of protein, 10% of fat u 76% of carbohydrates; n = 13). The NADH-dehydrogenase activity was estimated by spectrophotometric method, succinate dehydrogenase activity--by the intensity of reduction of the potassium ferricyanide. It has been estimated that the decrease of NADH-dehydrogenase activity of mitochondria occurred on the 14th day of feeding rats with protein-free diet, and four-week feeding of rats under these conditions lead to the decrease of enzyme activity by 5,5 fold compared with the control group (0.506 +/- 0.040 nmol NADH/min/mg of protein) and by 3,0 fold compared with the previous stage of the experiment. At the same time a hypoprotein diet caused 2-fold decrease of NADH-dehydrogenase activity of liver mitochondria only on the 28th day. It has been shown that the succinate dehydrogenase activity didn't change significantly after two-week maintenance of rats on a protein-free diet as compared with control, while the four-week maintenance on both hypoprotein and protein-free diet lead to the decrease of the succinate dehydrogenase activity. Specifically, under the conditions of the hypoprotein diet succinate dehydrogenase activity of liver mitochondria decreased twofold and under the conditions of the protein free diet-- threefold. Probably, the disorders at the level of Complex I of respiratory chain underlie the realization of the changes in the system of energy biotransformation in mitochondria under the conditions of alimentary protein deficiency. PMID:25300104

  7. Shift in the localization of sites of hydrogen peroxide production in brain mitochondria by mitochondrial stress.

    PubMed

    Gyulkhandanyan, Armen V; Pennefather, Peter S

    2004-07-01

    We have determined the underlying sites of H(2)O(2) generation by isolated rat brain mitochondria and how these can shift depending on the presence of respiratory substrates, electron transport chain modulators and exposure to stressors. H(2)O(2) production was determined using the fluorogenic Amplex red and peroxidase system. H(2)O(2) production was higher when succinate was used as a respiratory substrate than with another FAD-dependent substrate, alpha-glycerophosphate, or with the NAD-dependent substrates, glutamate/malate. Depolarization by the uncoupler p-trifluoromethoxyphenylhydrazone decreased H(2)O(2) production stimulated by all respiratory substrates. H(2)O(2) production supported by succinate during reverse transfer of electrons was decreased by inhibitors of complex I (rotenone and diphenyleneiodonium) whereas in glutamate/malate-oxidizing mitochondria diphenyleneiodonium decreased while rotenone increased H(2)O(2) generation. The complex III inhibitors antimycin and myxothiazol decreased succinate-induced H(2)O(2) production but stimulated H(2)O(2) production in glutamate/malate-oxidizing mitochondria. Antimycin and myxothiazol also increased H(2)O(2) production in mitochondria using alpha-glycerophosphate as a respiratory substrate. In substrate/inhibitor experiments maximal stimulation of H(2)O(2) production by complex I was observed with the alpha-glycerophosphate/antimycin combination. In addition, three forms of in vitro mitochondrial stress were studied: Ca(2+) overload, cold storage for more than 24 h and cytochrome c depletion. In each case we observed (i) a decrease in succinate-supported H(2)O(2) production by complex I and an increase in succinate-supported H(2)O(2) production by complex III, (ii) increased glutamate/malate-induced H(2)O(2) generation by complex I and (iii) increased alpha-glycerophosphate-supported H(2)O(2) generation by complex III. Our results suggest that all three forms of mitochondrial stress resulted in similar

  8. Protective and biogenesis effects of sodium hydrosulfide on brain mitochondria after cardiac arrest and resuscitation.

    PubMed

    Pan, Hao; Xie, Xuemeng; Chen, Di; Zhang, Jincheng; Zhou, Yaguang; Yang, Guangtian

    2014-10-15

    Mitochondrial dysfunction plays a critical role in brain injury after cardiac arrest and cardiopulmonary resuscitation (CPR). Recent studies demonstrated that hydrogen sulfide (H2S) donor compounds preserve mitochondrial morphology and function during ischemia-reperfusion injury. In this study, we sought to explore the effects of sodium hydrosulfide (NaHS) on brain mitochondria 24h after cardiac arrest and resuscitation. Male Sprague-Dawley rats were subjected to 6min cardiac arrest and then resuscitated successfully. Rats received NaHS (0.5mg/kg) or vehicle (0.9% NaCl, 1.67ml/kg) 1min before the start of CPR intravenously, followed by a continuous infusion of NaHS (1.5mg/kg/h) or vehicle (5ml/kg/h) for 3h. Neurological deficit was evaluated 24h after resuscitation and then cortex was collected for assessments. As a result, we found that rats treated with NaHS revealed an improved neurological outcome and cortex mitochondrial morphology 24h after resuscitation. We also observed that NaHS therapy reduced intracellular reactive oxygen species generation and calcium overload, inhibited mitochondrial permeability transition pores, preserved mitochondrial membrane potential, elevated ATP level and ameliorated the cytochrome c abnormal distribution. Further studies indicated that NaHS administration increased mitochondrial biogenesis in cortex at the same time. Our findings suggested that administration of NaHS 1min prior CPR and followed by a continuous infusion ameliorated neurological dysfunction 24h after resuscitation, possibly through mitochondria preservation as well as by promoting mitochondrial biogenesis.

  9. Alteration of SLP2-like immunolabeling in mitochondria signifies early cellular damage in developing and adult mouse brain.

    PubMed

    Morozov, Yury M; Sun, Yu-Yo; Kuan, Chia-Yi; Rakic, Pasko

    2016-01-01

    Mitochondria play a critical role in various pathways of regulated cell death. Here we propose a novel method for detection of initial derangement of mitochondria in degenerating and dying neuronal cells. The method is based on our recent finding that antibodies directed against the cannabinoid type 1 receptor (CB1) also bind the mitochondrial stomatin-like protein 2 (SLP2) that belongs to an inner mitochondrial membrane protein complex. It is well established that SLP2 regulates mitochondrial biogenesis and respiratory functions. We now show that anti-CB1 antibodies recognize conformational epitopes but not the linear amino acid sequence of SLP2. In addition we found that anti-CB1 serum mostly labels swollen mitochondria with early or advanced stages of pathology in mouse brain while other proteins of the complex may mask epitopes of SLP2 in the normal mitochondria. Although neurons and endothelial cells in healthy brains contain occasional immunopositive mitochondria detectable with anti-CB1 serum, their numbers increase significantly after hypoxic insults in parallel with signs of cellular damage. Moreover, use of electron microscopy suggests relocation of SLP2 from its normal functional position in the inner mitochondrial membrane into the mitochondrial matrix in pathological cells. Thus, SLP2-like immunolabeling serves as an in situ histochemical target detecting early derangement of mitochondria. Anti-CB1 serum is crucial for this purpose because available anti-SLP2 antibodies do not provide selective labeling of mitochondria in the fixed tissue. This new method of detecting mitochondrial dysfunction can benefit the in vitro research of human diseases and developmental disorders by enabling analysis in live animal models.

  10. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers.

    PubMed

    Carvalho, Cristina; Santos, Maria S; Oliveira, Catarina R; Moreira, Paula I

    2015-08-01

    We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.

  11. Cannabinoid-Induced Changes in the Activity of Electron Transport Chain Complexes of Brain Mitochondria.

    PubMed

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2015-08-01

    The aim of this study was to investigate changes in the activity of individual mitochondrial respiratory chain complexes (I, II/III, IV) and citrate synthase induced by pharmacologically different cannabinoids. In vitro effects of selected cannabinoids on mitochondrial enzymes were measured in crude mitochondrial fraction isolated from pig brain. Both cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol, anandamide, and R-(+)-WIN55,212-2, and antagonist/inverse agonists of cannabinoid receptors, AM251, and cannabidiol were examined in pig brain mitochondria. Different effects of these cannabinoids on mitochondrial respiratory chain complexes and citrate synthase were found. Citrate synthase activity was decreased only by Δ(9)-tetrahydrocannabinol and AM251. Significant increase in the complex I activity was induced by anandamide. At micromolar concentration, all the tested cannabinoids inhibited the activity of electron transport chain complexes II/III and IV. Stimulatory effect of anandamide on activity of complex I may participate on distinct physiological effects of endocannabinoids compared to phytocannabinoids or synthetic cannabinoids. Common inhibitory effect of cannabinoids on activity of complex II/III and IV confirmed a non-receptor-mediated mechanism of cannabinoid action on individual components of system of oxidative phosphorylation.

  12. The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen.

    PubMed

    Silva, Filomena S G; Ribeiro, Mariana P C; Santos, Maria S; Rocha-Pereira, Petronila; Santos-Silva, Alice; Custódio, José B A

    2013-08-01

    The combination of isotretinoin (13-cis-retinoic acid) with antiestrogens seems to be a promising strategy for cancer chemotherapy. The aim of the study was to evaluate the effects of isotretinoin alone or in combination with 4-hydroxytamoxifen (OHTAM) and with its prodrug tamoxifen (TAM), on the functions of rat liver mitochondria, i.e., mitochondrial permeability transition (MPT), bioenergetic functions and adenine nucleotide translocase (ANT). Isotretinoin (5 nmol/mg protein) induced the Ca²⁺-dependent MPT pore opening in mitochondria energized with succinate, which was prevented by OHTAM, cyclosporine A, TAM and ANT ligands. When mitochondria were energized with glutamate/malate and in the absence of added Ca²⁺ isotretinoin decreased the state 3 respiration, the ATP levels, the active ANT content and increased the lag phase of the phosphorylation cycle, demonstrating that isotretinoin decreased the mitochondrial phosphorylation efficiency. These changes of isotretinoin in bioenergetic parameters were not significant in the presence of succinate. The effects of isotretinoin at 5 nmol/mg protein on the Ca²⁺-dependent MPT and phosphorylative efficacy may be related with interactions with the ANT. Above 10 nmol/mg protein isotretinoin strongly diminished the active ANT content, decreased the Δψ, inhibited the complex I and induced proton leak through the Fo fraction of complex V. The combination of OHTAM with isotretinoin only induced significant changes in the energy production systems at concentrations ≥5 nmol isotretinoin/mg protein. Therefore, our results suggest that isotretinoin-associated liver toxicity is possibly related with mitochondrial dysfunctions and that the combination with OHTAM may contribute to decrease its toxicity.

  13. Determination of boron distribution in rat's brain, kidney and liver.

    PubMed

    Pazirandeh, Ali; Jameie, Behnam; Zargar, Maysam

    2009-07-01

    To determine relative boron distribution in rat's brain, liver and kidney, a mixture of boric acid and borax, was used. After transcardial injection of the solution, the animals were sacrificed and the brain, kidney and liver were removed. The coronal sections of certain areas of the brain were prepared by freezing microtome. The slices were sandwiched within two pieces of CR-39. The samples were bombarded in a thermal neutron field of the TRR pneumatic facility. The alpha tracks are registered on CR-39 after being etched in NaOH. The boron distribution was determined by counting these alpha tracks CR-39 plastics. The distribution showed non-uniformity in brain, liver and kidney. PMID:19375929

  14. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain

    PubMed Central

    Thornton, Claire; Hagberg, Henrik

    2015-01-01

    Hypoxic–ischemic encephalopathy induces secondary brain injury characterized by delayed energy failure. Currently, therapeutic hypothermia is the sole treatment available after severe intrapartum asphyxia in babies and acts to attenuate secondary loss of high energy phosphates improving both short- and long-term outcome. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. Hypoxia–ischemia creates a toxic intracellular environment including accumulation of reactive oxygen/nitrosative species and intracellular calcium after the insult, inducing mitochondrial impairment. More specifically mitochondrial respiration is suppressed and calcium signaling is dysregulated. At a certain threshold, Bax-dependent mitochondrial permeabilization will occur leading to activation of caspase-dependent and apoptosis-inducing factor-dependent apoptotic cell death. In addition, hypoxia–ischemia induces inflammation, which leads to the release of TNF-α, TRAIL, TWEAK, FasL and Toll-like receptor agonists that will activate death receptors on neurons and oligodendroglia. Death receptors trigger apoptotic death via caspase-8 and necroptotic cell death through formation of the necrosome (composed of RIP1, RIP3 and MLKL), both of which converge at the mitochondria. PMID:25661091

  15. Allometric scaling of fatty acyl chains in fowl liver, lung and kidney, but not in brain phospholipids.

    PubMed

    Szabó, András; Mézes, Miklós; Romvári, Róbert; Fébel, Hedvig

    2010-03-01

    The phospholipid (PL) fatty acyl chain (FA) composition (mol%) was determined in the kidney, liver, lung and brain of 8 avian species ranging in body mass from 150g (Japanese quail, Coturnix coturnix japonica) to 19kg (turkey, Meleagris gallopavo). In all organs except the brain, docosahexaenoic acid (C22:6 n3, DHA) was found to show a negative allometric scaling (allometric exponent: B=-0.18; -0.20 and -0.24, for kidney, liver and lung, respectively). With minor inter-organ differences, smaller birds had more n3 FAs and longer FA chains in the renal, hepatic and pulmonary PLs. Comparing our results with literature data on avian skeletal muscle, liver mitochondria and kidney microsomes and divergent mammalian tissues, the present findings in the kidney, liver and lung PLs seem to be a part of a general relationship termed "membranes as metabolic pacemakers". Marked negative allometric scaling was found furthermore for the tissue malondialdehyde concentrations in all organs except the brain (B=-0.17; -0.13 and -0.05, respectively). In the liver and kidney a strong correlation was found between the tissue MDA and DHA levels, expressing the role of DHA in shaping the allometric properties of membrane lipids.

  16. Asiatic acid uncouples respiration in isolated mouse liver mitochondria and induces HepG2 cells death.

    PubMed

    Lu, Yapeng; Liu, Siyuan; Wang, Ying; Wang, Dang; Gao, Jing; Zhu, Li

    2016-09-01

    Asiatic acid, one of the triterpenoid components isolated from Centella asiatica, has received increasing attention due to a wide variety of biological activities. To date, little is known about its mechanisms of action. Here we examined the cytotoxic effect of asiatic acid on HepG2 cells and elucidated some of the underlying mechanisms. Asiatic acid induced rapid cell death, as well as mitochondrial membrane potential (MMP) dissipation, ATP depletion and cytochrome c release from mitochondria to the cytosol in HepG2 cells. In mitochondria isolated from mouse liver, asiatic acid treatment significantly stimulated the succinate-supported state 4 respiration rate, dissipated the MMP, increased Ca(2+) release from Ca(2+)-loaded mitochondria, decreased ATP content and promoted cytochrome c release, indicating the uncoupling effect of asiatic acid. Hydrogen peroxide (H2O2) produced by succinate-supported mitochondrial respiration was also significantly inhibited by asiatic acid. In addition, asiatic acid inhibited Ca(2+)-induced mitochondrial swelling but did not induce mitochondrial swelling in hyposmotic potassium acetate medium which suggested that asiatic acid may not act as a protonophoric uncoupler. Inhibition of uncoupling proteins (UCPs) or blockade of adenine nucleotide transporter (ANT) attenuated the effect of asiatic acid on MMP dissipation, Ca(2+) release, mitochondrial respiration and HepG2 cell death. When combined inhibition of UCPs and ANT, asiatic acid-mediated uncoupling effect was noticeably alleviated. These results suggested that both UCPs and ANT partially contribute to the uncoupling properties of asiatic acid. In conclusion, asiatic acid is a novel mitochondrial uncoupler and this property is potentially involved in its toxicity on HepG2 cells.

  17. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M; Brailovskaya, Irina V; Shumakov, Anton R; Emelyanova, Larisa V

    2015-06-01

    It is known that a closure of ATP sensitive (mitoKATP) or BK-type Ca(2+) activated (mitoKCa) potassium channels triggers opening of the mitochondrial permeability transition pore (MPTP) in cells and isolated mitochondria. We found earlier that the Tl(+)-induced MPTP opening in Ca(2+)-loaded rat liver mitochondria was accompanied by a decrease of 2,4-dinitrophenol-uncoupled respiration and increase of mitochondrial swelling and ΔΨmito dissipation in the medium containing TlNO3 and KNO3. On the other hand, our study showed that the mitoKATP inhibitor, 5-hydroxydecanoate favored the Tl(+)-induced MPTP opening in the inner membrane of Ca(2+)-loaded rat heart mitochondria (Korotkov et al. 2013). Here we showed that 5-hydroxydecanoate increased the Tl(+)-induced MPTP opening in the membrane of rat liver mitochondria regardless of the presence of mitoKATP modulators (diazoxide and pinacidil). This manifested in more pronounced decrease in the uncoupled respiration and acceleration of both the swelling and the ΔΨmito dissipation in isolated rat liver mitochondria, incubated in the medium containing TlNO3, KNO3, and Ca(2+). A slight delay in Ca(2+)-induced swelling of the mitochondria exposed to diazoxide could be result of an inhibition of succinate oxidation by the mitoKATP modulator. Mitochondrial calcium retention capacity (CRC) was markedly decreased in the presence of the mitoKATP inhibitor (5-hydroxydecanoate) or the mitoKCa inhibitor (paxilline). We suggest that the closure of mitoKATP or mitoKCa in calcium loaded mitochondria favors opening of the Tl(+)-induced MPTP in the inner mitochondrial membrane.

  18. Characterization of a low molecular weight protein of the ATP synthetase complex from beef heart and rat liver mitochondria with a high affinity monoclonal antibody.

    PubMed

    Woldegiorgis, G; Contreras, L; Shrago, E

    1990-06-15

    A monoclonal antibody raised against beef heart mitochondria elicited a strong reaction on Western Blot with a 16 kD protein in preparations of beef heart mitochondria, ammonia particles, oligomycin sensitive ATPase and Complex V, in addition to showing a lesser affinity for the partially purified 30 kD ADP/ATP carrier. The antibody also reacted with a 17 kD protein in rat liver mitochondria and an enriched membrane vesicle fraction. The N-terminal sequence of the first twenty amino acids of both the beef heart and rat liver proteins contained significant homology. Comparison with results in the literature indicate that the proteins represent the delta subunit of the ATP synthetase complex. Further evidence suggests that the epitope for the antibody may reside at the C-terminal 30-40 amino acid residues of both proteins.

  19. Inhibition of H2O2 generation in rat liver mitochondria by radical quenchers and phenolic compounds.

    PubMed

    Swaroop, A; Ramasarma, T

    1981-03-15

    Generation of H2O2 by rat liver mitochondria with choline, glycerol 1-phosphate and proline as substrates has been shown by using high-concentration phosphate buffer. Rates obtained under these conditions were higher and more consistent as compared with the earlier reports with high-concentration mannitol/sucrose/Tris buffer. Sulphate ions could replace phosphate indicating a requirement for a high concentration of oxygen-containing anions. H2O2 generation was dependent on the presence of native mitochondria and substrate. Maximal rates with various substrates were found to be the same as with succinate. Values of Km and Vmax for H2O2 generation were considerably less than those obtained for respective dehydrogenase activities, measured by dye reduction. Scavengers of O2-. and OH. inhibited generation of H2O2. ATP, ADP, thyronine derivatives and a number of phenolic compounds also showed very potent inhibitory effects of H2O2 generation, whereas phenyl compound had no effect. Phenolic compounds did not have any effect on mitochondrial superoxide dismutase and choline dehydrogenase activities as well as on O2-. generation by the xanthine-xanthine oxidase system. Inhibition by phenolic compounds may have potential for regulation of the intracellular concentration of H2O2, that is not considered to have a "second messenger' function.

  20. Direct measurement of the initial proton extrusion to oxygen uptake ratio accompanying succinate oxidation by rat liver mitochondria.

    PubMed Central

    Setty, O H; Shrager, R I; Bunow, B; Reynafarje, B; Lehninger, A L; Hendler, R W

    1986-01-01

    The problem of obtaining very early ratios for the H+/O stoichiometry accompanying succinate oxidation by rat liver mitochondria was attacked using new techniques for direct measurement rather than extrapolations based on data obtained after mixing and the recovery of the electrode from initial injection of O2. Respiration was quickly initiated in a thoroughly mixed O2-containing suspension of mitochondria under a CO atmosphere by photolysis of the CO-cytochrome c oxidase complex-. Fast responding O2 and pH electrodes were used to collect data every 10 ms. The response time for each electrode was experimentally measured in each experiment and suitable corrections for electrode relaxations were made. With uncorrected data obtained after 0.8 s, the extrapolation back to zero time on the basis of single-exponential curve fitting confirmed values close to 8.0 as previously reported (Costa et al., 1984). The data directly obtained, however, indicate an initial burst in H+/O ratio that peaked to values of approximately 20 to 30 prior to 50 ms and which was no longer evident after 0.3 s. Newer information and considerations that place all extrapolation methods in question are discussed. PMID:3019443

  1. Identification of compounds from high-fat and extra virgin olive oil-supplemented diets in whole mouse liver extracts and isolated mitochondria using mass spectrometry.

    PubMed

    dos Santos, Gustavo Aparecido; Ferreira, Mônica Siqueira; de Oliveira, Diogo Noin; de Oliveira, Vanessa; Siqueira-Santos, Edilene S; Cintra, Dennys Esper Corrêa; Castilho, Roger Frigério; Velloso, Lício Augusto; Catharino, Rodrigo Ramos

    2015-07-01

    Nonalcoholic steatohepatitis (NASH) is a fatty liver disorder that could be improved with extra virgin olive oil (EVOO) supplementation in diet. We propose the monitoring, in whole mouse liver extracts and in isolated mitochondria, of the absorption of compounds from three different diets: standard (CT), high-fat (HFD) and high-fat supplemented with EVOO (HFSO). Male mice were submitted to one of the following three diets: CT or HFD for 16 weeks or HFD for 8 weeks followed by additional 8 weeks with HFSO. Following this period, liver was extracted for histological evaluation, mitochondria isolation and mass spectrometry analyses. Diets, liver extracts and Percoll-purified mitochondria were analyzed using ESI-MS and the lipidomics approach. Morphological, histological and spectrometric results indicated a decrease in NASH severity with EVOO supplementation in comparison with animals maintained with HFD. Spectrometric data also demonstrated that some compounds presented on the diets are absorbed by the mitochondria. EVOO was shown to be a potential therapeutic alternative in food for NASH. Our results are in accordance with the proposition that the major factor that influences different responses to diets is their composition - and not only calories - especially when it comes to studies on obesity.

  2. Oxidative metabolism of 5-o-caffeoylquinic acid (chlorogenic acid), a bioactive natural product, by metalloporphyrin and rat liver mitochondria.

    PubMed

    dos Santos, Michel D; Martins, Patrícia R; dos Santos, Pierre A; Bortocan, Renato; Iamamoto, Y; Lopes, Norberto P

    2005-09-01

    Synthetic metalloporphyrins, in the presence of monooxygen donors, are known to mimic the various reactions of cytochrome P450 enzymes systems in the oxidation and oxygenation of various drugs and biologically active compounds. This paper reports an HPLC-MS-MS investigation of chlorogenic acid (CGA) oxidation by iodosylbenzene using iron(III) tetraphenylporphyrin chloride as catalyst. The oxidation products have been detected by sequential MS analyses. In addition, CGA was submitted to an in vitro metabolism assay employing isolated rat liver mitochondria. The single oxidized product obtained from mitochondrial metabolism corresponds to the major product formed by the metalloporphyrin-catalyzed reaction. These results indicate that biomimetic oxidation reactions, in addition to in vitro metabolism assays employing isolated organs/organelles, could replace some in vivo metabolism studies, thus minimizing the problems related to the use of a large number of living animals in experimental research.

  3. Relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet.

    PubMed

    Lionetti, L; Iossa, S; Brand, M D; Liverini, G

    1996-05-24

    We studied the relationship between membrane potential and respiration rate in isolated liver mitochondria from rats fed an energy dense diet. We conceptually divided the system into blocks of reactions that produced or consumed mitochondrial membrane potential and then measured the kinetic response of these blocks of reactions to this potential using NAD-linked and FAD-linked substrates. We show that decreased respiration rate with an NAD-linked substrate is accounted for by decreased kinetic response of the substrate oxidation pathway to the potential. No variation in the kinetic response of the above blocks of reactions to the potential was found using an FAD-linked substrate. These results indicate that FAD-linked and NAD-linked pathways are differently affected in rats fed an energy dense diet.

  4. Purification and characterization of the reconstitutively active P/sub i//H/sup +/ symporter from rat liver mitochondria

    SciTech Connect

    Kaplan, R.S.; Pratt, R.D.; Pedersen, P.L.

    1986-05-01

    A highly purified preparation of reconstitutively active P/sub i//H/sup +/ symporter has been obtained from rat liver mitochondria. The carrier is isolated by extraction of hypotonically shocked mitoplasts with Triton X-114 in the presence of cardiolipin followed by sequential chromatography on hydroxylapatite, DEAE-Sepharose CL-6B, and Affi-Gel 501. Upon incorporation of the final Affi-Gel eluate into phospholipid vesicles, an N-ethylmaleimide (NEM)-sensitive P/sub i//P/sub i/ exchange of greater than 15 ..mu..mol/min/mg protein has been measured. This exchange is characterized by a first order rate constant of 0.85 min/sup -1/ and a t/sub 1/2/ of 49 sec. Furthermore, /sup 32/P/sub i/ uptake into vesicles can be inhibited by SH reagents and by the lysine reactive reagent dansyl chloride. Coomassie-stained SDS polyacrylamide gradient gels verify the high purity of this fraction and indicate the presence of two bands, of nearly equivalent staining intensity, at 33 kDa and 35 kDa. A small amount of higher molecular weight material also appears at approx. 61 kDa. Alkylation of the purified fraction with NEM causes the two lower molecular weight protein bands to migrate as a single species at 35 kDa which binds (/sup 3/H)NEM. It is concluded that the purifed protein represents a nearly homogeneous form of the NEM-sensitive P/sub i//H/sup +/ symporter of rat liver mitochondria. Additionally, the purified carrier appears to contain cysteine and lysine residues that are essential for activity.

  5. Blood-brain barrier in acute liver failure

    PubMed Central

    Nguyen, Justin H.

    2011-01-01

    Brain edema remains a challenging obstacle in the management of acute liver failure (ALF). Cytotoxic mechanisms associated with brain edema have been well recognized, but evidence for vasogenic mechanisms in the pathogenesis of brain edema in ALF has been lacking. Recent reports have not only shown a role of matrix metalloproteinase-9 in the pathogenesis of brain edema in experimental ALF but have also found significant alterations in the tight junction elements including occludin and claudin-5, suggesting a vasogenic injury in the blood-brain barrier (BBB) integrity. This article reviews and explores the role of the paracellular tight junction proteins in the increased selective BBB permeability that leads to brain edema in ALF. PMID:22100566

  6. Brain region-specific altered expression and association of mitochondria-related genes in autism

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction (MtD) has been observed in approximately five percent of children with autism spectrum disorders (ASD). MtD could impair highly energy-dependent processes such as neurodevelopment, thereby contributing to autism. Most of the previous studies of MtD in autism have been restricted to the biomarkers of energy metabolism, while most of the genetic studies have been based on mutations in the mitochondrial DNA (mtDNA). Despite the mtDNA, most of the proteins essential for mitochondrial replication and function are encoded by the genomic DNA; so far, there have been very few studies of those genes. Therefore, we carried out a detailed study involving gene expression and genetic association studies of genes related to diverse mitochondrial functions. Methods For gene expression analysis, postmortem brain tissues (anterior cingulate gyrus (ACG), motor cortex (MC) and thalamus (THL)) from autism patients (n=8) and controls (n=10) were obtained from the Autism Tissue Program (Princeton, NJ, USA). Quantitative real-time PCR arrays were used to quantify the expression of 84 genes related to diverse functions of mitochondria, including biogenesis, transport, translocation and apoptosis. We used the delta delta Ct (∆∆Ct) method for quantification of gene expression. DNA samples from 841 Caucasian and 188 Japanese families were used in the association study of genes selected from the gene expression analysis. FBAT was used to examine genetic association with autism. Results Several genes showed brain region-specific expression alterations in autism patients compared to controls. Metaxin 2 (MTX2), neurofilament, light polypeptide (NEFL) and solute carrier family 25, member 27 (SLC25A27) showed consistently reduced expression in the ACG, MC and THL of autism patients. NEFL (P = 0.038; Z-score 2.066) and SLC25A27 (P = 0.046; Z-score 1.990) showed genetic association with autism in Caucasian and Japanese samples, respectively. The expression of

  7. More about Interactions of Rhodamine 19 Butyl Ester with Rat Liver Mitochondria.

    PubMed

    Rogov, A G; Trendeleva, T A; Aliverdieva, D A; Zvyagilskaya, R A

    2016-04-01

    Oxidative stress is one of the major factors underlying mitochondrial dysfunctions. One of the most promising approaches for alleviating or preventing oxidative stress is the use of cationic uncouplers that accumulate in mitochondria in accordance to the level of the membrane potential, producing "mild" uncoupling. Based on this theoretical background, cationic rhodamine 19 butyl ester (C4R1) was synthesized and tested within the framework of the research project guided by V. P. Skulachev. The results of these tests were presented (Khailova et al. (2014) Biochim. Biophys. Acta, 1837, 1739-1747), but one publication could not accommodate all data on interactions of C4R1 with isolated mitochondria. In addition to previously presented data, we found that the effect of C4R1 on the rate of oxygen uptake is subject to temporal variations, which probably reflects variable rates of C4R1 entry into the mitochondria. Consequently, transient stimulation of respiration can be followed by inhibition. C4R1 was found not to shunt electron flow from complex I of the respiratory chain; it largely acted as an inhibitor of complex I in the respiratory chain and showed antioxidant activity. C4R1 taken at low, non-uncoupling concentrations enhanced the uncoupling activity of fatty acids (e.g. palmitate). Relatively low C4R1 concentrations stimulated opening of a nonspecific Ca2+/Pi-dependent pore. ATP synthesis and hydrolysis were substantially inhibited by C4R1 at low concentrations that had no appreciable effects on respiration in states 4 and 3 and only slightly decreased the membrane potential. Besides, conditions were revealed allowing correct evaluation of the membrane potential generated at the inner mitochondrial membrane with safranin O upon oxidation of both succinate and NAD-dependent substrates in the presence of C4R1. PMID:27293102

  8. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI).

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared to Dic. The calculated kinetic constants of mechanism based inhibition of ATP synthesis by Dic showed maximal rate of inactivation (Kinact) of 2.64 ± 0.15 min(-1) and half maximal rate of inactivation (KI) of 7.69 ± 2.48 μM with Kinact/KI ratio of 0.343 min(-1) μM(-1). Co-incubation of mitochondria with Dic and reduced GSH exhibited a protective effect on Dic mediated inhibition of ATP synthesis. Our data from this study strongly indicate that Dic as well as its metabolites could be involved in the hepato-toxic action through inhibition of ATP synthesis.

  9. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria.

    PubMed

    Singh, H; Beckman, K; Poulos, A

    1994-04-01

    Fatty acid beta-oxidation was investigated in highly purified mitochondrial and peroxisomal preparations from rat liver. Under isotonic conditions, pristanic and homophytanic acid beta-oxidation in purified peroxisomes was severalfold greater compared to the oxidation in purified mitochondria. Branched chain fatty acid beta-oxidation in purified mitochondria was very low, and the oxidation was not stimulated by exogenous L-carnitine or L-malate. In contrast, stearic acid beta-oxidation by purified mitochondria depended upon exogenous L-carnitine, and the oxidation was stimulated by L-malate. Both mitochondrial and peroxisomal beta-oxidation of branched chain fatty acids was strongly inhibited by fatty acid-free bovine serum albumin, whereas stearic acid oxidation was either unaffected or slightly inhibited by bovine serum albumin. The results presented clearly indicate that branched chain fatty acids are mainly degraded in peroxisomes in rat liver. Branched chain fatty acids were efficiently converted to coenzyme A thioesters by purified mitochondria, peroxisomes, and microsomes. Although pristanic and phytanic acids were rapidly converted to pristanoyl-CoA and phytanoyl-CoA, respectively, they were not converted to carnitine esters by mitochondrial outer membranes. The results indicate that acyl-CoA synthetase and carnitine acyltransferase located at the mitochondrial outer membranes regulate entry of branched chain fatty acids into mitochondria. Mitochondrial carnitine acyltransferase I appears to be highly specific for straight chain fatty acids and restricts entry of branched chain fatty acids into mitochondria. Thus, branched chain fatty acids which cannot be transported across the mitochondrial membranes via the carnitine acyltransferase system are directed to peroxisomes for beta-oxidation. The results reported indicate that phytanic acid, the fatty acid which can be initially degraded by alpha-oxidation due to the presence of a beta-methyl group in the

  10. Cinnamon intake alleviates the combined effects of dietary-induced insulin resistance and acute stress on brain mitochondria.

    PubMed

    Couturier, Karine; Hininger, Isabelle; Poulet, Laurent; Anderson, Richard A; Roussel, Anne-Marie; Canini, Frédéric; Batandier, Cécile

    2016-02-01

    Insulin resistance (IR), which is a leading cause of the metabolic syndrome, results in early brain function alterations which may alter brain mitochondrial functioning. Previously, we demonstrated that rats fed a control diet and submitted to an acute restraint stress exhibited a delayed mitochondrial permeability transition pore (mPTP) opening. In this study, we evaluated the combined effects of dietary and emotional stressors as found in western way of life. We studied, in rats submitted or not to an acute stress, the effects of diet-induced IR on brain mitochondria, using a high fat/high fructose diet (HF(2)), as an IR inducer, with addition or not of cinnamon as an insulin sensitizer. We measured Ca(2+) retention capacity, respiration, ROS production, enzymatic activities and cell signaling activation. Under stress, HF(2) diet dramatically decreased the amount of Ca(2+) required to open the mPTP (13%) suggesting an adverse effect on mitochondrial survival. Cinnamon added to the diet corrected this negative effect and resulted in a partial recovery (30%). The effects related to cinnamon addition to the diet could be due to its antioxidant properties or to the observed modulation of PI3K-AKT-GSK3β and MAPK-P38 pathways or to a combination of both. These data suggest a protective effect of cinnamon on brain mitochondria against the negative impact of an HF(2) diet. Cinnamon could be beneficial to counteract deleterious dietary effects in stressed conditions. PMID:26878796

  11. Purification and characterization of novel "2-arylpropionyl-CoA epimerases" from rat liver cytosol and mitochondria.

    PubMed

    Shieh, W R; Chen, C S

    1993-02-15

    Investigation on the biochemical isomerization of ibuprofen led us to the successful purification of "2-arylpropionyl-CoA epimerase" from rat liver cytosol and mitochondria. The purified enzymes from both subcellular fractions exhibit similar physical and catalytic properties and are distinctly different from rat liver methylmalonyl-CoA epimerase. Both are monomeric proteins with an apparent molecular mass of 42 kDa and show similar contents of most amino acids. Their UV spectra gave no indication of any bound cofactors, and their enzyme activities were not affected by exposure to EDTA or metal ions (except Cu2+). These results suggest that the cytosolic and mitochondrial epimerases may be structurally related. The purified enzymes catalyze the epimerization of various 2-arylpropionyl-CoAs with some degree of stereochemical differentiation. For 2-(4-isobutylphenyl)propionyl-CoA, the equilibrium constant was estimated to be 1.5 in favor of the R-isomer. Evidence indicated that the proton exchange may be mediated by a 2-base mechanism and that a carboxylic residue in the active site may serve as a general base for proton abstraction.

  12. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    PubMed

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Oxidative Inactivation of Liver Mitochondria in High Fructose Diet-Induced Metabolic Syndrome in Rats: Effect of Glycyrrhizin Treatment.

    PubMed

    Sil, Rajarshi; Chakraborti, Abhay Sankar

    2016-09-01

    Metabolic syndrome is a serious health problem in the present world. Glycyrrhizin, a triterpenoid saponin of licorice (Glycyrrhiza glabra) root, has been reported to ameliorate the primary complications and hepatocellular damage in rats with the syndrome. In this study, we have explored metabolic syndrome-induced changes in liver mitochondrial function and effect of glycyrrhizin against the changes. Metabolic syndrome was induced in rats by high fructose (60%) diet for 6 weeks. The rats were then treated with glycyrrhizin (50 mg/kg body weight) by single intra-peritoneal injection. After 2 weeks of the treatment, the rats were sacrificed to collect liver tissue. Elevated mitochondrial ROS, lipid peroxidation and protein carbonyl, and decreased reduced glutathione content indicated oxidative stress in metabolic syndrome. Loss of mitochondrial inner membrane cardiolipin was observed. Mitochondrial complex I activity did not change but complex IV activity decreased significantly. Mitochondrial MTT reduction ability, membrane potential, phosphate utilisation and oxygen consumption decreased in metabolic syndrome. Reduced mitochondrial aconitase activity and increased aconitase carbonyl content suggested oxidative damage of the enzyme. Elevated Fe(2+) ion level in mitochondria might be associated with increased ROS generation in metabolic syndrome. Glycyrrhizin effectively attenuated mitochondrial oxidative stress and aconitase degradation, and improved electron transport chain activity. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27255442

  14. Rotenone exerts similar stimulatory effects on H2O2 production by isolated brain mitochondria from young-adult and old rats.

    PubMed

    Michelini, Luiz G B; Figueira, Tiago R; Siqueira-Santos, Edilene S; Castilho, Roger F

    2015-03-01

    Chronic and systemic treatment of rodents with rotenone, a classical inhibitor of mitochondrial respiratory complex I, results in neurochemical, behavioral, and neuropathological features of Parkinson's disease. The aim of the present study was to evaluate whether brain mitochondria from old rats (24 months old) would be more susceptible to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 than mitochondria from young-adult rats (3-4 months old). Isolated brain mitochondria were incubated in the presence of different rotenone concentrations (5, 10, and 100nM), and oxygen consumption and H2O2 production were measured during respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration). Respiratory state 3 and citrate synthase activity were significantly lower in mitochondria from old rats. Mitochondria from young-adult and old rats showed similar sensitivity to rotenone-induced inhibition of oxygen consumption. Similarly, H2O2 production rates by both types of mitochondria were dose-dependently stimulated to the same extent by increasing concentrations of rotenone. We conclude that rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from young-adult and old rats. Therefore, aging does not increase the mitochondrial H2O2 generation in response to complex I inhibition.

  15. Pathological characteristics of liver allografts from donation after brain death followed by cardiac death in pigs.

    PubMed

    Ye, Hui; Wang, Dong-Ping; Zhang, Chuan-Zhao; Zhang, Long-Juan; Wang, Hao-Chen; Li, Zhuo-Hui; Chen, Zhen; Zhang, Tao; Cai, Chang-Jie; Ju, Wei-Qiang; Ma, Yi; Guo, Zhi-Yong; He, Xiao-Shun

    2014-10-01

    Donation after brain death followed by circulatory death (DBCD) is a unique practice in China. The aim of this study was to define the pathologic characteristics of DBCD liver allografts in a porcine model. Fifteen male pigs (25-30 kg) were allocated randomly into donation after brain death (DBD), donation after circulatory death (DCD) and DBCD groups. Brain death was induced by augmenting intracranial pressure. Circulatory death was induced by withdrawal of life support in DBCD group and by venous injection of 40 mL 10% potassium chloride in DCD group. The donor livers were perfused in situ and kept in cold storage for 4 h. Liver tissue and common bile duct samples were collected for hematoxylin and eosin staining, TUNEL testing and electron microscopic examination. Spot necrosis was found in hepatic parenchyma of DBD and DBCD groups, while a large area of necrosis was shown in DCD group. The apoptosis rate of hepatocytes in DBD [(0.56±0.30)%] and DBCD [(0.50 ± 0.11)%] groups was much lower than that in DCD group [(3.78±0.33)%] (P<0.05). And there was no significant difference between DBD group and DBCD group (P>0.05)). The structures of bile duct were intact in both DBD and DBCD groups, while the biliary epithelium was totally damaged in DCD group. Under electron microscope, the DBD hepatocytes were characterized by intact cell membrane, well-organized endoplasmic reticulum, mild mitochondria edema and abundant glycogens. Broken cell membrane, mild inflammatory cell infiltration and sinusoidal epithelium edema, as well as reduced glycogen volume, were found in the DBCD hepatocytes. The DCD hepatocytes had more profound cell organelle injury and much less glycogen storage. In conclusion, the preservation injury of DBCD liver allografts is much less severe than that of un-controlled DCD, but more severe than that of DBD liver allografts under electron microscope, which might reflect post-transplant liver function to some extent.

  16. The role of ADP in the modulation of the calcium-efflux pathway in rat brain mitochondria.

    PubMed Central

    Vitorica, J; Satrústegui, J

    1985-01-01

    The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed. PMID:3977831

  17. Inflammation decreases the level of alpha7 nicotinic acetylcholine receptors in the brain mitochondria and makes them more susceptible to apoptosis induction.

    PubMed

    Lykhmus, Olena; Gergalova, Galyna; Zouridakis, Marios; Tzartos, Socrates; Komisarenko, Sergiy; Skok, Maryna

    2015-11-01

    α7 nicotinic acetylcholine receptors (α7 nAChRs) are involved in regulating inflammatory reactions, as well as the cell viability. They are expressed in both the plasma membrane and mitochondria of eukaryotic cells. Previously we found that neuroinflammation resulted in the decrease of α7 nAChR density in the brain of mice and was accompanied by accumulation of amyloid-beta (Aβ) peptides and memory impairment. In the present paper, it is shown that inflammation induced by either regular bacterial lipopolysaccharide (LPS) injections or immunizations with α7 nAChR extracellular domain (1-208) affected also the brain cell mitochondria. Using various modifications of sandwich ELISA, we observed the decrease of α7 nAChRs and accumulation of Aβ(1-40) and Aβ(1-42) in mitochondria of immunized or LPS-treated mice compared to control ones. Mitochondria of treated mice responded with cytochrome c release to lower Ca(2+) concentrations than mitochondria of control mice and were less sensitive to its attenuation with α7 nAChR agonist PNU282987. It is concluded that inflammation decreases α7 nAChR expression in both mitochondria and cell plasma membrane and makes mitochondria more susceptible to apoptosis induction.

  18. A novel PGC-1α isoform in brain localizes to mitochondria and associates with PINK1 and VDAC

    SciTech Connect

    Choi, Joungil; Batchu, Vera Venkatanaresh Kumar; Schubert, Manfred; Castellani, Rudolph J.; Russell, James W.

    2013-06-14

    Highlights: •Novel 35 kDa PGC-1α localizes to mitochondrial inner membrane and matrix in brain. •Mitochondrial localization of 35 kDa PGC-1α depends on VDAC protein. •Mitochondrial localization of 35 kDa PGC-1α depends on membrane potential. •The 35 kDa PGC-1α associates and colocalizes with PINK in brain mitochondria. -- Abstract: Peroxisome proliferator-activated receptor-gamma co-activator 1α (PGC-1α) and PTEN-induced putative kinase 1 (PINK1) are powerful regulators of mitochondrial function. Here, we report that a previously unrecognized, novel 35 kDa PGC-1α isoform localizes to the mitochondrial inner membrane and matrix in brain as determined by protease protection and carbonate extraction assays, as well as by immunoelectron microscopy. Immunoelectron microscopy and import experiments in vitro revealed that 35 kDa PGC-1α colocalizes and interacts with the voltage-dependent anion channel (VDAC), and that its import depends on VDAC. Valinomycin treatment which depolarizes the membrane potential, abolished mitochondrial localization of the 35 kDa PGC-1α. Using blue native-PAGE, co-immunoprecipitation, and immunoelectron microscopy analyses, we found that the 35 kDa PGC-1α binds and colocalizes with PINK1 in brain mitochondria. This is the first report regarding mitochondrial localization of a novel 35 kDa PGC-1α isoform and its association with PINK1, suggesting possible regulatory roles for mitochondrial function in the brain.

  19. Effect of poly(amido)amine (PAMAM) G4 dendrimer on heart and liver mitochondria in an animal model of diabetes.

    PubMed

    Labieniec, Magdalena; Ulicna, Olga; Vancova, Olga; Kucharska, Jarmila; Gabryelak, Teresa; Watala, Cezary

    2010-01-01

    Diabetes-induced injury related to hyperglycaemia is associated with impaired function of mitochondria. Regardless of their cytotoxicity, PAMAM [poly(amido)amine] G4 dendrimers lower plasma glucose and suppress long-term markers of diabetic hyperglycaemia in experimental diabetes. In the present study, we aimed at verifying whether such modulatory effects of PAMAM G4 (0.5 micromol/kg of body weight daily for 60 days) may contribute to improved respiration in heart and liver mitochondria from streptozotocin-diabetic rats. PAMAM G4 alleviated long-term markers of hyperglycaemia and reduced blood and tissue lipophilic antioxidants in diabetic animals, but did not restore mitochondrial function. In hearts, but not livers, dendrimers further reduced respiratory function and oxidative phosphorylation. Thus ameliorating effects of PAMAM G4 on glycation and glycoxidation in experimental diabetes are not sufficient to restore the impaired mitochondrial function in diabetes. PMID:19947941

  20. Roles of reactive oxygen species and mitochondria in cadmium-induced injury of liver cells.

    PubMed

    Liu, Tao; He, Wenting; Yan, Chuan; Qi, Yongmei; Zhang, Yingmei

    2011-04-01

    The roles of reactive oxygen species (ROS) and mitochondrial damage in the cadmium (Cd)-induced injury of liver cells were studied by using N-acetyl-L-cysteine (NAC) and acetyl-L-carnitine hydrochloride (ALCAR). After exposure of experimental rats to cadmium (Cd) for 16 h, mitochondrial membrane potential (MMP), ROS production, glutathione peroxidase (GSH-Px) activity, glutathione (GSH) content, malondialdehyde (MDA) content and DNA single-strand break (DNA-SSB) were analyzed. Loss of MMP, increase of ROS production, inhibition of GSH-Px activity, elevation of GSH content, rise of MDA content and DNA-SSB level suggest the participation of ROS and mitochondrion in Cd-induced injury of liver cell. NAC pretreatment attenuated oxidative stress, reversed the decline in GSH-Px activity and reduced GSH and MDA levels significantly. However, Cd-induced loss in MMP was significantly exacerbated by NAC. For another, ALCAR did not perform as well as NAC in terms of reducing ROS production, restoring GSH-Px activity and reducing GSH content. Nevertheless, it significantly improved the recovery of MMP and reduction of MDA content. In addition, conspicuous DNA damage was observed in the samples treated with NAC or ALCAR, indicating Cd could attack DNA through other pathways. These results suggest that oxidative stress or mitochondrial impairment plays a main role in different injuries respectively.

  1. Side chain hydroxylation of C27-steroids and vitamin D3 by a cytochrome P-450 enzyme system isolated from human liver mitochondria

    SciTech Connect

    Oftebro, H.; Saarem, K.; Bjoerkhem, I.; Pedersen, J.I.

    1981-11-01

    The present study was undertaken to obtain information on the involvement of cytochrome P-450 in the 26-hydroxylation on bile acid intermediates and in the 25-hydroxylation of vitamin D3 in human liver mitochondria. Cytochrome P-450 was solubilized from human liver mitochondria and purified two times to a specific content of 0.125 nmol per mg protein. Furthermore, a ferredoxin was isolated from the mitochondria and partly purified. This iron-sulfur protein had properties similar to bovine adrenal ferredoxin. A mitochondrial NADPH-ferredoxin reductase was also isolated and purified to homogeneity. This enzyme was a flavoprotein with properties very similar to the bovine adrenal NADPH-ferredoxin reductase. The cytochrome P-450 preparation catalyzed 26-hydroxylation of C27-steroids and 25-hydroxylation of vitamin D3 when reconstructed with NADPH, the ferredoxin and the ferredoxin reductase. With different substrates the following turnover numbers (nmol product X nmol P-450(-1) X min-1) were found: cholesterol, 8; 5-cholestene-3 beta, 7 alpha-diol, 10; 7 alpha-hydroxy-4-cholesten-3-one, 23; 7 alpha, 12 alpha-dihydroxy-4-cholesten-3-one, 27; 5 beta-cholestane-3 alpha, 7 alpha-diol, 28; 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, 41; and vitamin D3, 0.16. The hydroxylation reactions were inhibited by CO and metyrapone. The human liver mitochondrial ferredoxin and ferredoxin reductase could be replaced by adrenal ferredoxin and adrenal ferredoxin reductase without reduction of activity, but they could not be replaced by microsomal NADPH-cytochrome P-450 reductase. It is concluded that human liver mitochondria contain cytochrome P-450 involved in the oxidation of the side chain of C27-steroids and vitamin D3.

  2. The effect of artichoke (Cynara scolymus L.) extract on respiratory chain system activity in rat liver mitochondria.

    PubMed

    Juzyszyn, Z; Czerny, B; Myśliwiec, Z; Pawlik, A; Droździk, M

    2010-06-01

    The effect of artichoke extract on mitochondrial respiratory chain (MRC) activity in isolated rat liver mitochondria (including reaction kinetics) was studied. The effect of the extract on the activity of isolated cytochrome oxidase was also studied. Extract in the range of 0.68-2.72 microg/ml demonstrated potent and concentration-dependent inhibitory activity. Concentrations > or =5.4 microg/ml entirely inhibited MRC activity. The succinate oxidase system (MRC complexes II-IV) was the most potently inhibited, its activity at an extract concentration of 1.36 microg/ml being reduced by 63.3% compared with the control (p < 0.05). The results suggest a complex inhibitory mechanism of the extract. Inhibition of the succinate oxidase system was competitive (K(i) = 0.23 microg/ml), whereas isolated cytochrome oxidase was inhibited noncompetitively (K(i) = 126 microg/ml). The results of this study suggest that the salubrious effects of artichoke extracts may rely in part on the effects of their active compounds on the activity of the mitochondrial respiratory chain system.

  3. In vitro reactive oxygen species production by mitochondria from the rabbitfish Siganus fuscessens livers and the effects of Irgarol-1051.

    PubMed

    Liang, Bo; Wang, Li; He, Tangtian; Liu, Wenhua; Li, Qi; Li, Mingfeng

    2013-03-01

    In this study, the mitochondria from the livers of Siganus fuscessens were exposed to the Irgarol-1051with or without respiratory chain inhibitors using succinate or malate as the substrate, and the effects on mitochondrial ROS production were tested. The mitochondrial ROS production was significantly enhanced by antimycin A with an increase of more than three folds but not by rotenone and NaN3, and this may suggest complex III is the major ROS-producing site. Irgarol-1051 treatments gave a somewhat contradictory result: this chemical can inhibit the mitochondrial ROS production but the inhibition decreased with the increase of doses. These contradictory data about Irgarol-1051 may be explained by the balance between the effects of inhibition through the opening of small-size pores and stimulation through blocking electron transfer, but the mechanism laid behind needs more evidence to support. As Irgarol-1051 was continuously used in antifouling and its bio-concentration factor is up to 160 in fish, the toxic effect of Irgarol-1051 on aquatic animals should be paid more attention to.

  4. BAX insertion, oligomerization, and outer membrane permeabilization in brain mitochondria: role of permeability transition and SH-redox regulation

    PubMed Central

    Brustovetsky, Tatiana; Li, Tsyregma; Yang, Youyun; Zhang, Jiang-Ting; Antonsson, Bruno; Brustovetsky, Nickolay

    2010-01-01

    BAX cooperates with truncated BID (tBID) and Ca2+ in permeabilizing the outer mitochondrial membrane (OMM) and releasing mitochondrial apoptogenic proteins. The mechanisms of this cooperation are still unclear. Here we show that in isolated brain mitochondria, recombinant BAX readily self-integrates/oligomerizes in the OMM but produces only a minuscule release of cytochrome c, indicating that BAX insertion/oligomerization in the OMM does not always lead to massive OMM permeabilization. Ca2+ in a mitochondrial permeability transition (mPT)-dependent and recombinant tBID in an mPT-independent manner promoted BAX insertion/oligomerization in the OMM and augmented cytochrome c release. Neither tBID nor Ca2+ induced BAX oligomerization in the solution without mitochondria, suggesting that BAX oligomerization required interaction with the organelles and followed rather than preceded BAX insertion in the OMM. Recombinant Bcl-xL failed to prevent BAX insertion/oligomerization in the OMM but strongly attenuated cytochrome c release. On the other hand, a reducing agent, dithiothreitol (DTT), inhibited BAX insertion/oligomerization augmented by tBID or Ca2+ and suppressed the BAX-mediated release of cytochrome c and Smac/DIABLO but failed to inhibit Ca2+-induced swelling. Altogether, these data suggest that in brain mitochondria, BAX insertion/oligomerization can be dissociated from OMM permeabilization and that tBID and Ca2+ stimulate BAX insertion/oligomerization and BAX-mediated OMM permeabilization by different mechanisms involving mPT induction and modulation of the SH-redox state. PMID:20655869

  5. Diet-Sensitive Sources of Reactive Oxygen Species in Liver Mitochondria: Role of Very Long Chain Acyl-CoA Dehydrogenases

    PubMed Central

    Cardoso, Ariel R.; Kakimoto, Pâmela A. H. B.; Kowaltowski, Alicia J.

    2013-01-01

    High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD+. Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS. PMID:24116206

  6. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats.

    PubMed

    Tian, Jingwei; Fu, Fenghua; Li, Guisheng; Gao, Yubai; Zhang, Yunjuan; Meng, Qingsheng; Li, Changlu; Liu, Fu

    2009-08-01

    SMND-309, a novel compound named (2E)-2-{6-[(E)-2-carboxylvinyl]-2,3-dihydroxyphenyl}-3-(3,4-dihydroxyphenyl) propenoic acid, is a new derivate of salvianolic acid B. The present study was conducted to investigate whether SMND-309 has a protective effect on brain injury after focal cerebral ischemia, and if it did so, to investigate its effects on brain mitochondria. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests and brain patho-physiological tests were used to evaluate the damage to central nervous system. Origin targets including mitochondria production of reactive oxygen species, antioxidant potentia, membrane potential, energy metabolism, mitochondrial respiratory enzymes activities and mitochondria swelling degree were evaluated. The results showed that SMND-309 decreased neurological deficit scores, reduced the number of dead hippocampal neuronal cells in accordance with its depression on mitochondria swelling degree, reactive oxygen species production, improvements on mitochondria swelling, energy metabolism, membrane potential level and mitochondrial respiratory chain complex activities. All of these findings indicate that SMND-309 exerted potent neuroprotective effects in the model of permanent cerebral ischemia, contributed to its protections on brain mitochondrial structure and function. PMID:19481432

  7. Protections of SMND-309, a novel derivate of salvianolic acid B, on brain mitochondria contribute to injury amelioration in cerebral ischemia rats.

    PubMed

    Tian, Jingwei; Fu, Fenghua; Li, Guisheng; Gao, Yubai; Zhang, Yunjuan; Meng, Qingsheng; Li, Changlu; Liu, Fu

    2009-08-01

    SMND-309, a novel compound named (2E)-2-{6-[(E)-2-carboxylvinyl]-2,3-dihydroxyphenyl}-3-(3,4-dihydroxyphenyl) propenoic acid, is a new derivate of salvianolic acid B. The present study was conducted to investigate whether SMND-309 has a protective effect on brain injury after focal cerebral ischemia, and if it did so, to investigate its effects on brain mitochondria. Adult male SD rats were subjected to middle cerebral artery occlusion (MCAO) by bipolar electro-coagulation. Behavioral tests and brain patho-physiological tests were used to evaluate the damage to central nervous system. Origin targets including mitochondria production of reactive oxygen species, antioxidant potentia, membrane potential, energy metabolism, mitochondrial respiratory enzymes activities and mitochondria swelling degree were evaluated. The results showed that SMND-309 decreased neurological deficit scores, reduced the number of dead hippocampal neuronal cells in accordance with its depression on mitochondria swelling degree, reactive oxygen species production, improvements on mitochondria swelling, energy metabolism, membrane potential level and mitochondrial respiratory chain complex activities. All of these findings indicate that SMND-309 exerted potent neuroprotective effects in the model of permanent cerebral ischemia, contributed to its protections on brain mitochondrial structure and function.

  8. Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria.

    PubMed

    Abo-Khatwa, A N; al-Robai, A A; al-Jawhari, D A

    1996-01-01

    Three lichen acids-namely, (+)usnic acid, vulpinic acid, and atranorin-were isolated from three lichen species (Usnea articulata, Letharia vulpina, and Parmelia tinctorum, respectively). The effects of these lichen products on mice-liver mitochondrial oxidative functions in various respiratory states and on oxidative phosphorylation were studied polarographically in vitro. The lichen acids exhibited characteristics of the 2,4-dinitrophenol (DNP), a classical uncoupler of oxidative phosphorylation. Thus, they released respiratory control and oligomycin inhibited respiration, hindered ATP synthesis, and enhanced Mg(+2)-ATPase activity. (+)Usnic acid at a concentration of 0.75 microM inhibited ADP/O ratio by 50%, caused maximal stimulation of both state-4 respiration (100%) and ATPase activity (300%). Atranorin was the only lichen acid with no significant effect on ATPase. The uncoupling effect was dose-dependent in all cases. The minimal concentrations required to cause complete uncoupling of oxidative phosphorylation were as follows: (+)usnic acid (1 microM), vulpinic acid, atranorin (5 microM) and DNP (50 microM). It was postulated that the three lichen acids induce uncoupling by acting on the inner mitochondrial membrane through their lipophilic properties and protonophoric activities. PMID:8726330

  9. Neuronal hemoglobin in mitochondria is reduced by forming a complex with α-synuclein in aging monkey brains

    PubMed Central

    Yang, Weiwei; Li, Xuran; Li, Xin; Li, Xuying; Yu, Shun

    2016-01-01

    Neuronal hemoglobin (nHb) plays a critical role in maintaining normal mitochondrial functioning in the brain. However, in aging and Parkinson's disease (PD) brains, mitochondrial nHb levels are greatly reduced in neurons that accumulate α-synuclein (α-syn), suggesting a link between the two proteins. In this study, we demonstrate that α-syn and Hb can form a complex in both brain tissue and peripheral red blood cells (RBCs) in aging cynomolgus monkeys. nHb-α-syn complex levels in the mitochondrial fraction of the striatum decreased with age; this was negatively correlated with levels in the cytoplasmic fraction and in RBCs and was accompanied by a reduction in mitochondrial free nHb. In contrast, no changes in nHb-α-syn complex formation or free nHb levels were detected in the cerebellum. In vitro studies using a cultured dopaminergic cell line showed that intracellular accumulation of α-syn caused an elevation in nHb-α-syn complex levels in both mitochondrial and cytoplasmic fractions as well as a reduction in mitochondrial free nHb. nHb overexpression increased free nHb levels in mitochondria, stabilized mitochondrial membrane potential, and reduced α-syn-induced apoptosis. The above results suggest that α-syn forms a complex with nHb in selected regions of the aging brain, thereby decreasing mitochondrial function and increasing the risk of PD. PMID:26824991

  10. Developmental programming by high fructose decreases phosphorylation efficiency in aging offspring brain mitochondria, correlating with enhanced UCP5 expression

    PubMed Central

    Mortensen, Ole H; Larsen, Lea H; Ørstrup, Laura KH; Hansen, Lillian HL; Grunnet, Niels; Quistorff, Bjørn

    2014-01-01

    Fructose has recently been observed to affect brain metabolism and cognitive function in adults. Yet, possible late-onset effects by gestational fructose exposure have not been examined. We evaluated mitochondrial function in the brain of aging (15 months) male offspring of Fischer F344 rat dams fed a high-fructose diet (50% energy from fructose) during gestation and lactation. Maternal fructose exposure caused a significantly lower body weight of the offspring throughout life after weaning, while birth weight, litter size, and body fat percentage were unaffected. Isolated brain mitochondria displayed a significantly increased state 3 respiration of 8%, with the substrate combinations malate/pyruvate, malate/pyruvate/succinate, and malate/pyruvate/succinate/rotenone, as well as a significant decrease in the P/O2 ratio, compared with the control. Uncoupling protein 5 (UCP5) protein levels increased in the fructose group compared with the control (P=0.03) and both UCP5 mRNA and protein levels were inversely correlated with the P/O2 ratio (P=0.008 and 0.03, respectively), suggesting that UCP5 may have a role in the observed decreased phosphorylation efficiency. In conclusion, maternal high-fructose diet during gestation and lactation has long-term effects (fetal programming) on brain mitochondrial function in aging rats, which appears to be linked to an increase in UCP5 protein levels. PMID:24756078

  11. Mitochondria in White, Brown, and Beige Adipocytes.

    PubMed

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  12. Mitochondria in White, Brown, and Beige Adipocytes

    PubMed Central

    Cedikova, Miroslava; Kripnerová, Michaela; Dvorakova, Jana; Pitule, Pavel; Grundmanova, Martina; Babuska, Vaclav; Mullerova, Dana; Kuncova, Jitka

    2016-01-01

    Mitochondria play a key role in energy metabolism in many tissues, including cardiac and skeletal muscle, brain, liver, and adipose tissue. Three types of adipose depots can be identified in mammals, commonly classified according to their colour appearance: the white (WAT), the brown (BAT), and the beige/brite/brown-like (bAT) adipose tissues. WAT is mainly involved in the storage and mobilization of energy and BAT is predominantly responsible for nonshivering thermogenesis. Recent data suggest that adipocyte mitochondria might play an important role in the development of obesity through defects in mitochondrial lipogenesis and lipolysis, regulation of adipocyte differentiation, apoptosis, production of oxygen radicals, efficiency of oxidative phosphorylation, and regulation of conversion of white adipocytes into brown-like adipocytes. This review summarizes the main characteristics of each adipose tissue subtype and describes morphological and functional modifications focusing on mitochondria and their activity in healthy and unhealthy adipocytes. PMID:27073398

  13. Imaging Plasmodium Immunobiology in Liver, Brain, and Lung

    PubMed Central

    Frevert, Ute; Nacer, Adéla; Cabrera, Mynthia; Movila, Alexandru; Leberl, Maike

    2013-01-01

    Plasmodium falciparum malaria is responsible for the deaths of over half a million African children annually. Until a decade ago, dynamic analysis of the malaria parasite was limited to in vitro systems with the typical limitations associated with 2D monocultures or entirely artificial surfaces. Due to extremely low parasite densities, the liver was considered a black box in terms of Plasmodium sporozoite invasion, liver stage development, and merozoite release into the blood. Further, nothing was known about the behavior of blood stage parasites in organs such as brain where clinical signs manifest and the ensuing immune response of the host that may ultimately result in a fatal outcome. The advent of fluorescent parasites, advances in imaging technology, and availability of an ever-increasing number of cellular and molecular probes have helped illuminate many steps along the pathogenetic cascade of this deadly tropical parasite. PMID:24076429

  14. Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases.

    PubMed

    Karahalil, Bensu; de Souza-Pinto, Nadja C; Parsons, Jason L; Elder, Rhoderick H; Bohr, Vilhelm A

    2003-09-01

    Mitochondrial DNA is constantly exposed to high levels of endogenously produced reactive oxygen species, resulting in elevated levels of oxidative damaged DNA bases. A large spectrum of DNA base alterations can be detected after oxidative stress, and many of these are highly mutagenic. Thus, an efficient repair of these is necessary for survival. Some of the DNA repair pathways involved have been characterized, but others are not yet determined. A DNA repair activity for thymine glycol and other oxidized pyrimidines has been described in mammalian mitochondria, but the nature of the glycosylases involved in this pathway remains unclear. The generation of mouse strains lacking murine thymine glycol-DNA glycosylase (mNTH1) and/or murine 8-oxoguanine-DNA glycosylase (mOGG1), the two major DNA N-glycosylase/apurinic/apyrimidinic (AP) lyases involved in the repair of oxidative base damage in the nucleus, has provided very useful biological model systems for the study of the function of these and other glycosylases in mitochondrial DNA repair. In this study, mouse liver mitochondrial extracts were generated from mNTH1-, mOGG1-, and [mNTH1, mOGG1]-deficient mice to ascertain the role of each of these glycosylases in the repair of oxidized pyrimidine base damage. We also characterized for the first time the incision of various modified bases in mitochondrial extracts from a double-knock-out [mNTH1, mOGG1]-deficient mouse. We show that mNTH1 is responsible for the repair of thymine glycols in mitochondrial DNA, whereas other glycosylase/AP lyases also participate in removing other oxidized pyrimidines, such as 5-hydroxycytosine and 5-hydroxyuracil. We did not detect a backup glycosylase or glycosylase/AP lyase activity for thymine glycol in the mitochondrial mouse extracts.

  15. The synergistic decarboxylation of glyoxylate and 2-oxoglutarate by an enzyme system from pig-liver mitochondria.

    PubMed

    Stewart, P R; Quayle, J R

    1967-03-01

    1. An enzyme system that catalyses a synergistic decarboxylation of glyoxylate and 2-oxoglutarate has been purified from pig-liver mitochondria. 2. The purified system is specific for glyoxylate and 2-oxoglutarate as substrates, although in earlier stages of purification glycine and l-glutamate are also active. 3. The reaction is inhibited strongly by EDTA and N-ethylmaleimide. Substrate analogues, present at concentrations equimolar with respect to the substrates, are not effective as inhibitors. 4. The reaction proceeds in the absence of added cofactors. Magnesium chloride, mercaptoethanol and sucrose stimulate the reaction, and stabilize the activity of the enzyme. 5. The pH optimum of the reaction is 7.0. The K(m) values of glyoxylate and 2-oxoglutarate, at saturating concentration of the corresponding co-substrate, are 16mm and 3.6mm respectively. 6. Isotopic work with specifically labelled [(14)C]glyoxylate and 2-oxo[(14)C]-glutarate suggests that the enzyme system catalyses an initial condensation of glyoxylate and 2-oxoglutarate that results in, or leads to, release of C-1 of both substrates as carbon dioxide. C-2 of glyoxylate and C-5 of 2-oxoglutarate do not appear as carbon dioxide. 7. The stoicheiometry of the reaction is complex. During the initial stages of the reaction, more carbon dioxide is recovered from 2-oxoglutarate than from glyoxylate. Subsequently, there is a disproportionate increase with time of carbon dioxide evolution from the carboxyl group of glyoxylate. The excess of decarboxylation of glyoxylate over 2-oxogluturate is further increased by treatment of reaction products with acid.

  16. Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins.

    PubMed

    Mohammadi-Bardbori, Afshin; Najibi, Asma; Amirzadegan, Najmeh; Gharibi, Raziyeh; Dashti, Ayat; Omidi, Mahmoud; Saeedi, Arastoo; Ghafarian-Bahreman, Ali; Niknahad, Hossein

    2015-09-01

    CoQ10 shares a biosynthetic pathway with cholesterol therefore it can be a potential target of the widely available lipid-lowering agents such as statins. Statins are the most widely prescribed cholesterol-lowering drugs with the ability to inhibit HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase. Preclinical and clinical safety data have shown that statins do not cause serious adverse effects in humans. However, their long-term administration is associated with a variety of myopatic complaints. The aim of this study was to investigate whether CoQ10 supplementation of animals under high fat diet (HFD) treated with statins is able to bypass the mitochondrial metabolic defects or not? Animals were divided into 7 groups and fed with either regular (RD) or HFD during experiments. The first group considered as regular control and fed with a RD. Groups 2-7 including HFD control, CoQ10 (10mg/kg), simvastatin (30mg/kg), atorvastatin (30mg/kg), simvastatin+CoQ10 or atorvastatin+CoQ10 treated orally for 30 days and fed with HFD. At the end of treatments, the animals were killed and blood samples were collected for biochemical examinations. The rat liver mitochondria were isolated and several mitochondrial indices including succinate dehydrogenase activity (SDA), ATP levels, mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPP) were determined. We found that triglyceride (Tg), cholesterol (Chol) and low-density lipoprotein (LDL) were augmented with HFD compared to RD and treatment with statins remarkably lowered the Tg, Chol and LDL levels. Mitochondrial parameters including, SDA, ATP levels, MMP and MPP were reduced with statin treatment and improved by co-administration with CoQ10. PMID:26007644

  17. The synergistic decarboxylation of glyoxylate and 2-oxoglutarate by an enzyme system from pig-liver mitochondria

    PubMed Central

    Stewart, P. R.; Quayle, J. R.

    1967-01-01

    1. An enzyme system that catalyses a synergistic decarboxylation of glyoxylate and 2-oxoglutarate has been purified from pig-liver mitochondria. 2. The purified system is specific for glyoxylate and 2-oxoglutarate as substrates, although in earlier stages of purification glycine and l-glutamate are also active. 3. The reaction is inhibited strongly by EDTA and N-ethylmaleimide. Substrate analogues, present at concentrations equimolar with respect to the substrates, are not effective as inhibitors. 4. The reaction proceeds in the absence of added cofactors. Magnesium chloride, mercaptoethanol and sucrose stimulate the reaction, and stabilize the activity of the enzyme. 5. The pH optimum of the reaction is 7·0. The Km values of glyoxylate and 2-oxoglutarate, at saturating concentration of the corresponding co-substrate, are 16mm and 3·6mm respectively. 6. Isotopic work with specifically labelled [14C]glyoxylate and 2-oxo[14C]-glutarate suggests that the enzyme system catalyses an initial condensation of glyoxylate and 2-oxoglutarate that results in, or leads to, release of C-1 of both substrates as carbon dioxide. C-2 of glyoxylate and C-5 of 2-oxoglutarate do not appear as carbon dioxide. 7. The stoicheiometry of the reaction is complex. During the initial stages of the reaction, more carbon dioxide is recovered from 2-oxoglutarate than from glyoxylate. Subsequently, there is a disproportionate increase with time of carbon dioxide evolution from the carboxyl group of glyoxylate. The excess of decarboxylation of glyoxylate over 2-oxogluturate is further increased by treatment of reaction products with acid. PMID:16742506

  18. Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins.

    PubMed

    Mohammadi-Bardbori, Afshin; Najibi, Asma; Amirzadegan, Najmeh; Gharibi, Raziyeh; Dashti, Ayat; Omidi, Mahmoud; Saeedi, Arastoo; Ghafarian-Bahreman, Ali; Niknahad, Hossein

    2015-09-01

    CoQ10 shares a biosynthetic pathway with cholesterol therefore it can be a potential target of the widely available lipid-lowering agents such as statins. Statins are the most widely prescribed cholesterol-lowering drugs with the ability to inhibit HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase. Preclinical and clinical safety data have shown that statins do not cause serious adverse effects in humans. However, their long-term administration is associated with a variety of myopatic complaints. The aim of this study was to investigate whether CoQ10 supplementation of animals under high fat diet (HFD) treated with statins is able to bypass the mitochondrial metabolic defects or not? Animals were divided into 7 groups and fed with either regular (RD) or HFD during experiments. The first group considered as regular control and fed with a RD. Groups 2-7 including HFD control, CoQ10 (10mg/kg), simvastatin (30mg/kg), atorvastatin (30mg/kg), simvastatin+CoQ10 or atorvastatin+CoQ10 treated orally for 30 days and fed with HFD. At the end of treatments, the animals were killed and blood samples were collected for biochemical examinations. The rat liver mitochondria were isolated and several mitochondrial indices including succinate dehydrogenase activity (SDA), ATP levels, mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPP) were determined. We found that triglyceride (Tg), cholesterol (Chol) and low-density lipoprotein (LDL) were augmented with HFD compared to RD and treatment with statins remarkably lowered the Tg, Chol and LDL levels. Mitochondrial parameters including, SDA, ATP levels, MMP and MPP were reduced with statin treatment and improved by co-administration with CoQ10.

  19. Resveratrol Directly Binds to Mitochondrial Complex I and Increases Oxidative Stress in Brain Mitochondria of Aged Mice

    PubMed Central

    Chupin, Stéphanie; Baron, Stéphanie; Nivet-Antoine, Valérie; Vessières, Emilie; Ayer, Audrey; Henrion, Daniel; Lenaers, Guy; Reynier, Pascal; Procaccio, Vincent

    2015-01-01

    Resveratrol is often described as a promising therapeutic molecule for numerous diseases, especially in metabolic and neurodegenerative disorders. While the mechanism of action is still debated, an increasing literature reports that resveratrol regulates the mitochondrial respiratory chain function. In a recent study we have identified mitochondrial complex I as a direct target of this molecule. Nevertheless, the mechanisms and consequences of such an interaction still require further investigation. In this study, we identified in silico by docking study a binding site for resveratrol at the nucleotide pocket of complex I. In vitro, using solubilized complex I, we demonstrated a competition between NAD+ and resveratrol. At low doses (<5μM), resveratrol stimulated complex I activity, whereas at high dose (50 μM) it rather decreased it. In vivo, in brain mitochondria from resveratrol treated young mice, we showed that complex I activity was increased, whereas the respiration rate was not improved. Moreover, in old mice with low antioxidant defenses, we demonstrated that complex I activation by resveratrol led to oxidative stress. These results bring new insights into the mechanism of action of resveratrol on mitochondria and highlight the importance of the balance between pro- and antioxidant effects of resveratrol depending on its dose and age. These parameters should be taken into account when clinical trials using resveratrol or analogues have to be designed. PMID:26684010

  20. Combined effect of G3139 and TSPO ligands on Ca(2+)-induced permeability transition in rat brain mitochondria.

    PubMed

    Azarashvili, T; Krestinina, O; Baburina, Yu; Odinokova, I; Grachev, D; Papadopoulos, V; Akatov, V; Lemasters, J J; Reiser, G

    2015-12-01

    Permeability of the mitochondrial outer membrane is determined by the activity of voltage-dependent anion channels (VDAC) which are regulated by many factors and proteins. One of the main partner-regulator of VDAC is the 18 kDa translocator protein (TSPO), whose role in the regulation of membrane permeability is not completely understood. We show that TSPO ligands, 1 μM PPIX and PK11195 at concentrations of 50 μM, accelerate opening of permeability transition pores (mPTP) in Ca(2+)-overloaded rat brain mitochondria (RBM). By contrast, PK11195 at 100 nM and anti-TSPO antibodies suppressed pore opening. Participation of VDAC in these processes was demonstrated by blocking VDAC with G3139, an 18-mer phosphorothioate oligonucleotides, which sensitized mitochondria to Ca(2+)-induced mPTP opening. Despite the inhibitory effect of 100 nM PK11195 and anti-TSPO antibodies alone, their combination with G3139 considerably stimulated the mPTP opening. Thus, 100 nM PK11195 and anti-TSPO antibody can modify permeability of the VDAC channel and mPTP. When VDAC channels are closed and TSPO is blocked, permeability of the VDAC for calcium seems to be the highest, which leads to accelerated pore opening.

  1. Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging.

    PubMed

    Head, E; Nukala, V N; Fenoglio, K A; Muggenburg, B A; Cotman, C W; Sullivan, P G

    2009-11-01

    Dogs develop cognitive decline and a progressive accumulation of oxidative damage. In a previous longitudinal study, we demonstrated that aged dogs treated with either an antioxidant diet or with behavioral enrichment show cognitive improvement. The antioxidant diet included cellular antioxidants (vitamins E and C, fruits and vegetables) and mitochondrial cofactors (lipoic acid and carnitine). Behavioral enrichment consisted of physical exercise, social enrichment, and cognitive training. We hypothesized that the antioxidant treatment improved neuronal function through increased mitochondrial function. Thus, we measured reactive oxygen species (ROS) production and bioenergetics in mitochondria isolated from young, aged, and treated aged animals. Aged canine brain mitochondria show significant increases in ROS production and a reduction in NADH-linked respiration. Mitochondrial function (ROS and NADH-linked respiration) was improved selectively in aged dogs treated with an antioxidant diet. In contrast, behavioral enrichment had no effect on any mitochondrial parameters. These results suggest that an antioxidant diet improves cognition by maintaining mitochondrial homeostasis, which may be an independent molecular pathway not engaged by behavioral enrichment.

  2. Effects of age, dietary, and behavioral enrichment on brain mitochondria in a canine model of human aging.

    PubMed

    Head, E; Nukala, V N; Fenoglio, K A; Muggenburg, B A; Cotman, C W; Sullivan, P G

    2009-11-01

    Dogs develop cognitive decline and a progressive accumulation of oxidative damage. In a previous longitudinal study, we demonstrated that aged dogs treated with either an antioxidant diet or with behavioral enrichment show cognitive improvement. The antioxidant diet included cellular antioxidants (vitamins E and C, fruits and vegetables) and mitochondrial cofactors (lipoic acid and carnitine). Behavioral enrichment consisted of physical exercise, social enrichment, and cognitive training. We hypothesized that the antioxidant treatment improved neuronal function through increased mitochondrial function. Thus, we measured reactive oxygen species (ROS) production and bioenergetics in mitochondria isolated from young, aged, and treated aged animals. Aged canine brain mitochondria show significant increases in ROS production and a reduction in NADH-linked respiration. Mitochondrial function (ROS and NADH-linked respiration) was improved selectively in aged dogs treated with an antioxidant diet. In contrast, behavioral enrichment had no effect on any mitochondrial parameters. These results suggest that an antioxidant diet improves cognition by maintaining mitochondrial homeostasis, which may be an independent molecular pathway not engaged by behavioral enrichment. PMID:19703441

  3. Selective Toxicity of Persian Gulf Sea Cucumber (Holothuria parva) and Sponge (Haliclona oculata) Methanolic Extracts on Liver Mitochondria Isolated from an Animal Model of Hepatocellular Carcinoma

    PubMed Central

    Seydi, Enayatollah; Motallebi, Abbasali; Dastbaz, Maryam; Dehghan, Sahar; Salimi, Ahmad; Nazemi, Melika; Pourahmad, Jalal

    2015-01-01

    Background: Natural products isolated from marine environments are well known for their pharmacodynamic potential in diverse disease treatments, such as for cancer or inflammatory conditions. Sea cucumbers are marine animals of the phylum Echinoderm and the class Holothuroidea, with leathery skin and gelatinous bodies. Sponges are important components of Persian Gulf animal communities, and the marine sponges of the genus Haliclona have been known to display broad-spectrum biological activity. Many studies have shown that sea cucumbers and sponges contain antioxidants and anti-cancer compounds. Objectives: This study was designed to determine the selective toxicity of Persian Gulf sea cucumber (Holothuria parva) and sponge (Haliclona oculata) methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma, as part of a national project that hopes to identify novel potential anticancer candidates among Iranian Persian Gulf flora and fauna. Materials and Methods: To induce hepatocarcinogenesis, rats were given diethylnitrosamine (DEN) injections (200 mg/kg i.p. by a single dose), and then the cancer was promoted with 2-acetylaminofluorene (2-AAF) (0.02 w/w) for two weeks. Histopathological evaluations were performed, and levels of liver injury markers and a specific liver cancer marker (alpha-fetoprotein), were determined for confirmation of hepatocellular carcinoma induction. Finally, mitochondria were isolated from cancerous and non-cancerous hepatocytes. Results: Our results showed that H. parva methanolic extracts (250, 500, and 1000 µg/mL) and H. oculata methanolic extracts (200, 400, and 800 µg/mL) increased reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), mitochondrial swelling, and cytochrome c release in the mitochondria obtained from cancerous hepatocytes, but not in mitochondria obtained from non-cancerous liver hepatocytes. These extracts also induced caspase-3 activation, which is

  4. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice.

    PubMed

    Zhao, Zilong; Wang, Min; Tian, Ye; Hilton, Tristan; Salsbery, Breia; Zhou, Eric Z; Wu, Xiaoping; Thiagarajan, Perumal; Boilard, Eric; Li, Min; Zhang, Jianning; Dong, Jing-Fei

    2016-06-01

    Cardiolipin (CL) is an anionic phospholipid located exclusively in the mitochondrial inner membrane. Its presence in blood indicates mitochondrial damage and release from injured cells. Here, we report the detection of CL-exposed brain-derived mitochondrial microparticles (mtMPs) at 17 547 ± 2677/μL in the peripheral blood of mice subjected to fluid percussion injury to the brain. These mtMPs accounted for 55.2% ± 12.6% of all plasma annexin V-binding microparticles found in the acute phase of injury. They were also released from cultured neuronal and glial cells undergoing apoptosis. The mtMPs synergized with platelets to facilitate vascular leakage by disrupting the endothelial barrier. The disrupted endothelial barrier allowed the release of mtMPs into the systemic circulation to promote coagulation in both traumatically injured and mtMP- or CL-injected mice, leading to enhanced fibrinolysis, vascular fibrin deposition, and thrombosis. This mtMP-induced coagulation was mediated by CL transported from the inner to the outer mitochondrial membrane and was blocked by the scavenging molecule lactadherin. The mtMP-bound CL was ∼1600 times as active as purified CL in promoting coagulation. This study uncovered a novel procoagulant activity of CL and CL-exposed mitochondria that may contribute to traumatic brain injury-associated coagulopathy and identified potential pathways to block this activity. PMID:27002118

  5. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; da Silva, Janaína Camacho; Wajner, Alessandro; Godoy, Kálita Dos Santos; Ribeiro, Rafael Teixeira; Wajner, Moacir

    2016-09-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency.

  6. cis-4-Decenoic and decanoic acids impair mitochondrial energy, redox and Ca(2+) homeostasis and induce mitochondrial permeability transition pore opening in rat brain and liver: Possible implications for the pathogenesis of MCAD deficiency.

    PubMed

    Amaral, Alexandre Umpierrez; Cecatto, Cristiane; da Silva, Janaína Camacho; Wajner, Alessandro; Godoy, Kálita Dos Santos; Ribeiro, Rafael Teixeira; Wajner, Moacir

    2016-09-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is biochemically characterized by tissue accumulation of octanoic (OA), decanoic (DA) and cis-4-decenoic (cDA) acids, as well as by their carnitine by-products. Untreated patients present episodic encephalopathic crises and biochemical liver alterations, whose pathophysiology is poorly known. We investigated the effects of OA, DA, cDA, octanoylcarnitine (OC) and decanoylcarnitine (DC) on critical mitochondrial functions in rat brain and liver. DA and cDA increased resting respiration and diminished ADP- and CCCP-stimulated respiration and complexes II-III and IV activities in both tissues. The data indicate that these compounds behave as uncouplers and metabolic inhibitors of oxidative phosphorylation. Noteworthy, metabolic inhibition was more evident in brain as compared to liver. DA and cDA also markedly decreased mitochondrial membrane potential, NAD(P)H content and Ca(2+) retention capacity in Ca(2+)-loaded brain and liver mitochondria. The reduction of Ca(2+) retention capacity was more pronounced in liver and totally prevented by cyclosporine A and ADP, as well as by ruthenium red, demonstrating the involvement of mitochondrial permeability transition (mPT) and Ca(2+). Furthermore, cDA induced lipid peroxidation in brain and liver mitochondria and increased hydrogen peroxide formation in brain, suggesting the participation of oxidative damage in cDA-induced alterations. Interestingly, OA, OC and DC did not alter the evaluated parameters, implying lower toxicity for these compounds. Our results suggest that DA and cDA, in contrast to OA and medium-chain acylcarnitines, disturb important mitochondrial functions in brain and liver by multiple mechanisms that are possibly involved in the neuropathology and liver alterations observed in MCAD deficiency. PMID:27240720

  7. Effect of thyroid state on enzymatic and non-enzymatic processes in H2O2 removal by liver mitochondria of male rats.

    PubMed

    Venditti, P; Napolitano, G; Barone, D; Coppola, I; Di Meo, S

    2015-03-01

    We investigated thyroid state effect on capacity of rat liver mitochondria to remove exogenously produced H2O2, determining their ability to decrease fluorescence generated by an H2O2 detector system. The rate of H2O2 removal by both non respiring and respiring mitochondria was increased by hyperthyroidism and decreased by hypothyroidism. However, the rate was higher in the presence of respiratory substrates, in particular pyruvate/malate, indicating a respiration-dependent process. Generally, the changes in H2O2 removal rates mirrored those in H2O2 release rates excluding the possibility that endogenous and exogenous H2O2 competed for the removing system. Pharmacological inhibition revealed thyroid state-linked differences in antioxidant enzyme contribution to H2O2 removal which were consistent with those in antioxidant system activities. The H2O2 removal was only in part due to enzymatic systems and that imputable to non-enzymatic processes was higher in hyperthyroid and lower in hypothyroid mitochondria. The levels of cytochrome c and the light emissions, due to luminol oxidation catalyzed by cytochrome/H2O2, exhibited similar changes with thyroid state supporting the idea that non-enzymatic scavenging was mainly due to hemoprotein action, which produces hydroxyl radicals. Further support was obtained showing that the whole antioxidant capacity, which provides an evaluation of capacity of the systems, different from cytochromes, assigned to H2O2 scavenging, was lower in hyperthyroid than in hypothyroid state. In conclusion, our results show that mitochondria from hyperthyroid liver have a high capacity for H2O2 removal, which, however, leading in great part to more reactive oxygen species, results harmful for such organelles.

  8. Effect of thyroid state on enzymatic and non-enzymatic processes in H2O2 removal by liver mitochondria of male rats.

    PubMed

    Venditti, P; Napolitano, G; Barone, D; Coppola, I; Di Meo, S

    2015-03-01

    We investigated thyroid state effect on capacity of rat liver mitochondria to remove exogenously produced H2O2, determining their ability to decrease fluorescence generated by an H2O2 detector system. The rate of H2O2 removal by both non respiring and respiring mitochondria was increased by hyperthyroidism and decreased by hypothyroidism. However, the rate was higher in the presence of respiratory substrates, in particular pyruvate/malate, indicating a respiration-dependent process. Generally, the changes in H2O2 removal rates mirrored those in H2O2 release rates excluding the possibility that endogenous and exogenous H2O2 competed for the removing system. Pharmacological inhibition revealed thyroid state-linked differences in antioxidant enzyme contribution to H2O2 removal which were consistent with those in antioxidant system activities. The H2O2 removal was only in part due to enzymatic systems and that imputable to non-enzymatic processes was higher in hyperthyroid and lower in hypothyroid mitochondria. The levels of cytochrome c and the light emissions, due to luminol oxidation catalyzed by cytochrome/H2O2, exhibited similar changes with thyroid state supporting the idea that non-enzymatic scavenging was mainly due to hemoprotein action, which produces hydroxyl radicals. Further support was obtained showing that the whole antioxidant capacity, which provides an evaluation of capacity of the systems, different from cytochromes, assigned to H2O2 scavenging, was lower in hyperthyroid than in hypothyroid state. In conclusion, our results show that mitochondria from hyperthyroid liver have a high capacity for H2O2 removal, which, however, leading in great part to more reactive oxygen species, results harmful for such organelles. PMID:25597632

  9. Cocaine and mitochondria-related signaling in the brain: A mechanistic view and future directions.

    PubMed

    de Oliveira, Marcos Roberto; Jardim, Fernanda Rafaela

    2016-01-01

    Cocaine is extensively used as a psychostimulant among subjects at different ages worldwide. Cocaine causes neuronal dysfunction and, consequently, negatively affects human behavior and decreases life quality severely. Cocaine acts through diverse mechanisms, including mitochondrial impairment and activation of cell signaling pathways associated to stress response. There is some controversy regarding the effect of cocaine in inducing cell death through apoptosis in different experimental models. The aim of the present work is to discuss data associated to the mitochondrial consequences of cocaine exposure of mammalian cells in several experimental models from in vitro to in vivo, including postmortem human tissue analyses. Furthermore, future directions are proposed in order to serve as a suggestive guide in relation to the next steps towards the complete elucidation of the mechanisms of toxicity elicited by cocaine upon mitochondria of neuronal cells.

  10. Cocaine and mitochondria-related signaling in the brain: A mechanistic view and future directions.

    PubMed

    de Oliveira, Marcos Roberto; Jardim, Fernanda Rafaela

    2016-01-01

    Cocaine is extensively used as a psychostimulant among subjects at different ages worldwide. Cocaine causes neuronal dysfunction and, consequently, negatively affects human behavior and decreases life quality severely. Cocaine acts through diverse mechanisms, including mitochondrial impairment and activation of cell signaling pathways associated to stress response. There is some controversy regarding the effect of cocaine in inducing cell death through apoptosis in different experimental models. The aim of the present work is to discuss data associated to the mitochondrial consequences of cocaine exposure of mammalian cells in several experimental models from in vitro to in vivo, including postmortem human tissue analyses. Furthermore, future directions are proposed in order to serve as a suggestive guide in relation to the next steps towards the complete elucidation of the mechanisms of toxicity elicited by cocaine upon mitochondria of neuronal cells. PMID:26707813

  11. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation.

    PubMed

    E, Lezi; Burns, Jeffrey M; Swerdlow, Russell H

    2014-11-01

    In aged mice, we assessed how intensive exercise affects brain bioenergetics, inflammation, and neurogenesis-relevant parameters. After 8 weeks of a supra-lactate threshold treadmill exercise intervention, 21-month-old C57BL/6 mice showed increased brain peroxisome proliferator-activated receptor gamma coactivator-1α protein, mammalian target of rapamycin and phospho-mammalian target of rapamycin protein, citrate synthase messenger RNA, and mitochondrial DNA copy number. Hippocampal vascular endothelial growth factor A (VEGF-A) gene expression trended higher, and a positive correlation between VEGF-A and PRC messenger RNA levels was observed. Brain doublecortin, brain-derived neurotrophic factor, tumor necrosis factor-α, and CCL11 gene expression, as well as plasma CCL11 protein levels, were unchanged. Despite these apparent negative findings, a negative correlation between plasma CCL11 protein levels and hippocampal doublecortin gene expression was observed; further analysis indicated exercise may mitigate this relationship. Overall, our data suggest supra-lactate threshold exercise activates a partial mitochondrial biogenesis in aged mice, and a gene (VEGF-A) known to support neurogenesis. Our data are consistent with another study that found systemic inflammation in general, and CCL11 protein specifically, suppresses hippocampal neurogenesis. Our study supports the view that intense exercise above the lactate threshold may benefit the aging brain; future studies to address the extent to which exercise-generated lactate mediates the observed effects are warranted.

  12. The Contribution of Nicotinamide Nucleotide Transhydrogenase to Peroxide Detoxification Is Dependent on the Respiratory State and Counterbalanced by Other Sources of NADPH in Liver Mitochondria.

    PubMed

    Ronchi, Juliana Aparecida; Francisco, Annelise; Passos, Luiz Augusto Correa; Figueira, Tiago Rezende; Castilho, Roger Frigério

    2016-09-16

    The forward reaction of nicotinamide nucleotide transhydrogenase (NNT) reduces NADP(+) at the expense of NADH oxidation and H(+) movement down the electrochemical potential across the inner mitochondrial membrane, establishing an NADPH/NADP(+) ratio severalfold higher than the NADH/NAD(+) ratio in the matrix. In turn, NADPH drives processes, such as peroxide detoxification and reductive biosynthesis. In this study, we generated a congenic mouse model carrying a mutated Nnt(C57BL/6J) allele from the C57BL/6J substrain. Suspensions of isolated mitochondria from Nnt(+/+), Nnt(+/-), and Nnt(-/-) mouse liver were biochemically evaluated and challenged with exogenous peroxide under different respiratory states. The respiratory substrates were also varied, and the participation of concurrent NADPH sources (i.e. isocitrate dehydrogenase-2, malic enzymes, and glutamate dehydrogenase) was assessed. The principal findings include the following: Nnt(+/-) and Nnt(-/-) exhibit ∼50% and absent NNT activity, respectively, but the activities of concurrent NADPH sources are unchanged. The lack of NNT activity in Nnt(-/-) mice impairs peroxide metabolism in intact mitochondria. The contribution of NNT to peroxide metabolism is decreased during ADP phosphorylation compared with the non-phosphorylating state; however, it is accompanied by increased contributions of concurrent NADPH sources, especially glutamate dehydrogenase. NNT makes a major contribution to peroxide metabolism during the blockage of mitochondrial electron transport. Interestingly, peroxide metabolism in the Nnt(+/-) mitochondria matched that in the Nnt(+/+) mitochondria. Overall, this study demonstrates that the respiratory state and/or substrates that sustain energy metabolism markedly influence the relative contribution of NNT (i.e. varies between nearly 0 and 100%) to NADPH-dependent mitochondrial peroxide metabolism. PMID:27474736

  13. Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria.

    PubMed

    López-Torres, Mónica; Gredilla, Ricardo; Sanz, Alberto; Barja, Gustavo

    2002-05-01

    The effect of long-term caloric restriction and aging on the rates of mitochondrial H2O2 production and oxygen consumption as well as on oxidative damage to nuclear (nDNA) and mitochondrial DNA (mtDNA) was studied in rat liver tissue. Long-term caloric restriction significantly decreased H2O2 production of rat liver mitochondria (47% reduction) and significantly reduced oxidative damage to mtDNA (46% reduction) with no changes in nDNA. The decrease in ROS production was located at complex I because it only took place with complex I-linked substrates (pyruvate/malate) but not with complex II-linked substrates (succinate). The mechanism responsible for that decrease in ROS production was not a decrease in mitochondrial oxygen consumption because it did not change after long-term restriction. Instead, the caloric restricted mitochondria released less ROS per unit electron flow, due to a decrease in the reduction degree of the complex I generator. On the other hand, increased ROS production with aging in state 3 was observed in succinate-supplemented mitochondria because old control animals were unable to suppress H2O2 production during the energy transition from state 4 to state 3. The levels of 8-oxodG in mtDNA increased with age in old animals and this increase was abolished by caloric restriction. These results support the idea that caloric restriction reduces the aging rate at least in part by decreasing the rate of mitochondrial ROS production and so, the rate of oxidative attack to biological macromolecules like mtDNA. PMID:11978489

  14. Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser

    SciTech Connect

    Passarella, S.; Ostuni, A.; Atlante, A.; Quagliariello, E.

    1988-10-31

    To gain some insight into the mechanism of cell photostimulation by laser light, measurements were made of the rate of ADP/ATP exchange in mitochondria irradiated with the low power continuous wave Helium Neon laser (energy dose 5 Joules/cm2). To do this a method has been developed to continuously monitor ATP efflux from phosphorylating mitochondria caused by externally added ADP, by photometrically following the NADP+ reduction which occurs in the presence of glucose, hexokinase, glucose-6-phosphate dehydrogenase and effluxed ATP. The NADP+ reduction rate shows hyperbolic dependence on ADP concentration (Km and Vmax values 8.5 +/- 0.87 microM and 20.7 +/- 0.49 nmoles NADP+ reduced/min x mg mitochondrial protein, respectively), and proves to measure the activity of the ADP/ATP translocator as shown by inhibition experiments using atracyloside, powerful inhibitor of this carrier. Irradiation was found to enhance the rate of ADP/ATP antiport, with externally added ADP ranging between 5 and 100 microM. As a result of experiments carried out with mitochondria loaded with either ATP or ADP, the increase in the activity of the ADP/ATP translocator is here proposed to depend on the increase in the electrochemical proton gradient which occurs owing to irradiation of mitochondria.

  15. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow.

    PubMed

    Wang, Qin; Fan, Weijia; Cai, Ying; Wu, Qiaoli; Mo, Lidong; Huang, Zhenwu; Huang, Huiling

    2016-09-01

    In mammalian tissues, taurine is an important natural component and the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. This study is to examine the taurine's protective effects on neuronal ultrastructure, the function of the mitochondrial respiratory chain complex, and on cerebral blood flow (CBF). The model of traumatic brain injury (TBI) was made for SD rats by a fluid percussion device, with taurine (200 mg/kg) administered by tail intravenous injection once daily for 7 days after TBI. It was found that CBF was improved for both left and right brain at 30 min and 7 days post-injury by taurine. Reaction time was prolonged relative to the TBI-only group. Neuronal damage was prevented by 7 days taurine. Mitochondrial electron transport chain complexes I and II showed greater activity with the taurine group. The improvement by taurine of CBF may alleviate edema and elevation in intracranial pressure. Importantly taurine improved the hypercoagulable state.

  16. Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow.

    PubMed

    Wang, Qin; Fan, Weijia; Cai, Ying; Wu, Qiaoli; Mo, Lidong; Huang, Zhenwu; Huang, Huiling

    2016-09-01

    In mammalian tissues, taurine is an important natural component and the most abundant free amino acid in the heart, retina, skeletal muscle, brain, and leukocytes. This study is to examine the taurine's protective effects on neuronal ultrastructure, the function of the mitochondrial respiratory chain complex, and on cerebral blood flow (CBF). The model of traumatic brain injury (TBI) was made for SD rats by a fluid percussion device, with taurine (200 mg/kg) administered by tail intravenous injection once daily for 7 days after TBI. It was found that CBF was improved for both left and right brain at 30 min and 7 days post-injury by taurine. Reaction time was prolonged relative to the TBI-only group. Neuronal damage was prevented by 7 days taurine. Mitochondrial electron transport chain complexes I and II showed greater activity with the taurine group. The improvement by taurine of CBF may alleviate edema and elevation in intracranial pressure. Importantly taurine improved the hypercoagulable state. PMID:27156064

  17. Novel function of glutathione transferase in rat liver mitochondrial membrane: Role for cytochrome c release from mitochondria

    SciTech Connect

    Lee, Kang Kwang; Shimoji, Manami; Hossain, Quazi Sohel; Sunakawa, Hajime; Aniya, Yoko

    2008-10-01

    Microsomal glutathione transferase (MGST1) is activated by oxidative stress. Although MGST1 is found in mitochondrial membranes (mtMGST1), there is no information about the oxidative activation of mtMGST1. In the present study, we aimed to determine whether mtMGST1 also undergoes activation and about its function. When rats were treated with galactosamine/lipopolysaccharide (GalN/LPS), mtMGST1 activity was significantly increased, and the increased activity was reduced by the disulfide reducing agent dithiothreitol. In mitochondria from GalN/LPS-treated rats, disulfide-linked mtMGST1 dimer and mixed protein glutathione disulfides (glutathionylation) were detected. In addition, cytochrome c release from mitochondria isolated from GalN/LPS-treated rats was observed, and the release was inhibited by anti-MGST1 antibodies. Incubation of mitochondria from control rats with diamide and diamide plus GSH in vitro resulted in dimer- and mixed disulfide bond-mediated activation of mtMGST1, respectively. The activation of mtMGST1 by diamide plus GSH caused cytochrome c release from the mitochondria, and the release was prevented by treatment with anti-MGST1 antibodies. In addition, diamide plus GSH treatment caused mitochondrial swelling accompanied by cytochrome c release, which was inhibited by cyclosporin A (CsA) and bongkrekic acid (BKA), inhibitors of the mitochondrial permeability transition (MPT) pore. Furthermore, mtMGST1 activity was also inhibited by CsA and BKA. These results indicate that mtMGST1 is activated through mixed disulfide bond formation that contributes to cytochrome c release from mitochondria through the MPT pore.

  18. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain.

    PubMed

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-04-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes.

  19. A Fast Method for the Segmentation of Synaptic Junctions and Mitochondria in Serial Electron Microscopic Images of the Brain.

    PubMed

    Márquez Neila, Pablo; Baumela, Luis; González-Soriano, Juncal; Rodríguez, Jose-Rodrigo; DeFelipe, Javier; Merchán-Pérez, Ángel

    2016-04-01

    Recent electron microscopy (EM) imaging techniques permit the automatic acquisition of a large number of serial sections from brain samples. Manual segmentation of these images is tedious, time-consuming and requires a high degree of user expertise. Therefore, there is considerable interest in developing automatic segmentation methods. However, currently available methods are computationally demanding in terms of computer time and memory usage, and to work properly many of them require image stacks to be isotropic, that is, voxels must have the same size in the X, Y and Z axes. We present a method that works with anisotropic voxels and that is computationally efficient allowing the segmentation of large image stacks. Our approach involves anisotropy-aware regularization via conditional random field inference and surface smoothing techniques to improve the segmentation and visualization. We have focused on the segmentation of mitochondria and synaptic junctions in EM stacks from the cerebral cortex, and have compared the results to those obtained by other methods. Our method is faster than other methods with similar segmentation results. Our image regularization procedure introduces high-level knowledge about the structure of labels. We have also reduced memory requirements with the introduction of energy optimization in overlapping partitions, which permits the regularization of very large image stacks. Finally, the surface smoothing step improves the appearance of three-dimensional renderings of the segmented volumes. PMID:26780198

  20. Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage.

    PubMed

    Abib, Renata Torres; Peres, Kaite Cristiane; Barbosa, Anderson Machado; Peres, Tanara Vieira; Bernardes, Angela; Zimmermann, Lizandra Maria; Quincozes-Santos, André; Fiedler, Haidi D; Leal, Rodrigo Bainy; Farina, Marcelo; Gottfried, Carmem

    2011-10-01

    Many health claims have been made about the medicinal benefits of drinking green tea, including neuroprotection. This study mainly focuses on Epigallocatechin 3-gallate (EGCG), a potent antioxidant, which is abundantly found in green tea. Cadmium [Cd(2+)] is a toxic pollutant that leads to neurotoxicity in both animals and humans. Although the entrance of Cd(2+) in the adult central nervous system is limited, developmental neurotoxicity has been evidenced as result of the blood-brain barrier (BBB) immaturity. Moreover, high Cd(2+) levels are known to impair BBB function. Furthermore, the molecular mechanisms related to its neurotoxic properties remain unknown. This study evaluates the potential protective effect of the major green tea polyphenol, EGCG, against Cd(2+)-induced mitotoxicity under in vitro conditions, using mitochondrial-enriched fractions from rat brain. Co-incubation of EGCG with Cd(2+) prevented the Cd(2+)-induced mitochondrial dysfunction (capacity to reduce MTT to formazan). In addition, EGCG completely prevented mitochondrial lipid peroxidation induced by Cd(2+) but did not affect non protein thiols levels. Spectroscopic studies have shown EGCG able to form a chemical complex with Cd(2+), in an equimolar ratio. In this study we demonstrate EGCG effectiveness in protecting against Cd(2+)-induced mitochondrial dysfunction and lipid peroxidation probably due to its antioxidant and chelating effects. PMID:21798304

  1. P08.10SINGLE BRAIN METASTASIS 9 YEARS AFTER ORTHOTOPIC LIVER TRANSPLANT WITH HISTOLOGICAL NEGATIVE EXPIANTED LIVER: CASE REPORT

    PubMed Central

    Fornaro, R.; Agnoletti, A.; Specchia, F.M. Calamo; Garbossa, D.; Lanotte, M.; Ducati, A.

    2014-01-01

    We describe the case of a 67 years old man, that underwent orthotopic liver transplant (OLT) in 2004 for cirrhosis. Native liver hystological examination was negative for focal hepatocarcinoma (HCC) areas. In 2008, during regular follow up, pulmonary lesions were found and diagnosed as hepatocarcinoma metastasis.In 2013, patient accused vertigo and dizziness: neuroimaging showed a cerebellar lesion. Hystological diagnosis was HCC metastases. The peculiarity is the onset of lung metastasis after transplant, with negative analysis on native liver, and brain metastasis after stable disease. This case is also relevant due to long survival related to the unavailability of many oncologic therapies in transplanted patients.

  2. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development.

  3. Ageing and inflammation - A central role for mitochondria in brain health and disease.

    PubMed

    Currais, Antonio

    2015-05-01

    To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.

  4. Curcumin reduces oxidative damage by increasing reduced glutathione and preventing membrane permeability transition in isolated brain mitochondria.

    PubMed

    Jat, D; Parihar, P; Kothari, S C; Parihar, M S

    2013-12-31

    Mitochondria are critical regulators of energy metabolism and programmed cell death pathways. Mitochondria are also the major site for the production of reactive oxygen species which make this organelle more susceptible to oxidative damage and impairments of mitochondrial functions. Antioxidants have been of limited therapeutic success to ameliorate the toxic effects of oxidative stress in mitochondria. One reason may be the inability of mitochondria to selectively take up antioxidants. In the present study we synthesized mitochondrially targeted curcumin with an aim of delivering this polyphenolic compound to isolated mitochondria. Our observations show the strong anti-oxidative effects of curcumin and mitochondrially targeted curcumin against the lipid peroxidation, protein carbonylation and mitochondrial permeability transition induced by tert-butylhydroperoxide. Both curcumin and mitochondrially targeted curcumin significantly enhanced endogenous reduced glutathione level in the mitochondria thus preserving mitochondrial defense system against oxidative stress. We concluded that curcumin and mitochondrially targeted curcumin protected mitochondria against tert-butylhydroperoxide by lowering the oxidative damage, increasing the availability of endogenous reduced glutathione and preserving the mitochondrial integrity. Importantly, mitochondrially targeted curcumin was found most effective in ameliorating oxidative stress and preserving mitochondrial integrity than curcumin.

  5. Safety evaluation of mercury based Ayurvedic formulation (Sidh Makardhwaj) on brain cerebrum, liver & kidney in rats

    PubMed Central

    Kumar, Gajendra; Srivastava, Amita; Sharma, Surinder Kumar; Gupta, Yogendra Kumar

    2014-01-01

    Background & objectives: Sidh Makardhwaj (SM) is a mercury based Ayurvedic formulation used in rheumatoid arthritis and neurological disorders. However, toxicity concerns due to mercury content are often raised. Therefore, the present study was carried out to evaluate the effect of SM on brain cerebrum, liver and kidney in rats. Methods: Graded doses of SM (10, 50, 100 mg/kg), mercuric chloride (1 mg/kg) and normal saline were administered orally to male Wistar rats for 28 days. Behavioural parameters were assessed on days 1, 7, 14 and 28 using Morris water maze, passive avoidance, elevated plus maze and rota rod. Liver and kidney function tests were done on day 28. Animals were sacrificed and brain cerebrum acetylcholinesterase activity, levels of malondialdehyde (MDA), reduced glutathione (GSH) in brain cerebrum, liver, kidney were estimated. The levels of mercury in brain cerebrum, liver and kidney were estimated and histopathology of these tissues was also performed. Results: SM in the doses used did not cause significant change in neurobehavioural parameters, brain cerebrum AChE activity, liver (ALT, AST, ALP bilirubin) and kidney (serum urea and creatinine) function tests as compared to control. The levels of mercury in brain cerebrum, liver, and kidney were found to be raised in dose dependent manner. However, the levels of MDA and GSH in these tissues did not show significant changes at doses of 10 and 50 mg/kg. Also, there was no histopathological change in cytoarchitecture of brain cerebrum, liver, and kidney tissues at doses of 10 and 50 mg/kg. Interpretation & conclusions: The findings of the present study suggest that Sidh Makardhwaj upto five times the equivalent human dose administered for 28 days did not show any toxicological effects on rat brain cerebrum, liver and kidney. PMID:24927349

  6. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    SciTech Connect

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  7. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey; Konovalova, Svetlana; Emelyanova, Larisa; Brailovskaya, Irina

    2014-12-01

    We showed earlier that diminution of 2,4-dinitrophenol (DNP)-stimulated respiration and increase of both mitochondrial swelling and electrochemical potential (ΔΨmito) dissipation in medium containing TlNO3 and KNO3 were caused by opening of Tl(+)-induced mitochondrial permeability transition pore (MPTP) in the inner membrane of Ca(2+)-loaded rat liver mitochondria. The MPTP opening was studied in the presence of bivalent metal ions (Sr(2+), Ba(2+), Mn(2+), Co(2+) and Ni(2+)), trivalent metal ions (Y(3+) and La(3+)), and ruthenium red. We found that these metal ions (except Ba(2+) and Co(2+)) as well as ruthenium red inhibited to the MPTP opening that manifested in preventing both diminution of the DNP-stimulated respiration and increase of the swelling and of the ΔΨmito dissipation in medium containing TlNO3, KNO3, and Ca(2+). Inhibition of the MPTP opening by Sr(2+) and Mn(2+) is suggested because of their interaction with high affinity Ca(2+) sites, facing the matrix side and participating in the MPTP opening. The inhibitory effects of metal ions (Y(3+), La(3+), and Ni(2+)), and ruthenium red are accordingly discussed in regard to competitive and noncompetitive inhibition of the mitochondrial Ca(2+)-uniporter. High concentrations (50μM) of Y(3+) and La(3+) favored of MPTP opening in the inner membrane of rat liver mitochondria in Ca(2+) free medium containing TlNO3. The latter MPTP opening was markedly eliminated by MPTP inhibitors (cyclosporine A and ADP).

  8. Liver transplant outcomes using ideal donation after circulatory death livers are superior to using older donation after brain death donor livers.

    PubMed

    Scalea, Joseph R; Redfield, Robert R; Foley, David P

    2016-09-01

    Multiple reports have demonstrated that liver transplantation following donation after circulatory death (DCD) is associated with poorer outcomes when compared with liver transplantation from donation after brain death (DBD) donors. We hypothesized that carefully selected, underutilized DCD livers recovered from younger donors have excellent outcomes. We performed a retrospective study of the United Network for Organ Sharing database to determine graft survivals for patients who received liver transplants from DBD donors of age ≥ 60 years, DBD donors < 60 years, and DCD donors < 50 years of age. Between January 2002 and December 2014, 52,271 liver transplants were performed in the United States. Of these, 41,181 (78.8%) underwent transplantation with livers from DBD donors of age < 60 years, 8905 (17.0%) from DBD donors ≥ 60 years old, and 2195 (4.2%) livers from DCD donors < 50 years of age. DCD livers of age < 50 years with < 6 hours of cold ischemia time (CIT) had superior graft survival when compared with DBD livers ≥ age 60 years (P < 0.001). In 2014, there were 133 discarded DCD livers; of these, 111 (83.4%) were from donors < age 50 years old. Young DCD donor livers (age < 50 years old) with short CITs yield results better than that seen with DBD livers > 60 years old. Careful donor organ and recipient selection can lead to excellent results, despite previous reports suggesting otherwise. Increased acceptance of these DCD livers would lead to shorter wait list times and increased national liver transplant rates. Liver Transplantation 22 1197-1204 2016 AASLD.

  9. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.

    PubMed

    Ortiz-Avila, Omar; Gallegos-Corona, Marco Alonso; Sánchez-Briones, Luis Alberto; Calderón-Cortés, Elizabeth; Montoya-Pérez, Rocío; Rodriguez-Orozco, Alain R; Campos-García, Jesús; Saavedra-Molina, Alfredo; Mejía-Zepeda, Ricardo; Cortés-Rojo, Christian

    2015-08-01

    Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis. PMID:26060181

  10. Protective effects of dietary avocado oil on impaired electron transport chain function and exacerbated oxidative stress in liver mitochondria from diabetic rats.

    PubMed

    Ortiz-Avila, Omar; Gallegos-Corona, Marco Alonso; Sánchez-Briones, Luis Alberto; Calderón-Cortés, Elizabeth; Montoya-Pérez, Rocío; Rodriguez-Orozco, Alain R; Campos-García, Jesús; Saavedra-Molina, Alfredo; Mejía-Zepeda, Ricardo; Cortés-Rojo, Christian

    2015-08-01

    Electron transport chain (ETC) dysfunction, excessive ROS generation and lipid peroxidation are hallmarks of mitochondrial injury in the diabetic liver, with these alterations also playing a role in the development of non-alcoholic fatty liver disease (NAFLD). Enhanced mitochondrial sensitivity to lipid peroxidation during diabetes has been also associated to augmented content of C22:6 in membrane phospholipids. Thus, we aimed to test whether avocado oil, a rich source of C18:1 and antioxidants, attenuates the deleterious effects of diabetes on oxidative status of liver mitochondria by decreasing unsaturation of acyl chains of membrane lipids and/or by improving ETC functionality and decreasing ROS generation. Streptozocin-induced diabetes elicited a noticeable increase in the content of C22:6, leading to augmented mitochondrial peroxidizability index and higher levels of lipid peroxidation. Mitochondrial respiration and complex I activity were impaired in diabetic rats with a concomitant increase in ROS generation using a complex I substrate. This was associated to a more oxidized state of glutathione, All these alterations were prevented by avocado oil except by the changes in mitochondrial fatty acid composition. Avocado oil did not prevented hyperglycemia and polyphagia although did normalized hyperlipidemia. Neither diabetes nor avocado oil induced steatosis. These results suggest that avocado oil improves mitochondrial ETC function by attenuating the deleterious effects of oxidative stress in the liver of diabetic rats independently of a hypoglycemic effect or by modifying the fatty acid composition of mitochondrial membranes. These findings might have also significant implications in the progression of NAFLD in experimental models of steatosis.

  11. Rhein Elicits In Vitro Cytotoxicity in Primary Human Liver HL-7702 Cells by Inducing Apoptosis through Mitochondria-Mediated Pathway

    PubMed Central

    Bounda, Guy-Armel; Zhou, Wang; Wang, Dan-dan; Yu, Feng

    2015-01-01

    Objective. To study rhein-induced apoptosis signaling pathway and to investigate its molecular mechanisms in primary human hepatic cells. Results. Cell viability of HL-7702 cells treated with rhein showed significant decrease in dose-dependent manner. Following rhein treatment (25 μM, 50 μM, and 100 μM) for 12 h, the detection of apoptotic cells was significantly analyzed by flow cytometry and nuclear morphological changes by Hoechst 33258, respectively. Fatty degeneration studies showed upregulation level of the relevant hepatic markers (P < 0.01). Caspase activities expressed significant upregulation of caspase-3, caspase-9, and caspase-8. Moreover, apoptotic cells by rhein were significantly inhibited by Z-LEHD-FMK and Z-DEVD-FMK, caspase-9 inhibitor, and caspase-3 inhibitor, respectively. Overproduction of reactive oxygen species, lipid peroxidation, and loss of mitochondrial membrane potential were detected by fluorometry. Additionally, NAC, a ROS scavenger, significantly attenuated rhein-induced oxidative damage in HL-7702 cells. Furthermore, real-time qPCR results showed significant upregulation of p53, PUMA, Apaf-1, and Casp-9 and Casp-3 mRNA, with no significant changes of Fas and Cytochrome-c. Immunoblotting revealed significant Cytochrome-c release from mitochondria into cytosol and no change in Fas expression. Conclusion. Taken together, these observations suggested that rhein could induce apoptosis in HL-7702 cells via mitochondria-mediated signal pathway with involvement of oxidative stress mechanism. PMID:26221172

  12. Rhein Elicits In Vitro Cytotoxicity in Primary Human Liver HL-7702 Cells by Inducing Apoptosis through Mitochondria-Mediated Pathway.

    PubMed

    Bounda, Guy-Armel; Zhou, Wang; Wang, Dan-Dan; Yu, Feng

    2015-01-01

    Objective. To study rhein-induced apoptosis signaling pathway and to investigate its molecular mechanisms in primary human hepatic cells. Results. Cell viability of HL-7702 cells treated with rhein showed significant decrease in dose-dependent manner. Following rhein treatment (25 μM, 50 μM, and 100 μM) for 12 h, the detection of apoptotic cells was significantly analyzed by flow cytometry and nuclear morphological changes by Hoechst 33258, respectively. Fatty degeneration studies showed upregulation level of the relevant hepatic markers (P < 0.01). Caspase activities expressed significant upregulation of caspase-3, caspase-9, and caspase-8. Moreover, apoptotic cells by rhein were significantly inhibited by Z-LEHD-FMK and Z-DEVD-FMK, caspase-9 inhibitor, and caspase-3 inhibitor, respectively. Overproduction of reactive oxygen species, lipid peroxidation, and loss of mitochondrial membrane potential were detected by fluorometry. Additionally, NAC, a ROS scavenger, significantly attenuated rhein-induced oxidative damage in HL-7702 cells. Furthermore, real-time qPCR results showed significant upregulation of p53, PUMA, Apaf-1, and Casp-9 and Casp-3 mRNA, with no significant changes of Fas and Cytochrome-c. Immunoblotting revealed significant Cytochrome-c release from mitochondria into cytosol and no change in Fas expression. Conclusion. Taken together, these observations suggested that rhein could induce apoptosis in HL-7702 cells via mitochondria-mediated signal pathway with involvement of oxidative stress mechanism. PMID:26221172

  13. Physical and Functional Interaction of NCX1 and EAAC1 Transporters Leading to Glutamate-Enhanced ATP Production in Brain Mitochondria

    PubMed Central

    Arcangeli, Sara; Nasti, Annamaria Assunta; Giordano, Antonio; Amoroso, Salvatore

    2012-01-01

    Glutamate is emerging as a major factor stimulating energy production in CNS. Brain mitochondria can utilize this neurotransmitter as respiratory substrate and specific transporters are required to mediate the glutamate entry into the mitochondrial matrix. Glutamate transporters of the Excitatory Amino Acid Transporters (EAATs) family have been previously well characterized on the cell surface of neuronal and glial cells, representing the primary players for glutamate uptake in mammalian brain. Here, by using western blot, confocal microscopy and immunoelectron microscopy, we report for the first time that the Excitatory Amino Acid Carrier 1 (EAAC1), an EAATs member, is expressed in neuronal and glial mitochondria where it participates in glutamate-stimulated ATP production, evaluated by a luciferase-luciferin system. Mitochondrial metabolic response is counteracted when different EAATs pharmacological blockers or selective EAAC1 antisense oligonucleotides were used. Since EAATs are Na+-dependent proteins, this raised the possibility that other transporters regulating ion gradients across mitochondrial membrane were required for glutamate response. We describe colocalization, mutual activity dependency, physical interaction between EAAC1 and the sodium/calcium exchanger 1 (NCX1) both in neuronal and glial mitochondria, and that NCX1 is an essential modulator of this glutamate transporter. Only NCX1 activity is crucial for such glutamate-stimulated ATP synthesis, as demonstrated by pharmacological blockade and selective knock-down with antisense oligonucleotides. The EAAC1/NCX1-dependent mitochondrial response to glutamate may be a general and alternative mechanism whereby this neurotransmitter sustains ATP production, since we have documented such metabolic response also in mitochondria isolated from heart. The data reported here disclose a new physiological role for mitochondrial NCX1 as the key player in glutamate-induced energy production. PMID:22479505

  14. Effect of chronic heroin and cocaine administration on global DNA methylation in brain and liver.

    PubMed

    Fragou, Domniki; Zanos, Panos; Kouidou, Sofia; Njau, Samuel; Kitchen, Ian; Bailey, Alexis; Kovatsi, Leda

    2013-04-26

    Drug abuse is associated with epigenetic changes, such as histone modifications and DNA methylation. The purpose of the present study was to examine the effect of chronic cocaine and heroin administration on global DNA methylation in brain and liver. Male, 8 week old, C57BL/6J mice received heroin in a chronic 'intermittent' escalating dose paradigm, or cocaine in a chronic escalating dose 'binge' paradigm, which mimic the human pattern of opioid or cocaine abuse respectively. Following sacrifice, livers and brains were removed and DNA was extracted from them. The extracted DNA was hydrolyzed and 2'-deoxycytidine and 5-methyl-2'-deoxycytidine were determined by HPLC-UV. The % 5-methyl-2'-deoxycytidine content of DNA was significantly higher in the brain compared to the liver. There were no differences between the control animals and the cocaine or heroin treated animals in neither of the tissues examined, which is surprising since cocaine administration induced gross morphological changes in the liver. Moreover, there was no difference in the % 5-methyl-2'-deoxycytidine content of DNA between the cocaine and the heroin treated animals. The global DNA methylation status in the brain and liver of mice chronically treated with cocaine or heroin remains unaffected, but this finding cannot exclude the existence of anatomical region or gene-specific methylation differences. This is the first time that global DNA methylation in the liver and whole brain has been studied following chronic cocaine or heroin treatment. PMID:23454526

  15. Liver irradiation causes distal bystander effects in the rat brain and affects animal behaviour

    PubMed Central

    Kovalchuk, Anna; Mychasiuk, Richelle; Muhammad, Arif; Hossain, Shakhawat; Ilnytskyy, Slava; Ghose, Abhijit; Kirkby, Charles; Ghasroddashti, Esmaeel; Kovalchuk, Olga; Kolb, Bryan

    2016-01-01

    Radiation therapy can not only produce effects on targeted organs, but can also influence shielded bystander organs, such as the brain in targeted liver irradiation. The brain is sensitive to radiation exposure, and irradiation causes significant neuro-cognitive deficits, including deficits in attention, concentration, memory, and executive and visuospatial functions. The mechanisms of their occurrence are not understood, although they may be related to the bystander effects. We analyzed the induction, mechanisms, and behavioural repercussions of bystander effects in the brain upon liver irradiation in a well-established rat model. Here, we show for the first time that bystander effects occur in the prefrontal cortex and hippocampus regions upon liver irradiation, where they manifest as altered gene expression and somewhat increased levels of γH2AX. We also report that bystander effects in the brain are associated with neuroanatomical and behavioural changes, and are more pronounced in females than in males. PMID:26678032

  16. The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: the importance of free oxygen radicals and mitochondrial integrity

    PubMed Central

    Boscolo, A; Starr, JA; Sanchez; Lunardi, N; DiGruccio, MR; Ori, C; Erisir, A; Trimmer, P; Bennett, J; Jevtovic-Todorovic

    2011-01-01

    Early exposure to general anesthesia (GA) causes developmental neuroapoptosis in the mammalian brain and long-term cognitive impairment. Recent evidence suggests that GA also causes functional and morphological impairment of the immature neuronal mitochondria. Injured mitochondria could be a significant source of reactive oxygen species (ROS), which, if not scavenged in timely fashion, may cause excessive lipid peroxidation and damage of cellular membranes. We examined whether early exposure to GA results in ROS upregulation and whether mitochondrial protection and ROS scavenging prevent GA-induced pathomorphological and behavioral impairments. We exposed 7-day-old rats to GA with or without either EUK-134, a synthetic ROS scavenger, or R(+) pramipexole (PPX), a synthetic aminobenzothiazol derivative that restores mitochondrial integrity. We found that GA causes extensive ROS upregulation and lipid peroxidation, as well as mitochondrial injury and neuronal loss in the subiculum. As compared to rats given only GA, those also given PPX or EUK-134 had significantly downregulated lipid peroxidation, preserved mitochondrial integrity, and significantly less neuronal loss. The subiculum is highly intertwined with the hippocampal CA1 region, anterior thalamic nuclei, and both entorhinal and cingulate cortices; hence, it is important in cognitive development. We found that PPX or EUK-134 co-treatment completely prevented GA-induced cognitive impairment. Because mitochondria are vulnerable to GA-induced developmental neurotoxicity, they could be an important therapeutic target for adjuvant therapy aimed at improving the safety of commonly used GAs. PMID:22198380

  17. Extremely low-frequency magnetic field induces manganese accumulation in brain, kidney and liver of rats.

    PubMed

    Çelik, Mustafa Salih; Güven, Kemal; Akpolat, Veysi; Akdağ, Mehmet Zulkuf; Nazıroğlu, Mustafa; Gül-Güven, Reyhan; Çelik, M Yusuf; Erdoğan, Sait

    2015-06-01

    The aim of the present study was to determine the effects of extremely low-frequency magnetic field (ELF-MF) on accumulation of manganese (Mn) in the kidney, liver and brain of rats. A total of 40 rats were randomly divided into eight groups. Four control groups received 0, 3.75, 15 and 60 mg Mn per kg body weight orally every 2 days for 45 days, respectively. The remaining four groups received same concentrations of Mn and were also exposed to ELF-MF (1.5 mT; 50 Hz) for 4 h for 5 days a week during 45 days. Following the last exposure, kidney, liver and brain were taken from all rats and they were analyzed for Mn accumulation levels using an inductively coupled plasma-optical emission spectrometer. In result of the current study, we observed that Mn levels in brain, kidney and liver were higher in Mn groups than in control groups. Mn levels in brain, kidney and liver were also higher in Mn plus ELF-MF groups than in Mn groups. In conclusion, result of the current study showed that the ELF-MF induced manganese accumulation in kidney, liver and brain of rats.

  18. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca²⁺-induced mitochondrial impairment.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Ramírez-Sánchez, Jeney; Delgado-Hernández, René; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Naal, Zeki; Muller, Alexandre Pastoris; Portela, Luis Valmor; Souza, Diogo O

    2014-10-01

    Because mitochondrial oxidative stress and impairment are important mediators of neuronal damage in neurodegenerative diseases and in brain ischemia/reperfusion, in the present study, we evaluated the antioxidant and mitoprotective effect of a new promising neuroprotective molecule, JM-20, in mitochondria and synaptosomes isolated from rat brains. JM-20 inhibited succinate-mediated H₂O₂ generation in both mitochondria and synaptosomes incubated in depolarized (high K(+)) medium at extremely low micromolar concentration and with identical IC₅₀ values of 0.91 μM. JM-20 also repressed glucose-induced H₂O₂ generation stimulated by rotenone or by antimycin A in synaptosomes incubated in high sodium-polarized medium at extremely low IC₅₀ values of 0.395 μM and 2.452 μM, respectively. JM-20 was unable to react directly with H₂O₂ or with superoxide anion radicals but displayed a cathodic reduction peak at -0.71V, which is close to that of oxygen (-0.8V), indicating high electron affinity. JM-20 also inhibited uncoupled respiration in mitochondria or synaptosomes and was a more effective inhibitor in the presence of the respiratory substrates glutamate/malate than in the presence of succinate. JM-20 also prevented Ca(2+)-induced mitochondrial permeability transition pore opening, membrane potential dissipation and cytochrome c release, which are key pathogenic events during stroke. This molecule also prevented Ca(2+) influx into synaptosomes and mitochondria; the former effect was a consequence of the latter because JM-20 inhibition followed the patterns of carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), which is a classic mitochondrial uncoupler. Because the mitochondrion is considered an important source and target of neuronal cell death signaling after an ischemic insult, the antioxidant and protective effects of JM-20 against the deleterious effects of Ca(2+) observed at the mitochondrial level in this study may endow this molecule

  19. Antioxidant effects of JM-20 on rat brain mitochondria and synaptosomes: mitoprotection against Ca²⁺-induced mitochondrial impairment.

    PubMed

    Nuñez-Figueredo, Yanier; Pardo-Andreu, Gilberto L; Ramírez-Sánchez, Jeney; Delgado-Hernández, René; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Naal, Zeki; Muller, Alexandre Pastoris; Portela, Luis Valmor; Souza, Diogo O

    2014-10-01

    Because mitochondrial oxidative stress and impairment are important mediators of neuronal damage in neurodegenerative diseases and in brain ischemia/reperfusion, in the present study, we evaluated the antioxidant and mitoprotective effect of a new promising neuroprotective molecule, JM-20, in mitochondria and synaptosomes isolated from rat brains. JM-20 inhibited succinate-mediated H₂O₂ generation in both mitochondria and synaptosomes incubated in depolarized (high K(+)) medium at extremely low micromolar concentration and with identical IC₅₀ values of 0.91 μM. JM-20 also repressed glucose-induced H₂O₂ generation stimulated by rotenone or by antimycin A in synaptosomes incubated in high sodium-polarized medium at extremely low IC₅₀ values of 0.395 μM and 2.452 μM, respectively. JM-20 was unable to react directly with H₂O₂ or with superoxide anion radicals but displayed a cathodic reduction peak at -0.71V, which is close to that of oxygen (-0.8V), indicating high electron affinity. JM-20 also inhibited uncoupled respiration in mitochondria or synaptosomes and was a more effective inhibitor in the presence of the respiratory substrates glutamate/malate than in the presence of succinate. JM-20 also prevented Ca(2+)-induced mitochondrial permeability transition pore opening, membrane potential dissipation and cytochrome c release, which are key pathogenic events during stroke. This molecule also prevented Ca(2+) influx into synaptosomes and mitochondria; the former effect was a consequence of the latter because JM-20 inhibition followed the patterns of carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP), which is a classic mitochondrial uncoupler. Because the mitochondrion is considered an important source and target of neuronal cell death signaling after an ischemic insult, the antioxidant and protective effects of JM-20 against the deleterious effects of Ca(2+) observed at the mitochondrial level in this study may endow this molecule

  20. Protein synthesis by brain-cortex mitochondria. Characterization of a 55S mitochondrial ribosome as the functional unit in protein synthesis by cortex mitochondria and its distinction from a contaminant cytoplasmic protein-synthesizing system

    PubMed Central

    Hernandez, A.; Burdett, I.; Work, T. S.

    1971-01-01

    Homogenates of rat brain cortex were fractionated by conventional methods of velocity sedimentation and separated into a microsomal and a washed mitochondrial fraction. By electron microscopy the mitochondrial fraction was shown to be rich in synaptosomes. The mitochondria–synaptosome fraction synthesized protein in vitro by a route that was partially inhibited by cycloheximide and partly by chloramphenicol. The relative effectiveness of the two inhibitors varied greatly with the medium used. In the mitochondria–synaptosome fraction active 80S cytoplasmic ribosomes and active 55S mitochondrial ribosomes were detected; these were also seen in the electron microscope. Mild osmotic shock of the mitochondria–synaptosome fraction followed by velocity sedimentation in sucrose–EDTA allowed isolation of a mitochondrial fraction free of synaptosomes. Protein synthesis in this fraction was entirely inhibited by chloramphenicol, but was completely resistant to cycloheximide both in a medium promoting oxidative phosphorylation and in ATP-generating medium. Ouabain had no inhibitory effect on protein synthesis in a purified mitochondrial preparation. It is concluded that brain-cortex mitochondria synthesize protein entirely on 55S mitochondrial ribosomes. ImagesPLATE 4PLATE 1PLATE 2PLATE 3 PMID:5158500

  1. Toxicity of the Flame-Retardant BDE-49 on Brain Mitochondria and Neuronal Progenitor Striatal Cells Enhanced by a PTEN-Deficient Background

    PubMed Central

    Giulivi, Cecilia

    2013-01-01

    Polybrominated diphenyl ethers (PBDEs) represent an important group of flame retardants extensively used, tonnage of which in the environment has been steadily increasing over the past 25 years. PBDEs or metabolites can induce neurotoxicity and mitochondrial dysfunction (MD) through a variety of mechanisms. Recently, PBDEs with < 5 Br substitutions (i.e., 2,2′,4,4′-tetrabromodiphenyl ether [BDE-47] and 2,2′,4,5′-tetrabromodiphenyl ether [BDE-49]) have gained interest because of their high bioaccumulation. In particular, congeners such as BDE-49 arise as one of the most biologically active, with concentrations typically lower than those observed for BDE-47 in biological tissues; however, its potential to cause MD at biologically relevant concentrations is unknown. To this end, the effect of BDE-49 was studied in brain mitochondria and neuronal progenitor striatal cells (NPC). BDE-49 uncoupled mitochondria at concentrations < 0.1 nM, whereas at > 1 nM, it inhibited the electron transport at Complex V (mixed type inhibition; IC50 = 6 nM) and Complex IV (noncompetitive inhibition; IC50 = 40 nM). These concentrations are easily achieved in plasma concentrations considering that BDE-49 (this study, 400-fold) and other PBDEs accumulate 1–3 orders of magnitude in the cells, particularly in mitochondria and microsomes. Similar effects were observed in NPC and exacerbated with PTEN (negative modulator of the PI3K/Akt pathway) deficiency, background associated with autism-like behavior, schizophrenia, and epilepsy. PBDE-mediated MD per se or enhanced by a background that confers susceptibility to this exposure may have profound implications in the energy balance of brain. PMID:23288049

  2. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity.

    PubMed

    Ghanem, Carolina I; Pérez, María J; Manautou, José E; Mottino, Aldo D

    2016-07-01

    Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain. PMID:26921661

  3. Lactate administration reproduces specific brain and liver exercise-related changes.

    PubMed

    E, Lezi; Lu, Jianghua; Selfridge, J Eva; Burns, Jeffrey M; Swerdlow, Russell H

    2013-10-01

    The effects of exercise are not limited to muscle, and its ability to mitigate some chronic diseases is under study. A more complete understanding of how exercise impacts non-muscle tissues might facilitate design of clinical trials and exercise mimetics. Here, we focused on lactate's ability to mediate changes in liver and brain bioenergetic-associated parameters. In one group of experiments, C57BL/6 mice underwent 7 weeks of treadmill exercise sessions at intensities intended to exceed the lactate threshold. Over time, the mice dramatically increased their lactate threshold. To ensure that plasma lactate accumulated during the final week, the mice were run to exhaustion. In the liver, mRNA levels of gluconeogenesis-promoting genes increased. While peroxisome proliferator-activated receptor-gamma co-activator 1 alpha (PGC-1α) expression increased, there was a decrease in PGC-1β expression, and overall gene expression changes favored respiratory chain down-regulation. In the brain, PGC-1α and PGC-1β were unchanged, but PGC-1-related co-activator expression and mitochondrial DNA copy number increased. Brain tumor necrosis factor alpha expression fell, whereas vascular endothelial growth factor A expression rose. In another group of experiments, exogenously administered lactate was found to reproduce some but not all of these observed liver and brain changes. Our data suggest that lactate, an exercise byproduct, could mediate some of the effects exercise has on the liver and the brain, and that lactate itself can act as a partial exercise mimetic.

  4. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease.

    PubMed

    Sunny, Nishanth E; Kalavalapalli, Srilaxmi; Bril, Fernando; Garrett, Timothy J; Nautiyal, Manisha; Mathew, Justin T; Williams, Caroline M; Cusi, Kenneth

    2015-08-15

    Elevated plasma branched-chain amino acids (BCAA) in the setting of insulin resistance have been relevant in predicting type 2 diabetes mellitus (T2DM) onset, but their role in the etiology of hepatic insulin resistance remains uncertain. We determined the link between BCAA and dysfunctional hepatic tricarboxylic acid (TCA) cycle, which is a central feature of hepatic insulin resistance and nonalcoholic fatty liver disease (NAFLD). Plasma metabolites under basal fasting and euglycemic hyperinsulinemic clamps (insulin stimulation) were measured in 94 human subjects with varying degrees of insulin sensitivity to identify their relationships with insulin resistance. Furthermore, the impact of elevated BCAA on hepatic TCA cycle was determined in a diet-induced mouse model of NAFLD, utilizing targeted metabolomics and nuclear magnetic resonance (NMR)-based metabolic flux analysis. Insulin stimulation revealed robust relationships between human plasma BCAA and indices of insulin resistance, indicating chronic metabolic overload from BCAA. Human plasma BCAA and long-chain acylcarnitines also showed a positive correlation, suggesting modulation of mitochondrial metabolism by BCAA. Concurrently, mice with NAFLD failed to optimally induce hepatic mTORC1, plasma ketones, and hepatic long-chain acylcarnitines, following acute elevation of plasma BCAA. Furthermore, elevated BCAA failed to induce multiple fluxes through hepatic TCA cycle in mice with NAFLD. Our data suggest that BCAA are essential to mediate efficient channeling of carbon substrates for oxidation through mitochondrial TCA cycle. Impairment of BCAA-mediated upregulation of the TCA cycle could be a significant contributor to mitochondrial dysfunction in NAFLD. PMID:26058864

  5. Morpho-pathological and physiological changes of the brain and liver after ozone exposure.

    PubMed

    Creţu, Denisa Ioana; Sovrea, Alina; Ignat, R M; Filip, Adriana; Bidian, Cristina; Creţu, Aurica

    2010-01-01

    This paper presents the consequences of long exposure to ozone in order to draw attention to this matter as far as the brain and liver are concerned. The material used was represented by two batches of 10 rats each that were daily exposed to ozone for 10 minutes at 0.5 ppm O3. From the first group blood was collected after two weeks to determine the indicators of oxidative stress and samples of brain and liver were drawn for histological studies. Tissue changes were highlighted using Hematoxylin-Eosin and argentic impregnation. In addition, the brain and liver samples taken from study subjects were turned into homogeneous preparations in order to determine the intensity of oxidative stress occurred in these organs compared with the witness group. The second batch was exposed for a further two weeks, after which the same sampling techniques and determining methods as for the first group were applied. The results show a correlation between the values of malondialdehyde (MDA) and glutathione (GSH), obtained both in blood and in the homogeneous preparations, and the microscopic changes that implicate a pathological state. Therefore, cerebral edema was discovered in the brain hemispheres and the cerebellum indicating necrotic signs accompanied by a reduction in the molecular layer and Purkinje cells with pale core. The liver presented hepatocellular necrosis, extended from the port area to the centrolobular vein.

  6. Converging actions of alcohol on liver and brain immune signaling.

    PubMed

    Szabo, Gyongyi; Lippai, Dora

    2014-01-01

    Chronic excessive alcohol consumption results in inflammation in multiple organs, including the brain. While the contribution of neuroinflammation to alcohol-related cognitive dysfunction and behavioral alterations is established, the mechanisms by which alcohol triggers inflammation in the brain are only partially understood. There are acute and long-term alterations in brain function due to intercellular and intracellular changes of different cell types as a result of alcohol consumption. This review focuses on the alcohol-induced proinflammatory cellular and molecular changes in the central nervous system. Alcohol passes through the blood-brain barrier and alters neurotransmission. Alcohol use activates microglia and astrocyte, contributing to neurodegeneration and impaired regeneration. Alcohol-induced cell injury in the brain results in release of damage-associated molecular patterns, such as high mobility group box 1, that trigger inflammatory changes through activation of pattern recognition receptors. In addition, alcohol consumption increases intestinal permeability and results in increased levels of pathogen-associated molecular pattern such as endotoxin in the systemic circulation that triggers PRRs and inflammation. The Toll-like receptor-4 pathway that activates nuclear factor-κB and secretion of proinflammatory cytokines, tumor necrosis factor-α, interleukin-1-beta, and chemokines, including monocyte chemotactic protein-1, has been suggested to contribute to alcohol-induced neuroinflammation. Alcohol-induced IL-1β secretion also requires Nod-like receptor-mediated inflammasome and caspase-1 activation, and, consistent with this, disruption of IL-1/IL-1-receptor signaling prevents alcohol-induced neuroinflammation. Delicate regulators of inflammatory gene expressions are micro-RNAs (miRs) that have recently been identified in alcohol-related neuroinflammation. Alcohol induces miR155, a regulator of inflammation in the brain, and deficiency in mi

  7. Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis

    PubMed Central

    Ahluwalia, Vishwadeep; Betrapally, Naga S; Hylemon, Phillip B; White, Melanie B; Gillevet, Patrick M; Unser, Ariel B; Fagan, Andrew; Daita, Kalyani; Heuman, Douglas M; Zhou, Huiping; Sikaroodi, Masoumeh; Bajaj, Jasmohan S

    2016-01-01

    Cirrhosis is associated with brain dysfunction known as hepatic encephalopathy (HE). The mechanisms behind HE are unclear although hyperammonemia and systemic inflammation through gut dysbiosis have been proposed. We aimed to define the individual contribution of specific gut bacterial taxa towards astrocytic and neuronal changes in brain function using multi-modal MRI in patients with cirrhosis. 187 subjects (40 controls, 147 cirrhotic; 87 with HE) underwent systemic inflammatory assessment, cognitive testing, stool microbiota analysis and brain MRI analysis. MR spectroscopy (MRS) changes of increased Glutamate/glutamine, reduced myo-inositol and choline are hyperammonemia-associated astrocytic changes, while diffusion tensor imaging (DTI) demonstrates changes in neuronal integrity and edema. Linkages between cognition, MRI parameters and gut microbiota were compared between groups. We found that HE patients had a significantly worse cognitive performance, systemic inflammation, dysbiosis and hyperammonemia compared to controls and cirrhotics without HE. Specific microbial families (autochthonous taxa negatively and Enterobacteriaceae positively) correlated with MR spectroscopy and hyperammonemia-associated astrocytic changes. On the other hand Porphyromonadaceae, were only correlated with neuronal changes on DTI without linkages with ammonia. We conclude that specific gut microbial taxa are related to neuronal and astrocytic consequences of cirrhosis-associated brain dysfunction. PMID:27225869

  8. Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis.

    PubMed

    Ahluwalia, Vishwadeep; Betrapally, Naga S; Hylemon, Phillip B; White, Melanie B; Gillevet, Patrick M; Unser, Ariel B; Fagan, Andrew; Daita, Kalyani; Heuman, Douglas M; Zhou, Huiping; Sikaroodi, Masoumeh; Bajaj, Jasmohan S

    2016-01-01

    Cirrhosis is associated with brain dysfunction known as hepatic encephalopathy (HE). The mechanisms behind HE are unclear although hyperammonemia and systemic inflammation through gut dysbiosis have been proposed. We aimed to define the individual contribution of specific gut bacterial taxa towards astrocytic and neuronal changes in brain function using multi-modal MRI in patients with cirrhosis. 187 subjects (40 controls, 147 cirrhotic; 87 with HE) underwent systemic inflammatory assessment, cognitive testing, stool microbiota analysis and brain MRI analysis. MR spectroscopy (MRS) changes of increased Glutamate/glutamine, reduced myo-inositol and choline are hyperammonemia-associated astrocytic changes, while diffusion tensor imaging (DTI) demonstrates changes in neuronal integrity and edema. Linkages between cognition, MRI parameters and gut microbiota were compared between groups. We found that HE patients had a significantly worse cognitive performance, systemic inflammation, dysbiosis and hyperammonemia compared to controls and cirrhotics without HE. Specific microbial families (autochthonous taxa negatively and Enterobacteriaceae positively) correlated with MR spectroscopy and hyperammonemia-associated astrocytic changes. On the other hand Porphyromonadaceae, were only correlated with neuronal changes on DTI without linkages with ammonia. We conclude that specific gut microbial taxa are related to neuronal and astrocytic consequences of cirrhosis-associated brain dysfunction. PMID:27225869

  9. Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice.

    PubMed

    Abdel-Salam, Omar M E; Youness, Eman R; Mohammed, Nadia A; Morsy, Safaa M Youssef; Omara, Enayat A; Sleem, Amany A

    2014-05-01

    Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1-2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1-2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1-2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation.

  10. Citric Acid Effects on Brain and Liver Oxidative Stress in Lipopolysaccharide-Treated Mice

    PubMed Central

    Youness, Eman R.; Mohammed, Nadia A.; Morsy, Safaa M. Youssef; Omara, Enayat A.; Sleem, Amany A.

    2014-01-01

    Abstract Citric acid is a weak organic acid found in the greatest amounts in citrus fruits. This study examined the effect of citric acid on endotoxin-induced oxidative stress of the brain and liver. Mice were challenged with a single intraperitoneal dose of lipopolysaccharide (LPS; 200 μg/kg). Citric acid was given orally at 1, 2, or 4 g/kg at time of endotoxin injection and mice were euthanized 4 h later. LPS induced oxidative stress in the brain and liver tissue, resulting in marked increase in lipid peroxidation (malondialdehyde [MDA]) and nitrite, while significantly decreasing reduced glutathione, glutathione peroxidase (GPx), and paraoxonase 1 (PON1) activity. Tumor necrosis factor-alpha (TNF-α) showed a pronounced increase in brain tissue after endotoxin injection. The administration of citric acid (1–2 g/kg) attenuated LPS-induced elevations in brain MDA, nitrite, TNF-α, GPx, and PON1 activity. In the liver, nitrite was decreased by 1 g/kg citric acid. GPx activity was increased, while PON1 activity was decreased by citric acid. The LPS-induced liver injury, DNA fragmentation, serum transaminase elevations, caspase-3, and inducible nitric oxide synthase expression were attenuated by 1–2 g/kg citric acid. DNA fragmentation, however, increased after 4 g/kg citric acid. Thus in this model of systemic inflammation, citric acid (1–2 g/kg) decreased brain lipid peroxidation and inflammation, liver damage, and DNA fragmentation. PMID:24433072

  11. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    PubMed Central

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  12. High resolution proton magnetic resonance spectroscopy of human brain and liver

    SciTech Connect

    Barany, M.; Spigos, D.G.; Mok, E.; Venkatasubramanian, P.N.; Wilbur, A.C.; Langer, B.G.

    1987-01-01

    Water-suppressed and slice-selective proton spectra of live human brain exhibited several resonances that were tentatively assigned to metabolites such as N-acetylaspartate, glutamate, phosphocreatine and creatine, choline derivatives, and taurine. In the liver spectrum of a healthy volunteer, the major resonance was tentatively assigned to a fatty acyl methylene and the minor resonances to protons in carnitine, taurine, glutamate, and glutamine. In the spectrum of a cancerous liver, resonances in addition to those present in the normal liver were seen. Protein degradation in the liver with cancer was indicated by resonances from urea and from the ring protons in tryptophan, tyrosine, and phenylalanine. Furthermore, increased nucleic acid synthesis was indicated by resonances from nucleotide protons.

  13. Pituitary and Brain Dopamine D2 Receptors Regulate Liver Gene Sexual Dimorphism

    PubMed Central

    Ramirez, Maria Cecilia; Ornstein, Ana Maria; Luque, Guillermina Maria; Perez Millan, Maria Ines; Garcia-Tornadu, Isabel; Rubinstein, Marcelo

    2015-01-01

    Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2−/−) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female–predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2−/− female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease. PMID:25545383

  14. Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle.

    PubMed

    Bissler, John J; Tsoras, Monica; Göring, Harald H H; Hug, Peter; Chuck, Gail; Tombragel, Esther; McGraw, Catherine; Schlotman, James; Ralston, Michael A; Hug, George

    2002-03-01

    Mutations in the Xq28 gene G4.5 lead to dilated cardiomyopathy (DCM). Differential splicing of G4.5 results in a family of proteins called "tafazzins" with homology to acyltransferases. These enzymes assemble fatty acids into membrane lipids. We sequenced G4.5 in two kindreds with X-linked DCM and in two unrelated men, one with idiopathic DCM and the other with DCM of arrhythmogenic right ventricular dysplasia. We examined the ultrastructure of heart, liver, and muscle biopsy specimens in these three DCM types; we used gas chromatography to compare fatty acid composition in heart, liver, and muscle autopsy specimens of two patients of kindred 1 with that of controls. In X-linked DCM, G4.5 had a stop codon (E188X), a nonsense mutation, in kindred 1 and an amino acid substitution (G240R), a missense mutation, in kindred 2. In the two men with isolated DCM, G4.5 was not mutated. Ultrastructural mitochondrial malformations were present in the biopsy tissues of the patients with DCM. Cardiac biopsy specimens of both kindreds with X-linked DCM exhibited greatly enlarged mitochondria with large bundles of stacked, compacted, disarrayed cristae that differed from those of the two types of isolated DCM. Autopsy tissue of patients with X-linked DCM had decreased unsaturated and increased saturated fatty acid concentrations. Seven of 13 published G4.5 missense mutations, including the one presented here, occur in acyltransferase motifs. Impaired acyltransferase function could result in increased fatty acid saturation that would decrease membrane fluidity. Mitochondrial membrane proliferation may be an attempt to compensate for impaired function of acyltransferase. Cardiac ultrastructure separates X-linked DCM with G4.5 mutations from the two types of isolated DCM without G4.5 mutations. Electron microscopy of promptly fixed myocardial biopsy specimens has a role in defining the differential diagnosis of DCM. Mutational analysis of the G4.5 gene also serves this purpose.

  15. Brain-liver connections: role of the preautonomic PVN neurons.

    PubMed

    O'Hare, James D; Zsombok, Andrea

    2016-02-01

    Diabetes mellitus and the coexisting conditions and complications, including hypo- and hyperglycemic events, obesity, high cholesterol levels, and many more, are devastating problems. Undoubtedly, there is a huge demand for treatment and prevention of these conditions that justifies the search for new approaches and concepts for better management of whole body metabolism. Emerging evidence demonstrates that the autonomic nervous system is largely involved in the regulation of glucose homeostasis; however, the underlying mechanisms are still under investigation. Within the hypothalamus, the paraventricular nucleus (PVN) is in a unique position to integrate neural and hormonal signals to command both the autonomic and neuroendocrine outflow. This minireview will provide a brief overview on the role of preautonomic PVN neurons and the importance of the PVN-liver pathway in the regulation of glucose homeostasis. PMID:26646097

  16. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis.

    PubMed

    Winnick, Jason J; Kraft, Guillaume; Gregory, Justin M; Edgerton, Dale S; Williams, Phillip; Hajizadeh, Ian A; Kamal, Maahum Z; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E Patrick; Allen, Eric; Cherrington, Alan D

    2016-06-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  17. Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

    PubMed Central

    Kraft, Guillaume; Williams, Phillip; Hajizadeh, Ian A.; Kamal, Maahum Z.; Smith, Marta; Farmer, Ben; Scott, Melanie; Neal, Doss; Donahue, E. Patrick; Allen, Eric; Cherrington, Alan D.

    2016-01-01

    Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion. PMID:27140398

  18. Multiple Brain Abscesses Due to Aspergillus Fumigatus in a Patient With Liver Cirrhosis

    PubMed Central

    Tang, Hung-Jen; Liu, Wei-Lun; Chang, Tsung Chain; Li, Ming-Chi; Ko, Wen-Chien; Wu, Chi-Jung; Chuang, Yin-Ching; Lai, Chih-Cheng

    2016-01-01

    Abstract Invasive cerebral aspergillosis always developed in immunocompromised host. Early diagnosis may save life in this critical condition; however, it is difficult to reach. Herein, we presented an unusual case of invasive cerebral aspergillosis in a cirrhotic patient. A 47-year-old man presented with progressive deterioration of consciousness for three days. The patient had a history of alcoholic liver cirrhosis, Child-Pugh class C. Magnetic resonance imaging (MRI) of brain showed multi-focal parenchymal lesions, which was consistent with multiple brain abscesses. The diagnosis of invasive cerebral aspergillosis was made by molecular based laboratory methods including Aspergillus galactomannan antigen assay and oligonucleotide array. Despite treatment with the antifungal agent, Amphotericin B, the patient died at the ninth day of hospitalization. Our findings suggest that liver cirrhosis can be one of risk factors of invasive cerebral aspergillosis, and support the diagnosing usefulness of MRI, Aspergillus galactomannan antigen assay, and oligonucleotide array. PMID:26945363

  19. Multiple Brain Abscesses Due to Aspergillus Fumigatus in a Patient With Liver Cirrhosis: A Case Report.

    PubMed

    Tang, Hung-Jen; Liu, Wei-Lun; Chang, Tsung Chain; Li, Ming-Chi; Ko, Wen-Chien; Wu, Chi-Jung; Chuang, Yin-Ching; Lai, Chih-Cheng

    2016-03-01

    Invasive cerebral aspergillosis always developed in immunocompromised host. Early diagnosis may save life in this critical condition; however, it is difficult to reach. Herein, we presented an unusual case of invasive cerebral aspergillosis in a cirrhotic patient. A 47-year-old man presented with progressive deterioration of consciousness for three days. The patient had a history of alcoholic liver cirrhosis, Child-Pugh class C. Magnetic resonance imaging (MRI) of brain showed multi-focal parenchymal lesions, which was consistent with multiple brain abscesses. The diagnosis of invasive cerebral aspergillosis was made by molecular based laboratory methods including Aspergillus galactomannan antigen assay and oligonucleotide array. Despite treatment with the antifungal agent, Amphotericin B, the patient died at the ninth day of hospitalization. Our findings suggest that liver cirrhosis can be one of risk factors of invasive cerebral aspergillosis, and support the diagnosing usefulness of MRI, Aspergillus galactomannan antigen assay, and oligonucleotide array. PMID:26945363

  20. Saponin-permeabilization is not a viable alternative to isolated mitochondria for assessing oxidative metabolism in hibernation.

    PubMed

    Mathers, Katherine E; Staples, James F

    2015-01-01

    Saponin permeabilization of tissue slices is increasingly popular for characterizing mitochondrial function largely because it is fast, easy, requires little tissue and leaves much of the cell intact. This technique is well described for mammalian muscle and brain, but not for liver. We sought to evaluate how saponin permeabilization reflects aspects of liver energy metabolism typically assessed in isolated mitochondria. We studied the ground squirrel (Ictidomys tridecemlineatus Mitchell), a hibernating mammal that shows profound and acute whole-animal metabolic suppression in the transition from winter euthermia to torpor. This reversible metabolic suppression is also reflected in the metabolism of isolated liver mitochondria. In this study we compared euthermic and torpid animals using saponin permeabilized tissue and mitochondria isolated from the same livers. As previously demonstrated, isolated mitochondria have state 3 respiration rates, fueled by succinate, that are suppressed by 60-70% during torpor. This result holds whether respiration is standardized to mitochondrial protein, cytochrome a content or citrate synthase activity. In contrast, saponin-permeabilized liver tissue, show no such suppression in torpor. Neither citrate synthase activity nor VDAC content differ between torpor and euthermia, indicating that mitochondrial content remains constant in both permeabilized tissue and isolated mitochondria. In contrast succinate dehydrogenase activity is suppressed during torpor in isolated mitochondria, but not in permeabilized tissue. Mechanisms underlying metabolic suppression in torpor may have been reversed by the permeabilization process. As a result we cannot recommend saponin permeabilization for assessing liver mitochondrial function under conditions where acute changes in metabolism are known to occur. PMID:25979709

  1. [PROTEIN CONTENT CHANGES IN RATS' LIVER AND BRAIN UNDER CHRONIC ALCOHOL INTOXICATION].

    PubMed

    Raksha, N G; Savchuk, A N; Kharchenko, O I; Galenova, T I; Ostapchenko, L I

    2015-01-01

    An electrophoretic investigation of quantitative protein content in rat's' tissyes under chronic alcoholic intoxication has been done. It was shown the significant increase of protein content with molecular mass 55, 48-50, 43-45, 39-41 KDa and the decrease-of protein fractions with molecular mass 46-48, 34-35, 27-30, 16-18 KDa accordingly in liver and brain homogenates of experimental animals. PMID:26827457

  2. Protective effect of Xingnaojia formulation on rats with brain and liver damage caused by chronic alcoholism

    PubMed Central

    LI, SHUANG; WANG, SU; GUO, ZHI-GANG; HUANG, NING; ZHAO, FAN-RONG; ZHU, MO-LI; MA, LI-JUAN; LIANG, JIN-YING; ZHANG, YU-LIN; HUANG, ZHONG-LIN; WAN, GUANG-RUI

    2015-01-01

    The aim of this study was to observe the effect of a formulation of traditional Chinese medicine extracts known as Xingnaojia (XNJ) on the liver function, learning ability and memory of rats with chronic alcoholism and to verify the mechanism by which it protects the brain and liver. A rat model of chronic alcoholism was used in the study. The spatial learning ability and memory of the rats were tested. The rats were then sacrificed and their brains and hepatic tissues were isolated. The activity of superoxide dismutase (SOD) and levels of glutamate (Glu), N-methyl D-aspartate receptor subtype 2B (NR2B), cyclin-dependent kinase 5 (CDK5) and cannabinoid receptor 1 (CB1) in the hippocampus were analyzed. The ultrastructure of the hepatic tissue was observed by electron microscopy. In addition, the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in serum were tested and the levels of low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG) and total cholesterol (TCHOL) were analyzed. XNJ enhanced the learning and memory of rats with chronic alcoholism. Treatment with XNJ increased the activity of SOD, and decreased the expression levels of NR2B mRNA and NR2B, CB1 and CDK5 proteins in the brain tissues compared with those in the model rats. It also increased the activity of ALDH in the serum and liver, decreased the serum levels of LDL, TG and TCHOL and increased the serum level of HDL. These results indicate that XNJ exhibited a protective effect against brain and liver damage in rats with chronic alcoholism. PMID:26640531

  3. UPTAKE OF [3H]-COLCHICINE INTO BRAIN AND LIVER OF MOUSE, RAT, AND CHICK

    SciTech Connect

    Bennett, Edward L.; Alberti, Marie Hebert; Flood, James F.

    1980-07-01

    The uptake of [ring A-4-{sup 3}H] colchicine and [ring C-methoxy-{sup 3}H]colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of [ring C-methoxy-{sup 3}H] and [ring A-{sup 3}H]colchicine was also studied in rats. the general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkoloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments [7], support the hypotheses that structural alteration in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  4. Uptake of (/sup 3/H)colchicine into brain and liver of mouse, rat, and chick

    SciTech Connect

    Bennett, E.L.; Alberti, M.H.; Flood, J.F.

    1981-01-01

    The uptake of (ring A-4-/sup 3/H) colchicine and (ring C-methoxy-/sup 3/H)colchicine has been compared in mice from 1 to 24 hr after administration. Less radioactivity was found in brain after administration of ring-labeled colchicine than after administration of the methoxy-labeled colchicine. Three hr after administration of ring-labeled colchicine, 5% of the label was in liver and about 0.01% of the label was present in brain. Forty percent of the brain radioactivity was bound to tubulin as determined by vinblastine precipitation. After 3 hr, an average of 8% of the radioactivity from methoxy-labeled colchicine was found in the liver and 0.16% in brain. However, less than 5% of the activity in brain was precipitated by vinblastine, and the colchicine equivalent was comparable to that found after administration of the ring-labeled colchicine. The amount of colchicine entering mouse brain after subcutaneous injection is comparable to the minimum behaviorally effective dose when administered to the caudate. The metabolism of (ring C-methoxy-/sup 3/H) and (ring A-/sup 3/H)colchicine was also studied in rats. The general pattern was similar to mice; less radioactivity was found in brain after administration of the ring-labeled alkaloid than after administration of methoxy-labeled colchicine. Again, 40-50% of ring-labeled colchicine was precipitated by vinblastine. A much smaller percentage of the methoxy-labeled drug was precipitated by vinblastine than of the ring A-labeled colchicine. These experiments, together with behavioral experiments, support the hypotheses that structural alterations in synapses by recently synthesized proteins which are transported down the axons and dendrites may be an essential process for long-term memory formation.

  5. Bumetanide increases manganese accumulation in the brain of rats with liver damage.

    PubMed

    Montes, Sergio; Castro-Chávez, Armando; Florian-Soto, Circe; Heras-Romero, Yessica; Ríos, Camilo; Rivera-Mancía, Susana

    2016-03-01

    Hepatic encephalopathy is a common complication in cases of liver damage; it results from several factors, including the accumulation of toxic substances in the brain, e.g. manganese, ammonia and glutamine. We have previously reported that manganese favors ammonia and glutamine accumulation in the brain of cirrhotic rats, and we suggested that such effect could be mediated by manganese-elicited activation of the NKCC1 (Na(+)/K(+)/2Cl(-) cotransporter 1). To test this hypothesis, we used bumetanide, an NKCC1 blocker prescribed to treat ascites in cirrhotic patients; we expected that if NKCC1 was responsible for manganese-mediated ammonia buildup and the subsequent glutamine accumulation, bumetanide could counteract such effect and improve motor coordination. In addition, we considered essential to test the effect of bumetanide on manganese brain levels. We used a model of liver damage in rats, consisting in bile-duct ligation. Animals were exposed to manganese in the drinking water (1 mg/ml) for two weeks and ammonia in the food (20% w/w of ammonia acetate) during the second week after surgery. Bumetanide was administered intraperitoneally in the course of the ammonia treatment. We measured glutamine and manganese in three brain regions: frontal cortex, striatum and cerebellum. Bumetanide produced no effect on glutamine accumulation; however, because of bumetanide treatment, manganese was increased in the brain, and also the activity of gamma-glutamyl transferase in plasma; thus, we consider that the influence of bumetanide and similar diuretics on liver function and manganese homeostasis should be further studied. PMID:26851372

  6. Distinct Pools of Non-Glycolytic Substrates Differentiate Brain Regions and Prime Region-Specific Responses of Mitochondria

    PubMed Central

    Platt, Virginia; Budworth, Helen; Canaria, Christie A.; McMurray, Cynthia T.

    2013-01-01

    Many hereditary diseases are characterized by region-specific toxicity, despite the fact that disease-linked proteins are generally ubiquitously expressed. The underlying basis of the region-specific vulnerability remains enigmatic. Here, we evaluate the fundamental features of mitochondrial and glucose metabolism in synaptosomes from four brain regions in basal and stressed states. Although the brain has an absolute need for glucose in vivo, we find that synaptosomes prefer to respire on non-glycolytic substrates, even when glucose is present. Moreover, glucose is metabolized differently in each brain region, resulting in region-specific “signature” pools of non-glycolytic substrates. The use of non-glycolytic resources increases and dominates during energy crisis, and triggers a marked region-specific metabolic response. We envision that disease-linked proteins confer stress on all relevant brain cells, but region-specific susceptibility stems from metabolism of non-glycolytic substrates, which limits how and to what extent neurons respond to the stress. PMID:23874783

  7. Newcastle disease virus (NDV) induces protein oxidation and nitration in brain and liver of chicken: Ameliorative effect of vitamin E.

    PubMed

    Venkata Subbaiah, Kadiam C; Valluru, Lokanatha; Rajendra, Wudayagiri; Ramamurthy, Chiteti; Thirunavukkarusu, Chinnasamy; Subramanyam, Rajagopal

    2015-07-01

    The present study was aimed at investigating the therapeutic efficacy of vitamin E on oxidative injury in brain and liver of Newcastle disease virus (NDV) challenged chickens. We have analyzed the xanthine oxidase (XOD) activity; uric acid (UA) levels and superoxide radical generation by using electron spin resonance spectroscopy. Further, protein oxidation, nitration and apoptosis were evaluated in the brain and liver of the control, NDV-infected and NDV+Vit. E treated groups. A significant elevation was observed in XOD activity and UA levels in brain (p<0.001) and liver (p<0.05) of NDV infected birds when compared to controls. Further, significant increase in the production of superoxides, enhanced intracellular protein carbonyls and nitrates were observed in the brain and liver of NDV-infected birds over healthy subjects. Apoptosis studies also suggested that a larger number of TUNEL positive cells were observed in brain and a moderately in liver of NDV-infected chickens. However, all these perturbations were significantly ameliorated in NDV+Vit. E treated chickens as compared to NDV-infected birds. Taken together, our results suggested that NDV-induced neuronal and hepatic damage at least in part mediates oxidative stress and on the other hand, supplementation of vitamin E mitigates NDV-induced oxidative damage thereby protects brain and liver of chickens. These findings could provide new insights into the understanding of NDV pathogenesis and therapeutic effects of dietary antioxidants.

  8. Effect of Centella asiatica leaf powder on oxidative markers in brain regions of prepubertal mice in vivo and its in vitro efficacy to ameliorate 3-NPA-induced oxidative stress in mitochondria.

    PubMed

    Shinomol, George K; Muralidhara

    2008-11-01

    Centella asiatica (CA) is a common medicinal plant used in the ayurvedic system of medicine to treat various ailments and as a memory enhancer. Despite its extensive usage in children, data on its ability to modulate neuronal oxidative stress in prepubertal rodents are limited. Hence in the present study we have addressed primarily two questions (i) whether dietary intake of CA leaf powder possess the propensity to modulate endogenous oxidative markers in mouse brain regions and (ii) the efficacy of CA aqueous extract to abrogate 3-nitropropionic acid (3-NPA)-induced oxidative stress in brain mitochondria in vitro. Prepubertal male mice were fed CA-incorporated diet (0.5 and 1%) for 4 weeks, and biochemical markers of oxidative stress in brain regions were determined. Mice fed CA showed significant diminution in the levels of malondialdehyde (30-50%), reactive oxygen species (32-42%) and hydroperoxide levels (30-35%), which was accompanied by enhanced activities of antioxidant enzymes in all brain regions. While the levels of reduced glutathione and total thiols were elevated, the protein carbonyl content was decreased in brain among CA-fed mice. Interestingly, the oxidative markers among brain mitochondria of CA-fed mice were also significantly diminished (malondialdehyde, 25%; ROS, 30%; hydroperoxides, 35% and protein carbonyls, 28%). Further, the aqueous extract of CA showed significant free radical scavenging activity determined in established chemical test systems (viz., DPPH, superoxide and hydroxyl radical scavenging activity). Furthermore, the aqueous extract of CA markedly ameliorated the 3-NPA induced oxidative stress response in brain mitochondria under in vitro exposure,. Taken together, these data suggest that CA has the propensity to modulate both endogenous and neurotoxicant induced oxidative impairments in the brain and may be effectively employed as a neuroprotective adjuvant to abrogate oxidative stress in vivo. PMID:18539017

  9. Increased blood-brain transfer in a rabbit model of acute liver failure

    SciTech Connect

    Horowitz, M.E.; Schafer, D.F.; Molnar, P.; Jones, E.A.; Blasberg, R.G.; Patlak, C.S.; Waggoner, J.; Fenstermacher, J.D.

    1983-05-01

    The blood-to-brain transfer of (/sup 14/C)alpha-aminoisobutyric acid was investigated by quantitative autoradiography in normal rabbits and rabbits with acute liver failure induced by the selective hepatotoxin galactosamine. The blood-to-brain transfer of alpha-aminoisobutyric acid was similar in control animals and animals 2 and 7 h after galactosamine injections, but was increased five- to tenfold in certain gray-matter areas of the brain in animals 11 and 18 h after galactosamine treatment. No detectable differences in white-matter uptake of (/sup 14/C)alpha-aminoisobutyric acid were found between the control and treated groups. The increase in alpha-aminoisobutyric acid transfer within the gray-matter areas suggested that a general or nonspecific increase in brain capillary permeability occurred in these areas. No clinical signs of early hepatic encephalopathy were observed in the treated rabbits, except for 1 animal from the 18-h postgalactosamine group. Thus, enhanced blood-brain transfer of alpha-aminoisobutyric acid preceded the development of overt hepatic encephalopathy. The distribution of radioactivity after the intravenous administration of (/sup 14/C)galactosamine showed that virtually none of the hepatotoxin localized in the brain, suggesting that the drug itself does not have a direct effect upon the blood-brain barrier or the brain. The increased uptake of alpha-aminoisobutyric acid at 11 and 18 h implies that the transfer of other solutes would also be enhanced, that central nervous system homeostasis would be compromised, and that the resulting changes in brain fluid composition could contribute to or cause hepatic encephalopathy.

  10. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  11. Sulfonylurea Receptor 1 Contributes to the Astrocyte Swelling and Brain Edema in Acute Liver Failure

    PubMed Central

    Jayakumar, A.R.; Valdes, V.; Tong, X.Y.; Shamaladevi, N.; Gonzalez, W.; Norenberg, M.D.

    2014-01-01

    Astrocyte swelling (cytotoxic brain edema) is the major neurological complication of acute liver failure (ALF), a condition in which ammonia has been strongly implicated in its etiology. Ion channels and transporters are known to be involved in cell volume regulation and a disturbance in these systems may result in cell swelling. One ion channel known to contribute to astrocyte swelling/brain edema in other neurological disorders is the ATP-dependent, non-selective cation channel (NCCa-ATP channel). We therefore examined its potential role in the astrocyte swelling/brain edema associated with ALF. Cultured astrocytes treated with 5 mM ammonia showed a 3-fold increase in the sulfonylurea receptor type 1 (SUR1) protein expression, a marker of NCCa-ATP channel activity. Blocking SUR1 with glibenclamide significantly reduced the ammonia-induced cell swelling in cultured astrocytes. Additionally, overexpression of SUR1 in ammonia-treated cultured astrocytes was significantly reduced by co-treatment of cells with BAY 11-7082, an inhibitor of NF-κB, indicating the involvement of an NF-κB-mediated SUR1 upregulation in the mechanism of ammonia-induced astrocyte swelling. Brain SUR1 mRNA level was also found to be increased in the thioacetamide (TAA) rat model of ALF. Additionally, we found a significant increase in SUR1 protein expression in rat brain cortical astrocytes in TAA-treated rats. Treatment with glibenclamide significantly reduced the brain edema in this model of ALF. These findings strongly suggest the involvement of NCCa-ATP channel in the astrocyte swelling/brain edema in ALF, and that targeting this channel may represent a useful approach for the treatment of the brain edema associated with ALF. PMID:24443056

  12. The chemoprotection of a blueberry anthocyanin extract against the acrylamide-induced oxidative stress in mitochondria: unequivocal evidence in mice liver.

    PubMed

    Zhao, Mengyao; Wang, Pengpu; Zhu, Yuchen; Liu, Xin; Hu, Xiaosong; Chen, Fang

    2015-09-01

    Acrylamide (AA) is one of the most important contaminants occurring in heated food products. Accumulating evidence indicates that AA-induced toxicity is associated with oxidative stress and long-term exposure to AA induced mitochondria collapse and finally leads to apoptosis. Whereas anthocyanins are natural antioxidants and have a strong ability to reduce oxidative damage in vivo. This study investigates the protection of a blueberry anthocyanin extract (BAE) against AA-induced mitochondrial oxidative stress in mice models. The activities of electron transport chain complexes, oxidative status, and the structure and function of mitochondria were measured. Results showed that pretreatment with BAE markedly inhibited reactive oxygen species (ROS) formation, and prevented the successive events associated with the mitochondrial damage and dysfunction, including recovered activities of electron transport chain, ATPase and superoxide dismutase, ameliorated depolarization of mitochondrial membrane potential and membrane lipid peroxidation, reduced release of cytochrome c and protection of mitochondria against swelling. In a word, mitochondria are a key target at the organelle level for the protective effect of BAE against AA toxicity. These results will be helpful to provide new clues for a better understanding of the AA toxicity intervention mechanism and for exploring effective dietary constituents for intervention of AA toxicity.

  13. Methionine-choline deprivation alters liver and brain acetylcholinesterase activity in C57BL6 mice.

    PubMed

    Vučević, Danijela B; Cerović, Ivana B; Mladenović, Dušan R; Vesković, Milena N; Stevanović, Ivana; Jorgačević, Bojan Z; Ješić Vukićević, Rada; Radosavljević, Tatjana S

    2016-07-01

    Choline and methionine are precursors of acetylcholine, whose hydrolysis is catalyzed by acetylcholinesterase (AChE). Considering the possibility of their common deficiency, we investigated the influence of methionine-choline deprivation on AChE activity in liver and various brain regions (hypothalamus, hippocampus, cerebral cortex and striatum) in mice fed with methionine-choline deficient (MCD) diet. Male C57BL/6 mice (n = 28) were randomly and equally divided into following groups: control group fed with standard diet for 6 weeks (C) and groups fed with MCD diet for 2 weeks (MCD2), 4 weeks (MCD4) and for 6 weeks (MCD6). After the diet, mice were sacrificied and AChE activity in liver and brain was determined spectrophotometrically. Hepatic AChE activity was higher in MCD2, MCD4 and MCD6 compared to control (p < 0.01), with most prominent increase in MCD6. AChE activity in hypothalamus was higher in MCD4 and MCD6 vs. control (p < 0.05 and p < 0.01, respectively), as well as in MCD6 compared to MCD4 (p < 0.01). In hippocampus, increase in AChE activity was shown in MCD6 compared to control (p < 0.01). In cortex and striatum, increase in AChE activity was noted in MCD6 compared to control (p < 0.05). Our findings indicate the increase of hepatic and brain AChE activity in mice caused by methionine-choline deprivation.

  14. TIMP-1 attenuates blood–brain barrier permeability in mice with acute liver failure

    PubMed Central

    Chen, Feng; Radisky, Evette S; Das, Pritam; Batra, Jyotica; Hata, Toshiyuki; Hori, Tomohide; Baine, Ann-Marie T; Gardner, Lindsay; Yue, Mei Y; Bu, Guojun; del Zoppo, Gregory; Patel, Tushar C; Nguyen, Justin H

    2013-01-01

    Blood–brain barrier (BBB) dysfunction in acute liver failure (ALF) results in increased BBB permeability that often precludes the patients from obtaining a life-saving liver transplantation. It remains controversial whether matrix metalloproteinase-9 (MMP-9) from the injured liver contributes to the deregulation of BBB function in ALF. We selectively upregulated a physiologic inhibitor of MMP-9 (TIMP-1) with a single intracerebroventricular injection of TIMP-1 cDNA plasmids at 48 and 72 hours, or with pegylated-TIMP-1 protein. Acute liver failure was induced with tumor necrosis factor-α and 𝒟-(+)-galactosamine in mice. Permeability of BBB was assessed with sodium fluorescein (NaF) extravasation. We found a significant increase in TIMP-1 within the central nervous system (CNS) after the administration of TIMP-1 cDNA plasmids and that increased TIMP-1 within the CNS resulted in an attenuation of BBB permeability, a reduction in activation of epidermal growth factor receptor and p38 mitogen-activated protein kinase signals, and a restoration of the tight junction protein occludin in mice with experimental ALF. Pegylated TIMP-1 provided similar protection against BBB permeability in mice with ALF. Our results provided a proof of principle that MMP-9 contributes to the BBB dysfunction in ALF and suggests a potential therapeutic role of TIMP-1 in ALF. PMID:23532086

  15. Vasopressin receptors in the brain, liver and kidney of rats following osmotic stimulation.

    PubMed

    Landgraf, R; Szot, P; Dorsa, D M

    1991-03-29

    The binding site concentration (Bmax) and equilibrium dissociation constant (Kd) for [3H]-arginine vasopressin (AVP) binding sites were measured in limbic brain areas (septum, dorsal hippocampus, amygdala) and liver and kidney of control and osmotically stimulated male Wistar rats. Membrane binding was performed in these five areas 30, 60 and 180 min following intraperitoneal injection of hypertonic saline. This paradigm resulted in no significant change in binding characteristics in the septum, dorsal hippocampus, amygdala and liver from control treated rats. In contrast, the kidney Bmax was significantly reduced 60 min following osmotic stimulation, with no effect on affinity. These results also suggest that AVP receptors in the CNS are relatively resistant to regulatory effects of an acute AVP exposure. PMID:1828184

  16. Metallothionein (MT) -I and MT-II Expression Are Induced and Cause Zinc Sequestration in the Liver after Brain Injury

    PubMed Central

    Pankhurst, Michael W.; Gell, David A.; Butler, Chris W.; Kirkcaldie, Matthew T. K.; West, Adrian K.; Chung, Roger S.

    2012-01-01

    Experiments with transgenic over-expressing, and null mutant mice have determined that metallothionein-I and -II (MT-I/II) are protective after brain injury. MT-I/II is primarily a zinc-binding protein and it is not known how it provides neuroprotection to the injured brain or where MT-I/II acts to have its effects. MT-I/II is often expressed in the liver under stressful conditions but to date, measurement of MT-I/II expression after brain injury has focused primarily on the injured brain itself. In the present study we measured MT-I/II expression in the liver of mice after cryolesion brain injury by quantitative reverse-transcriptase PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) with the UC1MT antibody. Displacement curves constructed using MT-I/II knockout (MT-I/II−/−) mouse tissues were used to validate the ELISA. Hepatic MT-I and MT-II mRNA levels were significantly increased within 24 hours of brain injury but hepatic MT-I/II protein levels were not significantly increased until 3 days post injury (DPI) and were maximal at the end of the experimental period, 7 DPI. Hepatic zinc content was measured by atomic absorption spectroscopy and was found to decrease at 1 and 3 DPI but returned to normal by 7DPI. Zinc in the livers of MT-I/II−/− mice did not show a return to normal at 7 DPI which suggests that after brain injury, MT-I/II is responsible for sequestering elevated levels of zinc to the liver. Conclusion: MT-I/II is up-regulated in the liver after brain injury and modulates the amount of zinc that is sequestered to the liver. PMID:22363575

  17. The antiestrogen endoxifen protects rat liver mitochondria from permeability transition pore opening and oxidative stress at concentrations that do not affect the phosphorylation efficiency

    SciTech Connect

    Ribeiro, Mariana P.C.; Silva, Filomena S.G.; Santos, Armanda E.; Santos, Maria S.; Custódio, José B.A.

    2013-02-15

    Endoxifen (EDX) is a key active metabolite of tamoxifen (TAM) with higher affinity and specificity to estrogen receptors that also inhibits aromatase activity. It is safe and well tolerated by healthy humans, but its use requires toxicological characterization. In this study, the effects of EDX on mitochondria, the primary targets for xenobiotic-induced toxicity, were monitored to clarify its potential side effects. EDX up to 30 nmol/mg protein did not affect the mitochondrial oxidative phosphorylation. At 50 nmol EDX/mg protein, EDX decreased the ADP phosphorylation rate and a partial collapse of mitochondrial membrane potential (Δψ), that parallels a state 4 stimulation, was observed. As the stimulation of state 4 was not inhibited by oligomycin and 50 nmol EDX/mg protein caused a slight decrease in the light scattering of mitochondria, these data suggest that EDX promotes membrane permeabilization to protons, whereas TAM at the same concentration induced mitochondrial membrane disruption. Moreover, EDX at 10 nmol/mg protein prevented and reversed the Ca{sup 2+}-induced depolarization of ΔΨ and the release of mitochondrial Ca{sup 2+}, similarly to cyclosporine A, indicating that EDX did not affect Ca{sup 2+} uptake, but directly interfered with the proteins of the mitochondrial permeability transition (MPT) megacomplex, inhibiting MPT induction. At this concentration, EDX exhibited antioxidant activity that may account for the protective effect against MPT pore opening. In conclusion, EDX within the range of concentrations reached in tissues did not significantly damage the bioenergetic functions of mitochondria, contrarily to the prodrug TAM, and prevented the MPT pore opening and the oxidative stress in mitochondria, supporting that EDX may be a less toxic drug for women with breast carcinoma. - Highlights: ► Mitochondria are important targets of Endoxifen. ► Endoxifen prevents mitochondrial permeability transition. ► Endoxifen prevents oxidative

  18. Targeting mitochondria: strategies, innovations and challenges: The future of medicine will come through mitochondria.

    PubMed

    Edeas, Marvin; Weissig, Volkmar

    2013-09-01

    Mitochondrial dysfunction has been associated with the aging process and a large variety of human disorders, such as cardiovascular and neurodegenerative diseases, cancer, migraine, infertility, kidney and liver diseases, toxicity of drugs and many more. It is well recognized that the physiological role of mitochondria widely exceeds that of solely being the biochemical power plant of our cells. Over the recent years, mitochondria have become an interesting target for drug therapy, and the research field aimed at "targeting mitochondria" is active and expanding as witnessed by this already third edition of the world congress on targeting mitochondria. It is becoming a necessity and an urge to know why and how to target mitochondria with bioactive molecules and drugs in order to treat and prevent mitochondria-based pathologies and chronic diseases. This special issue covers a variety of new strategies and innovations as well as clinical applications in mitochondrial medicine.

  19. Expression of alcoholism-relevant genes in the liver are differently correlated to different parts of the brain.

    PubMed

    Wang, Lishi; Huang, Yue; Jiao, Yan; Chen, Hong; Cao, Yanhong; Bennett, Beth; Wang, Yongjun; Gu, Weikuan

    2013-01-01

    The purpose of this study is to investigate whether expression profiles of alcoholism-relevant genes in different parts of the brain are correlated differently with those in the liver. Four experiments were conducted. First, we used gene expression profiles from five parts of the brain (striatum, prefrontal cortex, nucleus accumbens, hippocampus, and cerebellum) and from liver in a population of recombinant inbred mouse strains to examine the expression association of 10 alcoholism-relevant genes. Second, we conducted the same association analysis between brain structures and the lung. Third, using five randomly selected, nonalcoholism-relevant genes, we conducted the association analysis between brain and liver. Finally, we compared the expression of 10 alcoholism-relevant genes in hippocampus and cerebellum between an alcohol preference strain and a wild-type control. We observed a difference in correlation patterns in expression levels of 10 alcoholism-relevant genes between different parts of the brain with those of liver. We then examined the association of gene expression between alcohol dehydrogenases (Adh1, Adh2, Adh5, and Adh7) and different parts of the brain. The results were similar to those of the 10 genes. Then, we found that the association of those genes between brain structures and lung was different from that of liver. Next, we found that the association patterns of five alcoholism-nonrelevant genes were different from those of 10 alcoholism-relevant genes. Finally, we found that the expression level of 10 alcohol-relevant genes is influenced more in hippocampus than in cerebellum in the alcohol preference strain. Our results show that the expression of alcoholism-relevant genes in liver is differently associated with the expression of genes in different parts of the brain. Because different structural changes in different parts of the brain in alcoholism have been reported, it is important to investigate whether those structural differences in

  20. Effects of aluminum and other cations on the structure of brain and liver chromatin.

    PubMed

    Walker, P R; LeBlanc, J; Sikorska, M

    1989-05-01

    The reactivity of aluminum and several other divalent and trivalent metallic cations toward chromatin from rat brain and liver has been investigated. Two criteria are used to determine the relative reactivity of these cations toward chromatin. The first involves the ability of the ions to compact the chromatin fibers to the point where chromatin precipitates. The second criterion measures the ability of cations to interfere with the accessibility of exogenous structural probes (nucleases) to chromatin. Of the divalent cations tested, nickel, cobalt, zinc, cadmium, and mercury were the most reactive toward chromatin, on the basis of their ability to induce precipitation of chromatin in the micromolar concentration range. The divalent cations magnesium, calcium, copper, strontium, and barium were much less effective, although all cations precipitate chromatin if their concentration is increased. Of the trivalent cations tested, aluminum, indium, and gallium were very effective precipitants, whereas iron and scandium were without effect at the concentrations tested. Of all the cations tested, aluminum was the most reactive. Aluminum's ability to alter the structure of chromatin was investigated further by testing its ability to interfere with nuclease accessibility. This test confirmed that aluminum does induce considerable changes in chromatin structure at micromolar concentrations. Furthermore, chromatin from cortical areas of the brain was much more sensitive to aluminum than chromatin from liver. These results are discussed in light of the known toxicity of these cations, with particular emphasis on the possible role of aluminum in Alzheimer's disease. PMID:2752000

  1. Base-resolution DNA methylation landscape of zebrafish brain and liver.

    PubMed

    Chatterjee, Aniruddha; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

    2014-12-01

    Zebrafish (Danio rerio) is a vertebrate model organism that is widely used for studying a plethora of biological questions, including developmental processes, effects of external cues on phenotype, and human disease modeling. DNA methylation is an important epigenetic mechanism that contributes to gene regulation, and is prevalent in all vertebrates. Reduced representation bisulfite sequencing (RRBS) is a cost-effective technique to generate genome-wide DNA methylation maps and has been used in mammalian genomes (e.g., human, mouse and rat) but not in zebrafish. High-resolution DNA methylation data in zebrafish are limited: increased availability of such data will enable us to model and better understand the roles, causes and consequences of changes in DNA methylation. Here we present five high-resolution DNA methylation maps for wild-type zebrafish brain (two pooled male and two pooled female methylomes) and liver. These data were generated using the RRBS technique (includes 1.43 million CpG sites of zebrafish genome) on the Illumina HiSeq platform. Alignment to the reference genome was performed using the Zv9 genome assembly. To our knowledge, these datasets are the only RRBS datasets and base-resolution DNA methylation data available at this time for zebrafish brain and liver. These datasets could serve as a resource for future studies to document the functional role of DNA methylation in zebrafish. In addition, these datasets could be used as controls while performing analysis on treated samples.

  2. Dietary sandalwood seed oil modifies fatty acid composition of mouse adipose tissue, brain, and liver.

    PubMed

    Liu, Y; Longmore, R B

    1997-09-01

    Sandalwood (Santalum spicatum) seed oil, which occurs to about 50% of the weight of the seed kernels, contains 30-35% of total fatty acids (FA) as ximenynic acid (XMYA). This study was designed to obtain basic information on changes in tissue FA composition and on the metabolic fate of XMYA in mice fed a sandalwood seed oil (SWSO)-enriched diet. Female mice were randomly divided into three groups, each receiving different semisynthetic diets containing 5.2% (w/w) fat (standard laboratory diet), 15% canola oil, or 15% SWSO for 8 wk. The effects of SWSO as a dietary fat on the FA composition of adipose tissue, brain, and liver lipids were determined by analyses of FA methyl ester derivatives of extracted total lipid. The FA compositions of the liver and adipose tissue were markedly altered by the dietary fats, and mice fed on a SWSO-enriched diet were found to contain XMYA but only in low concentration (0.3-3%) in these tissues; XMYA was not detected in brain. Oleic acid was suggested to be a principal XMYA biotransformation product. The results were interpreted to suggest that the metabolism of XMYA may involve both biohydrogenation and oxidation reactions. PMID:9307938

  3. Role of mitochondria in drug-induced cholestatic injury.

    PubMed

    Kass, George E N; Price, Shirley C

    2008-02-01

    Mitochondria have multiple functions in eukaryotic cells and are organized into dynamic tubular networks that continuously undergo changes through coordinated fusion and fission and migration through the cytosol. Mitochondria integrate cell-signaling networks, especially those involving the intracellular messenger Ca(2+), into the regulation of metabolic pathways. Recently, it has become clear that mitochondria are central to the three main cell death pathways, namely necrosis, apoptosis, and autophagic cell death. This article discusses the role of mitochondria in drug-induced cholestatic injury to the liver. The role of mitochondria in the cellular adaptation against the toxic effects of bile acids is discussed also. PMID:18242496

  4. Effect of peripheral benzodiazepine receptor (PBR/TSPO) ligands on opening of Ca2+-induced pore and phosphorylation of 3.5-kDa polypeptide in rat brain mitochondria.

    PubMed

    Krestinina, O V; Grachev, D E; Odinokova, I V; Reiser, G; Evtodienko, Yu V; Azarashvili, T S

    2009-04-01

    The effect of nanomolar concentrations of PBR/TSPO ligands--Ro 5-4864, PK11195, and PPIX--on Ca2+-induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 microM) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of [gamma-(32)P]ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca2+ concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5 kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of F(o)F(1)-ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of F(o)F(1)-ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca2+- and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.

  5. Differential toxicity of 6-hydroxydopamine in SH-SY5Y human neuroblastoma cells and rat brain mitochondria: protective role of catalase and superoxide dismutase.

    PubMed

    Iglesias-González, Javier; Sánchez-Iglesias, Sofía; Méndez-Álvarez, Estefanía; Rose, Sarah; Hikima, Atsuko; Jenner, Peter; Soto-Otero, Ramón

    2012-10-01

    Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson's disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC(50) = 200 ± 15 nM) and state 3 respiration (IC(50) = 192 ± 17 nM), with no significant effects on state 4(o). An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC(50) = 100 ± 9 μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity. PMID:22821477

  6. c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis.

    PubMed Central

    Schroeter, Hagen; Boyd, Clinton S; Ahmed, Ruhi; Spencer, Jeremy P E; Duncan, Roger F; Rice-Evans, Catherine; Cadenas, Enrique

    2003-01-01

    The molecular mechanisms underlying the initiation and control of the release of cytochrome c during mitochondrion-dependent apoptosis are thought to involve the phosphorylation of mitochondrial Bcl-2 and Bcl-x(L). Although the c-Jun N-terminal kinase (JNK) has been proposed to mediate the phosphorylation of Bcl-2/Bcl-x(L) the mechanisms linking the modification of these proteins and the release of cytochrome c remain to be elucidated. This study was aimed at establishing interdependency between JNK signalling and mitochondrial apoptosis. Using an experimental model consisting of isolated, bioenergetically competent rat brain mitochondria, these studies show that (i) JNK catalysed the phosphorylation of Bcl-2 and Bcl-x(L) as well as other mitochondrial proteins, as shown by two-dimensional isoelectric focusing/SDS/PAGE; (ii) JNK-induced cytochrome c release, in a process independent of the permeability transition of the inner mitochondrial membrane (imPT) and insensitive to cyclosporin A; (iii) JNK mediated a partial collapse of the mitochondrial inner-membrane potential (Deltapsim) in an imPT- and cyclosporin A-independent manner; and (iv) JNK was unable to induce imPT/swelling and did not act as a co-inducer, but as an inhibitor of Ca-induced imPT. The results are discussed with regard to the functional link between the Deltapsim and factors influencing the permeability transition of the inner and outer mitochondrial membranes. Taken together, JNK-dependent phosphorylation of mitochondrial proteins including, but not limited to, Bcl-2/Bcl-x(L) may represent a potential of the modulation of mitochondrial function during apoptosis. PMID:12614194

  7. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.

    PubMed Central

    Harper, R D; Saggerson, E D

    1975-01-01

    Mitochondrial were prepared from fat-cells isolated from rat epididymal adipose tissues of fed and 48 h-starved rats to study some aspects of fatty acid oxidation in this tissue. The data were compared with values obtained in parallel experiments with liver mitochondria that were prepared and incubated under identical conditions. 2. In the presence of malonate, fluorocitrate and arsenite, malate, but not pyruvate-bicarbonate, facilitated palmitoyl-group oxidation in both types of mitochondria. In the presence of malate, fat-cell mitochondria exhibited slightly higher rates of palmitoylcarnitine oxidation than liver. Rates of octanoylcarnitine oxidation were similar in liver and fat-cell mitochondria. Uncoupling stimulated acylcarnitine oxidation in liver, but not in fat-cell mitochondria. Oxidation of palmitoyl- and octanoyl-carnitine was partially additive in fat-cell but not in liver mitochondria. Starvation for 48 h significantly decreased both palmitoylcarnitine oxidation and latent carnitine palmitoyltransferase activity in fat-cell mitochondria. Starvation increased latent carnitine palmitoyltransferase activity in liver mitochondria but did not alter palmitoylcarnitine oxidation. These results suggested that palmitoylcarnitine oxidation in fat-cell but not in liver mitochondria may be limited by carnitine palmitoyltransferase 2 activity. 3. Fat-cell mitochondria also differed from liver mitochondria in exhibiting considerably lower rates of carnitine-dependent oxidation of palmitoyl-CoA or palmitate, suggesting that carnitine palmitoyltransferase 1 activity may severely rate-limit palmitoyl-CoA oxidation in adipose tissue. PMID:1227502

  8. Incorporation of radioactive polyunsaturated fatty acids into liver and brain of developing rat.

    PubMed

    Sinclair, A J

    1975-03-01

    The incorporation of radioactivity from orally administered linoleic acid-1-14C, linolenic acid-1-14C, arachidonic acid-3H8, and docosahexaenoic acid-14C into the liver and brain lipids of suckling rats was studied. In both tissues, 22 hr after dosing, 2 distinct levels of incorporation were observed: a low uptake (from 18:2-1-14C and 18:3-1-14C) and a high uptake (from 20:4-3H8 and 22:6-14C). In adult rats, the incorporation of radioactivity into brain lipids from 18:2-1-14C and 20:4-3H was considerably lower than the incorporation into the brains of the young rats. In the livers of the suckling rats, the activity from the 18 carbon acids was associated mostly with the triglyceride fraction, whereas the activity from the 20:4-3H8 and 22:6-14C was concentrated in the phospholipid fraction. In the brain lipids, the activity from the different fatty apid fatty acids, some of the activity in the 18:2-1-14C and 18:3-1-14C experiments was associated with 20 and 22 carbon polyunsaturated fatty acids; however, radioactivity from orally administered 20:4-3H8 and 22:6-14C was incorporated intact into the tissue phospholipid to a much greater extent compared with the incorporation of radioactivity into 20:4 and 22:6 in the experiments where 18:2-1-14C and 18:3-1-14C, respectively, were administered. Possible reasons for these differences are discussed. Rat milk contains a wide spectrum of polyunsaturated fatty acids, including linoleate, linolenate, arachidonate, and docosahexaenoate. During the suckling period in the rat, there is a rapid deposition of 20:4 and 22:6 in the brain. The results of the present experiments suggested that dietary 20:4 and 22:6 were important sources of brain 20:4 and 22:6 in the developing rat.

  9. Immunodetection of Outer Membrane Proteins by Flow Cytometry of Isolated Mitochondria

    PubMed Central

    Pickles, Sarah; Arbour, Nathalie; Vande Velde, Christine

    2014-01-01

    Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver. PMID:25285411

  10. Oxygen consumption by mitochondria from an endotherm and an ectotherm.

    PubMed

    Berner, N J

    1999-09-01

    Comparisons of metabolic properties of mitochondria from an endothermic and an ectothermic vertebrate were performed. Oxygen (O2) consumption rates of liver mitochondria from laboratory mice and western fence lizard (Sceloporus occidentalis) were determined over a range of temperatures (10, 20, 30 and 37 degrees C) and in the presence of a variety of substrates. At 37 degrees C the O2 consumption rate of mouse mitochondria was 4-11 times higher than lizard mitochondria in the presence of five of eight substrates. This range of differences is similar to differences reported for O2 consumption of endothermic animals, tissues and cells over those of ectotherms. Thermal sensitivity of mitochondria was measured by calculation of Q10s for O2 consumption. Q10s were highest for mouse mitochondria overall. The range that showed the highest Q10s for the mouse mitochondria was 30-20 degrees C, whereas for the lizard mitochondria it was 20-10 degrees C. Thus, mitochondria from the ectotherm showed a lower degree of temperature sensitivity than did mitochondria from the endotherm. The preferred substrate for all mitochondria at all temperatures was succinate, but mouse mitochondria then showed some preference for alpha-ketoglutarate and citrate, whereas lizard mitochondria showed a preference for pyruvate and malate + pyruvate.

  11. Oxygen consumption by mitochondria from an endotherm and an ectotherm.

    PubMed

    Berner, N J

    1999-09-01

    Comparisons of metabolic properties of mitochondria from an endothermic and an ectothermic vertebrate were performed. Oxygen (O2) consumption rates of liver mitochondria from laboratory mice and western fence lizard (Sceloporus occidentalis) were determined over a range of temperatures (10, 20, 30 and 37 degrees C) and in the presence of a variety of substrates. At 37 degrees C the O2 consumption rate of mouse mitochondria was 4-11 times higher than lizard mitochondria in the presence of five of eight substrates. This range of differences is similar to differences reported for O2 consumption of endothermic animals, tissues and cells over those of ectotherms. Thermal sensitivity of mitochondria was measured by calculation of Q10s for O2 consumption. Q10s were highest for mouse mitochondria overall. The range that showed the highest Q10s for the mouse mitochondria was 30-20 degrees C, whereas for the lizard mitochondria it was 20-10 degrees C. Thus, mitochondria from the ectotherm showed a lower degree of temperature sensitivity than did mitochondria from the endotherm. The preferred substrate for all mitochondria at all temperatures was succinate, but mouse mitochondria then showed some preference for alpha-ketoglutarate and citrate, whereas lizard mitochondria showed a preference for pyruvate and malate + pyruvate. PMID:10582317

  12. [Deceased organ donors, legal regulations governing diagnosis of brain death, overview of donors and liver transplants in the Czech Republic].

    PubMed

    Pokorná, E

    2013-08-01

    The key restriction of transplantation medicine globally, as well as in the Czech Republic, concerns the lack of organs. The number of deceased donors, and thus the availability of organ transplants, has been stagnating in our country. The paper describes current legal regulations governing the dia-gnosis of brain death and primary legal and medical criteria for the contraindication of the deceased for organ explantation, gives an overview of the number of liver transplants, age structure, and diagnosis resulting in brain death of the deceased liver donors in the Czech Republic.

  13. [Deceased organ donors, legal regulations governing diagnosis of brain death, overview of donors and liver transplants in the Czech Republic].

    PubMed

    Pokorná, E

    2013-08-01

    The key restriction of transplantation medicine globally, as well as in the Czech Republic, concerns the lack of organs. The number of deceased donors, and thus the availability of organ transplants, has been stagnating in our country. The paper describes current legal regulations governing the dia-gnosis of brain death and primary legal and medical criteria for the contraindication of the deceased for organ explantation, gives an overview of the number of liver transplants, age structure, and diagnosis resulting in brain death of the deceased liver donors in the Czech Republic. PMID:24007222

  14. Oxidative stress of brain and liver is increased by Wi-Fi (2.45GHz) exposure of rats during pregnancy and the development of newborns.

    PubMed

    Çelik, Ömer; Kahya, Mehmet Cemal; Nazıroğlu, Mustafa

    2016-09-01

    An excessive production of reactive oxygen substances (ROS) and reduced antioxidant defence systems resulting from electromagnetic radiation (EMR) exposure may lead to oxidative brain and liver damage and degradation of membranes during pregnancy and development of rat pups. We aimed to investigate the effects of Wi-Fi-induced EMR on the brain and liver antioxidant redox systems in the rat during pregnancy and development. Sixteen pregnant rats and their 48 newborns were equally divided into control and EMR groups. The EMR groups were exposed to 2.45GHz EMR (1h/day for 5 days/week) from pregnancy to 3 weeks of age. Brain cortex and liver samples were taken from the newborns between the first and third weeks. In the EMR groups, lipid peroxidation levels in the brain and liver were increased following EMR exposure; however, the glutathione peroxidase (GSH-Px) activity, and vitamin A, vitamin E and β-carotene concentrations were decreased in the brain and liver. Glutathione (GSH) and vitamin C concentrations in the brain were also lower in the EMR groups than in the controls; however, their concentrations did not change in the liver. In conclusion, Wi-Fi-induced oxidative stress in the brain and liver of developing rats was the result of reduced GSH-Px, GSH and antioxidant vitamin concentrations. Moreover, the brain seemed to be more sensitive to oxidative injury compared to the liver in the development of newborns.

  15. Adaptive changes in the capacity of systems used for the synthesis of citrulline in rat liver mitochondria in response to high- and low-protein diets

    PubMed Central

    McGivan, J. D.; Bradford, Norah M.; Chappell, J. B.

    1974-01-01

    1. Citrulline synthesis was measured in mitochondria from rats fed on a standard diet, a high-protein diet, or on glucose. 2. With NH4Cl as the nitrogen source the rate of citrulline synthesis was higher in mitochondria from rats fed on a high-protein diet than in those from rats fed on a standard diet. When rats were fed solely on glucose the rate of synthesis of citrulline from NH4Cl was very low. 3. With glutamate as the nitrogen source the relative rates of citrulline synthesis were much lower than when NH4Cl was present, but similar adaptive changes occurred. 4. The activity of the mitochondrial glutamate-transporting system increased two to three times on feeding rats on a high-protein diet, but the Km for glutamate was unchanged. 5. Adaptive changes in certain intramitochondrial enzymes were also measured. 6. The results were interpreted to indicate that when an excess of substrate was present, citrulline synthesis from NH4Cl was rate-limited by the intramitochondrial concentration of N-acetyl-glutamate, but citrulline synthesis from glutamate was rate-limited primarily by the activity of the glutamate-transporting system. PMID:4374198

  16. Protective Effects of Salubrinal on Liver Injury in Rat Models of Brain Death

    PubMed Central

    Wang, Tao; Zhang, Shui-Jun; Cao, Sheng-Li; Guo, Wen-Zhi; Yan, Bing; Fang, Hong-Bo

    2015-01-01

    Background: Previous studies have indicated that endoplasmic reticulum stress participates in and mediates liver injury and apoptosis in brain-dead (BD) rats. In this study, we observed the effect of salubrinal (Sal, Sigma, USA) on liver cells in BD rats and explored its relevant mechanisms. Methods: Thirty Sprague–Dawley rats were equally randomized into three groups: BD group, Sal group, and DMSO group. The BD models were established by increasing intracranial pressure in a modified, slow, and intermittent way. In the drug groups, Sal was administered 1 h before the induction of BD. After modeling was completed, the blood and liver samples were harvested. CHOP and Caspase-12 mRNA expression was detected using quantitative polymerase chain reaction. PKR-like ER kinase (PERK), P-eukaryotic translation initiation factor 2α (eIF2α), eIF2α, CHOP and caspase-12 expression was detected using western blotting (WB). CHOP and caspase-12 distribution and expression in liver tissues were determined using immunohistochemistry (IHC). Alanine aminotransferase and aspartate aminotransferase level were detected using an automatic biochemical analyzer. Hepatic cell apoptosis was detected using TUNEL. The results were analyzed using Quantity-one v4.62 software (Bio-Rad, USA). Results: CHOP and caspase-12 expression and PERK, eIF2α, and P-eIF2α protein expression showed no significant difference between BD group and DMSO group. Compared with BD group, Sal group had a significantly higher P-eIF2C level and a lower P-PERK level 2 h and 6 h after BD (P < 0.05). However, eIF2α expression showed no significant difference (P > 0.05). After the Sal treatment, CHOP and caspase-12 mRNA expression significantly decreased 4 h after BD (P < 0.05). WB and IHC indicated that CHOP and caspase-12 expression also significantly decreased after Sal treatment. Sal was associated with improved liver function and decreased hepatic cell apoptosis. Conclusions: Sal can significantly reduce

  17. Liver.

    PubMed

    Kim, W R; Lake, J R; Smith, J M; Skeans, M A; Schladt, D P; Edwards, E B; Harper, A M; Wainright, J L; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    The median waiting time for patients with MELD ≥ 35 decreased from 18 days in 2012 to 9 days in 2014, after implementation of the Share 35 policy in June 2013. Similarly, mortality among candidates listed with MELD ≥ 35 decreased from 366 per 100 waitlist years in 2012 to 315 in 2014. The number of new active candidates added to the pediatric liver transplant waiting list in 2014 was 655, down from a peak of 826 in 2005. The number of prevalent candidates (on the list on December 31 of the given year) continued to decline, 401 active and 173 inactive. The number of deceased donor pediatric liver transplants peaked at 542 in 2008 and was 478 in 2014. The number of living donor liver pediatric transplants was 52 in 2014; most were from donors closely related to the recipients. Graft survival continued to improve among pediatric recipients of deceased donor and living donor livers. PMID:26755264

  18. Brain-weight/liver-weight ratio as an index of nutritional status in perinatal deaths.

    PubMed

    Hussain, M A

    1975-10-01

    Brain-weight/liver-weight ratio has been suggested to be a good indicator of nutritional status in new-born babies. But no evidence except low blood sugar and low hepatic reserve of carbohydrate have been presented to support this. In the present study babies dying in perinatal period have been compared by dividing them arbitrarily into two groups according to a fixed B/L ratio of 3.5. The results showed that the nutritional status of babies with high B/L ratio was comparatively poorer than babies with normal B/L ratio in terms of weight, length and hepatic reserve of iron, folate and vitamin A, and thus provide evidence to the hypothesis. PMID:1244025

  19. Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes.

    PubMed

    Magnanou, Elodie; Klopp, Christophe; Noirot, Celine; Besseau, Laurence; Falcón, Jack

    2014-07-01

    The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate

  20. Generation and characterization of the sea bass Dicentrarchus labrax brain and liver transcriptomes.

    PubMed

    Magnanou, Elodie; Klopp, Christophe; Noirot, Celine; Besseau, Laurence; Falcón, Jack

    2014-07-01

    The sea bass Dicentrarchus labrax is the center of interest of an increasing number of basic or applied research investigations, even though few genomic or transcriptomic data is available. Current public data only represent a very partial view of its transcriptome. To fill this need, we characterized brain and liver transcriptomes in a generalist manner that would benefit the entire scientific community. We also tackled some bioinformatics questions, related to the effect of RNA fragment size on the assembly quality. Using Illumina RNA-seq, we sequenced organ pools from both wild and farmed Atlantic and Mediterranean fishes. We built two distinct cDNA libraries per organ that only differed by the length of the selected mRNA fragments. Efficiency of assemblies performed on either or both fragments size differed depending on the organ, but remained very close reflecting the quality of the technical replication. We generated more than 19,538Mbp of data. Over 193million reads were assembled into 35,073 contigs (average length=2374bp; N50=3257). 59% contigs were annotated with SwissProt, which corresponded to 12,517 unique genes. We compared the Gene Ontology (GO) contig distribution between the sea bass and the tilapia. We also looked for brain and liver GO specific signatures as well as KEGG pathway coverage. 23,050 putative micro-satellites and 134,890 putative SNPs were identified. Our sampling strategy and assembly pipeline provided a reliable and broad reference transcriptome for the sea bass. It constitutes an indisputable quantitative and qualitative improvement of the public data, as it provides 5 times more base pairs with fewer and longer contigs. Both organs present unique signatures consistent with their specific physiological functions. The discrepancy in fragment size effect on assembly quality between organs lies in their difference in complexity and thus does not allow prescribing any general strategy. This information on two key organs will facilitate

  1. Organochlorine contaminants in the muscle, liver and brain of seabirds (Larus) from the coastal area of the Southern Baltic.

    PubMed

    Falkowska, Lucyna; Reindl, Andrzej R; Grajewska, Agnieszka; Lewandowska, Anita U

    2016-11-01

    The presence of persistent organic pollutants in the environment manifests itself most strongly in the marine trophic chain, where the highest link is comprised of seabirds. At the same time, seabirds are excellent indicators of contamination in their habitat. The present study concentrates on toxic substances: polychlorinated dibenzo-p-dioxin (PCDDs), polychlorinated dibenzofurans (PCDFs) and chlorinated organic pesticides (OCPs) accumulated in the livers, pectoral muscles and brains of dead gulls collected along the Polish coast of the Baltic Sea in the years 2010-12. The highest toxic equivalence was determined in the livers of Larus argentatus (TEQ(birds TEF)-28.3pgg(-1) ww) and Larus marinus (TEQ(birds TEF)-29.9pgg(-1) ww.). However, the toxic equivalence of muscles was lower and amounted to 3.9pgg(-1) ww. and 7.8pgg(-1) ww. respectively for the two species. The lowest toxic equivalence was found in the brains of birds, where only one, the most toxic, 2,3,7,8 TCDD congener was found (TEQ(birds TEF) 0.87pgg(-1) ww). The highest concentration of chloroorganic pesticides was determined in the brains of the birds (total OCP 167.8pgg(-1) ww.), lower concentrations were found in the livers (total OCP 92.1pgg(-1) ww.) and muscles (total OCP 43.1pgg(-1) ww.). With regard to pesticides, the highest proportion in the total OCP content was constituted by DDT and its isomers (liver 81%, muscles 77% and brain 55%). High concentrations of the studied pollutants in the livers of gulls found dead on the coast of the Southern Baltic could have been effected by levels of contamination in the birds' last meals, which resulted in a seven-fold increase of the liver's toxic equivalence and a two-fold increase in OCP concentration in relation to muscles.

  2. Organochlorine contaminants in the muscle, liver and brain of seabirds (Larus) from the coastal area of the Southern Baltic.

    PubMed

    Falkowska, Lucyna; Reindl, Andrzej R; Grajewska, Agnieszka; Lewandowska, Anita U

    2016-11-01

    The presence of persistent organic pollutants in the environment manifests itself most strongly in the marine trophic chain, where the highest link is comprised of seabirds. At the same time, seabirds are excellent indicators of contamination in their habitat. The present study concentrates on toxic substances: polychlorinated dibenzo-p-dioxin (PCDDs), polychlorinated dibenzofurans (PCDFs) and chlorinated organic pesticides (OCPs) accumulated in the livers, pectoral muscles and brains of dead gulls collected along the Polish coast of the Baltic Sea in the years 2010-12. The highest toxic equivalence was determined in the livers of Larus argentatus (TEQ(birds TEF)-28.3pgg(-1) ww) and Larus marinus (TEQ(birds TEF)-29.9pgg(-1) ww.). However, the toxic equivalence of muscles was lower and amounted to 3.9pgg(-1) ww. and 7.8pgg(-1) ww. respectively for the two species. The lowest toxic equivalence was found in the brains of birds, where only one, the most toxic, 2,3,7,8 TCDD congener was found (TEQ(birds TEF) 0.87pgg(-1) ww). The highest concentration of chloroorganic pesticides was determined in the brains of the birds (total OCP 167.8pgg(-1) ww.), lower concentrations were found in the livers (total OCP 92.1pgg(-1) ww.) and muscles (total OCP 43.1pgg(-1) ww.). With regard to pesticides, the highest proportion in the total OCP content was constituted by DDT and its isomers (liver 81%, muscles 77% and brain 55%). High concentrations of the studied pollutants in the livers of gulls found dead on the coast of the Southern Baltic could have been effected by levels of contamination in the birds' last meals, which resulted in a seven-fold increase of the liver's toxic equivalence and a two-fold increase in OCP concentration in relation to muscles. PMID:27414257

  3. Encephalitozoon cuniculi: Grading the Histological Lesions in Brain, Kidney, and Liver during Primoinfection Outbreak in Rabbits

    PubMed Central

    Rodríguez-Tovar, Luis E.; Nevárez-Garza, Alicia M.; Trejo-Chávez, Armando; Hernández-Martínez, Carlos A.; Zarate-Ramos, Juan J.; Castillo-Velázquez, Uziel

    2016-01-01

    This is the first confirmed report of Encephalitozoon cuniculi (E. cuniculi) in farm meat rabbits located in Northern Mexico. Eighty young rabbits exhibited clinical signs of this zoonotic emerging disease, like torticollis, ataxia, paresis, circling, and rolling. Samples of brain, kidney, and liver were examined for histology lesions. For the first time the lesions caused by E. cuniculi were graded according to their severity (I, II, and III) and the size of the granulomas (Types A, B, and C). The main cerebral injuries were Grade III, coinciding with the presence of Type C granulomas. The cerebral lesions were located in the cortex, brain stem, and medulla. The renal lesions were also Grade III distributed throughout cortex and renal medulla, with no granuloma formation. The involvement of hypersensitivity Types III and IV is suggested. All of the rabbits were seropositive to E. cuniculi by CIA testing, suggesting that this zoonotic and emerging pathogen is widely distributed among animals intended for human consumption. We believe this work could be used as a guide when examining E. cuniculi and will provide direction to confirm the diagnosis of this pathogen. PMID:27022485

  4. [Effects of low doses of essential oil on the antioxidant state of the erythrocytes, liver, and the brains of mice].

    PubMed

    Misharina, T A; Fatkullina, L D; Alinkina, E S; Kozachenko, A I; Nagler, L G; Medvedeva, I B; Goloshchapov, A N; Burlakova, E B

    2014-01-01

    We studied the effects of essential oil from oregano and clove and a mixture of lemon essential oil and a ginger extract on the antioxidant state of organs in intact and three experimental groups of Bulb mice. We found that the essential oil was an efficient in vivo bioantioxidant when mice were treated with it for 6 months even at very low doses, such as 300 ng/day. All essential oil studied inhibited lipid peroxidation (LPO) in the membranes of erythrocytes that resulted in increased membrane resistance to spontaneous hemolysis, decreased membrane microviscosity, maintenance of their structural integrity, and functional activity. The essential oil substantially decreased the LPO intensity in the liver and the brains of mice and increased the resistance of liver and brain lipids to oxidation and the activity of antioxidant enzymes in the liver. The most expressed bioantioxidant effect on erythrocytes was observed after clove oil treatment, whereas on the liver and brain, after treatment with a mixture of lemon essential oil and a ginger extract. PMID:25272759

  5. Blocking NMDA receptors delays death in rats with acute liver failure by dual protective mechanisms in kidney and brain.

    PubMed

    Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente

    2014-06-01

    Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.

  6. Experimental Periodontitis Results in Prediabetes and Metabolic Alterations in Brain, Liver and Heart: Global Untargeted Metabolomic Analyses

    PubMed Central

    Ilievski, Vladimir; Kinchen, Jason M; Prabhu, Ramya; Rim, Fadi; Leoni, Lara; Unterman, Terry G.; Watanabe, Keiko

    2016-01-01

    Results from epidemiological studies suggest that there is an association between periodontitis and prediabetes, however, causality is not known. The results from our previous studies suggest that induction of periodontitis leads to hyperinsulinemia glucose intolerance and insulin resistance, all hallmarks of prediabetes. However, global effects of periodontitis on critical organs in terms of metabolic alterations are unknown. We determined the metabolic effects of periodontitis on brain, liver, heart and plasma resulting from Porphyromonas gingivalis induced periodontitis in mice. Periodontitis was induced by oral application of the periodontal pathogen, Porphyromonas gingivalis for 22 weeks. Global untargeted biochemical profiles in samples from these organs/plasma were determined by liquid and gas chromatography/mass spectrometry and compared between controls and animals with periodontitis. Oral application of Porphyromonas gingivalis induced chronic periodontitis and hallmarks of prediabetes. The results of sample analyses indicated a number of changes in metabolic readouts, including changes in metabolites related to glucose and arginine metabolism, inflammation and redox homeostasis. Changes in biochemicals suggested subtle systemic effects related to periodontal disease, with increases in markers of inflammation and oxidative stress most prominent in the liver. Signs of changes in redox homeostasis were also seen in the brain and heart. Elevated bile acids in liver were suggestive of increased biosynthesis, which may reflect changes in liver function. Interestingly, signs of decreasing glucose availability were seen in the brain. In all three organs and plasma, there was a significant increase in the microbiome-derived bioactive metabolite 4-ethylphenylsulfate sulfate in animals with periodontitis. The results of metabolic profiling suggest that periodontitis/bacterial products alter metabolomic signatures of brain, heart, liver, and plasma in the

  7. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria

    PubMed Central

    Dalla Rosa, Ilaria; Cámara, Yolanda; Durigon, Romina; Moss, Chloe F.; Vidoni, Sara; Akman, Gokhan; Hunt, Lilian; Johnson, Mark A.; Grocott, Sarah; Wang, Liya; Thorburn, David R.; Hirano, Michio; Poulton, Joanna; Taylor, Robert W.; Elgar, Greg; Martí, Ramon; Voshol, Peter; Holt, Ian J.; Spinazzola, Antonella

    2016-01-01

    MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients’ quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway. PMID:26760297

  8. Normal organ weights in men: part II-the brain, lungs, liver, spleen, and kidneys.

    PubMed

    Molina, D Kimberley; DiMaio, Vincent J M

    2012-12-01

    Organomegaly can be a sign of disease and pathologic abnormality, although standard tables defining organomegaly have yet to be established and universally accepted. This study was designed to address the issue and to determine a normal weight for the major organs in adult human males. A prospective study of healthy men aged 18 to 35 years who died of sudden, traumatic deaths was undertaken. Cases were excluded if there was a history of medical illness including illicit drug use, if prolonged medical treatment was performed, if there was a prolonged period between the time of injury and death, if body length and weight could not be accurately assessed, or if any illness or intoxication was identified after gross and microscopic analysis including evidence of systemic disease. Individual organs were excluded if there was significant injury to the organ, which could have affected the weight. A total of 232 cases met criteria for inclusion in the study during the approximately 6-year period of data collection from 2005 to 2011. The decedents had a mean age of 23.9 years and ranged in length from 146 to 193 cm, with a mean length of 173 cm. The weight ranged from 48.5 to 153 kg, with a mean weight of 76.4 kg. Most decedents (87%) died of either ballistic or blunt force (including craniocerebral) injuries. The mean weight of the brain was 1407 g (range, 1070-1767 g), that of the liver was 1561 g (range, 838-2584 g), that of the spleen was 139 g (range, 43-344 g), that of the right lung was 445 g (range, 185-967 g), that of the left lung was 395 g (range, 186-885 g), that of the right kidney was 129 g (range, 79-223 g), and that of the left kidney was 137 g (range, 74-235 g). Regression analysis was performed and showed that there were insufficient associations between organ weight and body length, body weight, and body mass index to allow for predictability. The authors, therefore, propose establishing a reference range for organ weights in men, much like those in use

  9. Normal Organ Weights in Women: Part II-The Brain, Lungs, Liver, Spleen, and Kidneys.

    PubMed

    Molina, D Kimberley; DiMaio, Vincent J M

    2015-09-01

    Organomegaly can be a sign of disease and pathology, although standard tables defining organomegaly have yet to be established and universally accepted. This study was designed to address the issue and to determine a normal weight for the major organs in adult human females. A prospective study was undertaken of healthy females who had sudden, traumatic deaths at age 18 to 35 years. Cases were excluded if there was a history of medical illness including illicit drug use, prolonged medical treatment was performed, there was a prolonged period between the time of injury and death, body length and weight could not be accurately assessed, or if any illness or intoxication was identified after gross and microscopic analysis including evidence of systemic disease. Individual organs were excluded if there was significant injury to the organ that could have affected the weight. A total of 102 cases met criteria for inclusion in the study during the approximately 10-year period of data collection from 2004 to 2014. The decedents had an average age of 24.4 years and ranged in length from 141 to 182 cm (56.4-72.8 inches) with an average length of 160 cm (64 inches). The weight ranged from 35.9 to 152 kg (79-334 lb) with an average weight of 65.3 kg (143 lb). The majority of the decedents (86%) died of either ballistic or blunt force (including craniocerebral) injuries. The mean brain weight was 1233 g (range, 1000-1618 g); liver mean weight, 1288 g (range, 775-2395 g); spleen mean weight, 115 g (range, 51-275 g); right lung mean weight, 340 g (range, 142-835 g); left lung mean, 299 g (range, 108-736 g); right kidney mean weight, 108 g (range, 67-261 g); and the left kidney mean weight, 116 g (range, 55-274 g). Regression analysis was performed and showed that there were insufficient associations between organ weight and body length, body weight, and body mass index to allow for predictability. The authors therefore propose establishing a reference range for organ weights in

  10. Demonstration of glutamate dehydrogenase isozymes in beef heart mitochondria.

    PubMed

    McDaniel, H; Bosing-Schneider, R; Jenkins, R; Rasched, I; Sund, H

    1986-01-15

    Glutamate dehydrogenase (GDH) has been purified from beef heart mitochondria and compared with crystalline beef liver GDH. The specific activity of heart GDH was 127 units and of liver GDH 80 units. Heart GDH subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis had a protein corresponding to liver GDH and a smaller molecular weight protein. On agarose gel electrophoresis heart GDH activity was resolved into two fractions (with or without protease inhibitors) while liver had only one fraction. One of the heart fractions moved with liver GDH on electrophoresis. Thermal stability studies showed heart and liver GDH activity differed. Mouse antibodies to liver GDH precipitated both liver and heart GDH on double immunodiffusion. Mouse antibodies to liver GDH identified on nitrocellulose paper the polypeptide band of liver and heart GDH that were the same molecular weight but did not cross-react with the smaller molecular weight polypeptide present in heart GDH. Trypsin digestion of the two major protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified GDH from beef heart mitochondria did not show any overlapping peptides. We conclude beef heart GDH activity is composed of two isozymes. One is the same as beef liver GDH, and the other is a smaller molecular weight protein. We propose the terms GDH-LM for the liver GDH isozyme and GDH-HM for the smaller molecular weight isozyme present in heart mitochondria but not liver.

  11. Proteomics and gene expression analyses of mitochondria from squalene-treated apoE-deficient mice identify short-chain specific acyl-CoA dehydrogenase changes associated with fatty liver amelioration.

    PubMed

    Ramírez-Torres, Adela; Barceló-Batllori, Sílvia; Fernández-Vizarra, Erika; Navarro, María A; Arnal, Carmen; Guillén, Natalia; Acín, Sergio; Osada, Jesús

    2012-05-17

    Squalene, a hydrocarbon involved in cholesterol biosynthesis, is an abundant component in virgin olive oil. Previous studies showed that its administration decreased atherosclerosis and steatosis in male apoE knock-out mice. To study the effect of squalene on mitochondrial proteins in fatty liver, 1 g/kg/day of this isoprenoid was administered to those mice. After 10 weeks, hepatic fat was assessed and protein extracts from mitochondria enriched fractions from control and squalene-treated animals were analyzed by 2D-DIGE. Spots exhibiting significant differences were identified by MS analysis. Squalene administration modified the expression of eighteen proteins involved in different metabolic processes, 12 associated with hepatic fat content. Methionine adenosyltransferase I alpha (Mat1a) and short-chain specific acyl-CoA dehydrogenase (Acads) showed significant increased and decreased transcripts, respectively, consistent with their protein changes. These mRNAs were also studied in wild-type mice receiving squalene, where Mat1a was found increased and Acads decreased. However, this mRNA was significantly increased in the absence of apolipoprotein E. These results suggest that squalene action may be executed through a complex regulation of mitochondrial protein expression, including changes in Mat1a and Acads levels. Indeed, Mat1a is a target of squalene administration while Acads reflects the anti-steatotic properties of squalene.

  12. Brain and Liver Headspace Aldehyde Concentration Following Dietary Supplementation with n-3 Polyunsaturated Fatty Acids.

    PubMed

    Ross, Brian M; Babay, Slim; Malik, Imran

    2015-11-01

    Reactive oxygen species react with unsaturated fatty acids to form a variety of metabolites including aldehydes. Many aldehydes are volatile enough to be detected in headspace gases of blood or cultured cells and in exhaled breath, in particular propanal and hexanal which are derived from omega-3 and omega-6 polyunsaturated fatty acids, respectively. Aldehydes are therefore potential non-invasive biomarkers of oxidative stress and of various diseases in which oxidative stress is thought to play a role including cancer, cardiovascular disease and diabetes. It is unclear, however, how changes in the abundance of the fatty acid precursors, for example by altered dietary intake, affect aldehyde concentrations. We therefore fed male Wistar rats diets supplemented with either palm oil or a combination of palm oil plus an n-3 fatty acid (alpha-linolenic, eicosapentaenoic, or docosahexaenoic acids) for 4 weeks. Fatty acid analysis revealed large changes in the abundance of both n-3 and n-6 fatty acids in the liver with smaller changes observed in the brain. Despite the altered fatty acid abundance, headspace concentrations of C1-C8 aldehydes, and tissue concentrations of thiobarbituric acid reactive substances, did not differ between the 4 dietary groups. Our data suggest that tissue aldehyde concentrations are independent of fatty acid abundance, and further support their use as volatile biomarkers of oxidative stress.

  13. Altered gene expression in the brain and liver of female fathead minnows Pimephales promelas Rafinesque exposed to fadrozole

    SciTech Connect

    Villeneuve, Daniel L.; Knoebl, Iris; Larkin, Patrick; Miracle, Ann L.; Carter, Barbara J.; Denslow, Nancy D.; Ankley, Gerald T.

    2008-06-01

    The fathead minnow (Pimephales promelas) is a small fish species widely used for ecotoxicology research and regulatory testing in North America. This study used a novel 2000 gene oligonucleotide microarray to evaluate the effects of the aromatase inhibitor, fadrozole, on gene expression in the liver and brain tissue of exposed females. Exposure to 60 μg 1-1 fadrozole/L for 7 d, resulted in the significant (p<0.05; high-moderate agreement among multiple probes spotted on the array) up-regulation of approximately 47 genes in brain and 188 in liver, and the significant down-regulation of 61 genes in brain and 162 in liver. In particular, fadrozole exposure elicited significant up-regulation of five genes in brain involved in the cholesterol synthesis pathway and altered the expression of over a dozen cytoskeleton-related genes. In the liver, there was notable down-regulation of genes coding for vitellogenin precursors, vigillin, and fibroin-like ovulatory proteins which were consistent with an expected reduction in plasma estradiol concentrations as a result of fadrozole exposure and an associated reduction in measured plasma vitellogenin concentrations. These changes coincided with a general down-regulation of genes coding for non-mitochondrial ribosomal proteins and proteins that play a role in translation. With the exception of the fibroin-like ovulatory proteins, real-time PCR results largely corroborated the microarray responses. Overall, results of this study demonstrate the utility of high density oligonucleotide microarrays for unsupervised, discovery-driven, ecotoxicogenomics research with the fathead minnow and helped inform the subsequent development of a 22,000 gene microarray for the species.

  14. Quetiapine mitigates the ethanol-induced oxidative stress in brain tissue, but not in the liver, of the rat

    PubMed Central

    Han, Jin-hong; Tian, Hong-zhao; Lian, Yang-yang; Yu, Yi; Lu, Cheng-biao; Li, Xin-min; Zhang, Rui-ling; Xu, Haiyun

    2015-01-01

    Quetiapine, an atypical antipsychotic, has been employed to treat alcoholic patients with comorbid psychopathology. It was shown to scavenge hydroxyl radicals and to protect cultured cells from noxious effects of oxidative stress, a pathophysiological mechanism involved in the toxicity of alcohol. This study compared the redox status of the liver and the brain regions of prefrontal cortex, hippocampus, and cerebellum of rats treated with or without ethanol and quetiapine. Ethanol administration for 1 week induced oxidative stress in the liver and decreased the activity of glutathione peroxidase and total antioxidant capacity (TAC) there. Coadministration of quetiapine did not protect glutathione peroxidase and TAC in the liver against the noxious effect of ethanol, thus was unable to mitigate the ethanol-induced oxidative stress there. The ethanol-induced alteration in the redox status in the prefrontal cortex is mild, whereas the hippocampus and cerebellum are more susceptible to ethanol intoxication. For all the examined brain regions, coadministration of quetiapine exerted effective protection on the antioxidants catalase and total superoxide dismutase and on the TAC, thus completely blocking the ethanol-induced oxidative stress in these brain regions. These protective effects may explain the clinical observations that quetiapine reduced psychiatric symptoms intensity and maintained a good level of tolerability in chronic alcoholism with comorbid psychopathology. PMID:26109862

  15. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria.

    PubMed

    Carpenter, K; Pollitt, R J; Middleton, B

    1992-03-16

    We have purified to homogeneity the long-chain specific 3-hydroxyacyl-CoA dehydrogenase from mitochondrial membranes of human infant liver. The enzyme is composed of non-identical subunits of 71 kDa and 47 kDa within a native structure of 230 kDa. The pure enzyme is active with 3-ketohexanoyl-CoA and gives maximum activity with 3-ketoacyl-CoA substrates of C10 to C16 acyl-chain length but is inactive with acetoacetyl-CoA. In addition to 3-hydroxyacyl-CoA dehydrogenase activity, the enzyme possesses 2-enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase activities which cannot be separated from the dehydrogenase. None of these enzymes show activity with C4 substrates but all are active with C6 and longer acyl-chain length substrates. They are thus distinct from any described previously. This human liver mitochondrial membrane-bound enzyme catalyses the conversion of medium- and long-chain 2-enoyl-CoA compounds to: 1) 3-ketoacyl-CoA in the presence of NAD alone and 2) to acetyl-CoA (plus the corresponding acyl-CoA derivatives) in the presence of NAD and CoASH. It is therefore a multifunctional enzyme, resembling the beta-oxidation enzyme of E. coli, but unique in its membrane location and substrate specificity. We propose that its existence explains the repeated failure to detect any intermediates of mitochondrial beta-oxidation.

  16. Mangiferin, a Natural Xanthone, Protects Murine Liver in Pb(II) Induced Hepatic Damage and Cell Death via MAP Kinase, NF-κB and Mitochondria Dependent Pathways

    PubMed Central

    Pal, Pabitra Bikash; Sinha, Krishnendu; Sil, Parames C.

    2013-01-01

    One of the most well-known naturally occurring environmental heavy metals, lead (Pb) has been reported to cause liver injury and cellular apoptosis by disturbing the prooxidant-antioxidant balance via oxidative stress. Several studies, on the other hand, reported that mangiferin, a naturally occurring xanthone, has been used for a broad range of therapeutic purposes. In the present study, we, therefore, investigated the molecular mechanisms of the protective action of mangiferin against lead-induced hepatic pathophysiology. Lead [Pb(II)] in the form of Pb(NO3)2 (at a dose of 5 mg/kg body weight, 6 days, orally) induced oxidative stress, hepatic dysfunction and cell death in murine liver. Post treatment of mangiferin at a dose of 100 mg/kg body weight (6 days, orally), on the other hand, diminished the formation of reactive oxygen species (ROS) and reduced the levels of serum marker enzymes [alanine aminotranferase (ALT) and alkaline phosphatase (ALP)]. Mangiferin also reduced Pb(II) induced alterations in antioxidant machineries, restored the mitochondrial membrane potential as well as mutual regulation of Bcl-2/Bax. Furthermore, mangiferin inhibited Pb(II)-induced activation of mitogen-activated protein kinases (MAPKs) (phospho-ERK 1/2, phosphor-JNK phospho- p38), nuclear translocation of NF-κB and apoptotic cell death as was evidenced by DNA fragmentation, FACS analysis and histological assessment. In vitro studies using hepatocytes as the working model also showed the protective effect of mangiferin in Pb(II) induced cytotoxicity. All these beneficial effects of mangiferin contributes to the considerable reduction of apoptotic hepatic cell death induced by Pb(II). Overall results demonstrate that mangiferin exhibit both antioxidative and antiapoptotic properties and protects the organ in Pb(II) induced hepatic dysfunction. PMID:23451106

  17. Delta-aminolevulinic acid dehydratase enzyme activity in blood, brain, and liver of lead-dosed ducks

    USGS Publications Warehouse

    Dieter, M.P.; Finley, M.T.

    1979-01-01

    Mallard ducks were dosed with a single shotgun pellet (ca. 200 mg lead). After 1 month there was about 1 ppm lead in blood, 2.5 in liver, and 0.5 in brain. Lead-induced inhibition of delta-aminolevulinic acid dehydratase enzyme in blood and cerebellum was much greater than in cerebral hemisphere or liver and was strongly correlated with the lead concentration in these tissues. The cerebellar portion of the brain was more sensitive to delta-aminolevulinic acid dehydratase enzyme inhibition by lead than were the other tissues examined. There was also a greater increase in the glial cell marker enzyme, butyrylcholinesterase, in cerebellum than in cerebral hemisphere, suggesting that nonregenerating neuronal cells were destroyed by lead and replaced by glial cells in that portion of the brain. Even partial loss of cerebellar tissue is severely debilitating in waterfowl, because functions critical to survival such as visual, auditory, motor, and reflex responses are integrated at this brain center.

  18. Comparative effectiveness of donation after cardiac death versus donation after brain death liver transplantation: Recognizing who can benefit.

    PubMed

    Jay, Colleen L; Skaro, Anton I; Ladner, Daniela P; Wang, Edward; Lyuksemburg, Vadim; Chang, Yaojen; Xu, Hongmei; Talakokkla, Sandhya; Parikh, Neehar; Holl, Jane L; Hazen, Gordon B; Abecassis, Michael M

    2012-06-01

    Due to organ scarcity and wait-list mortality, transplantation of donation after cardiac death (DCD) livers has increased. However, the group of patients benefiting from DCD liver transplantation is unknown. We studied the comparative effectiveness of DCD versus donation after brain death (DBD) liver transplantation. A Markov model was constructed to compare undergoing DCD transplantation with remaining on the wait-list until death or DBD liver transplantation. Differences in life years, quality-adjusted life years (QALYs), and costs according to candidate Model for End-Stage Liver Disease (MELD) score were considered. A separate model for hepatocellular carcinoma (HCC) patients with and without MELD exception points was constructed. For patients with a MELD score <15, DCD transplantation resulted in greater costs and reduced effectiveness. Patients with a MELD score of 15 to 20 experienced an improvement in effectiveness (0.07 QALYs) with DCD liver transplantation, but the incremental cost-effectiveness ratio (ICER) was >$2,000,000/QALY. Patients with MELD scores of 21 to 30 (0.25 QALYs) and >30 (0.83 QALYs) also benefited from DCD transplantation with ICERs of $478,222/QALY and $120,144/QALY, respectively. Sensitivity analyses demonstrated stable results for MELD scores <15 and >20, but the preferred strategy for the MELD 15 to 20 category was uncertain. DCD transplantation was associated with increased costs and reduced survival for HCC patients with exception points but led to improved survival (0.26 QALYs) at a cost of $392,067/QALY for patients without exception points. In conclusion, DCD liver transplantation results in inferior survival for patients with a MELD score <15 and HCC patients receiving MELD exception points, but provides a survival benefit to patients with a MELD score >20 and to HCC patients without MELD exception points.

  19. Asparagine and glycine metabolism in rat liver mitochondria and in mouse L5178Y lymphoma cells resistant or sensitive to the anticancer drug L-asparaginase

    SciTech Connect

    Keefer, J.F. Jr.

    1986-01-01

    Rat liver mitochondrial asparagine was found to be degraded via an aminotransferase and omega-amidase. Evidence includes oxaloacetate production from asparagine only when glyoxylate was added and production of radiolabeled ..cap alpha..-ketosuccinamate via metabolism of (U-/sup 14/C)asparagine. In the cytosol, asparagine is degraded primarily via asparaginase and subsequent transamination. A new HPLC technique for separation of citric acid cycle intermediates was developed using: ion pairing with 20 mM each to tetrabutylammonium hydroxide and Na/sub 2/SO/sub 4/; pH 7.0; isocratic elution; and detection at 210 nm. Amino acid content of mouse lymphoma cells either sensitive (L5178Y) or resistant (L5178Y/L-ASE) to the anticancer drug L-asparaginase was studied. The concentration of asparagine was 1.5 times higher and the concentrations of the essential amino acids histidine, methionine, valine and phenylalanine were two times higher in asparaginase-resistant than sensitive cells. In vivo but not in vitro studies indicated that glucine decreases in sensitive but not resistant cells upon asparaginase treatment. Asparagine and glycine metabolism was further studied using /sup 14/C radiolabel conversion of asparagine, glyoxylate, glycine and serine. Glycine metabolism is especially important in lymphomas and leukemias because these cells contain higher concentrations of glycine that other cancer and normal cells. Therefore, glycine levels were studied and were found to decrease in sensitive but not resistant cells upon asparaginase administration.

  20. Alcohol Withdrawal and Cerebellar Mitochondria.

    PubMed

    Jung, Marianna E

    2015-08-01

    Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new

  1. Alcohol Withdrawal and Cerebellar Mitochondria.

    PubMed

    Jung, Marianna E

    2015-08-01

    Cerebellar disorders trigger the symptoms of movement problems, imbalance, incoordination, and frequent fall. Cerebellar disorders are shown in various CNS illnesses including a drinking disorder called alcoholism. Alcoholism is manifested as an inability to control drinking in spite of adverse consequences. Human and animal studies have shown that cerebellar symptoms persist even after complete abstinence from drinking. In particular, the abrupt termination (ethanol withdrawal) of long-term excessive ethanol consumption has shown to provoke a variety of neuronal and mitochondrial damage to the cerebellum. Upon ethanol withdrawal, excitatory neurotransmitter molecules such as glutamate are overly released in brain areas including cerebellum. This is particularly relevant to the cerebellar neuronal network as glutamate signals are projected to Purkinje neurons through granular cells that are the most populated neuronal type in CNS. This excitatory neuronal signal may be elevated by ethanol withdrawal stress, which promotes an increase in intracellular Ca(2+) level and a decrease in a Ca(2+)-binding protein, both of which result in the excessive entry of Ca(2+) to the mitochondria. Subsequently, mitochondria undergo a prolonged opening of mitochondrial permeability transition pore and the overproduction of harmful free radicals, impeding adenosine triphosphate (ATP)-generating function. This in turn provokes the leakage of mitochondrial molecule cytochrome c to the cytosol, which triggers a cascade of adverse cytosol reactions. Upstream to this pathway, cerebellum under the condition of ethanol withdrawal has shown aberrant gene modifications through altered DNA methylation, histone acetylation, or microRNA expression. Interplay between these events and molecules may result in functional damage to cerebellar mitochondria and consequent neuronal degeneration, thereby contributing to motoric deficit. Mitochondria-targeting research may help develop a powerful new

  2. Mitochondria-targeted antioxidants.

    PubMed

    Oyewole, Anne O; Birch-Machin, Mark A

    2015-12-01

    Redox homeostasis is maintained by the antioxidant defense system, which is responsible for eliminating a wide range of oxidants, including reactive oxygen species (ROS), lipid peroxides, and metals. Mitochondria-localized antioxidants are widely studied because the mitochondria, the major producers of intracellular ROS, have been linked to the cause of aging and other chronic diseases. Mitochondria-targeted antioxidants have shown great potential because they cross the mitochondrial phospholipid bilayer and eliminate ROS at the heart of the source. Growing evidence has identified mitochondria-targeted antioxidants, such as MitoQ and tiron, as potentially effective antioxidant therapies against the damage caused by enhanced ROS generation. This literature review summarizes the current knowledge on mitochondria-targeted antioxidants and their contribution to the body's antioxidant defense system. In addition to addressing the concerns surrounding current antioxidant strategies, including difficulties in targeting antioxidant treatment to sites of pathologic oxidative damage, we discuss promising therapeutic agents and new strategic approaches.

  3. Mitochondria-targeting particles

    PubMed Central

    Wongrakpanich, Amaraporn; Geary, Sean M; Joiner, Mei-ling A; Anderson, Mark E; Salem, Aliasger K

    2015-01-01

    Mitochondria are a promising therapeutic target for the detection, prevention and treatment of various human diseases such as cancer, neurodegenerative diseases, ischemia-reperfusion injury, diabetes and obesity. To reach mitochondria, therapeutic molecules need to not only gain access to specific organs, but also to overcome multiple barriers such as the cell membrane and the outer and inner mitochondrial membranes. Cellular and mitochondrial barriers can be potentially overcome through the design of mitochondriotropic particulate carriers capable of transporting drug molecules selectively to mitochondria. These particulate carriers or vectors can be made from lipids (liposomes), biodegradable polymers, or metals, protecting the drug cargo from rapid elimination and degradation in vivo. Many formulations can be tailored to target mitochondria by the incorporation of mitochondriotropic agents onto the surface and can be manufactured to desired sizes and molecular charge. Here, we summarize recently reported strategies for delivering therapeutic molecules to mitochondria using various particle-based formulations. PMID:25490424

  4. Effect of ibuprofen exposure on blood, gill, liver, and brain on common carp (Cyprinus carpio) using oxidative stress biomarkers.

    PubMed

    Islas-Flores, Hariz; Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; García-Medina, Sandra; Neri-Cruz, Nadia; Dublán-García, Octavio

    2014-04-01

    Although trace concentrations of ibuprofen (IBP) have been detected in diverse water bodies, there is currently insufficient information on the potentially deleterious effects of this xenobiotic. The present study aimed to determine whether IBP induces oxidative stress in brain, liver, gill, and blood of the common carp Cyprinus carpio. To this end, the median lethal concentration at 96 h (96-h LC50) was determined and the lowest observed adverse effect level was established. Carp were exposed to the latter concentration (17.6 mg L(-1)) for 12, 24, 48, 72, and 96 h, and the following biomarkers were evaluated: lipid peroxidation (LPX) and activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. Results indicated that LPX and antioxidant enzymes' activity increased significantly (p < 0.05) with respect to the control group in liver, gill, and blood, while no significant differences occurred in brain. In conclusion, IBP induced oxidative stress on C. carpio, the liver being the organ most affected by this damage.

  5. Carbenoxolone induces permeability transition pore opening in rat mitochondria via the translocator protein TSPO and connexin43.

    PubMed

    Azarashvili, Tamara; Baburina, Yulia; Grachev, Dmitry; Krestinina, Olga; Papadopoulos, Vassilios; Lemasters, John J; Odinokova, Irina; Reiser, Georg

    2014-09-15

    Ca(2+)-induced permeability transition pore (mPTP) opening in isolated rat brain mitochondria is promoted through targeting of connexin43. After a threshold Ca(2+) load, mitochondrial membrane potential drops and efflux of accumulated Ca(2+) from the mitochondrial matrix occurs, indicating the mPTP opening. Specific antibodies were used to assess the role of the translocator protein (18kDa; TSPO) and connexin43 in swelling of isolated rat liver and brain mitochondria induced by carbenoxolone and the endogenous TSPO ligand protoporphyrin IX. Mitochondrial membrane potential, Ca(2+) transport and oxygen consumption were determined using selective electrodes. All the parameters were detected simultaneously in a chamber with the selective electrodes. The phosphorylation state of mitochondrial protein targets was assessed. We report that Ca(2+)-induced mitochondrial swelling was strengthened in the presence of both carbenoxolone and protoporphyrin IX. The carbenoxolone- and protoporphyrin IX-accelerated mPTP induction in brain mitochondria was completely prevented by antibodies specific for the mitochondrial translocator protein (TSPO). The anti-TSPO antibodies were more effective than anti-сonnexin43 antibodies. Moreover, carbenoxolone-stimulated phosphorylation of mitochondrial proteins was inhibited by anti-TSPO antibodies. Taken together, the data suggests that, in addition to acting via connexion43, carbenoxolone may exert its effect on mPTP via mitochondrial outer membrane TSPO.

  6. Age-dependent increase of etheno-DNA-adducts in liver and brain of ROS overproducing OXYS rats

    SciTech Connect

    Nair, Jagadeesan; Sinitsina, Olga; Vasunina, Elena A.; Nevinsky, Georgy A.; Laval, Jacques; Bartsch, Helmut . E-mail: h.bartsch@dkfz.de

    2005-10-21

    Reactive oxygen species (ROS) and lipid peroxidation (LPO) play a role in aging and degenerative diseases. To correlate oxidative stress and LPO-derived DNA damage, we determined etheno-DNA-adducts in liver and brain from ROS overproducing OXYS rats in comparison with age-matched Wistar rats. Liver DNA samples from 3- and 15-month-old OXYS and Wistar rats were analyzed for 1,N {sup 6}-ethenodeoxyadenosine ({epsilon}dA) and 3,N {sup 4}-ethenodeoxycytidine ({epsilon}dC) by immunoaffinity/{sup 32}P-postlabelling. While {epsilon}dA and {epsilon}dC levels were not different in young rats, adduct levels were significantly higher in old OXYS rats when compared to old Wistar or young OXYS rats. Frozen rat brain sections were analyzed for {epsilon}dA by immunostaining of nuclei. Brains from old OXYS rats accumulated {epsilon}dA more frequently than age-matched Wistar rats. Our results demonstrate increased LPO-induced DNA damage in organs of OXYS rats which correlates with their known shorter life-span and elevated frequency of chronic degenerative diseases.

  7. Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury.

    PubMed

    Branco, Vasco; Canário, João; Holmgren, Arne; Carvalho, Cristina

    2011-03-01

    Mercury compounds were recently found to interact in vitro with the thioredoxin system, inhibiting both Thioredoxin (Trx) and Thioredoxin reductase (TrxR). In order to evaluate if Trx and TrxR are affected in vivo by methylmercury (MeHg), we exposed juvenile zebra-seabreams to different concentrations of this toxicant in water for 28days followed by a 14-day depuration period. Methylmercury accumulated to a larger extent in the kidney and liver of fishes, but decreased significantly during the depuration. During the exposure, MeHg percentage in the liver reached levels above 90% of total mercury (HgT) decreasing to 60% of HgT by the end of the depuration period. In the kidney, MeHg accounted for 50-70% of HgT. In the brain and muscle, mercury accumulated throughout the exposure with all mercury being MeHg. The total mercury kept increasing in these organs during the depuration period. However, in the brain, this increase in HgT was accompanied by a decrease in the MeHg percentage (~10%). In the liver, both Trx and TrxR activities were significantly reduced (TrxR--40%; Trx--70%) by the end of the exposure, but recovered to control levels (100%) during the depuration. In the brain, both enzymes where inhibited during the depuration period (TrxR--75%; Trx--70%) when some production of inorganic mercury was detected. Activity of glutathione reductase showed increased levels when TrxR activity was low, suggesting complementarity between both systems. These results indicate that in vivo the thioredoxin system is a toxicological target for MeHg with TrxR being particularly affected.

  8. The Mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney.

    PubMed

    Atamaniuk, Tetiana M; Kubrak, Olga I; Husak, Viktor V; Storey, Kenneth B; Lushchak, Volodymyr I

    2014-11-01

    Tattoo belongs to the group of carbamate fungicides and contains Mancozeb (ethylene(bis)dithiocarbamate) as its main constituent. The toxicity of Mancozeb to living organisms, particularly fish, is not resolved. This work investigated the effects of 96 h of exposure to 3, 5, or 10 mg L(-1) of Tattoo (corresponding to 0.9, 1.5, or 3 mg L(-1) of Mancozeb) on the levels of oxidative stress markers and the antioxidant enzyme system of brain, liver, and kidney of goldfish, Carassius auratus). In liver, Tattoo exposure resulted in increased activities of superoxide dismutase (SOD) by 70%-79%, catalase by 23%-52% and glutathione peroxidase (GPx) by 49%. The content of protein carbonyls (CP) in liver was also enhanced by 92%-125% indicating extensive damage to proteins. Similar increases in CP levels (by 98%-111%) accompanied by reduced glucose-6-phosphate dehydrogenase activity (by 13%-15%) was observed in kidney of fish exposed to Tattoo; however, SOD activity increased by 37% in this tissue after treatment with 10 mg L(-1) Tattoo. In brain, a rise in lipid peroxide level (by 29%) took place after exposure to 10 mg L(-1) Tattoo and was accompanied by elevation of high-molecular mass thiols (by 14%). Tattoo exposure also resulted in a concentration-dependent decrease in glutathione reductase activity (by 26%-37%) in brain. The data collectively show that exposure of goldfish to 3-10 mg L(-1) of the carbamate fungicide Tattoo resulted in the development of mild oxidative stress and activation of antioxidant defense systems in goldfish tissues. PMID:23436297

  9. Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury

    SciTech Connect

    Branco, Vasco; Canario, Joao; Holmgren, Arne; Carvalho, Cristina

    2011-03-01

    Mercury compounds were recently found to interact in vitro with the thioredoxin system, inhibiting both Thioredoxin (Trx) and Thioredoxin reductase (TrxR). In order to evaluate if Trx and TrxR are affected in vivo by methylmercury (MeHg), we exposed juvenile zebra-seabreams to different concentrations of this toxicant in water for 28 days followed by a 14-day depuration period. Methylmercury accumulated to a larger extent in the kidney and liver of fishes, but decreased significantly during the depuration. During the exposure, MeHg percentage in the liver reached levels above 90% of total mercury (HgT) decreasing to 60% of HgT by the end of the depuration period. In the kidney, MeHg accounted for 50-70% of HgT. In the brain and muscle, mercury accumulated throughout the exposure with all mercury being MeHg. The total mercury kept increasing in these organs during the depuration period. However, in the brain, this increase in HgT was accompanied by a decrease in the MeHg percentage ({approx} 10%). In the liver, both Trx and TrxR activities were significantly reduced (TrxR - 40%; Trx - 70%) by the end of the exposure, but recovered to control levels (100%) during the depuration. In the brain, both enzymes where inhibited during the depuration period (TrxR - 75%; Trx - 70%) when some production of inorganic mercury was detected. Activity of glutathione reductase showed increased levels when TrxR activity was low, suggesting complementarity between both systems. These results indicate that in vivo the thioredoxin system is a toxicological target for MeHg with TrxR being particularly affected.

  10. The Mancozeb-containing carbamate fungicide tattoo induces mild oxidative stress in goldfish brain, liver, and kidney.

    PubMed

    Atamaniuk, Tetiana M; Kubrak, Olga I; Husak, Viktor V; Storey, Kenneth B; Lushchak, Volodymyr I

    2014-11-01

    Tattoo belongs to the group of carbamate fungicides and contains Mancozeb (ethylene(bis)dithiocarbamate) as its main constituent. The toxicity of Mancozeb to living organisms, particularly fish, is not resolved. This work investigated the effects of 96 h of exposure to 3, 5, or 10 mg L(-1) of Tattoo (corresponding to 0.9, 1.5, or 3 mg L(-1) of Mancozeb) on the levels of oxidative stress markers and the antioxidant enzyme system of brain, liver, and kidney of goldfish, Carassius auratus). In liver, Tattoo exposure resulted in increased activities of superoxide dismutase (SOD) by 70%-79%, catalase by 23%-52% and glutathione peroxidase (GPx) by 49%. The content of protein carbonyls (CP) in liver was also enhanced by 92%-125% indicating extensive damage to proteins. Similar increases in CP levels (by 98%-111%) accompanied by reduced glucose-6-phosphate dehydrogenase activity (by 13%-15%) was observed in kidney of fish exposed to Tattoo; however, SOD activity increased by 37% in this tissue after treatment with 10 mg L(-1) Tattoo. In brain, a rise in lipid peroxide level (by 29%) took place after exposure to 10 mg L(-1) Tattoo and was accompanied by elevation of high-molecular mass thiols (by 14%). Tattoo exposure also resulted in a concentration-dependent decrease in glutathione reductase activity (by 26%-37%) in brain. The data collectively show that exposure of goldfish to 3-10 mg L(-1) of the carbamate fungicide Tattoo resulted in the development of mild oxidative stress and activation of antioxidant defense systems in goldfish tissues.

  11. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    PubMed

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  12. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue

    PubMed Central

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity. PMID:26504234

  13. Ni++ as a competitive inhibitor of calcium transport in mitochondria.

    PubMed

    Bragadin, M; Viola, E R

    1997-06-01

    The kinetics of Ca++ uptake in rat liver mitochondria have been studied using the potassium diffusion potential. The advantage of this approach is that in this condition, the mitochondrial respiratory rate is not the limiting step, and therefore the effects of Ni++ on the Ca++ carrier can be studied. Our results suggest that Ni++ is a competitive inhibitor of the Ca++ carrier, but it is not transported into the mitochondria. PMID:9161009

  14. Mitochondria in Lung Diseases

    PubMed Central

    Aravamudan, Bharathi; Thompson, Michael A.; Pabelick, Christina M.; Prakash, Y. S.

    2014-01-01

    Summary Mitochondria are autonomous cellular organelles that oversee a variety of functions such as metabolism, energy production, calcium buffering, and cell fate determination. Regulation of their morphology and diverse activities beyond energy production are being recognized as playing major roles in cellular health and dysfunction. This review is aimed at summarizing what is known regarding mitochondrial contributions to pathogenesis of lung diseases. Emphasis is given to understanding the importance of structural and functional aspects of mitochondria in both normal cellular function (based on knowledge from other cell types) and in development and modulation of lung diseases such as asthma, COPD, cystic fibrosis and cancer. Emerging techniques that allow examination of mitochondria, and potential strategies to target mitochondria in the treatment of lung diseases are also discussed. PMID:23978003

  15. Mitochondria and cell signalling

    PubMed Central

    Tait, Stephen W. G.; Green, Douglas R.

    2012-01-01

    Mitochondria have long been considered as crucial organelles, primarily for their roles in biosynthetic reactions such as ATP synthesis. However, it is becoming increasingly apparent that mitochondria are intimately involved in cell signalling pathways. Mitochondria perform various signalling functions, serving as platforms to initiate cell signalling, as well as acting as transducers and effectors in multiple processes. Here, we discuss the active roles that mitochondria have in cell death signalling, innate immunity and autophagy. Common themes of mitochondrial regulation emerge from these diverse but interconnected processes. These include: the outer mitochondrial membrane serving as a major signalling platform, and regulation of cell signalling through mitochondrial dynamics and by mitochondrial metabolites, including ATP and reactive oxygen species. Importantly, defects in mitochondrial control of cell signalling and in the regulation of mitochondrial homeostasis might underpin many diseases, in particular age-related pathologies. PMID:22448037

  16. Determination of endocrine disrupting compounds in fish liver, brain, and muscle using focused ultrasound solid-liquid extraction and dispersive solid phase extraction as clean-up strategy.

    PubMed

    Ros, Oihana; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Prieto, Ailette

    2016-08-01

    This study describes a new method for the simultaneous extraction of several endocrine disrupting compounds, including alkylphenols (APs), estrogen, bisphenol-A (BPA) and one phthalate metabolite (mono-2-ethylhexyl ester, MEHP) in fish liver, brain, and muscle. Parameters affecting the extraction (extraction solvent and temperature) and the clean-up (dispersive phase nature and amount) steps were evaluated. The extraction was performed by means of focused ultrasound solid-liquid extraction (FUSLE) using 10 mL of n-hexane:acetone (50:50, v/v) for 5 min at ~0 °C, and the clean-up was done by means of dispersive solid phase extraction (dSPE) using 100 mg of ENVI-CARB and 100 mg of MgSO4 for the cleaning of brain and muscle extracts together with 100 mg of PSA in the case of liver extracts. Good apparent recoveries were obtained in the case of liver (62-132 %), brain (66-120 %), and muscle (74-129 %), relative standard deviation (RSD%) was always below 26 %, and the method detection limits (MDLs) were at low ng/g level. The developed method was applied to fish captured in Urdaibai estuary (Bay of Biscay) in December 2015, and the concentrations obtained were in the range MDL-1115 ng/g in brain, MDL-962 ng/g in muscle, and MDL-672 ng/g in liver. In general, the highest concentrations were measured in liver, followed by brain and muscle. In addition, diethylstilbestrol was only detected in fish brain. Graphical Abstract MS method scheme for the/MS method scheme for the determination of EDCs in fish liver, brain and muscle.

  17. Determination of endocrine disrupting compounds in fish liver, brain, and muscle using focused ultrasound solid-liquid extraction and dispersive solid phase extraction as clean-up strategy.

    PubMed

    Ros, Oihana; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Prieto, Ailette

    2016-08-01

    This study describes a new method for the simultaneous extraction of several endocrine disrupting compounds, including alkylphenols (APs), estrogen, bisphenol-A (BPA) and one phthalate metabolite (mono-2-ethylhexyl ester, MEHP) in fish liver, brain, and muscle. Parameters affecting the extraction (extraction solvent and temperature) and the clean-up (dispersive phase nature and amount) steps were evaluated. The extraction was performed by means of focused ultrasound solid-liquid extraction (FUSLE) using 10 mL of n-hexane:acetone (50:50, v/v) for 5 min at ~0 °C, and the clean-up was done by means of dispersive solid phase extraction (dSPE) using 100 mg of ENVI-CARB and 100 mg of MgSO4 for the cleaning of brain and muscle extracts together with 100 mg of PSA in the case of liver extracts. Good apparent recoveries were obtained in the case of liver (62-132 %), brain (66-120 %), and muscle (74-129 %), relative standard deviation (RSD%) was always below 26 %, and the method detection limits (MDLs) were at low ng/g level. The developed method was applied to fish captured in Urdaibai estuary (Bay of Biscay) in December 2015, and the concentrations obtained were in the range MDL-1115 ng/g in brain, MDL-962 ng/g in muscle, and MDL-672 ng/g in liver. In general, the highest concentrations were measured in liver, followed by brain and muscle. In addition, diethylstilbestrol was only detected in fish brain. Graphical Abstract MS method scheme for the/MS method scheme for the determination of EDCs in fish liver, brain and muscle. PMID:27342793

  18. Transporting mitochondria in neurons

    PubMed Central

    Course, Meredith M.; Wang, Xinnan

    2016-01-01

    Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria—which can cause oxidative stress to the neuron—must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction. PMID:27508065

  19. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain.

    PubMed

    Mohamed, Amany Abdel-Rahman; Galal, Azza A A; Elewa, Yaser H A

    2015-09-01

    This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure. PMID:26190785

  20. Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain.

    PubMed

    Mohamed, Amany Abdel-Rahman; Galal, Azza A A; Elewa, Yaser H A

    2015-09-01

    This study is aimed to evaluate the possible neurotoxic effect of tartrazine (T), an extensively used synthetic azo dye, as well as to determine the potential modulatory role of cod liver oil (CLO) or royal jelly (RJ) against such effects. For this purpose, thirty-six male rat pups were allocated into six groups. The 1st group received distilled water (control group), the 2nd group was given 300 mg RJ/kg bw (RJ group), the 3rd group was given 0.4 ml CLO/kg bw (CLO group), the 4th was given 500 mg T/kg bw (T group). The 5th group was given T concurrently with RJ (TRJ group) and the 6th group was given T concurrently with CLO (TCLO group), at the same doses as the former groups. All treatments were given orally for 30 consecutive days. The concentrations of different brain neurotransmitters, gamma amino butyric acid (GABA), dopamine (DA) and serotonin (5HT) as well as the antioxidant and oxidative stress biomarkers were measured in the brain homogenates. An immunohistochemical staining of the cerebral cortex was applied with the anti-ssDNA antibody (an apoptotic cell marker) to reveal the changes in brain structure. The T group revealed a significant decrease in the concentration of the brain neurotransmitters, a sharp shortage in the level of antioxidant biomarkers (super oxide dismutase, catalase and the reduced glutathione), a marked increase in malondialdehyde levels, and numerous apoptotic cells in the brain cortex compared with the other groups. Interestingly, all the previously mentioned parameters were almost retrieved in both the TRJ and TCLO groups compared to the T group. These results conclusively demonstrate that RJ and CLO administration provides sufficient protection against the ruinous effects of T on rat pups brain tissue function and structure.

  1. Protective Effects of Carvacrol against Oxidative Stress Induced by Chronic Stress in Rat's Brain, Liver, and Kidney

    PubMed Central

    Samarghandian, Saeed; Farkhondeh, Tahereh; Samini, Fariborz; Borji, Abasalt

    2016-01-01

    Restraint stress may be associated with elevated free radicals, and thus, chronic exposure to oxidative stress may cause tissue damage. Several studies have reported that carvacrol (CAR) has a protective effect against oxidative stress. The present study was designed to investigate the protective effects of CAR on restraint stress induced oxidative stress damage in the brain, liver, and kidney. For chronic restraint stress, rats were kept in the restrainers for 6 h every day, for 21 consecutive days. The animals received systemic administrations of CAR daily for 21 days. To evaluate the changes of the oxidative stress parameters following restraint stress, the levels of malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and catalase (CAT) activities were measured in the brain, liver, and kidney. In the stressed animals that received vehicle, the MDA level was significantly higher (P < 0.001) and the levels of GSH and antioxidant enzymes were significantly lower than the nonstressed animals (P < 0.001). CAR ameliorated the changes in the stressed animals as compared with the control group (P < 0.001). This study indicates that CAR can prevent restraint stress induced oxidative damage. PMID:26904286

  2. Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice.

    PubMed Central

    Stuart, G R; Oda, Y; de Boer, J G; Glickman, B W

    2000-01-01

    Mutation frequency and specificity were determined as a function of age in nuclear DNA from liver, bladder, and brain of Big Blue lacI transgenic mice aged 1.5-25 months. Mutations accumulated with age in liver and accumulated more rapidly in bladder. In the brain a small initial increase in mutation frequency was observed in young animals; however, no further increase was observed in adult mice. To investigate the origin of mutations, the mutational spectra for each tissue and age were determined. DNA sequence analysis of mutant lacI transgenes revealed no significant changes in mutational specificity in any tissue at any age. The spectra of mutations found in aging animals were identical to those in younger animals, suggesting that they originated from a common set of DNA lesions manifested during DNA replication. The data also indicated that there were no significant age-related mutational changes due to oxidative damage, or errors resulting from either changes in the fidelity of DNA polymerase or the efficiency of DNA repair. Hence, no evidence was found to support hypotheses that predict that oxidative damage or accumulation of errors in nuclear DNA contributes significantly to the aging process, at least in these three somatic tissues. PMID:10757770

  3. Measurement of Serum, Liver, and Brain Cytokine Induction, Thiamine Levels, and Hepatopathology in Rats Exposed to a 4-Day Alcohol Binge Protocol

    PubMed Central

    Zahr, Natalie M.; Luong, Richard; Sullivan, Edith V.; Pfefferbaum, Adolf

    2015-01-01

    Background In rodent and human studies, ethanol (EtOH) exposure is associated with elevated brain levels of the magnetic resonance spectroscopy (MRS) signal representing choline-containing compounds (Cho). One interpretation of elevated brain Cho is that it is a marker of neuroinflammation, and some evidence suggests that EtOH exposure promotes neuroinflammation. This study aimed to determine whether binge EtOH exposure (intragastric 3 g/kg 25% EtOH every 8 hours for 4 days) would induce the expression of certain cytokines in blood, liver, or brain, thereby supporting the neuroinflammation hypothesis of elevated Cho. Methods Ten of 18 wild-type male Wistar rats (~322 g at baseline) were exposed to EtOH and attained average blood alcohol levels of ~315 mg/dl across 4 days. Blood for cytokine immunoassays was collected at baseline, after 5 doses of EtOH (binge), and immediately preceding euthanasia either 4 or 24 hours after the last dose of EtOH. Blood was additionally assayed for the levels of thiamine and liver enzymes; liver histopathology was performed postmortem; and tissue from liver and 6 brain regions was assayed for the potential induction of 7 cytokines. Results There were no group effects on the levels of thiamine or its phosphate derivatives, thiamine monophosphate or thiamine diphosphate. ANOVAs of liver enzyme levels indicated that only alkaline phosphatase (ALP) levels were higher in the EtOH group than in control group at binge; ALP elevations, however, are difficult to explain in the absence of changes in the levels of additional liver enzymes. Postmortem liver pathology provided evidence for minimal microvesicular lipidosis and portocentric fibrosis in the EtOH group. Group effects on the levels of the measured cytokines in the blood (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-13, and GRO/CXCL1) were not significant. Similarly, postmortem evaluation of liver cytokines did not reveal group effects. Postmortem evaluation of the 7 cytokines in 6 brain

  4. Transthyretin participates in beta-amyloid transport from the brain to the liver- involvement of the low-density lipoprotein receptor-related protein 1?

    PubMed Central

    Alemi, Mobina; Gaiteiro, Cristiana; Ribeiro, Carlos Alexandre; Santos, Luís Miguel; Gomes, João Rodrigues; Oliveira, Sandra Marisa; Couraud, Pierre-Olivier; Weksler, Babette; Romero, Ignacio; Saraiva, Maria João; Cardoso, Isabel

    2016-01-01

    Transthyretin (TTR) binds Aβ peptide, preventing its deposition and toxicity. TTR is decreased in Alzheimer’s disease (AD) patients. Additionally, AD transgenic mice with only one copy of the TTR gene show increased brain and plasma Aβ levels when compared to AD mice with both copies of the gene, suggesting TTR involvement in brain Aβ efflux and/or peripheral clearance. Here we showed that TTR promotes Aβ internalization and efflux in a human cerebral microvascular endothelial cell line, hCMEC/D3. TTR also stimulated brain-to-blood but not blood-to-brain Aβ permeability in hCMEC/D3, suggesting that TTR interacts directly with Aβ at the blood-brain-barrier. We also observed that TTR crosses the monolayer of cells only in the brain-to-blood direction, as confirmed by in vivo studies, suggesting that TTR can transport Aβ from, but not into the brain. Furthermore, TTR increased Aβ internalization by SAHep cells and by primary hepatocytes from TTR+/+ mice when compared to TTR−/− animals. We propose that TTR-mediated Aβ clearance is through LRP1, as lower receptor expression was found in brains and livers of TTR−/− mice and in cells incubated without TTR. Our results suggest that TTR acts as a carrier of Aβ at the blood-brain-barrier and liver, using LRP1. PMID:26837706

  5. Calreticulin is a candidate for a calsequestrin-like function in Ca2(+)-storage compartments (calciosomes) of liver and brain.

    PubMed Central

    Treves, S; De Mattei, M; Landfredi, M; Villa, A; Green, N M; MacLennan, D H; Meldolesi, J; Pozzan, T

    1990-01-01

    In a search for the non-muscle equivalent of calsequestrin (the low-affinity high-capacity Ca2(+)-binding protein responsible for Ca2+ storage within the terminal cisternae of the sarcoplasmic reticulum), acidic proteins were extracted from rat liver and brain microsomal preparations and purified by column chromatography. No calsequestrin was observed in these extracts, but the N-terminal amino acid sequence of the major Ca2(+)-binding protein of the liver microsomal fraction was determined and found to correspond to that of calreticulin. This protein was found to bind approx. 50 mol of Ca2+/mol of protein, with low affinity (average Kd approx. 1.0 mM). A monoclonal antibody, C6, raised against skeletal-muscle calsequestrin cross-reacted with calreticulin in SDS/PAGE immunoblots, but polyclonal antibodies reacted with native calreticulin only weakly, or not at all, after SDS denaturation. Immuno-gold decoration of liver ultrathin cryosections with affinity-purified antibodies against liver calreticulin revealed luminal labelling of vacuolar profiles indistinguishable from calciosomes, the subcellular structures previously identified by the use of anti-calsequestrin antibodies. We conclude that calreticulin is the Ca2(+)-binding protein segregated within the calciosome lumen, previously described as being calsequestrin-like. Because of its properties and intraluminal location, calreticulin might play a critical role in Ca2+ storage and release in non-muscle cells, similar to that played by calsequestrin in the muscle sarcoplasmic reticulum. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. PMID:2241926

  6. Predictive Role of Intraoperative Serum Brain Natriuretic Peptide for Early Allograft Dysfunction in Living Donor Liver Transplantation.

    PubMed

    Chae, Min Suk; Koo, Jung Min; Park, Chul Soo

    2016-01-01

    BACKGROUND Early allograft dysfunction (EAD) is considered an important complication in liver transplantation. Serum brain natriuretic peptide (BNP) is a marker of cardiac dysfunction related to end-stage liver disease. We investigated the intraoperative change in the serum BNP level and its contribution to EAD after living donor liver transplantation (LDLT). MATERIAL AND METHODS The perioperative data of 104 patients who underwent LDLT were retrospectively reviewed and compared between patients with and without EAD. Serum BNPs were obtained at each phase, and potentially significant factors (P<0.1) were measured by univariate analysis. The intraoperative mean serum BNP level was compared with other predictors using the AUC, and was analyzed for its relationship with EAD by multivariate logistic regression. RESULTS A total of 31 patients (29.8%) developed EAD after LDLT. In all phases, the EAD group showed higher serum BNP levels than the non-EAD group. The serum BNP level at each phase was less accurate than the mean serum BNP level for EAD. The intraoperative mean serum BNP level showed higher predictive accuracy than the Child-Pugh-Turcotte, model for end-stage liver disease (MELD), and D-MELD (donor age × recipient MELD) scores (p<0.05 for all). After multivariate adjustment, intraoperative mean serum BNP level ≥100 pg/mL was identified as an independent risk factor for EAD, along with kidney disease and graft ischemic time. CONCLUSIONS During LDLT, the EAD group showed higher serum BNP levels than the non-EAD group. An intraoperative mean serum BNP level ≥100 pg/mL is independently associated with EAD after LDLT. PMID:27572618

  7. A study of metal concentrations and metallothionein binding capacity in liver, kidney and brain tissues of three Arctic seal species.

    PubMed

    Sonne, Christian; Aspholm, Ole; Dietz, Rune; Andersen, Steen; Berntssen, Marc H G; Hylland, Ketil

    2009-12-01

    Arctic seals are known to accumulate relatively high concentrations of potential toxic heavy metals in their vital organs, such as livers and kidneys, as well as in their central nervous system. We therefore decided to determine whether mercury, copper, cadmium and zinc levels in liver, kidney and brain tissues of three Arctic seal species were associated with the intracellular metal-binding protein metallothionein (MT) as a sign of toxic exposure. Samples from four ringed (Phoca hispida), five harp (P.groenlandica) and five hooded (Cystophora cristata) seals taken during field trips to Central West Greenland (Godhavn) and the Barents Sea in the spring of 1999 were used for the present study. In all three seal species concentrations of mercury, zinc and copper were highest in the liver, except for cadmium which was highest in the kidneys. Metal concentrations increased significantly in the order: ringed sealliver tissues. MT concentrations were highest in the kidneys and the concentrations increased in the order: ringed seal

  8. Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure.

    PubMed

    Cobbina, Samuel J; Chen, Yao; Zhou, Zhaoxiang; Wu, Xueshan; Feng, Weiwei; Wang, Wei; Mao, Guanghua; Xu, Hai; Zhang, Zhen; Wu, Xiangyang; Yang, Liuqing

    2015-08-01

    The deleterious effects of long term exposure to individual toxic metals in low doses are well documented. There is however, a paucity of information on interaction of low dose toxic metal mixtures with toxic and essential metals. This study reports on interactions between low dose mixtures of lead (Pb), mercury (Hg), arsenic (As) and cadmium (Cd) and toxic and essential metals. For 120d, six groups of forty mice each were exposed to metal mixtures, however, the control group was given distilled water. Exposure to Pb+Cd increased brain Pb by 479% in 30d, whiles Pb+Hg+As+Cd reduced liver Hg by 46.5%, but increased kidney As by 130% in 30d. Brain Cu, increased by 221% on Pb+Hg+As+Cd exposure, however, liver Ca reduced by 36.1% on Pb+Hg exposure in 60-d. Interactions within metal mixtures were largely synergistic. Principal component analysis (PCA) showed that low dose metal exposures influenced greatly levels of Hg (in brain and liver) and As (brain). The influence exerted on essential metals was highest in liver (PC1) followed by kidney (PC2) and brain (PC3). Exposure to low dose metal mixtures affected homeostasis of toxic and essential metals in tissues of mice.

  9. Brain, liver, and adipose tissue erucic and very long chain fatty acid levels in adrenoleukodystrophy patients treated with glyceryl trierucate and trioleate oils (Lorenzo's oil).

    PubMed

    Rasmussen, M; Moser, A B; Borel, J; Khangoora, S; Moser, H W

    1994-08-01

    Brain, liver, and adipose lipids were studied in the postmortem tissues of four adrenoleukodystrophy patients who had been treated with a mixture of glyceryl trioleate and trierucate oils ("Lorenzo's Oil") and compared to 7 untreated ALD patients and 3 controls. The dietary therapy appeared to reduce the levels of saturated very long chain fatty acids in the plasma, adipose tissue and liver; in the brain they were reduced in only one of the four patients. While substantial amounts of erucic acid were present in some of the tissues even 12 months after therapy had been discontinued, the levels in brain did not exceed those in controls at any time. The failure of erucic acid to enter the brain in significant quantity may be a factor in the disappointing results of dietary therapy for adrenoleukodystrophy.

  10. Reversible import of apocytochrome c into mitochondria

    SciTech Connect

    Hakvoort, T.B.M.; Sprinkle, J.R.; Margoliash, E. )

    1990-07-01

    {sup 35}S-labeled Drosophila melanogaster apocytochrome c was made by in vitro transcription/translation of the gene and purified to the monomeric, fully reduced form. It was found that in the presence of a wheat germ extract factor there was a high-affinity phase of the uptake into mouse liver mitochondria at 10-300 pM apocytochrome c, and a lower-affinity phase through 4,000 pM. Without the factor, the high-affinity phase was absent. The stimulatory effect of the factor could not be elicited with various reductants, such as NADH, FMN, and ferrous protoheme IX. Conversely, when mitochondria loaded with apocytochrome c was resuspended in fresh medium, the protein readily reequilibrated. Successive washings depleted >95% of the associated apoprotein but removed no holoprotein. Proteases (proteinase K or trypsin) added to a suspension of mitochondria loaded with apoprotein digested an amount of apoprotein similar to that which would have been dissociated during the same time, as measured by successive washings in the absence of protease. Mitochondria loaded with apoprotein and similarly treated with protease continued exporting the apoprotein, even after the protease was inhibited and removed, suggesting that most of the apoprotein associated with the organelle was in a protease-resistant compartment. Apocytochrome c mutants in which serines or alanines replaced cysteines 14 and 17, which bind the prosthetic group, behaved like the cysteine-containing protein, indicating that the covalent attachment of the heme is unrelated to the translocation of the apoprotein.

  11. Mitochondria and Cancer.

    PubMed

    Zong, Wei-Xing; Rabinowitz, Joshua D; White, Eileen

    2016-03-01

    Decades ago, Otto Warburg observed that cancers ferment glucose in the presence of oxygen, suggesting that defects in mitochondrial respiration may be the underlying cause of cancer. We now know that the genetic events that drive aberrant cancer cell proliferation also alter biochemical metabolism, including promoting aerobic glycolysis, but do not typically impair mitochondrial function. Mitochondria supply energy; provide building blocks for new cells; and control redox homeostasis, oncogenic signaling, innate immunity, and apoptosis. Indeed, mitochondrial biogenesis and quality control are often upregulated in cancers. While some cancers have mutations in nuclear-encoded mitochondrial tricarboxylic acid (TCA) cycle enzymes that produce oncogenic metabolites, there is negative selection for pathogenic mitochondrial genome mutations. Eliminating mtDNA limits tumorigenesis, and rare human tumors with mutant mitochondrial genomes are relatively benign. Thus, mitochondria play a central and multifunctional role in malignant tumor progression, and targeting mitochondria provides therapeutic opportunities.

  12. Mitochondria and Cancer.

    PubMed

    Zong, Wei-Xing; Rabinowitz, Joshua D; White, Eileen

    2016-03-01

    Decades ago, Otto Warburg observed that cancers ferment glucose in the presence of oxygen, suggesting that defects in mitochondrial respiration may be the underlying cause of cancer. We now know that the genetic events that drive aberrant cancer cell proliferation also alter biochemical metabolism, including promoting aerobic glycolysis, but do not typically impair mitochondrial function. Mitochondria supply energy; provide building blocks for new cells; and control redox homeostasis, oncogenic signaling, innate immunity, and apoptosis. Indeed, mitochondrial biogenesis and quality control are often upregulated in cancers. While some cancers have mutations in nuclear-encoded mitochondrial tricarboxylic acid (TCA) cycle enzymes that produce oncogenic metabolites, there is negative selection for pathogenic mitochondrial genome mutations. Eliminating mtDNA limits tumorigenesis, and rare human tumors with mutant mitochondrial genomes are relatively benign. Thus, mitochondria play a central and multifunctional role in malignant tumor progression, and targeting mitochondria provides therapeutic opportunities. PMID:26942671

  13. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  14. Mitochondria and Cancer.

    PubMed

    Vyas, Sejal; Zaganjor, Elma; Haigis, Marcia C

    2016-07-28

    Mitochondria are bioenergetic, biosynthetic, and signaling organelles that are integral in stress sensing to allow for cellular adaptation to the environment. Therefore, it is not surprising that mitochondria are important mediators of tumorigenesis, as this process requires flexibility to adapt to cellular and environmental alterations in addition to cancer treatments. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation, including mitochondrial biogenesis and turnover, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. Thus, understanding mechanisms of mitochondrial function during tumorigenesis will be critical for the next generation of cancer therapeutics. PMID:27471965

  15. On Cellular Darwinism: Mitochondria.

    PubMed

    Bull, Larry

    2016-01-01

    The significant role of mitochondria within cells is becoming increasingly clear. This letter uses the NKCS model of coupled fitness landscapes to explore aspects of organelle-nucleus coevolution. The phenomenon of mitochondrial diversity is allowed to emerge under a simple intracellular evolutionary process, including varying the relative rate of evolution by the organelle. It is shown how the conditions for the maintenance of more than one genetic variant of mitochondria are similar to those previously suggested as needed for the original symbiotic origins of the relationship using the NKCS model.

  16. A survey of the interaction of calcium ions with mitochondria from different tissues and species.

    PubMed

    Carafoli, E; Lehninger, A L

    1971-05-01

    A survey was made of the capacity of mitochondria isolated from a number of different tissues and species to accumulate Ca(2+) from the suspending medium during electron transport. The species examined included the rat, mouse, rabbit, hamster, guinea pig, cow, chicken, turtle, blowfly, yeast and Neurospora crassa. The tissues examined included vertebrate liver, kidney, brain, heart, spleen, thyroid and adrenal cortex, and the flight muscle of the blowfly. The mitochondria from all vertebrate tissues examined showed: (a) stimulation of State 4 respiration by added Ca(2+) (Ca(2+)/~ activation ratio about 2.0), accompanied by accumulation of Ca(2+) and ejection of H(+), with a H(+)/Ca(2+) ratio about 1.0; (b) a requirement of phosphate for accumulation of large amounts of Ca(2+); (c) respiration-independent high-affinity binding sites for Ca(2+); (d) endogenous Ca(2+), which is largely released by uncoupling agents. However, mitochondria from yeast and blowfly flight muscle are unable to accumulate Ca(2+) in a respiration-dependent process and possess no high-affinity Ca(2+)-binding sites. These findings support the view that the high-affinity sites represent the ligand-binding sites of a specific Ca(2+) ;permease' or transport system in the membrane. The relatively high affinity for Ca(2+), which equals or exceeds the affinity for ADP, and the generally uniform characteristics of Ca(2+) transport in all the vertebrate mitochondria tested strongly suggest that respiration-linked Ca(2+) accumulation plays a general and fundamental role in vertebrate cell physiology.

  17. CA V is present in rat kidney mitochondria

    SciTech Connect

    Dodgson, S.J.; Contino, L.C.

    1987-05-01

    Guinea pig liver mitochondria contain the unique carbonic anhydrase isozyme, CA V. Prior to sacrifice, 15 rats and 15 guinea pigs were either fed normal lab chow (group 1), starved 48 hours (group 2) or fed normal lab chow and given to drink only water with added HCl, pH 2.5 (group 3). Mitochondria were prepared from excised livers and kidneys. CA V activity of disrupted mitochondria was measured by /sup 18/O-mass spectrometric technique at pH 7.4, 37/sup 0/C, 25 mM NaHCO/sub 3/. Mass spectrometric CA assays with intact kidney mitochondria localize CA V activity to the matrix, as was found for liver mitochondria. It has been shown in hepatocytes prepared from starved guinea pigs and rats that inhibition of CA V results in decreased rate of gluconeogenesis from pyruvate. These present results are in line with the published observation that rat kidneys are much more gluconeogenic than guinea pig, and that this is increased by starvation and acidosis.

  18. The relation between sphingomyelinase activity, lipid peroxide oxidation and NO-releasing in mice liver and brain.

    PubMed

    Alessenko, A V; Shupik, M A; Bugrova, A E; Dudnik, L B; Shingarova, L N; Mikoyan, A; Vanin, A F

    2005-10-24

    We used animal models to study connection between oxidating system and sphingomyelin signaling cascade, because this models are more close related to people disease. Activation of n-sphingomyelinase (n-SMase) in mice liver and brain is coincided in time with increased level of peroxide products (conjugated dienes) after injection of tumor necrosis factor alpha (TNF-alpha). We found that ceramide can induce peroxide oxidation and lead to accumulation of TNF-alpha in animal organs. Nitric oxide (NO) donors (S-nitrosoglutathione and dinitrosyl iron complex) reversibly inhibited activity of n-SMase and decreased level of lipid peroxidation products. This data proposed that both SMase and messengers of oxidative systems could be targets for NO-derived oxidants. PMID:16225875

  19. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    PubMed Central

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-01-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects. PMID:27032815

  20. COMMENTS ON "EFFECT OF PRENATAL EXPOSURE OF DELTAMETHRIN ON THE ONTOGENY OF XENOBIOTIC METABOLIZING CYTOCHROME P450S IN THE BRAIN AND LIVER OF OFFSPRINGS.

    EPA Science Inventory

    Comments on: Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings [Johri et al. Toxicol Appl Pharmacol. 214:279-289, 2006]

    Johri and colleagues recently reported that maternal exposur...

  1. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    NASA Astrophysics Data System (ADS)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  2. The effect of exogenous zinc ions on the pattern of oxygen consumption of the hepatic mitochondria of albino rats.

    PubMed

    Kukoyi, B I; Costello, L C; Franklin, R B

    2004-12-01

    The effect of incubation of coupled liver mitochondria on varying concentration of zinc ion was determined. A low concentration of 6 microM zinc ion was found to inhibit the rate of oxygen consumption of the liver mitochondria significantly [P < 0.01]. There was uncoupling of the liver mitochondria when subjected to varying incubation periods. There was no change observed in the control experiment. Zinc-citrate inhibited the rate of oxygen consumption significantly [P < 0.01] when compare with the control. The changes observed in the Zn-aspartate were insignificant. Zn-EDTA had no inhibitory or stimulatory effect on the rate of liver mitochondrial oxygen consumption.

  3. Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues.

    PubMed

    Hocq, Aline; Luhmer, Michel; Saussez, Sven; Louryan, Stéphane; Gillis, Pierre; Gossuin, Yves

    2015-01-01

    Iron accumulation is observed in liver and spleen during hemochromatosis and important neurodegenerative diseases involve iron overload in brain. Storage of iron is ensured by ferritin, which contains a magnetic core. It causes a darkening on T2 -weighted MR images. This work aims at improving the understanding of the NMR relaxation of iron-loaded human tissues, which is necessary to develop protocols of iron content measurements by MRI. Relaxation times measurements on brain, liver and spleen samples were realized at different magnetic fields. Iron content was determined by atomic emission spectroscopy. For all samples, the longitudinal relaxation rate (1/T1 ) of tissue protons decreases with the magnetic field up to 1 T, independently of iron content, while their transverse relaxation rate (1/T2 ) strongly increases with the field, either linearly or quadratically, or a combination thereof. The extent of the inter-echo time dependence of 1/T2 also varies according to the sample. A combination of theoretical models is necessary to describe the relaxation of iron-containing tissues. This can be due to the presence, inside tissues, of ferritin clusters of different sizes and densities. When considering all samples, a correlation (r(2)  = 0.6) between 1/T1 and iron concentration is observed at 7.0 T. In contrast the correlation between 1/T2 and iron content is poor, even at high field (r(2)  = 0.14 at 7.0 T). Our results show that MRI methods based on T1 or T2 measurements will easily detect an iron overloading at high magnetic field, but will not provide an accurate quantification of tissue iron content at low iron concentrations. PMID:24954138

  4. Different Regulation of p53 Expression by Cadmium Exposure in Kidney, Liver, Intestine, Vasculature, and Brain Astrocytes

    PubMed Central

    Lee, Jin-Yong; Tokumoto, Maki; Hattori, Yuta; Fujiwara, Yasuyuki; Shimada, Akinori; Satoh, Masahiko

    2016-01-01

    Chronic exposure to cadmium (Cd) is known to adversely affect renal function. Our previous studies indicated that Cd induces p53-dependent apoptosis by inhibiting gene expression of the ubiquitin-conjugating enzyme (Ube) 2d family in both human and rat proximal tubular cells. In this study, the effects of Cd on protein expression of p53 and apoptotic signals in the kidney and liver of mice exposed to Cd for 12 months were examined, as well as the effects of Cd on p53 protein levels and gene expression of the Ube2d family in various cell lines. Results showed that in the kidney of mice exposed to 300 ppm Cd for 12 months, there was overaccumulation of p53 proteins in addition to the induction of apoptosis, which was triggered specifically in the proximal tubules. Interestingly, the site of apoptosis was the same as that of p53 accumulation in the proximal tubules. In the liver of mice chronically exposed to Cd, gene expression of the Ube2d family tended to be slightly decreased, together with slight apoptosis without the accumulation of p53 protein. In rat small intestine epithelial (IEC-6) cells, Cd decreased not only the p53 protein level but also gene expression of Ube2d1, Ube2d2 and Ube2d4. In human brain microvascular endothelial cells (HBMECs), Cd did not suppress gene expression of the Ube2d family, but increased the p53 protein level. In human brain astrocytes (HBASTs), Cd only increased gene expression of UBE2D3. These results suggest that Cd-induced apoptosis through p53 protein is associated with renal toxicity but not hepatic toxicity, and the modification of p53 protein by Cd may vary depending on cell type. PMID:26977261

  5. Mitochondria and mammalian reproduction.

    PubMed

    Ramalho-Santos, João; Amaral, Sandra

    2013-10-15

    Mitochondria are cellular organelles with crucial roles in ATP synthesis, metabolic integration, reactive oxygen species (ROS) synthesis and management, the regulation of apoptosis (namely via the intrinsic pathway), among many others. Additionally, mitochondria in different organs or cell types may have distinct properties that can decisively influence functional analysis. In terms of the importance of mitochondria in mammalian reproduction, and although there are species-specific differences, these aspects involve both energetic considerations for gametogenesis and fertilization, control of apoptosis to ensure the proper production of viable gametes, and ROS signaling, as well as other emerging aspects. Crucially, mitochondria are the starting point for steroid hormone biosynthesis, given that the conversion of cholesterol to pregnenolone (a common precursor for all steroid hormones) takes place via the activity of the cytochrome P450 side-chain cleavage enzyme (P450scc) on the inner mitochondrial membrane. Furthermore, mitochondrial activity in reproduction has to be considered in accordance with the very distinct strategies for gamete production in the male and female. These include distinct gonad morpho-physiologies, different types of steroids that are more prevalent (testosterone, estrogens, progesterone), and, importantly, the very particular timings of gametogenesis. While spermatogenesis is complete and continuous since puberty, producing a seemingly inexhaustible pool of gametes in a fixed environment; oogenesis involves the episodic production of very few gametes in an environment that changes cyclically. These aspects have always to be taken into account when considering the roles of any common element in mammalian reproduction.

  6. Mitochondria in lung disease.

    PubMed

    Cloonan, Suzanne M; Choi, Augustine M K

    2016-03-01

    Mitochondria are a distinguishing feature of eukaryotic cells. Best known for their critical function in energy production via oxidative phosphorylation (OXPHOS), mitochondria are essential for nutrient and oxygen sensing and for the regulation of critical cellular processes, including cell death and inflammation. Such diverse functional roles for organelles that were once thought to be simple may be attributed to their distinct heteroplasmic genome, exclusive maternal lineage of inheritance, and ability to generate signals to communicate with other cellular organelles. Mitochondria are now thought of as one of the cell's most sophisticated and dynamic responsive sensing systems. Specific signatures of mitochondrial dysfunction that are associated with disease pathogenesis and/or progression are becoming increasingly important. In particular, the centrality of mitochondria in the pathological processes and clinical phenotypes associated with a range of lung diseases is emerging. Understanding the molecular mechanisms regulating the mitochondrial processes of lung cells will help to better define phenotypes and clinical manifestations associated with respiratory disease and to identify potential diagnostic and therapeutic targets.

  7. Fluorescent cationic probes of mitochondria. Metrics and mechanism of interaction.

    PubMed

    Bunting, J R; Phan, T V; Kamali, E; Dowben, R M

    1989-11-01

    Mitochondria strongly accumulate amphiphilic cations. We report here a study of the association of respiring rat liver mitochondria with several fluorescent cationic dyes from differing structural classes. Using gravimetric and fluorometric analysis of dye partition, we find that dyes and mitochondria interact in three ways: (a) uptake with fluorescence quenching, (b) uptake without change in fluorescence intensity, and (c) lack of uptake. For dyes that quench upon uptake, the extent of quenching correlates with the degree of aggregation of the dye to dimers, as predicted by theory (Tomov, T.C. 1986. J. Biochem. Biophys. Methods. 13:29-38). Also predicted is the relationship observed between quenching and the mitochondria concentration when constant dye is titrated with mitochondria. Not predicted is the relationship observed between quenching and dye concentration when constant mitochondria are titrated with dye. Because a limit to dye uptake exists, in this case, the degree of quenching decreases as dye is added. A Langmuir isotherm analysis gives phenomenological parameters that predict quenching when it is observed as a function of dye concentration. By allowing for a decrease in membrane potential, caused by incorporation of cationic dye into the lipid bilayer, a modification of the Tomov theory predicts the dye titration data. We present a model of cationic dye-mitochondria interaction and discuss the use of these as probes of mitochondrial membrane potential.

  8. Hibernation impact on the catalytic activities of the mitochondrial D-3-hydroxybutyrate dehydrogenase in liver and brain tissues of jerboa (Jaculus orientalis)

    PubMed Central

    Kabine, Mostafa; El Kebbaj, M'hammed Saïd; Hafiani, Assia; Latruffe, Norbert; Cherkaoui-Malki, Mustapha

    2003-01-01

    Background Jerboa (Jaculus orientalis) is a deep hibernating rodent native to subdesert highlands. During hibernation, a high level of ketone bodies i.e. acetoacetate (AcAc) and D-3-hydroxybutyrate (BOH) are produced in liver, which are used in brain as energetic fuel. These compounds are bioconverted by mitochondrial D-3-hydroxybutyrate dehydrogenase (BDH) E.C. 1.1.1.30. Here we report, the function and the expression of BDH in terms of catalytic activities, kinetic parameters, levels of protein and mRNA in both tissues i.e brain and liver, in relation to the hibernating process. Results We found that: 1/ In euthemic jerboa the specific activity in liver is 2.4- and 6.4- fold higher than in brain, respectively for AcAc reduction and for BOH oxidation. The same differences were found in the hibernation state. 2/ In euthermic jerboa, the Michaelis constants, KM BOH and KM NAD+ are different in liver and in brain while KM AcAc, KM NADH and the dissociation constants, KD NAD+and KD NADH are similar. 3/ During prehibernating state, as compared to euthermic state, the liver BDH activity is reduced by half, while kinetic constants are strongly increased except KD NAD+. 4/ During hibernating state, BDH activity is significantly enhanced, moreover, kinetic constants (KM and KD) are strongly modified as compared to the euthermic state; i.e. KD NAD+ in liver and KM AcAc in brain decrease 5 and 3 times respectively, while KD NADH in brain strongly increases up to 5.6 fold. 5/ Both protein content and mRNA level of BDH remain unchanged during the cold adaptation process. Conclusions These results cumulatively explained and are consistent with the existence of two BDH enzymatic forms in the liver and the brain. The apoenzyme would be subjected to differential conformational folding depending on the hibernation state. This regulation could be a result of either post-translational modifications and/or a modification of the mitochondrial membrane state, taking into account that

  9. Sunitinib-ibuprofen drug interaction affects the pharmacokinetics and tissue distribution of sunitinib to brain, liver, and kidney in male and female mice differently.

    PubMed

    Lau, Christine Li Ling; Chan, Sook Tyng; Selvaratanam, Manimegahlai; Khoo, Hui Wen; Lim, Adeline Yi Ling; Modamio, Pilar; Mariño, Eduardo L; Segarra, Ignacio

    2015-08-01

    Tyrosine kinase inhibitor sunitinib (used in GIST, advanced RCC, and pancreatic neuroendocrine tumors) undergoes CYP3A4 metabolism and is an ABCB1B and ABCG2 efflux transporters substrate. We assessed the pharmacokinetic interaction with ibuprofen (an NSAID used by patients with cancer) in Balb/c male and female mice. Mice (study group) were coadministered (30 min apart) 30 mg/kg of ibuprofen and 60 mg/kg of sunitinib PO and compared with the control groups, which received sunitinib alone (60 mg/kg, PO). Sunitinib concentration in plasma, brain, kidney, and liver was measured by HPLC as scheduled and noncompartmental pharmacokinetic parameters estimated. In female control mice, sunitinib AUC0→∞ decreased in plasma (P < 0.05), was higher in liver and brain (P < 0.001), and lower in kidney (P < 0.001) vs. male control mice. After ibuprofen coadministration, female mice showed lower AUC0→∞ in plasma (P < 0.01), brain, liver, and kidney (all P < 0.001). However, in male mice, AUC0→∞ remained unchanged in plasma, increased in liver and kidney, and decreased in brain (all P < 0.001). The tissue-to-plasma AUC0→∞ ratio was similar between male and female control mice, but changed after ibuprofen coadministration: Male mice showed 1.6-fold higher liver-to-plasma ratio (P < 0.001) while remained unchanged in female mice and in kidney (male and female mice) but decreased 55% in brain (P < 0.05). The tissue-to-plasma partial AUC ratio, the drug tissue targeting index, and the tissue-plasma hysteresis-like plots also showed sex-based ibuprofen-sunitinib drug interaction differences. The results illustrate the relevance of this DDI on sunitinib pharmacokinetics and tissue uptake. These may be due to gender-based P450 and efflux/transporters differences.

  10. Sparteine monooxygenase in brain and liver: Identified by the dopamine uptake blocker ( sup 3 H)GBR-12935

    SciTech Connect

    Kalow, W.; Tyndale, R.F.; Niznik, H.B.; Inaba, T. )

    1990-02-26

    P450IID6 (human sparteine monooxygenase) metabolizes many drugs including neuroleptics, antidepressants, and beta-blockers. The P450IID6 exists in human, bovine, rat and canine brains, but in very low quantities causing methodological difficulties in its assessment. Work with ({sup 3}H)GBR-12935; 1-(2-(diphenylmethoxy) ethyl)-4-(3-phenyl propyl) piperazine has shown that it binds a neuronal/hepatic protein with high affinity ({approximately}7nM) and a rank order of inhibitory potency suggesting that the binding protein is cytochrome P450IID6. The binding was used to predict that d-amphetamine and methamphetamine would interact with P450IID6. Inhibition studies indicated that these compounds were competitive inhibitors of P450IID6. Haloperidol (HAL) and it's metabolite hydroxy-haloperidol (RHAL) are both competitive inhibitors of P450IID6 activity and were found to inhibit ({sup 3}H)GBR-12935 binding. K{sub i} values of twelve compounds (known to interact with the DA transporter or P450IID6) for ({sup 3}H)GRB-12935 binding and P450IID6 activity. The techniques are now available for measurements of cytochrome P450IID6 in healthy and diseased brain/liver tissue using radio-receptor binding assay techniques with ({sup 3}H)GBR-12935.

  11. Effect of prenatal exposure of deltamethrin on the ontogeny of xenobiotic metabolizing cytochrome P450s in the brain and liver of offsprings

    SciTech Connect

    Johri, Ashu; Dhawan, Alok; Lakhan Singh, Ram; Parmar, Devendra . E-mail: parmar_devendra@hotmail.com

    2006-08-01

    Prenatal exposure to low doses (0.25 or 0.5 or 1.0 mg/kg, p.o.) of deltamethrin, a type II pyrethroid insecticide, to pregnant dams from gestation days 5 to 21 (GD5-21) produced dose-dependent alterations in the ontogeny of xenobiotic metabolizing cytochrome P450 (CYP) isoforms in brain and liver of the offsprings. RT-PCR analysis revealed dose-dependent increase in the mRNA expression of cerebral and hepatic CYP1A1, 1A2, 2B1, 2B2, and 2E1 isoenzymes in the offsprings exposed prenatally to deltamethrin. Similar increase in the activity of the marker enzymes of these CYP isoforms has indicated that placental transfer of the pyrethroid, a mixed type of CYP inducer, even at these low doses may be sufficient to induce the CYPs in brain and liver of the offsprings. Our data have further revealed persistence in the increase in expression of xenobiotics metabolizing CYPs up to adulthood in brain and liver of the exposed offsprings, suggesting the potential of deltamethrin to imprint the expression of CYPs in brain and liver of the offsprings following its in utero exposure. Furthermore, though the levels of CYPs were several fold lower in brain, almost equal magnitude of induction in cerebral and hepatic CYPs has further suggested that brain CYPs are responsive to the induction by environmental chemicals. The present data indicating alterations in the expression of xenobiotic metabolizing CYPs during development following prenatal exposure to deltamethrin may be of significance as these CYP enzymes are not only involved in the neurobehavioral toxicity of deltamethrin but have a role in regulating the levels of ligands that modulate growth, differentiation, and neuroendocrine functions.

  12. Rapid efflux of Ca2+ from heart mitochondria in the presence of inorganic pyrophosphate.

    PubMed

    Vercesi, A; Lehninger, A L

    1984-01-13

    Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.

  13. Mitochondria and Arrhythmias

    PubMed Central

    Yang, Kai-Chien; Bonini, Marcelo G.; Dudley, Samuel C.

    2014-01-01

    Mitochondria are essential to providing ATP thereby satisfying the energy demand of the incessant electrical activity and contractile action of cardiac muscle. Emerging evidence indicates that mitochondrial dysfunction can adversely impact cardiac electrical functioning by impairing the intracellular ion homeostasis and membrane excitability through reduced ATP production and excessive reactive oxidative species (ROS) generation, resulting in increased propensity to cardiac arrhythmias. In this review, the molecular mechanisms linking mitochondrial dysfunction to cardiac arrhythmias are discussed with an emphasis on the impact of increased mitochondrial ROS on the cardiac ion channels and transporters that are critical to maintaining normal electromechanical functioning of the cardiomyocytes. The potential of using mitochondria-targeted antioxidants as a novel anti-arrhythmia therapy is highlighted. PMID:24713422

  14. Mitochondria and Cardiovascular Aging

    PubMed Central

    Dai, Dao-Fu; Ungvari, Zoltan

    2013-01-01

    Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901

  15. Mitochondria: the calcium connection.

    PubMed

    Contreras, Laura; Drago, Ilaria; Zampese, Enrico; Pozzan, Tullio

    2010-01-01

    Calcium handling by mitochondria is a key feature in cell life. It is involved in energy production for cell activity, in buffering and shaping cytosolic calcium rises and also in determining cell fate by triggering or preventing apoptosis. Both mitochondria and the mechanisms involved in the control of calcium homeostasis have been extensively studied, but they still provide researchers with long-standing or even new challenges. Technical improvements in the tools employed for the investigation of calcium dynamics have been-and are still-opening new perspectives in this field, and more prominently for mitochondria. In this review we present a state-of-the-art toolkit for calcium measurements, with major emphasis on the advantages of genetically encoded indicators. These indicators can be efficiently and selectively targeted to specific cellular sub-compartments, allowing previously unavailable high-definition calcium dynamic studies. We also summarize the main features of cellular and, in more detail, mitochondrial calcium handling, especially focusing on the latest breakthroughs in the field, such as the recent direct characterization of the calcium microdomains that occur on the mitochondrial surface upon cellular stimulation. Additionally, we provide a major example of the key role played by calcium in patho-physiology by briefly describing the extensively reported-albeit highly controversial-alterations of calcium homeostasis in Alzheimer's disease, casting lights on the possible alterations in mitochondrial calcium handling in this pathology.

  16. Lineage-Specific Regulation of Epigenetic Modifier Genes in Human Liver and Brain

    PubMed Central

    Weng, Matthias K.; Natarajan, Karthick; Scholz, Diana; Ivanova, Violeta N.; Sachinidis, Agapios; Hengstler, Jan G.; Waldmann, Tanja; Leist, Marcel

    2014-01-01

    Despite an abundance of studies on chromatin states and dynamics, there is an astonishing dearth of information on the expression of genes responsible for regulating histone and DNA modifications. We used here a set of 156 defined epigenetic modifier genes (EMG) and profiled their expression pattern in cells of different lineages. As reference value, expression data from human embryonic stem cells (hESC) were used. Hepatocyte-like cells were generated from hESC, and their EMG expression was compared to primary human liver cells. In parallel, we generated postmitotic human neurons (Lu d6), and compared their relative EMG expression to human cortex (Ctx). Clustering analysis of all cell types showed that neuronal lineage samples grouped together (94 similarly regulated EMG), as did liver cells (61 similarly-regulated), while the two lineages were clearly distinct. The general classification was followed by detailed comparison of the major EMG groups; genes that were higher expressed in differentiated cells than in hESC included the acetyltransferase KAT2B and the methyltransferase SETD7. Neuro-specific EMGs were the histone deacetylases HDAC5 and HDAC7, and the arginine-methyltransferase PRMT8. Comparison of young (Lu d6) and more aged (Ctx) neuronal samples suggested a maturation-dependent switch in the expression of functionally homologous proteins. For instance, the ratio of the histone H3 K27 methyltransfereases, EZH1 to EZH2, was high in Ctx and low in Lu d6. The same was observed for the polycomb repressive complex 1 (PRC1) subunits CBX7 and CBX8. A large proportion of EMGs in differentiated cells was very differently expressed than in hESC, and absolute levels were significantly higher in neuronal samples than in hepatic cells. Thus, there seem to be distinct qualitative and quantitative differences in EMG expression between cell lineages. PMID:25054330

  17. Oxidative state and oxidative metabolism in the brain of rats with adjuvant-induced arthritis.

    PubMed

    Wendt, Mariana Marques Nogueira; de Sá-Nakanishi, Anacharis Babeto; de Castro Ghizoni, Cristiane Vizioli; Bersani Amado, Ciomar Aparecida; Peralta, Rosane Marina; Bracht, Adelar; Comar, Jurandir Fernando

    2015-06-01

    The purpose of the present study was to evaluate the oxidative status of the brain of arthritic rats, based mainly on the observation that arthritis induces a pronounced oxidative stress in the liver of arthritis rats and that morphological alterations have been reported to occur in patients with rheumatoid arthritis. Rats with adjuvant-induced arthritis were used. These animals presented higher levels of reactive oxygen species (ROS) in the total brain homogenate (25% higher) and in the mitochondria (+55%) when compared to healthy rats. The nitrite plus nitrate contents, nitric oxide (NO) markers, were also increased in both mitochondria (+27%) and cytosol (+14%). Arthritic rats also presented higher levels of protein carbonyl groups in the total homogenate (+43%), mitochondria (+69%) and cytosol (+145%). Arthritis caused a diminution of oxygen consumption in isolated brain mitochondria only when ascorbate was the electron donor. The disease diminished the mitochondrial cytochrome c oxidase activity by 55%, but increased the transmembrane potential by 16%. The pro-oxidant enzyme xanthine oxidase was 150%, 110% and 283% higher, respectively, in the brain homogenate, mitochondria and cytosol of arthritic animals. The same occurred with the calcium-independent NO-synthase activity that was higher in the brain homogenate (90%) and cytosol (122%) of arthritic rats. The catalase activity, on the other hand, was diminished by arthritis in all cellular fractions (between 30 and 40%). It is apparent that the brain of rats with adjuvant-induced arthritis presents a pronounced oxidative stress and a significant injury to lipids and proteins, a situation that possibly contributes to the brain symptoms of the arthritis disease.

  18. Uptake of labeled alloxan in mouse organs and mitochondria in vivo and in vitro.

    PubMed

    Boquist, L; Nelson, L; Lorentzon, R

    1983-09-01

    [14C]2-Alloxan was administered in vivo and in vitro for study of the uptake of alloxan in different organs and their mitochondia of mice. After in vivo administration, radioactivity was demonstrated in all organs investigated, with quantitative differences: endocrine pancreas greater than liver greater than exocrine pancreas and heart. No significant difference was found between the iv and ip routes of injection. An in vivo uptake of alloxan was also found in mitochondria, with significant quantitative differences as to the origin of the organelles: endocrine pancreas greater than liver greater than exocrine pancreas and heart. Pretreatment with D-glucose caused significantly decreased uptake in liver, exocrine pancreas, and heart, but significantly increased uptake in endocrine pancreas, whereas the uptake was significantly decreased in the mitochondria from all of these organs. In vitro uptake was observed in all kinds of mitochondria studied. This uptake was higher than the in vivo uptake in mitochondria from liver, exocrine pancreas, and heart, whereas the uptake in vivo was higher than the in vitro uptake in islet mitochondria. The presence of D-glucose did not affect the in vitro uptake of alloxan in mitochondria. The findings show that in vivo, alloxan passes across plasma membranes and is taken up by mitochondria, and data obtained with mitochondrial subfractions may also indicate a passage across mitochondrial membranes. D-Glucose protection against alloxan diabetogenicity may be associated with prevention of mitochondrial uptake of alloxan. This prevention seems to be dependent on the metabolism of glucose. PMID:6347668

  19. Biochemical properties of porcine white adipose tissue mitochondria and relevance to fatty acid oxidation.

    PubMed

    Koekemoer, T C; Oelofsen, W

    2001-07-01

    The capacity of white adipose tissue mitochondria to support a high beta-oxidative flux was investigated by comparison to liver mitochondria. Based on marker enzyme activities and electron microscopy, the relative purity of the isolated mitochondria was similar thus allowing a direct comparison on a protein basis. The results confirm the comparable capacity of adipose tissue and liver mitochondria for palmitoyl-carnitine oxidation. Relative to liver, both citrate synthase and alpha-ketoglutarate dehydrogenase were increased 7.87- and 10.38-fold, respectively. In contrast, adipose tissue NAD-isocitrate dehydrogenase was decreased (2.85-fold). Such modifications in the citric acid cycle are expected to severely restrict citrate oxidation in porcine adipose tissue. Except for cytochrome c oxidase, activities of the enzyme complexes comprising the electron transport chain were not significantly different. The decrease in adipose cytochrome c oxidase activity could partly be attributed to a decreased inner membrane as suggested by lipid and enzyme analysis. In addition, Western blotting indicated that adipose and liver mitochondria possess similar quantities of cytochrome c oxidase protein. Taken together these results indicate that not only is the white adipose tissue protoplasm relatively rich in mitochondria, but that these mitochondria contain comparable enzymatic machinery to support a relatively high beta-oxidative rate. PMID:11435134

  20. [A Case of Brain Metastasis from Rectal Cancer with Synchronous Liver and Lung Metastases after Multimodality Treatment--A Case Report].

    PubMed

    Udagawa, Masaru; Tominaga, Ben; Kobayashi, Daisuke; Ishikawa, Yuuya; Watanabe, Shuuichi; Adikrisna, Rama; Okamoto, Hiroyuki; Yabata, Eiichi

    2015-11-01

    We report a case of brain metastasis from rectal cancer a long time after the initial resection. A 62-year-old woman, diagnosed with lower rectal cancer with multiple synchronous liver and lung metastases, underwent abdominoperineal resection after preoperative radiochemotherapy (40 Gy at the pelvis, using the de Gramont regimen FL therapy: 1 kur). The histological diagnosis was a moderately differentiated adenocarcinoma. Various regimens of chemotherapy for unresectable and metastatic colorectal cancer were administered, and a partial response was obtained; thereby, the metastatic lesions became resectable. The patient underwent partial resection of the liver and lung metastases. Pathological findings confirmed that both the liver and lung lesions were metastases from the rectal cancer. A disease-free period occurred for several months; however, there were recurrences of the lung metastases, so we started another round of chemotherapy. After 8 months, she complained of vertigo and dizziness. A left cerebellar tumor about 3 cm in diameter was revealed by MRI and neurosurgical excision was performed. Pathological findings confirmed a cerebellar metastasis from the rectal cancer. Twenty months after resection of the brain tumor, the patient complained of a severe headache. A brain MRI showed hydrocephalia, and carcinomatous meningitis from rectal cancer was diagnosed by a spinal fluid cytology test. A ventriculo-peritoneal shunt was inserted, but the cerebrospinal pressure did not decreased and she died 20 months after the first surgery. Although brain metastasis from colorectal cancer is rare, the number of patients with brain metastasis is thought to increase in the near future. Chemotherapy for colorectal cancer is effective enough to prolong the survival period even if multiple metastases have occurred. However, after a long survival period with lung metastases such as in our case, there is a high probability of developing brain metastases.

  1. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin

    SciTech Connect

    Fischer, W.J.; Altheimer, S.; Cattori, V.; Meier, P.J.; Dietrich, D.R. . E-mail: Daniel.Dietrich@uni-konstanz.de; Hagenbuch, B.

    2005-03-15

    Microcystins are toxins produced by freshwater cyanobacteria. They are cyclic heptapeptides that exhibit hepato- and neurotoxicity. However, the transport systems that mediate uptake of microcystins into hepatocytes and across the blood-brain barrier have not yet been identified. Using the Xenopus laevis oocyte expression system we tested whether members of the organic anion transporting polypeptide superfamily (rodent: Oatps; human: OATPs) are involved in transport of the most common microcystin variant microcystin-LR by measuring uptake of a radiolabeled derivative dihydromicrocystin-LR. Among the tested Oatps/OATPs, rat Oatp1b2, human OATP1B1, human OATP1B3, and human OATP1A2 transported microcystin-LR 2- to 5-fold above water-injected control oocytes. This microcystin-LR transport was inhibited by co-incubation with the known Oatp/OATP substrates taurocholate (TC) and bromosulfophthalein (BSP). Microcystin-LR transport mediated by the human OATPs was further characterized and showed saturability with increasing microcystin-LR concentrations. The apparent K{sub m} values amounted to 7 {+-} 3 {mu}M for OATP1B1, 9 {+-} 3 {mu}M for OATP1B3, and 20 {+-} 8 {mu}M for OATP1A2. No microcystin-LR transport was observed in oocytes expressing Oatp1a1, Oatp1a4, and OATP2B1. These results may explain some of the observed organ-specific toxicity of microcystin-LR. Oatp1b2, OATP1B1, and OATP1B3 are responsible for microcystin transport into hepatocytes, whereas OATP1A2 mediates microcystin-LR transport across the blood-brain barrier.

  2. Isolation of rat adrenocortical mitochondria

    SciTech Connect

    Solinas, Paola; Fujioka, Hisashi; Tandler, Bernard; Hoppel, Charles L.

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer A method for isolation of adrenocortical mitochondria from the adrenal gland of rats is described. Black-Right-Pointing-Pointer The purified isolated mitochondria show excellent morphological integrity. Black-Right-Pointing-Pointer The properties of oxidative phosphorylation are excellent. Black-Right-Pointing-Pointer The method increases the opportunity of direct analysis of adrenal mitochondria from small animals. -- Abstract: This report describes a relatively simple and reliable method for isolating adrenocortical mitochondria from rats in good, reasonably pure yield. These organelles, which heretofore have been unobtainable in isolated form from small laboratory animals, are now readily accessible. A high degree of mitochondrial purity is shown by the electron micrographs, as well as the structural integrity of each mitochondrion. That these organelles have retained their functional integrity is shown by their high respiratory control ratios. In general, the biochemical performance of these adrenal cortical mitochondria closely mirrors that of typical hepatic or cardiac mitochondria.

  3. Fatal Klebsiella pneumoniae meningitis and emphysematous brain abscess after endoscopic variceal ligation in a patient with liver cirrhosis and diabetes mellitus.

    PubMed

    Shih, Hsin-I; Lee, Hsin-Chun; Chuang, Chiao-Hsiung; Ko, Wen-Chien

    2006-10-01

    Procedure-related bacterial infections may complicate esophageal variceal ligation in cirrhosis patients. Here, we report a 58-year-old man with underlying diabetes and liver cirrhosis who developed Klebsiella pneumoniae meningitis and brain abscess with gas formation in brain parenchyma and ventricles after this procedure. Despite administration of appropriate antimicrobial therapy, he became comatose on the 3rd day of acute illness and died on the 4th day of hospitalization. This case highlights the indication for antimicrobial prophylaxis in cirrhotic patients with gastrointestinal bleeding, and the need for early and heightened awareness of central nervous system infections in cirrhotic patients with hepatic encephalopathy.

  4. Mitochondria and metazoan epigenesis

    PubMed Central

    Coffman, James A.

    2009-01-01

    In eukaryotes, mitochondrial activity controls ATP production, calcium dynamics, and redox state, thereby establishing physiological parameters governing the transduction of biochemical signals that regulate nuclear gene expression. However, these activities are commonly assumed to fulfill a ‘housekeeping’ function: necessary for life, but an epiphenomenon devoid of causal agency in the developmental flow of genetic information. Moreover, it is difficult to perturb mitochondrial function without generally affecting cell viability. For these reasons little is known about the extent of mitochondrial influence on gene activity in early development. Recent discoveries pertaining to the redox regulation of key developmental signaling systems together with the fact that mitochondria are often asymmetrically distributed in animal embryos suggests that they may contribute spatial information underlying differential specification of cell fate. In many cases such asymmetries correlate with localization of genetic determinants (i.e., mRNAs or proteins), particularly in embryos that rely heavily on cell-autonomous means of cell fate specification. In such embryos the localized genetic determinants play a dominant role, and any developmental information contributed by the mitochondria themselves is likely to be less obvious and more difficult to isolate experimentally. Hence, ‘regulative’ embryos that make more extensive use of conditional cell fate specification are better suited to experimental investigation of mitochondrial impacts on developmental gene regulation. Recent studies of the sea urchin embryo, which is a paradigmatic example of such a system, suggest that anisotropic distribution of mitochondria provides a source gradient of spatial information that directs epigenetic specification of the secondary axis via Nodal-Lefty signaling. PMID:19429498

  5. Modulation of nitric oxide synthase activity in brain, liver, and blood vessels of spontaneously hypertensive rats by ascorbic acid: protection from free radical injury.

    PubMed

    Newaz, M A; Yousefipour, Z; Nawal, N N A

    2005-08-01

    End organ damage in essential hypertension has been linked to increased oxygen free radical generation, reduced antioxidant defense, and/or attenuation of nitric oxide synthase (NOS) activity. Ascorbic acid (AA), a water-soluble antioxidant, has been reported as a strong defense against free radicals in both aqueous and nonaqueous environment. In this study we examined the hypothesis that antioxidant ascorbic acid may confer protection from increased free radical activity in brain, liver, and blood vessels of spontaneously hypertensive rats (SHR). Male SHRs were divided into groups: SHR + AA (treated with AA, 1 mg/rat/day; for 12 weeks) or SHR (untreated). Wister-Kyoto rats (WKY) served as the control. Mean systolic blood pressure (SBP) in treated and untreated SHR was 145 +/- 7 mmHg and 142 +/- 8 mmHg, respectively. AA treatment prevented the increase in systolic blood pressure in SHR by 37 +/- 1% (p < 0.05). NOS activity in the brain, liver, and blood vessels of WKY rat was 1.82 +/- 0.02, 0.14 +/- 0.003, and 1.54 +/- 0.06 pmol citruline/mg protein, respectively. In SHR, total NOS activity was significantly reduced by 52 +/- 1%, 21 +/- 3%, and 44 +/- 4%, respectively. AA increased NOS activity in brain, liver, and blood vessels of SHR from 0.87 +/-.03, 0.11 +/-.01, and 0.87 +/-.08 pmol citruline/mg protein to 0.93 +/- 0.01, 0.13 +/- 0.001, and 1.11 +/- 0.03 pmol citruline/mg protein (p < 0.05), respectively. Lipid peroxides in the brain, liver, and blood vessels from WKY rats were 0.87 +/- 0.06, 0.11 +/- 0.005, and 0.47 +/- 0.04 nmol MDA equiv/mg protein, respectively. In SHR, lipid peroxides in brain, liver, and blood vessels were significantly increased by 40 +/- 3%, 64 +/- 3%, and 104 +/- 13%, respectively. AA reduced lipid peroxidation in liver and blood vessels by 17 +/- 1% and 34 +/- 3% but not in brain. Plasma lipid peroxides were almost doubled in SHR (p < 0.01) together with a reduction in total antioxidant status (6 +/- 0.1%; p < 0.05), nitrite (53 +/- 2

  6. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    NASA Astrophysics Data System (ADS)

    Gajdosechova, Zuzana; Lawan, Mohammed M.; Urgast, Dagmar S.; Raab, Andrea; Scheckel, Kirk G.; Lombi, Enzo; Kopittke, Peter M.; Loeschner, Katrin; Larsen, Erik H.; Woods, Glenn; Brownlow, Andrew; Read, Fiona L.; Feldmann, Jörg; Krupp, Eva M.

    2016-09-01

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role Se plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 μm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of the bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake.

  7. Effects of an n-3-deficient diet on brain, retina, and liver fatty acyl composition in artificially reared rats.

    PubMed

    Moriguchi, Toru; Lim, Sun-Young; Greiner, Rebecca; Lefkowitz, William; Loewke, James; Hoshiba, Junji; Salem, Norman

    2004-08-01

    Rat pups born to dams fed a diet with 3.1% of total fatty acids as alpha-linolenic acid (LNA) were fed, using an artificial rearing system, either an n-3-deficient (n-3-Def) or an n-3-adequate (n-3-Adq) diet. Both diets contained 17.1% linoleic acid, but the n-3-Adq diet also contained 3.1% LNA. The percentage of brain docosahexaenoic acid (DHA) continuously decreased (71%) with time over the 29 days of the experiment, with concomitant increases in docosapentaenoic acid (DPAn-6). In the retina, the percentage of DHA rose in the n-3-Adq group, with an apparent increased rate around the time of eye opening. However, there was a flat curve for the percentage of DHA in the n-3-Def group and a rising DPAn-6 with time. Liver DHA was highest at the time of birth in the n-3-Adq group but fell off somewhat over the course of 29 days. This decrease was more pronounced in the n-3-Def group, and the DPAn-6 rose considerably during the second half of the experiment. This method presents a first-generation model for n-3 deficiency that is more similar to the case of human nutrition than is the commonly employed two-generation model.

  8. In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales

    PubMed Central

    Gajdosechova, Zuzana; Lawan, Mohammed M.; Urgast, Dagmar S.; Raab, Andrea; Scheckel, Kirk G.; Lombi, Enzo; Kopittke, Peter M.; Loeschner, Katrin; Larsen, Erik H.; Woods, Glenn; Brownlow, Andrew; Read, Fiona L.; Feldmann, Jörg; Krupp, Eva M.

    2016-01-01

    To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role Se plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 μm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of the bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake. PMID:27678068

  9. Effects of Luteolin on Liver, Kidney and Brain in Pentylentetrazol-Induced Seizures: Involvement of Metalloproteinases and NOS Activities

    PubMed Central

    Birman, Hüsniye; Dar, Kadriye Akgün; Kapucu, Ayşegül; Acar, Samet; Üzüm, Gülay

    2012-01-01

    Objective: Flavonoids are an important group of recognized antioxidants in plants. Luteolin (LUT) is a natural flavonoid in the plant kingdom. This study was aimed to investigate the effects of the LUT in the liver, kidney and brain of pentylentetrazol (PTZ)-induced seizure and the relationship between nitric oxide synthases (iNOS, eNOS) and matrix metalloproteinases (MMP2, MMP9). Materials and Methods: LUT (10 mg/kg) was given intraperitoneally during two weeks prior to seizure induction. A single dose PTZ 80 mg/kg i.p. was administered and seizures were observed and evaluated with regard to latency, frequency and stage for one hour. Results: Seizure frequen cy after PTZ administration was significantly decreased in LUT pretreated rats (p<0.05). An increase of immunhistochemical reactions of iNOS and MMP2, but a decrease of eNOS activity, were observed in rat hippocampus and peripheral tissues during the PTZ induced seizures. LUT pretreatment reversed the iNOS and MMP2 activity to the control levels and significantly increased the eNOS activity (p<0.001). Conclusion: LUT seems to have an effective role in reducing the seizure frequency and a protective role on peripheral organ injury in animal models of seizure. The protective effect of LUT in seizures and the seizure induced peripheral tissue damage warrant further investigations. PMID:25206993

  10. Fine structure of astrocytic mitochondria in the hypothalamus of the hamster.

    PubMed Central

    Fernandez, B; Suarez, I; Gianonatti, C

    1983-01-01

    Astrocytic mitochondria in the hypothalamic region of the adult hamster brain have been studied by electron microscopy. Mitochondria showing triangular prismatic cristae, as seen in transverse section, and other unusual forms of mitochondrial cristae, are described and illustrated. Such mitochondria occur primarily in the suprachiasmatic and paraventricular nuclei, especially in perivascular astrocytic processes. The possibility that these atypical mitochondria might develop a specific function is discussed. Images Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 1 Fig. 2 Fig. 3 Fig. 9 Fig. 10 PMID:6654741

  11. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria.

    PubMed

    Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella; Brunello, Nicoletta; Tascedda, Fabio

    2016-08-25

    Brain bioenergetic abnormalities in mood disorders were detected by neuroimaging in vivo studies in humans. Because of the increasing importance of mitochondrial pathogenetic hypothesis of Depression, in this study the effects of sub-chronic treatment (21days) with desipramine (15mg/kg) and fluoxetine (10mg/kg) were evaluated on brain energy metabolism. On mitochondria in vivo located in neuronal soma (somatic) and on mitochondria of synapses (synaptic), the catalytic activities of regulatory enzymes of mitochondrial energy-yielding metabolic pathways were assayed. Antidepressants in vivo treatment modified the activities of selected enzymes of different mitochondria, leading to metabolic modifications in the energy metabolism of brain cortex: (a) the enhancement of cytochrome oxidase activity on somatic mitochondria; (b) the decrease of malate, succinate dehydrogenase and glutamate-pyruvate transaminase activities of synaptic mitochondria; (c) the selective effect of fluoxetine on enzymes related to glutamate metabolism. These results overcome the conflicting data so far obtained with antidepressants on brain energy metabolism, because the enzymatic analyses were made on mitochondria with diversified neuronal in vivo localization, i.e. on somatic and synaptic. This research is the first investigation on the pharmacodynamics of antidepressants studied at subcellular level, in the perspective of (i) assessing the role of energy metabolism of cerebral mitochondria in animal models of mood disorders, and (ii) highlighting new therapeutical strategies for antidepressants targeting brain bioenergetics. PMID:27268280

  12. Effect of exposure and withdrawal of 900-MHz-electromagnetic waves on brain, kidney and liver oxidative stress and some biochemical parameters in male rats.

    PubMed

    Ragy, Merhan Mamdouh

    2015-01-01

    Increasing use of mobile phones in daily life with increasing adverse effects of electromagnetic radiation (EMR), emitted from mobile on some physiological processes, cause many concerns about their effects on human health. Therefore, this work was designed to study the effects of exposure to mobile phone emits 900-MHz EMR on the brain, liver and kidney of male albino rats. Thirty male adult rats were randomly divided into four groups (10 each) as follows: control group (rats without exposure to EMR), exposure group (exposed to 900-MHz EMR for 1 h/d for 60 d) and withdrawal group (exposed to 900-MHz electromagnetic wave for 1 h/d for 60 d then left for 30 d without exposure). EMR emitted from mobile phone led to a significant increase in malondialdehyde (MDA) levels and significant decrease total antioxidant capacity (TAC) levels in brain, liver and kidneys tissues. The sera activity of alanine transaminase (ALT), aspartate aminotransferase (AST), urea, creatinine and corticosterone were significantly increased (p < 0.05), while serum catecholamines were insignificantly higher in the exposed rats. These alterations were corrected by withdrawal. In conclusion, electromagnetic field emitting from mobile phone might produce impairments in some biochemicals changes and oxidative stress in brain, liver and renal tissue of albino rats. These alterations were corrected by withdrawal.

  13. Tissue-specific induction of oxidative stress in goldfish by 2,4-dichlorophenoxyacetic acid: mild in brain and moderate in liver and kidney.

    PubMed

    Matviishyn, Tetiana M; Kubrak, Olga I; Husak, Viktor V; Storey, Kenneth B; Lushchak, Volodymyr I

    2014-03-01

    This study investigated the effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on free radical-related processes in tissues of goldfish given 96 h exposures to 1, 10 or 100 mg/L of 2,4-D as well as 96 h recovery from the 100 mg/L treatment. In liver, 2,4-D exposure increased levels of protein carbonyls and lipid peroxides by 36-53% and 24-43%, respectively, but both parameters reverted during recovery, whereas in brain glutathione status improved in response to 2,4-D. Lipid peroxide content in kidney was enhanced by 40-43% after exposure to 2,4-D with a decrease during recovery. Exposure to 2,4-D also reduced liver acetylcholinesterase activity by 31-41%. The treatment increased catalase activity in brain, but returned it to initial levels after recovery. In kidney, exposure to 100 mg/L of 2,4-D caused a 33% decrease of superoxide dismutase activity. Thus, goldfish exposure to 2,4-D induced moderate oxidative stress in liver and kidney and mild oxidative stress in brain.

  14. On the regulative role of the glutamate receptor in mitochondria.

    PubMed

    Selin, Alexey A; Lobysheva, Natalia V; Nesterov, Semen V; Skorobogatova, Yulia A; Byvshev, Ivan M; Pavlik, Lyubov L; Mikheeva, Irina B; Moshkov, Dmitry A; Yaguzhinsky, Lev S; Nartsissov, Yaroslav R

    2016-05-01

    The purpose of this work was to study the regulative role of the glutamate receptor found earlier in the brain mitochondria. In the present work a glutamate-dependent signaling system with similar features was detected in mitochondria of the heart. The glutamate-dependent signaling system in the heart mitochondria was shown to be suppressed by γ-aminobutyric acid (GABA). The GABA receptor presence in the heart mitochondria was shown by golding with the use of antibodies to α- and β-subunits of the receptor. The activity of glutamate receptor was assessed according to the rate of synthesis of hydrogen peroxide. The glutamate receptor in mitochondria could be activated only under conditions of hypoxic stress, which in model experiments was imitated by blocking Complex I by rotenone or fatty acids. The glutamate signal in mitochondria was shown to be calcium- and potential-dependent and the activation of the glutamate cascade was shown to be accompanied by production of hydrogen peroxide. It was discovered that H2O2 synthesis involves two complexes of the mitochondrial electron transfer system - succinate dehydrogenase (SDH) and fatty acid dehydrogenase (ETF:QO). Thus, functions of the glutamate signaling system are associated with the system of respiration-glycolysis switching (the Pasteur-Crabtree) under conditions of hypoxia. PMID:26812870

  15. Over-dose insulin and stable gastric pentadecapeptide BPC 157. Attenuated gastric ulcers, seizures, brain lesions, hepatomegaly, fatty liver, breakdown of liver glycogen, profound hypoglycemia and calcification in rats.

    PubMed

    Ilic, S; Brcic, I; Mester, M; Filipovic, M; Sever, M; Klicek, R; Barisic, I; Radic, B; Zoricic, Z; Bilic, V; Berkopic, L; Brcic, L; Kolenc, D; Romic, Z; Pazanin, L; Seiwerth, S; Sikiric, P

    2009-12-01

    We focused on over-dose insulin (250 IU/kg i.p.) induced gastric ulcers and then on other disturbances that were concomitantly induced in rats, seizures (eventually fatal), severely damaged neurons in cerebral cortex and hippocampus, hepatomegaly, fatty liver, increased AST, ALT and amylase serum values, breakdown of liver glycogen with profound hypoglycemia and calcification development. Calcium deposits were present in the blood vessel walls, hepatocytes surrounding blood vessels and sometimes even in parenchyma of the liver mainly as linear and only occasionally as granular accumulation. As an antidote after insulin, we applied the stable gastric pentadecapeptide BPC 157 (10 microg/kg) given (i) intraperitoneally or (ii) intragastrically immediately after insulin. Controls received simultaneously an equivolume of saline (5 ml/kg). Those rats that survived till the 180 minutes after over-dose application were further assessed. Interestingly, pentadecapeptide BPC 157, as an antiulcer peptide, may besides stomach ulcer consistently counteract all insulin disturbances and fatal outcome. BPC 157 rats showed no fatal outcome, they were mostly without hypoglycemic seizures with apparently higher blood glucose levels (glycogen was still present in hepatocytes), less liver pathology (i.e., normal liver weight, less fatty liver), decreased ALT, AST and amylase serum values, markedly less damaged neurons in brain and they only occasionally had small gastric lesions. BPC 157 rats exhibited mostly only dot-like calcium presentation. In conclusion, the success of BPC 157 therapy may indicate a likely role of BPC 157 in insulin controlling and BPC 157 may influence one or more causative process(es) after excessive insulin application. PMID:20388953

  16. Mitochondria with impaired phosphate transport: 32P uptake studies.

    PubMed

    Williams, G R; Orr, J L

    1976-02-01

    Rat liver mitochondria which have been exposed to 0.15 M NaC1 at 35 degrees C for 15 min subsequently take up 32Pi from an external medium only to about 5% of the extent of uptake by control mitochondria. The volume into which 32Pi distributes in a pellet of such "aged" mitochondia is less than that available to 3H2O but is greater than that available to [3H]sucrose. Mitochondria treated in this manner cannot therefore accumulate Pi although limited penetration of the inner membrane can occur. These results confirm earlier findings by indirect methods (Williams, G. R. & Orr, J. L.: Dynamics of energy-transducing membranes (Ernster, L., Estabrook, R. W. & Slater, E. C., eds), Elsevier Scientific Publishing Company, Amsterdam, Netherlands, pp. 497-508 (1974). PMID:1260498

  17. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-05-01

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.

  18. Dietary Oil Source and Selenium Supplementation Modulate Fads2 and Elovl5 Transcriptional Levels in Liver and Brain of Meagre (Argyrosomus regius).

    PubMed

    Silva-Brito, Francisca; Magnoni, Leonardo J; Fonseca, Sthelio Braga; Peixoto, Maria João; Castro, L Filipe C; Cunha, Isabel; de Almeida Ozório, Rodrigo Otávio; Magalhães, Fernando Antunes; Gonçalves, José Fernando Magalhães

    2016-06-01

    The meagre (Argyrosomus regius) is taking on increasing importance in the aquaculture industry. In view of the limited supply of fish oil (FO) as a feed ingredient, the study of the capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFA) from alternative dietary oil sources is important. We analyzed changes in fatty acid (FA) desaturase 2 (fads2) and FA elongase 5 (elovl5) mRNA levels in livers and brains in response to FO replacement with a blend of vegetable oils (VO) and selenium (Se) supplementation. Fish were fed for 60 days with either a diet containing FO or a diet including VO, each supplemented or not with organic Se. Results showed that fads2 and elovl5 transcription was higher in liver when fish were fed VO diets. The brain mRNA levels of both genes were not affected by the dietary replacement of FO by VO. FA composition in the liver and skeletal muscle was altered by FO replacement, particularly by decreasing eicosapentaenoic acid and docosahexaenoic acid contents. The α-linolenic, linoleic, and arachidonic acid contents increased in both liver and brain of fish fed VO diets. The effect of Se supplementation on lipid metabolism was evident only in fish fed FO, showing a decrease in the transcription of hepatic fads2. Results indicate that the total replacement of FO by VO in diets modulates the expression of genes involved in LC-PUFA biosynthesis in meagre, affecting the FA profile of the fish flesh. PMID:27169705

  19. Lipids of mitochondria.

    PubMed

    Horvath, Susanne E; Daum, Günther

    2013-10-01

    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.

  20. Mitochondria of protists.

    PubMed

    Gray, Michael W; Lang, B Franz; Burger, Gertraud

    2004-01-01

    Over the past several decades, our knowledge of the origin and evolution of mitochondria has been greatly advanced by determination of complete mitochondrial genome sequences. Among the most informative mitochondrial genomes have been those of protists (primarily unicellular eukaryotes), some of which harbor the most gene-rich and most eubacteria-like mitochondrial DNAs (mtDNAs) known. Comparison of mtDNA sequence data has provided insights into the radically diverse trends in mitochondrial genome evolution exhibited by different phylogenetically coherent groupings of eukaryotes, and has allowed us to pinpoint specific protist relatives of the multicellular eukaryotic lineages (animals, plants, and fungi). This comparative genomics approach has also revealed unique and fascinating aspects of mitochondrial gene expression, highlighting the mitochondrion as an evolutionary playground par excellence.

  1. Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats.

    PubMed

    Ferreira, Gabriela K; Scaini, Giselli; Carvalho-Silva, Milena; Gomes, Lara M; Borges, Lislaine S; Vieira, Júlia S; Constantino, Larissa S; Ferreira, Gustavo C; Schuck, Patrícia F; Streck, Emilio L

    2013-05-01

    Tyrosinemia is a rare disease caused by a single mutation to the gene that code for the enzyme responsible for tyrosine catabolism. Because the mechanisms underlying the neurological dysfunction in hypertyrosinemic patients are poorly understood, we evaluated the in vitro and in vivo effect of L-tyrosine on the activities of the enzymes citrate synthase, malate dehydrogenase, succinate dehydrogenase and complexes of the mitochondrial respiratory chain in the brains and livers of young rats. Thirty-day-old Wistar rats were killed by decapitation, and the brains and livers were harvested. L-Tyrosine (0.1, 1.0, 2.0 or 4.0 mM) was added to the reaction medium. For in vivo studies, Wistar rats were killed 1 h after a single intraperitoneal injection of either tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated. In this research, we demonstrated in vitro that L-tyrosine inhibited citrate synthase activity in the posterior cortex and that succinate dehydrogenase was increased in the posterior cortex, hippocampus, striatum and liver. The complex I activity was only inhibited in the hippocampus, whereas complex II activity was inhibited in the hippocampus, cortex and liver. Complex IV activity decreased in the posterior cortex. The acute administration of L-tyrosine inhibited enzyme malate dehydrogenase, citrate synthase and complexes II, II-III and IV in the posterior cortex and liver. The enzyme succinate dehydrogenase and complex I activity were inhibited in the posterior cortex and increased in the striatum. These results suggest impairment in energy metabolism that is likely mediated by oxidative stress. PMID:22847184

  2. Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua).

    PubMed

    Bratberg, Mari; Olsvik, Pål A; Edvardsen, Rolf B; Brekken, Hans Kristian; Vadla, Reidun; Meier, Sonnich

    2013-02-01

    Fish in the North Sea are exposed to relatively high levels of halogenated compounds in addition to the pollutants released by oil production activities. In this study male Atlantic cod (Gadus morhua) were orally exposed to environmental realistic levels (low and high) of weathered crude oil and/or a mixture of POPs for 4weeks. Lipid composition in brain and in liver extracts were analysed in order to assess the effects of the various pollutants on membrane lipid composition and fatty acid profiles. Transcriptional effects in the liver were studied by microarray and quantitative real-time RT-PCR. Chemical analyses confirmed uptake of polychlorinated biphenyls (PCBs) and chlorinated pesticides, polybrominated diphenyl ethers (PBDEs) and perfluorooctanesulfonate (PFOS) in the liver and excretion of metabolites of polyaromatic hydrocarbons (PAHs) in the bile. Treatment with POPs and/or crude oil did not induce significant changes in lipid composition in cod liver. Only a few minor changes were observed in the fatty acid profile of the brain and the lipid classes in the liver. The hypothesis that pollution from oil or POPs at environmental realistic levels alters the lipid composition in marine fish was therefore not confirmed in this study. However, the transcriptional data suggest that the fish were affected by the treatment at the mRNA level. This study suggests that a combination of oil and POPs induce the CYP1a detoxification system and gives an increase in the metabolism and clearing rate of PAHs and POPs, but with no effects on membrane lipids in male Atlantic cod.

  3. Rice Germosprout Extract Protects Erythrocytes from Hemolysis and the Aorta, Brain, Heart, and Liver Tissues from Oxidative Stress In Vitro

    PubMed Central

    Hussain, Jakir; Islam, Saiful

    2016-01-01

    Identifying dietary alternatives for artificial antioxidants capable of boosting antihemolytic and antioxidative defense has been an important endeavor in improving human health. In the present study, we studied antihemolytic and antioxidative effects of germosprout (i.e., the germ part along with sprouted stems plus roots) extract prepared from the pregerminated rice. The extract contained considerable amounts of antioxidant β-carotene (414 ± 12 ng/g of extract) and phytochemicals such as total polyphenols (12.0 ± 1.1 mg gallic acid equivalent/g of extract) and flavonoids (11.0 ± 1.4 mg catechin equivalent/g of extract). The antioxidant potential of the extract was assessed by its DPPH- (2,2-diphenyl-1-picrylhydrazyl-) free radical scavenging activity where we observed that germosprout extract had considerable antioxidative potentials. To evaluate antihemolytic effect of the extract, freshly prepared erythrocytes were incubated with either peroxynitrite or Fenton's reagent in the absence or presence of the extract. We observed that erythrocytes pretreated with the extract exhibited reduced degree of in vitro hemolysis. To support the proposition that germosprout extract could act as a good antioxidative agent, we also induced in vitro oxidative stress in erythrocyte membranes and in the aorta, brain, heart, and liver tissue homogenates in the presence of the extract. As expected, germosprout extract decreased oxidative stress almost to the same extent as that of vitamin E, as measured by lipid peroxide levels, in all the mentioned tissues. We conclude that rice germosprout extract could be a good natural source of antioxidants to reduce oxidative stress-induced hemolysis and damage of blood vessels and other tissues. PMID:27413391

  4. Mössbauer study of exogenous iron redistribution between the brain and the liver after administration of 57Fe3O4 ferrofluid in the ventricle of the rat brain

    NASA Astrophysics Data System (ADS)

    Polikarpov, Dmitry; Gabbasov, Raul; Cherepanov, Valery; Loginova, Natalia; Loseva, Elena; Nikitin, Maxim; Yurenia, Anton; Panchenko, Vladislav

    2015-04-01

    Iron clearance pathways after the injection of 57Fe3O4-based ferrofluid into the brain ventricles were studied histologically and by Mössbauer spectroscopy. It was found that the dextran coated initial nanobeads of the ferrofluid disintegrated in the brain into separate superparamagnetic nanoparticles within a week after the injection. The exogenous iron completely exited all ventricular cavities of the brain within a week after the injection but remained in the white matter for months. Kupffer cells with the exogenous iron appeared in the rat liver 2 hours after the injection. Their concentration reached its maximum on the third day and dropped to zero within a week. The exogenous iron appeared in the spleen a week after the injection and remained in the spleen for months.

  5. Liver transplantation nearly normalizes brain spontaneous activity and cognitive function at 1 month: a resting-state functional MRI study.

    PubMed

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Zhong, Jianhui; Ji, Qian; Xie, Shuangshuang; Chen, Lihua; Zuo, Panli; Zhang, Long Jiang; Shen, Wen

    2015-08-01

    To investigate the short-term brain activity changes in cirrhotic patients with Liver transplantation (LT) using resting-state functional MRI (fMRI) with regional homogeneity (ReHo) method. Twenty-six cirrhotic patients as transplant candidates and 26 healthy controls were included in this study. The assessment was repeated for a sub-group of 12 patients 1 month after LT. ReHo values were calculated to evaluate spontaneous brain activity and whole brain voxel-wise analysis was carried to detect differences between groups. Correlation analyses were performed to explore the relationship between the change of ReHo with the change of clinical indexes pre- and post-LT. Compared to pre-LT, ReHo values increased in the bilateral inferior frontal gyrus (IFG), right inferior parietal lobule (IPL), right supplementary motor area (SMA), right STG and left middle frontal gyrus (MFG) in patients post-LT. Compared to controls, ReHo values of post-LT patients decreased in the right precuneus, right SMA and increased in bilateral temporal pole, left caudate, left MFG, and right STG. The changes of ReHo in the right SMA, STG and IFG were correlated with change of digit symbol test (DST) scores (P < 0.05 uncorrected). This study found that, at 1 month after LT, spontaneous brain activity of most brain regions with decreased ReHo in pre-LT was substantially improved and nearly normalized, while spontaneous brain activity of some brain regions with increased ReHo in pre-LT continuously increased. ReHo may provide information on the neural mechanisms of LT' effects on brain function.

  6. Origins of hydrogenosomes and mitochondria.

    PubMed

    Rotte, C; Henze, K; Müller, M; Martin, W

    2000-10-01

    Complete genome sequences for many oxygen-respiring mitochondria, as well as for some bacteria, leave no doubt that mitochondria are descendants of alpha-proteobacteria, a finding for which the endosymbiont hypothesis can easily account. Yet a wealth of data indicate that mitochondria and hydrogenosomes - the ATP-producing organelles of many anaerobic protists - share a common ancestry, a finding that traditional formulations of the endosymbiont hypothesis less readily accommodates. Available evidence suggests that a more in-depth understanding of the origins of eukaryotes and their organelles will hinge upon data from the genomes of protists that synthesize ATP without the need for oxygen.

  7. Oxidative stress response of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccumulation in liver, kidney, and brain

    USGS Publications Warehouse

    Hoffman, David J.; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Adelsbach, Terrence L.; Stebbins, Katherine R.

    2011-01-01

    Bioindicators of oxidative stress were examined in prebreeding and breeding adult and chick Forster's terns (Sterna forsteri) and in prebreeding adult Caspian terns (Hydroprogne caspia) in San Francisco Bay, California. Highest total mercury (THg) concentrations (mean±standard error;μg/g dry wt) in liver (17.7±1.7), kidney (20.5±1.9), and brain (3.0±0.3) occurred in breeding adult Forster's terns. The THg concentrations in liver were significantly correlated with hepatic depletion of reduced glutathione (GSH), increased oxidized glutathione (GSSG):GSH ratio, and decreased hepatic gamma-glutamyl transferase (GGT) activity in adults of both tern species. Prefledging Forster's tern chicks with one-fourth the hepatic THg concentration of breeding adults exhibited effects similar to adults. Total mercury-related renal GSSG increased in adults and chicks. In brains of prebreeding adults, THg was correlated with a small increase in glucose-6-phosphate dehydrogenase (G-6-PDH) activity, suggestive of a compensatory response. Brain THg concentrations were highest in breeding adult Forster's terns and brain tissue exhibited increased lipid peroxidation as thiobarbituric acid-reactive substances, loss of protein bound thiols (PBSH), and decreased activity of antioxidant enzymes, GSSG reductase (GSSGrd), and G-6-PDH. In brains of Forster's tern chicks there was a decrease in total reduced thiols and PBSH. Multiple indicator responses also pointed to greater oxidative stress in breeding Forster's terns relative to prebreeding terns, attributable to the physiological stress of reproduction. Some biondicators also were related to age and species, including thiol concentrations. Enzymes GGT, G-6-PDH, and GSSGred activities were related to species. Our results indicate that THg concentrations induced oxidative stress in terns, and suggest that histopathological, immunological, and behavioral effects may occur in terns as reported in other species.

  8. Attenuation of lead-induced oxidative stress in rat brain, liver, kidney and blood of male Wistar rats by Moringa oleifera seed powder.

    PubMed

    Velaga, Manoj Kumar; Daughtry, Lucius K; Jones, Angelica C; Yallapragada, Prabhakara Rao; Rajanna, Sharada; Rajanna, Bettaiya

    2014-01-01

    Moringa oleifera is a tree belonging to Moringaceae family and its leaves and seeds are reported to have ameliorative effects against metal toxicity. In the present investigation, M. oleifera seed powder was tested against lead-induced oxidative stress and compared against meso-2, 3-dimercaptosuccinic acid (DMSA) treatment. Male Wistar rats (100-120 g) were divided into four groups: control (2000 ppm of sodium acetate for 2 weeks), exposed (2000 ppm of lead acetate for 2 weeks), Moringa treated (500 mg/kg for 7 days after lead exposure), and DMSA treated (90 mg/kg for 7 days after lead exposure). After exposure and treatment periods, rats were sacrificed and the brain was separated into cerebellum, hippocampus, frontal cortex, and brain stem; liver, kidney, and blood were also collected. The data indicated a significant (p<0.05) increase in reactive oxygen species (ROS), lipid perioxidation products (LPP), total protein carbonyl content (TPCC), and metal content of brain regions, liver, and kidney in the exposed group compared with their respective controls. In the blood, delta-amino levulinic acid dehydratase (ALAD) activity, RBC, WBC, hemoglobin, and hematocrit showed significant (p<0.05) decrease on lead exposure. However, administration of M. oleifera restored all the parameters back to control, tissue-specifically, and also showed improvement in restoration better than DMSA treatment, indicating reduction of the negative effects of lead-induced oxidative stress.

  9. Electron spin resonance study of free radicals produced from ethanol and acetaldehyde after exposure to a Fenton system or to brain and liver microsomes

    SciTech Connect

    Gonthier, B.; Jeunet, A.; Barret, L. )

    1991-09-01

    Free radical formation from ethanol and acetaldehyde was studied in the presence of a spin-trap and a NADPH generating system with a chemical model, Fenton's reagent, or by enzymatic oxidation of these solvents by rat liver and brain microsomes. The free radicals were detected by electron spin resonance spectroscopy (E.S.R.), using the spin-trapping agent, alpha-(4-pyridyl l-oxide)-N-tertbutyl-nitrone (POBN). Under such conditions, the hydroxyethyl radical derived from ethanol was obtained after both incubation in liver and brain microsomes as well as after exposure to the Fenton system. Enzymatic inhibition and activation showed that the mixed function oxidase system plays an important role in the generation of such a radical, even in the brain. Under all the experimental conditions acetaldehyde could also generate a free radical deriving directly from the parent molecule and modified by enzymatic activation or inhibition. A second, longer lasting radical was also observed in the presence of acetaldehyde. On the basis of a comparative study to a known process causing lipoperoxidation, its lipidic origin was suggested.

  10. Dietary omega-3 fatty acid deficiency and high fructose intake in the development of metabolic syndrome, brain metabolic abnormalities, and non-alcoholic fatty liver disease.

    PubMed

    Simopoulos, Artemis P

    2013-08-01

    Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS). Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD), promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health. PMID:23896654

  11. Liver metastases

    MedlinePlus

    Metastases to the liver; Metastatic liver cancer; Liver cancer - metastatic; Colorectal cancer - liver metastases; Colon cancer - liver metastases; Esophageal cancer - liver metastases; Lung cancer - liver metastases; Melanoma - liver metastases

  12. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using 1H- and 13C-NMR spectroscopy

    PubMed Central

    Roy, Maggie; Beauvieux, Marie-Christine; Naulin, Jérôme; El Hamrani, Dounia; Gallis, Jean-Louis; Cunnane, Stephen C; Bouzier-Sore, Anne-Karine

    2015-01-01

    The ketogenic diet (KD) is an effective alternative treatment for refractory epilepsy in children, but the mechanisms by which it reduces seizures are poorly understood. To investigate how the KD modifies brain metabolism, we infused control (CT) and 7-day KD rats with either [1-13C]glucose (Glc) or [2,4-13C2]β-hydroxybutyrate (β-HB). Specific enrichments of amino acids (AAs) measured by 1H- and 13C-NMR in total brain perchloric acid extracts were similar between CT and KD rats after [1-13C]Glc infusion whereas they were higher in KD rats after [2,4-13C2]β-HB infusion. This suggests better metabolic efficiency of ketone body utilization on the KD. The relative rapid metabolic adaptation to the KD included (1) 11%-higher brain γ-amino butyric acid (GABA)/glutamate (Glu) ratio versus CT, (2) liver accumulation of the ketogenic branched-chain AAs (BCAAs) leucine (Leu) and isoleucine (ILeu), which were never detected in CT, and (3) higher brain Leu and ILeu contents. Since Glu and GABA are excitatory and inhibitory neurotransmitters, respectively, higher brain GABA/Glu ratio could contribute to the mechanism by which the KD reduces seizures in epilepsy. Increased BCAA on the KD may also contribute to better seizure control. PMID:25785828

  13. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study

    PubMed Central

    Fornasaro, Stefano; Ziberna, Lovro; Gasperotti, Mattia; Tramer, Federica; Vrhovšek, Urška; Mattivi, Fulvio; Passamonti, Sabina

    2016-01-01

    Anthocyanins exert neuroprotection in various in vitro and in vivo experimental models. However, no details regarding their brain-related pharmacokinetics are so far available to support claims about their direct neuronal bioactivity as well as to design proper formulations of anthocyanin-based products. To gather this missing piece of knowledge, we intravenously administered a bolus of 668 nmol cyanidin 3-glucoside (C3G) in anaesthetized Wistar rats and shortly after (15 s to 20 min) we collected blood, brain, liver, kidneys and urine samples. Extracts thereof were analysed for C3G and its expected metabolites using UPLC/MS-MS. The data enabled to calculate a set of pharmacokinetics parameters. The main finding was the distinctive, rapid distribution of C3G in the brain, with an apparently constant plasma/brain ratio in the physiologically relevant plasma concentration range (19–355 nM). This is the first report that accurately determines the distribution pattern of C3G in the brain, paving the way to the rational design of future tests of neuroprotection by C3G in animal models and humans. PMID:26965389

  14. The discrepancy between the absence of copper deposition and the presence of neuronal damage in the brain of Atp7b(-/-) mice.

    PubMed

    Dong, Yi; Shi, Sheng-Sheng; Chen, Sheng; Ni, Wang; Zhu, Min; Wu, Zhi-Ying

    2015-02-01

    Wilson's disease (WD) is caused by mutations within the copper-transporting ATPase (ATP7B), characterized by copper deposition in various organs, principally the liver and the brain. With the availability of Atp7b(-/-) mice, the valid animal model of WD, the mechanism underlying copper-induced hepatocyte necrosis has been well understood. Nonetheless, little is known about the adverse impact of copper accumulation on the brain in WD. Therefore, the aim of this study was to identify copper disturbances according to various brain compartments and further dissect the causal relationship between copper storage and neuronal damage using Atp7b(-/-) mice. Copper levels in the liver, whole brain, brain compartments and basal ganglia mitochondria of Atp7b(-/-) mice and age-matched controls were measured by atomic absorption spectroscopy. Delicate electron microscopic studies on hepatocytes and neurons in the basal ganglia were performed. Here we further confirmed the remarkably elevated copper content and abnormal ultrastructure findings in livers of Atp7b(-/-) mice. Interestingly, we found the ultrastructure abnormalities in neurons of the basal ganglia of Atp7b(-/-) mice, whereas copper deposition was not detected in the whole brain, even within the basal ganglia and its mitochondria. The disparity provided a new understanding of neuronal dysfunction in WD, and strongly indicated that copper might not be the sole causative player and other unidentified pathogenic factors could enhance the toxic effects of copper on neurons in WD.

  15. Mitochondria in Cancer Energy Metabolism

    PubMed Central

    2015-01-01

    Cancer is a disease characterized by uncontrolled growth. Metabolic demands to sustain rapid proliferation must be compelling since aerobic glycolysis is the first as well as the most commonly shared characteristic of cancer. During the last decade, the significance of metabolic reprogramming of cancer has been at the center of attention. Nonetheless, despite all the knowledge gained on cancer biology, the field is not able to reach agreement on the issue of mitochondria: Are damaged mitochondria the cause for aerobic glycolysis in cancer? Warburg proposed the damaged mitochondria theory over 80 years ago; the field has been testing the theory equally long. In this review, we will discuss alterations in metabolic fluxes of cancer cells, and provide an opinion on the damaged mitochondria theory. PMID:26877834

  16. DNA from plant mitochondria.

    PubMed

    Suyama, Y; Bonner, W D

    1966-03-01

    DNA WAS ISOLATED FROM A MITOCHONDRIAL FRACTION OF EACH OF THE FOLLOWING PLANT MATERIALS: Mung bean (Phaseolus aureus) etiolated hypocotyl; turnip (Brassica rapa) root; sweet potato (Ipomoea batatas) root; and onion (Allium cepa) bulb. It was found that all of these mitochondrial fractions contained DNA, the densities of which were identical (rho=1.706 g.cm(-3)). An additional DNA (rho=1.695) band found in the mitochondrial fraction of Brassica rapa, was identical to DNA separately isolated from the chloroplast-rich fraction. The origin of the second DNA from Allium mitochondrial fraction was not identified.Contrary to the identity of the mitochondrial DNA, DNA from nuclear fractions differed not only with each other but from the corresponding mitochondrial DNA.DNA from Phaseolus and Brassica mitochondria showed the hyperchromicity characteristic of double stranded, native DNA upon heating; Tm's in 0.0195 Na(+) were the same; 72.0 degrees . The amount of DNA within the mitochondrion of Phaseolus was estimated to be 5.0 x 10(-10) mug; this estimate was made by isolating the mitochondrial DNA concomitantly with the known amount of added (15)N(2)H B. subtilis DNA (rho=1.740). Approximately the same amount of DNA was present in the mitochondrion of Brassica or Ipomoea.

  17. Mitochondria and peripheral neuropathies.

    PubMed

    Vital, Anne; Vital, Claude

    2012-12-01

    There has been considerable progress during the past 24 years in the molecular genetics of mitochondrial DNA and related nuclear DNA mutations, and more than 100 nerve biopsies from hereditary neuropathies related to mitochondrial cytopathy have been accurately examined. Neuropathies were first reported in diseases related to point mutations of mitochondrial DNA, but they proved to be a prominent feature of the phenotype in mitochondrial disorders caused by defects in nuclear DNA, particularly in 3 genes: polymerase gamma 1 (POLG1), mitofusin 2 (MFN2), and ganglioside-induced differentiation-associated protein 1 (GDAP1). Most patients have sensory-motor neuropathy, sometimes associated with ophthalmoplegia, ataxia, seizures, parkinsonism, myopathy, or visceral disorders. Some cases are caused by consanguinity, but most are sporadic with various phenotypes mimicking a wide range of other etiologies. Histochemistry on muscle biopsy, as well as identification of crystalloid inclusions at electron microscopy, may provide a diagnostic clue to mitochondriopathy, but nerve biopsy is often less informative. Nevertheless, enlarged mitochondria containing distorted or amputated cristae are highly suggestive, particularly when located in the Schwann cell cytoplasm. Also noticeable are clusters of regenerating myelinated fibers surrounded by concentric Schwann cell processes, and such onion bulb-like formations are frequently observed in neuropathies caused by GDAP1 mutations. PMID:23147504

  18. Calpains, mitochondria, and apoptosis

    PubMed Central

    Smith, Matthew A.; Schnellmann, Rick G.

    2012-01-01

    Mitochondrial activity is critical for efficient function of the cardiovascular system. In response to cardiovascular injury, mitochondrial dysfunction occurs and can lead to apoptosis and necrosis. Calpains are a 15-member family of Ca2+-activated cysteine proteases localized to the cytosol and mitochondria, and several have been shown to regulate apoptosis and necrosis. For example, in endothelial cells, Ca2+ overload causes mitochondrial calpain 1 cleavage of the Na+/Ca2+ exchanger leading to mitochondrial Ca2+ accumulation. Also, activated calpain 1 cleaves Bid, inducing cytochrome c release and apoptosis. In renal cells, calpains 1 and 2 promote apoptosis and necrosis by cleaving cytoskeletal proteins, which increases plasma membrane permeability and cleavage of caspases. Calpain 10 cleaves electron transport chain proteins, causing decreased mitochondrial respiration and excessive activation, or inhibition of calpain 10 activity induces mitochondrial dysfunction and apoptosis. In cardiomyocytes, calpain 1 activates caspase 3 and poly-ADP ribose polymerase during tumour necrosis factor-α-induced apoptosis, and calpain 1 cleaves apoptosis-inducing factor after Ca2+ overload. Many of these observations have been elucidated with calpain inhibitors, but most calpain inhibitors are not specific for calpains or a specific calpain family member, creating more questions. The following review will discuss how calpains affect mitochondrial function and apoptosis within the cardiovascular system. PMID:22581845

  19. The isolation of lymphocyte mitochondria and their regulation of extramitochondrial free Ca2+ concentration.

    PubMed Central

    Dippenaar, N G; Brand, M D

    1982-01-01

    1. A method for the isolation of functionally intact mitochondria from lymphocytes is described. It involves digitonin breakage of the plasma membrane, followed by differential centrifugation. The yield was 36 mg of mitochondrial protein/200 g of pig mesenteric lymph node (6 mg of mitochondrial protein/10(9) lymphocytes). The mitochondrial had a respiratory-control ratio of 2--3.5 with succinate as substrate. 2. Ca2+ transport by these mitochondria was investigated. They were able to regulate the extramitochondrial free [Ca2+] very precisely, by buffering any displacements from the steady-state. The exact extramitochondrial free [Ca2+] of this steady-state depended on the conditions of incubation. In a medium designed to resemble the cytoplasmic environment, with added Ca2+, lymphocyte mitochondria maintained a steady-state free [Ca2+] of 0.63 microM (pCa of 6.2). The rates of Ca2+ uptake and efflux under these conditions, with both lymphocyte and liver mitochondria, were very much lower than those in a less complex medium. 3. Lymphocyte mitochondria were shown to possess an Na+-independent Ruthenium Red-insensitive efflux pathway similar to that of liver mitochondria. Ruthenium Red totally inhibited the electrophoretic uniporter. Although Na+ had no effect on the steady-state maintained by lymphocyte mitochondria, they were shown to possess an Na+/H+ antiporter. PMID:6178400

  20. Enclosure of mitochondria by chloroplasts.

    PubMed

    Brown, R H; Rigsby, L L; Akin, D E

    1983-02-01

    In Panicum species of the Laxa group, some of which have characteristics intermediate to C(3) and C(4) photosynthesis species, some mitochondria in leaf bundle sheath cells are surrounded by chloroplasts when viewed in profile. Serial sectioning of leaves of one Laxa species, Panicum schenckii Hack, shows that these mitochondria are enclosed by chloroplasts. Complete enclosure rather than invagination also is indicated by absence of two concentric chloroplast membranes surrounding the mitochondrial profiles.

  1. Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths.

    PubMed

    Rinholm, Johanne E; Vervaeke, Koen; Tadross, Michael R; Tkachuk, Ariana N; Kopek, Benjamin G; Brown, Timothy A; Bergersen, Linda H; Clayton, David A

    2016-05-01

    Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons.

  2. Stimulation of mitochondrial functions by glucagon treatment, starvation and by treatment of isolated mitochondria with glycogen-bound enzymes.

    PubMed

    Wojtczak, A B; Davis-van Thienen, W I

    1987-01-01

    Liver mitochondria isolated from rats starved overnight, or fed rats injected with glucagon, exhibited a similar increase of the respiration rate with succinate (by 30-40%) and glutamate plus malate (by 20-30%), as compared to mitochondria from control fed animals. The content of mitochondrial adenine nucleotides was elevated by 30-45% by glucagon treatment or starvation. Mitochondrial respiration and citrulline synthesis were stimulated by 30-40% when mitochondria isolated from fed rats were briefly preincubated with the extract from liver glycogen granules, ATP and MgCl2. This effect was abolished by heating the extract at 100 degrees C. PMID:3036619

  3. Identification of new M23A mRNA of mouse aquaporin-4 expressed in brain, liver, and kidney.

    PubMed

    Alikina, T Yu; Illarionova, N B; Zelenin, S M; Bondar, A A

    2012-05-01

    Aquaporins (AQPs) belong to a transmembrane protein family of water channels that are permeable to water by the osmotic gradient. There are two isoforms of mouse AQP4 - M1 and M23. Their balance in the cell determines water permeability of the plasma membrane. These two isoforms are encoded by three mRNAs: M1 isoform is encoded by M1 mRNA and M23 isoform is encoded by M23 and M23X mRNAs. Here we found a new fourth mRNA of mouse AQP4 - M23A mRNA. The start of transcription is different for M23A mRNA from all the known AQP4 mRNAs. The 5'-untranslated region (5'-UTR) of M23A mRNA is encoded by four new exons (A, B, C, and D), which are located in the 5' region from exon-0 of the AQP4 gene. Alternative splicing between the exons-A, -B, -C, and -D leads to formation of multiple variants of M23A mRNA. We cloned six of these variants, all of which code full length M23 isoform of AQP4. Using RT-PCR we detected tissue-specific expression of the new M23A and already known M23, M23X, and M1 mRNAs. The M23A mRNA is expressed mostly in kidney, liver, and brain. Analysis of mRNA 5'-UTR structure showed low translation efficacy for M1 mRNA in comparison with high translation efficacy for M23A, M23X, and M23 mRNAs. We propose that AQP4 expression is controlled tissue-specifically by independent promoters. Thus multiple AQP4 mRNAs may allow long-term regulation of the balance between M1 and M23 AQP4 isoforms in the cell and thus water permeability of the plasma membrane.

  4. Development and Preclinical Application of an Immunocompetent Transplant Model of Basal Breast Cancer with Lung, Liver and Brain Metastases

    PubMed Central

    Hoenerhoff, Mark; Hixon, Julie A.; Durum, Scott K.; Qiu, Ting-hu; He, Siping; Burkett, Sandra; Liu, Zi-Yao; Swanson, Steven M.; Green, Jeffrey E.

    2016-01-01

    Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is associated with a poor prognosis and for which no targeted therapies currently exist. In order to improve preclinical testing for TNBC that relies primarily on using human xenografts in immunodeficient mice, we have developed a novel immunocompetent syngeneic murine tumor transplant model for basal-like triple-negative breast cancer. The C3(1)/SV40-T/t-antigen (C3(1)/Tag) mouse mammary tumor model in the FVB/N background shares important similarities with human basal-like TNBC. However, these tumors or derived cell lines are rejected when transplanted into wt FVB/N mice, likely due to the expression of SV40 T-antigen. We have developed a sub-line of mice (designated REAR mice) that carry only one copy of the C3(1)/Tag-antigen transgene resulting from a spontaneous transgene rearrangement in the original founder line. Unlike the original C3(1)/Tag mice, REAR mice do not develop mammary tumors or other phenotypes observed in the original C3(1)/Tag transgenic mice. REAR mice are more immunologically tolerant to SV40 T-antigen driven tumors and cell lines in an FVB/N background (including prostate tumors from TRAMP mice), but are otherwise immunologically intact. This transplant model system offers the ability to synchronously implant the C3(1)/Tag tumor-derived M6 cell line or individual C3(1)/Tag tumors from various stages of tumor development into the mammary fat pads or tail veins of REAR mice. C3(1)/Tag tumors or M6 cells implanted into the mammary fat pads spontaneously metastasize at a high frequency to the lung and liver. M6 cells injected by tail vein can form brain metastases. We demonstrate that irradiated M6 tumor cells or the same cells expressing GM-CSF can act as a vaccine to retard tumor growth of implanted tumor cells in the REAR model. Preclinical studies performed in animals with an intact immune system should more authentically replicate treatment responses in

  5. Dose and time dependent effects of morphine on the incorporation of (3H)valine into soluble brain and liver proteins

    SciTech Connect

    Roennbaeck, L.; Hansson, E.; Cupello, A.

    1983-03-01

    Morphine (10(-6)-10(-5) M) causes an increase in incorporation of (/sup 3/H)valine into soluble proteins during 4 hr in rat brain cortical slices, liver slices and cultivated astroglial cells. The effects are dose-dependent. They are neither cell specific nor strictly related to classical opiate receptors. Pulse-labeling with (/sup 3/H)valine for 60 min after incubation in 10(-6)-10(-5) M morphine, resolves time-dependent changes in incorporation, with both increases and decreases in protein metabolism.

  6. Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.

    2012-01-01

    Mitochondria are cytoplasmic organelles responsible for life and death. Extensive evidence from animal models, postmortem brain studies of and clinical studies of aging and neurodegenerative diseases suggests that mitochondrial function is defective in aging and neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Several lines of research suggest that mitochondrial abnormalities, including defects in oxidative phosphorylation, increased accumulation of mitochondrial DNA defects, impaired calcium influx, accumulation of mutant proteins in mitochondria, and mitochondrial membrane potential dissipation are important cellular changes in both early and late-onset neurodegenerative diseases. Further, emerging evidence suggests that structural changes in mitochondria, including increased mitochondrial fragmentation and decreased mitochondrial fusion, are critical factors associated with mitochondrial dysfunction and cell death in aging and neurodegenerative diseases. This paper discusses research that elucidates features of mitochondria that are associated with cellular dysfunction in aging and neurodegenerative diseases and discusses mitochondrial structural and functional changes, and abnormal mitochondrial dynamics in neurodegenerative diseases. It also outlines mitochondria-targeted therapeutics in neurodegenerative diseases. PMID:21470101

  7. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells.

    PubMed

    Brown, Guy C; Borutaite, Vilmante

    2012-01-01

    It is often assumed that mitochondria are the main source of reactive oxygen species (ROS) in mammalian cells, but there is no convincing experimental evidence for this in the literature. What evidence there is suggests mitochondria are a significant source for ROS, which may have physiological and pathological effects. But quantitatively, endoplasmic reticulum and peroxisomes have a greater capacity to produce ROS than mitochondria, at least in liver. In most cells and physiological or pathological conditions there is a lack of evidence for or against mitochondria being the main source of cellular ROS. Mitochondria can rapidly degrade ROS and thus are potential sinks for ROS, but whether mitochondria act as net sources or sinks within cells in particular conditions is unknown.

  8. Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation.

    PubMed

    Chng, You R; Ong, Jasmine L Y; Ching, Biyun; Chen, Xiu L; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2014-10-01

    Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.

  9. Localization of S1 and elongation factor-1 alpha mRNA in rat brain and liver by non-radioactive in situ hybridization.

    PubMed

    Lee, S; Stollar, E; Wang, E

    1993-07-01

    Elongation factor-1 alpha (EF-1 alpha) is a ubiquitous, highly conserved protein that functions in peptide elongation during mRNA translation. We recently reported that, as do lower species, mammals also contain a second EF-1 alpha-like gene (S1). Unlike EF-1 alpha, which is present in all tissues, S1 mRNA is detected only in brain, heart, and muscle by Northern analysis and RNAse protection assays. In this report we present the identification of S1 and EF-1 alpha messages by non-radioactive in situ hybridization in brain and liver. We show that with this technique we can detected S1 mRNA only in certain cells in brain, mostly neurons; on the other hand, EF-1 alpha is present in all cell types that we have studied so far. We demonstrate that although EF-1 alpha mRNA can be detected in S1-negative cells it is also present in high abundance in S1-positive cells. The results presented here correlate with our previous finding that mammalian species contain a tissue-specific EF-1 alpha-like gene, S1. The presence of a second EF-1 alpha-like transcript within fully differentiated cells suggests a novel cell type-specific gene expression whose function may be related to the permanent growth-arrested state of cells in brain, heart, and muscle. PMID:8515051

  10. The rise of mitochondria in medicine.

    PubMed

    Picard, Martin; Wallace, Douglas C; Burelle, Yan

    2016-09-01

    Once considered exclusively the cell's powerhouse, mitochondria are now recognized to perform multiple essential functions beyond energy production, impacting most areas of cell biology and medicine. Since the emergence of molecular biology and the discovery of pathogenic mitochondrial DNA defects in the 1980's, research advances have revealed a number of common human diseases which share an underlying pathogenesis involving mitochondrial dysfunction. Mitochondria undergo function-defining dynamic shape changes, communicate with each other, regulate gene expression within the nucleus, modulate synaptic transmission within the brain, release molecules that contribute to oncogenic transformation and trigger inflammatory responses systemically, and influence the regulation of complex physiological systems. Novel mitopathogenic mechanisms are thus being uncovered across a number of medical disciplines including genetics, oncology, neurology, immunology, and critical care medicine. Increasing knowledge of the bioenergetic aspects of human disease has provided new opportunities for diagnosis, therapy, prevention, and in connecting various domains of medicine. In this article, we overview specific aspects of mitochondrial biology that have contributed to - and likely will continue to enhance the progress of modern medicine. PMID:27423788

  11. The rise of mitochondria in medicine.

    PubMed

    Picard, Martin; Wallace, Douglas C; Burelle, Yan

    2016-09-01

    Once considered exclusively the cell's powerhouse, mitochondria are now recognized to perform multiple essential functions beyond energy production, impacting most areas of cell biology and medicine. Since the emergence of molecular biology and the discovery of pathogenic mitochondrial DNA defects in the 1980's, research advances have revealed a number of common human diseases which share an underlying pathogenesis involving mitochondrial dysfunction. Mitochondria undergo function-defining dynamic shape changes, communicate with each other, regulate gene expression within the nucleus, modulate synaptic transmission within the brain, release molecules that contribute to oncogenic transformation and trigger inflammatory responses systemically, and influence the regulation of complex physiological systems. Novel mitopathogenic mechanisms are thus being uncovered across a number of medical disciplines including genetics, oncology, neurology, immunology, and critical care medicine. Increasing knowledge of the bioenergetic aspects of human disease has provided new opportunities for diagnosis, therapy, prevention, and in connecting various domains of medicine. In this article, we overview specific aspects of mitochondrial biology that have contributed to - and likely will continue to enhance the progress of modern medicine.

  12. Investigation of oxidative stress in blood, brain, kidney, and liver after oxime antidote HI-6 application in a mouse experimental model.

    PubMed

    Pohanka, Miroslav; Sobotka, Jakub; Svobodova, Hana; Stetina, Rudolf

    2011-07-01

    Oxime reactivator HI-6 (asoxime, in some sources) is a potent antidote suitable for treatment of intoxication by nerve agents. Despite the fact that HI-6 is considered for practical application in emergency situations, the impact of HI-6 on patients' bodies has not been established yet. The present experiment was carried out in order to estimate whether HI-6 would be able to trigger or protect from oxidative stress in a BALB/c mice model. HI-6 was applied in doses ranging from 0.2 to 20% of LD₅₀. Ferric-reducing antioxidant power (FRAP), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and glutathione reductase (GR) were assayed in the blood, liver, kidney, and brain of treated animals. It was found that HI-6 does not increase GR or TBARS. On the contrary, TBARS levels in the brain and liver were found to be significantly decreased in HI-6-treated animals. Pertinent antioxidant properties of HI-6 were excluded by the FRAP method. Endogenous antioxidants were unchanged, with the exception of the kidney. Low-molecular-weight antioxidants assayed by the FRAP method were significantly decreased in kidneys of animals treated with HI-6. However, GSH partially recovered the loss of the other low-molecular-weight antioxidants and was significantly increased in the kidney of HI-6-exposed mice. HI-6 potential to produce nephropathy is hypothesized. The achieved conclusions were quite surprising and showed a complex impact of HI-6 on the body.

  13. Alterations of the intracellular water and ion concentrations in brain and liver cells during aging as revealed by energy dispersive X-ray microanalysis of bulk specimens

    SciTech Connect

    Lustyik, G.; Nagy, I.

    1985-01-01

    Age dependence of the intracellular concentrations of monovalent ions (Na+, K+ and Cl-) was examined in 1, 11 and 25-month-old rat brain and liver cells by using energy dispersive X-ray microanalysis. The in vivo concentrations of Na+, K+ and Cl- ions were calculated from two different measurements: The elemental concentrations were measured in freeze-dried tissue pieces, and the intracellular water content was determined by means of a recently developed X-ray microanalytic method, using frozen-hydrated and fractured bulk specimens as well as subsequent freeze-drying. All the single monovalent ion concentrations and consequently, also the total monovalent ion content showed statistically significant increases during aging in brain cortical neurons. A 3-6% loss of the intracellular water content was accompanied by a 25-45% increase of the monovalent ionic strengths by the age of 25 months. A membrane protective OH radical scavenger (centrophenoxine) reversed the dehydration in the nerve cells of old animals, resulting in a decrease of the intracellular ion concentrations. Aging has a less prominent effect on the water and ion contents of the hepatocytes. The degree of water loss of cytoplasm exceeds that of the nuclei in the liver, suggesting that dominantly the translational steps can be involved in the general age altered slowing down of the protein synthetic machinery, predicted by the membrane hypothesis of aging.

  14. Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice.

    PubMed

    Seeger, D R; Murphy, E J

    2016-05-01

    C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies.

  15. Membrane transfer of. cap alpha. -tocopherol: influence of soluble. cap alpha. -tocopherol-binding factors from the liver, lung, heart and brain of the rat

    SciTech Connect

    Murphy, D.J.; Mavis, R.D.

    1981-10-25

    The pH of liver supernatant was lowered from 7.4 to 5.1, which removed 23% of the soluble protein and 97% of the lipid-soluble phosphate, increased the total ..cap alpha..-tocopherol transfer activity 1.3-fold and the specific activity of the transfer rate 1.6-fold. This transfer activity was proportional to time up to 4 min and to protein concentrations up to 0.1 mg/ml. Fractionation of the pH 5.1-treated liver supernatant by gel filtration produced a single peak of ..cap alpha..-tocopherol transfer activity of M/sub r/ = 34,000 and a single peak of ..cap alpha..-tocopherol-binding activity which was coincident with the transfer activity. The transfer rate of this peak of activity was 316 pmol/min/mg of protein, a 9-fold purification over the original untreated supernatant. This ..cap alpha..-tocopherol transfer rate was reduced by 83 and 96% following pronase digestion or heat treatment (80/sup 0/C) of the soluble fraction, respectively, while trypsin digestion reduced the transfer rate only 18% and phospholipase C digestion had no effect. Untreated liver supernatant possessed the peak of binding activity of M/sub r/ = 34,000 and a high molecular weight binding fraction that eluted at the void volume. Heart and brain supernatants also possessed an ..cap alpha..-tocopherol-binding fraction that eluted at the void volume, while lung supernatant lacked binding activity.

  16. Isolation and characterization of a factor from rat liver which inhibits /sup 3/H-nicotine binding to brain nicotine receptors

    SciTech Connect

    Noggle, H.D.

    1986-01-01

    In studies of /sup 3/H-nicotine binding sites in rat brain membranes, it was observed that crude rat liver homogenates are capable of inhibiting this binding. The purpose of this work was to isolate from the liver homogenate the factor (or factors) responsible for this nicotinelike activity and to identify it. Isolation procedures, including heat denaturation, ultrafiltration, and reverse phase high pressure liquid chromatography, resulted in an incompletely purified substance whose chemical properties were compatible with those of dimethylaminoethyl (DMAE) carbamate, as reflected in infrared, ultraviolet, NMR, and mass spectra; in HPLC elution characteristics into mobile phases; and in IC/sub 50/'s with respect to /sup 3/H-nicotine binding to neural membranes, although additional purification and characterization will be necessary to confirm or reject this identification. This compound has not previously been described in mammalian tissue, although its two component functional moieties, dimethylaminoethanol and carbamic acid, are present in the liver. The binding properties of DMAE carbamate are compared with those of structurally and pharmacological related compounds to assess its potential as an endogenous cholinergic ligand.

  17. Sulfide detoxification in plant mitochondria.

    PubMed

    Birke, Hannah; Hildebrandt, Tatjana M; Wirtz, Markus; Hell, Rüdiger

    2015-01-01

    In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.

  18. Effects of nimesulide and its reduced metabolite on mitochondria

    PubMed Central

    Mingatto, Fábio Erminio; dos Santos, Antonio Cardozo; Rodrigues, Tiago; Pigoso, Acácio Antonio; Uyemura, Sérgio Akira; Curti, Carlos

    2000-01-01

    We investigated the effects of nimesulide, a recently developed non-steroidal anti-inflammatory drug, and of a metabolite resulting from reduction of the nitro group to an amine derivative, on succinate-energized isolated rat liver mitochondria incubated in the absence or presence of 20 μM Ca2+, 1 μM cyclosporin A (CsA) or 5 μM ruthenium red.Nimesulide uncoupled mitochondria through a protonophoretic mechanism and oxidized mitochondrial NAD(P)H, both effects presenting an EC50 of approximately 5 μM.Within the same concentration range nimesulide induced mitochondrial Ca2+ efflux in a partly ruthenium red-sensitive manner, and induced mitochondrial permeability transition (MPT) when ruthenium red was added after Ca2+ uptake by mitochondria. Nimesulide induced MPT even in de-energized mitochondria incubated with 0.5 mM Ca2+.Both Ca2+ efflux and MPT were prevented to a similar extent by CsA, Mg2+, ADP, ATP and butylhydroxytoluene, whereas dithiothreitol and N-ethylmaleimide, which markedly prevented MPT, had only a partial or no effect on Ca2+ efflux, respectively.The reduction of the nitro group of nimesulide to an amine derivative completely suppressed the above mitochondrial responses, indicating that the nitro group determines both the protonophoretic and NAD(P)H oxidant properties of the drug.The nimesulide reduction product demonstrated a partial protective effect against accumulation of reactive oxygen species derived from mitochondria under conditions of oxidative stress like those resulting from the presence of t-butyl hydroperoxide.The main conclusion is that nimesulide, on account of its nitro group, acts as a potent protonophoretic uncoupler and NAD(P)H oxidant on isolated rat liver mitochondria, inducing Ca2+ efflux or MPT within a concentration range which can be reached in vivo, thus presenting the potential ability to interfere with the energy and Ca2+ homeostasis in the liver cell. PMID:11082123

  19. Mitochondria in metabolic disease: getting clues from proteomic studies.

    PubMed

    Peinado, Juan R; Diaz-Ruiz, Alberto; Frühbeck, Gema; Malagon, Maria M

    2014-03-01

    Mitochondria play a key role as major regulators of cellular energy homeostasis, but in the context of mitochondrial dysfunction, mitochondria may generate reactive oxidative species and induce cellular apoptosis. Indeed, altered mitochondrial status has been linked to the pathogenesis of several metabolic disorders and specially disorders related to insulin resistance, such as obesity, type 2 diabetes, and other comorbidities comprising the metabolic syndrome. In the present review, we summarize information from various mitochondrial proteomic studies of insulin-sensitive tissues under different metabolic states. To that end, we first focus our attention on the pancreas, as mitochondrial malfunction has been shown to contribute to beta cell failure and impaired insulin release. Furthermore, proteomic studies of mitochondria obtained from liver, muscle, and adipose tissue are summarized, as these tissues constitute the primary insulin target metabolic tissues. Since recent advances in proteomic techniques have exposed the importance of PTMs in the development of metabolic disease, we also present information on specific PTMs that may directly affect mitochondria during the pathogenesis of metabolic disease. Specifically, mitochondrial protein acetylation, phosphorylation, and other PTMs related to oxidative damage, such as nitrosylation and carbonylation, are discussed.

  20. Crosstalk between mitochondria and peroxisomes

    PubMed Central

    Demarquoy, Jean; Le Borgne, Françoise

    2015-01-01

    Mitochondria and peroxisomes are small ubiquitous organelles. They both play major roles in cell metabolism, especially in terms of fatty acid metabolism, reactive oxygen species (ROS) production, and ROS scavenging, and it is now clear that they metabolically interact with each other. These two organelles share some properties, such as great plasticity and high potency to adapt their form and number according to cell requirements. Their functions are connected, and any alteration in the function of mitochondria may induce changes in peroxisomal physiology. The objective of this paper was to highlight the interconnection and the crosstalk existing between mitochondria and peroxisomes. Special emphasis was placed on the best known connections between these organelles: origin, structure, and metabolic interconnections. PMID:26629313

  1. The proton stoichiometry of electron transport in Ehrlich ascites tumor mitochondria.

    PubMed

    Villalobo, A; Lehninger, A L

    1979-06-10

    Initial rate measurements of the stoichiometric relationships between H+ ejection, K+ and Ca2+ uptake, and electron transport were carried out on mitochondria from Ehrlich ascites tumor cells grown in mice. With succinate as substrate and N-ethylmaleimide to prevent interfering H+ reuptake via the phosphate carrier, close to 8 H+ were ejected per oxygen atom reduced (H+/O ejection ratio = 8.0); with the NAD-linked substrates pyruvate or pyruvate + malate, the H+/O ejection ratio was close to 12. The average H+/site ratio (H+ ejected/2e-/energy-conserving site) was thus close to 4. The simultaneous uptake of charge-compensating cations, either K+ (in the presence of valinomycin) or Ca2+, was also measured, yielding average K+/site uptake ratios of very close to 4 and Ca2+/site ratios close to 2. It was also demonstrated that each calcium ion enters the respiring tumor mitochondria carrying two positive electric charges. These stoichiometric data observed in mitochondria from Ehrlich ascites tumor cells thus are in complete agreement with similar data on normal rat liver and rat heart mitochondria and suggest that the H+/site ratio of mitochondrial electron transport may be 4 generally. It was also observed that the rate of deltaH+ back-decay in anaerobic tumor mitochondria following oxygen pulses is some 6- to 8-fold greater than in rat liver mitochondria tested at equal amounts of mitochondrial protein.

  2. Interaction of four low dose toxic metals with essential metals in brain, liver and kidneys of mice on sub-chronic exposure.

    PubMed

    Cobbina, Samuel Jerry; Chen, Yao; Zhou, Zhaoxiang; Wu, Xueshan; Feng, Weiwei; Wang, Wei; Li, Qian; Zhao, Ting; Mao, Guanghua; Wu, Xiangyang; Yang, Liuqing

    2015-01-01

    This study reports on interactions between low dose toxic and essential metals. Low dose Pb (0.01mg/L), Hg (0.001mg/L), Cd (0.005mg/L) and As (0.01mg/L) were administered singly to four groups of 3-week old mice for 120 days. Pb exposure increased brain Mg and Cu by 55.5% and 266%, respectively. Increased brain Mg resulted from metabolic activity of brain to combat insults, whiles Cu overload was due to alteration and dysfunction of CTR1 and ATP7A molecules. Reduction of liver Ca by 56.0% and 31.6% (on exposure to As and Cd, respectively) resulted from inhibition of Ca-dependent ATPase in nuclei and endoplasmic reticulum through binding with thiol groups. Decreased kidney Mg, Ca and Fe was due to uptake of complexes of As and Cd with thiol groups from proximal tubular lumen. At considerably low doses, the study establishes that, toxic metals disturb the homeostasis of essential metals.

  3. Oxidation of pyruvate, malate, citrate, and cytosolic reducing equivalents by AS-30D hepatoma mitochondria.

    PubMed

    Dietzen, D J; Davis, E J

    1993-08-15

    Mitochondria isolated from normal rat liver and AS-30D hepatoma were concurrently evaluated with regard to their bioenergetic and metabolic properties. AS-30D mitochondria oxidized many NAD-linked respiratory substrates at rates 1.5-4 times faster than those from liver, a fact which contributes to their diminished membrane depolarization on conversion from state 4 to state 3 respiration. AS-30D mitochondria exhibited no signs of a "truncated" Krebs cycle, nor did they oxidize malate preferentially based upon its origin in the cytosol or the mitochondrial matrix. In addition, beta-oxidation in AS-30D mitochondria was not sufficient to suppress respiratory CO2 production and induce pyruvate carboxylation to the extent observed in liver. Finally, AS-30D mitochondria were able to oxidize externally generated NADH in a reconstituted system, but in a manner independent of the transmembrane electrical potential (delta psi), suggesting that the malate-aspartate shuttle is not operable in vivo. This fact may necessitate the adaptations tumor cells make to reoxidize cytosolic NADH through glycolysis even in the presence of adequate oxygen. PMID:8342959

  4. Estrogen and mitochondria function in cardiorenal metabolic syndrome.

    PubMed

    Jia, Guanghong; Aroor, Annayya R; Sowers, James R

    2014-01-01

    The cardiorenal metabolic syndrome (CRS) consists of a constellation of cardiac, renal, and metabolic disorders including insulin resistance (IR), obesity, metabolic dyslipidemia, high-blood pressure, and evidence of early cardiac and renal disease. Mitochondria dysfunction often occurs in the CRS, and this dysfunction is promoted by excess reactive oxygen species, genetic factors, IR, aging, and altered mitochondrial biogenesis. Recently, it has been shown that there are important sex-related differences in mitochondria function and metabolic, cardiovascular, and renal components. Sex differences in the CRS have mainly been attributed to the estrogen's effects that are mainly mediated by estrogen receptor (ER) α, ERβ, and G-protein coupled receptor 30. In this review, we discuss the effects of estrogen on the mitochondrial function, insulin metabolic signaling, glucose transport, lipid metabolism, and inflammatory responses from liver, pancreatic β cells, adipocytes, skeletal muscle, and cardiovascular tissue.

  5. The axonal transport of mitochondria

    PubMed Central

    Saxton, William M.; Hollenbeck, Peter J.

    2012-01-01

    Vigorous transport of cytoplasmic components along axons over substantial distances is crucial for the maintenance of neuron structure and function. The transport of mitochondria, which serves to distribute mitochondrial functions in a dynamic and non-uniform fashion, has attracted special interest in recent years following the discovery of functional connections among microtubules, motor proteins and mitochondria, and their influences on neurodegenerative diseases. Although the motor proteins that drive mitochondrial movement are now well characterized, the mechanisms by which anterograde and retrograde movement are coordinated with one another and with stationary axonal mitochondria are not yet understood. In this Commentary, we review why mitochondria move and how they move, focusing particularly on recent studies of transport regulation, which implicate control of motor activity by specific cell-signaling pathways, regulation of motor access to transport tracks and static microtubule–mitochondrion linkers. A detailed mechanism for modulating anterograde mitochondrial transport has been identified that involves Miro, a mitochondrial Ca2+-binding GTPase, which with associated proteins, can bind and control kinesin-1. Elements of the Miro complex also have important roles in mitochondrial fission–fusion dynamics, highlighting questions about the interdependence of biogenesis, transport, dynamics, maintenance and degradation. PMID:22619228

  6. Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria.

    PubMed

    Popov, V N; Simonian, R A; Skulachev, V P; Starkov, A A

    1997-09-22

    The hypothesis that a non-coupled alternative oxidase of plant mitochondria operates as an antioxygen defence mechanism [Purvis, A.C. and Shewfelt, R.L., Physiol. Plant. 88 (1993) 712-718; Skulachev, V.P., Biochemistry (Moscow) 59 (1994) 1433-1434] has been confirmed in experiments on isolated soybean and pea cotyledon mitochondria. It is shown that inhibitors of the alternative oxidase, salicyl hydroxamate and propyl gallate strongly stimulate H2O2 production by these mitochondria oxidizing succinate. Effective concentrations of the inhibitors proved to be the same as those decreasing the cyanide-resistant respiration. The inhibitors proved to be ineffective in stimulating H2O2 formation in rat liver mitochondria lacking the alternative oxidase.

  7. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  8. Relative susceptibility of microsomes from lung, heart, liver, kidney, brain and testes to lipid peroxidation: correlation with vitamin E content. [Rats, rabbits, mice, human

    SciTech Connect

    Kornbrust, D.J.; Mavis, R.D.

    1980-01-01

    Rates of in vitro lipid peroxidation of microsomes and homogenates were found to vary widely among different tissues and species. In rats and rabbits, lung microsomes peroxidized at 25- to 50-fold lower rate than liver, kidney, testes and brain microsomes. Heart microsomes peroxidized at a rate slightly greater than, but most similar to, lung microsomes. Comparison of tissue homogenates also revealed the unique resistance of lung and heart to lipid peroxidation. Higher rates of peroxidation in mouse lung microsomes relative to rabbit, rat and human lung microsomes were similarly correlated with a lower ratio of vitamin E to peroxidizable fatty acids in mouse lung microsomes. These data provide strong support for the role of vitamin E as the major cellular antioxidant, especially in the highly oxygenated tissues of heart and lung, and demonstrate the utility of the microsomal system in characterizing tissue differences in susceptibility to peroxidative membrane decomposition.

  9. Fluidizing effects of centrophenoxine in vitro on brain and liver membranes from different age groups of mice.

    PubMed

    Wood, W G; Gorka, C; Armbrecht, H J; Williamson, L S; Strong, R

    1986-12-01

    This study examined the effects of different concentrations of centrophenoxine on physical properties of synaptic plasma membranes and liver microsomes using electron spin resonance procedures. Membranes of different age groups of mice were labeled with the 5-doxyl stearic acid spin-label and membrane fluidity determined in the presence and absence of different concentrations of centrophenoxine. Centrophenoxine had a direct effect on membranes as shown by a significant increase in membrane fluidity. This effect was greatest in liver microsomes as compared to synaptic plasma membranes. Age differences were not observed in centrophenoxine-induced fluidization. Effects of centrophenoxine in vivo may be due in part to the drug acting directly on the physical properties of the membrane lipid environment.

  10. Chronic oral administration of pine bark extract (flavangenol) attenuates brain and liver mRNA expressions of HSPs in heat-exposed chicks.

    PubMed

    Yang, Hui; Chowdhury, Vishwajit S; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Han, Guofeng; Zhang, Rong; Tagashira, Hideki; Tsubata, Masahito; Furuse, Mitsuhiro

    2016-08-01

    Exposure to a high ambient temperature (HT) can cause heat stress, which has a huge negative impact on physiological functions. Cellular heat-shock response is activated upon exposure to HT for cellular maintenance and adaptation. In addition, antioxidants are used to support physiological functions under HT in a variety of organisms. Flavangenol, an extract of pine bark, is one of the most potent antioxidants with its complex mixture of polyphenols. In the current study, chronic (a single daily oral administration for 14 days) or acute (a single oral administration) oral administration of flavangenol was performed on chicks. Then the chicks were exposed to an acute HT (40±1°C for 3h) to examine the effect of flavangenol on the mRNA expression of heat-shock protein (HSP) in the brain and liver. Rectal temperature, plasma aspartate aminotransferase (AAT), a marker of liver damage, and plasma corticosterone as well as metabolites were also determined. HSP-70 and -90 mRNA expression, rectal temperature, plasma AAT and corticosterone were increased by HT. Interestingly, the chronic, but not the acute, administration of flavangenol caused a declining in the diencephalic mRNA expression of HSP-70 and -90 and plasma AAT in HT-exposed chicks. Moreover, the hepatic mRNA expression of HSP-90 was also significantly decreased by chronic oral administration of flavangenol in HT chicks. These results indicate that chronic, but not acute, oral administration of flavangenol attenuates HSP mRNA expression in the central and peripheral tissues due to its possible role in improving cellular protective functions during heat stress. The flavangenol-dependent decline in plasma AAT further suggests that liver damage induced by heat stress was minimized by flavangenol.

  11. Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    PubMed Central

    Juelich, Terry L.; Agar, Stacy L.; Poussard, Allison; Ragland, Dan; Freiberg, Alexander N.; Holbrook, Michael R.

    2012-01-01

    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the

  12. Formation and utilization of acetoin, an unusual product of pyruvate metabolism by Ehrlich and AS30-D tumor mitochondria.

    PubMed

    Baggetto, L G; Lehninger, A L

    1987-07-15

    [14C]Pyruvate was rapidly non-oxidatively decarboxylated by Ehrlich tumor mitochondria at a rate of 40 nmol/min/mg of protein in the presence or absence of ADP. A search for decarboxylation products led to significant amounts of acetoin formed when Ehrlich tumor mitochondria were incubated with 1 mM [14C] pyruvate in the presence of ATP. Added acetoin to aerobic tumor mitochondria was rapidly utilized in the presence of ATP at a rate of 65 nmol/min/mg of protein. Citrate has been found as a product of acetoin utilization and was exported from the tumor mitochondria. Acetoin has been found in the ascitic liquid of Ehrlich and AS30-D tumor-bearing animals. These unusual reactions were not observed in control rat liver mitochondria.

  13. Animal mitochondria: evolution, function, and disease.

    PubMed

    Tao, M; You, C-P; Zhao, R-R; Liu, S-J; Zhang, Z-H; Zhang, C; Liu, Y

    2014-01-01

    Mitochondria are sub-cellular organelles responsible for producing the majority of cellular energy through the process of oxidative phosphorylation (OXPHOS), and are found in nearly all eukaryotic cells. Mitochondria have a unique genetic system, mitochondrial DNA (mtDNA), which is a small, self-replicating and diverse genome. In the past 30 years, mtDNA has made significant contribution to molecular ecology and phylogeography. Mitochondria also represent a unique system of mitochondrial-nuclear genomic cooperation. Additionally, mitochondrial dysfunction can be fatal. In this paper, we review several aspects of mitochondria, including evolution and the origin of mitochondria, energy supply and the central role of mitochondria in apoptosis, and mitochondrial dysfunction. It is shown that mitochondria play a critical role in many aspects of life.

  14. The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

    PubMed

    Lyssimachou, Angeliki; Santos, Joana G; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C Marisa R; Teixeira, Catarina; Castro, L Filipe C; Santos, Miguel M

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an "obesogenic" phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.

  15. The Mammalian “Obesogen” Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish

    PubMed Central

    Lyssimachou, Angeliki; Santos, Joana G.; André, Ana; Soares, Joana; Lima, Daniela; Guimarães, Laura; Almeida, C. Marisa R.; Teixeira, Catarina; Castro, L. Filipe C.; Santos, Miguel M.

    2015-01-01

    Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound. PMID:26633012

  16. Getting mitochondria to center stage

    SciTech Connect

    Schatz, Gottfried

    2013-05-10

    The question of how eukaryotic cells assemble their mitochondria was long considered to be inaccessible to biochemical investigation. This attitude changed about fifty years ago when the powerful tools of yeast genetics, electron microscopy and molecular biology were brought to bear on this problem. The rising interest in mitochondrial biogenesis thus paralleled and assisted in the birth of modern biology. This brief recollection recounts the days when research on mitochondrial biogenesis was an exotic effort limited to a small group of outsiders.

  17. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  18. Buffalo (Bubalus bubalis) epiphyseal proteins counteract arsenic-induced oxidative stress in brain, heart, and liver of female rats.

    PubMed

    Bharti, Vijay K; Srivastava, R S; Sharma, B; Malik, J K

    2012-05-01

    Arsenic (As) toxicity through induction of oxidative stress is a well-known mechanism of organ toxicity. To address this problem, buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p. for 28 days) were administered intraperitoneally to female Wistar rats exposed to As (100 ppm sodium arsenite via drinking water for 28 days). Arsenic exposure resulted in marked elevation in lipid peroxidation in brain, cardiac, and hepatic tissues, whereas significant (p < 0.05) adverse change in catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione level were observed in cardiac, hepatic, and brain tissues of As-administered animals. BEP significantly (p < 0.05) counteracted all the adverse changes in antioxidant defense system brought about by As administration. Based on these results, we consider BEP as a potent antioxidant to be used for protection from arsenic-induced oxidative stress related damage of vital organs.

  19. Liver transplantatation- an overview.

    PubMed

    Rai, Rakesh

    2013-06-01

    Liver transplantation is a therapeutic option of choice for acute and chronic end-stage liver disease. Indications, contraindications, and surgical procedures for the liver transplantation have become well established. In most part of the world, the main source of liver for transplantation remains the donation after brain death (DBD), but in view of increasing death on the waiting list due to shortage of brain dead organs other options such as split liver transplantation, living donor liver transplantation (LDLT), and donation after cardiac death (DCD) have been used. In the pretransplantation era, liver failure was nearly universally fatal, with mortality from fulminant hepatic failure of 80-90 %, and 1-year mortality in decompensated cirrhosis of more than 50 %. In contrast, liver transplantation patient survival is presently more than 85 % at 1 year and more than 70 % at 5 years, emphasizing the clinical benefit of liver transplantation for either acute or chronic liver failure. PMID:24426424

  20. Transferring isolated mitochondria into tissue culture cells

    PubMed Central

    Yang, Yi-Wei; Koob, Michael D.

    2012-01-01

    We have developed a new method for introducing large numbers of isolated mitochondria into tissue culture cells. Direct microinjection of mitochondria into typical mammalian cells has been found to be impractical due to the large size of mitochondria relative to microinjection needles. To circumvent this problem, we inject isolated mitochondria through appropriately sized microinjection needles into rodent oocytes or single-cell embryos, which are much larger than tissue culture cells, and then withdraw a ‘mitocytoplast’ cell fragment containing the injected mitochondria using a modified holding needle. These mitocytoplasts are then fused to recipient cells through viral-mediated membrane fusion and the injected mitochondria are transferred into the cytoplasm of the tissue culture cell. Since mouse oocytes contain large numbers of mouse mitochondria that repopulate recipient mouse cells along with the injected mitochondria, we used either gerbil single-cell embryos or rat oocytes to package injected mouse mitochondria. We found that the gerbil mitochondrial DNA (mtDNA) is not maintained in recipient rho0 mouse cells and that rat mtDNA initially replicated but was soon completely replaced by the injected mouse mtDNA, and so with both procedures mouse cells homoplasmic for the mouse mtDNA in the injected mitochondria were obtained. PMID:22753025

  1. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    PubMed

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  2. Metabolic pathways in Anopheles stephensi mitochondria.

    PubMed

    Giulivi, Cecilia; Ross-Inta, Catherine; Horton, Ashley A; Luckhart, Shirley

    2008-10-15

    No studies have been performed on the mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that have a significant impact on malaria parasite transmission in endemic regions. In the present study, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells [ASE (Anopheles stephensi Mos. 43) cell line] from A. stephensi, a major vector of malaria in India, South-East Asia and parts of the Middle East. ASE cell mitochondria share many features in common with mammalian muscle mitochondria, despite the fact that these cells are of larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays as major a role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize proline at a rate comparable with that of alpha-glycerophosphate. However, the proline pathway appeared to differ from the currently accepted pathway, in that oxoglutarate could be catabolized completely by the tricarboxylic acid cycle or via transamination, depending on the ATP need.

  3. How might you compare mitochondria from different tissues and different species?

    PubMed

    Hulbert, A J; Turner, Nigel; Hinde, Jack; Else, Paul; Guderley, Helga

    2006-02-01

    Mitochondria were isolated from the liver, kidney and mixed hindlimb skeletal muscle of three vertebrate species; the laboratory rat Rattus norvegicus, the bearded dragon lizard Pogona vitticeps, and the cane toad Bufo marinus. These vertebrate species are approximately the same body mass and have similar body temperatures. The content of cytochromes B, C, C1, and A were measured in these isolated mitochondria by oxidised-reduced difference spectra. Adenine nucleotide translocase (ANT) was measured by titration of mitochondrial respiration with carboxyactractyloside and the protein and phospholipid content of isolated mitochondria were also measured. Fatty acid composition of mitochondrial phospholipids was measured. Mitochondrial respiration was measured at 37 degrees C under states III and IV conditions as well as during oligomycin inhibition. Species differed in the ratios of different mitochondrial cytochromes. Muscle mitochondria differed from kidney and liver mitochondria by having a higher ANT content relative to cytochrome content. Respiration rates were compared relative to a number of denominators and found to be most variable when expressed relative to mitochondrial protein content and least variable when expressed relative to mitochondrial cytochrome A and ANT content. The turnover of cytochromes was calculated and found to vary between 1 and 94 electrons s(-1). The molecular activity of mitochondrial cytochromes was found to be significantly positively correlated with the relative polyunsaturation of mitochondrial membrane lipids. PMID:16408229

  4. Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria

    PubMed Central

    Kuiper, Jan WP; Oerlemans, Frank TJJ; Fransen, Jack AM; Wieringa, Bé

    2008-01-01

    Background Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging. Results Comparison of average and maximum transport velocities and global transport activity showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo, but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived from CK-B knockout mice. The percentage of motile APP vesicles was not altered. Conclusion CK-B activity does not directly couple to motor protein activity but cells without the enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the cellular network for ATP distribution. PMID:18662381

  5. Metabolism as a tool for understanding human brain evolution: lipid energy metabolism as an example.

    PubMed

    Wang, Shu Pei; Yang, Hao; Wu, Jiang Wei; Gauthier, Nicolas; Fukao, Toshiyuki; Mitchell, Grant A

    2014-12-01

    Genes and the environment both influence the metabolic processes that determine fitness. To illustrate the importance of metabolism for human brain evolution and health, we use the example of lipid energy metabolism, i.e. the use of fat (lipid) to produce energy and the advantages that this metabolic pathway provides for the brain during environmental energy shortage. We briefly describe some features of metabolism in ancestral organisms, which provided a molecular toolkit for later development. In modern humans, lipid energy metabolism is a regulated multi-organ pathway that links triglycerides in fat tissue to the mitochondria of many tissues including the brain. Three important control points are each suppressed by insulin. (1) Lipid reserves in adipose tissue are released by lipolysis during fasting and stress, producing fatty acids (FAs) which circulate in the blood and are taken up by cells. (2) FA oxidation. Mitochondrial entry is controlled by carnitine palmitoyl transferase 1 (CPT1). Inside the mitochondria, FAs undergo beta oxidation and energy production in the Krebs cycle and respiratory chain. (3) In liver mitochondria, the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) pathway produces ketone bodies for the brain and other organs. Unlike most tissues, the brain does not capture and metabolize circulating FAs for energy production. However, the brain can use ketone bodies for energy. We discuss two examples of genetic metabolic traits that may be advantageous under most conditions but deleterious in others. (1) A CPT1A variant prevalent in Inuit people may allow increased FA oxidation under nonfasting conditions but also predispose to hypoglycemic episodes. (2) The thrifty genotype theory, which holds that energy expenditure is efficient so as to maximize energy stores, predicts that these adaptations may enhance survival in periods of famine but predispose to obesity in modern dietary environments.

  6. Purity matters: A workflow for the valid high-resolution lipid profiling of mitochondria from cell culture samples

    PubMed Central

    Kappler, Lisa; Li, Jia; Häring, Hans-Ulrich; Weigert, Cora; Lehmann, Rainer; Xu, Guowang; Hoene, Miriam

    2016-01-01

    Subcellular lipidomics is a novel field of research that requires the careful combination of several pre-analytical and analytical steps. To define a reliable strategy for mitochondrial lipid profiling, we performed a systematic comparison of different mitochondria isolation procedures by western blot analyses and comprehensive high-resolution lipidomics. Using liver-derived HepG2 cells, we compared three common mitochondria isolation methods, differential centrifugation (DC), ultracentrifugation (UC) and a magnetic bead-assisted method (MACS). In total, 397 lipid species, including 32 cardiolipins, could be quantified in only 100 μg (by protein) of purified mitochondria. Mitochondria isolated by UC showed the highest enrichment in the mitochondria-specific cardiolipins as well as their precursors, phosphatidylglycerols. Mitochondrial fractions obtained by the commonly used DC and the more recent MACS method contained substantial contaminations by other organelles. Employing these isolation methods when performing lipidomics analyses from cell culture mitochondria may lead to inaccurate results. To conclude, we present a protocol how to obtain reliable mitochondria-specific lipid profiles from cell culture samples and show that quality controls are indispensable when performing mitochondria lipidomics. PMID:26892142

  7. In vivo vitamin C deficiency in guinea pigs increases ascorbate transporters in liver but not kidney and brain.

    PubMed

    Søgaard, Ditte; Lindblad, Maiken M; Paidi, Maya D; Hasselholt, Stine; Lykkesfeldt, Jens; Tveden-Nyborg, Pernille

    2014-07-01

    Moderate vitamin C (vitC) deficiency (plasma concentrations less than 23 μmol/L) affects as much as 10% of adults in the Western World and has been associated with an increased mortality in disease complexes such as cardiovascular disease and the metabolic syndrome. The distribution of vitC within the body is subjected to complex and nonlinear pharmacokinetics and largely depends on the sodium-dependent vitC-specific transporters, sodium-dependent vitamin C transporter 1 (SVCT1) and sodium-dependent vitamin C transporter 2 (SVCT2). Although currently not established, it is likely to expect that a state of deficiency may affect the expression of these transporters to preserve vitC concentrations in specific target tissues. We hypothesized that diet-induced states of vitC deficiency lead to alterations in the messenger RNA (mRNA) and/or protein expression of vitC transporters, thereby regulating vitC tissue distribution. Using guinea pigs as a validated model, this study investigated the effects of a diet-induced vitC deficiency (100 mg vitC/kg feed) or depletion (0 mg vitC/kg feed) on the expression of transporters SVCT1 and SVCT2 in selected tissues and the transport from plasma to cerebrospinal fluid (CSF). In deficient animals, SVCT1 was increased in the liver, whereas a decreased SVCT1 expression but increased SVCT2 mRNA in livers of depleted animals suggests a shift in transporter expression as response to the diet. In CSF, a constant plasma:CSF ratio shows unaltered vitC transport irrespective of dietary regime. The study adds novel information to the complex regulation maintaining vitC homeostasis in vivo during states of deficiency.

  8. Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    PubMed Central

    Roels, Frank; Verloo, Patrick; Eyskens, François; François, Baudouin; Seneca, Sara; De Paepe, Boel; Martin, Jean-Jacques; Meersschaut, Valerie; Praet, Marleen; Scalais, Emmanuel; Espeel, Marc; Smet, Joél; Van Goethem, Gert; Van Coster, Rudy

    2009-01-01

    Background In muscle cytochrome oxidase (COX) negative fibers (mitochondrial mosaics) have often been visualized. Methods COX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis. Results Three unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of POLG were subsequently found in both the 2nd and 3rd patients. Conclusion Histoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent than observed until now. A

  9. Comparison of mercury accumulation among the brain, liver, kidney, and the brain regions of rats administered methylmercury in various phases of postnatal development

    SciTech Connect

    Sakamoto, M.; Nakano, A.

    1995-10-01

    Several animal studies have indicated that a developing organism in its prenatal and early postnatal stage may be at higher risk in toxic metal exposure than in adult stage. Many infants were congenitally affected by methylmercury in the epidemics in Japan and Iraq. The infants reported from Minamata, Japan, had severe cerebral palsy, whereas their mothers had mild or no manifestations of poisoning. Some of the high susceptibility in infants may resulted from the specific features of the methylmercury metabolism in the developing organisms. Prenatal or postnatal development is characterized by functional immaturity of organs, which may affect the mercury (Hg) accumulation among organs. It seems possible that the Hg distribution might, in fact, reflect the toxic effects of methylmercury during a given developing phase. Thus, its distribution deserves closer examination. In our previous study, when a toxic level of methylmercury was administered, the Hg distribution and its effects on body weight gain and neurological disorders were found to be different among the rat postnatal developing phases. In the present study the Hg distribution among organs and brain regions was investigated during the several development phases with a nontoxic level of methylmercury treatment. 24 refs., 1 fig., 2 tabs.

  10. Giant mitochondria do not fuse and exchange their contents with normal mitochondria

    SciTech Connect

    Navratil, Marian; Terman, Alexei; Arriaga, Edgar A.

    2008-01-01

    Giant mitochondria accumulate within aged or diseased postmitotic cells as a consequence of insufficient autophagy, which is normally responsible for mitochondrial degradation. We report that giant mitochondria accumulating in cultured rat myoblasts due to inhibition of autophagy have low inner membrane potential and do not fuse with each other or with normal mitochondria. In addition to the low inner mitochondrial membrane potential in giant mitochondria, the quantity of the OPA1 mitochondrial fusion protein in these mitochondria was low, but the abundance of mitofusin-2 (Mfn2) remained unchanged. The combination of these factors may explain the lack of mitochondrial fusion in giant mitochondria and imply that the dysfunctional giant mitochondria cannot restore their function by fusing and exchanging their contents with fully functional mitochondria. These findings have important implications for understanding the mechanisms of accumulation of age-related mitochondrial damage in postmitotic cells.

  11. Mitochondria: a target for bacteria.

    PubMed

    Lobet, Elodie; Letesson, Jean-Jacques; Arnould, Thierry

    2015-04-01

    Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammat