Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Association of Structural Global Brain Network Properties with Intelligence in Normal Aging
Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas
2014-01-01
Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994
Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C.; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi
2013-01-01
Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence. PMID:23390528
Wu, Kai; Taki, Yasuyuki; Sato, Kazunori; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Thyreau, Benjamin; He, Yong; Evans, Alan C; Li, Xiaobo; Kawashima, Ryuta; Fukuda, Hiroshi
2013-01-01
Recent studies have demonstrated developmental changes of functional brain networks derived from functional connectivity using graph theoretical analysis, which has been rapidly translated to studies of brain network organization. However, little is known about sex- and IQ-related differences in the topological organization of functional brain networks during development. In this study, resting-state fMRI (rs-fMRI) was used to map the functional brain networks in 51 healthy children. We then investigated the effects of age, sex, and IQ on economic small-world properties and regional nodal properties of the functional brain networks. At a global level of whole networks, we found significant age-related increases in the small-worldness and local efficiency, significant higher values of the global efficiency in boys compared with girls, and no significant IQ-related difference. Age-related increases in the regional nodal properties were found predominately in the frontal brain regions, whereas the parietal, temporal, and occipital brain regions showed age-related decreases. Significant sex-related differences in the regional nodal properties were found in various brain regions, primarily related to the default mode, language, and vision systems. Positive correlations between IQ and the regional nodal properties were found in several brain regions related to the attention system, whereas negative correlations were found in various brain regions primarily involved in the default mode, emotion, and language systems. Together, our findings of the network topology of the functional brain networks in healthy children and its relationship with age, sex, and IQ bring new insights into the understanding of brain maturation and cognitive development during childhood and adolescence.
Segregated Systems of Human Brain Networks.
Wig, Gagan S
2017-12-01
The organization of the brain network enables its function. Evaluation of this organization has revealed that large-scale brain networks consist of multiple segregated subnetworks of interacting brain areas. Descriptions of resting-state network architecture have provided clues for understanding the functional significance of these segregated subnetworks, many of which correspond to distinct brain systems. The present report synthesizes accumulating evidence to reveal how maintaining segregated brain systems renders the human brain network functionally specialized, adaptable to task demands, and largely resilient following focal brain damage. The organizational properties that support system segregation are harmonious with the properties that promote integration across the network, but confer unique and important features to the brain network that are central to its function and behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.
Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R
2014-10-24
Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Wu, Xiuyong; Wu, Xiaoming; Peng, Hongjun; Ning, Yuping; Wu, Kai
2016-06-01
This paper is aimed to analyze the topological properties of structural brain networks in depressive patients with and without anxiety and to explore the neuropath logical mechanisms of depression comorbid with anxiety.Diffusion tensor imaging and deterministic tractography were applied to map the white matter structural networks.We collected 20 depressive patients with anxiety(DPA),18 depressive patients without anxiety(DP),and 28 normal controls(NC)as comparative groups.The global and nodal properties of the structural brain networks in the three groups were analyzed with graph theoretical methods.The result showed that1 the structural brain networks in three groups showed small-world properties and highly connected global hubs predominately from association cortices;2DP group showed lower local efficiency and global efficiency compared to NC group,whereas DPA group showed higher local efficiency and global efficiency compared to NC group;3significant differences of network properties(clustering coefficient,characteristic path lengths,local efficiency,global efficiency)were found between DPA and DP groups;4DP group showed significant changes of nodal efficiency in the brain areas primarily in the temporal lobe and bilateral frontal gyrus,compared to DPA and NC groups.The analysis indicated that the DP and DPA groups showed nodal properties of the structural brain networks,compared to NC group.Moreover,the two diseased groups indicated an opposite trend in the network properties.The results of this study may provide a new imaging index for clinical diagnosis for depression comorbid with anxiety.
Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.
Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing
2018-03-12
Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.
Jiao, Bingqing; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Li, Junchao; Cai, Yuxuan; Gao, Mengxia; Gao, Zhenni; Chang, Song; Huang, Ruiwang; Liu, Ming
2017-10-01
Previous studies have indicated a tight linkage between resting-state functional connectivity of the human brain and creative ability. This study aimed to further investigate the association between the topological organization of resting-state brain networks and creativity. Therefore, we acquired resting-state fMRI data from 22 high-creativity participants and 22 low-creativity participants (as determined by their Torrance Tests of Creative Thinking scores). We then constructed functional brain networks for each participant and assessed group differences in network topological properties before exploring the relationships between respective network topological properties and creative ability. We identified an optimized organization of intrinsic brain networks in both groups. However, compared with low-creativity participants, high-creativity participants exhibited increased global efficiency and substantially decreased path length, suggesting increased efficiency of information transmission across brain networks in creative individuals. Using a multiple linear regression model, we further demonstrated that regional functional integration properties (i.e., the betweenness centrality and global efficiency) of brain networks, particularly the default mode network (DMN) and sensorimotor network (SMN), significantly predicted the individual differences in creative ability. Furthermore, the associations between network regional properties and creative performance were creativity-level dependent, where the difference in the resource control component may be important in explaining individual difference in creative performance. These findings provide novel insights into the neural substrate of creativity and may facilitate objective identification of creative ability. Copyright © 2017 Elsevier B.V. All rights reserved.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies. PMID:22412922
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
A review of structural and functional brain networks: small world and atlas.
Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang
2015-03-01
Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.
Graph-based network analysis of resting-state functional MRI.
Wang, Jinhui; Zuo, Xinian; He, Yong
2010-01-01
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Graph analysis of functional brain networks: practical issues in translational neuroscience
De Vico Fallani, Fabrizio; Richiardi, Jonas; Chavez, Mario; Achard, Sophie
2014-01-01
The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes. PMID:25180301
Resolving Structural Variability in Network Models and the Brain
Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.
2014-01-01
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546
Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei
2013-01-01
Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.
Baek, K; Morris, L S; Kundu, P; Voon, V
2017-03-01
The efficient organization and communication of brain networks underlie cognitive processing and their disruption can lead to pathological behaviours. Few studies have focused on whole-brain networks in obesity and binge eating disorder (BED). Here we used multi-echo resting-state functional magnetic resonance imaging (rsfMRI) along with a data-driven graph theory approach to assess brain network characteristics in obesity and BED. Multi-echo rsfMRI scans were collected from 40 obese subjects (including 20 BED patients) and 40 healthy controls and denoised using multi-echo independent component analysis (ME-ICA). We constructed a whole-brain functional connectivity matrix with normalized correlation coefficients between regional mean blood oxygenation level-dependent (BOLD) signals from 90 brain regions in the Automated Anatomical Labeling atlas. We computed global and regional network properties in the binarized connectivity matrices with an edge density of 5%-25%. We also verified our findings using a separate parcellation, the Harvard-Oxford atlas parcellated into 470 regions. Obese subjects exhibited significantly reduced global and local network efficiency as well as decreased modularity compared with healthy controls, showing disruption in small-world and modular network structures. In regional metrics, the putamen, pallidum and thalamus exhibited significantly decreased nodal degree and efficiency in obese subjects. Obese subjects also showed decreased connectivity of cortico-striatal/cortico-thalamic networks associated with putaminal and cortical motor regions. These findings were significant with ME-ICA with limited group differences observed with conventional denoising or single-echo analysis. Using this data-driven analysis of multi-echo rsfMRI data, we found disruption in global network properties and motor cortico-striatal networks in obesity consistent with habit formation theories. Our findings highlight the role of network properties in pathological food misuse as possible biomarkers and therapeutic targets.
Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming
2015-02-01
Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resting State Network Topology of the Ferret Brain
Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-01-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024
NASA Astrophysics Data System (ADS)
Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel
2016-03-01
About 50% of subjects infected with HIV present deficits in cognitive domains, which are known collectively as HIV associated neurocognitive disorder (HAND). The underlying synaptodendritic damage can be captured using resting state functional MRI, as has been demonstrated by a few earlier studies. Such damage may induce topological changes of brain connectivity networks. We test this hypothesis by capturing the functional interdependence of 90 brain network nodes using a Mutual Connectivity Analysis (MCA) framework with non-linear time series modeling based on Generalized Radial Basis function (GRBF) neural networks. The network nodes are selected based on the regions defined in the Automated Anatomic Labeling (AAL) atlas. Each node is represented by the average time series of the voxels of that region. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We tested for differences in these properties in network graphs obtained for 10 subjects (6 male and 4 female, 5 HIV+ and 5 HIV-). Global network properties captured some differences between these subject cohorts, though significant differences were seen only with the clustering coefficient measure. Local network properties, such as local efficiency and the degree of connections, captured significant differences in regions of the frontal lobe, precentral and cingulate cortex amongst a few others. These results suggest that our method can be used to effectively capture differences occurring in brain network connectivity properties revealed by resting-state functional MRI in neurological disease states, such as HAND.
Brain Anatomical Network and Intelligence
Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi
2009-01-01
Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086
Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui
2015-02-03
To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.
Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain
2014-09-01
Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Amidi, Ali; Hosseini, S M Hadi; Leemans, Alexander; Kesler, Shelli R; Agerbæk, Mads; Wu, Lisa M; Zachariae, Robert
2017-12-01
Cisplatin-based chemotherapy may have neurotoxic effects within the central nervous system. The aims of this study were 1) to longitudinally investigate the impact of cisplatin-based chemotherapy on whole-brain networks in testicular cancer patients undergoing treatment and 2) to explore whether possible changes are related to decline in cognitive functioning. Sixty-four newly orchiectomized TC patients underwent structural magnetic resonance imaging (T1-weighted and diffusion-weighted imaging) and cognitive testing at baseline prior to further treatment and again at a six-month follow-up. At follow-up, 22 participants had received cisplatin-based chemotherapy (CT) while 42 were in active surveillance (S). Brain structural networks were constructed for each participant, and network properties were investigated using graph theory and longitudinally compared across groups. Cognitive functioning was evaluated using standardized neuropsychological tests. All statistical tests were two-sided. Compared with the S group, the CT group demonstrated altered global and local brain network properties from baseline to follow-up as evidenced by decreases in important brain network properties such as small-worldness (P = .04), network clustering (P = .04), and local efficiency (P = .02). In the CT group, poorer overall cognitive performance was associated with decreased small-worldness (r = -0.46, P = .04) and local efficiency (r = -0.51, P = .02), and verbal fluency was associated with decreased local efficiency (r = -0.55, P = .008). Brain structural networks may be disrupted following treatment with cisplatin-based chemotherapy. Impaired brain networks may underlie poorer performance over time on both specific and nonspecific cognitive functions in patients undergoing chemotherapy. To the best of our knowledge, this is the first study to longitudinally investigate changes in structural brain networks in a cancer population, providing novel insights regarding the neurobiological mechanisms of cancer-related cognitive impairment.
FPGA implementation of motifs-based neuronal network and synchronization analysis
NASA Astrophysics Data System (ADS)
Deng, Bin; Zhu, Zechen; Yang, Shuangming; Wei, Xile; Wang, Jiang; Yu, Haitao
2016-06-01
Motifs in complex networks play a crucial role in determining the brain functions. In this paper, 13 kinds of motifs are implemented with Field Programmable Gate Array (FPGA) to investigate the relationships between the networks properties and motifs properties. We use discretization method and pipelined architecture to construct various motifs with Hindmarsh-Rose (HR) neuron as the node model. We also build a small-world network based on these motifs and conduct the synchronization analysis of motifs as well as the constructed network. We find that the synchronization properties of motif determine that of motif-based small-world network, which demonstrates effectiveness of our proposed hardware simulation platform. By imitation of some vital nuclei in the brain to generate normal discharges, our proposed FPGA-based artificial neuronal networks have the potential to replace the injured nuclei to complete the brain function in the treatment of Parkinson's disease and epilepsy.
NASA Astrophysics Data System (ADS)
Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2016-10-01
In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.
Functional Brain Networks: Does the Choice of Dependency Estimator and Binarization Method Matter?
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2016-07-01
The human brain can be modelled as a complex networked structure with brain regions as individual nodes and their anatomical/functional links as edges. Functional brain networks are constructed by first extracting weighted connectivity matrices, and then binarizing them to minimize the noise level. Different methods have been used to estimate the dependency values between the nodes and to obtain a binary network from a weighted connectivity matrix. In this work we study topological properties of EEG-based functional networks in Alzheimer’s Disease (AD). To estimate the connectivity strength between two time series, we use Pearson correlation, coherence, phase order parameter and synchronization likelihood. In order to binarize the weighted connectivity matrices, we use Minimum Spanning Tree (MST), Minimum Connected Component (MCC), uniform threshold and density-preserving methods. We find that the detected AD-related abnormalities highly depend on the methods used for dependency estimation and binarization. Topological properties of networks constructed using coherence method and MCC binarization show more significant differences between AD and healthy subjects than the other methods. These results might explain contradictory results reported in the literature for network properties specific to AD symptoms. The analysis method should be seriously taken into account in the interpretation of network-based analysis of brain signals.
Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei
2017-01-01
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197
Wei, Ling; Li, Yingjie; Yang, Xiaoli; Xue, Qing; Wang, Yuping
2015-10-01
The present study evaluated the topological properties of whole brain networks using graph theoretical concepts and investigated the time-evolution characteristic of brain network in mild cognitive impairment patients during a selective attention task. Electroencephalography (EEG) activities were recorded in 10 MCI patients and 17 healthy subjects when they performed a color match task. We calculated the phase synchrony index between each possible pairs of EEG channels in alpha and beta frequency bands and analyzed the local interconnectedness, overall connectedness and small-world characteristic of brain network in different degree for two groups. Relative to healthy normal controls, the properties of cortical networks in MCI patients tend to be a shift of randomization. Lower σ of MCI had suggested that patients had a further loss of small-world attribute both during active and resting states. Our results provide evidence for the functional disconnection of brain regions in MCI. Furthermore, we found the properties of cortical networks could reflect the processing of conflict information in the selective attention task. The human brain tends to be a more regular and efficient neural architecture in the late stage of information processing. In addition, the processing of conflict information needs stronger information integration and transfer between cortical areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Resting state network topology of the ferret brain.
Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-12-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Abidin, Anas Z.; Chockanathan, Udaysankar; DSouza, Adora M.; Inglese, Matilde; Wismüller, Axel
2017-03-01
Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination occurring in the CNS can manifest as a change in neuronal metabolism, with multiple asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis techniques. We test this hypothesis by capturing the effective relationships of 90 brain regions, defined in the Automated Anatomic Labeling (AAL) atlas, using a large-scale Granger Causality (lsGC) framework. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We study for differences in these properties in network graphs obtained for 18 subjects (10 male and 8 female, 9 with CIS and 9 healthy controls). Global network properties captured trending differences with modularity and clustering coefficient (p<0.1). Additionally, local network properties, such as local efficiency and the strength of connections, captured statistically significant (p<0.01) differences in some regions of the inferior frontal and parietal lobe. We conclude that multivariate analysis of fMRI time-series can reveal interesting information about changes occurring in the brain in early stages of MS.
Small Worldness in Dense and Weighted Connectomes
NASA Astrophysics Data System (ADS)
Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas
2016-05-01
The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.
Shah, Chandan; Liu, Jia; Lv, Peilin; Sun, Huaiqiang; Xiao, Yuan; Liu, Jieke; Zhao, Youjin; Zhang, Wenjing; Yao, Li; Gong, Qiyong; Lui, Su
2018-01-01
Introduction: There are still uncertainties about the true nature of age related changes in topological properties of the brain functional network and its structural connectivity during various developmental stages. In this cross- sectional study, we investigated the effects of age and its relationship with regional nodal properties of the functional brain network and white matter integrity. Method: DTI and fMRI data were acquired from 458 healthy Chinese participants ranging from age 8 to 81 years. Tractography was conducted on the DTI data using FSL. Graph Theory analyses were conducted on the functional data yielding topological properties of the functional network using SPM and GRETNA toolbox. Two multiple regressions were performed to investigate the effects of age on nodal topological properties of the functional brain network and white matter integrity. Result: For the functional studies, we observed that regional nodal characteristics such as node betweenness were decreased while node degree and node efficiency was increased in relation to increasing age. Perversely, we observed that the relationship between nodal topological properties and fasciculus structures were primarily positive for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in functional nodal betweenness was primarily located in superior frontal lobe, right occipital lobe and the global hubs. These brain regions also had both direct and indirect anatomical relationships with the 14 fiber bundles. A linear age related decreases in the Fractional anisotropy (FA) value was found in the callosum forceps minor. Conclusion: These results suggests that age related differences were more pronounced in the functional than in structural measure indicating these measures do not have direct one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers exhibited a more pronounced effect on the properties of functional network.
Sperry, Megan M; Kartha, Sonia; Granquist, Eric J; Winkelstein, Beth A
2018-07-01
Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-D-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.
Describing functional diversity of brain regions and brain networks
Anderson, Michael L.; Kinnison, Josh; Pessoa, Luiz
2013-01-01
Despite the general acceptance that functional specialization plays an important role in brain function, there is little consensus about its extent in the brain. We sought to advance the understanding of this question by employing a data-driven approach that capitalizes on the existence of large databases of neuroimaging data. We quantified the diversity of activation in brain regions as a way to characterize the degree of functional specialization. To do so, brain activations were classified in terms of task domains, such as vision, attention, and language, which determined a region’s functional fingerprint. We found that the degree of diversity varied considerably across the brain. We also quantified novel properties of regions and of networks that inform our understanding of several task-positive and task-negative networks described in the literature, including defining functional fingerprints for entire networks and measuring their functional assortativity, namely the degree to which they are composed of regions with similar functional fingerprints. Our results demonstrate that some brain networks exhibit strong assortativity, whereas other networks consist of relatively heterogeneous parts. In sum, rather than characterizing the contributions of individual brain regions using task-based functional attributions, we instead quantified their dispositional tendencies, and related those to each region’s affiliative properties in both task-positive and task-negative contexts. PMID:23396162
Mears, David; Pollard, Harvey B
2016-06-01
Over the past 15 years, the emerging field of network science has revealed the key features of brain networks, which include small-world topology, the presence of highly connected hubs, and hierarchical modularity. The value of network studies of the brain is underscored by the range of network alterations that have been identified in neurological and psychiatric disorders, including epilepsy, depression, Alzheimer's disease, schizophrenia, and many others. Here we briefly summarize the concepts of graph theory that are used to quantify network properties and describe common experimental approaches for analysis of brain networks of structural and functional connectivity. These range from tract tracing to functional magnetic resonance imaging, diffusion tensor imaging, electroencephalography, and magnetoencephalography. We then summarize the major findings from the application of graph theory to nervous systems ranging from Caenorhabditis elegans to more complex primate brains, including man. Focusing, then, on studies involving the amygdala, a brain region that has attracted intense interest as a center for emotional processing, fear, and motivation, we discuss the features of the amygdala in brain networks for fear conditioning and emotional perception. Finally, to highlight the utility of graph theory for studying dysfunction of the amygdala in mental illness, we review data with regard to changes in the hub properties of the amygdala in brain networks of patients with depression. We suggest that network studies of the human brain may serve to focus attention on regions and connections that act as principal drivers and controllers of brain function in health and disease. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Driving and driven architectures of directed small-world human brain functional networks.
Yan, Chaogan; He, Yong
2011-01-01
Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.
Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Thompson, Paul M.; Gotlib, Ian H.
2015-01-01
Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on “support vector machines” to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities. PMID:25762941
Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H
2015-01-01
Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.
Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success
Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.
2013-01-01
The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625
Modeling fluctuations in default-mode brain network using a spiking neural network.
Yamanishi, Teruya; Liu, Jian-Qin; Nishimura, Haruhiko
2012-08-01
Recently, numerous attempts have been made to understand the dynamic behavior of complex brain systems using neural network models. The fluctuations in blood-oxygen-level-dependent (BOLD) brain signals at less than 0.1 Hz have been observed by functional magnetic resonance imaging (fMRI) for subjects in a resting state. This phenomenon is referred to as a "default-mode brain network." In this study, we model the default-mode brain network by functionally connecting neural communities composed of spiking neurons in a complex network. Through computational simulations of the model, including transmission delays and complex connectivity, the network dynamics of the neural system and its behavior are discussed. The results show that the power spectrum of the modeled fluctuations in the neuron firing patterns is consistent with the default-mode brain network's BOLD signals when transmission delays, a characteristic property of the brain, have finite values in a given range.
Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans.
Spielberg, Jeffrey M; McGlinchey, Regina E; Milberg, William P; Salat, David H
2015-08-01
Understanding the neural causes and consequences of posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) is a high research priority, given the high rates of associated disability and suicide. Despite remarkable progress in elucidating the brain mechanisms of PTSD and mTBI, a comprehensive understanding of these conditions at the level of brain networks has yet to be achieved. The present study sought to identify functional brain networks and topological properties (measures of network organization and function) related to current PTSD severity and mTBI. Graph theoretic tools were used to analyze resting-state functional magnetic resonance imaging data from 208 veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn, all of whom had experienced a traumatic event qualifying for PTSD criterion A. Analyses identified brain networks and topological network properties linked to current PTSD symptom severity, mTBI, and the interaction between PTSD and mTBI. Two brain networks were identified in which weaker connectivity was linked to higher PTSD re-experiencing symptoms, one of which was present only in veterans with comorbid mTBI. Re-experiencing was also linked to worse functional segregation (necessary for specialized processing) and diminished influence of key regions on the network, including the hippocampus. Findings of this study demonstrate that PTSD re-experiencing symptoms are linked to weakened connectivity in a network involved in providing contextual information. A similar relationship was found in a separate network typically engaged in the gating of working memory, but only in veterans with mTBI. Published by Elsevier Inc.
Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding.
Pedersen, Mangor; Omidvarnia, Amir H; Walz, Jennifer M; Jackson, Graeme D
2015-01-01
Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications.
Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding
Pedersen, Mangor; Omidvarnia, Amir H.; Walz, Jennifer M.; Jackson, Graeme D.
2015-01-01
Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications. PMID:26110111
Sub-Network Kernels for Measuring Similarity of Brain Connectivity Networks in Disease Diagnosis.
Jie, Biao; Liu, Mingxia; Zhang, Daoqiang; Shen, Dinggang
2018-05-01
As a simple representation of interactions among distributed brain regions, brain networks have been widely applied to automated diagnosis of brain diseases, such as Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI). In brain network analysis, a challenging task is how to measure the similarity between a pair of networks. Although many graph kernels (i.e., kernels defined on graphs) have been proposed for measuring the topological similarity of a pair of brain networks, most of them are defined using general graphs, thus ignoring the uniqueness of each node in brain networks. That is, each node in a brain network denotes a particular brain region, which is a specific characteristics of brain networks. Accordingly, in this paper, we construct a novel sub-network kernel for measuring the similarity between a pair of brain networks and then apply it to brain disease classification. Different from current graph kernels, our proposed sub-network kernel not only takes into account the inherent characteristic of brain networks, but also captures multi-level (from local to global) topological properties of nodes in brain networks, which are essential for defining the similarity measure of brain networks. To validate the efficacy of our method, we perform extensive experiments on subjects with baseline functional magnetic resonance imaging data obtained from the Alzheimer's disease neuroimaging initiative database. Experimental results demonstrate that the proposed method outperforms several state-of-the-art graph-based methods in MCI classification.
The development of Human Functional Brain Networks
Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L
2010-01-01
Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306
Disrupted Small-World Networks in Schizophrenia
ERIC Educational Resources Information Center
Liu, Yong; Liang, Meng; Zhou, Yuan; He, Yong; Hao, Yihui; Song, Ming; Yu, Chunshui; Liu, Haihong; Liu, Zhening; Jiang, Tianzi
2008-01-01
The human brain has been described as a large, sparse, complex network characterized by efficient small-world properties, which assure that the brain generates and integrates information with high efficiency. Many previous neuroimaging studies have provided consistent evidence of "dysfunctional connectivity" among the brain regions in…
Comparisons of topological properties in autism for the brain network construction methods
NASA Astrophysics Data System (ADS)
Lee, Min-Hee; Kim, Dong Youn; Lee, Sang Hyeon; Kim, Jin Uk; Chung, Moo K.
2015-03-01
Structural brain networks can be constructed from the white matter fiber tractography of diffusion tensor imaging (DTI), and the structural characteristics of the brain can be analyzed from its networks. When brain networks are constructed by the parcellation method, their network structures change according to the parcellation scale selection and arbitrary thresholding. To overcome these issues, we modified the Ɛ -neighbor construction method proposed by Chung et al. (2011). The purpose of this study was to construct brain networks for 14 control subjects and 16 subjects with autism using both the parcellation and the Ɛ-neighbor construction method and to compare their topological properties between two methods. As the number of nodes increased, connectedness decreased in the parcellation method. However in the Ɛ-neighbor construction method, connectedness remained at a high level even with the rising number of nodes. In addition, statistical analysis for the parcellation method showed significant difference only in the path length. However, statistical analysis for the Ɛ-neighbor construction method showed significant difference with the path length, the degree and the density.
A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome
Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong
2013-01-01
Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states. PMID:23675425
Intra- and interbrain synchronization and network properties when playing guitar in duets
Sänger, Johanna; Müller, Viktor; Lindenberger, Ulman
2012-01-01
To further test and explore the hypothesis that synchronous oscillatory brain activity supports interpersonally coordinated behavior during dyadic music performance, we simultaneously recorded the electroencephalogram (EEG) from the brains of each of 12 guitar duets repeatedly playing a modified Rondo in two voices by C.G. Scheidler. Indicators of phase locking and of within-brain and between-brain phase coherence were obtained from complex time-frequency signals based on the Gabor transform. Analyses were restricted to the delta (1–4 Hz) and theta (4–8 Hz) frequency bands. We found that phase locking as well as within-brain and between-brain phase-coherence connection strengths were enhanced at frontal and central electrodes during periods that put particularly high demands on musical coordination. Phase locking was modulated in relation to the experimentally assigned musical roles of leader and follower, corroborating the functional significance of synchronous oscillations in dyadic music performance. Graph theory analyses revealed within-brain and hyperbrain networks with small-worldness properties that were enhanced during musical coordination periods, and community structures encompassing electrodes from both brains (hyperbrain modules). We conclude that brain mechanisms indexed by phase locking, phase coherence, and structural properties of within-brain and hyperbrain networks support interpersonal action coordination (IAC). PMID:23226120
Functional network organization of the human brain
Power, Jonathan D; Cohen, Alexander L; Nelson, Steven M; Wig, Gagan S; Barnes, Kelly Anne; Church, Jessica A; Vogel, Alecia C; Laumann, Timothy O; Miezin, Fran M; Schlaggar, Bradley L; Petersen, Steven E
2011-01-01
Summary Real-world complex systems may be mathematically modeled as graphs, revealing properties of the system. Here we study graphs of functional brain organization in healthy adults using resting state functional connectivity MRI. We propose two novel brain-wide graphs, one of 264 putative functional areas, the other a modification of voxelwise networks that eliminates potentially artificial short-distance relationships. These graphs contain many subgraphs in good agreement with known functional brain systems. Other subgraphs lack established functional identities; we suggest possible functional characteristics for these subgraphs. Further, graph measures of the areal network indicate that the default mode subgraph shares network properties with sensory and motor subgraphs: it is internally integrated but isolated from other subgraphs, much like a “processing” system. The modified voxelwise graph also reveals spatial motifs in the patterning of systems across the cortex. PMID:22099467
Oscillations contribute to memory consolidation by changing criticality and stability in the brain
NASA Astrophysics Data System (ADS)
Wu, Jiaxing; Skilling, Quinton; Ognjanovski, Nicolette; Aton, Sara; Zochowski, Michal
Oscillations are a universal feature of every level of brain dynamics and have been shown to contribute to many brain functions. To investigate the fundamental mechanism underpinning oscillatory activity, the properties of heterogeneous networks are compared in situations with and without oscillations. Our results show that both network criticality and stability are changed in the presence of oscillations. Criticality describes the network state of neuronal avalanche, a cascade of bursts of action potential firing in neural network. Stability measures how stable the spike timing relationship between neuron pairs is over time. Using a detailed spiking model, we found that the branching parameter σ changes relative to oscillation and structural network properties, corresponding to transmission among different critical states. Also, analysis of functional network structures shows that the oscillation helps to stabilize neuronal representation of memory. Further, quantitatively similar results are observed in biological data recorded in vivo. In summary, we have observed that, by regulating the neuronal firing pattern, oscillations affect both criticality and stability properties of the network, and thus contribute to memory formation.
Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou
2017-01-01
Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.
Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang
2014-09-01
Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Complex network analysis of brain functional connectivity under a multi-step cognitive task
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun
2017-01-01
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Miller, Robyn L; Yaesoubi, Maziar; Turner, Jessica A; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D
2016-01-01
Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject's trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls.
Miller, Robyn L.; Yaesoubi, Maziar; Turner, Jessica A.; Mathalon, Daniel; Preda, Adrian; Pearlson, Godfrey; Adali, Tulay; Calhoun, Vince D.
2016-01-01
Resting-state functional brain imaging studies of network connectivity have long assumed that functional connections are stationary on the timescale of a typical scan. Interest in moving beyond this simplifying assumption has emerged only recently. The great hope is that training the right lens on time-varying properties of whole-brain network connectivity will shed additional light on previously concealed brain activation patterns characteristic of serious neurological or psychiatric disorders. We present evidence that multiple explicitly dynamical properties of time-varying whole-brain network connectivity are strongly associated with schizophrenia, a complex mental illness whose symptomatic presentation can vary enormously across subjects. As with so much brain-imaging research, a central challenge for dynamic network connectivity lies in determining transformations of the data that both reduce its dimensionality and expose features that are strongly predictive of important population characteristics. Our paper introduces an elegant, simple method of reducing and organizing data around which a large constellation of mutually informative and intuitive dynamical analyses can be performed. This framework combines a discrete multidimensional data-driven representation of connectivity space with four core dynamism measures computed from large-scale properties of each subject’s trajectory, ie., properties not identifiable with any specific moment in time and therefore reasonable to employ in settings lacking inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to be markedly less dynamically active in schizophrenia patients, an effect that is even more pronounced in patients with high levels of hallucinatory behavior. To the best of our knowledge this is the first demonstration that high-level dynamic properties of whole-brain connectivity, generic enough to be commensurable under many decompositions of time-varying connectivity data, exhibit robust and systematic differences between schizophrenia patients and healthy controls. PMID:26981625
The Effects of Long-term Abacus Training on Topological Properties of Brain Functional Networks.
Weng, Jian; Xie, Ye; Wang, Chunjie; Chen, Feiyan
2017-08-18
Previous studies in the field of abacus-based mental calculation (AMC) training have shown that this training has the potential to enhance a wide variety of cognitive abilities. It can also generate specific changes in brain structure and function. However, there is lack of studies investigating the impact of AMC training on the characteristics of brain networks. In this study, utilizing graph-based network analysis, we compared topological properties of brain functional networks between an AMC group and a matched control group. Relative to the control group, the AMC group exhibited higher nodal degrees in bilateral calcarine sulcus and increased local efficiency in bilateral superior occipital gyrus and right cuneus. The AMC group also showed higher nodal local efficiency in right fusiform gyrus, which was associated with better math ability. However, no relationship was significant in the control group. These findings provide evidence that long-term AMC training may improve information processing efficiency in visual-spatial related regions, which extend our understanding of training plasticity at the brain network level.
A permutation testing framework to compare groups of brain networks.
Simpson, Sean L; Lyday, Robert G; Hayasaka, Satoru; Marsh, Anthony P; Laurienti, Paul J
2013-01-01
Brain network analyses have moved to the forefront of neuroimaging research over the last decade. However, methods for statistically comparing groups of networks have lagged behind. These comparisons have great appeal for researchers interested in gaining further insight into complex brain function and how it changes across different mental states and disease conditions. Current comparison approaches generally either rely on a summary metric or on mass-univariate nodal or edge-based comparisons that ignore the inherent topological properties of the network, yielding little power and failing to make network level comparisons. Gleaning deeper insights into normal and abnormal changes in complex brain function demands methods that take advantage of the wealth of data present in an entire brain network. Here we propose a permutation testing framework that allows comparing groups of networks while incorporating topological features inherent in each individual network. We validate our approach using simulated data with known group differences. We then apply the method to functional brain networks derived from fMRI data.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.
NASA Astrophysics Data System (ADS)
Wang, Rong; Wang, Li; Yang, Yong; Li, Jiajia; Wu, Ying; Lin, Pan
2016-11-01
Attention deficit hyperactivity disorder (ADHD) is the most common childhood neuropsychiatric disorder and affects approximately 6 -7 % of children worldwide. Here, we investigate the statistical properties of undirected and directed brain functional networks in ADHD patients based on random matrix theory (RMT), in which the undirected functional connectivity is constructed based on correlation coefficient and the directed functional connectivity is measured based on cross-correlation coefficient and mutual information. We first analyze the functional connectivity and the eigenvalues of the brain functional network. We find that ADHD patients have increased undirected functional connectivity, reflecting a higher degree of linear dependence between regions, and increased directed functional connectivity, indicating stronger causality and more transmission of information among brain regions. More importantly, we explore the randomness of the undirected and directed functional networks using RMT. We find that for ADHD patients, the undirected functional network is more orderly than that for normal subjects, which indicates an abnormal increase in undirected functional connectivity. In addition, we find that the directed functional networks are more random, which reveals greater disorder in causality and more chaotic information flow among brain regions in ADHD patients. Our results not only further confirm the efficacy of RMT in characterizing the intrinsic properties of brain functional networks but also provide insights into the possibilities RMT offers for improving clinical diagnoses and treatment evaluations for ADHD patients.
Hemispheric asymmetry of electroencephalography-based functional brain networks.
Jalili, Mahdi
2014-11-12
Electroencephalography (EEG)-based functional brain networks have been investigated frequently in health and disease. It has been shown that a number of graph theory metrics are disrupted in brain disorders. EEG-based brain networks are often studied in the whole-brain framework, where all the nodes are grouped into a single network. In this study, we studied the brain networks in two hemispheres and assessed whether there are any hemispheric-specific patterns in the properties of the networks. To this end, resting state closed-eyes EEGs from 44 healthy individuals were processed and the network structures were extracted separately for each hemisphere. We examined neurophysiologically meaningful graph theory metrics: global and local efficiency measures. The global efficiency did not show any hemispheric asymmetry, whereas the local connectivity showed rightward asymmetry for a range of intermediate density values for the constructed networks. Furthermore, the age of the participants showed significant direct correlations with the global efficiency of the left hemisphere, but only in the right hemisphere, with local connectivity. These results suggest that only local connectivity of EEG-based functional networks is associated with brain hemispheres.
Research of Hubs Location Method for Weighted Brain Network Based on NoS-FA.
Weng, Zhengkui; Wang, Bin; Xue, Jie; Yang, Baojie; Liu, Hui; Xiong, Xin
2017-01-01
As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location method in the whole human brain network are mainly concerned with the local properties of each single node but not the global properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia patients and the results are in agreement with previous studies.
Homological scaffolds of brain functional networks
Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F.
2014-01-01
Networks, as efficient representations of complex systems, have appealed to scientists for a long time and now permeate many areas of science, including neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198. (doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has been studied through their statistical properties and metrics concerned with node and link properties, e.g. degree-distribution, node centrality and modularity. Here, we study the characteristics of functional brain networks at the mesoscopic level from a novel perspective that highlights the role of inhomogeneities in the fabric of functional connections. This can be done by focusing on the features of a set of topological objects—homological cycles—associated with the weighted functional network. We leverage the detected topological information to define the homological scaffolds, a new set of objects designed to represent compactly the homological features of the correlation network and simultaneously make their homological properties amenable to networks theoretical methods. As a proof of principle, we apply these tools to compare resting-state functional brain activity in 15 healthy volunteers after intravenous infusion of placebo and psilocybin—the main psychoactive component of magic mushrooms. The results show that the homological structure of the brain's functional patterns undergoes a dramatic change post-psilocybin, characterized by the appearance of many transient structures of low stability and of a small number of persistent ones that are not observed in the case of placebo. PMID:25401177
Sun, Yu; Collinson, Simon L; Suckling, John; Sim, Kang
2018-06-07
Emerging evidence suggests that schizophrenia is associated with brain dysconnectivity. Nonetheless, the implicit assumption of stationary functional connectivity (FC) adopted in most previous resting-state functional magnetic resonance imaging (fMRI) studies raises an open question of schizophrenia-related aberrations in dynamic properties of resting-state FC. This study introduces an empirical method to examine the dynamic functional dysconnectivity in patients with schizophrenia. Temporal brain networks were estimated from resting-state fMRI of 2 independent datasets (patients/controls = 18/19 and 53/57 for self-recorded dataset and a publicly available replication dataset, respectively) by the correlation of sliding time-windowed time courses among regions of a predefined atlas. Through the newly introduced temporal efficiency approach and temporal random network models, we examined, for the first time, the 3D spatiotemporal architecture of the temporal brain network. We found that although prominent temporal small-world properties were revealed in both groups, temporal brain networks of patients with schizophrenia in both datasets showed a significantly higher temporal global efficiency, which cannot be simply attributable to head motion and sampling error. Specifically, we found localized changes of temporal nodal properties in the left frontal, right medial parietal, and subcortical areas that were associated with clinical features of schizophrenia. Our findings demonstrate that altered dynamic FC may underlie abnormal brain function and clinical symptoms observed in schizophrenia. Moreover, we provide new evidence to extend the dysconnectivity hypothesis in schizophrenia from static to dynamic brain network and highlight the potential of aberrant brain dynamic FC in unraveling the pathophysiologic mechanisms of the disease.
Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin
2018-05-11
Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.
Topological Isomorphisms of Human Brain and Financial Market Networks
Vértes, Petra E.; Nicol, Ruth M.; Chapman, Sandra C.; Watkins, Nicholas W.; Robertson, Duncan A.; Bullmore, Edward T.
2011-01-01
Although metaphorical and conceptual connections between the human brain and the financial markets have often been drawn, rigorous physical or mathematical underpinnings of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic approach to the study of two datasets – the time series of 90 stocks from the New York stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90 brain regions over the course of a 10-min-long functional MRI scan of resting brain function in healthy volunteers. Despite the many obvious substantive differences between these two datasets, graphical analysis demonstrated striking commonalities in terms of global network topological properties. Both the human brain and the market networks were non-random, small-world, modular, hierarchical systems with fat-tailed degree distributions indicating the presence of highly connected hubs. These properties could not be trivially explained by the univariate time series statistics of stock price returns. This degree of topological isomorphism suggests that brains and markets can be regarded broadly as members of the same family of networks. The two systems, however, were not topologically identical. The financial market was more efficient and more modular – more highly optimized for information processing – than the brain networks; but also less robust to systemic disintegration as a result of hub deletion. We conclude that the conceptual connections between brains and markets are not merely metaphorical; rather these two information processing systems can be rigorously compared in the same mathematical language and turn out often to share important topological properties in common to some degree. There will be interesting scientific arbitrage opportunities in further work at the graph-theoretically mediated interface between systems neuroscience and the statistical physics of financial markets. PMID:22007161
From Hippocampus to Whole-Brain: The Role of Integrative Processing in Episodic Memory Retrieval
Geib, Benjamin R.; Stanley, Matthew L.; Dennis, Nancy A.; Woldorff, Marty G.; Cabeza, Roberto
2017-01-01
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. PMID:28112460
Lord, Anton; Ehrlich, Stefan; Borchardt, Viola; Geisler, Daniel; Seidel, Maria; Huber, Stefanie; Murr, Julia; Walter, Martin
2016-03-30
Network-based analyses of deviant brain function have become extremely popular in psychiatric neuroimaging. Underpinning brain network analyses is the selection of appropriate regions of interest (ROIs). Although ROI selection is fundamental in network analysis, its impact on detecting disease effects remains unclear. We investigated the impact of parcellation choice when comparing results from different studies. We investigated the effects of anatomical (AAL) and literature-based (Dosenbach) parcellation schemes on comparability of group differences in 35 female patients with anorexia nervosa and 35 age- and sex-matched healthy controls. Global and local network properties, including network-based statistics (NBS), were assessed on resting state functional magnetic resonance imaging data obtained at 3T. Parcellation schemes were comparably consistent on global network properties, while NBS and local metrics differed in location, but not metric type. Location of local metric alterations varied for AAL (parietal and cingulate cortices) versus Dosenbach (insula, thalamus) parcellation approaches. However, consistency was observed for the occipital cortex. Patient-specific global network properties can be robustly observed using different parcellation schemes, while graph metrics characterizing impairments of individual nodes vary considerably. Therefore, the impact of parcellation choice on specific group differences varies depending on the level of network organization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Graph Frequency Analysis of Brain Signals
Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro
2016-01-01
This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325
Li, Yan; Rui, Xue; Li, Shuyu; Pu, Fang
2014-11-01
Graph theoretical analysis has recently become a popular research tool in neuroscience, however, there have been very few studies on brain responses to music perception, especially when culturally different styles of music are involved. Electroencephalograms were recorded from ten subjects listening to Chinese traditional music, light music and western classical music. For event-related potentials, phase coherence was calculated in the alpha band and then constructed into correlation matrices. Clustering coefficients and characteristic path lengths were evaluated for global properties, while clustering coefficients and efficiency were assessed for local network properties. Perception of light music and western classical music manifested small-world network properties, especially with a relatively low proportion of weights of correlation matrices. For local analysis, efficiency was more discernible than clustering coefficient. Nevertheless, there was no significant discrimination between Chinese traditional and western classical music perception. Perception of different styles of music introduces different network properties, both globally and locally. Research into both global and local network properties has been carried out in other areas; however, this is a preliminary investigation aimed at suggesting a possible new approach to brain network properties in music perception. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vértes, Petra E.; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T.; Gogtay, Nitin
2013-01-01
The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive “pruning” of short-distance functional connections in schizophrenia. PMID:22275481
Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B
2013-01-01
There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.
Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.
2013-01-01
There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654
From hippocampus to whole-brain: The role of integrative processing in episodic memory retrieval.
Geib, Benjamin R; Stanley, Matthew L; Dennis, Nancy A; Woldorff, Marty G; Cabeza, Roberto
2017-04-01
Multivariate functional connectivity analyses of neuroimaging data have revealed the importance of complex, distributed interactions between disparate yet interdependent brain regions. Recent work has shown that topological properties of functional brain networks are associated with individual and group differences in cognitive performance, including in episodic memory. After constructing functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we examined differences in functional brain network architecture between forgotten and remembered words. This study yielded three main findings. First, graph theory analyses showed that successfully remembering compared to forgetting was associated with significant changes in the connectivity profile of the left hippocampus and a corresponding increase in efficient communication with the rest of the brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval was marginally significantly associated with a less segregated modular architecture in the network. The magnitude of the decreases in modularity between remembered and forgotten conditions was related to memory performance. These findings indicate that increases in integrative properties at the nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also underscoring the potential of multivariate brain connectivity approaches for providing valuable new insights into the neural bases of memory processes. Hum Brain Mapp 38:2242-2259, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Analysis of Time-Dependent Brain Network on Active and MI Tasks for Chronic Stroke Patients
Chang, Won Hyuk; Kim, Yun-Hee; Lee, Seong-Whan; Kwon, Gyu Hyun
2015-01-01
Several researchers have analyzed brain activities by investigating brain networks. However, there is a lack of the research on the temporal characteristics of the brain network during a stroke by EEG and the comparative studies between motor execution and imagery, which became known to have similar motor functions and pathways. In this study, we proposed the possibility of temporal characteristics on the brain networks of a stroke. We analyzed the temporal properties of the brain networks for nine chronic stroke patients by the active and motor imagery tasks by EEG. High beta band has a specific role in the brain network during motor tasks. In the high beta band, for the active task, there were significant characteristics of centrality and small-worldness on bilateral primary motor cortices at the initial motor execution. The degree centrality significantly increased on the contralateral primary motor cortex, and local efficiency increased on the ipsilateral primary motor cortex. These results indicate that the ipsilateral primary motor cortex constructed a powerful subnetwork by influencing the linked channels as compensatory effect, although the contralateral primary motor cortex organized an inefficient network by using the connected channels due to lesions. For the MI task, degree centrality and local efficiency significantly decreased on the somatosensory area at the initial motor imagery. Then, there were significant correlations between the properties of brain networks and motor function on the contralateral primary motor cortex and somatosensory area for each motor execution/imagery task. Our results represented that the active and MI tasks have different mechanisms of motor acts. Based on these results, we indicated the possibility of customized rehabilitation according to different motor tasks. We expect these results to help in the construction of the customized rehabilitation system depending on motor tasks by understanding temporal functional characteristics on brain network for a stroke. PMID:26656269
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa
Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.
Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.
Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study.
Ganella, Eleni P; Seguin, Caio; Pantelis, Christos; Whittle, Sarah; Baune, Bernhard T; Olver, James; Amminger, G Paul; McGorry, Patrick D; Cropley, Vanessa; Zalesky, Andrew; Bartholomeusz, Cali F
2018-05-01
Schizophrenia is increasingly conceived as a disorder of brain network connectivity and organization. However, reports of network abnormalities during the early illness stage of psychosis are mixed. This study adopted a data-driven whole-brain approach to investigate functional connectivity and network architecture in a first-episode psychosis cohort relative to healthy controls and whether functional network properties changed abnormally over a 12-month period in first-episode psychosis. Resting-state functional connectivity was performed at two time points. At baseline, 29 first-episode psychosis individuals and 30 healthy controls were assessed, and at 12 months, 14 first-episode psychosis individuals and 20 healthy controls completed follow-up. Whole-brain resting-state functional connectivity networks were mapped for each individual and analyzed using graph theory to investigate whether network abnormalities associated with first-episode psychosis were evident and whether functional network properties changed abnormally over 12 months relative to controls. This study found no evidence of abnormal resting-state functional connectivity or topology in first-episode psychosis individuals relative to healthy controls at baseline or at 12-months follow-up. Furthermore, longitudinal changes in network properties over a 12-month period did not significantly differ between first-episode psychosis individuals and healthy control. Network measures did not significantly correlate with symptomatology, duration of illness or antipsychotic medication. This is the first study to show unaffected resting-state functional connectivity and topology in the early psychosis stage of illness. In light of previous literature, this suggests that a subgroup of first-episode psychosis individuals who have a neurotypical resting-state functional connectivity and topology may exist. Our preliminary longitudinal analyses indicate that there also does not appear to be deterioration in these network properties over a 12-month period. Future research in a larger sample is necessary to confirm our longitudinal findings.
Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu
2015-05-01
The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.
Zhang, Jiang; Li, Yuyao; Chen, Huafu; Ding, Jurong; Yuan, Zhen
2016-11-04
In this study, small-world network analysis was performed to identify the similarities and differences between functional brain networks for right- and left-hand motor imageries (MIs). First, Pearson correlation coefficients among the nodes within the functional brain networks from healthy subjects were calculated. Then, small-world network indicators, including the clustering coefficient, the average path length, the global efficiency, the local efficiency, the average node degree, and the small-world index, were generated for the functional brain networks during both right- and left-hand MIs. We identified large differences in the small-world network indicators between the functional networks during MI and in the random networks. More importantly, the functional brain networks underlying the right- and left-hand MIs exhibited similar small-world properties in terms of the clustering coefficient, the average path length, the global efficiency, and the local efficiency. By contrast, the right- and left-hand MI brain networks showed differences in small-world characteristics, including indicators such as the average node degree and the small-world index. Interestingly, our findings also suggested that the differences in the activity intensity and range, the average node degree, and the small-world index of brain networks between the right- and left-hand MIs were associated with the asymmetry of brain functions.
Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M.; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu
2017-01-01
Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n-back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks. PMID:28553215
Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu
2017-01-01
Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n -back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks.
Daianu, Madelaine; Jahanshad, Neda; Villalon-Reina, Julio E.; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Joshi, Aditi; Barsuglia, Joseph; Thompson, Paul M.
2015-01-01
Diffusion imaging and brain connectivity analyses can reveal the underlying organizational patterns of the human brain, described as complex networks of densely interlinked regions. Here, we analyzed 1.5-Tesla whole-brain diffusion-weighted images from 64 participants – 15 patients with behavioral variant frontotemporal (bvFTD) dementia, 19 with early-onset Alzheimer’s disease (EOAD), and 30 healthy elderly controls. Based on whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We examined how bvFTD and EOAD disrupt the weighted ‘rich club’ – a network property where high-degree network nodes are more interconnected than expected by chance. bvFTD disrupts both the nodal and global organization of the network in both low- and high-degree regions of the brain. EOAD targets the global connectivity of the brain, mainly affecting the fiber density of high-degree (highly connected) regions that form the rich club network. These rich club analyses suggest distinct patterns of disruptions among different forms of dementia. PMID:26161050
Changes in functional and structural brain connectome along the Alzheimer's disease continuum.
Filippi, Massimo; Basaia, Silvia; Canu, Elisa; Imperiale, Francesca; Magnani, Giuseppe; Falautano, Monica; Comi, Giancarlo; Falini, Andrea; Agosta, Federica
2018-05-09
The aim of this study was two-fold: (i) to investigate structural and functional brain network architecture in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), stratified in converters (c-aMCI) and non-converters (nc-aMCI) to AD; and to assess the relationship between healthy brain network functional connectivity and the topography of brain atrophy in patients along the AD continuum. Ninety-four AD patients, 47 aMCI patients (25 c-aMCI within 36 months) and 53 age- and sex-matched healthy controls were studied. Graph analysis and connectomics assessed global and local, structural and functional topological network properties and regional connectivity. Healthy topological features of brain regions were assessed based on their connectivity with the point of maximal atrophy (epicenter) in AD and aMCI patients. Brain network graph analysis properties were severely altered in AD patients. Structural brain network was already altered in c-aMCI patients relative to healthy controls in particular in the temporal and parietal brain regions, while functional connectivity did not change. Structural connectivity alterations distinguished c-aMCI from nc-aMCI cases. In both AD and c-aMCI, the point of maximal atrophy was located in left hippocampus (disease-epicenter). Brain regions most strongly connected with the disease-epicenter in the healthy functional connectome were also the most atrophic in both AD and c-aMCI patients. Progressive degeneration in the AD continuum is associated with an early breakdown of anatomical brain connections and follows the strongest connections with the disease-epicenter. These findings support the hypothesis that the topography of brain connectional architecture can modulate the spread of AD through the brain.
NASA Astrophysics Data System (ADS)
Horwitz, Barry
2014-09-01
As the poet John Donne said of man - "No man is an island entire of itself; every man is a piece of the continent, a part of the main." - so the neuroscience research community now says of brain areas. This is the topic that Luiz Pessoa expands upon in his thorough review of the paradigm shift that has occurred in much of brain research, especially in cognitive neuroscience [1]. His key point is made explicitly in the Abstract: "I argue that a network perspective should supplement the common strategy of understanding the brain in terms of individual regions." In his review, Pessoa covers a large range of topics, including how the network perspective changes the way in which one views the structure-function relationship between brain and behavior, the importance of context in ascertaining how a brain region functions, and the notion of emergent properties as a network feature. Also discussed is graph theory, one of the important mathematical methods used to analyze and describe network structure and function.
Frequency specific brain networks in Parkinson's disease and comorbid depression.
Qian, Long; Zhang, Yi; Zheng, Li; Fu, Xuemei; Liu, Weiguo; Shang, Yuqing; Zhang, Yaoyu; Xu, Yuanyuan; Liu, Yijun; Zhu, Huaiqiu; Gao, Jia-Hong
2017-02-01
The topological organization underlying the human brain was extensively investigated using resting-state functional magnetic resonance imaging, focusing on a low frequency of signal oscillation from 0.01 to 0.1 Hz. However, the frequency specificities with regard to the topological properties of the brain networks have not been fully revealed. In this study, a novel complementary ensemble empirical mode decomposition (CEEMD) method was used to separate the fMRI time series into five characteristic oscillations with distinct frequencies. Then, the small world properties of brain networks were analyzed for each of these five oscillations in patients (n = 67) with depressed Parkinson's disease (DPD, n = 20) , non-depressed Parkinson's disease (NDPD, n = 47) and healthy controls (HC, n = 46). Compared with HC, the results showed decreased network efficiency in characteristic oscillations from 0.05 to 0.12 Hz and from 0.02 to 0.05 Hz for the DPD and NDPD patients, respectively. Furthermore, compared with HC, the most significant inter-group difference across five brain oscillations was found in the basal ganglia (0.01 to 0.05 Hz) and paralimbic-limbic network (0.02 to 0.22 Hz) for the DPD patients, and in the visual cortex (0.02 to 0.05 Hz) for the NDPD patients. Compared with NDPD, the DPD patients showed reduced efficiency of nodes in the basal ganglia network (0.01 to 0.05 Hz). Our results demonstrated that DPD is characterized by a disrupted topological organization in large-scale brain functional networks. Moreover, the CEEMD analysis suggested a prominent dissociation in the topological organization of brain networks between DPD and NDPD in both space and frequency domains. Our findings indicated that these characteristic oscillatory activities in different functional circuits may contribute to distinct motor and non-motor components of clinical impairments in Parkinson's disease.
Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.
2016-01-01
Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works. PMID:26977400
Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K
2016-01-01
Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works.
Consensus between Pipelines in Structural Brain Networks
Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.
2014-01-01
Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977
The challenge of understanding the brain: where we stand in 2015
Lisman, John
2015-01-01
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections. PMID:25996132
Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.
Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W
2015-08-01
Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.
Disrupted functional connectome in antisocial personality disorder.
Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang
2017-08-01
Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.
Disrupted functional connectome in antisocial personality disorder
Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen
2017-01-01
Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949
Daianu, Madelaine; Jahanshad, Neda; Nir, Talia M.; Jack, Clifford R.; Weiner, Michael W.; Bernstein, Matthew; Thompson, Paul M.
2015-01-01
Diffusion imaging can assess the white matter connections within the brain, revealing how neural pathways break down in Alzheimer's disease (AD). We analyzed 3-Tesla whole-brain diffusion-weighted images from 202 participants scanned by the Alzheimer's Disease Neuroimaging Initiative – 50 healthy controls, 110 with mild cognitive impairment (MCI) and 42 AD patients. From whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We tested whether AD disrupts the ‘rich-club’ – a network property where high-degree network nodes are more interconnected than expected by chance. We calculated the rich-club properties at a range of degree thresholds, as well as other network topology measures including global degree, clustering coefficient, path length and efficiency. Network disruptions predominated in the low-degree regions of the connectome in patients, relative to controls. The other metrics also showed alterations, suggesting a distinctive pattern of disruption in AD, less pronounced in MCI, targeting global brain connectivity, and focusing on more remotely connected nodes rather than the central core of the network. AD involves severely reduced structural connectivity; our step-wise rich club coefficients analyze points to disruptions predominantly in the peripheral network components; other modalities of data are needed to know if this indicates impaired communication among non rich-club regions. The highly connected core was relatively preserved, offering new evidence on the neural basis of progressive risk for cognitive decline. PMID:26037224
Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu
2018-01-01
Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated that our method could effectively construct an individual morphological brain network based on multiple morphological features and could accurately discriminate MCI from NC and stable MCI from progressive MCI, and may provide a valuable tool for the investigation of individual morphological brain networks.
Graph theoretical analysis of complex networks in the brain
Stam, Cornelis J; Reijneveld, Jaap C
2007-01-01
Since the discovery of small-world and scale-free networks the study of complex systems from a network perspective has taken an enormous flight. In recent years many important properties of complex networks have been delineated. In particular, significant progress has been made in understanding the relationship between the structural properties of networks and the nature of dynamics taking place on these networks. For instance, the 'synchronizability' of complex networks of coupled oscillators can be determined by graph spectral analysis. These developments in the theory of complex networks have inspired new applications in the field of neuroscience. Graph analysis has been used in the study of models of neural networks, anatomical connectivity, and functional connectivity based upon fMRI, EEG and MEG. These studies suggest that the human brain can be modelled as a complex network, and may have a small-world structure both at the level of anatomical as well as functional connectivity. This small-world structure is hypothesized to reflect an optimal situation associated with rapid synchronization and information transfer, minimal wiring costs, as well as a balance between local processing and global integration. The topological structure of functional networks is probably restrained by genetic and anatomical factors, but can be modified during tasks. There is also increasing evidence that various types of brain disease such as Alzheimer's disease, schizophrenia, brain tumours and epilepsy may be associated with deviations of the functional network topology from the optimal small-world pattern. PMID:17908336
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Efficiency of weak brain connections support general cognitive functioning.
Santarnecchi, Emiliano; Galli, Giulia; Polizzotto, Nicola Riccardo; Rossi, Alessandro; Rossi, Simone
2014-09-01
Brain network topology provides valuable information on healthy and pathological brain functioning. Novel approaches for brain network analysis have shown an association between topological properties and cognitive functioning. Under the assumption that "stronger is better", the exploration of brain properties has generally focused on the connectivity patterns of the most strongly correlated regions, whereas the role of weaker brain connections has remained obscure for years. Here, we assessed whether the different strength of connections between brain regions may explain individual differences in intelligence. We analyzed-functional connectivity at rest in ninety-eight healthy individuals of different age, and correlated several connectivity measures with full scale, verbal, and performance Intelligent Quotients (IQs). Our results showed that the variance in IQ levels was mostly explained by the distributed communication efficiency of brain networks built using moderately weak, long-distance connections, with only a smaller contribution of stronger connections. The variability in individual IQs was associated with the global efficiency of a pool of regions in the prefrontal lobes, hippocampus, temporal pole, and postcentral gyrus. These findings challenge the traditional view of a prominent role of strong functional brain connections in brain topology, and highlight the importance of both strong and weak connections in determining the functional architecture responsible for human intelligence variability. Copyright © 2014 Wiley Periodicals, Inc.
Yun, Ruijuan; Lin, Chung-Chih; Wu, Shuicai; Huang, Chu-Chung; Lin, Ching-Po; Chao, Yi-Ping
2013-01-01
In this study, we employed diffusion tensor imaging (DTI) to construct brain structural network and then derive the connection matrices from 96 healthy elderly subjects. The correlation analysis between these topological properties of network based on graph theory and the Cognitive Abilities Screening Instrument (CASI) index were processed to extract the significant network characteristics. These characteristics were then integrated to estimate the models by various machine-learning algorithms to predict user's cognitive performance. From the results, linear regression model and Gaussian processes model showed presented better abilities with lower mean absolute errors of 5.8120 and 6.25 to predict the cognitive performance respectively. Moreover, these extracted topological properties of brain structural network derived from DTI also could be regarded as the bio-signatures for further evaluation of brain degeneration in healthy aged and early diagnosis of mild cognitive impairment (MCI).
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
A Topological Criterion for Filtering Information in Complex Brain Networks
Latora, Vito; Chavez, Mario
2017-01-01
In many biological systems, the network of interactions between the elements can only be inferred from experimental measurements. In neuroscience, non-invasive imaging tools are extensively used to derive either structural or functional brain networks in-vivo. As a result of the inference process, we obtain a matrix of values corresponding to a fully connected and weighted network. To turn this into a useful sparse network, thresholding is typically adopted to cancel a percentage of the weakest connections. The structural properties of the resulting network depend on how much of the inferred connectivity is eventually retained. However, how to objectively fix this threshold is still an open issue. We introduce a criterion, the efficiency cost optimization (ECO), to select a threshold based on the optimization of the trade-off between the efficiency of a network and its wiring cost. We prove analytically and we confirm through numerical simulations that the connection density maximizing this trade-off emphasizes the intrinsic properties of a given network, while preserving its sparsity. Moreover, this density threshold can be determined a-priori, since the number of connections to filter only depends on the network size according to a power-law. We validate this result on several brain networks, from micro- to macro-scales, obtained with different imaging modalities. Finally, we test the potential of ECO in discriminating brain states with respect to alternative filtering methods. ECO advances our ability to analyze and compare biological networks, inferred from experimental data, in a fast and principled way. PMID:28076353
Self-organized Criticality in Hierarchical Brain Network
NASA Astrophysics Data System (ADS)
Yang, Qiu-Ying; Zhang, Ying-Yue; Chen, Tian-Lun
2008-11-01
It is shown that the cortical brain network of the macaque displays a hierarchically clustered organization and the neuron network shows small-world properties. Now the two factors will be considered in our model and the dynamical behavior of the model will be studied. We study the characters of the model and find that the distribution of avalanche size of the model follows power-law behavior.
Assortative mixing in functional brain networks during epileptic seizures
NASA Astrophysics Data System (ADS)
Bialonski, Stephan; Lehnertz, Klaus
2013-09-01
We investigate assortativity of functional brain networks before, during, and after one-hundred epileptic seizures with different anatomical onset locations. We construct binary functional networks from multi-channel electroencephalographic data recorded from 60 epilepsy patients; and from time-resolved estimates of the assortativity coefficient, we conclude that positive degree-degree correlations are inherent to seizure dynamics. While seizures evolve, an increasing assortativity indicates a segregation of the underlying functional network into groups of brain regions that are only sparsely interconnected, if at all. Interestingly, assortativity decreases already prior to seizure end. Together with previous observations of characteristic temporal evolutions of global statistical properties and synchronizability of epileptic brain networks, our findings may help to gain deeper insights into the complicated dynamics underlying generation, propagation, and termination of seizures.
Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang
2016-01-01
Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM.
Cai, Lin; Dong, Qi; Niu, Haijing
2018-04-01
Early childhood (7-8 years old) and early adolescence (11-12 years old) constitute two landmark developmental stages that comprise considerable changes in neural cognition. However, very limited information from functional neuroimaging studies exists on the functional topological configuration of the human brain during specific developmental periods. In the present study, we utilized continuous resting-state functional near-infrared spectroscopy (rs-fNIRS) imaging data to examine topological changes in network organization during development from early childhood and early adolescence to adulthood. Our results showed that the properties of small-worldness and modularity were not significantly different across development, demonstrating the developmental maturity of important functional brain organization in early childhood. Intriguingly, young children had a significantly lower global efficiency than early adolescents and adults, which revealed that the integration of the distributed networks strengthens across the developmental stages underlying cognitive development. Moreover, local efficiency of young children and adolescents was significantly lower than that of adults, while there was no difference between these two younger groups. This finding demonstrated that functional segregation remained relatively steady from early childhood to early adolescence, and the brain in these developmental periods possesses no optimal network configuration. Furthermore, we found heterogeneous developmental patterns in the regional nodal properties in various brain regions, such as linear increased nodal properties in the frontal cortex, indicating increasing cognitive capacity over development. Collectively, our results demonstrated that significant topological changes in functional network organization occurred during these two critical developmental stages, and provided a novel insight into elucidating subtle changes in brain functional networks across development. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Brain Network Analysis from High-Resolution EEG Signals
NASA Astrophysics Data System (ADS)
de Vico Fallani, Fabrizio; Babiloni, Fabio
Over the last decade, there has been a growing interest in the detection of the functional connectivity in the brain from different neuroelectromagnetic and hemodynamic signals recorded by several neuro-imaging devices such as the functional Magnetic Resonance Imaging (fMRI) scanner, electroencephalography (EEG) and magnetoencephalography (MEG) apparatus. Many methods have been proposed and discussed in the literature with the aim of estimating the functional relationships among different cerebral structures. However, the necessity of an objective comprehension of the network composed by the functional links of different brain regions is assuming an essential role in the Neuroscience. Consequently, there is a wide interest in the development and validation of mathematical tools that are appropriate to spot significant features that could describe concisely the structure of the estimated cerebral networks. The extraction of salient characteristics from brain connectivity patterns is an open challenging topic, since often the estimated cerebral networks have a relative large size and complex structure. Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory. Since a graph is a mathematical representation of a network, which is essentially reduced to nodes and connections between them, the use of a theoretical graph approach seems relevant and useful as firstly demonstrated on a set of anatomical brain networks. In those studies, the authors have employed two characteristic measures, the average shortest path L and the clustering index C, to extract respectively the global and local properties of the network structure. They have found that anatomical brain networks exhibit many local connections (i.e. a high C) and few random long distance connections (i.e. a low L). These values identify a particular model that interpolate between a regular lattice and a random structure. Such a model has been designated as "small-world" network in analogy with the concept of the small-world phenomenon observed more than 30 years ago in social systems. In a similar way, many types of functional brain networks have been analyzed according to this mathematical approach. In particular, several studies based on different imaging techniques (fMRI, MEG and EEG) have found that the estimated functional networks showed small-world characteristics. In the functional brain connectivity context, these properties have been demonstrated to reflect an optimal architecture for the information processing and propagation among the involved cerebral structures. However, the performance of cognitive and motor tasks as well as the presence of neural diseases has been demonstrated to affect such a small-world topology, as revealed by the significant changes of L and C. Moreover, some functional brain networks have been mostly found to be very unlike the random graphs in their degree-distribution, which gives information about the allocation of the functional links within the connectivity pattern. It was demonstrated that the degree distributions of these networks follow a power-law trend. For this reason those networks are called "scale-free". They still exhibit the small-world phenomenon but tend to contain few nodes that act as highly connected "hubs". Scale-free networks are known to show resistance to failure, facility of synchronization and fast signal processing. Hence, it would be important to see whether the scaling properties of the functional brain networks are altered under various pathologies or experimental tasks. The present Chapter proposes a theoretical graph approach in order to evaluate the functional connectivity patterns obtained from high-resolution EEG signals. In this way, the "Brain Network Analysis" (in analogy with the Social Network Analysis that has emerged as a key technique in modern sociology) represents an effective methodology improving the comprehension of the complex interactions in the brain.
Organization and hierarchy of the human functional brain network lead to a chain-like core.
Mastrandrea, Rossana; Gabrielli, Andrea; Piras, Fabrizio; Spalletta, Gianfranco; Caldarelli, Guido; Gili, Tommaso
2017-07-07
The brain is a paradigmatic example of a complex system: its functionality emerges as a global property of local mesoscopic and microscopic interactions. Complex network theory allows to elicit the functional architecture of the brain in terms of links (correlations) between nodes (grey matter regions) and to extract information out of the noise. Here we present the analysis of functional magnetic resonance imaging data from forty healthy humans at rest for the investigation of the basal scaffold of the functional brain network organization. We show how brain regions tend to coordinate by forming a highly hierarchical chain-like structure of homogeneously clustered anatomical areas. A maximum spanning tree approach revealed the centrality of the occipital cortex and the peculiar aggregation of cerebellar regions to form a closed core. We also report the hierarchy of network segregation and the level of clusters integration as a function of the connectivity strength between brain regions.
Erdeniz, Burak; Serin, Emin; İbadi, Yelda; Taş, Cumhur
2017-12-30
Schizophrenia is a complex disorder in which abnormalities in brain connectivity and social functioning play a central role. The aim of this study is to explore small-world network properties, and understand their relationship with social functioning and social cognition in the context of schizophrenia, by testing functional connectivity differences in network properties and its relation to clinical behavioral measures. Resting-state fMRI time series data were acquired from 23 patients diagnosed with schizophrenia and 23 healthy volunteers. The results revealed that patients with schizophrenia show significantly decreased connectivity between a range of brain regions, particularly involving connections among the right orbitofrontal cortex, bilateral putamen and left amygdala. Furthermore, topological properties of functional brain networks in patients with schizophrenia were characterized by reduced path length compared to healthy controls; however, no significant difference was found for clustering coefficient, local efficiency or global efficiency. Additionally, we found that nodal efficiency of the amygdala and the putamen were significantly correlated with the independence-performance subscale of social functioning scale (SFC), and Reading the Mind in the Eyes test; however, the correlations do not survive correction for multiple comparison. The current results help to clarify the relationship between social functioning deficits and topological brain measures in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.
2018-04-01
The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.
Zhong, Suyu; He, Yong; Gong, Gaolang
2015-05-01
Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley Periodicals, Inc.
Properties of a memory network in psychology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Properties of a memory network in psychology
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2007-12-01
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Integration of Network Topological and Connectivity Properties for Neuroimaging Classification
Jie, Biao; Gao, Wei; Wang, Qian; Wee, Chong-Yaw
2014-01-01
Rapid advances in neuroimaging techniques have provided an efficient and noninvasive way for exploring the structural and functional connectivity of the human brain. Quantitative measurement of abnormality of brain connectivity in patients with neurodegenerative diseases, such as mild cognitive impairment (MCI) and Alzheimer’s disease (AD), have also been widely reported, especially at a group level. Recently, machine learning techniques have been applied to the study of AD and MCI, i.e., to identify the individuals with AD/MCI from the healthy controls (HCs). However, most existing methods focus on using only a single property of a connectivity network, although multiple network properties, such as local connectivity and global topological properties, can potentially be used. In this paper, by employing multikernel based approach, we propose a novel connectivity based framework to integrate multiple properties of connectivity network for improving the classification performance. Specifically, two different types of kernels (i.e., vector-based kernel and graph kernel) are used to quantify two different yet complementary properties of the network, i.e., local connectivity and global topological properties. Then, multikernel learning (MKL) technique is adopted to fuse these heterogeneous kernels for neuroimaging classification. We test the performance of our proposed method on two different data sets. First, we test it on the functional connectivity networks of 12 MCI and 25 HC subjects. The results show that our method achieves significant performance improvement over those using only one type of network property. Specifically, our method achieves a classification accuracy of 91.9%, which is 10.8% better than those by single network-property-based methods. Then, we test our method for gender classification on a large set of functional connectivity networks with 133 infants scanned at birth, 1 year, and 2 years, also demonstrating very promising results. PMID:24108708
Intrinsic and task-evoked network architectures of the human brain
Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.
2014-01-01
Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964
Changes in functional brain networks following sports-related concussion in adolescents.
Virji-Babul, Naznin; Hilderman, Courtney G E; Makan, Nadia; Liu, Aiping; Smith-Forrester, Jenna; Franks, Chris; Wang, Z J
2014-12-01
Sports-related concussion is a major public health issue; however, little is known about the underlying changes in functional brain networks in adolescents following injury. Our aim was to use the tools from graph theory to evaluate the changes in brain network properties following concussion in adolescent athletes. We recorded resting state electroencephalography (EEG) in 33 healthy adolescent athletes and 9 adolescent athletes with a clinical diagnosis of subacute concussion. Graph theory analysis was applied to these data to evaluate changes in brain networks. Global and local metrics of the structural properties of the graph were calculated for each group and correlated with Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores. Brain networks of both groups showed small-world topology with no statistically significant differences in the global metrics; however, significant differences were found in the local metrics. Specifically, in the concussed group, we noted: 1) increased values of betweenness and degree in frontal electrode sites corresponding to the (R) dorsolateral prefrontal cortex and the (R) inferior frontal gyrus and 2) decreased values of degree in the region corresponding to the (R) frontopolar prefrontal cortex. In addition, there was significant negative correlation between degree and hub value, with total symptom score at the electrode site corresponding to the (R) prefrontal cortex. This preliminary report in adolescent athletes shows for the first time that resting-state EEG combined with graph theoretical analysis may provide an objective method of evaluating changes in brain networks following concussion. This approach may be useful in identifying individuals at risk for future injury.
Zhao, Jia; Liu, Jiangang; Jiang, Xin; Zhou, Guifei; Chen, Guowei; Ding, Xiao P; Fu, Genyue; Lee, Kang
2016-01-01
Executive function (EF) plays vital roles in our everyday adaptation to the ever-changing environment. However, limited existing studies have linked EF to the resting-state brain activity. The functional connectivity in the resting state between the sub-regions of the brain can reveal the intrinsic neural mechanisms involved in cognitive processing of EF without disturbance from external stimuli. The present study investigated the relations between the behavioral executive function (EF) scores and the resting-state functional network topological properties in the Prefrontal Cortex (PFC). We constructed complex brain functional networks in the PFC from 90 healthy young adults using functional near infrared spectroscopy (fNIRS). We calculated the correlations between the typical network topological properties (regional topological properties and global topological properties) and the scores of both the Total EF and components of EF measured by computer-based Cambridge Neuropsychological Test Automated Battery (CANTAB). We found that the Total EF scores were positively correlated with regional properties in the right dorsal superior frontal gyrus (SFG), whereas the opposite pattern was found in the right triangular inferior frontal gyrus (IFG). Different EF components were related to different regional properties in various PFC areas, such as planning in the right middle frontal gyrus (MFG), working memory mainly in the right MFG and triangular IFG, short-term memory in the left dorsal SFG, and task switch in the right MFG. In contrast, there were no significant findings for global topological properties. Our findings suggested that the PFC plays an important role in individuals' behavioral performance in the executive function tasks. Further, the resting-state functional network can reveal the intrinsic neural mechanisms involved in behavioral EF abilities.
An Adaptive Complex Network Model for Brain Functional Networks
Gomez Portillo, Ignacio J.; Gleiser, Pablo M.
2009-01-01
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902
Jestrović, Iva; Coyle, James L.; Perera, Subashan
2016-01-01
Consuming thicker fluids and swallowing in the chin-tuck position has been shown to be advantageous for some patients with neurogenic dysphagia who aspirate due to various causes. The anatomical changes caused by these therapeutic techniques are well known, but it is unclear whether these changes alter the cerebral processing of swallow-related sensorimotor activity. We sought to investigate the effect of increased fluid viscosity and chin-down posture during swallowing on brain networks. 55 healthy adults performed water, nectar-thick, and honey thick liquid swallows in the neutral and chin-tuck positions while EEG signals were recorded. After pre-processing of the EEG timeseries, the time-frequency based synchrony measure was used for forming the brain networks to investigate whether there were differences among the brain networks between the swallowing of different fluid viscosities and swallowing in different head positions. We also investigated whether swallowing under various conditions exhibit small-world properties. Results showed that fluid viscosity affects the brain network in the Delta, Theta, Alpha, Beta, and Gamma frequency bands and that swallowing in the chin-tuck head position affects brain networks in the Alpha, Beta, and Gamma frequency bands. In addition, we showed that swallowing in all tested conditions exhibited small-world properties. Therefore, fluid viscosity and head positions should be considered in future swallowing EEG investigations. PMID:27693396
Wang, Lingxiao; Wu, Lingdan; Lin, Xiao; Zhang, Yifen; Zhou, Hongli; Du, Xiaoxia; Dong, Guangheng
2016-08-30
Although numerous neuroimaging studies have detected structural and functional abnormality in specific brain regions and connections in subjects with Internet gaming disorder (IGD), the topological organization of the whole-brain network in IGD remain unclear. In this study, we applied graph theoretical analysis to explore the intrinsic topological properties of brain networks in Internet gaming disorder (IGD). 37 IGD subjects and 35 matched healthy control (HC) subjects underwent a resting-state functional magnetic resonance imaging scan. The functional networks were constructed by thresholding partial correlation matrices of 90 brain regions. Then we applied graph-based approaches to analysis their topological attributes, including small-worldness, nodal metrics, and efficiency. Both IGD and HC subjects show efficient and economic brain network, and small-world topology. Although there was no significant group difference in global topology metrics, the IGD subjects showed reduced regional centralities in the prefrontal cortex, left posterior cingulate cortex, right amygdala, and bilateral lingual gyrus, and increased functional connectivity in sensory-motor-related brain networks compared to the HC subjects. These results imply that people with IGD may be associated with functional network dysfunction, including impaired executive control and emotional management, but enhanced coordination among visual, sensorimotor, auditory and visuospatial systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Li, Huaizhou; Zhou, Haiyan; Yang, Yang; Wang, Haiyuan; Zhong, Ning
2017-10-01
Previous studies have reported the enhanced randomization of functional brain networks in patients with major depressive disorder (MDD). However, little is known about the changes of key nodal attributes for randomization, the resilience of network, and the clinical significance of the alterations. In this study, we collected the resting-state functional MRI data from 19 MDD patients and 19 healthy control (HC) individuals. Graph theory analysis showed that decreases were found in the small-worldness, clustering coefficient, local efficiency, and characteristic path length (i.e., increase of global efficiency) in the network of MDD group compared with HC group, which was consistent with previous findings and suggested the development toward randomization in the brain network in MDD. In addition, the greater resilience under the targeted attacks was also found in the network of patients with MDD. Furthermore, the abnormal nodal properties were found, including clustering coefficients and nodal efficiencies in the left orbital superior frontal gyrus, bilateral insula, left amygdala, right supramarginal gyrus, left putamen, left posterior cingulate cortex, left angular gyrus. Meanwhile, the correlation analysis showed that most of these abnormal areas were associated with the clinical status. The observed increased randomization and resilience in MDD might be related to the abnormal hub nodes in the brain networks, which were attacked by the disease pathology. Our findings provide new evidence to indicate that the weakening of specialized regions and the enhancement of whole brain integrity could be the potential endophenotype of the depressive pathology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.
2016-01-01
Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153
Long-term variability of global statistical properties of epileptic brain networks
NASA Astrophysics Data System (ADS)
Kuhnert, Marie-Therese; Elger, Christian E.; Lehnertz, Klaus
2010-12-01
We investigate the influence of various pathophysiologic and physiologic processes on global statistical properties of epileptic brain networks. We construct binary functional networks from long-term, multichannel electroencephalographic data recorded from 13 epilepsy patients, and the average shortest path length and the clustering coefficient serve as global statistical network characteristics. For time-resolved estimates of these characteristics we observe large fluctuations over time, however, with some periodic temporal structure. These fluctuations can—to a large extent—be attributed to daily rhythms while relevant aspects of the epileptic process contribute only marginally. Particularly, we could not observe clear cut changes in network states that can be regarded as predictive of an impending seizure. Our findings are of particular relevance for studies aiming at an improved understanding of the epileptic process with graph-theoretical approaches.
Disrupted Structural Brain Network in AD and aMCI: A Finding of Long Fiber Degeneration.
Fang, Rong; Yan, Xiao-Xiao; Wu, Zhi-Yuan; Sun, Yu; Yin, Qi-Hua; Wang, Ying; Tang, Hui-Dong; Sun, Jun-Feng; Miao, Fei; Chen, Sheng-Di
2015-01-01
Although recent evidence has emerged that Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) patients show both regional brain abnormalities and topological degeneration in brain networks, our understanding of the effects of white matter fiber aberrations on brain network topology in AD and aMCI is still rudimentary. In this study, we investigated the regional volumetric aberrations and the global topological abnormalities in AD and aMCI patients. The results showed a widely distributed atrophy in both gray and white matters in the AD and aMCI groups. In particular, AD patients had weaker connectivity with long fiber length than aMCI and normal control (NC) groups, as assessed by fractional anisotropy (FA). Furthermore, the brain networks of all three groups exhibited prominent economical small-world properties. Interestingly, the topological characteristics estimated from binary brain networks showed no significant group effect, indicating a tendency of preserving an optimal topological architecture in AD and aMCI during degeneration. However, significantly longer characteristic path length was observed in the FA weighted brain networks of AD and aMCI patients, suggesting dysfunctional global integration. Moreover, the abnormality of the characteristic path length was negatively correlated with the clinical ratings of cognitive impairment. Thus, the results therefore suggested that the topological alterations in weighted brain networks of AD are induced by the loss of connectivity with long fiber lengths. Our findings provide new insights into the alterations of the brain network in AD and may indicate the predictive value of the network metrics as biomarkers of disease development.
Age-associated changes in rich-club organisation in autistic and neurotypical human brains
Watanabe, Takamitsu; Rees, Geraint
2015-01-01
Macroscopic structural networks in the human brain have a rich-club architecture comprising both highly inter-connected central regions and sparsely connected peripheral regions. Recent studies show that disruption of this functionally efficient organisation is associated with several psychiatric disorders. However, despite increasing attention to this network property, whether age-associated changes in rich-club organisation occur during human adolescence remains unclear. Here, analysing a publicly shared diffusion tensor imaging dataset, we found that, during adolescence, brains of typically developing (TD) individuals showed increases in rich-club organisation and inferred network functionality, whereas individuals with autism spectrum disorders (ASD) did not. These differences between TD and ASD groups were statistically significant for both structural and functional properties. Moreover, this typical age-related changes in rich-club organisation were characterised by progressive involvement of the right anterior insula. In contrast, in ASD individuals, did not show typical increases in grey matter volume, and this relative anatomical immaturity was correlated with the severity of ASD social symptoms. These results provide evidence that rich-club architecture is one of the bases of functionally efficient brain networks underpinning complex cognitive functions in adult human brains. Furthermore, our findings suggest that immature rich-club organisation might be associated with some neurodevelopmental disorders. PMID:26537477
Sood, Disha; Chwalek, Karolina; Stuntz, Emily; Pouli, Dimitra; Du, Chuang; Tang-Schomer, Min; Georgakoudi, Irene; Black, Lauren D; Kaplan, David L
2016-01-01
The extracellular matrix (ECM) constituting up to 20% of the organ volume is a significant component of the brain due to its instructive role in the compartmentalization of functional microdomains in every brain structure. The composition, quantity and structure of ECM changes dramatically during the development of an organism greatly contributing to the remarkably sophisticated architecture and function of the brain. Since fetal brain is highly plastic, we hypothesize that the fetal brain ECM may contain cues promoting neural growth and differentiation, highly desired in regenerative medicine. Thus, we studied the effect of brain-derived fetal and adult ECM complemented with matricellular proteins on cortical neurons using in vitro 3D bioengineered model of cortical brain tissue. The tested parameters included neuronal network density, cell viability, calcium signaling and electrophysiology. Both, adult and fetal brain ECM as well as matricellular proteins significantly improved neural network formation as compared to single component, collagen I matrix. Additionally, the brain ECM improved cell viability and lowered glutamate release. The fetal brain ECM induced superior neural network formation, calcium signaling and spontaneous spiking activity over adult brain ECM. This study highlights the difference in the neuroinductive properties of fetal and adult brain ECM and suggests that delineating the basis for this divergence may have implications for regenerative medicine.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A
2015-06-01
A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.
Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong
2018-02-01
The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.
ICA model order selection of task co-activation networks.
Ray, Kimberly L; McKay, D Reese; Fox, Peter M; Riedel, Michael C; Uecker, Angela M; Beckmann, Christian F; Smith, Stephen M; Fox, Peter T; Laird, Angela R
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders.
ICA model order selection of task co-activation networks
Ray, Kimberly L.; McKay, D. Reese; Fox, Peter M.; Riedel, Michael C.; Uecker, Angela M.; Beckmann, Christian F.; Smith, Stephen M.; Fox, Peter T.; Laird, Angela R.
2013-01-01
Independent component analysis (ICA) has become a widely used method for extracting functional networks in the brain during rest and task. Historically, preferred ICA dimensionality has widely varied within the neuroimaging community, but typically varies between 20 and 100 components. This can be problematic when comparing results across multiple studies because of the impact ICA dimensionality has on the topology of its resultant components. Recent studies have demonstrated that ICA can be applied to peak activation coordinates archived in a large neuroimaging database (i.e., BrainMap Database) to yield whole-brain task-based co-activation networks. A strength of applying ICA to BrainMap data is that the vast amount of metadata in BrainMap can be used to quantitatively assess tasks and cognitive processes contributing to each component. In this study, we investigated the effect of model order on the distribution of functional properties across networks as a method for identifying the most informative decompositions of BrainMap-based ICA components. Our findings suggest dimensionality of 20 for low model order ICA to examine large-scale brain networks, and dimensionality of 70 to provide insight into how large-scale networks fractionate into sub-networks. We also provide a functional and organizational assessment of visual, motor, emotion, and interoceptive task co-activation networks as they fractionate from low to high model-orders. PMID:24339802
Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Wang, Zi-Bo; Yang, Yu-Xuan; Li, Shan; Dang, Wei-Dong; Mao, Xiao-Qian
2018-09-01
Brain-computer interface (BCI) enables users to interact with the environment without relying on neural pathways and muscles. P300 based BCI systems have been extensively used to achieve human-machine interaction. However, the appearance of fatigue symptoms during operation process leads to the decline in classification accuracy of P300. Characterizing brain cognitive process underlying normal and fatigue conditions constitutes a problem of vital importance in the field of brain science. We in this paper propose a novel wavelet decomposition based complex network method to efficiently analyze the P300 signals recorded in the image stimulus test based on classical 'Oddball' paradigm. Initially, multichannel EEG signals are decomposed into wavelet coefficient series. Then we construct complex network by treating electrodes as nodes and determining the connections according to the 2-norm distances between wavelet coefficient series. The analysis of topological structure and statistical index indicates that the properties of brain network demonstrate significant distinctions between normal status and fatigue status. More specifically, the brain network reconfiguration in response to the cognitive task in fatigue status is reflected as the enhancement of the small-worldness.
Realistic modeling of neurons and networks: towards brain simulation.
D'Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
2013-01-01
Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field.
Realistic modeling of neurons and networks: towards brain simulation
D’Angelo, Egidio; Solinas, Sergio; Garrido, Jesus; Casellato, Claudia; Pedrocchi, Alessandra; Mapelli, Jonathan; Gandolfi, Daniela; Prestori, Francesca
Summary Realistic modeling is a new advanced methodology for investigating brain functions. Realistic modeling is based on a detailed biophysical description of neurons and synapses, which can be integrated into microcircuits. The latter can, in turn, be further integrated to form large-scale brain networks and eventually to reconstruct complex brain systems. Here we provide a review of the realistic simulation strategy and use the cerebellar network as an example. This network has been carefully investigated at molecular and cellular level and has been the object of intense theoretical investigation. The cerebellum is thought to lie at the core of the forward controller operations of the brain and to implement timing and sensory prediction functions. The cerebellum is well described and provides a challenging field in which one of the most advanced realistic microcircuit models has been generated. We illustrate how these models can be elaborated and embedded into robotic control systems to gain insight into how the cellular properties of cerebellar neurons emerge in integrated behaviors. Realistic network modeling opens up new perspectives for the investigation of brain pathologies and for the neurorobotic field. PMID:24139652
BrainNet Viewer: a network visualization tool for human brain connectomics.
Xia, Mingrui; Wang, Jinhui; He, Yong
2013-01-01
The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).
Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity
Samu, David; Seth, Anil K.; Nowotny, Thomas
2014-01-01
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain. PMID:24699277
Development of large-scale functional brain networks in children.
Supekar, Kaustubh; Musen, Mark; Menon, Vinod
2009-07-01
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.
Development of Large-Scale Functional Brain Networks in Children
Supekar, Kaustubh; Musen, Mark; Menon, Vinod
2009-01-01
The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7–9 y) and 22 young-adults (ages 19–22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar “small-world” organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism. PMID:19621066
Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong
2012-01-01
The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.
Quantifying randomness in real networks
NASA Astrophysics Data System (ADS)
Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri
2015-10-01
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.
Riemannian multi-manifold modeling and clustering in brain networks
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Salsabilian, Shiva; Wack, David S.; Muldoon, Sarah F.; Baidoo-Williams, Henry E.; Vettel, Jean M.; Cieslak, Matthew; Grafton, Scott T.
2017-08-01
This paper introduces Riemannian multi-manifold modeling in the context of brain-network analytics: Brainnetwork time-series yield features which are modeled as points lying in or close to a union of a finite number of submanifolds within a known Riemannian manifold. Distinguishing disparate time series amounts thus to clustering multiple Riemannian submanifolds. To this end, two feature-generation schemes for brain-network time series are put forth. The first one is motivated by Granger-causality arguments and uses an auto-regressive moving average model to map low-rank linear vector subspaces, spanned by column vectors of appropriately defined observability matrices, to points into the Grassmann manifold. The second one utilizes (non-linear) dependencies among network nodes by introducing kernel-based partial correlations to generate points in the manifold of positivedefinite matrices. Based on recently developed research on clustering Riemannian submanifolds, an algorithm is provided for distinguishing time series based on their Riemannian-geometry properties. Numerical tests on time series, synthetically generated from real brain-network structural connectivity matrices, reveal that the proposed scheme outperforms classical and state-of-the-art techniques in clustering brain-network states/structures.
Is the Internet gaming-addicted brain close to be in a pathological state?
Park, Chang-Hyun; Chun, Ji-Won; Cho, Huyn; Jung, Young-Chul; Choi, Jihye; Kim, Dai Jin
2017-01-01
Internet gaming addiction (IGA) is becoming a common and widespread mental health concern. Although IGA induces a variety of negative psychosocial consequences, it is yet ambiguous whether the brain addicted to Internet gaming is considered to be in a pathological state. We investigated IGA-induced abnormalities of the brain specifically from the network perspective and qualitatively assessed whether the Internet gaming-addicted brain is in a state similar to the pathological brain. Topological properties of brain functional networks were examined by applying a graph-theoretical approach to analyzing functional magnetic resonance imaging data acquired during a resting state in 19 IGA adolescents and 20 age-matched healthy controls. We compared functional distance-based measures, global and local efficiency of resting state brain functional networks between the two groups to assess how the IGA subjects' brain was topologically altered from the controls' brain. The IGA subjects had severer impulsiveness and their brain functional networks showed higher global efficiency and lower local efficiency relative to the controls. These topological differences suggest that IGA induced brain functional networks to shift toward the random topological architecture, as exhibited in other pathological states. Furthermore, for the IGA subjects, the topological alterations were specifically attributable to interregional connections incident on the frontal region, and the degree of impulsiveness was associated with the topological alterations over the frontolimbic connections. The current findings lend support to the proposition that the Internet gaming-addicted brain could be in the state similar to pathological states in terms of topological characteristics of brain functional networks. © 2015 Society for the Study of Addiction.
Vértes, Petra E; Bullmore, Edward T
2015-01-01
Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756
Development of Human Brain Structural Networks Through Infancy and Childhood
Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong
2015-01-01
During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033
Large-scale topology and the default mode network in the mouse connectome
Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.
2014-01-01
Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496
Jestrović, Iva; Coyle, James L; Perera, Subashan; Sejdić, Ervin
2016-12-01
Consuming thicker fluids and swallowing in the chin-tuck position has been shown to be advantageous for some patients with neurogenic dysphagia who aspirate due to various causes. The anatomical changes caused by these therapeutic techniques are well known, but it is unclear whether these changes alter the cerebral processing of swallow-related sensorimotor activity. We sought to investigate the effect of increased fluid viscosity and chin-down posture during swallowing on brain networks. 55 healthy adults performed water, nectar-thick, and honey thick liquid swallows in the neutral and chin-tuck positions while EEG signals were recorded. After pre-processing of the EEG timeseries, the time-frequency based synchrony measure was used for forming the brain networks to investigate whether there were differences among the brain networks between the swallowing of different fluid viscosities and swallowing in different head positions. We also investigated whether swallowing under various conditions exhibit small-world properties. Results showed that fluid viscosity affects the brain network in the Delta, Theta, Alpha, Beta, and Gamma frequency bands and that swallowing in the chin-tuck head position affects brain networks in the Alpha, Beta, and Gamma frequency bands. In addition, we showed that swallowing in all tested conditions exhibited small-world properties. Therefore, fluid viscosity and head positions should be considered in future swallowing EEG investigations. Copyright © 2016 Elsevier B.V. All rights reserved.
Topological Alterations of the Intrinsic Brain Network in Patients with Functional Dyspepsia.
Nan, Jiaofen; Zhang, Li; Zhu, Fubao; Tian, Xiaorui; Zheng, Qian; Deneen, Karen M von; Liu, Jixin; Zhang, Ming
2016-01-31
Previous studies reported that integrated information in the brain ultimately determines the subjective experience of patients with chronic pain, but how the information is integrated in the brain connectome of functional dyspepsia (FD) patients remains largely unclear. The study aimed to quantify the topological changes of the brain network in FD patients. Small-world properties, network efficiency and nodal centrality were utilized to measure the changes in topological architecture in 25 FD patients and 25 healthy controls based on functional magnetic resonance imaging. Pearson's correlation assessed the relationship of each topological property with clinical symptoms. FD patients showed an increase of clustering coefficients and local efficiency relative to controls from the perspective of a whole network as well as elevated nodal centrality in the right orbital part of the inferior frontal gyrus, left anterior cingulate gyrus and left hippocampus, and decreased nodal centrality in the right posterior cingulate gyrus, left cuneus, right putamen, left middle occipital gyrus and right inferior occipital gyrus. Moreover, the centrality in the anterior cingulate gyrus was significantly associated with symptom severity and duration in FD patients. Nevertheless, the inclusion of anxiety and depression scores as covariates erased the group differences in nodal centralities in the orbital part of the inferior frontal gyrus and hippocampus. The results suggest topological disruption of the functional brain networks in FD patients, presumably in response to disturbances of sensory information integrated with emotion, memory, pain modulation, and selective attention in patients.
Brain Interaction during Cooperation: Evaluating Local Properties of Multiple-Brain Network.
Sciaraffa, Nicolina; Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Colosimo, Alfredo; Bezerianos, Anastasios; Thakor, Nitish V; Babiloni, Fabio
2017-07-21
Subjects' interaction is the core of most human activities. This is the reason why a lack of coordination is often the cause of missing goals, more than individual failure. While there are different subjective and objective measures to assess the level of mental effort required by subjects while facing a situation that is getting harder, that is, mental workload, to define an objective measure based on how and if team members are interacting is not so straightforward. In this study, behavioral, subjective and synchronized electroencephalographic data were collected from couples involved in a cooperative task to describe the relationship between task difficulty and team coordination, in the sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity analysis provided information about the whole interacting system. The results showed that averaged local properties of a brain network were affected by task difficulty. In particular, strength changed significantly with task difficulty and clustering coefficients strongly correlated with the workload itself. In particular, a higher workload corresponded to lower clustering values over the central and parietal brain areas. Such results has been interpreted as less efficient organization of the network when the subjects' activities, due to high workload tendencies, were less coordinated.
Anatomical and functional assemblies of brain BOLD oscillations
Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania
2011-01-01
Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505
Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans
Devauchelle, Anne-Dominique; Béranger, Benoît; Tallon-Baudry, Catherine
2018-01-01
Resting-state networks offer a unique window into the brain’s functional architecture, but their characterization remains limited to instantaneous connectivity thus far. Here, we describe a novel resting-state network based on the delayed connectivity between the brain and the slow electrical rhythm (0.05 Hz) generated in the stomach. The gastric network cuts across classical resting-state networks with partial overlap with autonomic regulation areas. This network is composed of regions with convergent functional properties involved in mapping bodily space through touch, action or vision, as well as mapping external space in bodily coordinates. The network is characterized by a precise temporal sequence of activations within a gastric cycle, beginning with somato-motor cortices and ending with the extrastriate body area and dorsal precuneus. Our results demonstrate that canonical resting-state networks based on instantaneous connectivity represent only one of the possible partitions of the brain into coherent networks based on temporal dynamics. PMID:29561263
Gratton, Caterina; Sun, Haoxin; Petersen, Steven E
2018-03-01
Executive control functions are associated with frontal, parietal, cingulate, and insular brain regions that interact through distributed large-scale networks. Here, we discuss how fMRI functional connectivity can shed light on the organization of control networks and how they interact with other parts of the brain. In the first section of our review, we present convergent evidence from fMRI functional connectivity, activation, and lesion studies that there are multiple dissociable control networks in the brain with distinct functional properties. In the second section, we discuss how graph theoretical concepts can help illuminate the mechanisms by which control networks interact with other brain regions to carry out goal-directed functions, focusing on the role of specialized hub regions for mediating cross-network interactions. Again, we use a combination of functional connectivity, lesion, and task activation studies to bolster this claim. We conclude that a large-scale network perspective provides important neurobiological constraints on the neural underpinnings of executive control, which will guide future basic and translational research into executive function and its disruption in disease. © 2017 Society for Psychophysiological Research.
Chimera states in brain networks: Empirical neural vs. modular fractal connectivity
NASA Astrophysics Data System (ADS)
Chouzouris, Teresa; Omelchenko, Iryna; Zakharova, Anna; Hlinka, Jaroslav; Jiruska, Premysl; Schöll, Eckehard
2018-04-01
Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.
Huang, Dengfeng; Ren, Aifeng; Shang, Jing; Lei, Qiao; Zhang, Yun; Yin, Zhongliang; Li, Jun; von Deneen, Karen M; Huang, Liyu
2016-01-01
The aim of this study is to qualify the network properties of the brain networks between two different mental tasks (play task or rest task) in a healthy population. EEG signals were recorded from 19 healthy subjects when performing different mental tasks. Partial directed coherence (PDC) analysis, based on Granger causality (GC), was used to assess the effective brain networks during the different mental tasks. Moreover, the network measures, including degree, degree distribution, local and global efficiency in delta, theta, alpha, and beta rhythms were calculated and analyzed. The local efficiency is higher in the beta frequency and lower in the theta frequency during play task whereas the global efficiency is higher in the theta frequency and lower in the beta frequency in the rest task. This study reveals the network measures during different mental states and efficiency measures may be used as characteristic quantities for improvement in attentional performance.
The Human Thalamus Is an Integrative Hub for Functional Brain Networks
Bertolero, Maxwell A.
2017-01-01
The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivity remains largely unknown. By performing graph-theoretic analyses on thalamocortical functional connectivity data collected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multimodal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. SIGNIFICANCE STATEMENT The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate information processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions. These findings support the idea that the thalamus is involved in integrating information across cortical networks. PMID:28450543
Development of the brain's functional network architecture.
Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L
2010-12-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.
Development of the Brain's Functional Network Architecture
Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.
2013-01-01
A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563
The correlation of metrics in complex networks with applications in functional brain networks
NASA Astrophysics Data System (ADS)
Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.
2011-11-01
An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.
Kim, Minkyung; Kim, Seunghwan; Mashour, George A.; Lee, UnCheol
2017-01-01
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are “progressive and earlier” or “abrupt but delayed” account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical approach also offers a principled explanation of how the brain reconstitutes consciousness and cognitive functions after physiologic (sleep), pharmacologic (anesthesia), and pathologic (coma) perturbations. PMID:28713258
Kim, Minkyung; Kim, Seunghwan; Mashour, George A; Lee, UnCheol
2017-01-01
How the brain reconstitutes consciousness and cognition after a major perturbation like general anesthesia is an important question with significant neuroscientific and clinical implications. Recent empirical studies in animals and humans suggest that the recovery of consciousness after anesthesia is not random but ordered. Emergence patterns have been classified as progressive and abrupt transitions from anesthesia to consciousness, with associated differences in duration and electroencephalogram (EEG) properties. We hypothesized that the progressive and abrupt emergence patterns from the unconscious state are associated with, respectively, continuous and discontinuous synchronization transitions in functional brain networks. The discontinuous transition is explainable with the concept of explosive synchronization, which has been studied almost exclusively in network science. We used the Kuramato model, a simple oscillatory network model, to simulate progressive and abrupt transitions in anatomical human brain networks acquired from diffusion tensor imaging (DTI) of 82 brain regions. To facilitate explosive synchronization, distinct frequencies for hub nodes with a large frequency disassortativity (i.e., higher frequency nodes linking with lower frequency nodes, or vice versa) were applied to the brain network. In this simulation study, we demonstrated that both progressive and abrupt transitions follow distinct synchronization processes at the individual node, cluster, and global network levels. The characteristic synchronization patterns of brain regions that are "progressive and earlier" or "abrupt but delayed" account for previously reported behavioral responses of gradual and abrupt emergence from the unconscious state. The characteristic network synchronization processes observed at different scales provide new insights into how regional brain functions are reconstituted during progressive and abrupt emergence from the unconscious state. This theoretical approach also offers a principled explanation of how the brain reconstitutes consciousness and cognitive functions after physiologic (sleep), pharmacologic (anesthesia), and pathologic (coma) perturbations.
Investigating Driver Fatigue versus Alertness Using the Granger Causality Network.
Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca
2015-08-05
Driving fatigue has been identified as one of the main factors affecting drivers' safety. The aim of this study was to analyze drivers' different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers' fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain's ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers' fatigue levels, and as reference work for future studies.
Diminished neural network dynamics after moderate and severe traumatic brain injury.
Gilbert, Nicholas; Bernier, Rachel A; Calhoun, Vincent D; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M; Hillary, Frank G
2018-01-01
Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain's subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network "states" that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics.
White-Matter Structural Connectivity Underlying Human Laughter-Related Traits Processing.
Wu, Ching-Lin; Zhong, Suyu; Chan, Yu-Chen; Chen, Hsueh-Chih; Gong, Gaolang; He, Yong; Li, Ping
2016-01-01
Most research into the neural mechanisms of humor has not explicitly focused on the association between emotion and humor on the brain white matter networks mediating this connection. However, this connection is especially salient in gelotophobia (the fear of being laughed at), which is regarded as the presentation of humorlessness, and two related traits, gelotophilia (the enjoyment of being laughed at) and katagelasticism (the enjoyment of laughing at others). Here, we explored whether the topological properties of white matter networks can account for the individual differences in the laughter-related traits of 31 healthy adults. We observed a significant negative correlation between gelotophobia scores and the clustering coefficient, local efficiency and global efficiency, but a positive association between gelotophobia scores and path length in the brain's white matter network. Moreover, the current study revealed that with increasing individual fear of being laughed at, the linking efficiencies in superior frontal gyrus, anterior cingulate cortex, parahippocampal gyrus, and middle temporal gyrus decreased. However, there were no significant correlations between either gelotophilia or katagelasticism scores or the topological properties of the brain white matter network. These findings suggest that the fear of being laughed at is directly related to the level of local and global information processing of the brain network, which might provide new insights into the neural mechanisms of the humor information processing.
White-Matter Structural Connectivity Underlying Human Laughter-Related Traits Processing
Wu, Ching-Lin; Zhong, Suyu; Chan, Yu-Chen; Chen, Hsueh-Chih; Gong, Gaolang; He, Yong; Li, Ping
2016-01-01
Most research into the neural mechanisms of humor has not explicitly focused on the association between emotion and humor on the brain white matter networks mediating this connection. However, this connection is especially salient in gelotophobia (the fear of being laughed at), which is regarded as the presentation of humorlessness, and two related traits, gelotophilia (the enjoyment of being laughed at) and katagelasticism (the enjoyment of laughing at others). Here, we explored whether the topological properties of white matter networks can account for the individual differences in the laughter-related traits of 31 healthy adults. We observed a significant negative correlation between gelotophobia scores and the clustering coefficient, local efficiency and global efficiency, but a positive association between gelotophobia scores and path length in the brain's white matter network. Moreover, the current study revealed that with increasing individual fear of being laughed at, the linking efficiencies in superior frontal gyrus, anterior cingulate cortex, parahippocampal gyrus, and middle temporal gyrus decreased. However, there were no significant correlations between either gelotophilia or katagelasticism scores or the topological properties of the brain white matter network. These findings suggest that the fear of being laughed at is directly related to the level of local and global information processing of the brain network, which might provide new insights into the neural mechanisms of the humor information processing. PMID:27833572
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Ferguson, Michael A.; Anderson, Jeffrey S.; Spreng, R. Nathan
2017-01-01
Human intelligence has been conceptualized as a complex system of dissociable cognitive processes, yet studies investigating the neural basis of intelligence have typically emphasized the contributions of discrete brain regions or, more recently, of specific networks of functionally connected regions. Here we take a broader, systems perspective in order to investigate whether intelligence is an emergent property of synchrony within the brain’s intrinsic network architecture. Using a large sample of resting-state fMRI and cognitive data (n = 830), we report that the synchrony of functional interactions within and across distributed brain networks reliably predicts fluid and flexible intellectual functioning. By adopting a whole-brain, systems-level approach, we were able to reliably predict individual differences in human intelligence by characterizing features of the brain’s intrinsic network architecture. These findings hold promise for the eventual development of neural markers to predict changes in intellectual function that are associated with neurodevelopment, normal aging, and brain disease.
CEREBRA: a 3-D visualization tool for brain network extracted from fMRI data.
Nasir, Baris; Yarman Vural, Fatos T
2016-08-01
In this paper, we introduce a new tool, CEREBRA, to visualize the 3D network of human brain, extracted from the fMRI data. The tool aims to analyze the brain connectivity by representing the selected voxels as the nodes of the network. The edge weights among the voxels are estimated by considering the relationships among the voxel time series. The tool enables the researchers to observe the active brain regions and the interactions among them by using graph theoretic measures, such as, the edge weight and node degree distributions. CEREBRA provides an interactive interface with basic display and editing options for the researchers to study their hypotheses about the connectivity of the brain network. CEREBRA interactively simplifies the network by selecting the active voxels and the most correlated edge weights. The researchers may remove the voxels and edges by using local and global thresholds selected on the window. The built-in graph reduction algorithms are then eliminate the irrelevant regions, voxels and edges and display various properties of the network. The toolbox is capable of space-time representation of the voxel time series and estimated arc weights by using the animated heat maps.
Emergent properties of interacting populations of spiking neurons.
Cardanobile, Stefano; Rotter, Stefan
2011-01-01
Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations.
Emergent Properties of Interacting Populations of Spiking Neurons
Cardanobile, Stefano; Rotter, Stefan
2011-01-01
Dynamic neuronal networks are a key paradigm of increasing importance in brain research, concerned with the functional analysis of biological neuronal networks and, at the same time, with the synthesis of artificial brain-like systems. In this context, neuronal network models serve as mathematical tools to understand the function of brains, but they might as well develop into future tools for enhancing certain functions of our nervous system. Here, we present and discuss our recent achievements in developing multiplicative point processes into a viable mathematical framework for spiking network modeling. The perspective is that the dynamic behavior of these neuronal networks is faithfully reflected by a set of non-linear rate equations, describing all interactions on the population level. These equations are similar in structure to Lotka-Volterra equations, well known by their use in modeling predator-prey relations in population biology, but abundant applications to economic theory have also been described. We present a number of biologically relevant examples for spiking network function, which can be studied with the help of the aforementioned correspondence between spike trains and specific systems of non-linear coupled ordinary differential equations. We claim that, enabled by the use of multiplicative point processes, we can make essential contributions to a more thorough understanding of the dynamical properties of interacting neuronal populations. PMID:22207844
Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P
2012-04-01
Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.
Development of human brain structural networks through infancy and childhood.
Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong
2015-05-01
During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue
2017-07-04
This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.
Cerebral energy metabolism and the brain's functional network architecture: an integrative review.
Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E
2013-09-01
Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.
Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.
Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L
2017-03-01
Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Cognitive advantages of the third age: a neural network model of brain aging].
Karpenko, M P; Kachalova, L M; Budilova, E V; Terekhin, A T
2009-01-01
We consider a neural network model of age-related cognitive changes in aging brain based on Hopfield network with a sigmoid function of neuron activation. Age is included in the activation function as a parameter in the form of exponential rate denominator, which makes it possible to take into account the weakening of interneuronal links really observed in the aging brain. Analysis of properties of the Lyapunov function associated with the network shows that, with increasing parameter of age, its relief becomes smoother and the number of local minima (network attractors) decreases. As a result, the network gets less frequently stuck in the nearest local minima of the Lyapunov function and reaches a global minimum corresponding to the most effective solution of the cognitive task. It is reasonable to assume that similar changes really occur in the aging brain. Phenomenologically, these changes can be manifested as emergence in aged people of a cognitive quality such as wisdom i.e. ability to find optimal decisions in difficult controversial situations, to distract from secondary aspects and to see the problem as a whole.
Disrupted White Matter Network and Cognitive Decline in Type 2 Diabetes Patients.
Zhang, Junying; Liu, Zhen; Li, Zixiao; Wang, Yunxia; Chen, Yaojing; Li, Xin; Chen, Kewei; Shu, Ni; Zhang, Zhanjun
2016-05-06
Type 2 diabetes mellitus is accompanied by cognitive impairment and is associated with an increased risk of dementia. Damage to brain structures such as white matter network disruption may underlie this cognitive disturbance. In the present study, 886 non-diabetic and 163 type 2 diabetic participants completed a battery of neuropsychological tests. Among them, 38 diabetic patients and 34 non-diabetic participants that matched the patients for age/sex/education received a magnetic resonance imaging-based diffusion tensor imaging. Then we calculated the topological properties of the white matter network using a graph theoretical method to investigate network efficiency differences between groups. We found that type 2 diabetic patients had inferior performances compared to the non-diabetic controls, in several cognitive domains involving executive function, spatial processing, memory, and attention. We also found that diabetic patients exhibited a disrupted topological organization of the white matter network (including the global network properties, i.e., network strength, global efficiency, local efficiency and shortest path length, and the nodal efficiency of the right rolandic operculum) in the brain. Moreover, those global network properties and the nodal efficiency of the right rolandic operculum both had positive correlations with executive function in the patient group. The results suggest that type 2 diabetes mellitus leads to an alteration in the topological organization of the cortical white matter network and this alteration may account for the observed cognitive decline.
Aberrant brain functional connectome in patients with obstructive sleep apnea.
Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping
2018-01-01
Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These topological abnormalities and disconnections might be potential biomarkers of cognitive impairments in patients with OSA.
Kim, Minkyung; Mashour, George A.; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G.; Lee, Uncheol
2016-01-01
Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states. PMID:26834616
Kim, Minkyung; Mashour, George A; Moraes, Stefanie-Blain; Vanini, Giancarlo; Tarnal, Vijay; Janke, Ellen; Hudetz, Anthony G; Lee, Uncheol
2016-01-01
Sleep, anesthesia, and coma share a number of neural features but the recovery profiles are radically different. To understand the mechanisms of reversibility of unconsciousness at the network level, we studied the conditions for gradual and abrupt transitions in conscious and anesthetized states. We hypothesized that the conditions for explosive synchronization (ES) in human brain networks would be present in the anesthetized brain just over the threshold of unconsciousness. To test this hypothesis, functional brain networks were constructed from multi-channel electroencephalogram (EEG) recordings in seven healthy subjects across conscious, unconscious, and recovery states. We analyzed four variables that are involved in facilitating ES in generic, non-biological networks: (1) correlation between node degree and frequency, (2) disassortativity (i.e., the tendency of highly-connected nodes to link with less-connected nodes, or vice versa), (3) frequency difference of coupled nodes, and (4) an inequality relationship between local and global network properties, which is referred to as the suppressive rule. We observed that the four network conditions for ES were satisfied in the unconscious state. Conditions for ES in the human brain suggest a potential mechanism for rapid recovery from the lightly-anesthetized state. This study demonstrates for the first time that the network conditions for ES, formerly shown in generic networks only, are present in empirically-derived functional brain networks. Further investigations with deep anesthesia, sleep, and coma could provide insight into the underlying causes of variability in recovery profiles of these unconscious states.
Chen, Hua-Jun; Chen, Qiu-Feng; Yang, Zhe-Ting; Shi, Hai-Bin
2018-05-30
A higher risk of cognitive impairments has been found after an overt hepatic encephalopathy (OHE) episode in cirrhotic patients. We investigated the effect of prior OHE episodes on the topological organization of the functional brain network and its association with the relevant cognitive impairments. Resting-state functional MRI data were acquired from 41 cirrhotic patients (19 with prior OHE (Prior-OHE) and 22 without (Non-Prior-OHE)) and 21 healthy controls (HC). A Psychometric Hepatic Encephalopathy Score (PHES) assessed cognition. The whole-brain functional network was constructed by thresholding functional correlation matrices of 90 brain regions (derived from the Automated Anatomic Labeling atlas). The topological properties of the brain network, including small-worldness, network efficiency, and nodal efficiency, were examined using graph theory-based analysis. Globally, the Prior-OHE group had a significantly decreased clustering coefficient and local efficiency, compared with the controls. Locally, the nodal efficiency in the bilateral medial superior frontal gyrus and the right postcentral gyrus decreased in the Prior-OHE group, while the nodal efficiency in the bilateral anterior cingulate/paracingulate gyri and right superior parietal gyrus increased in the Prior-OHE group. The alterations of global and regional network parameters progressed from Non-Prior-OHE to Prior-OHE and the clustering coefficient and local efficiency values were significantly correlated with PHES results. In conclusion, cirrhosis leads to the reduction of brain functional network efficiency, which could be aggravated by a prior OHE episode. Aberrant topological organization of the functional brain network may contribute to a higher risk of cognitive impairments in Prior-OHE patients.
Yan, Yan; Song, Jian; Xu, Guozheng; Yao, Shun; Cao, Chenglong; Li, Chang; Peng, Guibao; Du, Hao
2017-10-01
This study investigated the characteristics of the small-world brain network architecture of patients with mild traumatic brain injury (MTBI), and a correlation between brain functional connectivity network properties in the resting-state fMRI and Standardized Assessment of Concussion (SAC) parameters. The neurological conditions of 22 MTBI patients and 17 normal control individuals were evaluated according to the SAC. Resting-state fMRI was performed in all subjects 3 and 7days after injury respectively. After preprocessing the fMRI data, cortex functional regions were marked using AAL90 and Dosenbach160 templates. The small-world network parameters and areas under the integral curves were computed in the range of sparsity from 0.01 to 0.5. Independent-sample t-tests were used to compare these parameters between the MTBI and control group. Significantly different parameters were investigated for correlations with SAC scores; those that correlated were chosen for further curve fitting. The clustering coefficient, the communication efficiency across in local networks, and the strength of connectivity were all higher in MTBI patients relative to control individuals. Parameters in 160 brain regions of the MTBI group significantly correlated with total SAC score and score for attention; the network parameters may be a quadratic function of attention scores of SAC and a cubic function of SAC scores. MTBI patients were characterized by elevated communication efficiency across global brain regions, and in local networks, and strength of mean connectivity. These features may be associated with brain function compensation. The network parameters significantly correlated with SAC total and attention scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B
2012-01-01
Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Diminished neural network dynamics after moderate and severe traumatic brain injury
Gilbert, Nicholas; Bernier, Rachel A.; Calhoun, Vincent D.; Brenner, Einat; Grossner, Emily; Rajtmajer, Sarah M.
2018-01-01
Over the past decade there has been increasing enthusiasm in the cognitive neurosciences around using network science to understand the system-level changes associated with brain disorders. A growing literature has used whole-brain fMRI analysis to examine changes in the brain’s subnetworks following traumatic brain injury (TBI). Much of network modeling in this literature has focused on static network mapping, which provides a window into gross inter-nodal relationships, but is insensitive to more subtle fluctuations in network dynamics, which may be an important predictor of neural network plasticity. In this study, we examine the dynamic connectivity with focus on state-level connectivity (state) and evaluate the reliability of dynamic network states over the course of two runs of intermittent task and resting data. The goal was to examine the dynamic properties of neural networks engaged periodically with task stimulation in order to determine: 1) the reliability of inter-nodal and network-level characteristics over time and 2) the transitions between distinct network states after traumatic brain injury. To do so, we enrolled 23 individuals with moderate and severe TBI at least 1-year post injury and 19 age- and education-matched healthy adults using functional MRI methods, dynamic connectivity modeling, and graph theory. The results reveal several distinct network “states” that were reliably evident when comparing runs; the overall frequency of dynamic network states are highly reproducible (r-values>0.8) for both samples. Analysis of movement between states resulted in fewer state transitions in the TBI sample and, in a few cases, brain injury resulted in the appearance of states not exhibited by the healthy control (HC) sample. Overall, the findings presented here demonstrate the reliability of observable dynamic mental states during periods of on-task performance and support emerging evidence that brain injury may result in diminished network dynamics. PMID:29883447
Siyah Mansoory, Meysam; Oghabian, Mohammad Ali; Jafari, Amir Homayoun; Shahbabaie, Alireza
2017-01-01
Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.
NASA Astrophysics Data System (ADS)
Rich, Scott; Zochowski, Michal; Booth, Victoria
2018-01-01
Acetylcholine (ACh), one of the brain's most potent neuromodulators, can affect intrinsic neuron properties through blockade of an M-type potassium current. The effect of ACh on excitatory and inhibitory cells with this potassium channel modulates their membrane excitability, which in turn affects their tendency to synchronize in networks. Here, we study the resulting changes in dynamics in networks with inter-connected excitatory and inhibitory populations (E-I networks), which are ubiquitous in the brain. Utilizing biophysical models of E-I networks, we analyze how the network connectivity structure in terms of synaptic connectivity alters the influence of ACh on the generation of synchronous excitatory bursting. We investigate networks containing all combinations of excitatory and inhibitory cells with high (Type I properties) or low (Type II properties) modulatory tone. To vary network connectivity structure, we focus on the effects of the strengths of inter-connections between excitatory and inhibitory cells (E-I synapses and I-E synapses), and the strengths of intra-connections among excitatory cells (E-E synapses) and among inhibitory cells (I-I synapses). We show that the presence of ACh may or may not affect the generation of network synchrony depending on the network connectivity. Specifically, strong network inter-connectivity induces synchronous excitatory bursting regardless of the cellular propensity for synchronization, which aligns with predictions of the PING model. However, when a network's intra-connectivity dominates its inter-connectivity, the propensity for synchrony of either inhibitory or excitatory cells can determine the generation of network-wide bursting.
Anti-correlated cortical networks of intrinsic connectivity in the rat brain.
Schwarz, Adam J; Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline "DMN-like" network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans.
Anti-Correlated Cortical Networks of Intrinsic Connectivity in the Rat Brain
Gass, Natalia; Sartorius, Alexander; Risterucci, Celine; Spedding, Michael; Schenker, Esther; Meyer-Lindenberg, Andreas; Weber-Fahr, Wolfgang
2013-01-01
Abstract In humans, resting-state blood oxygen level-dependent (BOLD) signals in the default mode network (DMN) are temporally anti-correlated with those from a lateral cortical network involving the frontal eye fields, secondary somatosensory and posterior insular cortices. Here, we demonstrate the existence of an analogous lateral cortical network in the rat brain, extending laterally from anterior secondary sensorimotor regions to the insular cortex and exhibiting low-frequency BOLD fluctuations that are temporally anti-correlated with a midline “DMN-like” network comprising posterior/anterior cingulate and prefrontal cortices. The primary nexus for this anti-correlation relationship was the anterior secondary motor cortex, close to regions that have been identified with frontal eye fields in the rat brain. The anti-correlation relationship was corroborated after global signal removal, underscoring this finding as a robust property of the functional connectivity signature in the rat brain. These anti-correlated networks demonstrate strong anatomical homology to networks identified in human and monkey connectivity studies, extend the known preserved functional connectivity relationships between rodent and primates, and support the use of resting-state functional magnetic resonance imaging as a translational imaging method between rat models and humans. PMID:23919836
Long-Term Effects of Attentional Performance on Functional Brain Network Topology
Breckel, Thomas P. K.; Thiel, Christiane M.; Bullmore, Edward T.; Zalesky, Andrew; Patel, Ameera X.; Giessing, Carsten
2013-01-01
Individuals differ in their cognitive resilience. Less resilient people demonstrate a greater tendency to vigilance decrements within sustained attention tasks. We hypothesized that a period of sustained attention is followed by prolonged changes in the organization of “resting state” brain networks and that individual differences in cognitive resilience are related to differences in post-task network reorganization. We compared the topological and spatial properties of brain networks as derived from functional MRI data (N = 20) recorded for 6 mins before and 12 mins after the performance of an attentional task. Furthermore we analysed changes in brain topology during task performance and during the switches between rest and task conditions. The cognitive resilience of each individual was quantified as the rate of increase in response latencies over the 32-minute time course of the attentional paradigm. On average, functional networks measured immediately post-task demonstrated significant and prolonged changes in network organization compared to pre-task networks with higher connectivity strength, more clustering, less efficiency, and shorter distance connections. Individual differences in cognitive resilience were significantly correlated with differences in the degree of recovery of some network parameters. Changes in network measures were still present in less resilient individuals in the second half of the post-task period (i.e. 6–12 mins after task completion), while resilient individuals already demonstrated significant reductions of functional connectivity and clustering towards pre-task levels. During task performance brain topology became more integrated with less clustering and higher global efficiency, but linearly decreased with ongoing time-on-task. We conclude that sustained attentional task performance has prolonged, “hang-over” effects on the organization of post-task resting-state brain networks; and that more cognitively resilient individuals demonstrate faster rates of network recovery following a period of attentional effort. PMID:24040185
Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156
Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming
2017-11-01
The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.
Investigating Driver Fatigue versus Alertness Using the Granger Causality Network
Kong, Wanzeng; Lin, Weicheng; Babiloni, Fabio; Hu, Sanqing; Borghini, Gianluca
2015-01-01
Driving fatigue has been identified as one of the main factors affecting drivers’ safety. The aim of this study was to analyze drivers’ different mental states, such as alertness and drowsiness, and find out a neurometric indicator able to detect drivers’ fatigue level in terms of brain networks. Twelve young, healthy subjects were recruited to take part in a driver fatigue experiment under different simulated driving conditions. The Electroencephalogram (EEG) signals of the subjects were recorded during the whole experiment and analyzed by using Granger-Causality-based brain effective networks. It was that the topology of the brain networks and the brain’s ability to integrate information changed when subjects shifted from the alert to the drowsy stage. In particular, there was a significant difference in terms of strength of Granger causality (GC) in the frequency domain and the properties of the brain effective network i.e., causal flow, global efficiency and characteristic path length between such conditions. Also, some changes were more significant over the frontal brain lobes for the alpha frequency band. These findings might be used to detect drivers’ fatigue levels, and as reference work for future studies. PMID:26251909
Rittman, Timothy; Rubinov, Mikail; Vértes, Petra E; Patel, Ameera X; Ginestet, Cedric E; Ghosh, Boyd C P; Barker, Roger A; Spillantini, Maria Grazia; Bullmore, Edward T; Rowe, James B
2016-12-01
Abnormalities of tau protein are central to the pathogenesis of progressive supranuclear palsy, whereas haplotype variation of the tau gene MAPT influences the risk of Parkinson disease and Parkinson's disease dementia. We assessed whether regional MAPT expression might be associated with selective vulnerability of global brain networks to neurodegenerative pathology. Using task-free functional magnetic resonance imaging in progressive supranuclear palsy, Parkinson disease, and healthy subjects (n = 128), we examined functional brain networks and measured the connection strength between 471 gray matter regions. We obtained MAPT and SNCA microarray expression data in healthy subjects from the Allen brain atlas. Regional connectivity varied according to the normal expression of MAPT. The regional expression of MAPT correlated with the proportionate loss of regional connectivity in Parkinson's disease. Executive cognition was impaired in proportion to the loss of hub connectivity. These effects were not seen with SNCA, suggesting that alpha-synuclein pathology is not mediated through global network properties. The results establish a link between regional MAPT expression and selective vulnerability of functional brain networks to neurodegeneration. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Prettejohn, Brenton J.; Berryman, Matthew J.; McDonnell, Mark D.
2011-01-01
Many simulations of networks in computational neuroscience assume completely homogenous random networks of the Erdös–Rényi type, or regular networks, despite it being recognized for some time that anatomical brain networks are more complex in their connectivity and can, for example, exhibit the “scale-free” and “small-world” properties. We review the most well known algorithms for constructing networks with given non-homogeneous statistical properties and provide simple pseudo-code for reproducing such networks in software simulations. We also review some useful mathematical results and approximations associated with the statistics that describe these network models, including degree distribution, average path length, and clustering coefficient. We demonstrate how such results can be used as partial verification and validation of implementations. Finally, we discuss a sometimes overlooked modeling choice that can be crucially important for the properties of simulated networks: that of network directedness. The most well known network algorithms produce undirected networks, and we emphasize this point by highlighting how simple adaptations can instead produce directed networks. PMID:21441986
Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit
2016-01-01
Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's ‘small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function. PMID:27356764
Spielberg, Jeffrey M; Beall, Erik B; Hulvershorn, Leslie A; Altinay, Murat; Karne, Harish; Anand, Amit
2016-12-01
Research on resting functional brain networks in bipolar disorder (BP) has been unable to differentiate between disturbances related to mania or depression, which is necessary to understand the mechanisms leading to each state. Past research has also been unable to elucidate the impact of BP-related network disturbances on the organizational properties of the brain (eg, communication efficiency). Thus, the present work sought to isolate network disturbances related to BP, fractionate these into components associated with manic and depressive symptoms, and characterize the impact of disturbances on network function. Graph theory was used to analyze resting functional magnetic resonance imaging data from 60 medication-free patients meeting the criteria for BP and either a current hypomanic (n=30) or depressed (n=30) episode and 30 closely age/sex-matched healthy controls. Correction for multiple comparisons was carried out. Compared with controls, BP patients evidenced hyperconnectivity in a network involving right amygdala. Fractionation revealed that (hypo)manic symptoms were associated with hyperconnectivity in an overlapping network and disruptions in the brain's 'small-world' network organization. Depressive symptoms predicted hyperconnectivity in a network involving orbitofrontal cortex along with a less resilient global network organization. Findings provide deeper insight into the differential pathophysiological processes associated with hypomania and depression, along with the particular impact these differential processes have on network function.
Tymofiyeva, Olga; Connolly, Colm G; Ho, Tiffany C; Sacchet, Matthew D; Henje Blom, Eva; LeWinn, Kaja Z; Xu, Duan; Yang, Tony T
2017-01-01
Adolescence is a vulnerable period for the onset of major depressive disorder (MDD). While some studies have shown white matter alterations in adolescent MDD, there is still a gap in understanding how the brain is affected at a network level. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 57 adolescents with MDD and 41 well-matched healthy controls who completed self-reports of depression symptoms and stressful life events. Using atlas-based brain regions as network nodes and tractography streamline count or mean fractional anisotropy (FA) as edge weights, we examined weighted local and global network properties and performed Network-Based Statistic (NBS) analysis. While there were no significant group differences in the global network properties, the FA-weighted node strength of the right caudate was significantly lower in depressed adolescents and correlated positively with age across both groups. The NBS analysis revealed a cluster of lower FA-based connectivity in depressed subjects centered on the right caudate, including connections to frontal gyri, insula, and anterior cingulate. Within this cluster, the most robust difference between groups was the connection between the right caudate and middle frontal gyrus. This connection showed a significant diagnosis by stress interaction and a negative correlation with total stress in depressed adolescents. Use of DTI-based tractography, one atlas-based parcellation, and FA values to characterize brain networks represent this study's limitations. Our results allowed us to suggest caudate-centric models of dysfunctional processes underlying adolescent depression, which might guide future studies and help better understand and treat this disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F
2014-02-01
A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.
Altered Cerebral Blood Flow Covariance Network in Schizophrenia.
Liu, Feng; Zhuo, Chuanjun; Yu, Chunshui
2016-01-01
Many studies have shown abnormal cerebral blood flow (CBF) in schizophrenia; however, it remains unclear how topological properties of CBF network are altered in this disorder. Here, arterial spin labeling (ASL) MRI was employed to measure resting-state CBF in 96 schizophrenia patients and 91 healthy controls. CBF covariance network of each group was constructed by calculating across-subject CBF covariance between 90 brain regions. Graph theory was used to compare intergroup differences in global and nodal topological measures of the network. Both schizophrenia patients and healthy controls had small-world topology in CBF covariance networks, implying an optimal balance between functional segregation and integration. Compared with healthy controls, schizophrenia patients showed reduced small-worldness, normalized clustering coefficient and local efficiency of the network, suggesting a shift toward randomized network topology in schizophrenia. Furthermore, schizophrenia patients exhibited altered nodal centrality in the perceptual-, affective-, language-, and spatial-related regions, indicating functional disturbance of these systems in schizophrenia. This study demonstrated for the first time that schizophrenia patients have disrupted topological properties in CBF covariance network, which provides a new perspective (efficiency of blood flow distribution between brain regions) for understanding neural mechanisms of schizophrenia.
Intra- and inter-brain synchronization during musical improvisation on the guitar.
Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman
2013-01-01
Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action.
Intra- and Inter-Brain Synchronization during Musical Improvisation on the Guitar
Müller, Viktor; Sänger, Johanna; Lindenberger, Ulman
2013-01-01
Humans interact with the environment through sensory and motor acts. Some of these interactions require synchronization among two or more individuals. Multiple-trial designs, which we have used in past work to study interbrain synchronization in the course of joint action, constrain the range of observable interactions. To overcome the limitations of multiple-trial designs, we conducted single-trial analyses of electroencephalography (EEG) signals recorded from eight pairs of guitarists engaged in musical improvisation. We identified hyper-brain networks based on a complex interplay of different frequencies. The intra-brain connections primarily involved higher frequencies (e.g., beta), whereas inter-brain connections primarily operated at lower frequencies (e.g., delta and theta). The topology of hyper-brain networks was frequency-dependent, with a tendency to become more regular at higher frequencies. We also found hyper-brain modules that included nodes (i.e., EEG electrodes) from both brains. Some of the observed network properties were related to musical roles during improvisation. Our findings replicate and extend earlier work and point to mechanisms that enable individuals to engage in temporally coordinated joint action. PMID:24040094
Bahrami, Mohsen; Laurienti, Paul J; Quandt, Sara A; Talton, Jennifer; Pope, Carey N; Summers, Phillip; Burdette, Jonathan H; Chen, Haiying; Liu, Jing; Howard, Timothy D; Arcury, Thomas A; Simpson, Sean L
2017-09-01
Latino immigrants that work on farms experience chronic exposures to potential neurotoxicants, such as pesticides, as part of their work. For tobacco farmworkers there is the additional risk of exposure to moderate to high doses of nicotine. Pesticide and nicotine exposures have been associated with neurological changes in the brain. Long-term exposure to cholinesterase-inhibiting pesticides, such as organophosphates and carbamates, and nicotine place this vulnerable population at risk for developing neurological dysfunction. In this study we examined whole-brain connectivity patterns and brain network properties of Latino immigrant workers. Comparisons were made between farmworkers and non-farmworkers using resting-state functional magnetic resonance imaging data and a mixed-effects modeling framework. We also evaluated how measures of pesticide and nicotine exposures contributed to the findings. Our results indicate that despite having the same functional connectivity density and strength, brain networks in farmworkers had more clustered and modular structures when compared to non-farmworkers. Our findings suggest increased functional specificity and decreased functional integration in farmworkers when compared to non-farmworkers. Cholinesterase activity was associated with population differences in community structure and the strength of brain network functional connections. Urinary cotinine, a marker of nicotine exposure, was associated with the differences in network community structure. Brain network differences between farmworkers and non-farmworkers, as well as pesticide and nicotine exposure effects on brain functional connections in this study, may illuminate underlying mechanisms that cause neurological implications in later life. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maksimenko, Vladimir A.; Lüttjohann, Annika; Makarov, Vladimir V.; Goremyko, Mikhail V.; Koronovskii, Alexey A.; Nedaivozov, Vladimir; Runnova, Anastasia E.; van Luijtelaar, Gilles; Hramov, Alexander E.; Boccaletti, Stefano
2017-07-01
We introduce a practical and computationally not demanding technique for inferring interactions at various microscopic levels between the units of a network from the measurements and the processing of macroscopic signals. Starting from a network model of Kuramoto phase oscillators, which evolve adaptively according to homophilic and homeostatic adaptive principles, we give evidence that the increase of synchronization within groups of nodes (and the corresponding formation of synchronous clusters) causes also the defragmentation of the wavelet energy spectrum of the macroscopic signal. Our methodology is then applied to getting a glance into the microscopic interactions occurring in a neurophysiological system, namely, in the thalamocortical neural network of an epileptic brain of a rat, where the group electrical activity is registered by means of multichannel EEG. We demonstrate that it is possible to infer the degree of interaction between the interconnected regions of the brain during different types of brain activities and to estimate the regions' participation in the generation of the different levels of consciousness.
Analyzing the association between functional connectivity of the brain and intellectual performance
Pamplona, Gustavo S. P.; Santos Neto, Gérson S.; Rosset, Sara R. E.; Rogers, Baxter P.; Salmon, Carlos E. G.
2015-01-01
Measurements of functional connectivity support the hypothesis that the brain is composed of distinct networks with anatomically separated nodes but common functionality. A few studies have suggested that intellectual performance may be associated with greater functional connectivity in the fronto-parietal network and enhanced global efficiency. In this fMRI study, we performed an exploratory analysis of the relationship between the brain's functional connectivity and intelligence scores derived from the Portuguese language version of the Wechsler Adult Intelligence Scale (WAIS-III) in a sample of 29 people, born and raised in Brazil. We examined functional connectivity between 82 regions, including graph theoretic properties of the overall network. Some previous findings were extended to the Portuguese-speaking population, specifically the presence of small-world organization of the brain and relationships of intelligence with connectivity of frontal, pre-central, parietal, occipital, fusiform and supramarginal gyrus, and caudate nucleus. Verbal comprehension was associated with global network efficiency, a new finding. PMID:25713528
Relationships between the resting-state network and the P3: Evidence from a scalp EEG study
NASA Astrophysics Data System (ADS)
Li, Fali; Liu, Tiejun; Wang, Fei; Li, He; Gong, Diankun; Zhang, Rui; Jiang, Yi; Tian, Yin; Guo, Daqing; Yao, Dezhong; Xu, Peng
2015-10-01
The P3 is an important event-related potential that can be used to identify neural activity related to the cognitive processes of the human brain. However, the relationships, especially the functional correlations, between resting-state brain activity and the P3 have not been well established. In this study, we investigated the relationships between P3 properties (i.e., amplitude and latency) and resting-state brain networks. The results indicated that P3 amplitude was significantly correlated with resting-state network topology, and in general, larger P3 amplitudes could be evoked when the resting-state brain network was more efficient. However, no significant relationships were found for the corresponding P3 latency. Additionally, the long-range connections between the prefrontal/frontal and parietal/occipital brain regions, which represent the synchronous activity of these areas, were functionally related to the P3 parameters, especially P3 amplitude. The findings of the current study may help us better understand inter-subject variation in the P3, which may be instructive for clinical diagnosis, cognitive neuroscience studies, and potential subject selection for brain-computer interface applications.
Individual diversity of functional brain network economy.
Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2015-04-01
On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders.
Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.
Pillai, Ajay S; Jirsa, Viktor K
2017-06-07
In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.
The neural basis of impaired self-awareness after traumatic brain injury
Ham, Timothy E.; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H.; Leech, Robert
2014-01-01
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at ‘rest’. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network. PMID:24371217
The neural basis of impaired self-awareness after traumatic brain injury.
Ham, Timothy E; Bonnelle, Valerie; Hellyer, Peter; Jilka, Sagar; Robertson, Ian H; Leech, Robert; Sharp, David J
2014-02-01
Self-awareness is commonly impaired after traumatic brain injury. This is an important clinical issue as awareness affects long-term outcome and limits attempts at rehabilitation. It can be investigated by studying how patients respond to their errors and monitor their performance on tasks. As awareness is thought to be an emergent property of network activity, we tested the hypothesis that impaired self-awareness is associated with abnormal brain network function. We investigated a group of subjects with traumatic brain injury (n = 63) split into low and high performance-monitoring groups based on their ability to recognize and correct their own errors. Brain network function was assessed using resting-state and event-related functional magnetic resonance imaging. This allowed us to investigate baseline network function, as well as the evoked response of networks to specific events including errors. The low performance-monitoring group underestimated their disability and showed broad attentional deficits. Neural activity within what has been termed the fronto-parietal control network was abnormal in patients with impaired self-awareness. The dorsal anterior cingulate cortex is a key part of this network that is involved in performance-monitoring. This region showed reduced functional connectivity to the rest of the fronto-parietal control network at 'rest'. In addition, the anterior insulae, which are normally tightly linked to the dorsal anterior cingulate cortex, showed increased activity following errors in the impaired group. Interestingly, the traumatic brain injury patient group with normal performance-monitoring showed abnormally high activation of the right middle frontal gyrus, putamen and caudate in response to errors. The impairment of self-awareness was not explained either by the location of focal brain injury, or the amount of traumatic axonal injury as demonstrated by diffusion tensor imaging. The results suggest that impairments of self-awareness after traumatic brain injury result from breakdown of functional interactions between nodes within the fronto-parietal control network.
A Brain Centred View of Psychiatric Comorbidity in Tinnitus: From Otology to Hodology
Minichino, Amedeo; Panico, Roberta; Testugini, Valeria; Altissimi, Giancarlo; Cianfrone, Giancarlo
2014-01-01
Introduction. Comorbid psychiatric disorders are frequent among patients affected by tinnitus. There are mutual clinical influences between tinnitus and psychiatric disorders, as well as neurobiological relations based on partially overlapping hodological and neuroplastic phenomena. The aim of the present paper is to review the evidence of alterations in brain networks underlying tinnitus physiopathology and to discuss them in light of the current knowledge of the neurobiology of psychiatric disorders. Methods. Relevant literature was identified through a search on Medline and PubMed; search terms included tinnitus, brain, plasticity, cortex, network, and pathways. Results. Tinnitus phenomenon results from systemic-neurootological triggers followed by neuronal remapping within several auditory and nonauditory pathways. Plastic reorganization and white matter alterations within limbic system, arcuate fasciculus, insula, salience network, dorsolateral prefrontal cortex, auditory pathways, ffrontocortical, and thalamocortical networks are discussed. Discussion. Several overlapping brain network alterations do exist between tinnitus and psychiatric disorders. Tinnitus, initially related to a clinicoanatomical approach based on a cortical localizationism, could be better explained by an holistic or associationist approach considering psychic functions and tinnitus as emergent properties of partially overlapping large-scale neural networks. PMID:25018882
Cao, Hengyi; Plichta, Michael M; Schäfer, Axel; Haddad, Leila; Grimm, Oliver; Schneider, Michael; Esslinger, Christine; Kirsch, Peter; Meyer-Lindenberg, Andreas; Tost, Heike
2014-01-01
The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies. © 2013 Elsevier Inc. All rights reserved.
A dedicated network for social interaction processing in the primate brain.
Sliwa, J; Freiwald, W A
2017-05-19
Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.
A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers
Yao, Zhijun; Hu, Bin; Zheng, Jiaxiang; Zheng, Weihao; Chen, Xuejiao; Gao, Xiang; Xie, Yuanwei; Fang, Lei
2015-01-01
Recently, some studies have applied the graph theory in brain network analysis in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). However, relatively little research has specifically explored the properties of the metabolic network in apolipoprotein E (APOE) ε4 allele carriers. In our study, all the subjects, including ADs, MCIs and NCs (normal controls) were divided into 165 APOE ε4 carriers and 165 APOE ε4 noncarriers. To establish the metabolic network for all brain regions except the cerebellum, cerebral glucose metabolism data obtained from FDG-PET (18F-fluorodeoxyglu-cose positron emission tomography) were segmented into 90 areas with automated anatomical labeling (AAL) template. Then, the properties of the networks were computed to explore the between-group differences. Our results suggested that both APOE ε4 carriers and noncarriers showed the small-world properties. Besides, compared with APOE ε4 noncarriers, the carriers showed a lower clustering coefficient. In addition, significant changes in 6 hub brain regions were found in between-group nodal centrality. Namely, compared with APOE ε4 noncarriers, significant decreases of the nodal centrality were found in left insula, right insula, right anterior cingulate, right paracingulate gyri, left cuneus, as well as significant increases in left paracentral lobule and left heschl gyrus in APOE ε4 carriers. Increased local short distance interregional correlations and disrupted long distance interregional correlations were found, which may support the point that the APOE ε4 carriers were more similar with AD or MCI in FDG uptake. In summary, the organization of metabolic network in APOE ε4 carriers indicated a less optimal pattern and APOE ε4 might be a risk factor for AD. PMID:26161964
Romero-Garcia, Rafael; Whitaker, Kirstie J; Váša, František; Seidlitz, Jakob; Shinn, Maxwell; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T; Vértes, Petra E
2018-05-01
Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain networks by estimating gene co-expression between pairs of cortical regions. Finally, we explored the hypothesis that transcriptional networks and structural MRI connectomes are coupled. A transcriptional brain network (TBN) and a structural covariance network (SCN) were correlated across connection weights and showed qualitatively similar complex topological properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the weight of an edge was inversely related to the anatomical (Euclidean) distance between regions. There were differences between networks in degree and distance distributions: the transcriptional network had a less fat-tailed degree distribution and a less positively skewed distance distribution than the SCN. However, cortical areas connected to each other within modules of the SCN had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had especially high levels of expression and co-expression of a human supragranular enriched (HSE) gene set that has been specifically located to supragranular layers of human cerebral cortex and is known to be important for large-scale, long-distance cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not entirely accounted for by the common constraint of physical distance on both networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Differences in Aβ brain networks in Alzheimer's disease and healthy controls.
Duan, Huoqiang; Jiang, Jiehui; Xu, Jun; Zhou, Hucheng; Huang, Zhemin; Yu, Zhihua; Yan, Zhuangzhi
2017-01-15
The prevailing β-amyloid (Aβ)-cascade hypothesis is the most classical Alzheimer's disease (AD) pathogenesis. In this hypothesis, excessive Aβ plaque deposition in human brain is considered to be the cause of AD. Carbon 11-labeled Pittsburgh compound B Positron emission tomography (11C-PiB PET) is the latest technology to detect Aβ plaques in vivo. Thus, it is possible to investigate the difference of Aβ brain networks between AD patients and Health Controls (HC) by analyzing 11C-PiB PET images. In this study, a graph-theoretical method was employed to investigate the topological properties of Aβ networks in 18 Chinese AD patients and 16 HC subjects from Huashan Hospital, Shanghai. The results showed that both groups demonstrated small-world property, and this property was more obvious in AD group. Additionally, the clustering coefficients and path lengths were significantly lower in AD group. The global efficiency was larger in AD than in HC. A direct comparison between with and without regression found that sex, age and weight had no significant effect on the Aβ network. Moreover, three altered regions in AD group were identified, including left cuneus (CUN.L), right caudate nucleus (CAU.R) and left superior frontal gyrus (SFGdor. L). A voxel-wise correlation analysis showed that in AD patients, the regions of strengthened connection with CUN.L were mainly located in frontal cortex and parietal cortex, the regions of strengthen connection with CAU.R were mainly located in temporal cortex. Finally, a machine learning based analysis demonstrated that the three regions could be better biomarkers than the whole brain for AD classification. Copyright © 2016 Elsevier B.V. All rights reserved.
Lv, Jun; Liu, Dongdong; Ma, Jing; Wang, Xiaoying; Zhang, Jue
2015-01-01
Functional brain networks of human have been revealed to have small-world properties by both analyzing electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) time series. In our study, by using graph theoretical analysis, we attempted to investigate the changes of paralimbic-limbic cortex between wake and sleep states. Ten healthy young people were recruited to our experiment. Data from 2 subjects were excluded for the reason that they had not fallen asleep during the experiment. For each subject, blood oxygen level dependency (BOLD) images were acquired to analyze brain network, and peripheral pulse signals were obtained continuously to identify if the subject was in sleep periods. Results of fMRI showed that brain networks exhibited stronger small-world characteristics during sleep state as compared to wake state, which was in consistent with previous studies using EEG synchronization. Moreover, we observed that compared with wake state, paralimbic-limbic cortex had less connectivity with neocortical system and centrencephalic structure in sleep. In conclusion, this is the first study, to our knowledge, has observed that small-world properties of brain functional networks altered when human sleeps without EEG synchronization. Moreover, we speculate that paralimbic-limbic cortex organization owns an efficient defense mechanism responsible for suppressing the external environment interference when humans sleep, which is consistent with the hypothesis that the paralimbic-limbic cortex may be functionally disconnected from brain regions which directly mediate their interactions with the external environment. Our findings also provide a reasonable explanation why stable sleep exhibits homeostasis which is far less susceptible to outside world.
Nuriya, Mutsuo; Shinotsuka, Takanori; Yasui, Masato
2013-09-01
Molecular diffusion in the extracellular space (ECS) plays a key role in determining tissue physiology and pharmacology. The blood-brain barrier regulates the exchange of substances between the brain and the blood, but the diffusion properties of molecules at this blood-brain interface, particularly around the astrocyte endfeet, are poorly characterized. In this study, we used 2-photon microscopy and acute brain slices of mouse neocortex and directly assessed the diffusion patterns of fluorescent molecules. By observing the diffusion of unconjugated and 10-kDa dextran-conjugated Alexa Fluor 488 from the ECS of the brain parenchyma to the blood vessels, we find various degrees of diffusion barriers at the endfeet: Some allow the invasion of dye inside the endfoot network while others completely block it. Detailed analyses of the time course for dye clearance support the existence of a tight endfoot network capable of acting as a diffusion barrier. Finally, we show that this diffusion pattern collapses under pathological conditions. These data demonstrate the heterogeneous nature of molecular diffusion dynamics around the endfeet and suggest that these structures can serve as the diffusion barrier. Therefore, astrocyte endfeet may add another layer of regulation to the exchange of molecules between blood vessels and brain parenchyma.
Weak Higher-Order Interactions in Macroscopic Functional Networks of the Resting Brain.
Huang, Xuhui; Xu, Kaibin; Chu, Congying; Jiang, Tianzi; Yu, Shan
2017-10-25
Interactions among different brain regions are usually examined through functional connectivity (FC) analysis, which is exclusively based on measuring pairwise correlations in activities. However, interactions beyond the pairwise level, that is, higher-order interactions (HOIs), are vital in understanding the behavior of many complex systems. So far, whether HOIs exist among brain regions and how they can affect the brain's activities remains largely elusive. To address these issues, here, we analyzed blood oxygenation level-dependent (BOLD) signals recorded from six typical macroscopic functional networks of the brain in 100 human subjects (46 males and 54 females) during the resting state. Through examining the binarized BOLD signals, we found that HOIs within and across individual networks were both very weak regardless of the network size, topology, degree of spatial proximity, spatial scales, and whether the global signal was regressed. To investigate the potential mechanisms underlying the weak HOIs, we analyzed the dynamics of a network model and also found that HOIs were generally weak within a wide range of key parameters provided that the overall dynamic feature of the model was similar to the empirical data and it was operating close to a linear fluctuation regime. Our results suggest that weak HOI may be a general property of brain's macroscopic functional networks, which implies the dominance of pairwise interactions in shaping brain activities at such a scale and warrants the validity of widely used pairwise-based FC approaches. SIGNIFICANCE STATEMENT To explain how activities of different brain areas are coordinated through interactions is essential to revealing the mechanisms underlying various brain functions. Traditionally, such an interaction structure is commonly studied using pairwise-based functional network analyses. It is unclear whether the interactions beyond the pairwise level (higher-order interactions or HOIs) play any role in this process. Here, we show that HOIs are generally weak in macroscopic brain networks. We also suggest a possible dynamical mechanism that may underlie this phenomenon. These results provide plausible explanation for the effectiveness of widely used pairwise-based approaches in analyzing brain networks. More importantly, it reveals a previously unknown, simple organization of the brain's macroscopic functional systems. Copyright © 2017 the authors 0270-6474/17/3710481-17$15.00/0.
Extraversion and neuroticism relate to topological properties of resting-state brain networks.
Gao, Qing; Xu, Qiang; Duan, Xujun; Liao, Wei; Ding, Jurong; Zhang, Zhiqiang; Li, Yuan; Lu, Guangming; Chen, Huafu
2013-01-01
With the advent and development of modern neuroimaging techniques, there is an increasing interest in linking extraversion and neuroticism to anatomical and functional brain markers. Here, we aimed to test the theoretically derived biological personality model as proposed by Eysenck using graph theoretical analyses. Specifically, the association between the topological organization of whole-brain functional networks and extraversion/neuroticism was explored. To construct functional brain networks, functional connectivity among 90 brain regions was measured by temporal correlation using resting-state functional magnetic resonance imaging (fMRI) data of 71 healthy subjects. Graph theoretical analysis revealed a positive association of extraversion scores and normalized clustering coefficient values. These results suggested a more clustered configuration in brain networks of individuals high in extraversion, which could imply a higher arousal threshold and higher levels of arousal tolerance in the cortex of extraverts. On a local network level, we observed that a specific nodal measure, i.e., betweenness centrality (BC), was positively associated with neuroticism scores in the right precentral gyrus (PreCG), right caudate nucleus, right olfactory cortex, and bilateral amygdala. For individuals high in neuroticism, these results suggested a more frequent participation of these specific regions in information transition within the brain network and, in turn, may partly explain greater regional activation levels and lower arousal thresholds in these regions. In contrast, extraversion scores were positively correlated with BC in the right insula, while negatively correlated with BC in the bilateral middle temporal gyrus (MTG), indicating that the relationship between extraversion and regional arousal is not as simple as proposed by Eysenck.
Individual differences and time-varying features of modular brain architecture.
Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong
2017-05-15
Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
From brain topography to brain topology: relevance of graph theory to functional neuroscience.
Minati, Ludovico; Varotto, Giulia; D'Incerti, Ludovico; Panzica, Ferruccio; Chan, Dennis
2013-07-10
Although several brain regions show significant specialization, higher functions such as cross-modal information integration, abstract reasoning and conscious awareness are viewed as emerging from interactions across distributed functional networks. Analytical approaches capable of capturing the properties of such networks can therefore enhance our ability to make inferences from functional MRI, electroencephalography and magnetoencephalography data. Graph theory is a branch of mathematics that focuses on the formal modelling of networks and offers a wide range of theoretical tools to quantify specific features of network architecture (topology) that can provide information complementing the anatomical localization of areas responding to given stimuli or tasks (topography). Explicit modelling of the architecture of axonal connections and interactions among areas can furthermore reveal peculiar topological properties that are conserved across diverse biological networks, and highly sensitive to disease states. The field is evolving rapidly, partly fuelled by computational developments that enable the study of connectivity at fine anatomical detail and the simultaneous interactions among multiple regions. Recent publications in this area have shown that graph-based modelling can enhance our ability to draw causal inferences from functional MRI experiments, and support the early detection of disconnection and the modelling of pathology spread in neurodegenerative disease, particularly Alzheimer's disease. Furthermore, neurophysiological studies have shown that network topology has a profound link to epileptogenesis and that connectivity indices derived from graph models aid in modelling the onset and spread of seizures. Graph-based analyses may therefore significantly help understand the bases of a range of neurological conditions. This review is designed to provide an overview of graph-based analyses of brain connectivity and their relevance to disease aimed principally at general neuroscientists and clinicians.
Resting state brain networks in the prairie vole.
Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael
2018-01-19
Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.
Labus, Jennifer; Dinov, Ivo D.; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A.; Joshi, Shantanu; Thompson, Paul M.; Toga, Arthur W.; Mayer, Emeran A.
2014-01-01
Alterations in gray matter (GM) density/ volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with different chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at UCLA between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32 ± 10 SD, 119 Healthy Controls [HCs], 30± 10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between IBS and HC groups. Relative to HCs, the IBS group had lower volumes in bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found for the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for Early Trauma Inventory global score with the exception of the right amygdala and the left post central gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, the right cingulate gyrus and right thalamus were identified as significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. PMID:24076048
Modeling of cortical signals using echo state networks
NASA Astrophysics Data System (ADS)
Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai
2009-10-01
Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.
Jiang, Guihua; Wen, Xue; Qiu, Yingwei; Zhang, Ruibin; Wang, Junjing; Li, Meng; Ma, Xiaofen; Tian, Junzhang; Huang, Ruiwang
2013-01-01
Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.
Li, Jing; Guo, Hao; Ge, Ling; Cheng, Long; Wang, Junjie; Li, Hong; Zhang, Kerang; Xiang, Jie; Chen, Junjie; Zhang, Hui; Xu, Yong
2017-01-01
Cerebralcare Granule® (CG), a Chinese herbal medicine, has been used to ameliorate cognitive impairment induced by ischemia or mental disorders. The ability of CG to improve health status and cognitive function has drawn researchers' attention, but the relevant brain circuits that underlie the ameliorative effects of CG remain unclear. The present study aimed to explore the underlying neurobiological mechanisms of CG in ameliorating cognitive function in sub-healthy subjects using resting-state functional magnetic resonance imaging (fMRI). Thirty sub-healthy participants were instructed to take one 2.5-g package of CG three times a day for 3 months. Clinical cognitive functions were assessed with the Chinese Revised Wechsler Adult Intelligence Scale (WAIS-RC) and Wechsler Memory Scale (WMS), and fMRI scans were performed at baseline and the end of intervention. Functional brain network data were analyzed by conventional network metrics (CNM) and frequent subgraph mining (FSM). Then 21 other sub-healthy participants were enrolled as a blank control group of cognitive functional. We found that administrating CG can improve the full scale of intelligence quotient (FIQ) and Memory Quotient (MQ) scores. At the same time, following CG treatment, in CG group, the topological properties of functional brain networks were altered in various frontal, temporal, occipital cortex regions, and several subcortical brain regions, including essential components of the executive attention network, the salience network, and the sensory-motor network. The nodes involved in the FSM results were largely consistent with the CNM findings, and the changes in nodal metrics correlated with improved cognitive function. These findings indicate that CG can improve sub-healthy subjects' cognitive function through altering brain functional networks. These results provide a foundation for future studies of the potential physiological mechanism of CG.
Individual differences in intrinsic brain connectivity predict decision strategy.
Barnes, Kelly Anne; Anderson, Kevin M; Plitt, Mark; Martin, Alex
2014-10-15
When humans are provided with ample time to make a decision, individual differences in strategy emerge. Using an adaptation of a well-studied decision making paradigm, motion direction discrimination, we probed the neural basis of individual differences in strategy. We tested whether strategies emerged from moment-to-moment reconfiguration of functional brain networks involved in decision making with task-evoked functional MRI (fMRI) and whether intrinsic properties of functional brain networks, measured at rest with functional connectivity MRI (fcMRI), were associated with strategy use. We found that human participants reliably selected one of two strategies across 2 days of task performance, either continuously accumulating evidence or waiting for task difficulty to decrease. Individual differences in decision strategy were predicted both by the degree of task-evoked activation of decision-related brain regions and by the strength of pretask correlated spontaneous brain activity. These results suggest that spontaneous brain activity constrains strategy selection on perceptual decisions.
Lateralized Resting-State Functional Brain Network Organization Changes in Heart Failure
Park, Bumhee; Roy, Bhaswati; Woo, Mary A.; Palomares, Jose A.; Fonarow, Gregg C.; Harper, Ronald M.; Kumar, Rajesh
2016-01-01
Heart failure (HF) patients show brain injury in autonomic, affective, and cognitive sites, which can change resting-state functional connectivity (FC), potentially altering overall functional brain network organization. However, the status of such connectivity or functional organization is unknown in HF. Determination of that status was the aim here, and we examined region-to-region FC and brain network topological properties across the whole-brain in 27 HF patients compared to 53 controls with resting-state functional MRI procedures. Decreased FC in HF appeared between the caudate and cerebellar regions, olfactory and cerebellar sites, vermis and medial frontal regions, and precentral gyri and cerebellar areas. However, increased FC emerged between the middle frontal gyrus and sensorimotor areas, superior parietal gyrus and orbito/medial frontal regions, inferior temporal gyrus and lingual gyrus/cerebellar lobe/pallidum, fusiform gyrus and superior orbitofrontal gyrus and cerebellar sites, and within vermis and cerebellar areas; these connections were largely in the right hemisphere (p<0.005; 10,000 permutations). The topology of functional integration and specialized characteristics in HF are significantly changed in regions showing altered FC, an outcome which would interfere with brain network organization (p<0.05; 10,000 permutations). Brain dysfunction in HF extends to resting conditions, and autonomic, cognitive, and affective deficits may stem from altered FC and brain network organization that may contribute to higher morbidity and mortality in the condition. Our findings likely result from the prominent axonal and nuclear structural changes reported earlier in HF; protecting neural tissue may improve FC integrity, and thus, increase quality of life and reduce morbidity and mortality. PMID:27203600
Functional organization of intrinsic connectivity networks in Chinese-chess experts.
Duan, Xujun; Long, Zhiliang; Chen, Huafu; Liang, Dongmei; Qiu, Lihua; Huang, Xiaoqi; Liu, Timon Cheng-Yi; Gong, Qiyong
2014-04-16
The functional architecture of the human brain has been extensively described in terms of functional connectivity networks, detected from the low-frequency coherent neuronal fluctuations during a resting state condition. Accumulating evidence suggests that the overall organization of functional connectivity networks is associated with individual differences in cognitive performance and prior experience. Such an association raises the question of how cognitive expertise exerts an influence on the topological properties of large-scale functional networks. To address this question, we examined the overall organization of brain functional networks in 20 grandmaster and master level Chinese-chess players (GM/M) and twenty novice players, by means of resting-state functional connectivity and graph theoretical analyses. We found that, relative to novices, functional connectivity was increased in GM/Ms between basal ganglia, thalamus, hippocampus, and several parietal and temporal areas, suggesting the influence of cognitive expertise on intrinsic connectivity networks associated with learning and memory. Furthermore, we observed economical small-world topology in the whole-brain functional connectivity networks in both groups, but GM/Ms exhibited significantly increased values of normalized clustering coefficient which resulted in increased small-world topology. These findings suggest an association between the functional organization of brain networks and individual differences in cognitive expertise, which might provide further evidence of the mechanisms underlying expert behavior. Copyright © 2014 Elsevier B.V. All rights reserved.
Dysfunctional whole brain networks in mild cognitive impairment patients: an fMRI study
NASA Astrophysics Data System (ADS)
Liu, Zhenyu; Bai, Lijun; Dai, Ruwei; Zhong, Chongguang; Xue, Ting; You, Youbo; Tian, Jie
2012-03-01
Mild cognitive impairment (MCI) was recognized as the prodromal stage of Alzheimer's disease (AD). Recent researches have shown that cognitive and memory decline in AD patients is coupled with losses of small-world attributes. However, few studies pay attention to the characteristics of the whole brain networks in MCI patients. In the present study, we investigated the topological properties of the whole brain networks utilizing graph theoretical approaches in 16 MCI patients, compared with 18 age-matched healthy subjects as a control. Both MCI patients and normal controls showed small-world architectures, with large clustering coefficients and short characteristic path lengths. We detected significantly longer characteristic path length in MCI patients compared with normal controls at the low sparsity. The longer characteristic path lengths in MCI indicated disrupted information processing among distant brain regions. Compared with normal controls, MCI patients showed decreased nodal centrality in the brain areas of the angular gyrus, heschl gyrus, hippocampus and superior parietal gyrus, while increased nodal centrality in the calcarine, inferior occipital gyrus and superior frontal gyrus. These changes in nodal centrality suggested a widespread rewiring in MCI patients, which may be an integrated reflection of reorganization of the brain networks accompanied with the cognitive decline. Our findings may be helpful for further understanding the pathological mechanisms of MCI.
Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu
2013-09-25
Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.
Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S
2013-01-01
Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.
Lei, Hui; Cui, Yan; Fan, Jie; Zhang, Xiaocui; Zhong, Mingtian; Yi, Jinyao; Cai, Lin; Yao, Dezhong; Zhu, Xiongzhao
2017-09-01
There are limited data on neurobiological correlates of poor insight in obsessive-compulsive disorder (OCD). This study explored whether specific changes occur in small-world network (SWN) properties in the brain functional network of OCD patients with poor insight. Resting-state electroencephalograms (EEGs) were recorded for 12 medication-free OCD patients with poor insight, 50 medication-free OCD patients with good insight, and 36 healthy controls. Both of the OCD groups exhibited topological alterations in the brain functional network characterized by abnormal small-world parameters at the beta band. However, the alterations at the theta band only existed in the OCD patients with poor insight. A relatively small sample size. Subjects were naïve to medications and those with Axis I comorbidity were excluded, perhaps limiting generalizability. Disrupted functional integrity at the beta bands of the brain functional network may be related to OCD, while disrupted functional integrity at the theta band may be associated with poor insight in OCD patients, thus this study might provide novel insight into our understanding of the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.
Humans use compression heuristics to improve the recall of social networks.
Brashears, Matthew E
2013-01-01
The ability of primates, including humans, to maintain large social networks appears to depend on the ratio of the neocortex to the rest of the brain. However, observed human network size frequently exceeds predictions based on this ratio (e.g., "Dunbar's Number"), implying that human networks are too large to be cognitively managed. Here I show that humans adaptively use compression heuristics to allow larger amounts of social information to be stored in the same brain volume. I find that human adults can remember larger numbers of relationships in greater detail when a network exhibits triadic closure and kin labels than when it does not. These findings help to explain how humans manage large and complex social networks with finite cognitive resources and suggest that many of the unusual properties of human social networks are rooted in the strategies necessary to cope with cognitive limitations.
Gene expression links functional networks across cortex and striatum.
Anderson, Kevin M; Krienen, Fenna M; Choi, Eun Young; Reinen, Jenna M; Yeo, B T Thomas; Holmes, Avram J
2018-04-12
The human brain is comprised of a complex web of functional networks that link anatomically distinct regions. However, the biological mechanisms supporting network organization remain elusive, particularly across cortical and subcortical territories with vastly divergent cellular and molecular properties. Here, using human and primate brain transcriptional atlases, we demonstrate that spatial patterns of gene expression show strong correspondence with limbic and somato/motor cortico-striatal functional networks. Network-associated expression is consistent across independent human datasets and evolutionarily conserved in non-human primates. Genes preferentially expressed within the limbic network (encompassing nucleus accumbens, orbital/ventromedial prefrontal cortex, and temporal pole) relate to risk for psychiatric illness, chloride channel complexes, and markers of somatostatin neurons. Somato/motor associated genes are enriched for oligodendrocytes and markers of parvalbumin neurons. These analyses indicate that parallel cortico-striatal processing channels possess dissociable genetic signatures that recapitulate distributed functional networks, and nominate molecular mechanisms supporting cortico-striatal circuitry in health and disease.
Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson’s Disease
Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD. PMID:27891090
Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease.
Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E; Houle, Sylvain; Strafella, Antonio P
2016-01-01
The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson's disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD.
Guo, Hao; Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%.
Qin, Mengna; Chen, Junjie; Xu, Yong; Xiang, Jie
2017-01-01
High-order functional connectivity networks are rich in time information that can reflect dynamic changes in functional connectivity between brain regions. Accordingly, such networks are widely used to classify brain diseases. However, traditional methods for processing high-order functional connectivity networks generally include the clustering method, which reduces data dimensionality. As a result, such networks cannot be effectively interpreted in the context of neurology. Additionally, due to the large scale of high-order functional connectivity networks, it can be computationally very expensive to use complex network or graph theory to calculate certain topological properties. Here, we propose a novel method of generating a high-order minimum spanning tree functional connectivity network. This method increases the neurological significance of the high-order functional connectivity network, reduces network computing consumption, and produces a network scale that is conducive to subsequent network analysis. To ensure the quality of the topological information in the network structure, we used frequent subgraph mining technology to capture the discriminative subnetworks as features and combined this with quantifiable local network features. Then we applied a multikernel learning technique to the corresponding selected features to obtain the final classification results. We evaluated our proposed method using a data set containing 38 patients with major depressive disorder and 28 healthy controls. The experimental results showed a classification accuracy of up to 97.54%. PMID:29387141
Arnold, Aiden E G F; Protzner, Andrea B; Bray, Signe; Levy, Richard M; Iaria, Giuseppe
2014-02-01
Spatial orientation is a complex cognitive process requiring the integration of information processed in a distributed system of brain regions. Current models on the neural basis of spatial orientation are based primarily on the functional role of single brain regions, with limited understanding of how interaction among these brain regions relates to behavior. In this study, we investigated two sources of variability in the neural networks that support spatial orientation--network configuration and efficiency--and assessed whether variability in these topological properties relates to individual differences in orientation accuracy. Participants with higher accuracy were shown to express greater activity in the right supramarginal gyrus, the right precentral cortex, and the left hippocampus, over and above a core network engaged by the whole group. Additionally, high-performing individuals had increased levels of global efficiency within a resting-state network composed of brain regions engaged during orientation and increased levels of node centrality in the right supramarginal gyrus, the right primary motor cortex, and the left hippocampus. These results indicate that individual differences in the configuration of task-related networks and their efficiency measured at rest relate to the ability to spatially orient. Our findings advance systems neuroscience models of orientation and navigation by providing insight into the role of functional integration in shaping orientation behavior.
Eidenmüller, S; Randerath, J; Goldenberg, G; Li, Y; Hermsdörfer, J
2014-08-01
The scaling of our finger forces according to the properties of manipulated objects is an elementary prerequisite of skilled motor behavior. Lesions of the motor-dominant left brain may impair several aspects of motor planning. For example, limb-apraxia, a tool-use disorder after left brain damage is thought to be caused by deficient recall or integration of tool-use knowledge into an action plan. The aim of the present study was to investigate whether left brain damage affects anticipatory force scaling when lifting everyday objects. We examined 26 stroke patients with unilateral brain damage (16 with left brain damage, ten with right brain damage) and 21 healthy control subjects. Limb apraxia was assessed by testing pantomime of familiar tool-use and imitation of meaningless hand postures. Participants grasped and lifted twelve randomly presented everyday objects. Grip force was measured with help of sensors fixed on thumb, index and middle-finger. The maximum rate of grip force was determined to quantify the precision of anticipation of object properties. Regression analysis yielded clear deficits of anticipation in the group of patients with left brain damage, while the comparison of patient with right brain damage with their respective control group did not reveal comparable deficits. Lesion-analyses indicate that brain structures typically associated with a tool-use network in the left hemisphere play an essential role for anticipatory grip force scaling, especially the left inferior frontal gyrus (IFG) and the premotor cortex (PMC). Furthermore, significant correlations of impaired anticipation with limb apraxia scores suggest shared representations. However, the presence of dissociations, implicates also independent processes. Overall, our findings suggest that the left hemisphere is engaged in anticipatory grip force scaling for lifting everyday objects. The underlying neural substrate is not restricted to a single region or stream; instead it may rely on the intact functioning of a left hemisphere network that may overlap with the left hemisphere dominant tool-use network. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Laplacian spectrum of neural networks
de Lange, Siemon C.; de Reus, Marcel A.; van den Heuvel, Martijn P.
2014-01-01
The brain is a complex network of neural interactions, both at the microscopic and macroscopic level. Graph theory is well suited to examine the global network architecture of these neural networks. Many popular graph metrics, however, encode average properties of individual network elements. Complementing these “conventional” graph metrics, the eigenvalue spectrum of the normalized Laplacian describes a network's structure directly at a systems level, without referring to individual nodes or connections. In this paper, the Laplacian spectra of the macroscopic anatomical neuronal networks of the macaque and cat, and the microscopic network of the Caenorhabditis elegans were examined. Consistent with conventional graph metrics, analysis of the Laplacian spectra revealed an integrative community structure in neural brain networks. Extending previous findings of overlap of network attributes across species, similarity of the Laplacian spectra across the cat, macaque and C. elegans neural networks suggests a certain level of consistency in the overall architecture of the anatomical neural networks of these species. Our results further suggest a specific network class for neural networks, distinct from conceptual small-world and scale-free models as well as several empirical networks. PMID:24454286
van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M
2016-03-01
Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.
Task-Related Modulations of BOLD Low-Frequency Fluctuations within the Default Mode Network
Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Assan, Ibrahim Eid; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico
2017-01-01
Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33 ± 6 years, 8 F/12 M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the continuous execution of a working memory n-back task. We found that task execution impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to continuous task execution, can contribute to a better understanding of how brain networks rearrange themselves in response to a task. PMID:28845420
Scaling theory for information networks.
Moses, Melanie E; Forrest, Stephanie; Davis, Alan L; Lodder, Mike A; Brown, James H
2008-12-06
Networks distribute energy, materials and information to the components of a variety of natural and human-engineered systems, including organisms, brains, the Internet and microprocessors. Distribution networks enable the integrated and coordinated functioning of these systems, and they also constrain their design. The similar hierarchical branching networks observed in organisms and microprocessors are striking, given that the structure of organisms has evolved via natural selection, while microprocessors are designed by engineers. Metabolic scaling theory (MST) shows that the rate at which networks deliver energy to an organism is proportional to its mass raised to the 3/4 power. We show that computational systems are also characterized by nonlinear network scaling and use MST principles to characterize how information networks scale, focusing on how MST predicts properties of clock distribution networks in microprocessors. The MST equations are modified to account for variation in the size and density of transistors and terminal wires in microprocessors. Based on the scaling of the clock distribution network, we predict a set of trade-offs and performance properties that scale with chip size and the number of transistors. However, there are systematic deviations between power requirements on microprocessors and predictions derived directly from MST. These deviations are addressed by augmenting the model to account for decentralized flow in some microprocessor networks (e.g. in logic networks). More generally, we hypothesize a set of constraints between the size, power and performance of networked information systems including transistors on chips, hosts on the Internet and neurons in the brain.
Labus, Jennifer S; Dinov, Ivo D; Jiang, Zhiguo; Ashe-McNalley, Cody; Zamanyan, Alen; Shi, Yonggang; Hong, Jui-Yang; Gupta, Arpana; Tillisch, Kirsten; Ebrat, Bahar; Hobel, Sam; Gutman, Boris A; Joshi, Shantanu; Thompson, Paul M; Toga, Arthur W; Mayer, Emeran A
2014-01-01
Alterations in gray matter (GM) density/volume and cortical thickness (CT) have been demonstrated in small and heterogeneous samples of subjects with differing chronic pain syndromes, including irritable bowel syndrome (IBS). Aggregating across 7 structural neuroimaging studies conducted at University of California, Los Angeles, Los Angeles, CA, USA, between August 2006 and April 2011, we examined group differences in regional GM volume in 201 predominantly premenopausal female subjects (82 IBS, mean age: 32±10 SD, 119 healthy controls [HCs], 30±10 SD). Applying graph theoretical methods and controlling for total brain volume, global and regional properties of large-scale structural brain networks were compared between the group with IBS and the HC group. Relative to HCs, the IBS group had lower volumes in the bilateral superior frontal gyrus, bilateral insula, bilateral amygdala, bilateral hippocampus, bilateral middle orbital frontal gyrus, left cingulate, left gyrus rectus, brainstem, and left putamen. Higher volume was found in the left postcentral gyrus. Group differences were no longer significant for most regions when controlling for the Early Trauma Inventory global score, with the exception of the right amygdala and the left postcentral gyrus. No group differences were found for measures of global and local network organization. Compared to HCs, in patients with IBS, the right cingulate gyrus and right thalamus were identified as being significantly more critical for information flow. Regions involved in endogenous pain modulation and central sensory amplification were identified as network hubs in IBS. Overall, evidence for central alterations in patients with IBS was found in the form of regional GM volume differences and altered global and regional properties of brain volumetric networks. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Source space analysis of event-related dynamic reorganization of brain networks.
Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A
2012-01-01
How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.
Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan.
Davison, Elizabeth N; Turner, Benjamin O; Schlesinger, Kimberly J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Carlson, Jean M
2016-11-01
Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism-hypergraph cardinality-we investigate individual variations in two separate, complementary data sets. The first data set ("multi-task") consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set ("age-memory"), in which 95 individuals, aged 18-75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain.
Measures for brain connectivity analysis: nodes centrality and their invariant patterns
NASA Astrophysics Data System (ADS)
da Silva, Laysa Mayra Uchôa; Baltazar, Carlos Arruda; Silva, Camila Aquemi; Ribeiro, Mauricio Watanabe; de Aratanha, Maria Adelia Albano; Deolindo, Camila Sardeto; Rodrigues, Abner Cardoso; Machado, Birajara Soares
2017-07-01
The high dynamical complexity of the brain is related to its small-world topology, which enable both segregated and integrated information processing capabilities. Several measures of connectivity estimation have already been employed to characterize functional brain networks from multivariate electrophysiological data. However, understanding the properties of each measure that lead to a better description of the real topology and capture the complex phenomena present in the brain remains challenging. In this work we compared four nonlinear connectivity measures and show that each method characterizes distinct features of brain interactions. The results suggest an invariance of global network parameters from different behavioral states and that more complete description may be reached considering local features, independently of the connectivity measure employed. Our findings also point to future perspectives in connectivity studies that combine distinct and complementary dependence measures in assembling higher dimensions manifolds.
Altered brain network modules induce helplessness in major depressive disorder.
Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Fang, Yiru; Shen, Dinggang
2014-10-01
The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. Copyright © 2014 Elsevier B.V. All rights reserved.
Altered brain network modules induce helplessness in major depressive disorder
Peng, Daihui; Shi, Feng; Shen, Ting; Peng, Ziwen; Zhang, Chen; Liu, Xiaohua; Qiu, Meihui; Liu, Jun; Jiang, Kaida; Shen, Dinggang
2017-01-01
Objective The abnormal brain functional connectivity (FC) has been assumed to be a pathophysiological aspect of major depressive disorder (MDD). However, it is poorly understood, regarding the underlying patterns of global FC network and their relationships with the clinical characteristics of MDD. Methods Resting-state functional magnetic resonance imaging data were acquired from 16 first episode, medication-naïve MDD patients and 16 healthy control subjects. The global FC network was constructed using 90 brain regions. The global topological patterns, e.g., small-worldness and modularity, and their relationships with depressive characteristics were investigated. Furthermore, the participant coefficient and module degree of MDD patients were measured to reflect the regional roles in module network, and the impairment of FC was examined by network based statistic. Results Small-world property was not altered in MDD. However, MDD patients exhibited 5 atypically reorganized modules compared to the controls. A positive relationship was also found among MDD patients between the intra-module I and helplessness factor evaluated via the Hamilton Depression Scale. Specifically, eight regions exhibited the abnormal participant coefficient or module degree, e.g., left superior orbital frontal cortex and right amygdala. The decreased FC was identified among the sub-network of 24 brain regions, e.g., frontal cortex, supplementary motor area, amygdala, thalamus, and hippocampus. Limitation The limited size of MDD samples precluded meaningful study of distinct clinical characteristics in relation to aberrant FC. Conclusions The results revealed altered patterns of brain module network at the global level in MDD patients, which might contribute to the feelings of helplessness. PMID:25033474
Doucet, Gaelle E; Bassett, Danielle S; Yao, Nailin; Glahn, David C; Frangou, Sophia
2017-12-01
Bipolar disorder is a heritable disorder characterized by mood dysregulation associated with brain functional dysconnectivity. Previous research has focused on the detection of risk- and disease-associated dysconnectivity in individuals with bipolar disorder and their first-degree relatives. The present study seeks to identify adaptive brain connectivity features associated with resilience, defined here as avoidance of illness or delayed illness onset in unaffected siblings of patients with bipolar disorder. Graph theoretical methods were used to examine global and regional brain network topology in head-motion-corrected resting-state functional MRI data acquired from 78 patients with bipolar disorder, 64 unaffected siblings, and 41 healthy volunteers. Global network properties were preserved in patients and their siblings while both groups showed reductions in the cohesiveness of the sensorimotor network. In the patient group, these sensorimotor network abnormalities were coupled with reduced integration of core default mode network regions in the ventromedial cortex and hippocampus. Conversely, integration of the default mode network was increased in the sibling group compared with both the patient group and the healthy volunteer group. The authors found that trait-related vulnerability to bipolar disorder was associated with reduced resting-state cohesiveness of the sensorimotor network in patients with bipolar disorder. However, integration of the default mode network emerged as a key feature differentiating disease expression and resilience between the patients and their siblings. This is indicative of the presence of neural mechanisms that may promote resilience, or at least delay illness onset.
Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo
2017-10-15
Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.
Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-01-01
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219
Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-03-07
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.
Characterizing attention with predictive network models
Rosenberg, M. D.; Finn, E. S.; Scheinost, D.; Constable, R. T.; Chun, M. M.
2017-01-01
Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals’ attentional abilities. Some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that (1) attention is a network property of brain computation, (2) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task, and (3) this architecture supports a general attentional ability common to several lab-based tasks and impaired in attention deficit hyperactivity disorder. Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. PMID:28238605
The structural, connectomic and network covariance of the human brain.
Irimia, Andrei; Van Horn, John D
2013-02-01
Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.
Identification of a Functional Connectome for Long-Term Fear Memory in Mice
Wheeler, Anne L.; Teixeira, Cátia M.; Wang, Afra H.; Xiong, Xuejian; Kovacevic, Natasa; Lerch, Jason P.; McIntosh, Anthony R.; Parkinson, John; Frankland, Paul W.
2013-01-01
Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression. PMID:23300432
White matter pathways and social cognition.
Wang, Yin; Metoki, Athanasia; Alm, Kylie H; Olson, Ingrid R
2018-04-20
There is a growing consensus that social cognition and behavior emerge from interactions across distributed regions of the "social brain". Researchers have traditionally focused their attention on functional response properties of these gray matter networks and neglected the vital role of white matter connections in establishing such networks and their functions. In this article, we conduct a comprehensive review of prior research on structural connectivity in social neuroscience and highlight the importance of this literature in clarifying brain mechanisms of social cognition. We pay particular attention to three key social processes: face processing, embodied cognition, and theory of mind, and their respective underlying neural networks. To fully identify and characterize the anatomical architecture of these networks, we further implement probabilistic tractography on a large sample of diffusion-weighted imaging data. The combination of an in-depth literature review and the empirical investigation gives us an unprecedented, well-defined landscape of white matter pathways underlying major social brain networks. Finally, we discuss current problems in the field, outline suggestions for best practice in diffusion-imaging data collection and analysis, and offer new directions for future research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Long-Term Memory Shapes the Primary Olfactory Center of an Insect Brain
ERIC Educational Resources Information Center
Hourcade, Benoit; Perisse, Emmanuel; Devaud, Jean-Marc; Sandoz, Jean-Christophe
2009-01-01
The storage of stable memories is generally considered to rely on changes in the functional properties and/or the synaptic connectivity of neural networks. However, these changes are not easily tractable given the complexity of the learning procedures and brain circuits studied. Such a search can be narrowed down by studying memories of specific…
Optical mapping of prefrontal brain connectivity and activation during emotion anticipation.
Wang, Meng-Yun; Lu, Feng-Mei; Hu, Zhishan; Zhang, Juan; Yuan, Zhen
2018-09-17
Accumulated neuroimaging evidence shows that the dorsal lateral prefrontal cortex (dlPFC) is activated during emotion anticipation. The aim of this work is to examine the brain connectivity and activation differences in dlPFC between the positive, neutral and negative emotion anticipation by using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses were first assessed for all subjects during the performance of various emotion anticipation tasks. And then small-world analysis was performed, in which the small-world network indicators including the clustering coefficient, average path length, average node degree, and measure of small-world index were calculated for the functional brain networks associated with the positive, neutral and negative emotion anticipation, respectively. We discovered that compared to negative and neutral emotion anticipation, the positive one exhibited enhanced brain activation in the left dlPFC. Although the functional brain networks for the three emotion anticipation cases manifested the small-world properties regarding the clustering coefficient, average path length, average node degree, and measure of small-world index, the positive one showed significantly higher clustering coefficient and shorter average path length than those from the neutral and negative cases. Consequently, the small-world network indicators and brain activation in dlPPC were able to distinguish well between the positive, neutral and negative emotion anticipation. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of Choice of Null Network on Small-World Parameters of Structural Correlation Networks
Hosseini, S. M. Hadi; Kesler, Shelli R.
2013-01-01
In recent years, coordinated variations in brain morphology (e.g., volume, thickness) have been employed as a measure of structural association between brain regions to infer large-scale structural correlation networks. Recent evidence suggests that brain networks constructed in this manner are inherently more clustered than random networks of the same size and degree. Thus, null networks constructed by randomizing topology are not a good choice for benchmarking small-world parameters of these networks. In the present report, we investigated the influence of choice of null networks on small-world parameters of gray matter correlation networks in healthy individuals and survivors of acute lymphoblastic leukemia. Three types of null networks were studied: 1) networks constructed by topology randomization (TOP), 2) networks matched to the distributional properties of the observed covariance matrix (HQS), and 3) networks generated from correlation of randomized input data (COR). The results revealed that the choice of null network not only influences the estimated small-world parameters, it also influences the results of between-group differences in small-world parameters. In addition, at higher network densities, the choice of null network influences the direction of group differences in network measures. Our data suggest that the choice of null network is quite crucial for interpretation of group differences in small-world parameters of structural correlation networks. We argue that none of the available null models is perfect for estimation of small-world parameters for correlation networks and the relative strengths and weaknesses of the selected model should be carefully considered with respect to obtained network measures. PMID:23840672
Developmental changes in organization of structural brain networks.
Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C
2013-09-01
Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.
Mapping the Alzheimer’s Brain with Connectomics
Xie, Teng; He, Yong
2012-01-01
Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664
Hierarchical functional modularity in the resting-state human brain.
Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien
2009-07-01
Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc
Topological Principles of Control in Dynamical Networks
NASA Astrophysics Data System (ADS)
Kim, Jason; Pasqualetti, Fabio; Bassett, Danielle
Networked biological systems, such as the brain, feature complex patterns of interactions. To predict and correct the dynamic behavior of such systems, it is imperative to understand how the underlying topological structure affects and limits the function of the system. Here, we use network control theory to extract topological features that favor or prevent network controllability, and to understand the network-wide effect of external stimuli on large-scale brain systems. Specifically, we treat each brain region as a dynamic entity with real-valued state, and model the time evolution of all interconnected regions using linear, time-invariant dynamics. We propose a simplified feed-forward scheme where the effect of upstream regions (drivers) on the connected downstream regions (non-drivers) is characterized in closed-form. Leveraging this characterization of the simplified model, we derive topological features that predict the controllability properties of non-simplified networks. We show analytically and numerically that these predictors are accurate across a large range of parameters. Among other contributions, our analysis shows that heterogeneity in the network weights facilitate controllability, and allows us to implement targeted interventions that profoundly improve controllability. By assuming an underlying dynamical mechanism, we are able to understand the complex topology of networked biological systems in a functionally meaningful way.
Nielsen, Jared A.; Zielinski, Brandon A.; Ferguson, Michael A.; Lainhart, Janet E.; Anderson, Jeffrey S.
2013-01-01
Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed. PMID:23967180
Sleep: A synchrony of cell activity-driven small network states
Krueger, James M.; Huang, Yanhua; Rector, David M.; Buysse, Daniel J.
2013-01-01
We posit a bottom-up sleep regulatory paradigm in which state changes are initiated within small networks as a consequence of local cell activity. Bottom-up regulatory mechanisms are prevalent throughout nature, occurring in vastly different systems and levels of organization. Synchronization of state without top-down regulation is a fundamental property of large collections of small semi-autonomous entities. We posit that such synchronization mechanisms are sufficient and necessary for whole organism sleep onset. Within brain we posit that small networks of highly interconnected neurons and glia, e.g. cortical columns, are semi-autonomous units oscillating between sleep-like and wake-like states. We review evidence showing that cells, small networks, and regional areas of brain share sleep-like properties with whole animal sleep. A testable hypothesis focused on how sleep is initiated within local networks is presented. We posit that the release of cell activity-dependent molecules, such as ATP and nitric oxide, into the extracellular space initiates state changes within the local networks where they are produced. We review mechanisms of ATP induction of sleep regulatory substances (SRS) and their actions on receptor trafficking. Finally, we provide an example of how such local metabolic and state changes provide mechanistic explanations for clinical conditions such as insomnia. PMID:23651209
Demertzi, Athena; Gómez, Francisco; Crone, Julia Sophia; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Noirhomme, Quentin; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Soddu, Andrea
2014-03-01
In healthy conditions, group-level fMRI resting state analyses identify ten resting state networks (RSNs) of cognitive relevance. Here, we aim to assess the ten-network model in severely brain-injured patients suffering from disorders of consciousness and to identify those networks which will be most relevant to discriminate between patients and healthy subjects. 300 fMRI volumes were obtained in 27 healthy controls and 53 patients in minimally conscious state (MCS), vegetative state/unresponsive wakefulness syndrome (VS/UWS) and coma. Independent component analysis (ICA) reduced data dimensionality. The ten networks were identified by means of a multiple template-matching procedure and were tested on neuronality properties (neuronal vs non-neuronal) in a data-driven way. Univariate analyses detected between-group differences in networks' neuronal properties and estimated voxel-wise functional connectivity in the networks, which were significantly less identifiable in patients. A nearest-neighbor "clinical" classifier was used to determine the networks with high between-group discriminative accuracy. Healthy controls were characterized by more neuronal components compared to patients in VS/UWS and in coma. Compared to healthy controls, fewer patients in MCS and VS/UWS showed components of neuronal origin for the left executive control network, default mode network (DMN), auditory, and right executive control network. The "clinical" classifier indicated the DMN and auditory network with the highest accuracy (85.3%) in discriminating patients from healthy subjects. FMRI multiple-network resting state connectivity is disrupted in severely brain-injured patients suffering from disorders of consciousness. When performing ICA, multiple-network testing and control for neuronal properties of the identified RSNs can advance fMRI system-level characterization. Automatic data-driven patient classification is the first step towards future single-subject objective diagnostics based on fMRI resting state acquisitions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Maintaining network activity in submerged hippocampal slices: importance of oxygen supply.
Hájos, Norbert; Ellender, Tommas J; Zemankovics, Rita; Mann, Edward O; Exley, Richard; Cragg, Stephanie J; Freund, Tamás F; Paulsen, Ole
2009-01-01
Studies in brain slices have provided a wealth of data on the basic features of neurons and synapses. In the intact brain, these properties may be strongly influenced by ongoing network activity. Although physiologically realistic patterns of network activity have been successfully induced in brain slices maintained in interface-type recording chambers, they have been harder to obtain in submerged-type chambers, which offer significant experimental advantages, including fast exchange of pharmacological agents, visually guided patch-clamp recordings, and imaging techniques. Here, we investigated conditions for the emergence of network oscillations in submerged slices prepared from the hippocampus of rats and mice. We found that the local oxygen level is critical for generation and propagation of both spontaneously occurring sharp wave-ripple oscillations and cholinergically induced fast oscillations. We suggest three ways to improve the oxygen supply to slices under submerged conditions: (i) optimizing chamber design for laminar flow of superfusion fluid; (ii) increasing the flow rate of superfusion fluid; and (iii) superfusing both surfaces of the slice. These improvements to the recording conditions enable detailed studies of neurons under more realistic conditions of network activity, which are essential for a better understanding of neuronal network operation.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.
Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong
2014-12-01
Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.
Study of amyloid-β peptide functional brain networks in AD, MCI and HC.
Jiang, Jiehui; Duan, Huoqiang; Huang, Zheming; Yu, Zhihua
2015-01-01
One medical challenge in studying the amyloid-β (Aβ) peptide mechanism for Alzheimer's disease (AD) is exploring the law of beta toxic oligomers' diffusion in human brains in vivo. One beneficial means of solving this problem is brain network analysis based on graph theory. In this study, the characteristics of Aβ functional brain networks of Healthy Control (HC), Mild Cognitive Impairment (MCI), and AD groups were compared by applying graph theoretical analyses to Carbon 11-labeled Pittsburgh compound B positron emission tomography (11C PiB-PET) data. 120 groups of PiB-PET images from the ADNI database were analyzed. The results showed that the small-world property of MCI and AD were lost as compared to HC. Furthermore, the local clustering of networks was higher in both MCI and AD as compared to HC, whereas the path length was similar among the three groups. The results also showed that there could be four potential Aβ toxic oligomer seeds: Frontal_Sup_Medial_L, Parietal_Inf_L, Frontal_Med_Orb_R, and Parietal_Inf_R. These four seeds are corresponding to Regions of Interests referred by physicians to clinically diagnose AD.
Task-Based Core-Periphery Organization of Human Brain Dynamics
Bassett, Danielle S.; Wymbs, Nicholas F.; Rombach, M. Puck; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.
2013-01-01
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior. PMID:24086116
Shin, Jeong-Hyeon; Um, Yu Hyun; Lee, Chang Uk; Lim, Hyun Kook; Seong, Joon-Kyung
2018-03-15
Coordinated and pattern-wise changes in large scale gray matter structural networks reflect neural circuitry dysfunction in late life depression (LLD), which in turn is associated with emotional dysregulation and cognitive impairments. However, due to methodological limitations, there have been few attempts made to identify individual-level structural network properties or sub-networks that are involved in important brain functions in LLD. In this study, we sought to construct individual-level gray matter structural networks using average cortical thicknesses of several brain areas to investigate the characteristics of the gray matter structural networks in normal controls and LLD patients. Additionally, we investigated the structural sub-networks correlated with several clinical measurements including cognitive impairment and depression severity. We observed that small worldness, clustering coefficients, global and local efficiency, and hub structures in the brains of LLD patients were significantly different from healthy controls. We further found that a sub-network including the anterior cingulate, dorsolateral prefrontal cortex and superior prefrontal cortex is significantly associated with attention control and executive function. The severity of depression was associated with the sub-networks comprising the salience network, including the anterior cingulate and insula. We investigated cortico-cortical connectivity, but omitted the subcortical structures such as the striatum and thalamus. We report differences in patterns between several clinical measurements and sub-networks from large-scale and individual-level cortical thickness networks in LLD. Copyright © 2018 Elsevier B.V. All rights reserved.
2013-01-01
Background The dimensional approach to autism spectrum disorder (ASD) considers ASD as the extreme of a dimension traversing through the entire population. We explored the potential utility of electroencephalography (EEG) functional connectivity as a biomarker. We hypothesized that individual differences in autistic traits of typical subjects would involve a long-range connectivity diminution within the delta band. Methods Resting-state EEG functional connectivity was measured for 74 neurotypical subjects. All participants also provided a questionnaire (Social Responsiveness Scale, SRS) that was completed by an informant who knows the participant in social settings. We conducted multivariate regression between the SRS score and functional connectivity in all EEG frequency bands. We explored modulations of network graph metrics characterizing the optimality of a network using the SRS score. Results Our results show a decay in functional connectivity mainly within the delta and theta bands (the lower part of the EEG spectrum) associated with an increasing number of autistic traits. When inspecting the impact of autistic traits on the global organization of the functional network, we found that the optimal properties of the network are inversely related to the number of autistic traits, suggesting that the autistic dimension, throughout the entire population, modulates the efficiency of functional brain networks. Conclusions EEG functional connectivity at low frequencies and its associated network properties may be associated with some autistic traits in the general population. PMID:23806204
Estimating individual contribution from group-based structural correlation networks.
Saggar, Manish; Hosseini, S M Hadi; Bruno, Jennifer L; Quintin, Eve-Marie; Raman, Mira M; Kesler, Shelli R; Reiss, Allan L
2015-10-15
Coordinated variations in brain morphology (e.g., cortical thickness) across individuals have been widely used to infer large-scale population brain networks. These structural correlation networks (SCNs) have been shown to reflect synchronized maturational changes in connected brain regions. Further, evidence suggests that SCNs, to some extent, reflect both anatomical and functional connectivity and hence provide a complementary measure of brain connectivity in addition to diffusion weighted networks and resting-state functional networks. Although widely used to study between-group differences in network properties, SCNs are inferred only at the group-level using brain morphology data from a set of participants, thereby not providing any knowledge regarding how the observed differences in SCNs are associated with individual behavioral, cognitive and disorder states. In the present study, we introduce two novel distance-based approaches to extract information regarding individual differences from the group-level SCNs. We applied the proposed approaches to a moderately large dataset (n=100) consisting of individuals with fragile X syndrome (FXS; n=50) and age-matched typically developing individuals (TD; n=50). We tested the stability of proposed approaches using permutation analysis. Lastly, to test the efficacy of our method, individual contributions extracted from the group-level SCNs were examined for associations with intelligence scores and genetic data. The extracted individual contributions were stable and were significantly related to both genetic and intelligence estimates, in both typically developing individuals and participants with FXS. We anticipate that the approaches developed in this work could be used as a putative biomarker for altered connectivity in individuals with neurodevelopmental disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Zhiqiang; Mantini, Dante; Xu, Qiang; Wang, Zhengge; Chen, Guanghui; Jiao, Qing; Zang, Yu-Feng
2013-01-01
Abstract The human brain can be modeled as a network, whose structure can be revealed by either anatomical or functional connectivity analyses. Little is known, so far, about the topological features of the large-scale interregional functional covariance network (FCN) in the brain. Further, the relationship between the FCN and the structural covariance network (SCN) has not been characterized yet, in the intact as well as in the diseased brain. Here, we studied 59 patients with idiopathic generalized epilepsy characterized by tonic–clonic seizures and 59 healthy controls. We estimated the FCN and the SCN by measuring amplitude of low-frequency fluctuations (ALFF) and gray matter volume (GMV), respectively, and then we conducted graph theoretical analyses. Our ALFF-based FCN and GMV-based results revealed that the normal human brain is characterized by specific topological properties such as small worldness and highly-connected hub regions. The patients had an altered overall topology compared to the controls, suggesting that epilepsy is primarily a disorder of the cerebral network organization. Further, the patients had altered nodal characteristics in the subcortical and medial temporal regions and default-mode regions, for both the FCN and SCN. Importantly, the correspondence between the FCN and SCN was significantly larger in patients than in the controls. These results support the hypothesis that the SCN reflects shared long-term trophic mechanisms within functionally synchronous systems. They can also provide crucial information for understanding the interactions between the whole-brain network organization and pathology in generalized tonic–clonic seizures. PMID:23510272
Task-related modulations of BOLD low-frequency fluctuations within the default mode network
NASA Astrophysics Data System (ADS)
Tommasin, Silvia; Mascali, Daniele; Gili, Tommaso; Eid Assan, Ibrahim; Moraschi, Marta; Fratini, Michela; Wise, Richard G.; Macaluso, Emiliano; Mangia, Silvia; Giove, Federico
2017-07-01
Spontaneous low-frequency Blood-Oxygenation Level-Dependent (BOLD) signals acquired during resting state are characterized by spatial patterns of synchronous fluctuations, ultimately leading to the identification of robust brain networks. The resting-state brain networks, including the Default Mode Network (DMN), are demonstrated to persist during sustained task execution, but the exact features of task-related changes of network properties are still not well characterized. In this work we sought to examine in a group of 20 healthy volunteers (age 33±6 years, 8F/12M) the relationship between changes of spectral and spatiotemporal features of one prominent resting-state network, namely the DMN, during the steady-state execution of a sustained working memory n-back task. We found that the steady state execution of such a task impacted on both functional connectivity and amplitude of BOLD fluctuations within large parts of the DMN, but these changes correlated between each other only in a small area of the posterior cingulate. We conclude that combined analysis of multiple parameters related to connectivity, and their changes during the transition from resting state to steady-state task execution, can contribute to a better understanding of how brain networks rearrange themselves in response of a task.
Individual Differences in Dynamic Functional Brain Connectivity across the Human Lifespan
Davison, Elizabeth N.; Turner, Benjamin O.; Miller, Michael B.; Carlson, Jean M.
2016-01-01
Individual differences in brain functional networks may be related to complex personal identifiers, including health, age, and ability. Dynamic network theory has been used to identify properties of dynamic brain function from fMRI data, but the majority of analyses and findings remain at the level of the group. Here, we apply hypergraph analysis, a method from dynamic network theory, to quantify individual differences in brain functional dynamics. Using a summary metric derived from the hypergraph formalism—hypergraph cardinality—we investigate individual variations in two separate, complementary data sets. The first data set (“multi-task”) consists of 77 individuals engaging in four consecutive cognitive tasks. We observe that hypergraph cardinality exhibits variation across individuals while remaining consistent within individuals between tasks; moreover, the analysis of one of the memory tasks revealed a marginally significant correspondence between hypergraph cardinality and age. This finding motivated a similar analysis of the second data set (“age-memory”), in which 95 individuals, aged 18–75, performed a memory task with a similar structure to the multi-task memory task. With the increased age range in the age-memory data set, the correlation between hypergraph cardinality and age correspondence becomes significant. We discuss these results in the context of the well-known finding linking age with network structure, and suggest that hypergraph analysis should serve as a useful tool in furthering our understanding of the dynamic network structure of the brain. PMID:27880785
Detecting switching and intermittent causalities in time series
NASA Astrophysics Data System (ADS)
Zanin, Massimiliano; Papo, David
2017-04-01
During the last decade, complex network representations have emerged as a powerful instrument for describing the cross-talk between different brain regions both at rest and as subjects are carrying out cognitive tasks, in healthy brains and neurological pathologies. The transient nature of such cross-talk has nevertheless by and large been neglected, mainly due to the inherent limitations of some metrics, e.g., causality ones, which require a long time series in order to yield statistically significant results. Here, we present a methodology to account for intermittent causal coupling in neural activity, based on the identification of non-overlapping windows within the original time series in which the causality is strongest. The result is a less coarse-grained assessment of the time-varying properties of brain interactions, which can be used to create a high temporal resolution time-varying network. We apply the proposed methodology to the analysis of the brain activity of control subjects and alcoholic patients performing an image recognition task. Our results show that short-lived, intermittent, local-scale causality is better at discriminating both groups than global network metrics. These results highlight the importance of the transient nature of brain activity, at least under some pathological conditions.
Kraft, Reuben H.; Mckee, Phillip Justin; Dagro, Amy M.; Grafton, Scott T.
2012-01-01
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the “damaged” network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times () network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight. PMID:22915997
Brain Networks Associated with Sublexical Properties of Chinese Characters
ERIC Educational Resources Information Center
Yang, Jianfeng; Wang, Xiaojuan; Shu, Hua; Zevin, Jason D.
2011-01-01
Cognitive models of reading all assume some division of labor among processing pathways in mapping among print, sound and meaning. Many studies of the neural basis of reading have used task manipulations such as rhyme or synonym judgment to tap these processes independently. Here we take advantage of specific properties of the Chinese writing…
Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Hashizume, Hiroshi; Sassa, Yuko; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Nakagawa, Seishu; Nagase, Tomomi; Kunitoki, Keiko; Kawashima, Ryuta
2015-10-01
Stroop paradigms are commonly used as an index of attention deficits and a tool for investigating functions of the frontal lobes and other associated structures. Here we investigated the correlation between resting-state functional magnetic imaging (fMRI) measures [degree centrality (DC)/fractional amplitude of low frequency fluctuations (fALFFs)] and Stroop interference. We examined this relationship in the brains of 958 healthy young adults. DC reflects the number of instantaneous functional connections between a region and the rest of the brain within the entire connectivity matrix of the brain (connectome), and thus how much of the node influences the entire brain areas, while fALFF is an indicator of the intensity of regional brain spontaneous activity. Reduced Stroop interference was associated with larger DC in the left lateral prefrontal cortex, left IFJ, and left inferior parietal lobule as well as larger fALFF in the areas of the dorsal attention network and the precuneus. These findings suggest that Stroop performance is reflected in resting state functional properties of these areas and the network. In addition, default brain activity of the dorsal attention network and precuneus as well as higher cognitive processes represented there, and default stronger global influence of the areas critical in executive functioning underlie better Stroop performance. Copyright © 2015 Elsevier Inc. All rights reserved.
Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Learning about learning: Mining human brain sub-network biomarkers from fMRI data
Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Singh, Ambuj K.
2017-01-01
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in “resting state” employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions. PMID:29016686
Learning about learning: Mining human brain sub-network biomarkers from fMRI data.
Bogdanov, Petko; Dereli, Nazli; Dang, Xuan-Hong; Bassett, Danielle S; Wymbs, Nicholas F; Grafton, Scott T; Singh, Ambuj K
2017-01-01
Modeling the brain as a functional network can reveal the relationship between distributed neurophysiological processes and functional interactions between brain structures. Existing literature on functional brain networks focuses mainly on a battery of network properties in "resting state" employing, for example, modularity, clustering, or path length among regions. In contrast, we seek to uncover functionally connected subnetworks that predict or correlate with cohort differences and are conserved within the subjects within a cohort. We focus on differences in both the rate of learning as well as overall performance in a sensorimotor task across subjects and develop a principled approach for the discovery of discriminative subgraphs of functional connectivity based on imaging acquired during practice. We discover two statistically significant subgraph regions: one involving multiple regions in the visual cortex and another involving the parietal operculum and planum temporale. High functional coherence in the former characterizes sessions in which subjects take longer to perform the task, while high coherence in the latter is associated with high learning rate (performance improvement across trials). Our proposed methodology is general, in that it can be applied to other cognitive tasks, to study learning or to differentiate between healthy patients and patients with neurological disorders, by revealing the salient interactions among brain regions associated with the observed global state. The discovery of such significant discriminative subgraphs promises a better data-driven understanding of the dynamic brain processes associated with high-level cognitive functions.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.
Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L
2016-06-01
White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder
Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.
2016-01-01
Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440
Interdisciplinary and physics challenges of network theory
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
2015-09-01
Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.
Schizophrenia classification using functional network features
NASA Astrophysics Data System (ADS)
Rish, Irina; Cecchi, Guillermo A.; Heuton, Kyle
2012-03-01
This paper focuses on discovering statistical biomarkers (features) that are predictive of schizophrenia, with a particular focus on topological properties of fMRI functional networks. We consider several network properties, such as node (voxel) strength, clustering coefficients, local efficiency, as well as just a subset of pairwise correlations. While all types of features demonstrate highly significant statistical differences in several brain areas, and close to 80% classification accuracy, the most remarkable results of 93% accuracy are achieved by using a small subset of only a dozen of most-informative (lowest p-value) correlation features. Our results suggest that voxel-level correlations and functional network features derived from them are highly informative about schizophrenia and can be used as statistical biomarkers for the disease.
A Putative Multiple-Demand System in the Macaque Brain.
Mitchell, Daniel J; Bell, Andrew H; Buckley, Mark J; Mitchell, Anna S; Sallet, Jerome; Duncan, John
2016-08-17
In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex. Copyright © 2016 Mitchell et al.
Buzsáki, György; Watson, Brendon O.
2012-01-01
The perpetual activity of the cerebral cortex is largely supported by the variety of oscillations the brain generates, spanning a number of frequencies and anatomical locations, as well as behavioral correlates. First, we review findings from animal studies showing that most forms of brain rhythms are inhibition-based, producing rhythmic volleys of inhibitory inputs to principal cell populations, thereby providing alternating temporal windows of relatively reduced and enhanced excitability in neuronal networks. These inhibition-based mechanisms offer natural temporal frames to group or “chunk” neuronal activity into cell assemblies and sequences of assemblies, with more complex multi-oscillation interactions creating syntactical rules for the effective exchange of information among cortical networks. We then review recent studies in human psychiatric patients demonstrating a variety alterations in neural oscillations across all major psychiatric diseases, and suggest possible future research directions and treatment approaches based on the fundamental properties of brain rhythms. PMID:23393413
Developmental Changes in Organization of Structural Brain Networks
Khundrakpam, Budhachandra S.; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C.; Ball, William S.; Byars, Anna Weber; Schapiro, Mark; Bommer, Wendy; Carr, April; German, April; Dunn, Scott; Rivkin, Michael J.; Waber, Deborah; Mulkern, Robert; Vajapeyam, Sridhar; Chiverton, Abigail; Davis, Peter; Koo, Julie; Marmor, Jacki; Mrakotsky, Christine; Robertson, Richard; McAnulty, Gloria; Brandt, Michael E.; Fletcher, Jack M.; Kramer, Larry A.; Yang, Grace; McCormack, Cara; Hebert, Kathleen M.; Volero, Hilda; Botteron, Kelly; McKinstry, Robert C.; Warren, William; Nishino, Tomoyuki; Robert Almli, C.; Todd, Richard; Constantino, John; McCracken, James T.; Levitt, Jennifer; Alger, Jeffrey; O'Neil, Joseph; Toga, Arthur; Asarnow, Robert; Fadale, David; Heinichen, Laura; Ireland, Cedric; Wang, Dah-Jyuu; Moss, Edward; Zimmerman, Robert A.; Bintliff, Brooke; Bradford, Ruth; Newman, Janice; Evans, Alan C.; Arnaoutelis, Rozalia; Bruce Pike, G.; Louis Collins, D.; Leonard, Gabriel; Paus, Tomas; Zijdenbos, Alex; Das, Samir; Fonov, Vladimir; Fu, Luke; Harlap, Jonathan; Leppert, Ilana; Milovan, Denise; Vins, Dario; Zeffiro, Thomas; Van Meter, John; Lange, Nicholas; Froimowitz, Michael P.; Botteron, Kelly; Robert Almli, C.; Rainey, Cheryl; Henderson, Stan; Nishino, Tomoyuki; Warren, William; Edwards, Jennifer L.; Dubois, Diane; Smith, Karla; Singer, Tish; Wilber, Aaron A.; Pierpaoli, Carlo; Basser, Peter J.; Chang, Lin-Ching; Koay, Chen Guan; Walker, Lindsay; Freund, Lisa; Rumsey, Judith; Baskir, Lauren; Stanford, Laurence; Sirocco, Karen; Gwinn-Hardy, Katrina; Spinella, Giovanna; McCracken, James T.; Alger, Jeffry R.; Levitt, Jennifer; O'Neill, Joseph
2013-01-01
Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8–8.4 year; late childhood: 8.5–11.3 year; early adolescence: 11.4–14.7 year; late adolescence: 14.8–18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces. PMID:22784607
Hyperconnectivity in juvenile myoclonic epilepsy: a network analysis.
Caeyenberghs, K; Powell, H W R; Thomas, R H; Brindley, L; Church, C; Evans, J; Muthukumaraswamy, S D; Jones, D K; Hamandi, K
2015-01-01
Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients.
Hyperconnectivity in juvenile myoclonic epilepsy: A network analysis
Caeyenberghs, K.; Powell, H.W.R.; Thomas, R.H.; Brindley, L.; Church, C.; Evans, J.; Muthukumaraswamy, S.D.; Jones, D.K.; Hamandi, K.
2014-01-01
Objective Juvenile myoclonic epilepsy (JME) is a common idiopathic (genetic) generalized epilepsy (IGE) syndrome characterized by impairments in executive and cognitive control, affecting independent living and psychosocial functioning. There is a growing consensus that JME is associated with abnormal function of diffuse brain networks, typically affecting frontal and fronto-thalamic areas. Methods Using diffusion MRI and a graph theoretical analysis, we examined bivariate (network-based statistic) and multivariate (global and local) properties of structural brain networks in patients with JME (N = 34) and matched controls. Neuropsychological assessment was performed in a subgroup of 14 patients. Results Neuropsychometry revealed impaired visual memory and naming in JME patients despite a normal full scale IQ (mean = 98.6). Both JME patients and controls exhibited a small world topology in their white matter networks, with no significant differences in the global multivariate network properties between the groups. The network-based statistic approach identified one subnetwork of hyperconnectivity in the JME group, involving primary motor, parietal and subcortical regions. Finally, there was a significant positive correlation in structural connectivity with cognitive task performance. Conclusions Our findings suggest that structural changes in JME patients are distributed at a network level, beyond the frontal lobes. The identified subnetwork includes key structures in spike wave generation, along with primary motor areas, which may contribute to myoclonic jerks. We conclude that analyzing the affected subnetworks may provide new insights into understanding seizure generation, as well as the cognitive deficits observed in JME patients. PMID:25610771
Blatti, Charles; Sinha, Saurabh
2016-07-15
Analysis of co-expressed gene sets typically involves testing for enrichment of different annotations or 'properties' such as biological processes, pathways, transcription factor binding sites, etc., one property at a time. This common approach ignores any known relationships among the properties or the genes themselves. It is believed that known biological relationships among genes and their many properties may be exploited to more accurately reveal commonalities of a gene set. Previous work has sought to achieve this by building biological networks that combine multiple types of gene-gene or gene-property relationships, and performing network analysis to identify other genes and properties most relevant to a given gene set. Most existing network-based approaches for recognizing genes or annotations relevant to a given gene set collapse information about different properties to simplify (homogenize) the networks. We present a network-based method for ranking genes or properties related to a given gene set. Such related genes or properties are identified from among the nodes of a large, heterogeneous network of biological information. Our method involves a random walk with restarts, performed on an initial network with multiple node and edge types that preserve more of the original, specific property information than current methods that operate on homogeneous networks. In this first stage of our algorithm, we find the properties that are the most relevant to the given gene set and extract a subnetwork of the original network, comprising only these relevant properties. We then re-rank genes by their similarity to the given gene set, based on a second random walk with restarts, performed on the above subnetwork. We demonstrate the effectiveness of this algorithm for ranking genes related to Drosophila embryonic development and aggressive responses in the brains of social animals. DRaWR was implemented as an R package available at veda.cs.illinois.edu/DRaWR. blatti@illinois.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Imaging structural and functional brain networks in temporal lobe epilepsy.
Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda
2013-10-01
Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.
Botía, Juan A; Vandrovcova, Jana; Forabosco, Paola; Guelfi, Sebastian; D'Sa, Karishma; Hardy, John; Lewis, Cathryn M; Ryten, Mina; Weale, Michael E
2017-04-12
Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used R software package for the generation of gene co-expression networks (GCN). WGCNA generates both a GCN and a derived partitioning of clusters of genes (modules). We propose k-means clustering as an additional processing step to conventional WGCNA, which we have implemented in the R package km2gcn (k-means to gene co-expression network, https://github.com/juanbot/km2gcn ). We assessed our method on networks created from UKBEC data (10 different human brain tissues), on networks created from GTEx data (42 human tissues, including 13 brain tissues), and on simulated networks derived from GTEx data. We observed substantially improved module properties, including: (1) few or zero misplaced genes; (2) increased counts of replicable clusters in alternate tissues (x3.1 on average); (3) improved enrichment of Gene Ontology terms (seen in 48/52 GCNs) (4) improved cell type enrichment signals (seen in 21/23 brain GCNs); and (5) more accurate partitions in simulated data according to a range of similarity indices. The results obtained from our investigations indicate that our k-means method, applied as an adjunct to standard WGCNA, results in better network partitions. These improved partitions enable more fruitful downstream analyses, as gene modules are more biologically meaningful.
Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L
2017-09-09
Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.
Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B
2017-11-01
Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.
Innovation in the collective brain
Muthukrishna, Michael; Henrich, Joseph
2016-01-01
Innovation is often assumed to be the work of a talented few, whose products are passed on to the masses. Here, we argue that innovations are instead an emergent property of our species' cultural learning abilities, applied within our societies and social networks. Our societies and social networks act as collective brains. We outline how many human brains, which evolved primarily for the acquisition of culture, together beget a collective brain. Within these collective brains, the three main sources of innovation are serendipity, recombination and incremental improvement. We argue that rates of innovation are heavily influenced by (i) sociality, (ii) transmission fidelity, and (iii) cultural variance. We discuss some of the forces that affect these factors. These factors can also shape each other. For example, we provide preliminary evidence that transmission efficiency is affected by sociality—languages with more speakers are more efficient. We argue that collective brains can make each of their constituent cultural brains more innovative. This perspective sheds light on traits, such as IQ, that have been implicated in innovation. A collective brain perspective can help us understand otherwise puzzling findings in the IQ literature, including group differences, heritability differences and the dramatic increase in IQ test scores over time. PMID:26926282
Innovation in the collective brain.
Muthukrishna, Michael; Henrich, Joseph
2016-03-19
Innovation is often assumed to be the work of a talented few, whose products are passed on to the masses. Here, we argue that innovations are instead an emergent property of our species' cultural learning abilities, applied within our societies and social networks. Our societies and social networks act as collective brains. We outline how many human brains, which evolved primarily for the acquisition of culture, together beget a collective brain. Within these collective brains, the three main sources of innovation are serendipity, recombination and incremental improvement. We argue that rates of innovation are heavily influenced by (i) sociality, (ii) transmission fidelity, and (iii) cultural variance. We discuss some of the forces that affect these factors. These factors can also shape each other. For example, we provide preliminary evidence that transmission efficiency is affected by sociality--languages with more speakers are more efficient. We argue that collective brains can make each of their constituent cultural brains more innovative. This perspective sheds light on traits, such as IQ, that have been implicated in innovation. A collective brain perspective can help us understand otherwise puzzling findings in the IQ literature, including group differences, heritability differences and the dramatic increase in IQ test scores over time. © 2016 The Author(s).
Structural connectivity asymmetry in the neonatal brain.
Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi
2013-07-15
Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.
Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna
2017-01-01
Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831
2013-01-01
Background Graph theory has been recently introduced to characterize complex brain networks, making it highly suitable to investigate altered connectivity in neurologic disorders. A current model proposes autism spectrum disorder (ASD) as a developmental disconnection syndrome, supported by converging evidence in both non-syndromic and syndromic ASD. However, the effects of abnormal connectivity on network properties have not been well studied, particularly in syndromic ASD. To close this gap, brain functional networks of electroencephalographic (EEG) connectivity were studied through graph measures in patients with Tuberous Sclerosis Complex (TSC), a disorder with a high prevalence of ASD, as well as in patients with non-syndromic ASD. Methods EEG data were collected from TSC patients with ASD (n = 14) and without ASD (n = 29), from patients with non-syndromic ASD (n = 16), and from controls (n = 46). First, EEG connectivity was characterized by the mean coherence, the ratio of inter- over intra-hemispheric coherence and the ratio of long- over short-range coherence. Next, graph measures of the functional networks were computed and a resilience analysis was conducted. To distinguish effects related to ASD from those related to TSC, a two-way analysis of covariance (ANCOVA) was applied, using age as a covariate. Results Analysis of network properties revealed differences specific to TSC and ASD, and these differences were very consistent across subgroups. In TSC, both with and without a concurrent diagnosis of ASD, mean coherence, global efficiency, and clustering coefficient were decreased and the average path length was increased. These findings indicate an altered network topology. In ASD, both with and without a concurrent diagnosis of TSC, decreased long- over short-range coherence and markedly increased network resilience were found. Conclusions The altered network topology in TSC represents a functional correlate of structural abnormalities and may play a role in the pathogenesis of neurological deficits. The increased resilience in ASD may reflect an excessively degenerate network with local overconnection and decreased functional specialization. This joint study of TSC and ASD networks provides a unique window to common neurobiological mechanisms in autism. PMID:23445896
Lateralization of Resting State Networks and Relationship to Age and Gender
Agcaoglu, O.; Miller, R.; Mayer, A.R.; Hugdahl, K.; Calhoun, V.D.
2014-01-01
Brain lateralization is a widely studied topic, however there has been little work focused on lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) in the resting brain. In this study, we evaluate resting state network lateralization in an age and gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 healthy subjects ranging in age from 12 to 71. After establishing sample-wide network lateralization properties, we continue with an investigation of age and gender effects on network lateralization. All data was gathered on the same scanner and preprocessed using an automated pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis (gICA) (Calhoun, Adali, Pearlson, & Pekar, 2001). Twenty-eight resting state networks discussed in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We calculated homotopic voxelwise measures of laterality in addition to a global lateralization measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain networks were lateralized. For example, the visual network was strongly right lateralized, auditory network and default mode networks were mostly left lateralized. Attentional and frontal networks included nodes that were left lateralized and other nodes that were right lateralized. Age was strongly related to lateralization in multiple regions including sensorimotor network regions precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed significant effects mainly in two regions, including visual and frontal networks. For example, the inferior frontal gyrus was more right lateralized in males. Significant effects of age were found in sensorimotor and visual networks on the global measure. In summary, we report a large-sample of lateralization study that finds intrinsic functional brain networks to be highly lateralized, with regions that are strongly related to gender and age locally, and with age a strong factor in lateralization, and gender exhibiting a trend-level effect on global measures of laterality. PMID:25241084
Lateralization of resting state networks and relationship to age and gender.
Agcaoglu, O; Miller, R; Mayer, A R; Hugdahl, K; Calhoun, V D
2015-01-01
Brain lateralization is a widely studied topic, however there has been little work focused on lateralization of intrinsic networks (regions showing similar patterns of covariation among voxels) in the resting brain. In this study, we evaluate resting state network lateralization in an age and gender-balanced functional magnetic resonance imaging (fMRI) dataset comprising over 600 healthy subjects ranging in age from 12 to 71. After establishing sample-wide network lateralization properties, we continue with an investigation of age and gender effects on network lateralization. All data was gathered on the same scanner and preprocessed using an automated pipeline (Scott et al., 2011). Networks were extracted via group independent component analysis (gICA) (Calhoun et al., 2001). Twenty-eight resting state networks discussed in previous (Allen et al., 2011) work were re-analyzed with a focus on lateralization. We calculated homotopic voxelwise measures of laterality in addition to a global lateralization measure, called the laterality cofactor, for each network. As expected, many of the intrinsic brain networks were lateralized. For example, the visual network was strongly right lateralized, auditory network and default mode networks were mostly left lateralized. Attentional and frontal networks included nodes that were left lateralized and other nodes that were right lateralized. Age was strongly related to lateralization in multiple regions including sensorimotor network regions precentral gyrus, postcentral gyrus and supramarginal gyrus; and visual network regions lingual gyrus; attentional network regions inferior parietal lobule, superior parietal lobule and middle temporal gyrus; and frontal network regions including the inferior frontal gyrus. Gender showed significant effects mainly in two regions, including visual and frontal networks. For example, the inferior frontal gyrus was more right lateralized in males. Significant effects of age were found in sensorimotor and visual networks on the global measure. In summary, we report a large-sample of lateralization study that finds intrinsic functional brain networks to be highly lateralized, with regions that are strongly related to gender and age locally, and with age a strong factor in lateralization, and gender exhibiting a trend-level effect on global measures of laterality. Copyright © 2014 Elsevier Inc. All rights reserved.
Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang
2017-05-01
Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Large-Scale Functional Brain Network Reorganization During Taoist Meditation.
Jao, Tun; Li, Chia-Wei; Vértes, Petra E; Wu, Changwei Wesley; Achard, Sophie; Hsieh, Chao-Hsien; Liou, Chien-Hui; Chen, Jyh-Horng; Bullmore, Edward T
2016-02-01
Meditation induces a distinct and reversible mental state that provides insights into brain correlates of consciousness. We explored brain network changes related to meditation by graph theoretical analysis of resting-state functional magnetic resonance imaging data. Eighteen Taoist meditators with varying levels of expertise were scanned using a within-subjects counterbalanced design during resting and meditation states. State-related differences in network topology were measured globally and at the level of individual nodes and edges. Although measures of global network topology, such as small-worldness, were unchanged, meditation was characterized by an extensive and expertise-dependent reorganization of the hubs (highly connected nodes) and edges (functional connections). Areas of sensory cortex, especially the bilateral primary visual and auditory cortices, and the bilateral temporopolar areas, which had the highest degree (or connectivity) during the resting state, showed the biggest decrease during meditation. Conversely, bilateral thalamus and components of the default mode network, mainly the bilateral precuneus and posterior cingulate cortex, had low degree in the resting state but increased degree during meditation. Additionally, these changes in nodal degree were accompanied by reorganization of anatomical orientation of the edges. During meditation, long-distance longitudinal (antero-posterior) edges increased proportionally, whereas orthogonal long-distance transverse (right-left) edges connecting bilaterally homologous cortices decreased. Our findings suggest that transient changes in consciousness associated with meditation introduce convergent changes in the topological and spatial properties of brain functional networks, and the anatomical pattern of integration might be as important as the global level of integration when considering the network basis for human consciousness.
Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano
2012-02-21
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.
Gallos, Lazaros K.; Makse, Hernán A.; Sigman, Mariano
2012-01-01
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are “large-world” self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the “strength of weak ties” crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain. PMID:22308319
Leske, Sabine; Ruhnau, Philipp; Frey, Julia; Lithari, Chrysa; Müller, Nadia; Hartmann, Thomas; Weisz, Nathan
2015-01-01
An ever-increasing number of studies are pointing to the importance of network properties of the brain for understanding behavior such as conscious perception. However, with regards to the influence of prestimulus brain states on perception, this network perspective has rarely been taken. Our recent framework predicts that brain regions crucial for a conscious percept are coupled prior to stimulus arrival, forming pre-established pathways of information flow and influencing perceptual awareness. Using magnetoencephalography (MEG) and graph theoretical measures, we investigated auditory conscious perception in a near-threshold (NT) task and found strong support for this framework. Relevant auditory regions showed an increased prestimulus interhemispheric connectivity. The left auditory cortex was characterized by a hub-like behavior and an enhanced integration into the brain functional network prior to perceptual awareness. Right auditory regions were decoupled from non-auditory regions, presumably forming an integrated information processing unit with the left auditory cortex. In addition, we show for the first time for the auditory modality that local excitability, measured by decreased alpha power in the auditory cortex, increases prior to conscious percepts. Importantly, we were able to show that connectivity states seem to be largely independent from local excitability states in the context of a NT paradigm. PMID:26408799
Zhang, Yue; Jiang, Yin; Glielmi, Christopher B; Li, Longchuan; Hu, Xiaoping; Wang, Xiaoying; Han, Jisheng; Zhang, Jue; Cui, Cailian; Fang, Jing
2013-09-01
Acupuncture, which is recognized as an alternative and complementary treatment in Western medicine, has long shown efficiencies in chronic pain relief, drug addiction treatment, stroke rehabilitation and other clinical practices. The neural mechanism underlying acupuncture, however, is still unclear. Many studies have focused on the sustained effects of acupuncture on healthy subjects, yet there are very few on the topological organization of functional networks in the whole brain in response to long-duration acupuncture (longer than 20 min). This paper presents a novel study on the effects of long-duration transcutaneous electric acupoint stimulation (TEAS) on the small-world properties of brain functional networks. Functional magnetic resonance imaging was used to construct brain functional networks of 18 healthy subjects (9 males and 9 females) during the resting state. All subjects received both TEAS and minimal TEAS (MTEAS) and were scanned before and after each stimulation. An altered functional network was found with lower local efficiency and no significant change in global efficiency for healthy subjects after TEAS, while no significant difference was observed after MTEAS. The experiments also showed that the nodal efficiencies in several paralimbic/limbic regions were altered by TEAS, and those in middle frontal gyrus and other regions by MTEAS. To remove the psychological effects and the baseline, we compared the difference between diffTEAS (difference between after and before TEAS) and diffMTEAS (difference between after and before MTEAS). The results showed that the local efficiency was decreased and that the nodal efficiencies in frontal gyrus, orbitofrontal cortex, anterior cingulate gyrus and hippocampus gyrus were changed. Based on those observations, we conclude that long-duration TEAS may modulate the short-range connections of brain functional networks and also the limbic system. Copyright © 2013 Elsevier Inc. All rights reserved.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-01-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703
Characterizing Attention with Predictive Network Models.
Rosenberg, M D; Finn, E S; Scheinost, D; Constable, R T; Chun, M M
2017-04-01
Recent work shows that models based on functional connectivity in large-scale brain networks can predict individuals' attentional abilities. While being some of the first generalizable neuromarkers of cognitive function, these models also inform our basic understanding of attention, providing empirical evidence that: (i) attention is a network property of brain computation; (ii) the functional architecture that underlies attention can be measured while people are not engaged in any explicit task; and (iii) this architecture supports a general attentional ability that is common to several laboratory-based tasks and is impaired in attention deficit hyperactivity disorder (ADHD). Looking ahead, connectivity-based predictive models of attention and other cognitive abilities and behaviors may potentially improve the assessment, diagnosis, and treatment of clinical dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brain anatomical networks in world class gymnasts: a DTI tractography study.
Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang
2013-01-15
The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.
Smith, David V.; Utevsky, Amanda V.; Bland, Amy R.; Clement, Nathan; Clithero, John A.; Harsch, Anne E. W.; Carter, R. McKell; Huettel, Scott A.
2014-01-01
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated voxelwise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust—yet frequently ignored—neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. PMID:24662574
A Small World of Neuronal Synchrony
Yu, Shan; Huang, Debin; Singer, Wolf
2008-01-01
A small-world network has been suggested to be an efficient solution for achieving both modular and global processing—a property highly desirable for brain computations. Here, we investigated functional networks of cortical neurons using correlation analysis to identify functional connectivity. To reconstruct the interaction network, we applied the Ising model based on the principle of maximum entropy. This allowed us to assess the interactions by measuring pairwise correlations and to assess the strength of coupling from the degree of synchrony. Visual responses were recorded in visual cortex of anesthetized cats, simultaneously from up to 24 neurons. First, pairwise correlations captured most of the patterns in the population's activity and, therefore, provided a reliable basis for the reconstruction of the interaction networks. Second, and most importantly, the resulting networks had small-world properties; the average path lengths were as short as in simulated random networks, but the clustering coefficients were larger. Neurons differed considerably with respect to the number and strength of interactions, suggesting the existence of “hubs” in the network. Notably, there was no evidence for scale-free properties. These results suggest that cortical networks are optimized for the coexistence of local and global computations: feature detection and feature integration or binding. PMID:18400792
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabral, Joana; Department of Psychiatry, University of Oxford, Oxford OX3 7JX; Fernandes, Henrique M.
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the rolemore » of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.« less
NASA Astrophysics Data System (ADS)
Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo
2013-12-01
The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.
Developmental implications of children's brain networks and learning.
Chan, John S Y; Wang, Yifeng; Yan, Jin H; Chen, Huafu
2016-10-01
The human brain works as a synergistic system where information exchanges between functional neuronal networks. Rudimentary networks are observed in the brain during infancy. In recent years, the question of how functional networks develop and mature in children has been a hotly discussed topic. In this review, we examined the developmental characteristics of functional networks and the impacts of skill training on children's brains. We first focused on the general rules of brain network development and on the typical and atypical development of children's brain networks. After that, we highlighted the essentials of neural plasticity and the effects of learning on brain network development. We also discussed two important theoretical and practical concerns in brain network training. Finally, we concluded by presenting the significance of network training in typically and atypically developed brains.
Zeng, Yingchun; Cheng, Andy S K; Song, Ting; Sheng, Xiujie; Zhang, Yang; Liu, Xiangyu; Chan, Chetwyn C H
2017-11-28
Subjective cognitive impairment can be a significant and prevalent problem for gynaecological cancer survivors. The aims of this study were to assess subjective cognitive functioning in gynaecological cancer survivors after primary cancer treatment, and to investigate the impact of cancer treatment on brain structural networks and its association with subjective cognitive impairment. This was a cross-sectional survey using a self-reported questionnaire by the Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog) to assess subjective cognitive functioning, and applying DTI (diffusion tensor imaging) and graph theoretical analyses to investigate brain structural networks after primary cancer treatment. A total of 158 patients with gynaecological cancer (mean age, 45.86 years) and 130 age-matched non-cancer controls (mean age, 44.55 years) were assessed. Patients reported significantly greater subjective cognitive functioning on the FACT-Cog total score and two subscales of perceived cognitive impairment and perceived cognitive ability (all p values <0.001). Compared with patients who had received surgery only and non-cancer controls, patients treated with chemotherapy indicated the most altered global brain structural networks, especially in one of properties of small-worldness (p = 0.004). Reduced small-worldness was significantly associated with a lower FACT-Cog total score (r = 0.412, p = 0.024). Increased characteristic path length was also significantly associated with more subjective cognitive impairment (r = -0.388, p = 0.034). When compared with non-cancer controls, a considerable proportion of gynaecological cancer survivors may exhibit subjective cognitive impairment. This study provides the first evidence of brain structural network alteration in gynaecological cancer patients at post-treatment, and offers novel insights regarding the possible neurobiological mechanism of cancer-related cognitive impairment (CRCI) in gynaecological cancer patients. As primary cancer treatment can result in a more random organisation of structural brain networks, this may reduce brain functional specificity and segregation, and have implications for cognitive impairment. Future prospective and longitudinal studies are needed to build upon the study findings in order to assess potentially relevant clinical and psychosocial variables and brain network measures, so as to more accurately understand the specific risk factors related to subjective cognitive impairment in the gynaecological cancer population. Such knowledge could inform the development of appropriate treatment and rehabilitation efforts to ameliorate cognitive impairment in gynaecological cancer survivors.
Bettinardi, Ruggero G.; Tort-Colet, Núria; Ruiz-Mejias, Marcel; Sanchez-Vives, Maria V.; Deco, Gustavo
2015-01-01
Intrinsic brain activity is characterized by the presence of highly structured networks of correlated fluctuations between different regions of the brain. Such networks encompass different functions, whose properties are known to be modulated by the ongoing global brain state and are altered in several neurobiological disorders. In the present study, we induced a deep state of anesthesia in rats by means of a ketamine/medetomidine peritoneal injection, and analyzed the time course of the correlation between the brain activity in different areas while anesthesia spontaneously decreased over time. We compared results separately obtained from fMRI and local field potentials (LFPs) under the same anesthesia protocol, finding that while most profound phases of anesthesia can be described by overall sparse connectivity, stereotypical activity and poor functional integration, during lighter states different frequency-specific functional networks emerge, endowing the gradual restoration of structured large-scale activity seen during rest. Noteworthy, our in vivo results show that those areas belonging to the same functional network (the default-mode) exhibited sustained correlated oscillations around 10 Hz throughout the protocol, suggesting the presence of a specific functional backbone that is preserved even during deeper phases of anesthesia. Finally, the overall pattern of results obtained from both imaging and in vivo-recordings suggests that the progressive emergence from deep anesthesia is reflected by a corresponding gradual increase of organized correlated oscillations across the cortex. PMID:25804643
Bai, Feng; Shu, Ni; Yuan, Yonggui; Shi, Yongmei; Yu, Hui; Wu, Di; Wang, Jinhui; Xia, Mingrui; He, Yong; Zhang, Zhijun
2012-03-21
Alzheimer's disease (AD) can be conceptualized as a disconnection syndrome. Both remitted geriatric depression (RGD) and amnestic mild cognitive impairment (aMCI) are associated with a high risk for developing AD. However, little is known about the similarities and differences in the topological patterns of white matter (WM) structural networks between RGD and aMCI. In this study, diffusion tensor imaging and deterministic tractography were used to map the human WM networks of 35 RGD patients, 38 aMCI patients, and 30 healthy subjects. Furthermore, graph theoretical methods were applied to investigate the alterations in the global and regional properties of the WM network in these patients. First, both the RGD and aMCI patients showed abnormal global topology in their WM networks (i.e., reduced network strength, reduced global efficiency, and increased absolute path length) compared with the controls, and there were no significant differences in these global network properties between the patient groups. Second, similar deficits of the regional and connectivity characteristics in the WM networks were primarily found in the frontal brain regions of RGD and aMCI patients compared with the controls, while a different nodal efficiency of the posterior cingulate cortex and several prefrontal brain regions were also observed between the patient groups. Together, our study provides direct evidence for the association of a great majority of convergent and a minority of divergent connectivity of WM structural networks between RGD and aMCI patients, which may lead to increasing attention in defining a population at risk of AD.
Development of global cortical networks in early infancy.
Homae, Fumitaka; Watanabe, Hama; Otobe, Takayuki; Nakano, Tamami; Go, Tohshin; Konishi, Yukuo; Taga, Gentaro
2010-04-07
Human cognition and behaviors are subserved by global networks of neural mechanisms. Although the organization of the brain is a subject of interest, the process of development of global cortical networks in early infancy has not yet been clarified. In the present study, we explored developmental changes in these networks from several days to 6 months after birth by examining spontaneous fluctuations in brain activity, using multichannel near-infrared spectroscopy. We set up 94 measurement channels over the frontal, temporal, parietal, and occipital regions of the infant brain. The obtained signals showed complex time-series properties, which were characterized as 1/f fluctuations. To reveal the functional connectivity of the cortical networks, we calculated the temporal correlations of continuous signals between all the pairs of measurement channels. We found that the cortical network organization showed regional dependency and dynamic changes in the course of development. In the temporal, parietal, and occipital regions, connectivity increased between homologous regions in the two hemispheres and within hemispheres; in the frontal regions, it decreased progressively. Frontoposterior connectivity changed to a "U-shaped" pattern within 6 months: it decreases from the neonatal period to the age of 3 months and increases from the age of 3 months to the age of 6 months. We applied cluster analyses to the correlation coefficients and showed that the bilateral organization of the networks begins to emerge during the first 3 months of life. Our findings suggest that these developing networks, which form multiple clusters, are precursors of the functional cerebral architecture.
Imaging structural and functional brain networks in temporal lobe epilepsy
Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda
2013-01-01
Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281
Sun, Yu; Lim, Julian; Dai, Zhongxiang; Wong, KianFoong; Taya, Fumihiko; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios
2017-05-15
Although rest breaks are commonly administered as a countermeasure to reduce mental fatigue and boost cognitive performance, the effects of taking a break on behavior are not consistent. Moreover, our understanding of the underlying neural mechanisms of rest breaks and how they modulate mental fatigue is still rudimentary. In this study, we investigated the effects of receiving a rest break on the topological properties of brain connectivity networks via a two-session experimental paradigm, in which one session comprised four successive blocks of a mentally demanding visual selective attention task (No-rest session), whereas the other contained a rest break between the second and third task blocks (Rest session). Functional brain networks were constructed using resting-state functional MRI data recorded from 20 healthy adults before and after the performance of the task blocks. Behaviorally, subjects displayed robust time-on-task (TOT) declines, as reflected by increasingly slower reaction time as the test progressed and lower post-task self-reported ratings of engagement. However, we did not find a significant effect on task performance due to administering a mid-task break. Compared to pre-task measurements, post-task functional brain networks demonstrated an overall decrease of optimal small-world properties together with lower global efficiency. Specifically, we found TOT-related reduced nodal efficiency in brain regions that mainly resided in the subcortical areas. More interestingly, a significant block-by-session interaction was revealed in local efficiency, attributing to a significant post-task decline in No-rest session and a preserved local efficiency when a mid-task break opportunity was introduced in the Rest session. Taken together, these findings augment our understanding of how the resting brain reorganizes following the accumulation of prolonged task, suggest dissociable processes between the neural mechanisms of fatigue and recovery, and provide some of the first quantitative insights into the cognitive neuroscience of work and rest. Copyright © 2017 Elsevier Inc. All rights reserved.
Disrupted Brain Functional Organization in Epilepsy Revealed by Graph Theory Analysis.
Song, Jie; Nair, Veena A; Gaggl, Wolfgang; Prabhakaran, Vivek
2015-06-01
The human brain is a complex and dynamic system that can be modeled as a large-scale brain network to better understand the reorganizational changes secondary to epilepsy. In this study, we developed a brain functional network model using graph theory methods applied to resting-state fMRI data acquired from a group of epilepsy patients and age- and gender-matched healthy controls. A brain functional network model was constructed based on resting-state functional connectivity. A minimum spanning tree combined with proportional thresholding approach was used to obtain sparse connectivity matrices for each subject, which formed the basis of brain networks. We examined the brain reorganizational changes in epilepsy thoroughly at the level of the whole brain, the functional network, and individual brain regions. At the whole-brain level, local efficiency was significantly decreased in epilepsy patients compared with the healthy controls. However, global efficiency was significantly increased in epilepsy due to increased number of functional connections between networks (although weakly connected). At the functional network level, there were significant proportions of newly formed connections between the default mode network and other networks and between the subcortical network and other networks. There was a significant proportion of decreasing connections between the cingulo-opercular task control network and other networks. Individual brain regions from different functional networks, however, showed a distinct pattern of reorganizational changes in epilepsy. These findings suggest that epilepsy alters brain efficiency in a consistent pattern at the whole-brain level, yet alters brain functional networks and individual brain regions differently.
Brain Network Architecture and Global Intelligence in Children with Focal Epilepsy.
Paldino, M J; Golriz, F; Chapieski, M L; Zhang, W; Chu, Z D
2017-02-01
The biologic basis for intelligence rests to a large degree on the capacity for efficient integration of information across the cerebral network. We aimed to measure the relationship between network architecture and intelligence in the pediatric, epileptic brain. Patients were retrospectively identified with the following: 1) focal epilepsy; 2) brain MR imaging at 3T, including resting-state functional MR imaging; and 3) full-scale intelligence quotient measured by a pediatric neuropsychologist. The cerebral cortex was parcellated into approximately 700 gray matter network "nodes." The strength of a connection between 2 nodes was defined by the correlation between their blood oxygen level-dependent time-series. We calculated the following topologic properties: clustering coefficient, transitivity, modularity, path length, and global efficiency. A machine learning algorithm was used to measure the independent contribution of each metric to the intelligence quotient after adjusting for all other metrics. Thirty patients met the criteria (4-18 years of age); 20 patients required anesthesia during MR imaging. After we accounted for age and sex, clustering coefficient and path length were independently associated with full-scale intelligence quotient. Neither motion parameters nor general anesthesia was an important variable with regard to accurate intelligence quotient prediction by the machine learning algorithm. A longer history of epilepsy was associated with shorter path lengths ( P = .008), consistent with reorganization of the network on the basis of seizures. Considering only patients receiving anesthesia during machine learning did not alter the patterns of network architecture contributing to global intelligence. These findings support the physiologic relevance of imaging-based metrics of network architecture in the pathologic, developing brain. © 2017 by American Journal of Neuroradiology.
Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
Fabbro, Alessandra; Scaini, Denis; León, Verónica; Vázquez, Ester; Cellot, Giada; Privitera, Giulia; Lombardi, Lucia; Torrisi, Felice; Tomarchio, Flavia; Bonaccorso, Francesco; Bosi, Susanna; Ferrari, Andrea C; Ballerini, Laura; Prato, Maurizio
2016-01-26
Neural-interfaces rely on the ability of electrodes to transduce stimuli into electrical patterns delivered to the brain. In addition to sensitivity to the stimuli, stability in the operating conditions and efficient charge transfer to neurons, the electrodes should not alter the physiological properties of the target tissue. Graphene is emerging as a promising material for neuro-interfacing applications, given its outstanding physico-chemical properties. Here, we use graphene-based substrates (GBSs) to interface neuronal growth. We test our GBSs on brain cell cultures by measuring functional and synaptic integrity of the emerging neuronal networks. We show that GBSs are permissive interfaces, even when uncoated by cell adhesion layers, retaining unaltered neuronal signaling properties, thus being suitable for carbon-based neural prosthetic devices.
Abnormal small-world architecture of top–down control networks in obsessive–compulsive disorder
Zhang, Tijiang; Wang, Jinhui; Yang, Yanchun; Wu, Qizhu; Li, Bin; Chen, Long; Yue, Qiang; Tang, Hehan; Yan, Chaogan; Lui, Su; Huang, Xiaoqi; Chan, Raymond C.K.; Zang, Yufeng; He, Yong; Gong, Qiyong
2011-01-01
Background Obsessive–compulsive disorder (OCD) is a common neuropsychiatric disorder that is characterized by recurrent intrusive thoughts, ideas or images and repetitive ritualistic behaviours. Although focal structural and functional abnormalities in specific brain regions have been widely studied in populations with OCD, changes in the functional relations among them remain poorly understood. This study examined OCD–related alterations in functional connectivity patterns in the brain’s top–down control network. Methods We applied resting-state functional magnetic resonance imaging to investigate the correlation patterns of intrinsic or spontaneous blood oxygen level–dependent signal fluctuations in 18 patients with OCD and 16 healthy controls. The brain control networks were first constructed by thresholding temporal correlation matrices of 39 brain regions associated with top–down control and then analyzed using graph theory-based approaches. Results Compared with healthy controls, the patients with OCD showed decreased functional connectivity in the posterior temporal regions and increased connectivity in various control regions such as the cingulate, precuneus, thalamus and cerebellum. Furthermore, the brain’s control networks in the healthy controls showed small-world architecture (high clustering coefficients and short path lengths), suggesting an optimal balance between modularized and distributed information processing. In contrast, the patients with OCD showed significantly higher local clustering, implying abnormal functional organization in the control network. Further analysis revealed that the changes in network properties occurred in regions of increased functional connectivity strength in patients with OCD. Limitations The patient group in the present study was heterogeneous in terms of symptom clusters, and most of the patients with OCD were medicated. Conclusion Our preliminary results suggest that the organizational patterns of intrinsic brain activity in the control networks are altered in patients with OCD and thus provide empirical evidence for aberrant functional connectivity in the large-scale brain systems in people with this disorder. PMID:20964957
Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy.
Bernhardt, Boris C; Bonilha, Leonardo; Gross, Donald W
2015-09-01
Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach. Copyright © 2015 Elsevier Inc. All rights reserved.
Kruschwitz, J D; Waller, L; Daedelow, L S; Walter, H; Veer, I M
2018-05-01
One hallmark example of a link between global topological network properties of complex functional brain connectivity and cognitive performance is the finding that general intelligence may depend on the efficiency of the brain's intrinsic functional network architecture. However, although this association has been featured prominently over the course of the last decade, the empirical basis for this broad association of general intelligence and global functional network efficiency is quite limited. In the current study, we set out to replicate the previously reported association between general intelligence and global functional network efficiency using the large sample size and high quality data of the Human Connectome Project, and extended the original study by testing for separate association of crystallized and fluid intelligence with global efficiency, characteristic path length, and global clustering coefficient. We were unable to provide evidence for the proposed association between general intelligence and functional brain network efficiency, as was demonstrated by van den Heuvel et al. (2009), or for any other association with the global network measures employed. More specifically, across multiple network definition schemes, ranging from voxel-level networks to networks of only 100 nodes, no robust associations and only very weak non-significant effects with a maximal R 2 of 0.01 could be observed. Notably, the strongest (non-significant) effects were observed in voxel-level networks. We discuss the possibility that the low power of previous studies and publication bias may have led to false positive results fostering the widely accepted notion of general intelligence being associated to functional global network efficiency. Copyright © 2018 Elsevier Inc. All rights reserved.
Mesh electronics: a new paradigm for tissue-like brain probes.
Hong, Guosong; Yang, Xiao; Zhou, Tao; Lieber, Charles M
2018-06-01
Existing implantable neurotechnologies for understanding the brain and treating neurological diseases have intrinsic properties that have limited their capability to achieve chronically-stable brain interfaces with single-neuron spatiotemporal resolution. These limitations reflect what has been dichotomy between the structure and mechanical properties of living brain tissue and non-living neural probes. To bridge the gap between neural and electronic networks, we have introduced the new concept of mesh electronics probes designed with structural and mechanical properties such that the implant begins to 'look and behave' like neural tissue. Syringe-implanted mesh electronics have led to the realization of probes that are neuro-attractive and free of the chronic immune response, as well as capable of stable long-term mapping and modulation of brain activity at the single-neuron level. This review provides a historical overview of a 10-year development of mesh electronics by highlighting the tissue-like design, syringe-assisted delivery, seamless neural tissue integration, and single-neuron level chronic recording stability of mesh electronics. We also offer insights on unique near-term opportunities and future directions for neuroscience and neurology that now are available or expected for mesh electronics neurotechnologies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior
Picciotto, Marina R.; Higley, Michael J.; Mineur, Yann S.
2012-01-01
Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss the consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on the site of release, the receptor subtypes, and the target neuronal population, however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. PMID:23040810
New levels of language processing complexity and organization revealed by granger causation.
Gow, David W; Caplan, David N
2012-01-01
Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.
NASA Astrophysics Data System (ADS)
Stahn, Kirsten; Lehnertz, Klaus
2017-12-01
We aim at identifying factors that may affect the characteristics of evolving weighted networks derived from empirical observations. To this end, we employ various chains of analysis that are often used in field studies for a data-driven derivation and characterization of such networks. As an example, we consider fully connected, weighted functional brain networks before, during, and after epileptic seizures that we derive from multichannel electroencephalographic data recorded from epilepsy patients. For these evolving networks, we estimate clustering coefficient and average shortest path length in a time-resolved manner. Lastly, we make use of surrogate concepts that we apply at various levels of the chain of analysis to assess to what extent network characteristics are dominated by properties of the electroencephalographic recordings and/or the evolving weighted networks, which may be accessible more easily. We observe that characteristics are differently affected by the unavoidable referencing of the electroencephalographic recording, by the time-series-analysis technique used to derive the properties of network links, and whether or not networks were normalized. Importantly, for the majority of analysis settings, we observe temporal evolutions of network characteristics to merely reflect the temporal evolutions of mean interaction strengths. Such a property of the data may be accessible more easily, which would render the weighted network approach—as used here—as an overly complicated description of simple aspects of the data.
Bethlehem, Richard A I; van Honk, Jack; Auyeung, Bonnie; Baron-Cohen, Simon
2013-07-01
In recent years the neuropeptide oxytocin (OT) has become one of the most studied peptides of the human neuroendocrine system. Research has shown widespread behavioural effects and numerous potential therapeutic benefits. However, little is known about how OT triggers these effects in the brain. Here, we discuss some of the physiological properties of OT in the human brain including the long half-life of neuropeptides, the diffuse projections of OT throughout the brain and interactions with other systems such as the dopaminergic system. These properties indicate that OT acts without clear spatial and temporal specificity. Therefore, it is likely to have widespread effects on the brain's intrinsic functioning. Additionally, we review studies that have used functional magnetic resonance imaging (fMRI) concurrently with OT administration. These studies reveal a specific set of 'social' brain regions that are likely to be the strongest targets for OT's potential to influence human behaviour. On the basis of the fMRI literature and the physiological properties of the neuropeptide, we argue that OT has the potential to not only modulate activity in a set of specific brain regions, but also the functional connectivity between these regions. In light of the increasing knowledge of the behavioural effects of OT in humans, studies of the effects of OT administration on brain function can contribute to our understanding of the neural networks in the social brain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Differences between child and adult large-scale functional brain networks for reading tasks.
Liu, Xin; Gao, Yue; Di, Qiqi; Hu, Jiali; Lu, Chunming; Nan, Yun; Booth, James R; Liu, Li
2018-02-01
Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain. © 2017 Wiley Periodicals, Inc.
Decreased centrality of cortical volume covariance networks in autism spectrum disorders.
Balardin, Joana Bisol; Comfort, William Edgar; Daly, Eileen; Murphy, Clodagh; Andrews, Derek; Murphy, Declan G M; Ecker, Christine; Sato, João Ricardo
2015-10-01
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, L L; Gong, J P; Xu, Y W; Liu, B
2016-06-21
To investigate the nodal properties and reorganization of whole-brain functional network in subjects with severe right-sided SNHL. From June 2012 to June 2013, a total of 19 patients with severe right-sided SNHL were collected from Zhongda Hospital or the recruitment advertising along with 31 healthy controls.Based on the graph-theoretical analysis, the whole-brain functional networks were constructed using the BOLD-fMRI data of all subjects.Two sample two-tailed t-tests were used to investigate the differences between two groups in nodal metrics, such as node degree, node betweenness, node global efficiency and node local efficiency.All metrics were corrected by multiple comparisons.Partial correlation analysis was used to estimate the relationship between the significant metrics and the duration or severity of hearing loss. The right-sided SNHL showed significantly increased betweenness centrality in left supramarginal gyrus and right fusiform.However, other nodal parameters showed no statistical difference.Besides, patients exhibited no significant association between the altered metrics and clinical variables. Alterations of local topological properties may underlie cerebral cross-modal plastic reorganization in visual or speech-related regions in severe right-sided SNHL patients.
Smith, David V; Utevsky, Amanda V; Bland, Amy R; Clement, Nathan; Clithero, John A; Harsch, Anne E W; McKell Carter, R; Huettel, Scott A
2014-07-15
A central challenge for neuroscience lies in relating inter-individual variability to the functional properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns between different brain areas, potentially producing reliable group differences. Using sex differences as a motivating example, we examined two separate resting-state datasets comprising a total of 188 human participants. Both datasets were decomposed into resting-state networks (RSNs) using a probabilistic spatial independent component analysis (ICA). We estimated voxel-wise functional connectivity with these networks using a dual-regression analysis, which characterizes the participant-level spatiotemporal dynamics of each network while controlling for (via multiple regression) the influence of other networks and sources of variability. We found that males and females exhibit distinct patterns of connectivity with multiple RSNs, including both visual and auditory networks and the right frontal-parietal network. These results replicated across both datasets and were not explained by differences in head motion, data quality, brain volume, cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression functional connectivity is better at detecting inter-individual variability than traditional seed-based functional connectivity approaches. Our findings characterize robust-yet frequently ignored-neural differences between males and females, pointing to the necessity of controlling for sex in neuroscience studies of individual differences. Moreover, our results highlight the importance of employing network-based models to study variability in functional connectivity. Copyright © 2014 Elsevier Inc. All rights reserved.
Clustering Coefficients for Correlation Networks.
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties.
Clustering Coefficients for Correlation Networks
Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu
2018-01-01
Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly correlated with and therefore may be confounded by the node's connectivity. The proposed methods are expected to help us to understand clustering and lack thereof in correlational brain networks, such as those derived from functional time series and across-participant correlation in neuroanatomical properties. PMID:29599714
Network analysis of mesoscale optical recordings to assess regional, functional connectivity.
Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H
2015-10-01
With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.
Energy coding in biological neural networks
Zhang, Zhikang
2007-01-01
According to the experimental result of signal transmission and neuronal energetic demands being tightly coupled to information coding in the cerebral cortex, we present a brand new scientific theory that offers an unique mechanism for brain information processing. We demonstrate that the neural coding produced by the activity of the brain is well described by our theory of energy coding. Due to the energy coding model’s ability to reveal mechanisms of brain information processing based upon known biophysical properties, we can not only reproduce various experimental results of neuro-electrophysiology, but also quantitatively explain the recent experimental results from neuroscientists at Yale University by means of the principle of energy coding. Due to the theory of energy coding to bridge the gap between functional connections within a biological neural network and energetic consumption, we estimate that the theory has very important consequences for quantitative research of cognitive function. PMID:19003513
Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude
2017-06-01
Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Navigable networks as Nash equilibria of navigation games.
Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-07-03
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.
Vattikonda, Anirudh; Surampudi, Bapi Raju; Banerjee, Arpan; Deco, Gustavo; Roy, Dipanjan
2016-08-01
Computational modeling of the spontaneous dynamics over the whole brain provides critical insight into the spatiotemporal organization of brain dynamics at multiple resolutions and their alteration to changes in brain structure (e.g. in diseased states, aging, across individuals). Recent experimental evidence further suggests that the adverse effect of lesions is visible on spontaneous dynamics characterized by changes in resting state functional connectivity and its graph theoretical properties (e.g. modularity). These changes originate from altered neural dynamics in individual brain areas that are otherwise poised towards a homeostatic equilibrium to maintain a stable excitatory and inhibitory activity. In this work, we employ a homeostatic inhibitory mechanism, balancing excitation and inhibition in the local brain areas of the entire cortex under neurological impairments like lesions to understand global functional recovery (across brain networks and individuals). Previous computational and empirical studies have demonstrated that the resting state functional connectivity varies primarily due to the location and specific topological characteristics of the lesion. We show that local homeostatic balance provides a functional recovery by re-establishing excitation-inhibition balance in all areas that are affected by lesion. We systematically compare the extent of recovery in the primary hub areas (e.g. default mode network (DMN), medial temporal lobe, medial prefrontal cortex) as well as other sensory areas like primary motor area, supplementary motor area, fronto-parietal and temporo-parietal networks. Our findings suggest that stability and richness similar to the normal brain dynamics at rest are achievable by re-establishment of balance. Copyright © 2016 Elsevier Inc. All rights reserved.
Disruption of functional networks in dyslexia: A whole-brain, data-driven analysis of connectivity
Finn, Emily S.; Shen, Xilin; Holahan, John M.; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E.; Shaywitz, Bennett A.; Constable, R. Todd
2013-01-01
Background Functional connectivity analyses of fMRI data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which may result in mixing distinct activation timecourses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Methods Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Results Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Conclusions Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words based on their visual properties, while DYS readers recruit altered reading circuits and rely on laborious phonology-based “sounding out” strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. PMID:24124929
Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric
2013-06-01
Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph--a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer's disease (AD) and reveal findings that could lead to advancements in AD research.
NETWORK ASSISTED ANALYSIS TO REVEAL THE GENETIC BASIS OF AUTISM1
Liu, Li; Lei, Jing; Roeder, Kathryn
2016-01-01
While studies show that autism is highly heritable, the nature of the genetic basis of this disorder remains illusive. Based on the idea that highly correlated genes are functionally interrelated and more likely to affect risk, we develop a novel statistical tool to find more potentially autism risk genes by combining the genetic association scores with gene co-expression in specific brain regions and periods of development. The gene dependence network is estimated using a novel partial neighborhood selection (PNS) algorithm, where node specific properties are incorporated into network estimation for improved statistical and computational efficiency. Then we adopt a hidden Markov random field (HMRF) model to combine the estimated network and the genetic association scores in a systematic manner. The proposed modeling framework can be naturally extended to incorporate additional structural information concerning the dependence between genes. Using currently available genetic association data from whole exome sequencing studies and brain gene expression levels, the proposed algorithm successfully identified 333 genes that plausibly affect autism risk. PMID:27134692
Huang, Shuai; Li, Jing; Ye, Jieping; Fleisher, Adam; Chen, Kewei; Wu, Teresa; Reiman, Eric
2014-01-01
Structure learning of Bayesian Networks (BNs) is an important topic in machine learning. Driven by modern applications in genetics and brain sciences, accurate and efficient learning of large-scale BN structures from high-dimensional data becomes a challenging problem. To tackle this challenge, we propose a Sparse Bayesian Network (SBN) structure learning algorithm that employs a novel formulation involving one L1-norm penalty term to impose sparsity and another penalty term to ensure that the learned BN is a Directed Acyclic Graph (DAG)—a required property of BNs. Through both theoretical analysis and extensive experiments on 11 moderate and large benchmark networks with various sample sizes, we show that SBN leads to improved learning accuracy, scalability, and efficiency as compared with 10 existing popular BN learning algorithms. We apply SBN to a real-world application of brain connectivity modeling for Alzheimer’s disease (AD) and reveal findings that could lead to advancements in AD research. PMID:22665720
Uninformative memories will prevail: the storage of correlated representations and its consequences.
Kropff, Emilio; Treves, Alessandro
2007-11-01
Autoassociative networks were proposed in the 80's as simplified models of memory function in the brain, using recurrent connectivity with Hebbian plasticity to store patterns of neural activity that can be later recalled. This type of computation has been suggested to take place in the CA3 region of the hippocampus and at several levels in the cortex. One of the weaknesses of these models is their apparent inability to store correlated patterns of activity. We show, however, that a small and biologically plausible modification in the "learning rule" (associating to each neuron a plasticity threshold that reflects its popularity) enables the network to handle correlations. We study the stability properties of the resulting memories (in terms of their resistance to the damage of neurons or synapses), finding a novel property of autoassociative networks: not all memories are equally robust, and the most informative are also the most sensitive to damage. We relate these results to category-specific effects in semantic memory patients, where concepts related to "non-living things" are usually more resistant to brain damage than those related to "living things," a phenomenon suspected to be rooted in the correlation between representations of concepts in the cortex.
Martínez-Montes, Eduardo
2013-01-01
This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356
Origin of hyperbolicity in brain-to-brain coordination networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan
2018-02-01
Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.
An Energy Model of Place Cell Network in Three Dimensional Space.
Wang, Yihong; Xu, Xuying; Wang, Rubin
2018-01-01
Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.
NASA Astrophysics Data System (ADS)
Abidin, Anas Zainul; D'Souza, Adora M.; Nagarajan, Mahesh B.; Wismüller, Axel
2016-03-01
The use of functional Magnetic Resonance Imaging (fMRI) has provided interesting insights into our understanding of the brain. In clinical setups these scans have been used to detect and study changes in the brain network properties in various neurological disorders. A large percentage of subjects infected with HIV present cognitive deficits, which are known as HIV associated neurocognitive disorder (HAND). In this study we propose to use our novel technique named Mutual Connectivity Analysis (MCA) to detect differences in brain networks in subjects with and without HIV infection. Resting state functional MRI scans acquired from 10 subjects (5 HIV+ and 5 HIV-) were subject to standard preprocessing routines. Subsequently, the average time-series for each brain region of the Automated Anatomic Labeling (AAL) atlas are extracted and used with the MCA framework to obtain a graph characterizing the interactions between them. The network graphs obtained for different subjects are then compared using Network-Based Statistics (NBS), which is an approach to detect differences between graphs edges while controlling for the family-wise error rate when mass univariate testing is performed. Applying this approach on the graphs obtained yields a single network encompassing 42 nodes and 65 edges, which is significantly different between the two subject groups. Specifically connections to the regions in and around the basal ganglia are significantly decreased. Also some nodes corresponding to the posterior cingulate cortex are affected. These results are inline with our current understanding of pathophysiological mechanisms of HIV associated neurocognitive disease (HAND) and other HIV based fMRI connectivity studies. Hence, we illustrate the applicability of our novel approach with network-based statistics in a clinical case-control study to detect differences connectivity patterns.
Cisler, Josh M; Sigel, Benjamin A; Kramer, Teresa L; Smitherman, Sonet; Vanderzee, Karin; Pemberton, Joy; Kilts, Clinton D
2016-01-01
Posttraumatic stress disorder (PTSD) is often chronic and disabling across the lifespan. The gold standard treatment for adolescent PTSD is Trauma-Focused Cognitive-Behavioral Therapy (TF-CBT), though treatment response is variable and mediating neural mechanisms are not well understood. Here, we test whether PTSD symptom reduction during TF-CBT is associated with individual differences in large-scale brain network organization during emotion processing. Twenty adolescent girls, aged 11-16, with PTSD related to assaultive violence completed a 12-session protocol of TF-CBT. Participants completed an emotion processing task, in which neutral and fearful facial expressions were presented either overtly or covertly during 3T fMRI, before and after treatment. Analyses focused on characterizing network properties of modularity, assortativity, and global efficiency within an 824 region-of-interest brain parcellation separately during each of the task blocks using weighted functional connectivity matrices. We similarly analyzed an existing dataset of healthy adolescent girls undergoing an identical emotion processing task to characterize normative network organization. Pre-treatment individual differences in modularity, assortativity, and global efficiency during covert fear vs neutral blocks predicted PTSD symptom reduction. Patients who responded better to treatment had greater network modularity and assortativity but lesser efficiency, a pattern that closely resembled the control participants. At a group level, greater symptom reduction was associated with greater pre-to-post-treatment increases in network assortativity and modularity, but this was more pronounced among participants with less symptom improvement. The results support the hypothesis that modularized and resilient brain organization during emotion processing operate as mechanisms enabling symptom reduction during TF-CBT.
Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong
2013-06-26
Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in patients with ADHD.
Changes of mind in an attractor network of decision-making.
Albantakis, Larissa; Deco, Gustavo
2011-06-01
Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models.
How neuroscience can inform the study of individual differences in cognitive abilities
McFarland, Dennis J.
2018-01-01
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such at perception, attention, decision and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control. PMID:28195556
Neuronal plasticity and thalamocortical sleep and waking oscillations
Timofeev, Igor
2011-01-01
Throughout life, thalamocortical (TC) network alternates between activated states (wake or rapid eye movement sleep) and slow oscillatory state dominating slow-wave sleep. The patterns of neuronal firing are different during these distinct states. I propose that due to relatively regular firing, the activated states preset some steady state synaptic plasticity and that the silent periods of slow-wave sleep contribute to a release from this steady state synaptic plasticity. In this respect, I discuss how states of vigilance affect short-, mid-, and long-term synaptic plasticity, intrinsic neuronal plasticity, as well as homeostatic plasticity. Finally, I suggest that slow oscillation is intrinsic property of cortical network and brain homeostatic mechanisms are tuned to use all forms of plasticity to bring cortical network to the state of slow oscillation. However, prolonged and profound shift from this homeostatic balance could lead to development of paroxysmal hyperexcitability and seizures as in the case of brain trauma. PMID:21854960
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Guo, Tao; Guan, Xiaojun; Zeng, Qiaoling; Xuan, Min; Gu, Quanquan; Huang, Peiyu; Xu, Xiaojun; Zhang, Minming
2018-01-01
Rapid eye movement sleep behavior disorder (RBD) has a strong association with alpha synucleinpathies such as Parkinson's disease (PD) and PD patients with RBD tend to have a poorer prognosis. However, we still know little about the pathogenesis of RBD in PD. Therefore, we aim to detect the alterations of structural correlation network (SCN) in PD patients with and without RBD. A total of 191 PD patients, including 51 patients with possible RBD (pRBD) and 140 patients with non-possible RBD, and 76 normal controls were included in the present study. Structural brain networks were constructed by thresholding gray matter volume correlation matrices of 116 regions and analyzed using graph theoretical approaches. There was no difference in global properties among the three groups. Significant enhanced regional nodal measures in limbic system, frontal-temporal regions, and occipital regions and decreased nodal measures in cerebellum were found in PD patients with pRBD (PD-pRBD) compared with PD patients without pRBD. Besides, nodes in frontal lobe, temporal lobe, and limbic system were served as hubs in both two PD groups, and PD-pRBD exhibited additionally recruited hubs in limbic regions. Based on the SCN analysis, we found PD-pRBD exhibited a reorganization of nodal properties as well as the remapping of the hub distribution in whole brain especially in limbic system, which may shed light to the pathophysiology of PD with RBD.
Developmental process emerges from extended brain-body-behavior networks
Byrge, Lisa; Sporns, Olaf; Smith, Linda B.
2014-01-01
Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251
Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task
Ciuciu, P.; Varoquaux, G.; Abry, P.; Sadaghiani, S.; Kleinschmidt, A.
2012-01-01
Scaling temporal dynamics in functional MRI (fMRI) signals have been evidenced for a decade as intrinsic characteristics of ongoing brain activity (Zarahn et al., 1997). Recently, scaling properties were shown to fluctuate across brain networks and to be modulated between rest and task (He, 2011): notably, Hurst exponent, quantifying long memory, decreases under task in activating and deactivating brain regions. In most cases, such results were obtained: First, from univariate (voxelwise or regionwise) analysis, hence focusing on specific cognitive systems such as Resting-State Networks (RSNs) and raising the issue of the specificity of this scale-free dynamics modulation in RSNs. Second, using analysis tools designed to measure a single scaling exponent related to the second order statistics of the data, thus relying on models that either implicitly or explicitly assume Gaussianity and (asymptotic) self-similarity, while fMRI signals may significantly depart from those either of those two assumptions (Ciuciu et al., 2008; Wink et al., 2008). To address these issues, the present contribution elaborates on the analysis of the scaling properties of fMRI temporal dynamics by proposing two significant variations. First, scaling properties are technically investigated using the recently introduced Wavelet Leader-based Multifractal formalism (WLMF; Wendt et al., 2007). This measures a collection of scaling exponents, thus enables a richer and more versatile description of scale invariance (beyond correlation and Gaussianity), referred to as multifractality. Also, it benefits from improved estimation performance compared to tools previously used in the literature. Second, scaling properties are investigated in both RSN and non-RSN structures (e.g., artifacts), at a broader spatial scale than the voxel one, using a multivariate approach, namely the Multi-Subject Dictionary Learning (MSDL) algorithm (Varoquaux et al., 2011) that produces a set of spatial components that appear more sparse than their Independent Component Analysis (ICA) counterpart. These tools are combined and applied to a fMRI dataset comprising 12 subjects with resting-state and activation runs (Sadaghiani et al., 2009). Results stemming from those analysis confirm the already reported task-related decrease of long memory in functional networks, but also show that it occurs in artifacts, thus making this feature not specific to functional networks. Further, results indicate that most fMRI signals appear multifractal at rest except in non-cortical regions. Task-related modulation of multifractality appears only significant in functional networks and thus can be considered as the key property disentangling functional networks from artifacts. These finding are discussed in the light of the recent literature reporting scaling dynamics of EEG microstate sequences at rest and addressing non-stationarity issues in temporally independent fMRI modes. PMID:22715328
NASA Astrophysics Data System (ADS)
Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol
2017-04-01
Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.
Wu, Qiong; Gao, Yang; Liu, Ai-Shi; Xie, Li-Zhi; Qian, Long; Yang, Xiao-Guang
2018-01-01
To date, the most frequently reported neuroimaging biomarkers in Parkinson's disease (PD) are direct brain imaging measurements focusing on local disrupted regions. However, the notion that PD is related to abnormal functional and structural connectivity has received support in the past few years. Here, we employed graph theory to analyze the structural co-variance networks derived from 50 PD patients and 48 normal controls (NC). Then, the small world properties of brain networks were assessed in the structural networks that were constructed based on cortical volume data. Our results showed that both the PD and NC groups had a small world architecture in brain structural networks. However, the PD patients had a higher characteristic path length and clustering coefficients compared with the NC group. With regard to the nodal centrality, 11 regions, including 3 association cortices, 5 paralimbic cortices, and 3 subcortical regions were identified as hubs in the PD group. In contrast, 10 regions, including 7 association cortical regions, 2 paralimbic cortical regions, and the primary motor cortex region, were identified as hubs. Moreover, the regional centrality was profoundly affected in PD patients, including decreased nodal centrality in the right inferior occipital gyrus and the middle temporal gyrus and increased nodal centrality in the right amygdala, the left caudate and the superior temporal gyrus. In addition, the structural cortical network of PD showed reduced topological stability for targeted attacks. Together, this study shows that the coordinated patterns of cortical volume network are widely altered in PD patients with a decrease in the efficiency of parallel information processing. These changes provide structural evidence to support the concept that the core pathophysiology of PD is associated with disruptive alterations in the coordination of large-scale brain networks that underlie high-level cognition. Copyright © 2017. Published by Elsevier B.V.
Altered Insula Connectivity under MDMA.
Walpola, Ishan C; Nest, Timothy; Roseman, Leor; Erritzoe, David; Feilding, Amanda; Nutt, David J; Carhart-Harris, Robin L
2017-10-01
Recent work with noninvasive human brain imaging has started to investigate the effects of 3,4-methylenedioxymethamphetamine (MDMA) on large-scale patterns of brain activity. MDMA, a potent monoamine-releaser with particularly pronounced serotonin- releasing properties, has unique subjective effects that include: marked positive mood, pleasant/unusual bodily sensations and pro-social, empathic feelings. However, the neurobiological basis for these effects is not properly understood, and the present analysis sought to address this knowledge gap. To do this, we administered MDMA-HCl (100 mg p.o.) and, separately, placebo (ascorbic acid) in a randomized, double-blind, repeated-measures design with twenty-five healthy volunteers undergoing fMRI scanning. We then employed a measure of global resting-state functional brain connectivity and follow-up seed-to-voxel analysis to the fMRI data we acquired. Results revealed decreased right insula/salience network functional connectivity under MDMA. Furthermore, these decreases in right insula/salience network connectivity correlated with baseline trait anxiety and acute experiences of altered bodily sensations under MDMA. The present findings highlight insular disintegration (ie, compromised salience network membership) as a neurobiological signature of the MDMA experience, and relate this brain effect to trait anxiety and acutely altered bodily sensations-both of which are known to be associated with insular functioning.
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.
2016-01-01
The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828
Booth, Clair A; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W; Randall, Andrew D; Brown, Jonathan T
2016-01-13
The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. Copyright © 2016 Booth, Witton et al.
Zhang, Wenhai; Li, Hong; Pan, Xiaohong
2015-02-01
Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.
Yang, Jiajia; Kitada, Ryo; Kochiyama, Takanori; Yu, Yinghua; Makita, Kai; Araki, Yuta; Wu, Jinglong; Sadato, Norihiro
2017-01-01
Humans are able to judge the speed of an object’s motion by touch. Research has suggested that tactile judgment of speed is influenced by physical properties of the moving object, though the neural mechanisms underlying this process remain poorly understood. In the present study, functional magnetic resonance imaging was used to investigate brain networks that may be involved in tactile speed classification and how such networks may be affected by an object’s texture. Participants were asked to classify the speed of 2-D raised dot patterns passing under their right middle finger. Activity in the parietal operculum, insula, and inferior and superior frontal gyri was positively related to the motion speed of dot patterns. Activity in the postcentral gyrus and superior parietal lobule was sensitive to dot periodicity. Psycho-physiological interaction (PPI) analysis revealed that dot periodicity modulated functional connectivity between the parietal operculum (related to speed) and postcentral gyrus (related to dot periodicity). These results suggest that texture-sensitive activity in the primary somatosensory cortex and superior parietal lobule influences brain networks associated with tactually-extracted motion speed. Such effects may be related to the influence of surface texture on tactile speed judgment. PMID:28145505
Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification
Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen
2014-01-01
Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922
From structure to function, via dynamics
NASA Astrophysics Data System (ADS)
Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.
2013-01-01
Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.W.
1992-01-01
Computational neural networks (CNNs) are a computational paradigm inspired by the brain's massively parallel network of highly interconnected neurons. The power of computational neural networks derives not so much from their ability to model the brain as from their ability to learn by example and to map highly complex, nonlinear functions, without the need to explicitly specify the functional relationship. Two central questions about CNNs were investigated in the context of predicting chemical reactions: (1) the mapping properties of neural networks and (2) the representation of chemical information for use in CNNs. Chemical reactivity is here considered an example ofmore » a complex, nonlinear function of molecular structure. CNN's were trained using modifications of the back propagation learning rule to map a three dimensional response surface similar to those typically observed in quantitative structure-activity and structure-property relationships. The computational neural network's mapping of the response surface was found to be robust to the effects of training sample size, noisy data and intercorrelated input variables. The investigation of chemical structure representation led to the development of a molecular structure-based connection-table representation suitable for neural network training. An extension of this work led to a BE-matrix structure representation that was found to be general for several classes of reactions. The CNN prediction of chemical reactivity and regiochemistry was investigated for electrophilic aromatic substitution reactions, Markovnikov addition to alkenes, Saytzeff elimination from haloalkanes, Diels-Alder cycloaddition, and retro Diels-Alder ring opening reactions using these connectivity-matrix derived representations. The reaction predictions made by the CNNs were more accurate than those of an expert system and were comparable to predictions made by chemists.« less
Navigable networks as Nash equilibria of navigation games
Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri
2015-01-01
Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277
Liu, Hesheng; Stufflebeam, Steven M; Sepulcre, Jorge; Hedden, Trey; Buckner, Randy L
2009-12-01
Cerebral lateralization is a fundamental property of the human brain and a marker of successful development. Here we provide evidence that multiple mechanisms control asymmetry for distinct brain systems. Using intrinsic activity to measure asymmetry in 300 adults, we mapped the most strongly lateralized brain regions. Both men and women showed strong asymmetries with a significant, but small, group difference. Factor analysis on the asymmetric regions revealed 4 separate factors that each accounted for significant variation across subjects. The factors were associated with brain systems involved in vision, internal thought (the default network), attention, and language. An independent sample of right- and left-handed individuals showed that hand dominance affects brain asymmetry but differentially across the 4 factors supporting their independence. These findings show the feasibility of measuring brain asymmetry using intrinsic activity fluctuations and suggest that multiple genetic or environmental mechanisms control cerebral lateralization.
Toppi, J; Ciaramidaro, A; Vogel, P; Mattia, D; Babiloni, F; Siniatchkin, M; Astolfi, L
2015-08-01
Hyperscanning consists in the simultaneous recording of hemodynamic or neuroelectrical signals from two or more subjects acting in a social context. Well-established methodologies for connectivity estimation have already been adapted to hyperscanning purposes. The extension of graph theory approach to multi-subjects case is still a challenging issue. In the present work we aim to test the ability of the currently used graph theory global indices in describing the properties of a network given by two interacting subjects. The testing was conducted first on surrogate brain-to-brain networks reproducing typical social scenarios and then on real EEG hyperscanning data recorded during a Joint Action task. The results of the simulation study highlighted the ability of all the investigated indexes in modulating their values according to the level of interaction between subjects. However, only global efficiency and path length indexes demonstrated to be sensitive to an asymmetry in the communication between the two subjects. Such results were, then, confirmed by the application on real EEG data. Global efficiency modulated, in fact, their values according to the inter-brain density, assuming higher values in the social condition with respect to the non-social condition.
Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong
2017-10-01
Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Artificial astrocytes improve neural network performance.
Porto-Pazos, Ana B; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-04-19
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function.
Artificial Astrocytes Improve Neural Network Performance
Porto-Pazos, Ana B.; Veiguela, Noha; Mesejo, Pablo; Navarrete, Marta; Alvarellos, Alberto; Ibáñez, Oscar; Pazos, Alejandro; Araque, Alfonso
2011-01-01
Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its application in artificial intelligence remains untested. We have investigated the consequences of including artificial astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems. We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance, and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence with implications in computational science as well as in the understanding of brain function. PMID:21526157
Intrinsic Neuronal Properties Switch the Mode of Information Transmission in Networks
Gjorgjieva, Julijana; Mease, Rebecca A.; Moody, William J.; Fairhall, Adrienne L.
2014-01-01
Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission. PMID:25474701
Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.
Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming
2017-12-01
State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.
Topological relationships between brain and social networks.
Sakata, Shuzo; Yamamori, Tetsuo
2007-01-01
Brains are complex networks. Previously, we revealed that specific connected structures are either significantly abundant or rare in cortical networks. However, it remains unknown whether systems from other disciplines have similar architectures to brains. By applying network-theoretical methods, here we show topological similarities between brain and social networks. We found that the statistical relevance of specific tied structures differs between social "friendship" and "disliking" networks, suggesting relation-type-specific topology of social networks. Surprisingly, overrepresented connected structures in brain networks are more similar to those in the friendship networks than to those in other networks. We found that balanced and imbalanced reciprocal connections between nodes are significantly abundant and rare, respectively, whereas these results are unpredictable by simply counting mutual connections. We interpret these results as evidence of positive selection of balanced mutuality between nodes. These results also imply the existence of underlying common principles behind the organization of brain and social networks.
NASA Astrophysics Data System (ADS)
Rish, Irina; Bashivan, Pouya; Cecchi, Guillermo A.; Goldstein, Rita Z.
2016-03-01
The objective of this study is to investigate effects of methylphenidate on brain activity in individuals with cocaine use disorder (CUD) using functional MRI (fMRI). Methylphenidate hydrochloride (MPH) is an indirect dopamine agonist commonly used for treating attention deficit/hyperactivity disorders; it was also shown to have some positive effects on CUD subjects, such as improved stop signal reaction times associated with better control/inhibition,1 as well as normalized task-related brain activity2 and resting-state functional connectivity in specific areas.3 While prior fMRI studies of MPH in CUDs have focused on mass-univariate statistical hypothesis testing, this paper evaluates multivariate, whole-brain effects of MPH as captured by the generalization (prediction) accuracy of different classification techniques applied to features extracted from resting-state functional networks (e.g., node degrees). Our multivariate predictive results based on resting-state data from3 suggest that MPH tends to normalize network properties such as voxel degrees in CUD subjects, thus providing additional evidence for potential benefits of MPH in treating cocaine addiction.
Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain
NASA Astrophysics Data System (ADS)
Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.
2017-04-01
Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.
Gong, Liang; Hou, Zhenghua; Wang, Zan; He, Cancan; Yin, Yingying; Yuan, Yonggui; Zhang, Haisan; Lv, Luxian; Zhang, Hongxing; Xie, Chunming; Zhang, Zhijun
2018-01-01
Graph theoretical analyses have identified disrupted functional topological organization across the brain in patients with major depressive disorder (MDD). However, the relationship between brain topology and short-term treatment responses in patients with MDD remains unknown. Sixty-eight patients with MDD and 63 cognitively normal (CN) subjects were recruited at baseline and underwent resting-state functional magnetic resonance imaging scans. Graph theory analysis was used to examine group differences in the whole-brain functional topological properties. The association between altered brain topology and the early antidepressant response was examined. Patients with MDD showed lower normalized clustering coefficients, lower small-worldness scalars and increased nodal efficiencies in the default mode network and decreased nodal efficiencies in basal ganglia and hippocampal networks. In addition, the decreased nodal efficiency in left hippocampus was negatively correlated with depressive severity at baseline and positively correlated with changes in the depressive scores after two weeks of antidepressant treatment. The patients in the present study received different medications. These findings indicated that the altered brain functional topological organization in patients with MDD is associated with the treatment response in the early phase of medication. Therefore, brain topology assessments might be considered a useful and convenient predictor of short-term antidepressant responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Brain anatomical networks in early human brain development.
Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang
2011-02-01
Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.
Yu, Qingbao; Erhardt, Erik B.; Sui, Jing; Du, Yuhui; He, Hao; Hjelm, Devon; Cetin, Mustafa S.; Rachakonda, Srinivas; Miller, Robyn L.; Pearlson, Godfrey; Calhoun, Vince D.
2014-01-01
Graph theory-based analysis has been widely employed in brain imaging studies, and altered topological properties of brain connectivity have emerged as important features of mental diseases such as schizophrenia. However, most previous studies have focused on graph metrics of stationary brain graphs, ignoring that brain connectivity exhibits fluctuations over time. Here we develop a new framework for accessing dynamic graph properties of time-varying functional brain connectivity in resting state fMRI data and apply it to healthy controls (HCs) and patients with schizophrenia (SZs). Specifically, nodes of brain graphs are defined by intrinsic connectivity networks (ICNs) identified by group independent component analysis (ICA). Dynamic graph metrics of the time-varying brain connectivity estimated by the correlation of sliding time-windowed ICA time courses of ICNs are calculated. First- and second-level connectivity states are detected based on the correlation of nodal connectivity strength between time-varying brain graphs. Our results indicate that SZs show decreased variance in the dynamic graph metrics. Consistent with prior stationary functional brain connectivity works, graph measures of identified first-level connectivity states show lower values in SZs. In addition, more first-level connectivity states are disassociated with the second-level connectivity state which resembles the stationary connectivity pattern computed by the entire scan. Collectively, the findings provide new evidence about altered dynamic brain graphs in schizophrenia which may underscore the abnormal brain performance in this mental illness. PMID:25514514
Social networks in primates: smart and tolerant species have more efficient networks.
Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J J; Pelé, Marie; Bergstrom, Mackenzie L; Borgeaud, Christèle; Brosnan, Sarah F; Crofoot, Margaret C; Fedigan, Linda M; Fichtel, Claudia; Hopper, Lydia M; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric
2014-12-23
Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities.
Social networks in primates: smart and tolerant species have more efficient networks
Pasquaretta, Cristian; Levé, Marine; Claidière, Nicolas; van de Waal, Erica; Whiten, Andrew; MacIntosh, Andrew J. J.; Pelé, Marie; Bergstrom, Mackenzie L.; Borgeaud, Christèle; Brosnan, Sarah F.; Crofoot, Margaret C.; Fedigan, Linda M.; Fichtel, Claudia; Hopper, Lydia M.; Mareno, Mary Catherine; Petit, Odile; Schnoell, Anna Viktoria; di Sorrentino, Eugenia Polizzi; Thierry, Bernard; Tiddi, Barbara; Sueur, Cédric
2014-01-01
Network optimality has been described in genes, proteins and human communicative networks. In the latter, optimality leads to the efficient transmission of information with a minimum number of connections. Whilst studies show that differences in centrality exist in animal networks with central individuals having higher fitness, network efficiency has never been studied in animal groups. Here we studied 78 groups of primates (24 species). We found that group size and neocortex ratio were correlated with network efficiency. Centralisation (whether several individuals are central in the group) and modularity (how a group is clustered) had opposing effects on network efficiency, showing that tolerant species have more efficient networks. Such network properties affecting individual fitness could be shaped by natural selection. Our results are in accordance with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning relates to cognitive abilities. PMID:25534964
Autonomous Circuitry for Substrate Exploration in Freely Moving Drosophila Larvae
Berni, Jimena; Pulver, Stefan R.; Griffith, Leslie C.; Bate, Michael
2014-01-01
Summary Background Many organisms, from bacteria to human hunter-gatherers, use specialized random walk strategies to explore their environment. Such behaviors are an efficient stratagem for sampling the environment and usually consist of an alternation between straight runs and turns that redirect these runs. Drosophila larvae execute an exploratory routine of this kind that consists of sequences of straight crawls, pauses, turns, and redirected crawls. Central pattern generating networks underlying rhythmic movements are distributed along the anteroposterior axis of the nervous system. The way in which the operation of these networks is incorporated into extended behavioral routines such as substrate exploration has not yet been explored. In particular, the part played by the brain in dictating the sequence of movements required is unknown. Results We report the use of a genetic method to block synaptic activity acutely in the brain and subesophageal ganglia (SOG) of larvae during active exploratory behavior. We show that the brain and SOG are not required for the normal performance of an exploratory routine. Alternation between crawls and turns is an intrinsic property of the abdominal and/or thoracic networks. The brain modifies this autonomous routine during goal-directed movements such as those of chemotaxis. Nonetheless, light avoidance behavior can be mediated in the absence of brain activity solely by the sensorimotor system of the abdomen and thorax. Conclusions The sequence of movements for substrate exploration is an autonomous capacity of the thoracic and abdominal nervous system. The brain modulates this exploratory routine in response to environmental cues. PMID:22940472
Janca, Radek; Krsek, Pavel; Jezdik, Petr; Cmejla, Roman; Tomasek, Martin; Komarek, Vladimir; Marusic, Petr; Jiruska, Premysl
2018-01-01
Between seizures, irritative network generates frequent brief synchronous activity, which manifests on the EEG as interictal epileptiform discharges (IEDs). Recent insights into the mechanism of IEDs at the microscopic level have demonstrated a high variance in the recruitment of neuronal populations generating IEDs and a high variability in the trajectories through which IEDs propagate across the brain. These phenomena represent one of the major constraints for precise characterization of network organization and for the utilization of IEDs during presurgical evaluations. We have developed a new approach to dissect human neocortical irritative networks and quantify their properties. We have demonstrated that irritative network has modular nature and it is composed of multiple independent sub-regions, each with specific IED propagation trajectories and differing in the extent of IED activity generated. The global activity of the irritative network is determined by long-term and circadian fluctuations in sub-region spatiotemporal properties. Also, the most active sub-region co-localizes with the seizure onset zone in 12/14 cases. This study demonstrates that principles of recruitment variability and propagation are conserved at the macroscopic level and that they determine irritative network properties in humans. Functional stratification of the irritative network increases the diagnostic yield of intracranial investigations with the potential to improve the outcomes of surgical treatment of neocortical epilepsy. PMID:29628910
The functional connectome of cognitive reserve
Marques, Paulo; Moreira, Pedro; Magalhães, Ricardo; Costa, Patrício; Santos, Nadine; Zihl, Josef; Soares, José
2016-01-01
Abstract Cognitive Reserve (CR) designates the brain's capacity to actively cope with insults through a more efficient use of its resources/networks. It was proposed in order to explain the discrepancies between the observed cognitive ability and the expected capacity for an individual. Typical proxies of CR include education and Intelligence Quotient but none totally account for the variability of CR and no study has shown if the brain's greater efficiency associated with CR can be measured. We used a validated model to estimate CR from the residual variance in memory and general executive functioning, accounting for both brain anatomical (i.e., gray matter and white matter signal abnormalities volume) and demographic variables (i.e., years of formal education and sex). Functional connectivity (FC) networks and topological properties were explored for associations with CR. Demographic characteristics, mainly accounted by years of formal education, were associated with higher FC, clustering, local efficiency and strength in parietal and occipital regions and greater network transitivity. Higher CR was associated with a greater FC, local efficiency and clustering of occipital regions, strength and centrality of the inferior temporal gyrus and higher global efficiency. Altogether, these findings suggest that education may facilitate the brain's ability to form segregated functional groups, reinforcing the view that higher education level triggers more specialized use of neural processing. Additionally, this study demonstrated for the first time that CR is associated with more efficient processing of information in the human brain and reinforces the existence of a fine balance between segregation and integration. Hum Brain Mapp 37:3310–3322, 2016.. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27144904
Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.
Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo
2016-12-01
Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.
Disruption of functional networks in dyslexia: a whole-brain, data-driven analysis of connectivity.
Finn, Emily S; Shen, Xilin; Holahan, John M; Scheinost, Dustin; Lacadie, Cheryl; Papademetris, Xenophon; Shaywitz, Sally E; Shaywitz, Bennett A; Constable, R Todd
2014-09-01
Functional connectivity analyses of functional magnetic resonance imaging data are a powerful tool for characterizing brain networks and how they are disrupted in neural disorders. However, many such analyses examine only one or a small number of a priori seed regions. Studies that consider the whole brain frequently rely on anatomic atlases to define network nodes, which might result in mixing distinct activation time-courses within a single node. Here, we improve upon previous methods by using a data-driven brain parcellation to compare connectivity profiles of dyslexic (DYS) versus non-impaired (NI) readers in the first whole-brain functional connectivity analysis of dyslexia. Whole-brain connectivity was assessed in children (n = 75; 43 NI, 32 DYS) and adult (n = 104; 64 NI, 40 DYS) readers. Compared to NI readers, DYS readers showed divergent connectivity within the visual pathway and between visual association areas and prefrontal attention areas; increased right-hemisphere connectivity; reduced connectivity in the visual word-form area (part of the left fusiform gyrus specialized for printed words); and persistent connectivity to anterior language regions around the inferior frontal gyrus. Together, findings suggest that NI readers are better able to integrate visual information and modulate their attention to visual stimuli, allowing them to recognize words on the basis of their visual properties, whereas DYS readers recruit altered reading circuits and rely on laborious phonology-based "sounding out" strategies into adulthood. These results deepen our understanding of the neural basis of dyslexia and highlight the importance of synchrony between diverse brain regions for successful reading. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.
Investigating action understanding: inferential processes versus action simulation.
Brass, Marcel; Schmitt, Ruth M; Spengler, Stephanie; Gergely, György
2007-12-18
In our daily life, we continuously monitor others' behaviors and interpret them in terms of goals, intentions, and reasons. Despite their central importance for predicting and interpreting each other's actions, the functional mechanisms and neural circuits involved in action understanding remain highly controversial. Two alternative accounts have been advanced. Simulation theory assumes that we understand actions by simulating the observed behavior through a direct matching process that activates the mirror-neuron circuit. The alternative interpretive account assumes that action understanding is based on specialized inferential processes activating brain areas with no mirror properties. Although both approaches recognize the central role of contextual information in specifying action intentions, their respective accounts of this process differ in significant respects. Here, we investigated the role of context in action understanding by using functional brain imaging while participants observed an unusual action in implausible versus plausible contexts. We show that brain areas that are part of a network involved in inferential interpretive processes of rationalization and mentalization but that lack mirror properties are more active when the action occurs in an implausible context. However, no differential activation was found in the mirror network. Our findings support the assumption that action understanding in novel situations is primarily mediated by an inferential interpretive system rather than the mirror system.
NASA Astrophysics Data System (ADS)
Hilschmann, N.; Barnikol, H. U.; Barnikol-Watanabe, S.; Götz, H.; Kratzin, H.; Thinnes, F. P.
2001-01-01
The morphogenesis of the brain is governed by synaptogenesis. Synaptogenesis in turn is determined by cell adhesion molecules, which bridge the synaptic cleft and, by homophilic contact, decide which neurons are connected and which are not. Because of their enormous diversification in specificities, protocadherins (pcdhα, pcdhβ, pcdhγ), a new class of cadherins, play a decisive role. Surprisingly, the genetic control of the protocadherins is very similar to that of the immunoglobulins. There are three sets of variable (V) genes followed by a corresponding constant (C) gene. Applying the rules of the immunoglobulin genes to the protocadherin genes leads, despite of this similarity, to quite different results in the central nervous system. The lymphocyte expresses one single receptor molecule specifically directed against an outside stimulus. In contrast, there are three specific recognition sites in each neuron, each expressing a different protocadherin. In this way, 4,950 different neurons arising from one stem cell form a neuronal network, in which homophilic contacts can be formed in 52 layers, permitting an enormous number of different connections and restraints between neurons. This network is one module of the central computer of the brain. Since the V-genes are generated during evolution and V-gene translocation during embryogenesis, outside stimuli have no influence on this network. The network is an inborn property of the protocadherin genes. Every circuit produced, as well as learning and memory, has to be based on this genetically predetermined network. This network is so universal that it can cope with everything, even the unexpected. In this respect the neuronal network resembles the recognition sites of the immunoglobulins.
Two-photon imaging and analysis of neural network dynamics
NASA Astrophysics Data System (ADS)
Lütcke, Henry; Helmchen, Fritjof
2011-08-01
The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.
Construction of multi-scale consistent brain networks: methods and applications.
Ge, Bao; Tian, Yin; Hu, Xintao; Chen, Hanbo; Zhu, Dajiang; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming
2015-01-01
Mapping human brain networks provides a basis for studying brain function and dysfunction, and thus has gained significant interest in recent years. However, modeling human brain networks still faces several challenges including constructing networks at multiple spatial scales and finding common corresponding networks across individuals. As a consequence, many previous methods were designed for a single resolution or scale of brain network, though the brain networks are multi-scale in nature. To address this problem, this paper presents a novel approach to constructing multi-scale common structural brain networks from DTI data via an improved multi-scale spectral clustering applied on our recently developed and validated DICCCOLs (Dense Individualized and Common Connectivity-based Cortical Landmarks). Since the DICCCOL landmarks possess intrinsic structural correspondences across individuals and populations, we employed the multi-scale spectral clustering algorithm to group the DICCCOL landmarks and their connections into sub-networks, meanwhile preserving the intrinsically-established correspondences across multiple scales. Experimental results demonstrated that the proposed method can generate multi-scale consistent and common structural brain networks across subjects, and its reproducibility has been verified by multiple independent datasets. As an application, these multi-scale networks were used to guide the clustering of multi-scale fiber bundles and to compare the fiber integrity in schizophrenia and healthy controls. In general, our methods offer a novel and effective framework for brain network modeling and tract-based analysis of DTI data.
Genomic connectivity networks based on the BrainSpan atlas of the developing human brain
NASA Astrophysics Data System (ADS)
Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.
2014-03-01
The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.
BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment.
Kawahara, Jeremy; Brown, Colin J; Miller, Steven P; Booth, Brian G; Chau, Vann; Grunau, Ruth E; Zwicker, Jill G; Hamarneh, Ghassan
2017-02-01
We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is composed of novel edge-to-edge, edge-to-node and node-to-graph convolutional filters that leverage the topological locality of structural brain networks. We apply the BrainNetCNN framework to predict cognitive and motor developmental outcome scores from structural brain networks of infants born preterm. Diffusion tensor images (DTI) of preterm infants, acquired between 27 and 46 weeks gestational age, were used to construct a dataset of structural brain connectivity networks. We first demonstrate the predictive capabilities of BrainNetCNN on synthetic phantom networks with simulated injury patterns and added noise. BrainNetCNN outperforms a fully connected neural-network with the same number of model parameters on both phantoms with focal and diffuse injury patterns. We then apply our method to the task of joint prediction of Bayley-III cognitive and motor scores, assessed at 18 months of age, adjusted for prematurity. We show that our BrainNetCNN framework outperforms a variety of other methods on the same data. Furthermore, BrainNetCNN is able to identify an infant's postmenstrual age to within about 2 weeks. Finally, we explore the high-level features learned by BrainNetCNN by visualizing the importance of each connection in the brain with respect to predicting the outcome scores. These findings are then discussed in the context of the anatomy and function of the developing preterm infant brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Brain regions with mirror properties: a meta-analysis of 125 human fMRI studies.
Molenberghs, Pascal; Cunnington, Ross; Mattingley, Jason B
2012-01-01
Mirror neurons in macaque area F5 fire when an animal performs an action, such as a mouth or limb movement, and also when the animal passively observes an identical or similar action performed by another individual. Brain-imaging studies in humans conducted over the last 20 years have repeatedly attempted to reveal analogous brain regions with mirror properties in humans, with broad and often speculative claims about their functional significance across a range of cognitive domains, from language to social cognition. Despite such concerted efforts, the likely neural substrates of these mirror regions have remained controversial, and indeed the very existence of a distinct subcategory of human neurons with mirroring properties has been questioned. Here we used activation likelihood estimation (ALE), to provide a quantitative index of the consistency of patterns of fMRI activity measured in human studies of action observation and action execution. From an initial sample of more than 300 published works, data from 125 papers met our strict inclusion and exclusion criteria. The analysis revealed 14 separate clusters in which activation has been consistently attributed to brain regions with mirror properties, encompassing 9 different Brodmann areas. These clusters were located in areas purported to show mirroring properties in the macaque, such as the inferior parietal lobule, inferior frontal gyrus and the adjacent ventral premotor cortex, but surprisingly also in regions such as the primary visual cortex, cerebellum and parts of the limbic system. Our findings suggest a core network of human brain regions that possess mirror properties associated with action observation and execution, with additional areas recruited during tasks that engage non-motor functions, such as auditory, somatosensory and affective components. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Huijun; Wang, Hao; Lü, Linyuan
Applying network science to investigate the complex systems has become a hot topic. In neuroscience, understanding the architectures of complex brain networks was a vital issue. An enormous amount of evidence had supported the brain was cost/efficiency trade-off with small-worldness, hubness and modular organization through the functional MRI and structural MRI investigations. However, the T1-weighted/T2-weighted (T1w/T2w) ratio brain networks were mostly unexplored. Here, we utilized a KL divergence-based method to construct large-scale individual T1w/T2w ratio brain networks and investigated the underlying topological attributes of these networks. Our results supported that the T1w/T2w ratio brain networks were comprised of small-worldness, an exponentially truncated power-law degree distribution, frontal-parietal hubs and modular organization. Besides, there were significant positive correlations between the network metrics and fluid intelligence. Thus, the T1w/T2w ratio brain networks open a new avenue to understand the human brain and are a necessary supplement for future MRI studies.
Weiler, Julia A; Suchan, Boris; Daum, Irene
2010-10-15
Episodic memory and episodic future thinking activate a network of overlapping brain regions, but little is known about the mechanism with which the brain separates the two processes. It was recently suggested that differential activity for memory and future thinking may be linked to differences in the phenomenal properties (e.g., richness of detail). Using functional magnetic resonance imaging in healthy subjects and a novel experimental design, we investigated the networks involved in the imagery of future and the recall of past events for the same target occasion, i.e. the Christmas and New Year's holidays, thereby keeping temporal distance and content similar across conditions. Although ratings of phenomenal characteristics were comparable for future thoughts and memories, differential activation patterns emerged. The right posterior hippocampus exhibited stronger memory-related activity during early event recall, and stronger future thought-related activity during late event imagination. Other regions, e.g., the precuneus and lateral prefrontal cortex, showed the reverse activation pattern with early future-associated and late past-associated activation. Memories compared to future thoughts were further related to stronger activation in several visual processing regions, which accords with a reactivation of the original perceptual experience. In conclusion, the results showed for the first time unique neural signatures for both memory and future thinking even in the absence of differences in phenomenal properties and suggested different time courses of brain activation for episodic memory and future thinking. Copyright 2010 Elsevier B.V. All rights reserved.
Google matrix analysis of directed networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2015-10-01
In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.
Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod
2017-07-15
There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.
An information theory account of cognitive control.
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.
Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.
Siegelmann, Hava T; Holzman, Lars E
2010-09-01
One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.
Network Configurations in the Human Brain Reflect Choice Bias during Rapid Face Processing.
Tu, Tao; Schneck, Noam; Muraskin, Jordan; Sajda, Paul
2017-12-13
Network interactions are likely to be instrumental in processes underlying rapid perception and cognition. Specifically, high-level and perceptual regions must interact to balance pre-existing models of the environment with new incoming stimuli. Simultaneous electroencephalography (EEG) and fMRI (EEG/fMRI) enables temporal characterization of brain-network interactions combined with improved anatomical localization of regional activity. In this paper, we use simultaneous EEG/fMRI and multivariate dynamical systems (MDS) analysis to characterize network relationships between constitute brain areas that reflect a subject's choice for a face versus nonface categorization task. Our simultaneous EEG and fMRI analysis on 21 human subjects (12 males, 9 females) identifies early perceptual and late frontal subsystems that are selective to the categorical choice of faces versus nonfaces. We analyze the interactions between these subsystems using an MDS in the space of the BOLD signal. Our main findings show that differences between face-choice and house-choice networks are seen in the network interactions between the early and late subsystems, and that the magnitude of the difference in network interaction positively correlates with the behavioral false-positive rate of face choices. We interpret this to reflect the role of saliency and expectations likely encoded in frontal "late" regions on perceptual processes occurring in "early" perceptual regions. SIGNIFICANCE STATEMENT Our choices are affected by our biases. In visual perception and cognition such biases can be commonplace and quite curious-e.g., we see a human face when staring up at a cloud formation or down at a piece of toast at the breakfast table. Here we use multimodal neuroimaging and dynamical systems analysis to measure whole-brain spatiotemporal dynamics while subjects make decisions regarding the type of object they see in rapidly flashed images. We find that the degree of interaction in these networks accounts for a substantial fraction of our bias to see faces. In general, our findings illustrate how the properties of spatiotemporal networks yield insight into the mechanisms of how we form decisions. Copyright © 2017 the authors 0270-6474/17/3712226-12$15.00/0.
Toutounji, Hazem; Pipa, Gordon
2014-01-01
It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation. Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain's input. Here, we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the network's spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their grounding in nature, further consolidate the biological relevance of our findings. PMID:24651447
Gomez-Pilar, Javier; Poza, Jesús; Bachiller, Alejandro; Gómez, Carlos; Núñez, Pablo; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto
2018-02-01
The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the 'information' (calculated by means of Shannon entropy) and the 'order' of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.
Finding influential nodes for integration in brain networks using optimal percolation theory.
Del Ferraro, Gino; Moreno, Andrea; Min, Byungjoon; Morone, Flaviano; Pérez-Ramírez, Úrsula; Pérez-Cervera, Laura; Parra, Lucas C; Holodny, Andrei; Canals, Santiago; Makse, Hernán A
2018-06-11
Global integration of information in the brain results from complex interactions of segregated brain networks. Identifying the most influential neuronal populations that efficiently bind these networks is a fundamental problem of systems neuroscience. Here, we apply optimal percolation theory and pharmacogenetic interventions in vivo to predict and subsequently target nodes that are essential for global integration of a memory network in rodents. The theory predicts that integration in the memory network is mediated by a set of low-degree nodes located in the nucleus accumbens. This result is confirmed with pharmacogenetic inactivation of the nucleus accumbens, which eliminates the formation of the memory network, while inactivations of other brain areas leave the network intact. Thus, optimal percolation theory predicts essential nodes in brain networks. This could be used to identify targets of interventions to modulate brain function.
Complex networks with large numbers of labelable attractors
NASA Astrophysics Data System (ADS)
Mi, Yuanyuan; Zhang, Lisheng; Huang, Xiaodong; Qian, Yu; Hu, Gang; Liao, Xuhong
2011-09-01
Information storage in many functional subsystems of the brain is regarded by theoretical neuroscientists to be related to attractors of neural networks. The number of attractors is large and each attractor can be temporarily represented or suppressed easily by corresponding external stimulus. In this letter, we discover that complex networks consisting of excitable nodes have similar fascinating properties of coexistence of large numbers of oscillatory attractors, most of which can be labeled with a few nodes. According to a simple labeling rule, different attractors can be identified and the number of labelable attractors can be predicted from the analysis of network topology. With the cues of the labeling association, these attractors can be conveniently retrieved or suppressed on purpose.
Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions.
Peña-Ortega, Fernando; Rivera-Angulo, Ana Julia; Lorea-Hernández, Jonathan Julio
2016-01-01
Despite that astrocytes and microglia do not communicate by electrical impulses, they can efficiently communicate among them, with each other and with neurons, to participate in complex neural functions requiring broad cell-communication and long-lasting regulation of brain function. Glial cells express many receptors in common with neurons; secrete gliotransmitters as well as neurotrophic and neuroinflammatory factors, which allow them to modulate synaptic transmission and neural excitability. All these properties allow glial cells to influence the activity of neuronal networks. Thus, the incorporation of glial cell function into the understanding of nervous system dynamics will provide a more accurate view of brain function. Our current knowledge of glial cell biology is providing us with experimental tools to explore their participation in neural network modulation. In this chapter, we review some of the classical, as well as some recent, pharmacological tools developed for the study of astrocyte's influence in neural function. We also provide some examples of the use of these pharmacological agents to understand the role of astrocytes in neural network function and dysfunction.
The convergence of maturational change and structural covariance in human cortical networks.
Alexander-Bloch, Aaron; Raznahan, Armin; Bullmore, Ed; Giedd, Jay
2013-02-13
Large-scale covariance of cortical thickness or volume in distributed brain regions has been consistently reported by human neuroimaging studies. The mechanism of this population covariance of regional cortical anatomy has been hypothetically related to synchronized maturational changes in anatomically connected neuronal populations. Brain regions that grow together, i.e., increase or decrease in volume at the same rate over the course of years in the same individual, are thus expected to demonstrate strong structural covariance or anatomical connectivity across individuals. To test this prediction, we used a structural MRI dataset on healthy young people (N = 108; aged 9-22 years at enrollment), comprising 3-6 longitudinal scans on each participant over 6-12 years of follow-up. At each of 360 regional nodes, and for each participant, we estimated the following: (1) the cortical thickness in the median scan and (2) the linear rate of change in cortical thickness over years of serial scanning. We constructed structural and maturational association matrices and networks from these measurements. Both structural and maturational networks shared similar global and nodal topological properties, as well as mesoscopic features including a modular community structure, a relatively small number of highly connected hub regions, and a bias toward short distance connections. Using resting-state functional magnetic resonance imaging data on a subset of the sample (N = 32), we also demonstrated that functional connectivity and network organization was somewhat predictable by structural/maturational networks but demonstrated a stronger bias toward short distance connections and greater topological segregation. Brain structural covariance networks are likely to reflect synchronized developmental change in distributed cortical regions.
Structural Network Disorganization in Subjects at Clinical High Risk for Psychosis.
Schmidt, André; Crossley, Nicolas A; Harrisberger, Fabienne; Smieskova, Renata; Lenz, Claudia; Riecher-Rössler, Anita; Lang, Undine E; McGuire, Philip; Fusar-Poli, Paolo; Borgwardt, Stefan
2017-05-01
Previous network studies in chronic schizophrenia patients revealed impaired structural organization of the brain's rich-club members, a set of highly interconnected hub regions that play an important integrative role for global brain communication. Moreover, impaired rich-club connectivity has also been found in unaffected siblings of schizophrenia patients, suggesting that abnormal rich-club connectivity is related to familiar, possibly reflecting genetic, vulnerability for schizophrenia. However, no study has yet investigated whether structural rich-club organization is also impaired in individuals with a clinical risk syndrome for psychosis. Diffusion tensor imaging and probabilistic tractography was used to construct structural whole-brain networks in 24 healthy controls and 24 subjects with an at-risk mental state (ARMS). Graph theory was applied to quantify the structural rich-club organization and global network properties. ARMS subjects revealed a significantly altered structural rich-club organization compared with the control group. The disruption of rich-club organization was associated with the severity of negative psychotic symptoms and led to an elevated level of modularity in ARMS subjects. This study shows that abnormal structural rich-club organization is already evident in clinical high-risk subjects for psychosis and further demonstrates the impact of rich-club disorganization on global network communication. Together with previous evidence in chronic schizophrenia patients and unaffected siblings, our findings suggest that abnormal structural rich-club organization may reflect an endophenotypic marker of psychosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network
NASA Astrophysics Data System (ADS)
Wee, Chong-Yaw; Yap, Pew-Thian; Brownyke, Jeffery N.; Potter, Guy G.; Steffens, David C.; Welsh-Bohmer, Kathleen; Wang, Lihong; Shen, Dinggang
Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer's disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariate classification algorithm, using a collection of measures derived from white-matter (WM) connectivity networks, to accurately identify MCI patients from normal controls. An enriched description of WM connections, utilizing six physiological parameters, i.e., fiber penetration count, fractional anisotropy (FA), mean diffusivity (MD), and principal diffusivities (λ 1, λ 2, λ 3), results in six connectivity networks for each subject to account for the connection topology and the biophysical properties of the connections. Upon parcellating the brain into 90 regions-of-interest (ROIs), the average statistics of each ROI in relation to the remaining ROIs are extracted as features for classification. These features are then sieved to select the most discriminant subset of features for building an MCI classifier via support vector machines (SVMs). Cross-validation results indicate better diagnostic power of the proposed enriched WM connection description than simple description with any single physiological parameter.
Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome
NASA Astrophysics Data System (ADS)
Poirot, Olivier; Timsit, Youri
2016-05-01
From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.
A Window into the Brain: Advances in Psychiatric fMRI
Zhan, Xiaoyan
2015-01-01
Functional magnetic resonance imaging (fMRI) plays a key role in modern psychiatric research. It provides a means to assay differences in brain systems that underlie psychiatric illness, treatment response, and properties of brain structure and function that convey risk factor for mental diseases. Here we review recent advances in fMRI methods in general use and progress made in understanding the neural basis of mental illness. Drawing on concepts and findings from psychiatric fMRI, we propose that mental illness may not be associated with abnormalities in specific local regions but rather corresponds to variation in the overall organization of functional communication throughout the brain network. Future research may need to integrate neuroimaging information drawn from different analysis methods and delineate spatial and temporal patterns of brain responses that are specific to certain types of psychiatric disorders. PMID:26413531
Sase, Takumi; Katori, Yuichi; Komuro, Motomasa; Aihara, Kazuyuki
2017-01-01
We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex. PMID:28424606
Functional brain networks reconstruction using group sparsity-regularized learning.
Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming
2018-06-01
Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.
Correspondence of the brain's functional architecture during activation and rest.
Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F
2009-08-04
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
Dissociated Overt and Covert Recognition as an Emergent Property of Lesioned Attractor Networks
1992-01-01
1989). Prosopagnosia and object agnosia without covert recognition. Neuropsychologia, 27, 179-191. Rafal, R., Smith, J., Krantz, J., Cohen, A., Brennan...recognition in patients with face agnosia . RphaiorA2 Brain Research, 30, 235-249. 55 Volpe, B. T., LeDoux, J. A., and Gazzaniga, M. S. (1979). Information
Functional Brain Networks Develop from a “Local to Distributed” Organization
Power, Jonathan D.; Dosenbach, Nico U. F.; Church, Jessica A.; Miezin, Francis M.; Schlaggar, Bradley L.; Petersen, Steven E.
2009-01-01
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways. PMID:19412534
Functional brain networks develop from a "local to distributed" organization.
Fair, Damien A; Cohen, Alexander L; Power, Jonathan D; Dosenbach, Nico U F; Church, Jessica A; Miezin, Francis M; Schlaggar, Bradley L; Petersen, Steven E
2009-05-01
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward 'segregation' (a general decrease in correlation strength) between regions close in anatomical space and 'integration' (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more "distributed" architecture in young adults. We argue that this "local to distributed" developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing "small-world"-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways.
Sex differences in the influence of body mass index on anatomical architecture of brain networks.
Gupta, A; Mayer, E A; Hamadani, K; Bhatt, R; Fling, C; Alaverdyan, M; Torgerson, C; Ashe-McNalley, C; Van Horn, J D; Naliboff, B; Tillisch, K; Sanmiguel, C P; Labus, J S
2017-08-01
The brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters. Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. In individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology.
Sex Differences in the Influence of Body Mass Index on Anatomical Architecture of Brain Networks
Gupta, Arpana; Mayer, Emeran A.; Hamadani, Kareem; Bhatt, Ravi; Fling, Connor; Alaverdyan, Mher; Torgenson, Carinna; Ashe-McNalley, Cody; Van Horn, John D; Naliboff, Bruce; Tillisch, Kirsten; Sanmiguel, Claudia P.; Labus, Jennifer S.
2017-01-01
Background/Objective The brain plays a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow, and global communication (centrality) in reward, salience and sensorimotor regions, and to identify sex-related differences in these parameters. Subjects/Methods Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience, and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. Results In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus, nucleus accumbens) and salience (anterior mid cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. Conclusions In individuals with increased BMI, reward, salience, and sensorimotor network regions are susceptible to topological restructuring in a sex related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology. PMID:28360430
Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach
Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin
2013-01-01
Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282
Wang, Yi; Yan, Chao; Yin, Da-zhi; Fan, Ming-xia; Cheung, Eric F C; Pantelis, Christos; Chan, Raymond C K
2015-03-01
The current study sought to examine the underlying brain changes in individuals with high schizotypy by integrating networks derived from brain structural and functional imaging. Individuals with high schizotypy (n = 35) and low schizotypy (n = 34) controls were screened using the Schizotypal Personality Questionnaire and underwent brain structural and resting-state functional magnetic resonance imaging on a 3T scanner. Voxel-based morphometric analysis and graph theory-based functional network analysis were conducted. Individuals with high schizotypy showed reduced gray matter (GM) density in the insula and the dorsolateral prefrontal gyrus. The graph theoretical analysis showed that individuals with high schizotypy showed similar global properties in their functional networks as low schizotypy individuals. Several hubs of the functional network were identified in both groups, including the insula, the lingual gyrus, the postcentral gyrus, and the rolandic operculum. More hubs in the frontal lobe and fewer hubs in the occipital lobe were identified in individuals with high schizotypy. By comparing the functional connectivity between clusters with abnormal GM density and the whole brain, individuals with high schizotypy showed weaker functional connectivity between the left insula and the putamen, but stronger connectivity between the cerebellum and the medial frontal gyrus. Taken together, our findings suggest that individuals with high schizotypy present changes in terms of GM and resting-state functional connectivity, especially in the frontal lobe. © The Author 2014. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A.; Stafstrom, Carl E.; Hermann, Bruce P.; Lin, Jack J.
2014-01-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared to controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. PMID:24453089
2016-01-01
Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540
Applying gene regulatory network logic to the evolution of social behavior.
Baran, Nicole M; McGrath, Patrick T; Streelman, J Todd
2017-06-06
Animal behavior is ultimately the product of gene regulatory networks (GRNs) for brain development and neural networks for brain function. The GRN approach has advanced the fields of genomics and development, and we identify organizational similarities between networks of genes that build the brain and networks of neurons that encode brain function. In this perspective, we engage the analogy between developmental networks and neural networks, exploring the advantages of using GRN logic to study behavior. Applying the GRN approach to the brain and behavior provides a quantitative and manipulative framework for discovery. We illustrate features of this framework using the example of social behavior and the neural circuitry of aggression.
Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models
Cowley, Benjamin R.; Doiron, Brent; Kohn, Adam
2016-01-01
Recent studies have applied dimensionality reduction methods to understand how the multi-dimensional structure of neural population activity gives rise to brain function. It is unclear, however, how the results obtained from dimensionality reduction generalize to recordings with larger numbers of neurons and trials or how these results relate to the underlying network structure. We address these questions by applying factor analysis to recordings in the visual cortex of non-human primates and to spiking network models that self-generate irregular activity through a balance of excitation and inhibition. We compared the scaling trends of two key outputs of dimensionality reduction—shared dimensionality and percent shared variance—with neuron and trial count. We found that the scaling properties of networks with non-clustered and clustered connectivity differed, and that the in vivo recordings were more consistent with the clustered network. Furthermore, recordings from tens of neurons were sufficient to identify the dominant modes of shared variability that generalize to larger portions of the network. These findings can help guide the interpretation of dimensionality reduction outputs in regimes of limited neuron and trial sampling and help relate these outputs to the underlying network structure. PMID:27926936
Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.
Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe
2018-02-07
Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.
Resting-State Functional Connectivity Underlying Costly Punishment: A Machine-Learning Approach.
Feng, Chunliang; Zhu, Zhiyuan; Gu, Ruolei; Wu, Xia; Luo, Yue-Jia; Krueger, Frank
2018-06-08
A large number of studies have demonstrated costly punishment to unfair events across human societies. However, individuals exhibit a large heterogeneity in costly punishment decisions, whereas the neuropsychological substrates underlying the heterogeneity remain poorly understood. Here, we addressed this issue by applying a multivariate machine-learning approach to compare topological properties of resting-state brain networks as a potential neuromarker between individuals exhibiting different punishment propensities. A linear support vector machine classifier obtained an accuracy of 74.19% employing the features derived from resting-state brain networks to distinguish two groups of individuals with different punishment tendencies. Importantly, the most discriminative features that contributed to the classification were those regions frequently implicated in costly punishment decisions, including dorsal anterior cingulate cortex (dACC) and putamen (salience network), dorsomedial prefrontal cortex (dmPFC) and temporoparietal junction (mentalizing network), and lateral prefrontal cortex (central-executive network). These networks are previously implicated in encoding norm violation and intentions of others and integrating this information for punishment decisions. Our findings thus demonstrated that resting-state functional connectivity (RSFC) provides a promising neuromarker of social preferences, and bolster the assertion that human costly punishment behaviors emerge from interactions among multiple neural systems. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.
1996-12-01
PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image
Tchumatchenko, Tatjana; Clopath, Claudia
2014-01-01
Oscillations play a critical role in cognitive phenomena and have been observed in many brain regions. Experimental evidence indicates that classes of neurons exhibit properties that could promote oscillations, such as subthreshold resonance and electrical gap junctions. Typically, these two properties are studied separately but it is not clear which is the dominant determinant of global network rhythms. Our aim is to provide an analytical understanding of how these two effects destabilize the fluctuation-driven state, in which neurons fire irregularly, and lead to an emergence of global synchronous oscillations. Here we show how the oscillation frequency is shaped by single neuron resonance, electrical and chemical synapses.The presence of both gap junctions and subthreshold resonance are necessary for the emergence of oscillations. Our results are in agreement with several experimental observations such as network responses to oscillatory inputs and offer a much-needed conceptual link connecting a collection of disparate effects observed in networks. PMID:25405458
Fundamentals of thinking, patterns
NASA Astrophysics Data System (ADS)
Gafurov, O. M.; Gafurov, D. O.; Syryamkin, V. I.
2018-05-01
The authors analyze the fundamentals of thinking and propose to consider a model of the brain based on the presence of magnetic properties of gliacytes (Schwann cells) because of their oxygen saturation (oxygen has paramagnetic properties). The authors also propose to take into account the motion of electrical discharges through synapses causing electric and magnetic fields as well as additional effects such as paramagnetic resonance, which allows combining multisensory object-related information located in different parts of the brain. Therefore, the events of the surrounding world are reflected and remembered in the cortex columns, thus, creating isolated subnets with altered magnetic properties (patterns) and subsequently participate in recognition of objects, form a memory, and so on. The possibilities for the pattern-based thinking are based on the practical experience of applying methods and technologies of artificial neural networks in the form of a neuroemulator and neuromorphic computing devices.
Brain Network Modularity Predicts Exercise-Related Executive Function Gains in Older Adults
Baniqued, Pauline L.; Gallen, Courtney L.; Voss, Michelle W.; Burzynska, Agnieszka Z.; Wong, Chelsea N.; Cooke, Gillian E.; Duffy, Kristin; Fanning, Jason; Ehlers, Diane K.; Salerno, Elizabeth A.; Aguiñaga, Susan; McAuley, Edward; Kramer, Arthur F.; D'Esposito, Mark
2018-01-01
Recent work suggests that the brain can be conceptualized as a network comprised of groups of sub-networks or modules. The extent of segregation between modules can be quantified with a modularity metric, where networks with high modularity have dense connections within modules and sparser connections between modules. Previous work has shown that higher modularity predicts greater improvements after cognitive training in patients with traumatic brain injury and in healthy older and young adults. It is not known, however, whether modularity can also predict cognitive gains after a physical exercise intervention. Here, we quantified modularity in older adults (N = 128, mean age = 64.74) who underwent one of the following interventions for 6 months (NCT01472744 on ClinicalTrials.gov): (1) aerobic exercise in the form of brisk walking (Walk), (2) aerobic exercise in the form of brisk walking plus nutritional supplement (Walk+), (3) stretching, strengthening and stability (SSS), or (4) dance instruction. After the intervention, the Walk, Walk+ and SSS groups showed gains in cardiorespiratory fitness (CRF), with larger effects in both walking groups compared to the SSS and Dance groups. The Walk, Walk+ and SSS groups also improved in executive function (EF) as measured by reasoning, working memory, and task-switching tests. In the Walk, Walk+, and SSS groups that improved in EF, higher baseline modularity was positively related to EF gains, even after controlling for age, in-scanner motion and baseline EF. No relationship between modularity and EF gains was observed in the Dance group, which did not show training-related gains in CRF or EF control. These results are consistent with previous studies demonstrating that individuals with a more modular brain network organization are more responsive to cognitive training. These findings suggest that the predictive power of modularity may be generalizable across interventions aimed to enhance aspects of cognition and that, especially in low-performing individuals, global network properties can capture individual differences in neuroplasticity. PMID:29354050
Is My Network Module Preserved and Reproducible?
Langfelder, Peter; Luo, Rui; Oldham, Michael C.; Horvath, Steve
2011-01-01
In many applications, one is interested in determining which of the properties of a network module change across conditions. For example, to validate the existence of a module, it is desirable to show that it is reproducible (or preserved) in an independent test network. Here we study several types of network preservation statistics that do not require a module assignment in the test network. We distinguish network preservation statistics by the type of the underlying network. Some preservation statistics are defined for a general network (defined by an adjacency matrix) while others are only defined for a correlation network (constructed on the basis of pairwise correlations between numeric variables). Our applications show that the correlation structure facilitates the definition of particularly powerful module preservation statistics. We illustrate that evaluating module preservation is in general different from evaluating cluster preservation. We find that it is advantageous to aggregate multiple preservation statistics into summary preservation statistics. We illustrate the use of these methods in six gene co-expression network applications including 1) preservation of cholesterol biosynthesis pathway in mouse tissues, 2) comparison of human and chimpanzee brain networks, 3) preservation of selected KEGG pathways between human and chimpanzee brain networks, 4) sex differences in human cortical networks, 5) sex differences in mouse liver networks. While we find no evidence for sex specific modules in human cortical networks, we find that several human cortical modules are less preserved in chimpanzees. In particular, apoptosis genes are differentially co-expressed between humans and chimpanzees. Our simulation studies and applications show that module preservation statistics are useful for studying differences between the modular structure of networks. Data, R software and accompanying tutorials can be downloaded from the following webpage: http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/ModulePreservation. PMID:21283776
Brain volumetry and self-regulation of brain activity relevant for neurofeedback.
Ninaus, M; Kober, S E; Witte, M; Koschutnig, K; Neuper, C; Wood, G
2015-09-01
Neurofeedback is a technique to learn to control brain signals by means of real time feedback. In the present study, the individual ability to learn two EEG neurofeedback protocols - sensorimotor rhythm and gamma rhythm - was related to structural properties of the brain. The volumes in the anterior insula bilaterally, left thalamus, right frontal operculum, right putamen, right middle frontal gyrus, and right lingual gyrus predicted the outcomes of sensorimotor rhythm training. Gray matter volumes in the supplementary motor area and left middle frontal gyrus predicted the outcomes of gamma rhythm training. These findings combined with further evidence from the literature are compatible with the existence of a more general self-control network, which through self-referential and self-control processes regulates neurofeedback learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Role of physical and mental training in brain network configuration
Foster, Philip P.
2015-01-01
It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of “energy cost-driven small-world network disorder” with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brain ↔ brain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be playing an instrumental role in the cognitive enhancement (brain ↔ muscle com.). However, mental training, meditation or virtual reality (films, games) require only minimal motor activity and cardio-respiratory stimulation. Therefore, other potential paths (brain ↔ brain com.) molding brain networks are nonetheless essential. Patients with motor neuron disease/injury (e.g., amyotrophic lateral sclerosis, traumatism) also achieve successful cognitive enhancement albeit they may only elicit mental practice. PMID:26157387
Role of physical and mental training in brain network configuration.
Foster, Philip P
2015-01-01
It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of "energy cost-driven small-world network disorder" with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brain ↔ brain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be playing an instrumental role in the cognitive enhancement (brain ↔ muscle com.). However, mental training, meditation or virtual reality (films, games) require only minimal motor activity and cardio-respiratory stimulation. Therefore, other potential paths (brain ↔ brain com.) molding brain networks are nonetheless essential. Patients with motor neuron disease/injury (e.g., amyotrophic lateral sclerosis, traumatism) also achieve successful cognitive enhancement albeit they may only elicit mental practice.
Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration
Cole, Michael W.
2016-01-01
The human brain is able to exceed modern computers on multiple computational demands (e.g., language, planning) using a small fraction of the energy. The mystery of how the brain can be so efficient is compounded by recent evidence that all brain regions are constantly active as they interact in so-called resting-state networks (RSNs). To investigate the brain's ability to process complex cognitive demands efficiently, we compared functional connectivity (FC) during rest and multiple highly distinct tasks. We found previously that RSNs are present during a wide variety of tasks and that tasks only minimally modify FC patterns throughout the brain. Here, we tested the hypothesis that, although subtle, these task-evoked FC updates from rest nonetheless contribute strongly to behavioral performance. One might expect that larger changes in FC reflect optimization of networks for the task at hand, improving behavioral performance. Alternatively, smaller changes in FC could reflect optimization for efficient (i.e., small) network updates, reducing processing demands to improve behavioral performance. We found across three task domains that high-performing individuals exhibited more efficient brain connectivity updates in the form of smaller changes in functional network architecture between rest and task. These smaller changes suggest that individuals with an optimized intrinsic network configuration for domain-general task performance experience more efficient network updates generally. Confirming this, network update efficiency correlated with general intelligence. The brain's reconfiguration efficiency therefore appears to be a key feature contributing to both its network dynamics and general cognitive ability. SIGNIFICANCE STATEMENT The brain's network configuration varies based on current task demands. For example, functional brain connections are organized in one way when one is resting quietly but in another way if one is asked to make a decision. We found that the efficiency of these updates in brain network organization is positively related to general intelligence, the ability to perform a wide variety of cognitively challenging tasks well. Specifically, we found that brain network configuration at rest was already closer to a wide variety of task configurations in intelligent individuals. This suggests that the ability to modify network connectivity efficiently when task demands change is a hallmark of high intelligence. PMID:27535904
Generalized memory associativity in a network model for the neuroses
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2009-03-01
We review concepts introduced in earlier work, where a neural network mechanism describes some mental processes in neurotic pathology and psychoanalytic working-through, as associative memory functioning, according to the findings of Freud. We developed a complex network model, where modules corresponding to sensorial and symbolic memories interact, representing unconscious and conscious mental processes. The model illustrates Freud's idea that consciousness is related to symbolic and linguistic memory activity in the brain. We have introduced a generalization of the Boltzmann machine to model memory associativity. Model behavior is illustrated with simulations and some of its properties are analyzed with methods from statistical mechanics.
Mifflin, Steve W.
2017-01-01
μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N-methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO2/pH chemosensitivity. PMID:28202437
Schubert, Frank K.; Hagedorn, Nicolas; Yoshii, Taishi; Helfrich‐Förster, Charlotte
2018-01-01
Abstract Drosophila melanogaster is a long‐standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor‐labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s‐LNv) and one ITP positive dorsolateral neuron (LNd). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre‐ and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF‐neurons (l‐LNvs). We could show that the four hardly distinguishable l‐LNvs consist of two subgroups with different innervation patterns. While three of the neurons reflect the well‐known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla‐surface. We named this neuron “extra” l‐LNv (l‐LNvx). We suggest the anatomical findings reflect different functional properties of the two l‐LNv subgroups. PMID:29424420
Lalley, Peter M; Mifflin, Steve W
2017-05-01
μ-Opioid receptors are distributed widely in the brain stem respiratory network, and opioids with selectivity for μ-type receptors slow in vivo respiratory rhythm in lowest effective doses. Several studies have reported μ-opioid receptor effects on the three-phase rhythm of respiratory neurons, but there are until now no reports of opioid effects on oscillatory activity within respiratory discharges. In this study, effects of the μ-opioid receptor agonist fentanyl on spike train discharge properties of several different types of rhythm-modulating medullary respiratory neuron discharges were analyzed. Doses of fentanyl that were just sufficient for prolongation of discharges and slowing of the three-phase respiratory rhythm also produced pronounced enhancement of spike train properties. Oscillation and burst patterns detected by autocorrelation measurements were greatly enhanced, and interspike intervals were prolonged. Spike train properties under control conditions and after fentanyl were uniform within each experiment, but varied considerably between experiments, which might be related to variability in acid-base balance in the brain stem extracellular fluid. Discharge threshold was shifted to more negative levels of membrane potential. The effects on threshold are postulated to result from opioid-mediated disinhibition and postsynaptic enhancement of N -methyl-d- aspartate receptor current. Lowering of firing threshold, enhancement of spike train oscillations and bursts and prolongation of discharges by lowest effective doses of fentanyl could represent compensatory adjustments in the brain stem respiratory network to override opioid blunting of CO 2 /pH chemosensitivity. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie
2016-10-01
Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.
The effects of alcohol on the nonhuman primate brain: a network science approach to neuroimaging.
Telesford, Qawi K; Laurienti, Paul J; Friedman, David P; Kraft, Robert A; Daunais, James B
2013-11-01
Animal studies have long been an important tool for basic research as they offer a degree of control often lacking in clinical studies. Of particular value is the use of nonhuman primates (NHPs) for neuroimaging studies. Currently, studies have been published using functional magnetic resonance imaging (fMRI) to understand the default-mode network in the NHP brain. Network science provides an alternative approach to neuroimaging allowing for evaluation of whole-brain connectivity. In this study, we used network science to build NHP brain networks from fMRI data to understand the basic functional organization of the NHP brain. We also explored how the brain network is affected following an acute ethanol (EtOH) pharmacological challenge. Baseline resting-state fMRI was acquired in an adult male rhesus macaque (n = 1) and a cohort of vervet monkeys (n = 10). A follow-up scan was conducted in the rhesus macaque to assess network variability and to assess the effects of an acute EtOH challenge on the brain network. The most connected regions in the resting-state networks were similar across species and matched regions identified as the default-mode network in previous NHP fMRI studies. Under an acute EtOH challenge, the functional organization of the brain was significantly impacted. Network science offers a great opportunity to understand the brain as a complex system and how pharmacological conditions can affect the system globally. These models are sensitive to changes in the brain and may prove to be a valuable tool in long-term studies on alcohol exposure. Copyright © 2013 by the Research Society on Alcoholism.
Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease.
de Schipper, Laura J; Hafkemeijer, Anne; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2018-01-01
Background: Functional imaging methods, such as resting-state functional magnetic resonance imaging, reflect changes in neural connectivity and may help to assess the widespread consequences of disease-specific network changes in Parkinson's disease. In this study we used a relatively new graph analysis approach in functional imaging: eigenvector centrality mapping. This model-free method, applied to all voxels in the brain, identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. In other neurological disorders, eigenvector centrality mapping has been linked to changes in functional connectivity in certain nodes of brain networks. Objectives: Examining changes in functional brain connectivity architecture on a whole brain and network level in patients with Parkinson's disease. Methods: Whole brain resting-state functional architecture was studied with a recently introduced graph analysis approach (eigenvector centrality mapping). Functional connectivity was further investigated in relation to eight known resting-state networks. Cross-sectional analyses included group comparison of functional connectivity measures of Parkinson's disease patients ( n = 107) with control subjects ( n = 58) and correlations with clinical data, including motor and cognitive impairment and a composite measure of predominantly non-dopaminergic symptoms. Results: Eigenvector centrality mapping revealed that frontoparietal regions were more prominent in the whole-brain network function in patients compared to control subjects, while frontal and occipital brain areas were less prominent in patients. Using standard resting-state networks, we found predominantly increased functional connectivity, namely within sensorimotor system and visual networks in patients. Regional group differences in functional connectivity of both techniques between patients and control subjects partly overlapped for highly connected posterior brain regions, in particular in the posterior cingulate cortex and precuneus. Clinico-functional imaging relations were not found. Conclusions: Changes on the level of functional brain connectivity architecture might provide a different perspective of pathological consequences of Parkinson's disease. The involvement of specific, highly connected (hub) brain regions may influence whole brain functional network architecture in Parkinson's disease.
Network-dependent modulation of brain activity during sleep.
Watanabe, Takamitsu; Kan, Shigeyuki; Koike, Takahiko; Misaki, Masaya; Konishi, Seiki; Miyauchi, Satoru; Miyahsita, Yasushi; Masuda, Naoki
2014-09-01
Brain activity dynamically changes even during sleep. A line of neuroimaging studies has reported changes in functional connectivity and regional activity across different sleep stages such as slow-wave sleep (SWS) and rapid-eye-movement (REM) sleep. However, it remains unclear whether and how the large-scale network activity of human brains changes within a given sleep stage. Here, we investigated modulation of network activity within sleep stages by applying the pairwise maximum entropy model to brain activity obtained by functional magnetic resonance imaging from sleeping healthy subjects. We found that the brain activity of individual brain regions and functional interactions between pairs of regions significantly increased in the default-mode network during SWS and decreased during REM sleep. In contrast, the network activity of the fronto-parietal and sensory-motor networks showed the opposite pattern. Furthermore, in the three networks, the amount of the activity changes throughout REM sleep was negatively correlated with that throughout SWS. The present findings suggest that the brain activity is dynamically modulated even in a sleep stage and that the pattern of modulation depends on the type of the large-scale brain networks. Copyright © 2014 Elsevier Inc. All rights reserved.
EEG-based research on brain functional networks in cognition.
Wang, Niannian; Zhang, Li; Liu, Guozhong
2015-01-01
Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.
Understanding brain networks and brain organization
Pessoa, Luiz
2014-01-01
What is the relationship between brain and behavior? The answer to this question necessitates characterizing the mapping between structure and function. The aim of this paper is to discuss broad issues surrounding the link between structure and function in the brain that will motivate a network perspective to understanding this question. As others in the past, I argue that a network perspective should supplant the common strategy of understanding the brain in terms of individual regions. Whereas this perspective is needed for a fuller characterization of the mind-brain, it should not be viewed as panacea. For one, the challenges posed by the many-to-many mapping between regions and functions is not dissolved by the network perspective. Although the problem is ameliorated, one should not anticipate a one-to-one mapping when the network approach is adopted. Furthermore, decomposition of the brain network in terms of meaningful clusters of regions, such as the ones generated by community-finding algorithms, does not by itself reveal “true” subnetworks. Given the hierarchical and multi-relational relationship between regions, multiple decompositions will offer different “slices” of a broader landscape of networks within the brain. Finally, I described how the function of brain regions can be characterized in a multidimensional manner via the idea of diversity profiles. The concept can also be used to describe the way different brain regions participate in networks. PMID:24819881
Dennis, Emily L.; Jahanshad, Neda; Toga, Arthur W.; McMahon, Katie L.; de Zubicaray, Greig I.; Hickie, Ian; Wright, Margaret J.; Thompson, Paul M.
2014-01-01
The ‘rich club’ coefficient describes a phenomenon where a network's hubs (high-degree nodes) are on average more intensely interconnected than lower-degree nodes. Networks with rich clubs often have an efficient, higher-order organization, but we do not yet know how the rich club emerges in the living brain, or how it changes as our brain networks develop. Here we chart the developmental trajectory of the rich club in anatomical brain networks from 438 subjects aged 12-30. Cortical networks were constructed from 68×68 connectivity matrices of fiber density, using whole-brain tractography in 4-Tesla 105-gradient high angular resolution diffusion images (HARDI). The adult and younger cohorts had rich clubs that included different nodes; the rich club effect intensified with age. Rich-club organization is a sign of a network's efficiency and robustness. These concepts and findings may be advantageous for studying brain maturation and abnormal brain development. PMID:24827471
Complex network analysis of resting-state fMRI of the brain.
Anwar, Abdul Rauf; Hashmy, Muhammad Yousaf; Imran, Bilal; Riaz, Muhammad Hussnain; Mehdi, Sabtain Muhammad Muntazir; Muthalib, Makii; Perrey, Stephane; Deuschl, Gunther; Groppa, Sergiu; Muthuraman, Muthuraman
2016-08-01
Due to the fact that the brain activity hardly ever diminishes in healthy individuals, analysis of resting state functionality of the brain seems pertinent. Various resting state networks are active inside the idle brain at any time. Based on various neuro-imaging studies, it is understood that various structurally distant regions of the brain could be functionally connected. Regions of the brain, that are functionally connected, during rest constitutes to the resting state network. In the present study, we employed the complex network measures to estimate the presence of community structures within a network. Such estimate is named as modularity. Instead of using a traditional correlation matrix, we used a coherence matrix taken from the causality measure between different nodes. Our results show that in prolonged resting state the modularity starts to decrease. This decrease was observed in all the resting state networks and on both sides of the brain. Our study highlights the usage of coherence matrix instead of correlation matrix for complex network analysis.
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Effect of tumor resection on the characteristics of functional brain networks.
Wang, H; Douw, L; Hernández, J M; Reijneveld, J C; Stam, C J; Van Mieghem, P
2010-08-01
Brain functioning such as cognitive performance depends on the functional interactions between brain areas, namely, the functional brain networks. The functional brain networks of a group of patients with brain tumors are measured before and after tumor resection. In this work, we perform a weighted network analysis to understand the effect of neurosurgery on the characteristics of functional brain networks. Statistically significant changes in network features have been discovered in the beta (13-30 Hz) band after neurosurgery: the link weight correlation around nodes and within triangles increases which implies improvement in local efficiency of information transfer and robustness; the clustering of high link weights in a subgraph becomes stronger, which enhances the global transport capability; and the decrease in the synchronization or virus spreading threshold, revealed by the increase in the largest eigenvalue of the adjacency matrix, which suggests again the improvement of information dissemination.
Correspondence of the brain's functional architecture during activation and rest
Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.
2009-01-01
Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724
Neuroanatomical prerequisites for language functions in the maturing brain.
Brauer, Jens; Anwander, Alfred; Friederici, Angela D
2011-02-01
The 2 major language-relevant cortical regions in the human brain, Broca's area and Wernicke's area, are connected via the fibers of the arcuate fasciculus/superior longitudinal fasciculus (AF/SLF). Here, we compared this pathway in adults and children and its relation to language processing during development. Comparison of fiber properties demonstrated lower anisotropy in children's AF/SLF, arguing for an immature status of this particular pathway with conceivably a lower degree of myelination. Combined diffusion tensor imaging (DTI) data and functional magnetic resonance imaging (fMRI) data indicated that in adults the termination of the AF/SLF fiber projection is compatible with functional activation in Broca's area, that is pars opercularis. In children, activation in Broca's area extended from the pars opercularis into the pars triangularis revealing an alternative connection to the temporal lobe (Wernicke's area) via the ventrally projecting extreme capsule fiber system. fMRI and DTI data converge to indicate that adults make use of a more confined language network than children based on ongoing maturation of the structural network. Our data suggest relations between language development and brain maturation and, moreover, indicate the brain's plasticity to adjust its function to available structural prerequisites.
Bonilha, Leonardo; Tabesh, Ali; Dabbs, Kevin; Hsu, David A; Stafstrom, Carl E; Hermann, Bruce P; Lin, Jack J
2014-08-01
Recent neuroimaging and behavioral studies have revealed that children with new onset epilepsy already exhibit brain structural abnormalities and cognitive impairment. How the organization of large-scale brain structural networks is altered near the time of seizure onset and whether network changes are related to cognitive performances remain unclear. Recent studies also suggest that regional brain volume covariance reflects synchronized brain developmental changes. Here, we test the hypothesis that epilepsy during early-life is associated with abnormalities in brain network organization and cognition. We used graph theory to study structural brain networks based on regional volume covariance in 39 children with new-onset seizures and 28 healthy controls. Children with new-onset epilepsy showed a suboptimal topological structural organization with enhanced network segregation and reduced global integration compared with controls. At the regional level, structural reorganization was evident with redistributed nodes from the posterior to more anterior head regions. The epileptic brain network was more vulnerable to targeted but not random attacks. Finally, a subgroup of children with epilepsy, namely those with lower IQ and poorer executive function, had a reduced balance between network segregation and integration. Taken together, the findings suggest that the neurodevelopmental impact of new onset childhood epilepsies alters large-scale brain networks, resulting in greater vulnerability to network failure and cognitive impairment. Copyright © 2014 Wiley Periodicals, Inc.
Shafi, Mouhsin M.; Westover, M. Brandon; Fox, Michael D.; Pascual-Leone, Alvaro
2012-01-01
Much recent work in systems neuroscience has focused on how dynamic interactions between different cortical regions underlie complex brain functions such as motor coordination, language, and emotional regulation. Various studies using neuroimaging and neurophysiologic techniques have suggested that in many neuropsychiatric disorders, these dynamic brain networks are dysregulated. Here we review the utility of combined noninvasive brain stimulation and neuroimaging approaches towards greater understanding of dynamic brain networks in health and disease. Brain stimulation techniques, such as transcranial magnetic stimulation and transcranial direct current stimulation, use electromagnetic principles to noninvasively alter brain activity, and induce focal but also network effects beyond the stimulation site. When combined with brain imaging techniques such as functional MRI, PET and EEG, these brain stimulation techniques enable a causal assessment of the interaction between different network components, and their respective functional roles. The same techniques can also be applied to explore hypotheses regarding the changes in functional connectivity that occur during task performance and in various disease states such as stroke, depression and schizophrenia. Finally, in diseases characterized by pathologic alterations in either the excitability within a single region or in the activity of distributed networks, such techniques provide a potential mechanism to alter cortical network function and architectures in a beneficial manner. PMID:22429242
Connectome sensitivity or specificity: which is more important?
Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael
2016-11-15
Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.
An information theory account of cognitive control
Fan, Jin
2014-01-01
Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory. PMID:25228875
Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu
2017-05-01
Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.
Inferring general relations between network characteristics from specific network ensembles.
Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan
2012-01-01
Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.
Bassett, Danielle S; Sporns, Olaf
2017-01-01
Despite substantial recent progress, our understanding of the principles and mechanisms underlying complex brain function and cognition remains incomplete. Network neuroscience proposes to tackle these enduring challenges. Approaching brain structure and function from an explicitly integrative perspective, network neuroscience pursues new ways to map, record, analyze and model the elements and interactions of neurobiological systems. Two parallel trends drive the approach: the availability of new empirical tools to create comprehensive maps and record dynamic patterns among molecules, neurons, brain areas and social systems; and the theoretical framework and computational tools of modern network science. The convergence of empirical and computational advances opens new frontiers of scientific inquiry, including network dynamics, manipulation and control of brain networks, and integration of network processes across spatiotemporal domains. We review emerging trends in network neuroscience and attempt to chart a path toward a better understanding of the brain as a multiscale networked system. PMID:28230844
NASA Astrophysics Data System (ADS)
Bressler, Steven L.
2014-09-01
Pessoa [5] has performed a valuable service by reviewing the extant literature on brain networks and making a number of interesting proposals about their cognitive function. The term function is at the core of understanding the brain networks of cognition, or neurocognitive networks (NCNs) [1]. The great Russian neuropsychologist, Luria [4], defined brain function as the common task executed by a distributed brain network of complex dynamic structures united by the demands of cognition. Casting Luria in a modern light, we can say that function emerges from the interactions of brain regions in NCNs as they dynamically self-organize according to cognitive demands. Pessoa rightly details the mapping between brain function and structure, emphasizing both its pluripotency (one structure having multiple functions) and degeneracy (many structures having the same function). However, he fails to consider the potential importance of a one-to-one mapping between NCNs and function. If NCNs are uniquely composed of specific collections of brain areas, then each NCN has a unique function determined by that composition.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats.
Sierakowiak, Adam; Monnot, Cyril; Aski, Sahar Nikkhou; Uppman, Martin; Li, Tie-Qiang; Damberg, Peter; Brené, Stefan
2015-01-01
Rodent models are developed to enhance understanding of the underlying biology of different brain disorders. However, before interpreting findings from animal models in a translational aspect to understand human disease, a fundamental step is to first have knowledge of similarities and differences of the biological systems studied. In this study, we analyzed and verified four known networks termed: default mode network, motor network, dorsal basal ganglia network, and ventral basal ganglia network using resting state functional MRI (rsfMRI) in humans and rats. Our work supports the notion that humans and rats have common robust resting state brain networks and that rsfMRI can be used as a translational tool when validating animal models of brain disorders. In the future, rsfMRI may be used, in addition to short-term interventions, to characterize longitudinal effects on functional brain networks after long-term intervention in humans and rats. PMID:25789862
Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain
Sepulcre, Jorge; Sabuncu, Mert R.; Yeo, Thomas B.; Liu, Hesheng; Johnson, Keith A.
2012-01-01
How human beings integrate information from external sources and internal cognition to produce a coherent experience is still not well understood. During the past decades, anatomical, neurophysiological and neuroimaging research in multimodal integration have stood out in the effort to understand the perceptual binding properties of the brain. Areas in the human lateral occipito-temporal, prefrontal and posterior parietal cortices have been associated with sensory multimodal processing. Even though this, rather patchy, organization of brain regions gives us a glimpse of the perceptual convergence, the articulation of the flow of information from modality-related to the more parallel cognitive processing systems remains elusive. Using a method called Stepwise Functional Connectivity analysis, the present study analyzes the functional connectome and transitions from primary sensory cortices to higher-order brain systems. We identify the large-scale multimodal integration network and essential connectivity axes for perceptual integration in the human brain. PMID:22855814
Agnati, Luigi F; Marcoli, Manuela; Maura, Guido; Woods, Amina; Guidolin, Diego
2018-06-01
Investigations of brain complex integrative actions should consider beside neural networks, glial, extracellular molecular, and fluid channels networks. The present paper proposes that all these networks are assembled into the brain hyper-network that has as fundamental components, the tetra-partite synapses, formed by neural, glial, and extracellular molecular networks. Furthermore, peri-synaptic astrocytic processes by modulating the perviousness of extracellular fluid channels control the signals impinging on the tetra-partite synapses. It has also been surmised that global signalling via astrocytes networks and highly pervasive signals, such as electromagnetic fields (EMFs), allow the appropriate integration of the various networks especially at crucial nodes level, the tetra-partite synapses. As a matter of fact, it has been shown that astrocytes can form gap-junction-coupled syncytia allowing intercellular communication characterised by a rapid and possibly long-distance transfer of signals. As far as the EMFs are concerned, the concept of broadcasted neuroconnectomics (BNC) has been introduced to describe highly pervasive signals involved in resetting the information handling of brain networks at various miniaturisation levels. In other words, BNC creates, thanks to the EMFs, generated especially by neurons, different assemblages among the various networks forming the brain hyper-network. Thus, it is surmised that neuronal networks are the "core components" of the brain hyper-network that has as special "nodes" the multi-facet tetra-partite synapses. Furthermore, it is suggested that investigations on the functional plasticity of multi-partite synapses in response to BNC can be the background for a new understanding and perhaps a new modelling of brain morpho-functional organisation and integrative actions.
Controllability of structural brain networks
NASA Astrophysics Data System (ADS)
Gu, Shi; Pasqualetti, Fabio; Cieslak, Matthew; Telesford, Qawi K.; Yu, Alfred B.; Kahn, Ari E.; Medaglia, John D.; Vettel, Jean M.; Miller, Michael B.; Grafton, Scott T.; Bassett, Danielle S.
2015-10-01
Cognitive function is driven by dynamic interactions between large-scale neural circuits or networks, enabling behaviour. However, fundamental principles constraining these dynamic network processes have remained elusive. Here we use tools from control and network theories to offer a mechanistic explanation for how the brain moves between cognitive states drawn from the network organization of white matter microstructure. Our results suggest that densely connected areas, particularly in the default mode system, facilitate the movement of the brain to many easily reachable states. Weakly connected areas, particularly in cognitive control systems, facilitate the movement of the brain to difficult-to-reach states. Areas located on the boundary between network communities, particularly in attentional control systems, facilitate the integration or segregation of diverse cognitive systems. Our results suggest that structural network differences between cognitive circuits dictate their distinct roles in controlling trajectories of brain network function.
ERIC Educational Resources Information Center
McClelland, James L.
2000-01-01
This article discusses representation of information in neural networks and the apparent hyperspecificity that is often seen in the application of previously acquired information by children with autism. Hyperspecificity is seen as reflecting a possible feature of the neural codes used to represent concepts in the autistic brain. (Contains 12…
Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming
2013-01-01
Background Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. Materials and Methods FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25∼45 years, mean age±SD: 40.9±3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Results Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. Conclusion This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients. PMID:24358312
Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming
2013-01-01
Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.
Learning State Space Dynamics in Recurrent Networks
NASA Astrophysics Data System (ADS)
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
Kumaravelu, Karthik; Brocker, David T; Grill, Warren M
2016-04-01
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.
Nicotine increases brain functional network efficiency.
Wylie, Korey P; Rojas, Donald C; Tanabe, Jody; Martin, Laura F; Tregellas, Jason R
2012-10-15
Despite the use of cholinergic therapies in Alzheimer's disease and the development of cholinergic strategies for schizophrenia, relatively little is known about how the system modulates the connectivity and structure of large-scale brain networks. To better understand how nicotinic cholinergic systems alter these networks, this study examined the effects of nicotine on measures of whole-brain network communication efficiency. Resting state fMRI was acquired from fifteen healthy subjects before and after the application of nicotine or placebo transdermal patches in a single blind, crossover design. Data, which were previously examined for default network activity, were analyzed with network topology techniques to measure changes in the communication efficiency of whole-brain networks. Nicotine significantly increased local efficiency, a parameter that estimates the network's tolerance to local errors in communication. Nicotine also significantly enhanced the regional efficiency of limbic and paralimbic areas of the brain, areas which are especially altered in diseases such as Alzheimer's disease and schizophrenia. These changes in network topology may be one mechanism by which cholinergic therapies improve brain function. Published by Elsevier Inc.
Cortical thickness, cortico-amygdalar networks, and externalizing behaviors in healthy children.
Ameis, Stephanie H; Ducharme, Simon; Albaugh, Matthew D; Hudziak, James J; Botteron, Kelly N; Lepage, Claude; Zhao, Lu; Khundrakpam, Budhachandra; Collins, D Louis; Lerch, Jason P; Wheeler, Anne; Schachar, Russell; Evans, Alan C; Karama, Sherif
2014-01-01
Fronto-amygdalar networks are implicated in childhood psychiatric disorders characterized by high rates of externalizing (aggressive, noncompliant, oppositional) behavior. Although externalizing behaviors are distributed continuously across clinical and nonclinical samples, little is known about how brain variations may confer risk for problematic behavior. Here, we studied cortical thickness, amygdala volume, and cortico-amygdalar network correlates of externalizing behavior in a large sample of healthy children. Two hundred ninety-seven healthy children (6-18 years; mean = 12 ± 3 years), with 517 magnetic resonance imaging scans, from the National Institutes of Health Magnetic Resonance Imaging Study of Normal Brain Development, were studied. Relationships between externalizing behaviors (measured with the Child Behavior Checklist) and cortical thickness, amygdala volume, and cortico-amygdalar structural networks were examined using first-order linear mixed-effects models, after controlling for age, sex, scanner, and total brain volume. Results significant at p ≤ .05, following multiple comparison correction, are reported. Left orbitofrontal, right retrosplenial cingulate, and medial temporal cortex thickness were negatively correlated with externalizing behaviors. Although amygdala volume alone was not correlated with externalizing behaviors, an orbitofrontal cortex-amygdala network predicted rates of externalizing behavior. Children with lower levels of externalizing behaviors exhibited positive correlations between orbitofrontal cortex and amygdala structure, while these regions were not correlated in children with higher levels of externalizing behavior. Our findings identify key cortical nodes in frontal, cingulate, and temporal cortex associated with externalizing behaviors in children; and indicate that orbitofrontal-amygdala network properties may influence externalizing behaviors, along a continuum and across healthy and clinical samples. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Chen, Jianhuai; Yao, Zhijian; Qin, Jiaolong; Yan, Rui; Hua, Lingling; Lu, Qing
2015-06-25
The human brain is a complex network of regions that are structurally interconnected by white matter (WM) tracts. Schizophrenia (SZ) can be conceptualized as a disconnection syndrome characterized by widespread disconnections in WM pathways. To assess whether or not anatomical disconnections are associated with disruption of the topological properties of inter- and intra-hemispheric networks in SZ. We acquired the diffusion tensor imaging data from 24 male patients with paranoid SZ during an acute phase of their illness and from 24 healthy age-matched male controls. The brain FA-weighted (fractional anisotropy-weighted) structural networks were constructed and the inter- and intra-hemispheric integration was assessed by estimating the average characteristic path lengths (CPLs) between and within the left and right hemisphere networks. The mean CPLs for all 18 inter-and intra-hemispheric CPLs assessed were longer in the SZ patient group than in the control group, but only some of these differences were significantly different: the CPLs for the overall inter-hemispheric and the left and right intra-hemispheric networks; the CPLs for the interhemisphere subnetworks of the frontal lobes, temporal lobes, and subcortical structures; and the CPL for the intra- frontal subnetwork in the right hemisphere. Among the 24 patients, the CPL of the inter-frontal subnetwork was positively associated with negative symptom severity, but this was the only significant result among 72 assessed correlations, so it may be a statistical artifact. Our findings suggest that the integrity of intra- and inter-hemispheric WM tracts is disrupted in males with paranoid SZ, supporting the brain network disconnection model (i.e., the (')connectivity hypothesis(')) of schizophrenia. Larger studies with less narrowly defined samples of individuals with schizophrenia are needed to confirm these results.
Lee, Seul; Polimeni, Jonathan R; Price, Collin M; Edlow, Brian L; McNab, Jennifer A
2018-06-01
Resting-state functional magnetic resonance imaging (RS-FMRI) has been widely used to map brain functional connectivity, but it is unclear how to probe connectivity within and around lesions. In this study, we characterize RS-FMRI signal time course properties and evaluate different seed placements within and around hemorrhagic traumatic axonal injury (hTAI) lesions. RS-FMRI was performed on a 7 Tesla scanner in a patient who recovered consciousness after traumatic coma and in three healthy controls. Eleven lesions in the patient were characterized in terms of (1) temporal signal-to-noise ratio (tSNR); (2) physiological noise, through comparison of noise regressors derived from the white matter (WM), cerebrospinal fluid (CSF), and gray matter (GM); and (3) seed-based functional connectivity. Temporal SNR at the center of the lesions was 38.3% and 74.1% lower compared with the same region in the contralesional hemisphere of the patient and in the ipsilesional hemispheres of the controls, respectively. Within the lesions, WM noise was more prominent than CSF and GM noise. Lesional seeds did not produce discernable networks, but seeds in the contralesional hemisphere revealed networks whose nodes appeared to be shifted or obscured due to overlapping or nearby lesions. Single-voxel seed analysis demonstrated that placing a seed within a lesion's periphery was necessary to identify networks associated with the lesion region. These findings provide evidence of resting-state network changes in the human brain after recovery from traumatic coma. Furthermore, we show that seed placement within a lesion's periphery or in the contralesional hemisphere may be necessary for network identification in patients with hTAI.
Graph theoretical modeling of baby brain networks.
Zhao, Tengda; Xu, Yuehua; He, Yong
2018-06-12
The human brain undergoes explosive growth during the prenatal period and the first few postnatal years, establishing an early infrastructure for the later development of behaviors and cognitions. Revealing the developmental rules during the early phrase is essential in understanding the emergence of brain function and the origin of developmental disorders. The graph-theoretical network modeling in combination with multiple neuroimaging probes provides an important research framework to explore early development of the topological wiring and organizational paradigms of the brain. Here, we reviewed studies which employed neuroimaging and graph-theoretical modeling to investigate brain network development from approximately 20 gestational weeks to 2 years of age. Specifically, the structural and functional brain networks have evolved to highly efficient topological architectures in the early stage; where the structural network remains ahead and paves the way for the development of functional network. The brain network develops in a heterogeneous order, from primary to higher-order systems and from a tendency of network segregation to network integration in the prenatal and postnatal periods. The early brain network topologies show abilities in predicting certain cognitive and behavior performance in later life, and their impairments are likely to continue into childhood and even adulthood. These macroscopic topological changes are found to be associated with possible microstructural maturations, such as axonal growth and myelinations. Collectively, this review provides a detailed delineation of the early changes of the baby brains in the graph-theoretical modeling framework, which opens up a new avenue to understand the developmental principles of the connectome. Copyright © 2018. Published by Elsevier Inc.
Cabana, Alvaro; Mizraji, Eduardo; Pomi, Andrés; Valle-Lisboa, Juan Carlos
2008-04-01
Graph-theoretical methods have recently been used to analyze certain properties of natural and social networks. In this work, we have investigated the early stages in the growth of a Uruguayan academic network, the Biology Area of the Programme for the Development of Basic Science (PEDECIBA). This transparent social network is a territory for the exploration of the reliability of clustering methods that can potentially be used when we are confronted with opaque natural systems that provide us with a limited spectrum of observables (happens in research on the relations between brain, thought and language). From our social net, we constructed two different graph representations based on the relationships among researchers revealed by their co-participation in Master's thesis committees. We studied these networks at different times and found that they achieve connectedness early in their evolution and exhibit the small-world property (i.e. high clustering with short path lengths). The data seem compatible with power law distributions of connectivity, clustering coefficients and betweenness centrality. Evidence of preferential attachment of new nodes and of new links between old nodes was also found in both representations. These results suggest that there are topological properties observed throughout the growth of the network that do not depend on the representations we have chosen but reflect intrinsic properties of the academic collective under study. Researchers in PEDECIBA are classified according to their specialties. We analysed the community structure detected by a standard algorithm in both representations. We found that much of the pre-specified structure is recovered and part of the mismatches can be attributed to convergent interests between scientists from different sub-disciplines. This result shows the potentiality of some clustering methods for the analysis of partially known natural systems.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-01-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l1-norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a “connectivity strength-weighted sparse group constraint.” In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. PMID:28150897
fMRI evidence for areas that process surface gloss in the human visual cortex
Sun, Hua-Chun; Ban, Hiroshi; Di Luca, Massimiliano; Welchman, Andrew E.
2015-01-01
Surface gloss is an important cue to the material properties of objects. Recent progress in the study of macaque’s brain has increased our understating of the areas involved in processing information about gloss, however the homologies with the human brain are not yet fully understood. Here we used human functional magnetic resonance imaging (fMRI) measurements to localize brain areas preferentially responding to glossy objects. We measured cortical activity for thirty-two rendered three-dimensional objects that had either Lambertian or specular surface properties. To control for differences in image structure, we overlaid a grid on the images and scrambled its cells. We found activations related to gloss in the posterior fusiform sulcus (pFs) and in area V3B/KO. Subsequent analysis with Granger causality mapping indicated that V3B/KO processes gloss information differently than pFs. Our results identify a small network of mid-level visual areas whose activity may be important in supporting the perception of surface gloss. PMID:25490434
The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery.
Calhoun, Vince D; Miller, Robyn; Pearlson, Godfrey; Adalı, Tulay
2014-10-22
Recent years have witnessed a rapid growth of interest in moving functional magnetic resonance imaging (fMRI) beyond simple scan-length averages and into approaches that capture time-varying properties of connectivity. In this Perspective we use the term "chronnectome" to describe metrics that allow a dynamic view of coupling. In the chronnectome, coupling refers to possibly time-varying levels of correlated or mutually informed activity between brain regions whose spatial properties may also be temporally evolving. We primarily focus on multivariate approaches developed in our group and review a number of approaches with an emphasis on matrix decompositions such as principle component analysis and independent component analysis. We also discuss the potential these approaches offer to improve characterization and understanding of brain function. There are a number of methodological directions that need to be developed further, but chronnectome approaches already show great promise for the study of both the healthy and the diseased brain.
Neural encoding of large-scale three-dimensional space-properties and constraints.
Jeffery, Kate J; Wilson, Jonathan J; Casali, Giulio; Hayman, Robin M
2015-01-01
How the brain represents represent large-scale, navigable space has been the topic of intensive investigation for several decades, resulting in the discovery that neurons in a complex network of cortical and subcortical brain regions co-operatively encode distance, direction, place, movement etc. using a variety of different sensory inputs. However, such studies have mainly been conducted in simple laboratory settings in which animals explore small, two-dimensional (i.e., flat) arenas. The real world, by contrast, is complex and three dimensional with hills, valleys, tunnels, branches, and-for species that can swim or fly-large volumetric spaces. Adding an additional dimension to space adds coding challenges, a primary reason for which is that several basic geometric properties are different in three dimensions. This article will explore the consequences of these challenges for the establishment of a functional three-dimensional metric map of space, one of which is that the brains of some species might have evolved to reduce the dimensionality of the representational space and thus sidestep some of these problems.
Yu, Renping; Zhang, Han; An, Le; Chen, Xiaobo; Wei, Zhihui; Shen, Dinggang
2017-05-01
Brain functional network analysis has shown great potential in understanding brain functions and also in identifying biomarkers for brain diseases, such as Alzheimer's disease (AD) and its early stage, mild cognitive impairment (MCI). In these applications, accurate construction of biologically meaningful brain network is critical. Sparse learning has been widely used for brain network construction; however, its l 1 -norm penalty simply penalizes each edge of a brain network equally, without considering the original connectivity strength which is one of the most important inherent linkwise characters. Besides, based on the similarity of the linkwise connectivity, brain network shows prominent group structure (i.e., a set of edges sharing similar attributes). In this article, we propose a novel brain functional network modeling framework with a "connectivity strength-weighted sparse group constraint." In particular, the network modeling can be optimized by considering both raw connectivity strength and its group structure, without losing the merit of sparsity. Our proposed method is applied to MCI classification, a challenging task for early AD diagnosis. Experimental results based on the resting-state functional MRI, from 50 MCI patients and 49 healthy controls, show that our proposed method is more effective (i.e., achieving a significantly higher classification accuracy, 84.8%) than other competing methods (e.g., sparse representation, accuracy = 65.6%). Post hoc inspection of the informative features further shows more biologically meaningful brain functional connectivities obtained by our proposed method. Hum Brain Mapp 38:2370-2383, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Resting state brain networks and their implications in neurodegenerative disease
NASA Astrophysics Data System (ADS)
Sohn, William S.; Yoo, Kwangsun; Kim, Jinho; Jeong, Yong
2012-10-01
Neurons are the basic units of the brain, and form network by connecting via synapses. So far, there have been limited ways to measure the brain networks. Recently, various imaging modalities are widely used for this purpose. In this paper, brain network mapping using resting state fMRI will be introduced with several applications including neurodegenerative disease such as Alzheimer's disease, frontotemporal lobar degeneration and Parkinson's disease. The resting functional connectivity using intrinsic functional connectivity in mouse is useful since we can take advantage of perturbation or stimulation of certain nodes of the network. The study of brain connectivity will open a new era in understanding of brain and diseases thus will be an essential foundation for future research.
The epidemic spreading model and the direction of information flow in brain networks.
Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P
2017-05-15
The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.
Batalle, Dafnis; Muñoz-Moreno, Emma; Tornador, Cristian; Bargallo, Nuria; Deco, Gustavo; Eixarch, Elisenda; Gratacos, Eduard
2016-04-01
The feasibility to use functional MRI (fMRI) during natural sleep to assess low-frequency basal brain activity fluctuations in human neonates has been demonstrated, although its potential to characterise pathologies of prenatal origin has not yet been exploited. In the present study, we used intrauterine growth restriction (IUGR) as a model of altered neurodevelopment due to prenatal condition to show the suitability of brain networks to characterise functional brain organisation at neonatal age. Particularly, we analysed resting-state fMRI signal of 20 neonates with IUGR and 13 controls, obtaining whole-brain functional networks based on correlations of blood oxygen level-dependent (BOLD) signal in 90 grey matter regions of an anatomical atlas (AAL). Characterisation of the networks obtained with graph theoretical features showed increased network infrastructure and raw efficiencies but reduced efficiency after normalisation, demonstrating hyper-connected but sub-optimally organised IUGR functional brain networks. Significant association of network features with neurobehavioral scores was also found. Further assessment of spatiotemporal dynamics displayed alterations into features associated to frontal, cingulate and lingual cortices. These findings show the capacity of functional brain networks to characterise brain reorganisation from an early age, and their potential to develop biomarkers of altered neurodevelopment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Jie; Cheng, Wei; Liu, Zhaowen; Zhang, Kai; Lei, Xu; Yao, Ye; Becker, Benjamin; Liu, Yicen; Kendrick, Keith M; Lu, Guangming; Feng, Jianfeng
2016-08-01
SEE MATTAR ET AL DOI101093/AWW151 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Functional brain networks demonstrate significant temporal variability and dynamic reconfiguration even in the resting state. Currently, most studies investigate temporal variability of brain networks at the scale of single (micro) or whole-brain (macro) connectivity. However, the mechanism underlying time-varying properties remains unclear, as the coupling between brain network variability and neural activity is not readily apparent when analysed at either micro or macroscales. We propose an intermediate (meso) scale analysis and characterize temporal variability of the functional architecture associated with a particular region. This yields a topography of variability that reflects the whole-brain and, most importantly, creates an analytical framework to establish the fundamental relationship between variability of regional functional architecture and its neural activity or structural connectivity. We find that temporal variability reflects the dynamical reconfiguration of a brain region into distinct functional modules at different times and may be indicative of brain flexibility and adaptability. Primary and unimodal sensory-motor cortices demonstrate low temporal variability, while transmodal areas, including heteromodal association areas and limbic system, demonstrate the high variability. In particular, regions with highest variability such as hippocampus/parahippocampus, inferior and middle temporal gyrus, olfactory gyrus and caudate are all related to learning, suggesting that the temporal variability may indicate the level of brain adaptability. With simultaneously recorded electroencephalography/functional magnetic resonance imaging and functional magnetic resonance imaging/diffusion tensor imaging data, we also find that variability of regional functional architecture is modulated by local blood oxygen level-dependent activity and α-band oscillation, and is governed by the ratio of intra- to inter-community structural connectivity. Application of the mesoscale variability measure to multicentre datasets of three mental disorders and matched controls involving 1180 subjects reveals that those regions demonstrating extreme, i.e. highest/lowest variability in controls are most liable to change in mental disorders. Specifically, we draw attention to the identification of diametrically opposing patterns of variability changes between schizophrenia and attention deficit hyperactivity disorder/autism. Regions of the default-mode network demonstrate lower variability in patients with schizophrenia, but high variability in patients with autism/attention deficit hyperactivity disorder, compared with respective controls. In contrast, subcortical regions, especially the thalamus, show higher variability in schizophrenia patients, but lower variability in patients with attention deficit hyperactivity disorder. The changes in variability of these regions are also closely related to symptom scores. Our work provides insights into the dynamic organization of the resting brain and how it changes in brain disorders. The nodal variability measure may also be potentially useful as a predictor for learning and neural rehabilitation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Guyon, Hervé; Falissard, Bruno; Kop, Jean-Luc
2017-01-01
Network Analysis is considered as a new method that challenges Latent Variable models in inferring psychological attributes. With Network Analysis, psychological attributes are derived from a complex system of components without the need to call on any latent variables. But the ontological status of psychological attributes is not adequately defined with Network Analysis, because a psychological attribute is both a complex system and a property emerging from this complex system. The aim of this article is to reappraise the legitimacy of latent variable models by engaging in an ontological and epistemological discussion on psychological attributes. Psychological attributes relate to the mental equilibrium of individuals embedded in their social interactions, as robust attractors within complex dynamic processes with emergent properties, distinct from physical entities located in precise areas of the brain. Latent variables thus possess legitimacy, because the emergent properties can be conceptualized and analyzed on the sole basis of their manifestations, without exploring the upstream complex system. However, in opposition with the usual Latent Variable models, this article is in favor of the integration of a dynamic system of manifestations. Latent Variables models and Network Analysis thus appear as complementary approaches. New approaches combining Latent Network Models and Network Residuals are certainly a promising new way to infer psychological attributes, placing psychological attributes in an inter-subjective dynamic approach. Pragmatism-realism appears as the epistemological framework required if we are to use latent variables as representations of psychological attributes. PMID:28572780