Science.gov

Sample records for brain operates independent

  1. Operation Brain Trauma Therapy

    DTIC Science & Technology

    2011-10-01

    cyclosporin A on susceptibility to pilocarpine-induced seizures in rats with brain injured at different developmental stages. Epilepsy Res. 2004;61:63...Traumatic brain injury (TBI) is a leading cause of morbid-ity and mortality in Operation Iraqi Freedom largely due to the emergence of blast-injury from...initiate seizure activity than another promising calcineurin antagonist cyclosporine A28—which is currently in clinical trials for TBI. However, unlike

  2. Operation Brain Trauma Therapy

    DTIC Science & Technology

    2014-10-01

    assessed ~3000 biomarker samples. 15. SUBJECT TERMS Traumatic Brain Injury, treatment , therapy, biomarker, combat casualty care, neuroprotection...samples across the models and treatments , and the results from the biomarker studies are quite impressive, particularly for GFAP and show strong...For each agent, in general, 4 experimental groups have been used in primary screening (sham, injury plus vehicle, and injury plus treatment

  3. Operation Brain Trauma Therapy

    DTIC Science & Technology

    2016-12-01

    grants, namely, OBTT and OBTT-Extended Studies (OBTT-ES; WH81XWH-14-2-0018). Although the work on these two grants is carried out by an identical ...using the identical GLI treatment protocol (bolus and continuous infusion) in rats (total n=15; 5 per group) in the CCI model and assessed brain edema...GLI using the identical regimen used in our initial studies in OBTT showed that it had no effect on contusional edema—and thus our data strongly

  4. Genetic architecture supports mosaic brain evolution and independent brain-body size regulation.

    PubMed

    Hager, Reinmar; Lu, Lu; Rosen, Glenn D; Williams, Robert W

    2012-01-01

    The mammalian brain consists of distinct parts that fulfil different functions. Finlay and Darlington have argued that evolution of the mammalian brain is constrained by developmental programs, suggesting that different brain parts are not free to respond individually to selection and evolve independent of other parts or overall brain size. However, comparisons among mammals with matched brain weights often reveal greater differences in brain part size, arguing against strong developmental constraints. Here we test these hypotheses using a quantitative genetic approach involving over 10,000 mice. We identify independent loci for size variation in seven key parts of the brain, and observe that brain parts show low or no phenotypic correlation, as is predicted by a mosaic scenario. We also demonstrate that variation in brain size is independently regulated from body size. The allometric relations seen at higher phylogenetic levels are thus unlikely to be the product of strong developmental constraints.

  5. Loss of Financial Management Independence After Brain Injury: Survivors' Experiences.

    PubMed

    Koller, Kathryn; Woods, Lindsay; Engel, Lisa; Bottari, Carolina; Dawson, Deirdre R; Nalder, Emily

    2016-01-01

    This pilot study explored the experiences of brain injury survivors after a change in financial management (FM) independence. Using a qualitative descriptive design, 6 participants with acquired brain injury were recruited from a community brain injury organization and participated in semistructured interviews. Data were analyzed using thematic analysis. Three themes emerged from the interviews: (1) trajectory of FM change, involving family members as key change agents; (2) current FM situation, involving FM strategies such as automatic deposits and restricted budgets; and (3) the struggle for control, in which survivors desired control while also accepting supports for FM. This study identifies some of the challenges brain injury survivors face in managing their finances and the adjustment associated with a loss of FM independence. Occupational therapists should be aware of clients' experiences when supporting them through a change in independence. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  6. Evidence that independent gut-to-brain and brain-to-gut pathways operate in the irritable bowel syndrome and functional dyspepsia: a 1-year population-based prospective study.

    PubMed

    Koloski, N A; Jones, M; Talley, N J

    2016-09-01

    Traditionally, functional gastrointestinal disorders (FGIDs) are conceptualised as originating in the brain via stress pathways (brain-to-gut). It is uncertain how many with irritable bowel syndrome (IBS) and functional dyspepsia (FD) have a gut origin of symptoms (gut-to-brain pathway). To determine if there is a distinct brain-to-gut FGID (where psychological symptoms begin first) and separately a distinct gut-to-brain FGID (where gut symptoms start first). A prospective random population sample from Newcastle, Australia who responded to a validated survey in 2012 and completed a 1-year follow-up survey (n = 1900). The surveys contained questions on Rome III IBS and FD and the Hospital Anxiety and Depression Scale. We found that higher levels of anxiety and depression at baseline were significant predictors of developing IBS (OR = 1.31; 95% CI 1.06-1.61, P = 0.01; OR = 1.54; 95% CI 1.29-1.83, P < 0.001) and FD (OR = 1.28; 95% CI 1.05-1.55, P = 0.01; OR = 1.55, 95% CI 1.32-1.83, P < 0.001), respectively, at the 1-year follow-up. Among those people who did not have elevated levels of anxiety and depression at baseline, subjects at baseline with documented IBS (mean difference 0.34; 95% CI 0.13-0.55, P = 0.002; 0.81; 95% CI 0.47-1.15, P < 0.001) and FD (0.38; 95% CI 0.14-0.63, P = 0.002; 0.92; 95% CI 0.57-1.27, P < 0.001), reported significantly higher levels of anxiety and depression at the 1-year follow-up. We calculated in one-third of individuals a mood disorder precedes FGID but in two-thirds an FGID precedes the mood disorder. While brain-gut pathways are bidirectional, a major subset begin with gut symptoms first and only then psychological distress develops, implicating primary gut mechanisms as drivers of the gut and extra-intestinal features in many cases. © 2016 John Wiley & Sons Ltd.

  7. GRID INDEPENDENT FUEL CELL OPERATED SMART HOME

    SciTech Connect

    Dr. Mohammad S. Alam

    2003-12-07

    A fuel cell power plant, which utilizes a smart energy management and control (SEMaC) system, supplying the power need of laboratory based ''home'' has been purchased and installed. The ''home'' consists of two rooms, each approximately 250 sq. ft. Every appliance and power outlet is under the control of a host computer, running the SEMaC software package. It is possible to override the computer, in the event that an appliance or power outage is required. Detailed analysis and simulation of the fuel cell operated smart home has been performed. Two journal papers has been accepted for publication and another journal paper is under review. Three theses have been completed and three additional theses are in progress.

  8. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  9. Cognitive Abilities Independent of IQ Correlate with Regional Brain Structure

    ERIC Educational Resources Information Center

    Johnson, Wendy; Jung, Rex E.; Colom, Roberto; Haier, Richard J.

    2008-01-01

    There is increasing evidence relating psychometric measures of general intelligence and reasoning to regional brain structure and function assessed with a variety of neuroimaging techniques. Cognitive dimensions independent of general intelligence can also be identified psychometrically and studied for any neuroanatomical correlates. Here we…

  10. Independent Mobility Achieved through a Wireless Brain-Machine Interface

    PubMed Central

    Xu, Zhiming; Kyar, Toe K.; Ho, Duncun; Lim, Clement; Chan, Louiza; Chua, Yuanwei; Yao, Lei; Cheong, Jia Hao; Lee, Jung Hyup; Vishal, Kulkarni Vinayak; Guo, Yongxin; Chen, Zhi Ning; Lim, Lay K.; Li, Peng; Liu, Lei; Zou, Xiaodan; Ang, Kai K.; Gao, Yuan; Ng, Wai Hoe; Han, Boon Siew; Chng, Keefe; Guan, Cuntai; Je, Minkyu; Yen, Shih-Cheng

    2016-01-01

    Individuals with tetraplegia lack independent mobility, making them highly dependent on others to move from one place to another. Here, we describe how two macaques were able to use a wireless integrated system to control a robotic platform, over which they were sitting, to achieve independent mobility using the neuronal activity in their motor cortices. The activity of populations of single neurons was recorded using multiple electrode arrays implanted in the arm region of primary motor cortex, and decoded to achieve brain control of the platform. We found that free-running brain control of the platform (which was not equipped with any machine intelligence) was fast and accurate, resembling the performance achieved using joystick control. The decoding algorithms can be trained in the absence of joystick movements, as would be required for use by tetraplegic individuals, demonstrating that the non-human primate model is a good pre-clinical model for developing such a cortically-controlled movement prosthetic. Interestingly, we found that the response properties of some neurons differed greatly depending on the mode of control (joystick or brain control), suggesting different roles for these neurons in encoding movement intention and movement execution. These results demonstrate that independent mobility can be achieved without first training on prescribed motor movements, opening the door for the implementation of this technology in persons with tetraplegia. PMID:27802344

  11. Independent Mobility Achieved through a Wireless Brain-Machine Interface.

    PubMed

    Libedinsky, Camilo; So, Rosa; Xu, Zhiming; Kyar, Toe K; Ho, Duncun; Lim, Clement; Chan, Louiza; Chua, Yuanwei; Yao, Lei; Cheong, Jia Hao; Lee, Jung Hyup; Vishal, Kulkarni Vinayak; Guo, Yongxin; Chen, Zhi Ning; Lim, Lay K; Li, Peng; Liu, Lei; Zou, Xiaodan; Ang, Kai K; Gao, Yuan; Ng, Wai Hoe; Han, Boon Siew; Chng, Keefe; Guan, Cuntai; Je, Minkyu; Yen, Shih-Cheng

    2016-01-01

    Individuals with tetraplegia lack independent mobility, making them highly dependent on others to move from one place to another. Here, we describe how two macaques were able to use a wireless integrated system to control a robotic platform, over which they were sitting, to achieve independent mobility using the neuronal activity in their motor cortices. The activity of populations of single neurons was recorded using multiple electrode arrays implanted in the arm region of primary motor cortex, and decoded to achieve brain control of the platform. We found that free-running brain control of the platform (which was not equipped with any machine intelligence) was fast and accurate, resembling the performance achieved using joystick control. The decoding algorithms can be trained in the absence of joystick movements, as would be required for use by tetraplegic individuals, demonstrating that the non-human primate model is a good pre-clinical model for developing such a cortically-controlled movement prosthetic. Interestingly, we found that the response properties of some neurons differed greatly depending on the mode of control (joystick or brain control), suggesting different roles for these neurons in encoding movement intention and movement execution. These results demonstrate that independent mobility can be achieved without first training on prescribed motor movements, opening the door for the implementation of this technology in persons with tetraplegia.

  12. Mind Operational Semantics and Brain Operational Architectonics: A Putative Correspondence

    PubMed Central

    Benedetti, Giulio; Marchetti, Giorgio; Fingelkurts, Alexander A; Fingelkurts, Andrew A

    2010-01-01

    Despite allowing for the unprecedented visualization of brain functional activity, modern neurobiological techniques have not yet been able to provide satisfactory answers to important questions about the relationship between brain and mind. The aim of this paper is to show how two different but complementary approaches, Mind Operational Semantics (OS) and Brain Operational Architectonics (OA), can help bridge the gap between a specific kind of mental activity—the higher-order reflective thought or linguistic thought—and brain. The fundamental notion that allows the two different approaches to be jointly used under a common framework is that of operation. According to OS, which is based on introspection and linguistic data, the meanings of words can be analyzed in terms of elemental mental operations (EOMC), amongst which those of attention play a key role. Linguistic thought is made possible by special kinds of elements, which OS calls “correlators”, which have the function of tying together the other elements of thought, which OS calls “correlata” (a "correlational network” that is, a sentence, is so formed). Therefore, OS conceives of linguistic thought as a hierarchy of operations of increasing complexity. Likewise, according to OA, which is based on the joint analysis of cognitive and electromagnetic data (EEG and MEG), every conscious phenomenon is brought to existence by the joint operations of many functional and transient neuronal assemblies in the brain. According to OA, the functioning of the brain is always operational (made up of operations), and its structure is characterized by a hierarchy of operations of increasing complexity: single neurons, single assemblies of neurons, synchronized neuronal assemblies or Operational Modules (OM), integrated or complex OMs. The authors put forward the hypothesis that the whole level of OS’s description (EOMC, correlators, and correlational networks) corresponds to the level of OMs (or set of them

  13. Determinants of HIV-1 CD4-Independent Brain Adaptation.

    PubMed

    Shakirzyanova, Madina; Kong, Xiang-Peng; Cheng-Mayer, Cecilia

    2017-10-01

    HIV-1 is known to adapt to the local environment in its usage of receptors, and it can become CD4 independent in the brain where the receptor is scarce. This adaptation is through amino acid variations, but the patterns of such variation are not yet well understood. Given that infection of long-lived CD4-low and CD4-negative cells in anatomical compartments such as the brain expands cell tropism in vivo and may serve as potential viral reservoirs that pose challenge for HIV eradication, understanding the evolution to CD4 independence and envelope conformation associated with infection in the absence of CD4 will not only broaden our insights into HIV pathogenesis but may guide functional cure strategies as well. We characterize, by site-directed mutagenesis, neutralization assay, and structural analysis, a pair of CD4-dependent (cl2) and CD4-independent (cl20) envelopes concurrently isolated from the cerebral spinal fluid of an SHIV-infected macaque with neurological AIDS and with minimum sequence differences. Residues different between cl2 and cl20 are mapped to the V1V2 and surrounding regions. Mutations of these residues in cl2 increased its CD4 independence in infection, and the effects are cumulative and likely structural. Our data suggested that the determinants of CD4 independence in vivo mapped principally to V1V2 of gp120 that can destabilize the apex of the envelope spike, with an additional change in V4 that abrogated a potential N-linked glycan to facilitate movement of the V1V2 domain and further expose the coreceptor-binding site.

  14. State-independent purity and fidelity of quantum operations

    NASA Astrophysics Data System (ADS)

    Kong, Fan-Zhen; Zong, Xiao-Lan; Yang, Ming; Cao, Zhuo-Liang

    2016-04-01

    The purity and fidelity of quantum operations are of great importance in characterizing the quality of quantum operations. The currently available definitions of the purity and fidelity of quantum operations are based on the average over all possible input pure quantum states, i.e. they are state-dependent (SD). In this paper, without resorting to quantum states, we define the state-independent (SI) purity and fidelity of a general quantum operation (evolution) in virtue of a new density matrix formalism for quantum operations, which is extended from the quantum state level to quantum operation level. The SI purity and fidelity gain more intrinsic physical properties of quantum operations than state-dependent ones, such as the purity of a one-qubit amplitude damping channel (with damping rate 1) is 1/2, which is in line with the fact that the channel is still a nonunitary operation described by two Kraus operators rather than a unitary one. But the state-dependent Haar average purity is 1 in this case. So the SI purity and fidelity proposed here can help the experimentalists to exactly quantify the implementation quality of an operation. As a byproduct, a new measure of the operator entanglement is proposed for a quantum evolution (unitary or nonunitary) in terms of the linear entropy of its density matrix on the orthonormal operator bases (OOBs) in Hilbert-Schmidt space.

  15. 75 FR 3223 - California Independent System Operator Corporation; Midwest Independent Transmission System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. ER09-1048-000; ER09-1049-000; ER09-1050-000; ER09-1192- 000; ER09-1051-000; ER09-1063-000; ER09-1142-000] California Independent System Operator...

  16. 76 FR 7187 - California Independent System Operator Corporation; Notice of Institution of Section 206...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Energy Regulatory Commission California Independent System Operator Corporation; Notice of Institution of Section 206 Proceeding and Refund Effective Date February 2, 2011. On January 31, 2011, the Commission... Independent System Operator Corporation's Virtual Award Charge. California Independent System Operator Corp...

  17. Operative Classification of Brain Arteriovenous Malformation

    PubMed Central

    Beltramello, A.; Ricciardi, G.K.; Piovan, E.; Zampieri, P.; Pasqualin, A.; Nicolato, A.; Foroni, R.; Sala, F.; Bassi, L.; Gerosa, M.

    2009-01-01

    Summary The most important issue when dealing with a patient with a brain AVM is the decision whether to treat or not. Only after this decision has been made, taking into consideration a number of factors depending on both the patient and the specific type of AVM, can the best option for treatment be chosen. An operative classification of brain AVMs, previously adopted in the Department of Neuroradiology and Neurosurgery of Verona (Italy) and published in this journal, was subjected to validation in a consecutive group of 104 patients clinically followed for at least three years after completion of treatment. This classification, slightly modified from the original version concerning the importance of some specific items, allowed us to assess the indication to treat in each case, whatever type of treatment was offered to the patient. PMID:20465909

  18. EPICS : operating system independent device/driver support.

    SciTech Connect

    Kraimer, M. R.; Accelerator Systems Division

    2003-01-01

    Originally EPICS input/output controllers (IOCs) were only supported on VME-based systems running the vxWorks operating system. Now IOCs are supported on many systems: vxWorks, RTEMS, Solaris, HPUX, Linux, WIN32, and Darwin. A challenge is to provide operating-system-independent device and driver support. This paper presents some techniques for providing such support. EPICS (Experimental Physics and Industrial Control System) is a set of software tools, libraries, and applications developed collaboratively and used worldwide to create distributed, real-time control systems for scientific instruments such as particle accelerators, telescopes, and other large scientific experiments. An important component of all EPICS-based control systems is a collection of input/output controllers (IOCs). An IOC has three primary components: (1) a real-time database; (2) channel access, which provides network access to the database; and (3) device/driver support for interfacing to equipment. This paper describes some projects related to providing device/driver support on non-vxWorks systems. In order to support IOCs on platforms other than vxWorks, operating-system-independent (OSI) application program interfaces (APIs) were defined for threads, semaphores, timers, etc. Providing support for a new platform consists of providing an operating-system-dependent implementation of the OSI APIs.

  19. Is a pre-operative brain natriuretic peptide or N-terminal pro-B-type natriuretic peptide measurement an independent predictor of adverse cardiovascular outcomes within 30 days of noncardiac surgery? A systematic review and meta-analysis of observational studies.

    PubMed

    Karthikeyan, Ganesan; Moncur, Ross A; Levine, Oren; Heels-Ansdell, Diane; Chan, Matthew T V; Alonso-Coello, Pablo; Yusuf, Salim; Sessler, Daniel; Villar, Juan Carlos; Berwanger, Otavio; McQueen, Matthew; Mathew, Anna; Hill, Stephen; Gibson, Simon; Berry, Colin; Yeh, Huei-Ming; Devereaux, P J

    2009-10-20

    We conducted a systematic review and meta-analysis to determine if pre-operative brain natriuretic peptide (BNP) (i.e., BNP or N-terminal pro-B-type natriuretic peptide [NT-proBNP]) is an independent predictor of 30-day adverse cardiovascular outcomes after noncardiac surgery. Pre-operative clinical cardiac risk indices have only modest predictive power. BNP predicts adverse cardiovascular outcomes in a variety of nonsurgical settings and may similarly predict these outcomes in the perioperative setting. We employed 5 search strategies (e.g., searching bibliographic databases), and we included all studies that assessed the independent prognostic value of pre-operative BNP measurement as a predictor of cardiovascular complications after noncardiac surgery. We determined study eligibility and conducted data abstraction independently and in duplicate. We calculated a pooled odds ratio using a random effects model. Nine studies met eligibility criteria, and included a total of 3,281 patients, among whom 314 experienced 1 or more perioperative cardiovascular complications. The average proportion of patients with elevated BNP was 24.8% (95% confidence interval [CI]: 20.1 to 30.4%; I(2) = 89%). All studies showed a statistically significant association between an elevated pre-operative BNP level and various cardiovascular outcomes (e.g., a composite of cardiac death and nonfatal myocardial infarction; atrial fibrillation). Data pooled from 7 studies demonstrated an odds ratio (OR) of 19.3 (95% CI: 8.5 to 43.7; I(2) = 58%). The pre-operative BNP measurement was an independent predictor of perioperative cardiovascular events among studies that only considered the outcomes of death, cardiovascular death, or myocardial infarction (OR: 44.2, 95% CI: 7.6 to 257.0, I(2) = 51.6%), and those that included other outcomes (OR: 14.7, 95% CI: 5.7 to 38.2, I(2) = 62.2%); the p value for interaction was 0.28. These results suggest that an elevated pre-operative BNP or NT

  20. SHORT-TERM MEMORY IS INDEPENDENT OF BRAIN PROTEIN SYNTHESIS

    SciTech Connect

    Davis, Hasker P.; Rosenzweig, Mark R.; Jones, Oliver W.

    1980-09-01

    Male Swiss albino CD-1 mice given a single injection of a cerebral protein synthesis inhibitor, anisomycin (ANI) (1 mg/animal), 20 min prior to single trial passive avoidance training demonstrated impaired retention at tests given 3 hr, 6 hr, 1 day, and 7 days after training. Retention was not significantly different from saline controls when tests were given 0.5 or 1.5 hr after training. Prolonging inhibition of brain protein synthesis by giving either 1 or 2 additional injections of ANI 2 or 2 and 4 hr after training did not prolong short-term retention performance. The temporal development of impaired retention in ANI treated mice could not be accounted for by drug dosage, duration of protein synthesis inhibition, or nonspecific sickness at test. In contrast to the suggestion that protein synthesis inhibition prolongs short-term memory (Quinton, 1978), the results of this experiment indicate that short-term memory is not prolonged by antibiotic drugs that inhibit cerebral protein synthesis. All evidence seems consistent with the hypothesis that short-term memory is protein synthesis independent and that the establishment of long-term memory depends upon protein synthesis during or shortly after training. Evidence for a role of protein synthesis in memory maintenance is discussed.

  1. Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy.

    PubMed

    Browning, Megan; Shear, Deborah A; Bramlett, Helen M; Dixon, C Edward; Mondello, Stefania; Schmid, Kara E; Poloyac, Samuel M; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Povlishock, John T; Tortella, Frank C; Kochanek, Patrick M

    2016-03-15

    Levetiracetam (LEV) is an antiepileptic agent targeting novel pathways. Coupled with a favorable safety profile and increasing empirical clinical use, it was the fifth drug tested by Operation Brain Trauma Therapy (OBTT). We assessed the efficacy of a single 15 min post-injury intravenous (IV) dose (54 or 170 mg/kg) on behavioral, histopathological, and biomarker outcomes after parasagittal fluid percussion brain injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI) in rats. In FPI, there was no benefit on motor function, but on Morris water maze (MWM), both doses improved latencies and path lengths versus vehicle (p < 0.05). On probe trial, the vehicle group was impaired versus sham, but both LEV treated groups did not differ versus sham, and the 54 mg/kg group was improved versus vehicle (p < 0.05). No histological benefit was seen. In CCI, there was a benefit on beam balance at 170 mg/kg (p < 0.05 vs. vehicle). On MWM, the 54 mg/kg dose was improved and not different from sham. Probe trial did not differ between groups for either dose. There was a reduction in hemispheric tissue loss (p < 0.05 vs. vehicle) with 170 mg/kg. In PBBI, there was no motor, cognitive, or histological benefit from either dose. Regarding biomarkers, in CCI, 24 h glial fibrillary acidic protein (GFAP) blood levels were lower in the 170 mg/kg group versus vehicle (p < 0.05). In PBBI, GFAP blood levels were increased in vehicle and 170 mg/kg groups versus sham (p < 0.05) but not in the 54 mg/kg group. No treatment effects were seen for ubiquitin C-terminal hydrolase-L1 across models. Early single IV LEV produced multiple benefits in CCI and FPI and reduced GFAP levels in PBBI. LEV achieved 10 points at each dose, is the most promising drug tested thus far by OBTT, and the only drug to improve cognitive outcome in any model. LEV has been advanced to testing in the micropig model in OBTT.

  2. Delivering multiple independent RIB simultaneously: Technical and operational challenges

    NASA Astrophysics Data System (ADS)

    Morton, A. C.

    2016-06-01

    ISAC is an ISOL-type facility at which RIB are produced by direct reactions of 480 MeV protons from TRIUMFs main cyclotron on thick targets. Like other ISOL-type facilities, ISAC is limited to the production and delivery of a single RIB at any given time. ARIEL, the Advanced Rare-IsotopE Laboratory, will provide for the production and delivery of, ultimately, two additional RIB, the first produced by photofission on actinide targets using electrons from a new superconducting electron linac and the second by direct and indirect reactions with protons from TRIUMFs main cyclotron. This will allow for the simultaneous delivery of three independent RIB to experimental areas at ARIEL and ISAC. The shift from single-user to multi-user operation will introduce significant technical and operational challenges that RIB facilities have not yet had to address. Almost all aspects of facility operation will become more complex as the first RIB from ARIEL targets become available.

  3. Brain-Mind Operational Architectonics Imaging: Technical and Methodological Aspects

    PubMed Central

    Fingelkurts, Andrew A; Fingelkurts, Alexander A

    2008-01-01

    This review paper deals with methodological and technical foundations of the Operational Architectonics framework of brain and mind functioning. This theory provides a framework for mapping and understanding important aspects of the brain mechanisms that constitute perception, cognition, and eventually consciousness. The methods utilized within Operational Architectonics framework allow analyzing with an incredible detail the operational behavior of local neuronal assemblies and their joint activity in the form of unified and metastable operational modules, which constitute the whole hierarchy of brain operations, operations of cognition and phenomenal consciousness. PMID:19526071

  4. A model technology transfer program for independent operators

    SciTech Connect

    Schoeling, L.G.

    1996-08-01

    In August 1992, the Energy Research Center (ERC) at the University of Kansas was awarded a contract by the US Department of Energy (DOE) to develop a technology transfer regional model. This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program.

  5. Independent operation of implicit working memory under cognitive load.

    PubMed

    Ji, Eunhee; Lee, Kyung Min; Kim, Min-Shik

    2017-09-07

    Implicit working memory (WM) has been known to operate non-consciously and unintentionally. The current study investigated whether implicit WM is a discrete mechanism from explicit WM in terms of cognitive resource. To induce cognitive resource competition, we used a conjunction search task (Experiment 1) and imposed spatial WM load (Experiment 2a and 2b). Each trial was composed of a set of five consecutive search displays. The location of the first four displays appeared as per pre-determined patterns, but the fifth display could follow the same pattern or not. If implicit WM can extract the moving pattern of stimuli, response times for the fifth target would be faster when it followed the pattern compared to when it did not. Our results showed implicit WM can operate when participants are searching for the conjunction target and even while maintaining spatial WM information. These results suggest that implicit WM is independent from explicit spatial WM. Copyright © 2017. Published by Elsevier Inc.

  6. Near independence of OLED operating voltage on transport layer thickness

    SciTech Connect

    Swensen, James S.; Wang, Liang; Polikarpov, Evgueni; Rainbolt, James E.; Koech, Phillip K.; Cosimbescu, Lelia; Padmaperuma, Asanga B.

    2013-01-01

    We report organic light emitting devices (OLEDs) with weak drive voltage dependence on the thickness of the hole transport layer (HTL) for thicknesses up to 1150 Å using the N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)-benzidine (α-NPD) and N,N'-bis(3-methyl phenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4'diamine (TPD), both of which have hole mobilities in the range of 2 × 10-3 cm2V-1s-1. Lower mobility HTL materials show larger operating voltage dependence on thickness. The near independence of the operating voltage for high mobility transport material thickness was only observed when the energy barrier for charge injection into the transport material was minimized. To ensure low injection barriers, a thin film of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) was cast from solution onto the ITO surface. These results indicate that thick transport layers can be integrated into OLED stacks without the need for bulk conductivity doping.

  7. 75 FR 20590 - PJM Interconnection, L.L.C., Complainant, v. Midwest Independent Transmission, System Operator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... complaint against the Midwest Independent Transmission System Operator, Inc. (Midwest ISO or Respondent) alleging that the Midwest ISO violated their, Midwest ISO and PJM, Joint Operating Agreement (JOA),...

  8. 30 CFR 57.9102 - Movement of independently operating rail equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement of independently operating rail... NONMETAL MINES Loading, Hauling, and Dumping Traffic Safety § 57.9102 Movement of independently operating rail equipment. Movement of two or more pieces of rail equipment operating independently on the same...

  9. 30 CFR 56.9102 - Movement of independently operating rail equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Movement of independently operating rail... MINES Loading, Hauling, and Dumping Traffic Safety § 56.9102 Movement of independently operating rail equipment. Movement of two or more pieces of rail equipment operating independently on the same track shall...

  10. Brain Performance Enhancement for Military Operators

    DTIC Science & Technology

    2009-10-01

    experience and input from the outside world. Recently also the change in response to purely internal, mental signals has been investigated by EEG [4...revealed dramatic increase in synchronicity and activity of brain waves through EEG measurements, but could not correlate it to physiological changes in the...deployment), or help to recovery after stressful experiences. Neurofeedback can be considered as direct communication between brain and system

  11. A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids

    PubMed Central

    Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias

    2015-01-01

    A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions. PMID:26510583

  12. A Gaze Independent Brain-Computer Interface Based on Visual Stimulation through Closed Eyelids

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Ferreria, Valeria Y.; Ulrich, Daniel; Kilic, Tayfun; Chatziliadis, Xenofon; Blankertz, Benjamin; Treder, Matthias

    2015-10-01

    A classical brain-computer interface (BCI) based on visual event-related potentials (ERPs) is of limited application value for paralyzed patients with severe oculomotor impairments. In this study, we introduce a novel gaze independent BCI paradigm that can be potentially used for such end-users because visual stimuli are administered on closed eyelids. The paradigm involved verbally presented questions with 3 possible answers. Online BCI experiments were conducted with twelve healthy subjects, where they selected one option by attending to one of three different visual stimuli. It was confirmed that typical cognitive ERPs can be evidently modulated by the attention of a target stimulus in eyes-closed and gaze independent condition, and further classified with high accuracy during online operation (74.58% ± 17.85 s.d.; chance level 33.33%), demonstrating the effectiveness of the proposed novel visual ERP paradigm. Also, stimulus-specific eye movements observed during stimulation were verified as reflex responses to light stimuli, and they did not contribute to classification. To the best of our knowledge, this study is the first to show the possibility of using a gaze independent visual ERP paradigm in an eyes-closed condition, thereby providing another communication option for severely locked-in patients suffering from complex ocular dysfunctions.

  13. Brain computer interface for operating a robot

    NASA Astrophysics Data System (ADS)

    Nisar, Humaira; Balasubramaniam, Hari Chand; Malik, Aamir Saeed

    2013-10-01

    A Brain-Computer Interface (BCI) is a hardware/software based system that translates the Electroencephalogram (EEG) signals produced by the brain activity to control computers and other external devices. In this paper, we will present a non-invasive BCI system that reads the EEG signals from a trained brain activity using a neuro-signal acquisition headset and translates it into computer readable form; to control the motion of a robot. The robot performs the actions that are instructed to it in real time. We have used the cognitive states like Push, Pull to control the motion of the robot. The sensitivity and specificity of the system is above 90 percent. Subjective results show a mixed trend of the difficulty level of the training activities. The quantitative EEG data analysis complements the subjective results. This technology may become very useful for the rehabilitation of disabled and elderly people.

  14. Spatial independent component analysis of functional brain optical imaging

    NASA Astrophysics Data System (ADS)

    Li, Yong; Li, Pengcheng; Liu, Yadong; Luo, Weihua; Hu, Dewen; Luo, Qingming

    2003-12-01

    This paper introduces the algorithm and the basic theory of Independent Component Analysis (ICA), and discusses how to choose the proper ICA model of the data by the characteristics of the underlying signals to be estimated. The Spatial ICA (SICA) is applied to model and analysis of the data in the experiment when the signals and noises are spatially dependent. The data acquired from the intrinsic optical signals which are caused by electricity stimulation to sciatic nerve of rat are analyzed by SICA. In the result, the active-related component of the signals and its time course can be separate, and the signals of heartbeat and respiration also can be separated.

  15. Operation Brain Trauma Therapy Extended Studies

    DTIC Science & Technology

    2015-05-01

    percussion, controlled cortical impact (CCI), and penetrating ballistic-like brain injury) in rats for screening of therapies and evaluation of two...cyclosporine, simvastatin, levetiracetam, glibenclamide, kollidon VA64, amantadine, and minocycline. Approximately 2000 rats have been studied and...sections from rats in each of the 3 therapy screening models used by the OBTT consortium. A total of 8 manuscripts were published in the issue (S1-S8

  16. GONADAL HORMONE INDEPENDENT SEX DIFFERENCES IN STEROIDOGENIC FACTOR 1 KNOCKOUT MICE BRAIN

    PubMed Central

    Büdefeld, Tomaž; Tobet, Stuart A.; Majdič, Gregor

    2011-01-01

    Summary Sex differences in brain morphology have been described in a number of species including humans. Gonadal hormones were shown to provide a major influence on brain sexual differentiation more than 50 years ago. A growing number of studies is providing evidence for roles of genetic factors, in particular sex chromosome complement, on brain sexual differentiation in mammals. In this review, hormone-independent brain sexual differentiation, with the emphasis on mice with a disruption of the SF-1 gene (SF-1 knockout, SF-1 KO) are discussed. PMID:21887123

  17. 77 FR 60419 - ITC Holdings Corp., Entergy Corporation, Midwest Independent Transmission System Operator, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission ITC Holdings Corp., Entergy Corporation, Midwest Independent Transmission..., ITC Holdings Corp., Entergy Corporation, and Midwest Independent Transmission System Operator,...

  18. Gaze-independent brain-computer interfaces based on covert attention and feature attention

    NASA Astrophysics Data System (ADS)

    Treder, M. S.; Schmidt, N. M.; Blankertz, B.

    2011-10-01

    There is evidence that conventional visual brain-computer interfaces (BCIs) based on event-related potentials cannot be operated efficiently when eye movements are not allowed. To overcome this limitation, the aim of this study was to develop a visual speller that does not require eye movements. Three different variants of a two-stage visual speller based on covert spatial attention and non-spatial feature attention (i.e. attention to colour and form) were tested in an online experiment with 13 healthy participants. All participants achieved highly accurate BCI control. They could select one out of thirty symbols (chance level 3.3%) with mean accuracies of 88%-97% for the different spellers. The best results were obtained for a speller that was operated using non-spatial feature attention only. These results show that, using feature attention, it is possible to realize high-accuracy, fast-paced visual spellers that have a large vocabulary and are independent of eye gaze.

  19. Intra-operative correction of brain-shift.

    PubMed

    Reinertsen, Ingerid; Lindseth, Frank; Askeland, Christian; Iversen, Daniel Høyer; Unsgård, Geirmund

    2014-07-01

    Brain-shift is a major source of error in neuronavigation systems based on pre-operative images. In this paper, we present intra-operative correction of brain-shift using 3D ultrasound. The method is based on image registration of vessels extracted from pre-operative MRA and intra-operative power Doppler-based ultrasound and is fully integrated in the neuronavigation software. We have performed correction of brain-shift in the operating room during surgery and provided the surgeon with updated information. Here, we present data from seven clinical cases with qualitative and quantitative error measures. The registration algorithm is fast enough to provide the surgeon with updated information within minutes and accounts for large portions of the experienced shift. Correction of brain-shift can make pre-operative data like fMRI and DTI reliable for a longer period of time and increase the usefulness of the MR data as a supplement to intra-operative 3D ultrasound in terms of overview and interpretation.

  20. Effect of operating microscope light on brain temperature during craniotomy.

    PubMed

    Gayatri, Parthasarathi; Menon, Girish G; Suneel, Puthuvassery R

    2013-07-01

    Operating microscopes used during neurosurgery are fitted with xenon light. Burn injuries have been reported because of xenon microscope lighting as the intensity of xenon light is 300 W. We designed this study to find out if the light of operating microscope causes an increase in temperature of the brain tissue, which is exposed underneath. Twenty-one adult patients scheduled for elective craniotomies were enrolled. Distal esophageal temperature (T Eso), brain temperature under the microscope light (T Brain), and brain temperature under dura mater (T Dura) were measured continuously at 15-minute intervals during microscope use. The irrigation fluid temperature, room temperature, intensity of the microscope light, and the distance of the microscope from the brain surface were kept constant. The average age of the patients was 44±15 years (18 males and 3 females). The mean duration of microscope use was 140±39 minutes. There were no significant changes in T Brain and T Dura and T Eso over time. T Dura was significantly lower than T Brain both at time 0 and 60 minutes but not at 90 minutes. T Brain was significantly lower than T Eso both at time 0 and 60 minutes but not at 90 minutes. The T Dura remained significantly lower than T Eso at 0, 60, and 90 minutes. Our study shows that there is no significant rise in brain temperature under xenon microscope light up to 120 minutes duration, at intensity of 60% to 70%, from a distance of 20 to 25 cm from the brain surface.

  1. Ankyrin-independent membrane protein-binding sites for brain and erythrocyte spectrin.

    PubMed

    Steiner, J P; Bennett, V

    1988-10-05

    Brain spectrin reassociates in in vitro binding assays with protein(s) in highly extracted brain membranes quantitatively depleted of ankyrin and spectrin. These newly described membrane sites for spectrin are biologically significant and involve a protein since (a) binding occurs optimally at physiological pH (6.7-6.9) and salt concentrations (50 mM), (b) binding is abolished by digestion of membranes with alpha-chymotrypsin, (c) Scatchard analysis is consistent with a binding capacity of at least 50 pmol/mg total membrane protein, and highest affinity of 3 nM. The major ankyrin-independent binding activity of brain spectrin is localized to the beta subunit of spectrin. Brain membranes also contain high affinity binding sites for erythrocyte spectrin, but a 3-4 fold lower capacity than for brain spectrin. Some spectrin-binding sites associate preferentially with brain spectrin, some with erythrocyte spectrin, and some associate with both types of spectrin. Erythrocyte spectrin contains distinct binding domains for ankyrin and brain membrane protein sites, since the Mr = 72,000 spectrin-binding fragment of ankyrin does not compete for binding of spectrin to brain membranes. Spectrin binds to a small number of ankyrin-independent sites in erythrocyte membranes present in about 10,000-15,000 copies/cell or 10% of the number of sites for ankyrin. Brain spectrin binds to these sites better than erythrocyte spectrin suggesting that erythrocytes have residual binding sites for nonerythroid spectrin. Ankyrin-independent-binding proteins that selectively bind to certain isoforms of spectrin provide a potentially important flexibility in cellular localization and time of synthesis of proteins involved in spectrin-membrane interactions. This flexibility has implications for assembly of the membrane skeleton and targeting of spectrin isoforms to specialized regions of cells.

  2. Glycogen Supercompensation in the Rat Brain After Acute Hypoglycemia is Independent of Glucose Levels During Recovery.

    PubMed

    Duarte, João M N; Morgenthaler, Florence D; Gruetter, Rolf

    2017-01-12

    Patients with diabetes display a progressive decay in the physiological counter-regulatory response to hypoglycemia, resulting in hypoglycemia unawareness. The mechanism through which the brain adapts to hypoglycemia may involve brain glycogen. We tested the hypothesis that brain glycogen supercompensation following hypoglycemia depends on blood glucose levels during recovery. Conscious rats were submitted to hypoglycemia of 2 mmol/L for 90 min and allowed to recover at different glycemia, controlled by means of i.v. glucose infusion. Brain glycogen concentration was elevated above control levels after 24 h of recovery in the cortex, hippocampus and striatum. This glycogen supercompensation was independent of blood glucose levels in the post-hypoglycemia period. In the absence of a preceding hypoglycemia insult, brain glycogen concentrations were unaltered after 24 h under hyperglycemia. In the hypothalamus, which controls peripheral glucose homeostasis, glycogen levels were unaltered. Overall, we conclude that post-hypoglycemia glycogen supercompensation occurs in several brain areas and its magnitude is independent of plasma glucose levels. By supporting brain metabolism during recurrent hypoglycemia periods, glycogen may have a role in the development of hypoglycemia unawareness.

  3. 76 FR 30339 - California Independent System Operator Corporation; Notice of Institution of Section 206...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ...] California Independent System Operator Corporation; Notice of Institution of Section 206 Proceeding and Refund Effective Date On May 19, 2011, the Commission issued an order that instituted an investigation in... evaluate the justness and reasonableness of section 10.3.6.3 of the California Independent System Operator...

  4. 77 FR 2056 - Midwest Independent Transmission System Operator, Inc.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Midwest Independent Transmission System Operator, Inc.; Notice of Filing Take notice that on December 27, 2011, Midwest Independent Transmission System Operator, Inc. submitted a request for authorization to defer...

  5. Modalities of Thinking: State and Trait Effects on Cross-Frequency Functional Independent Brain Networks.

    PubMed

    Milz, Patricia; Pascual-Marqui, Roberto D; Lehmann, Dietrich; Faber, Pascal L

    2016-05-01

    Functional states of the brain are constituted by the temporally attuned activity of spatially distributed neural networks. Such networks can be identified by independent component analysis (ICA) applied to frequency-dependent source-localized EEG data. This methodology allows the identification of networks at high temporal resolution in frequency bands of established location-specific physiological functions. EEG measurements are sensitive to neural activity changes in cortical areas of modality-specific processing. We tested effects of modality-specific processing on functional brain networks. Phasic modality-specific processing was induced via tasks (state effects) and tonic processing was assessed via modality-specific person parameters (trait effects). Modality-specific person parameters and 64-channel EEG were obtained from 70 male, right-handed students. Person parameters were obtained using cognitive style questionnaires, cognitive tests, and thinking modality self-reports. EEG was recorded during four conditions: spatial visualization, object visualization, verbalization, and resting. Twelve cross-frequency networks were extracted from source-localized EEG across six frequency bands using ICA. RMANOVAs, Pearson correlations, and path modelling examined effects of tasks and person parameters on networks. Results identified distinct state- and trait-dependent functional networks. State-dependent networks were characterized by decreased, trait-dependent networks by increased alpha activity in sub-regions of modality-specific pathways. Pathways of competing modalities showed opposing alpha changes. State- and trait-dependent alpha were associated with inhibitory and automated processing, respectively. Antagonistic alpha modulations in areas of competing modalities likely prevent intruding effects of modality-irrelevant processing. Considerable research suggested alpha modulations related to modality-specific states and traits. This study identified the

  6. Intra-operative visualization of brain tumors with 5-aminolevulinic acid-induced fluorescence.

    PubMed

    Widhalm, Georg

    2014-01-01

    Precise histopathological diagnosis of brain tumors is essential for the correct patient management. Furthermore, complete resection of brain tumors is associated with an improved patient prognosis. However, histopathological undergrading and incomplete tumor removal are not uncommon, especially due to insufficient intra-operative visualization of brain tumor tissue. The fluorescent dye 5-aminolevulinic acid (5-ALA) is currently applied for fluorescence-guided resections of high-grade gliomas. The value of 5-ALA-induced protoporphyrin (PpIX) fluorescence for intra-operative visualization of other tumors than high-grade gliomas remains unclear. Within the frame of this thesis, we found a significantly higher rate of complete resections of our high-grade gliomas as compared to control cases by using the newly established 5-ALA fluorescence technology at our department. Additionally, we showed that MRI spectroscopy-based chemical shift imaging (CSI) is capable to identify intratumoral high-grade glioma areas (= anaplastic foci) during navigation guided resections to avoid histopathological undergrading. However, the accuracy of navigation systems with integrated pre-operative imaging data such as CSI declines during resections due to intra-operative brainshift. In two further studies, we found that 5-ALA induced PpIX fluorescence is capable as a novel intra-operative marker to detect anaplastic foci within initially suspected low-grade gliomas independent of brainshift. Finally, we showed that the application of 5-ALA is also of relevance in needle biopsies for intra-operative identification of representative brain tumor tissue. These data indicate that 5-ALA is not only of major importance for resection of high-grade gliomas, but also for intra-operative visualization of anaplastic foci as well as representative brain tumor tissue in needle biopsies unaffected by brainshift. Consequently, this new technique might become a novel standard in brain tumor surgery that

  7. Functional independence between numerical and visual space: evidence from right brain-damaged patients.

    PubMed

    Pia, Lorenzo; Neppi-Mòdona, Marco; Cremasco, Luigi; Gindri, Patrizia; Dal Monte, Olga; Folegatti, Alessia

    2012-01-01

    What is the relationship between numerical and visual space? Here we tried to shed new light on this debated issue investigating whether and how the two forms of representation are associated or dissociated when co-activated. We carried out a series of visual-numerical bisection experiments on a large group of right brain-damaged patients (N=32) with and without left neglect. We examined (a) the degree of association between the pathological rightward error in the bisection of numerical intervals and left neglect (experiment 1); (b) if the size of the numerical interval modulates spatial errors in bisection tasks in which numerical and visual space representations are co-activated (experiment 2). The results showed that (a) numerical bisection error and left spatial neglect are doubly dissociated and that, when both are present, they are not correlated; (b) the size of the numerical interval did not affect the spatial bisection error but influenced the numerical bisection error. These data suggest that attentional processes involved in the navigation along visual space and numerical internal representations are independent neurocognitive operations. We must emphasize that our findings should be taken with caution because they are based mainly on negative results. Copyright © 2012 Elsevier Srl. All rights reserved.

  8. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface.

    PubMed

    Bashford, Luke; Mehring, Carsten

    2016-01-01

    To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects' real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands.

  9. Ownership and Agency of an Independent Supernumerary Hand Induced by an Imitation Brain-Computer Interface

    PubMed Central

    Mehring, Carsten

    2016-01-01

    To study body ownership and control, illusions that elicit these feelings in non-body objects are widely used. Classically introduced with the Rubber Hand Illusion, these illusions have been replicated more recently in virtual reality and by using brain-computer interfaces. Traditionally these illusions investigate the replacement of a body part by an artificial counterpart, however as brain-computer interface research develops it offers us the possibility to explore the case where non-body objects are controlled in addition to movements of our own limbs. Therefore we propose a new illusion designed to test the feeling of ownership and control of an independent supernumerary hand. Subjects are under the impression they control a virtual reality hand via a brain-computer interface, but in reality there is no causal connection between brain activity and virtual hand movement but correct movements are observed with 80% probability. These imitation brain-computer interface trials are interspersed with movements in both the subjects’ real hands, which are in view throughout the experiment. We show that subjects develop strong feelings of ownership and control over the third hand, despite only receiving visual feedback with no causal link to the actual brain signals. Our illusion is crucially different from previously reported studies as we demonstrate independent ownership and control of the third hand without loss of ownership in the real hands. PMID:27303808

  10. EDITORIAL: Special section on gaze-independent brain-computer interfaces Special section on gaze-independent brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Treder, Matthias S.

    2012-08-01

    Restoring the ability to communicate and interact with the environment in patients with severe motor disabilities is a vision that has been the main catalyst of early brain-computer interface (BCI) research. The past decade has brought a diversification of the field. BCIs have been examined as a tool for motor rehabilitation and their benefit in non-medical applications such as mental-state monitoring for improved human-computer interaction and gaming has been confirmed. At the same time, the weaknesses of some approaches have been pointed out. One of these weaknesses is gaze-dependence, that is, the requirement that the user of a BCI system voluntarily directs his or her eye gaze towards a visual target in order to efficiently operate a BCI. This not only contradicts the main doctrine of BCI research, namely that BCIs should be independent of muscle activity, but it can also limit its real-world applicability both in clinical and non-medical settings. It is only in a scenario devoid of any motor activity that a BCI solution is without alternative. Gaze-dependencies have surfaced at two different points in the BCI loop. Firstly, a BCI that relies on visual stimulation may require users to fixate on the target location. Secondly, feedback is often presented visually, which implies that the user may have to move his or her eyes in order to perceive the feedback. This special section was borne out of a BCI workshop on gaze-independent BCIs held at the 2011 Society for Applied Neurosciences (SAN) Conference and has then been extended with additional contributions from other research groups. It compiles experimental and methodological work that aims toward gaze-independent communication and mental-state monitoring. Riccio et al review the current state-of-the-art in research on gaze-independent BCIs [1]. Van der Waal et al present a tactile speller that builds on the stimulation of the fingers of the right and left hand [2]. H¨ohne et al analyze the ergonomic aspects

  11. Independence.

    ERIC Educational Resources Information Center

    Stephenson, Margaret E.

    2000-01-01

    Discusses the four planes of development and the periods of creation and crystallization within each plane. Identifies the type of independence that should be achieved by the end of the first two planes of development. Maintains that it is through individual work on the environment that one achieves independence. (KB)

  12. Evidence for Two Independent Factors that Modify Brain Networks to Meet Task Goals.

    PubMed

    Gratton, Caterina; Laumann, Timothy O; Gordon, Evan M; Adeyemo, Babatunde; Petersen, Steven E

    2016-10-25

    Humans easily and flexibly complete a wide variety of tasks. To accomplish this feat, the brain appears to subtly adjust stable brain networks. Here, we investigate what regional factors underlie these modifications, asking whether networks are either altered at (1) regions activated by a given task or (2) hubs that interconnect different networks. We used fMRI "functional connectivity" (FC) to compare networks during rest and three distinct tasks requiring semantic judgments, mental rotation, and visual coherence. We found that network modifications during these tasks were independently associated with both regional activation and network hubs. Furthermore, active and hub regions were associated with distinct patterns of network modification (differing in their localization, topography of FC changes, and variability across tasks), with activated hubs exhibiting patterns consistent with task control. These findings indicate that task goals modify brain networks through two separate processes linked to local brain function and network hubs.

  13. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  14. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking

    PubMed Central

    Cornélio, Alianda M.; de Bittencourt-Navarrete, Ruben E.; de Bittencourt Brum, Ricardo; Queiroz, Claudio M.; Costa, Marcos R.

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion. PMID:27199631

  15. INVESTIGATING DIFFERENCES IN BRAIN FUNCTIONAL NETWORKS USING HIERARCHICAL COVARIATE-ADJUSTED INDEPENDENT COMPONENT ANALYSIS

    PubMed Central

    Shi, Ran

    2016-01-01

    Human brains perform tasks via complex functional networks consisting of separated brain regions. A popular approach to characterize brain functional networks in fMRI studies is independent component analysis (ICA), which is a powerful method to reconstruct latent source signals from their linear mixtures. In many fMRI studies, an important goal is to investigate how brain functional networks change according to specific clinical and demographic variabilities. Existing ICA methods, however, cannot directly incorporate covariate effects in ICA decomposition. Heuristic post-ICA analysis to address this need can be inaccurate and inefficient. In this paper, we propose a hierarchical covariate-adjusted ICA (hc-ICA) model that provides a formal statistical framework for estimating covariate effects and testing differences between brain functional networks. Our method provides a more reliable and powerful statistical tool for evaluating group differences in brain functional networks while appropriately controlling for potential confounding factors. We present an analytically tractable EM algorithm to obtain maximum likelihood estimates of our model. We also develop a subspace-based approximate EM that runs significantly faster while retaining high accuracy. To test the differences in functional networks, we introduce a voxel-wise approximate inference procedure which eliminates the need of computationally expensive covariance matrix estimation and inversion. We demonstrate the advantages of our methods over the existing method via simulation studies. We apply our method to an fMRI study to investigate differences in brain functional networks associated with post-traumatic stress disorder (PTSD).

  16. Human Brain Expansion during Evolution Is Independent of Fire Control and Cooking.

    PubMed

    Cornélio, Alianda M; de Bittencourt-Navarrete, Ruben E; de Bittencourt Brum, Ricardo; Queiroz, Claudio M; Costa, Marcos R

    2016-01-01

    What makes humans unique? This question has fascinated scientists and philosophers for centuries and it is still a matter of intense debate. Nowadays, human brain expansion during evolution has been acknowledged to explain our empowered cognitive capabilities. The drivers for such accelerated expansion remain, however, largely unknown. In this sense, studies have suggested that the cooking of food could be a pre-requisite for the expansion of brain size in early hominins. However, this appealing hypothesis is only supported by a mathematical model suggesting that the increasing number of neurons in the brain would constrain body size among primates due to a limited amount of calories obtained from diets. Here, we show, by using a similar mathematical model, that a tradeoff between body mass and the number of brain neurons imposed by dietary constraints during hominin evolution is unlikely. Instead, the predictable number of neurons in the hominin brain varies much more in function of foraging efficiency than body mass. We also review archeological data to show that the expansion of the brain volume in the hominin lineage is described by a linear function independent of evidence of fire control, and therefore, thermal processing of food does not account for this phenomenon. Finally, we report experiments in mice showing that thermal processing of meat does not increase its caloric availability in mice. Altogether, our data indicate that cooking is neither sufficient nor necessary to explain hominin brain expansion.

  17. Neuroplasticity subserving the operation of brain-machine interfaces.

    PubMed

    Oweiss, Karim G; Badreldin, Islam S

    2015-11-01

    Neuroplasticity is key to the operation of brain machine interfaces (BMIs)-a direct communication pathway between the brain and a man-made computing device. Whereas exogenous BMIs that associate volitional control of brain activity with neurofeedback have been shown to induce long lasting plasticity, endogenous BMIs that use prolonged activity-dependent stimulation--and thus may curtail the time scale that governs natural sensorimotor integration loops--have been shown to induce short lasting plasticity. Here we summarize recent findings from studies using both categories of BMIs, and discuss the fundamental principles that may underlie their operation and the longevity of the plasticity they induce. We draw comparison to plasticity mechanisms known to mediate natural sensorimotor skill learning and discuss principles of homeostatic regulation that may constrain endogenous BMI effects in the adult mammalian brain. We propose that BMIs could be designed to facilitate structural and functional plasticity for the purpose of re-organization of target brain regions and directed augmentation of sensorimotor maps, and suggest possible avenues for future work to maximize their efficacy and viability in clinical applications.

  18. Neuroplasticity subserving the operation of brain machine interfaces

    PubMed Central

    Oweiss, Karim G.; Badreldin, Islam S.

    2015-01-01

    Neuroplasticity is key to the operation of brain machine interfaces (BMIs)—a direct communication pathway between the brain and a man-made computing device. Whereas exogenous BMIs that associate volitional control of brain activity with neurofeedback have been shown to induce long lasting plasticity, endogenous BMIs that use prolonged activity-dependent stimulation – and thus may curtail the time scale that governs natural sensorimotor integration loops – have been shown to induce short lasting plasticity. Here we summarize recent findings from studies using both categories of BMIs, and discuss the fundamental principles that may underlie their operation and the longevity of the plasticity they induce. We draw comparison to plasticity mechanisms known to mediate natural sensorimotor skill learning and discuss principles of homeostatic regulation that may constrain endogenous BMI effects in the adult mammalian brain. We propose that BMIs could be designed to facilitate structural and functional plasticity for the purpose of re-organization of target brain regions and directed augmentation of sensorimotor maps, and suggest possible avenues for future work to maximize their efficacy and viability in clinical applications. PMID:25968934

  19. [Operative ultrasonography of the brain and spinal cord pathology].

    PubMed

    Machi, J; Sigel, B; Menoni, R; Jafar, J J; Beitler, J C; Crowell, R M

    1984-07-01

    B-mode real-time ultrasound using 5 or 7.5 MHz transducer has been employed during 21 operations for brain pathology and spinal cord lesions. Ultrasonic scanning was performed at the following operations: 10 brain tumors (4 glioblastomas multiforme, 2 astrocytomas, 1 medulloblastoma, 2 metastatic tumors), 2 brain cysts (arachnoid, epidermoid), 1 tuberculous abscess, 3 cerebral hematomas: 2 spinal cord tumors (malignant melanoma, glioma), 2 syringomyelias, 1 posterior longitudinal ligament thickening. Operative ultrasound was useful prior to dural incisions and particularly for subcortical lesions. In addition, ultrasound provided assistance at spinal cord surgery. Our experience has been reviewed and summarized in this report in terms of specific usefulness of assistance of this method which has proven helpful to the neurosurgeons. The types of assistance provided by operative ultrasonography include: Location of dural incision. Localization of brain and spinal cord lesions prior to biopsy. Diagnosis which has not been made preoperatively (e.g. necrosis or cystic area in tumor). Consistency of each lesion (e.g. solid or cystic, necrosis, loculation). Size, extent and depth of brain tumor, cyst, abscess and hematoma. Presence and extent of spinal cord syrinx. Relation of tumor to spinal cord and dura. Access route for biopsy and drainage (avoiding critical areas such as motor strip). Exclusion of bleeding or hematoma following biopsy. Confirmation of the effectiveness of drainage or resection of lesions. Relationship between pathology and surrounding anatomic structures. A number of important assistance by the utilization of ultrasound during neurological surgery have been identified.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity.

    PubMed

    Murta, Verónica; Farías, María Isabel; Pitossi, Fernando Juan; Ferrari, Carina Cintia

    2015-01-15

    Peripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity. This model allows studying the role of specific molecules and cells (neutrophils) from the innate immune system, in the relationship between central and peripheral communication, and on relapsing episodes of demyelinating lesions, along with the role of BBB integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Automatic brain extraction methods for T1 magnetic resonance images using region labeling and morphological operations.

    PubMed

    Somasundaram, K; Kalaiselvi, T

    2011-08-01

    In this work we propose two brain extraction methods (BEM) that solely depend on the brain anatomy and its intensity characteristics. Our methods are simple, unsupervised and knowledge based. Using an adaptive intensity thresholding method on the magnetic resonance images of head scans, a binary image is obtained. The binary image is labeled using the anatomical facts that the scalp is the boundary between head and background, and the skull is the boundary separating brain and scalp. A run length scheme is applied on the labeled image to get a rough brain mask. Morphological operations are then performed to obtain the fine brain on the assumption that brain is the largest connected component (LCC). But the LCC concept failed to work on some slices where brain is composed of more than one connected component. To solve this problem a 3-D approach is introduced in the BEM. Experimental results on 61 sets of T1 scans taken from MRI scan center and neuroimage web services showed that our methods give better results than the popular methods, FSL's Brain Extraction Tool (BET), BrainSuite's Brain Surface Extractor (BSE) gives results comparable to that of Model-based Level Sets (MLS) and works well even where MLS failed. The average Dice similarity index computed using the "Gold standard" and the specificity values are 0.938 and 0.992, respectively, which are higher than that for BET, BSE and MLS. The average processing time by one of our methods is ≈1s/slice, which is smaller than for MLS, which is ≈4s/slice. One of our methods produces the lowest false positive rate of 0.075, which is smaller than that for BSE, BET and MLS. It is independent of imaging orientation and works well for slices with abnormal features like tumor and lesion in which the existing methods fail in certain cases.

  2. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    PubMed

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Atrial fibrillation is associated with reduced brain volume and cognitive function independent of cerebral infarcts

    PubMed Central

    Stefansdottir, Hrafnhildur; Arnar, David O.; Aspelund, Thor; Sigurdsson, Sigurdur; Jonsdottir, Maria K.; Hjaltason, Haukur; Launer, Lenore J.; Gudnason, Vilmundur

    2013-01-01

    Background and Purpose Atrial fibrillation (AF) has been associated with cognitive decline independant of stroke, suggesting additional effects of AF on the brain. We aimed to assess the association between AF and brain function and structure in a general elderly population. Methods This is a cross-sectional analysis on 4251 non-demented participants (mean age 76 ± 5 years) in the population-based AGES-Reykjavik Study. Medical record data were collected on the presence, subtype and time from first diagnosis of AF; 330 participants had AF. Brain volume measurements, adjusted for intracranial volume, and presence of cerebral infarcts were determined with MRI. Memory, speed of processing and executive function composites were calculated from a cognitive test battery. In a multivariable linear regression model, adjustments were made for demographic, cardiovascular risk factors and cerebral infarcts. Results Participants with AF had lower total brain volume compared to those without AF (p<0.001). The association was stronger with persistent/permanent than paroxysmal AF and with increased time from the first diagnosis of the disease. Of the brain tissue volumes, AF was associated with lower volume of gray and white matter (p<0.001 and p=0.008 respectively) but not of white matter hyperintesities (p=0.49). Participants with AF scored lower on tests on memory. Conclusions AF is associated with smaller brain volume and the association is stronger with increasing burden of the arrhythmia. These findings suggest that AF has a cumulative negative effect on the brain independent of cerebral infarcts. PMID:23444303

  4. 76 FR 22091 - California Independent System, Operator Corporation; Supplemental Notice of Agenda and Discussion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... California Independent System Operator Corporation's (CAISO) Capacity Procurement Mechanism (CPM... interested parties an opportunity to discuss the CPM compensation methodology and exceptional dispatch..., 2011. Kimberly D. Bose, Secretary. Agenda for the CAISO CPM Compensation Methodology and Exceptional...

  5. 76 FR 26719 - California Independent System Operator Corporation; Notice Establishing Comment Periods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice Establishing Comment Periods This notice establishes the comment periods for the technical conference which was held on...

  6. 78 FR 72673 - Midcontinent Independent System Operator, Inc.; Supplemental Notice Concerning Post-Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-03

    ... Energy Regulatory Commission Midcontinent Independent System Operator, Inc.; Supplemental Notice Concerning Post-Technical Conference Comments As announced in the Notice of Technical Conference issued on... technical conference in this proceeding on November 19, 2013, at the Federal Energy Regulatory...

  7. Tert-butylhydroquinone Ameliorates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Mice by Enhancing Nrf2-Independent Autophagy.

    PubMed

    Li, Tao; Sun, Kang-jian; Wang, Han-Dong; Zhou, Meng-Liang; Ding, Ke; Lu, Xin-Yu; Wei, Wu-Ting; Wang, Chun-Xi; Zhou, Xiao-Ming

    2015-09-01

    Evidence has shown that the activation of the autophagy pathway after experimental subarachnoid hemorrhage (SAH) protects against neuronal damage. Tert-butylhydroquinone (tBHQ), a commonly used nuclear factor erythroid 2-related factor 2 (Nrf2) activator, was found to significantly enhance autophagy activation. The aim of this study was to explore the effect of tBHQ treatment on early stage brain injury at 24 h after SAH. The results showed that tBHQ treatment failed to stimulate an effective anti-oxidative effect at 24 h after the SAH operation, but succeeded in ameliorating early brain injury, including alleviated brain edema, BBB disruption, neuronal degeneration and neurological deficits. Further exploration found that tBHQ treatment significantly increased the expression of Beclin-1 and the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II to LC3-I, suggesting that autophagy was enhanced after tBHQ treatment. Moreover, tBHQ treatment restored Bcl-2 and Bax expression and reduced caspase-3 cleavage, suggesting the protective effect of tBHQ treatment in ameliorating brain injury after SAH. Furthermore, tBHQ enhanced autophagy activation, decreased neuronal degeneration and improved the neurological score after SAH in Nrf2-deficient mice. Taken together, these findings suggest that tBHQ treatment exerts neuro-protective effects against EBI following SAH by enhancing Nrf2-independent autophagy. Therefore, tBHQ is a promising therapeutic agent against EBI following SAH.

  8. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain

    PubMed Central

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.; Fidler, Isaiah J.; Cantley, Lewis C.; Locasale, Jason W.; Weihua, Zhang

    2014-01-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the non-oxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBPs) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis, and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. PMID:25511375

  9. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain.

    PubMed

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi R; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M; Fidler, Isaiah J; Cantley, Lewis C; Locasale, Jason W; Weihua, Zhang

    2015-02-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. ©2014 American Association for Cancer Research.

  10. Does body shaping influence brain shape? Habitual physical activity is linked to brain morphology independent of age.

    PubMed

    Demirakca, Traute; Brusniak, Wencke; Tunc-Skarka, Nuran; Wolf, Isabella; Meier, Sandra; Matthäus, Franziska; Ende, Gabriele; Schulze, Thomas G; Diener, Carsten

    2014-07-01

    Physical activity (PA) was found to influence human brain morphology. However, the impact of PA on brain morphology was mainly demonstrated in seniors. We investigated healthy individuals across a broad age range for the relation between habitual PA and brain morphology. Ninety-five participants (19-82 years) were assessed for self-reported habitual PA with the "Baecke habitual physical activity questionnaire", and T1-weighted magnetic resonance images were evaluated with whole brain voxel based morphometry for gray and white matter volumes and densities. Regression analyses revealed a positive relation between the extent of physical activity and gray matter volume bilaterally in the anterior hippocampal and parahippocampal gyrus independent of age and gender. Age as well as leisure and locomotion activities were linked to enhanced white matter volumes in the posterior cingulate gyrus and precuneus, suggesting a positive interaction especially in seniors. Habitual physical activity is associated with regional volumetric gray and white matter alterations. The positive relation of hippocampal volume and physical activity seems not to be restricted to seniors. Thus, habitual physical activity should be generally considered as an influencing factor in studies investigating medial temporal lobe volume and associated cognitive functions (memory), especially in psychiatric research.

  11. Slice XVIvo™: a novel electrophysiology system with the capability for 16 independent brain slice recordings.

    PubMed

    Graef, John D; Wei, Haiyang; Lippiello, Patrick M; Bencherif, Merouane; Fedorov, Nikolai

    2013-01-30

    Here we validate the design and use of a novel, customized electrophysiology system (Slice XVIvo™) that is capable of recording from 16 independent brain slices. The system consists of 16 independent recording chambers in which individual electrodes can be manually manipulated and fixed in order to stimulate and record extracellular responses from 16 brain slices simultaneously. Responses from each brain slice are elicited with individual stimulus isolator units and recorded through separate channels, thus allowing for independent control and analysis of the evoked extracellular activity from each slice. The system was designed to fit on a standard anti-vibration table, thus the Slice XVIvo™ system occupies considerably less space than other currently available multi-slice recording systems. We have demonstrated the utility of the system to obtain stable, extracellular responses from the CA1 region of the hippocampus, as well as induce long-term potentiation. Additionally, we show the utility of the Slice XVIvo™ system to significantly improved throughput for testing compounds in an oxygen and glucose deprivation assay. Overall, we have designed, created and validated a considerably cost- and space-efficient electrophysiology system that greatly improves throughput while minimizing the number of animals used in experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Eye-gaze independent EEG-based brain-computer interfaces for communication

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Mattia, D.; Simione, L.; Olivetti, M.; Cincotti, F.

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users’ requirements in a real-life scenario.

  13. Eye-gaze independent EEG-based brain-computer interfaces for communication.

    PubMed

    Riccio, A; Mattia, D; Simione, L; Olivetti, M; Cincotti, F

    2012-08-01

    The present review systematically examines the literature reporting gaze independent interaction modalities in non-invasive brain-computer interfaces (BCIs) for communication. BCIs measure signals related to specific brain activity and translate them into device control signals. This technology can be used to provide users with severe motor disability (e.g. late stage amyotrophic lateral sclerosis (ALS); acquired brain injury) with an assistive device that does not rely on muscular contraction. Most of the studies on BCIs explored mental tasks and paradigms using visual modality. Considering that in ALS patients the oculomotor control can deteriorate and also other potential users could have impaired visual function, tactile and auditory modalities have been investigated over the past years to seek alternative BCI systems which are independent from vision. In addition, various attentional mechanisms, such as covert attention and feature-directed attention, have been investigated to develop gaze independent visual-based BCI paradigms. Three areas of research were considered in the present review: (i) auditory BCIs, (ii) tactile BCIs and (iii) independent visual BCIs. Out of a total of 130 search results, 34 articles were selected on the basis of pre-defined exclusion criteria. Thirteen articles dealt with independent visual BCIs, 15 reported on auditory BCIs and the last six on tactile BCIs, respectively. From the review of the available literature, it can be concluded that a crucial point is represented by the trade-off between BCI systems/paradigms with high accuracy and speed, but highly demanding in terms of attention and memory load, and systems requiring lower cognitive effort but with a limited amount of communicable information. These issues should be considered as priorities to be explored in future studies to meet users' requirements in a real-life scenario.

  14. A subject-independent pattern-based Brain-Computer Interface.

    PubMed

    Ray, Andreas M; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to "match" their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders.

  15. A subject-independent pattern-based Brain-Computer Interface

    PubMed Central

    Ray, Andreas M.; Sitaram, Ranganatha; Rana, Mohit; Pasqualotto, Emanuele; Buyukturkoglu, Korhan; Guan, Cuntai; Ang, Kai-Keng; Tejos, Cristián; Zamorano, Francisco; Aboitiz, Francisco; Birbaumer, Niels; Ruiz, Sergio

    2015-01-01

    While earlier Brain-Computer Interface (BCI) studies have mostly focused on modulating specific brain regions or signals, new developments in pattern classification of brain states are enabling real-time decoding and modulation of an entire functional network. The present study proposes a new method for real-time pattern classification and neurofeedback of brain states from electroencephalographic (EEG) signals. It involves the creation of a fused classification model based on the method of Common Spatial Patterns (CSPs) from data of several healthy individuals. The subject-independent model is then used to classify EEG data in real-time and provide feedback to new individuals. In a series of offline experiments involving training and testing of the classifier with individual data from 27 healthy subjects, a mean classification accuracy of 75.30% was achieved, demonstrating that the classification system at hand can reliably decode two types of imagery used in our experiments, i.e., happy emotional imagery and motor imagery. In a subsequent experiment it is shown that the classifier can be used to provide neurofeedback to new subjects, and that these subjects learn to “match” their brain pattern to that of the fused classification model in a few days of neurofeedback training. This finding can have important implications for future studies on neurofeedback and its clinical applications on neuropsychiatric disorders. PMID:26539089

  16. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    NASA Astrophysics Data System (ADS)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  17. Connectome analysis for pre-operative brain mapping in neurosurgery

    PubMed Central

    Hart, Michael G.; Price, Stephen J.; Suckling, John

    2016-01-01

    Abstract Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Results: Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits. PMID:27447756

  18. Expectations for Function and Independence by Childhood Brain Tumors Survivors and Their Mothers

    PubMed Central

    Lucas, Matthew S.; Barakat, Lamia P.; Jones, Nora L.; Ulrich, Connie M.; Deatrick, Janet A.

    2014-01-01

    Survivors of childhood brain tumors face many obstacles to living independently as adults. Causes for lack of independence are multifactorial and generally are investigated in terms of physical, cognitive, and psychosocial treatment–related sequelae. Little is known, however, about the role of expectation for survivors’ function. From a mixed–methods study including qualitative interviews and quantitative measures from 40 caregiver–survivor dyads, we compared the data within and across dyads, identifying four distinct narrative profiles: (A) convergent expectations about an optimistic future, (B) convergent expectations about a less optimistic future, (C) non–convergent expectations about a less optimistic future, and (D) non–convergent expectations about an unclear future. Dyads both do well and/or struggle in systematically different manners in each profile. These profiles may inform the design of interventions to be tested in future research and help clinicians to assist families in defining, (re–)negotiating, and reaching their expectations of function and independence. PMID:25482002

  19. Rehabilitation pathways and functional independence one year after severe traumatic brain injury.

    PubMed

    Sveen, Unni; Røe, Cecilie; Sigurdardottir, Solrun; Skandsen, Toril; Andelic, Nada; Manskow, Unn; Berntsen, Svein A; Soberg, Helene L; Anke, Audny

    2016-10-01

    After severe traumatic brain injury (TBI) it is recommended that patients in need of rehabilitation be transferred directly from acute care to specialized rehabilitation. However, recent European cohort studies found a variety of care pathways and delays in admission to rehabilitation after severe TBI. To study the pathways within rehabilitation services in a Norwegian national cohort with severe TBI and the association to functional independence 12 months post-injury. Observational prospective multicenter study. Regional trauma centers. A total of 163 adults, age 16-85 years, with severe TBI. The main variables were transfer between acute care and rehabilitation, type of rehabilitation services and functional independence. 75% of the patients had specialized TBI rehabilitation, 11% non-specialized and 14% no in-patient rehabilitation. In total, 48% were transferred directly to specialized rehabilitation from acute units in regional trauma centers. There were no differences in injury severity between patients transferred directly and non-directly, but the direct-transfer patients were younger. At 12 months post-injury, 71% were functionally independent and 90% lived in their home. Younger age, fewer days of ventilation and shorter post-traumatic amnesia were associated with independence. Among patients treated with specialized rehabilitation, direct transfer to rehabilitation was associated with functional independence (OR=4.3, P<0.01). A direct clinical pathway including specialized rehabilitation in dedicated units was associated with functional independence. Direct pathways from acute care to sub-acute specialized rehabilitation might prove beneficial to functional status.

  20. An independent SSVEP-based brain-computer interface in locked-in syndrome

    NASA Astrophysics Data System (ADS)

    Lesenfants, D.; Habbal, D.; Lugo, Z.; Lebeau, M.; Horki, P.; Amico, E.; Pokorny, C.; Gómez, F.; Soddu, A.; Müller-Putz, G.; Laureys, S.; Noirhomme, Q.

    2014-06-01

    Objective. Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Approach. Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based ‘interlaced squares' stimulation pattern. Main results. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. Significance. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.

  1. An independent SSVEP-based brain-computer interface in locked-in syndrome.

    PubMed

    Lesenfants, D; Habbal, D; Lugo, Z; Lebeau, M; Horki, P; Amico, E; Pokorny, C; Gómez, F; Soddu, A; Müller-Putz, G; Laureys, S; Noirhomme, Q

    2014-06-01

    Steady-state visually evoked potential (SSVEP)-based brain-computer interfaces (BCIs) allow healthy subjects to communicate. However, their dependence on gaze control prevents their use with severely disabled patients. Gaze-independent SSVEP-BCIs have been designed but have shown a drop in accuracy and have not been tested in brain-injured patients. In the present paper, we propose a novel independent SSVEP-BCI based on covert attention with an improved classification rate. We study the influence of feature extraction algorithms and the number of harmonics. Finally, we test online communication on healthy volunteers and patients with locked-in syndrome (LIS). Twenty-four healthy subjects and six LIS patients participated in this study. An independent covert two-class SSVEP paradigm was used with a newly developed portable light emitting diode-based 'interlaced squares' stimulation pattern. Mean offline and online accuracies on healthy subjects were respectively 85 ± 2% and 74 ± 13%, with eight out of twelve subjects succeeding to communicate efficiently with 80 ± 9% accuracy. Two out of six LIS patients reached an offline accuracy above the chance level, illustrating a response to a command. One out of four LIS patients could communicate online. We have demonstrated the feasibility of online communication with a covert SSVEP paradigm that is truly independent of all neuromuscular functions. The potential clinical use of the presented BCI system as a diagnostic (i.e., detecting command-following) and communication tool for severely brain-injured patients will need to be further explored.

  2. Dependencies between stimuli and spatially independent fMRI sources: towards brain correlates of natural stimuli.

    PubMed

    Ylipaavalniemi, Jarkko; Savia, Eerika; Malinen, Sanna; Hari, Riitta; Vigário, Ricardo; Kaski, Samuel

    2009-10-15

    Natural stimuli are increasingly used in functional magnetic resonance imaging (fMRI) studies to imitate real-life situations. Consequently, challenges are created for novel analysis methods, including new machine-learning tools. With natural stimuli it is no longer feasible to assume single features of the experimental design alone to account for the brain activity. Instead, relevant combinations of rich enough stimulus features could explain the more complex activation patterns. We propose a novel two-step approach, where independent component analysis is first used to identify spatially independent brain processes, which we refer to as functional patterns. As the second step, temporal dependencies between stimuli and functional patterns are detected using canonical correlation analysis. Our proposed method looks for combinations of stimulus features and the corresponding combinations of functional patterns. This two-step approach was used to analyze measurements from an fMRI study during multi-modal stimulation. The detected complex activation patterns were explained as resulting from interactions of multiple brain processes. Our approach seems promising for analysis of data from studies with natural stimuli.

  3. Song and the song control pathway in the brain can develop independently of exposure to song in the sedge warbler.

    PubMed

    Leitner, Stefan; Nicholson, Joanne; Leisler, Bernd; DeVoogd, Timothy J; Catchpole, Clive K

    2002-12-22

    Previous studies have shown that female sedge warblers choose to mate with males that have more complex songs, and sexual selection has driven the evolution of both song complexity and the size of the major song control area (HVc) in the brain. In songbirds, learning from conspecifics plays a major role in song development and this study investigates the effects of isolation and exposure to song on song structure and the underlying song control system. Sibling pairs of hand-reared nestling sedge warblers were reared to sexual maturity under two conditions. Siblings in one group were reared individually in acoustic isolation in separate soundproof chambers. In the other group, siblings were reared together in an aviary with playback of recorded songs. The following spring, analysis of songs revealed that siblings reared in acoustic isolation produced normal song structures, including larger syllable repertoires than those exposed to song. We found no significant differences in the volumes of HVc, nucleus robustus archistnatalis, the lateral portion of the magnocellular nucleus and the density of dendritic spines between the two groups. Males exceeded females in all these measures, and also had a larger telencephalon. Our experiments show that complex song, sexual dimorphism in brain structure, and the size of song nuclei can all develop independently of exposure to song. These findings have important implications for how sexual selection can operate upon a complex male trait such as song and how it may also shape the more general evolution of brain structure in songbirds.

  4. HO1 and Wnt expression is independently regulated in female mice brains following permanent ischemic brain injury.

    PubMed

    Tulsulkar, Jatin; Ward, Alicia; Shah, Zahoor A

    2017-05-01

    A gender difference in stroke is observed throughout epidemiologic studies, pathophysiology, treatment and outcomes. We investigated the neuroprotective role of hemeoxygenase (HO) enzyme, which catabolizes free heme to bilirubin, carbon monoxide and biliverdin in the female brain after permanent ischemia. We have previously reported in male mice that genetic deletion of HO1 exacerbates the brain damage after permanent ischemia, and the mechanism of neuroprotection is dependent on the HO1/Wnt pathway; however, the role of HO1/Wnt mediated neuroprotection in the female brain is yet to be investigated. We subjected ovary intact female mice, HO1(-/-) intact, HO1 inhibitor tin mesoporphyrin (SnMP) treated intact and/or ovariectomized female mice to permanent ischemia (pMCAO), and the animals were sacrificed after 7days. The SnMP treatment for 7days significantly reduced the HO1 enzyme activity as compared to that of vehicle treated group. Infarct volume analysis showed significantly lower infarct in intact, HO1(-/-) intact, and SnMP treated group as compared to the OVX group, suggesting the role of estrogen in neuroprotection. However, there were no differences in infarct volume observed between the intact, HO1(-/-) and SnMP treated group, suggesting a sexually dimorphic role of HO1 neuroprotection. Western blot analysis on intact and SnMP-treated groups subjected to pMCAO suggested no significant differences in Wnt expression. Together, these results suggest that HO1 neuroprotection is sexually dimorphic and Wnt expression is independently regulated in the female brain following permanent ischemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Neural Specificity for Grammatical Operations is Revealed by Content-Independent fMR Adaptation

    PubMed Central

    Shapiro, Kevin A.; Moo, Lauren R.; Caramazza, Alfonso

    2012-01-01

    The ability to generate novel sentences depends on cognitive operations that specify the syntactic function of nouns, verbs, and other words retrieved from the mental lexicon. Although neuropsychological studies suggest that such operations rely on neural circuits distinct from those encoding word form and meaning, it has not been possible to characterize this distinction definitively with neuroimaging. We used functional magnetic resonance imaging (fMRI) to show that a brain area engaged in a given grammatical operation can be identified uniquely by a monotonic decrease in activation as that operation is repeated. We applied this methodology to identify areas involved selectively in the operation of inflection of nouns or verbs. By contrast, areas involved in processing word meaning do not show this monotonic adaptation across stimuli. These results are the first to demonstrate adaptation in the fMR signal evoked not by specific stimuli, but by well-defined cognitive linguistic operations. PMID:22347206

  6. Functional Independence after Inpatient Rehabilitation for Traumatic Brain Injury among Minority Children and Adolescents

    PubMed Central

    Jimenez, Nathalia; Osorio, Marisa; Ramos, Jessica L.; Apkon, Susan; Ebel, Beth E.; Rivara, Frederick P.

    2015-01-01

    Objective To compare motor and cognitive functional independence scores between Hispanic, non-Hispanic Black (NHB) and non-Hispanic White (NHW) children with traumatic brain injury (TBI) after discharge from inpatient rehabilitation. Design Retrospective cohort study using the Uniform Data System for Medical Rehabilitation national dataset from years 2002–2012. Setting Inpatient rehabilitation units. Participants 10,141 children 6 months to 18 years of age who received inpatient rehabilitation for TBI. Interventions not applicable. Main outcome measures Motor and cognitive functional independence after discharge from inpatient rehabilitation; adjusting for age, gender, admission function, length of stay, insurance and region. Results Inpatient rehabilitation therapy improved functional independence for all children. Younger age, lower admission functional independence scores and Medicaid insurance were associated with lower functional independence at discharge. Hispanic and NHB children had lower discharge cognitive scores compared to NHW children; however differences were small and were partially explained by insurance status and region. Children who received rehabilitation therapy at pediatric facilities had greater cognitive improvement. Conclusion While racial/ethnic disparities are small, minority children are more likely to be younger, to have Medicaid and to be cared for at non-pediatric facilities, factors that increase their risk for lower functional outcomes. PMID:25747552

  7. The brain basis of the phonological deficit in dyslexia is independent of IQ.

    PubMed

    Tanaka, Hiroko; Black, Jessica M; Hulme, Charles; Stanley, Leanne M; Kesler, Shelli R; Whitfield-Gabrieli, Susan; Reiss, Allan L; Gabrieli, John D E; Hoeft, Fumiko

    2011-11-01

    Although the role of IQ in developmental dyslexia remains ambiguous, the dominant clinical and research approaches rely on a definition of dyslexia that requires reading skill to be significantly below the level expected given an individual's IQ. In the study reported here, we used functional MRI (fMRI) to examine whether differences in brain activation during phonological processing that are characteristic of dyslexia were similar or dissimilar in children with poor reading ability who had high IQ scores (discrepant readers) and in children with poor reading ability who had low IQ scores (nondiscrepant readers). In two independent samples including a total of 131 children, using univariate and multivariate pattern analyses, we found that discrepant and nondiscrepant poor readers exhibited similar patterns of reduced activation in brain areas such as left parietotemporal and occipitotemporal regions. These results converge with behavioral evidence indicating that, regardless of IQ, poor readers have similar kinds of reading difficulties in relation to phonological processing.

  8. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  9. TLR-4-dependent and -independent mechanisms of fetal brain injury in the setting of preterm birth.

    PubMed

    Breen, Kelsey; Brown, Amy; Burd, Irina; Chai, Jinghua; Friedman, Alexander; Elovitz, Michal A

    2012-08-01

    In this study, we sought to assess how essential activation of toll-like receptor 4 (TLR-4) is to fetal brain injury from intrauterine inflammation. Both wild-type and TLR-4 mutant fetal central nervous system cells were exposed to inflammation using lipopolysaccharide in vivo or in vitro. Inflammation could not induce neuronal injury in the absence of glial cells, in either wild-type or TLR-4 mutant neurons. However, injured neurons could induce injury in other neurons regardless of TLR-4 competency. Our results indicate that initiation of neuronal injury is a TLR-4-dependent event, while propagation is a TLR-4-independent event.

  10. A Parallel Independent Component Analysis Approach to Investigate Genomic Influence on Brain Function

    PubMed Central

    Liu, Jingyu; Demirci, Oguz; Calhoun, Vince D.

    2009-01-01

    Relationships between genomic data and functional brain images are of great interest but require new analysis approaches to integrate the high-dimensional data types. This letter presents an extension of a technique called parallel independent component analysis (paraICA), which enables the joint analysis of multiple modalities including interconnections between them. We extend our earlier work by allowing for multiple interconnections and by providing important overfitting controls. Performance was assessed by simulations under different conditions, and indicated reliable results can be extracted by properly balancing overfitting and underfitting. An application to functional magnetic resonance images and single nucleotide polymorphism array produced interesting findings. PMID:19834575

  11. The associations of depression and hypertension with brain volumes: Independent or interactive?

    PubMed Central

    Meurs, Maaike; Groenewold, Nynke A.; Roest, Annelieke M.; van der Wee, Nic J.A.; Veltman, Dick J.; van Tol, Marie-José; de Jonge, Peter

    2015-01-01

    Independent studies on major depressive disorder (MDD) and hypertension, suggest overlapping abnormalities in brain regions associated with emotional and autonomic processing. However, the unique and interactive effects of MDD and hypertension have never been studied in a single sample. Brain volume in these areas may be an explanatory link in the comorbidity between MDD and hypertension. Voxel-based morphometry was used to test for main effects of MDD (N = 152) and hypertension (N = 82) and their interactions on gray and white matter volumes. Voxel-wise results are reported at p < .05 FWE corrected for the spatial extent of the whole brain and a-priori regions of interest (ROIs: hippocampus, anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG)). In addition, analyses on the extracted total volumes of our ROIs were performed. Interactive effects in the mid-cingulate cortex (MCC) (pFWE = .01), cerebellum (pFWE = .01) and in the ACC total ROI volume (p = .02) were found. MDD in the presence, but not in the absence of hypertension was associated with lower volumes in the ACC and MCC, and with a trend towards larger gray matter volume in the cerebellum. No associations with white matter volumes were observed. Results suggest that the combination of MDD and hypertension has a unique effect on brain volumes in areas implicated in the regulation of emotional and autonomic functions. Brain volume in these regulatory areas may be an explanatory link in the comorbidity between hypertension and MDD. PMID:26106530

  12. An Auditory-Tactile Visual Saccade-Independent P300 Brain-Computer Interface.

    PubMed

    Yin, Erwei; Zeyl, Timothy; Saab, Rami; Hu, Dewen; Zhou, Zongtan; Chau, Tom

    2016-02-01

    Most P300 event-related potential (ERP)-based brain-computer interface (BCI) studies focus on gaze shift-dependent BCIs, which cannot be used by people who have lost voluntary eye movement. However, the performance of visual saccade-independent P300 BCIs is generally poor. To improve saccade-independent BCI performance, we propose a bimodal P300 BCI approach that simultaneously employs auditory and tactile stimuli. The proposed P300 BCI is a vision-independent system because no visual interaction is required of the user. Specifically, we designed a direction-congruent bimodal paradigm by randomly and simultaneously presenting auditory and tactile stimuli from the same direction. Furthermore, the channels and number of trials were tailored to each user to improve online performance. With 12 participants, the average online information transfer rate (ITR) of the bimodal approach improved by 45.43% and 51.05% over that attained, respectively, with the auditory and tactile approaches individually. Importantly, the average online ITR of the bimodal approach, including the break time between selections, reached 10.77 bits/min. These findings suggest that the proposed bimodal system holds promise as a practical visual saccade-independent P300 BCI.

  13. An International Survey of Brain Banking Operation and Characterization Practices.

    PubMed

    Palmer-Aronsten, Beatrix; Sheedy, Donna; McCrossin, Toni; Kril, Jillian

    2016-12-01

    Brain banks continue to make a major contribution to the study of neurological and psychiatric disorders. The current complexity and scope of research heighten the need for well-characterized cases and the demand for larger cohorts and necessitate strategies, such as the establishment of bank networks based in regional areas. While individual brain banks have developed protocols that meet researchers' needs within the confines of resources and funding, to further promote collaboration, standardization and scientific validity and understanding of the current protocols of participating banks are required. A survey was sent to brain banks, identified by an Internet search, to investigate operational protocols, case characterization, cohort management, data collection, standardization, and degree of collaboration between banks. The majority of the 24 banks that returned the survey have been established for more than 20 years, and most are affiliated with a regional network. While prospective donor programs were the primary source of donation, the data collected on donors varied. Longitudinal information assists case characterization and enhances the analysis capabilities of research. However, acquiring this information depended on the availability of qualified staff. Respondents indicated a high level of importance for standardization, but only 8 of 24 considered this occurred between banks. Standard diagnostic criteria were not achieved in the classification of controls, and some banks relied on the researcher to indicate the criteria for classification of controls. Although the capacity to collaborate with other banks was indicated by 16 of 24 banks, this occurred infrequently. Engagement of all brain banks to participate toward a consensus of diagnostic tools, especially for controls, will strengthen collaboration.

  14. Predicting levels of independence with expressing needs and ideas 1 year after severe brain injury.

    PubMed

    Pape, Theresa Louise-Bender; Guernon, Ann; Lundgren, Sandra; Patil, Vijaya; Herrold, Amy A; Smith, Bridget; Blahnik, Melanie; Picon, Linda M; Harton, Brett; Peterson, Michelle; Mallinson, Trudy; Hoffmann, Michael

    2013-08-01

    Severe brain injury (BI) is a catastrophic event often evolving into a complex chronic and severely disabling condition making activity participation possible only with sustained caregiving. One aspect of building sustainable caregiving is early provision of information about expected outcomes germane to patients and their caregivers. An analysis was conducted to determine whether 2 levels of independence with expressing needs and ideas 1-year after severe BI could be predicted using variables available early after injury. The authors examined a subsample (n = 79) of participants of an outcome study who received repeated neurobehavioral evaluations with the Disorders of Consciousness Scale (DOCS) and who were assessed 1 year after injury with the Functional Independence Measures (FIM). Explanatory variables included DOCS measures, patient characteristics, coexisting conditions, and interventions. The outcome is measured with the FIM Expression item. Optimal data analysis was used to construct multivariate classification tree models. The 2nd (p = .004) DOCS visual measure and seizure (p = .004) entered the final model providing 79% accuracy in classifying more or less independence with expressing needs and ideas at 1 year. The model will correctly identify 78% of future severe BI survivors who will have more independence and 82% of persons who will have less independence. For persons incurring severe BI, it is possible to predict, early after injury, more and less independence with expressing needs and ideas 1-year after injury. This evidence is 1 contribution to a larger body of evidence needed to enable early caregiver education about recovery expectations in terms of patient functioning relative to caregiving needs, which in turn will help build sustainable caregiving for this population.

  15. The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain.

    PubMed

    Ceni, Claire; Pochon, Nathalie; Villaz, Michel; Muller-Steffner, Hélène; Schuber, Francis; Baratier, Julie; De Waard, Michel; Ronjat, Michel; Moutin, Marie-Jo

    2006-04-15

    cADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue. We also demonstrate, by comparing wild-type and Cd38-/- tissues, that brain cADPR content is independent of the presence of CD38 (the best characterized mammalian ADP-ribosyl cyclase) not only in adult but also in developing tissues. We show that Cd38-/- synaptosome preparations contain high ADP-ribosyl cyclase activities, which are more important in neonates than in adults, in line with the levels of endogenous cyclic nucleotide. By using an HPLC method and adapting the cycling assay developed initially to study endogenous cADPR, we accurately examined the properties of the synaptosomal ADP-ribosyl cyclase. This intracellular enzyme has an estimated K(m) for NAD+ of 21 microM, a broad optimal pH at 6.0-7.0, and the concentration of free calcium has no major effect on its cADPR production. It binds NGD+ (nicotinamide-guanine dinucleotide), which inhibits its NAD+-metabolizing activities (K(i)=24 microM), despite its incapacity to cyclize this analogue. Interestingly, it is fully inhibited by low (micromolar) concentrations of zinc. We propose that this novel mammalian ADP-ribosyl cyclase regulates the production of cADPR and therefore calcium levels within brain synaptic terminals. In addition, this enzyme might be a potential target of neurotoxic Zn2+.

  16. Unsupervised classification of operator workload from brain signals

    NASA Astrophysics Data System (ADS)

    Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin

    2016-06-01

    Objective. In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Approach. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects’ error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Main results. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Significance. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.

  17. 78 FR 25740 - Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Meridian Energy USA, Inc. v. California Independent System Operator Corporation; Notice of Filing Take notice that on April 24, 2013, Meridian Energy USA, Inc....

  18. 75 FR 81264 - Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent System Operator, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Energy Regulatory Commission Critical Path Transmission, LLC; Clear Power, LLC; v. California Independent System Operator, Inc.; Notice of Complaint December 17, 2010. Take notice that on December 14, 2010... (Commission), 18 CFR 385.206 (2010) and sections 206 and 306 of the Federal Power Act, 16 U.S.C. 824e and 825e...

  19. 76 FR 13615 - Midwest Independent Transmission System Operator, Inc.; Notice of Informal Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Midwest Independent Transmission System Operator, Inc.; Notice of... proceeding commencing at 10:00 am on April 12, 2011 at the offices of the Federal Energy Regulatory...

  20. 78 FR 77447 - California Wind Energy Association, First Solar, Inc. v. California Independent System Operator...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-23

    ... Energy Regulatory Commission California Wind Energy Association, First Solar, Inc. v. California Independent System Operator Corporation, Southern California Edison Company; Notice of Complaint Take notice... Practice and Procedure, 18 CFR 385.206 (2013), California Wind Energy Association and First Solar, Inc...

  1. 76 FR 34691 - Edison Mission Energy v. Midwest Independent Transmission System Operator, Inc.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... Energy Regulatory Commission Edison Mission Energy v. Midwest Independent Transmission System Operator... Energy Regulatory Commission (Commission), 18 CFR 385.206 (2011), Edison Mission Energy, on behalf of NorthStar and Pheasant Ridge wind projects (Edison Wind Projects) (collectively Complainants), filed...

  2. A Longitudinal Investigation of Field Dependence-Independence and the Development of Formal Operational Thought.

    ERIC Educational Resources Information Center

    Flexer, B.K.; Roberge, J.J.

    1983-01-01

    A longitudinal study among American adolescents revealed (1) an insignificant impact of field dependence-independence on the development of formal operational thought; (2) continuous development of combinatorial reasoning and propositional logic abilities, but little increase in comprehension of proportionality; and (3) sex differences in formal…

  3. 77 FR 31348 - Midwest Independent Transmission System Operator, Inc.; Supplemental Notice Concerning Post...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... Energy Regulatory Commission Midwest Independent Transmission System Operator, Inc.; Supplemental Notice Concerning Post-Technical Conference Comments As announced in the Notice of Technical Conference issued on... staff convened a technical conference in these proceedings on May 15, 2012 at the Federal...

  4. 77 FR 21766 - Midwest Independent Transmission System Operator, Inc.; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Energy Regulatory Commission Midwest Independent Transmission System Operator, Inc.; Notice of Technical Conference By order dated March 30, 2012, in Docket Nos. ER12-678-000 and ER12-679-000, the Federal Energy Regulatory Commission (Commission) directed staff to convene a technical...

  5. 77 FR 29628 - Midwest Independent Transmission System Operator, Inc.; Notice of Deadlines for Filing Post...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ...-000 and ER12-679-000] Midwest Independent Transmission System Operator, Inc.; Notice of Deadlines for Filing Post-Conference Comments As announced in the Notice of Technical Conference issued on April 4... technical conference in these proceedings on May 15, 2012 at the Federal Energy Regulatory Commission,...

  6. 75 FR 15429 - San Diego Gas & Electric Co.; California Independent System Operator; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission San Diego Gas & Electric Co.; California Independent System Operator; Notice of Filing March 22, 2010. Take notice that on July 20, 2009, Avista Energy, Inc. pursuant to the...

  7. 77 FR 61592 - American Transmission Company LLC v. Midwest Independent Transmission System Operator, Inc., Xcel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... Energy Regulatory Commission American Transmission Company LLC v. Midwest Independent Transmission System Operator, Inc., Xcel Energy Services Inc,. Northern States Power Company, a Wisconsin Corporation, Northern States Power Company, a Minnesota Corporation; Notice of Complaint Take notice that on October 1,...

  8. 78 FR 57149 - Midcontinent Independent System Operator, Inc.; Notice of Initiation of Proceeding and Refund...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... initiated a proceeding in Docket No. EL13-83-000, pursuant to section 206 of the Federal Power Act (FPA), 16... Schedules 7, 8, and 9 of Midcontinent Independent System Operator, Inc.'s existing tariff. Prairie Power, Inc., et al., 144 FERC ] 61,193 (2013). The refund effective date in Docket No. EL13-83-000...

  9. 75 FR 52527 - New York Independent System Operator, Inc. Notice of Filings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    .... Take notice that on August 13, and August 16, 2010, The Independent Electricity System Operator, The... become a party must file a notice of intervention or motion to intervene, as appropriate. Such notices, motions, or protests must be filed on or before the comment date. Anyone filing a motion to intervene...

  10. 78 FR 34093 - California Independent System Operator Corporation; Notice of FERC Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... meetings are available on the CAISO's Web site, www.caiso.com . June 6, 2013--Energy Imbalance Market... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of FERC...

  11. 77 FR 41402 - California Independent System Operator Corporation; Notice of FERC Staff Attendance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Notice of FERC... meetings are available on the CAISO's Web site, www.caiso.com . July 12, 2012 Board of Governors and Audit...

  12. 78 FR 43876 - AmerenEnergy Resources Generating Company v. Midcontinent Independent System Operator, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... Energy Regulatory Commission AmerenEnergy Resources Generating Company v. Midcontinent Independent System Operator, Inc.; Notice of Complaint Take notice that on July 5, 2013, AmerenEnergy Resources Generating... CFR 385.206, regarding the compensation that a System Support Resource unit should be provided under...

  13. 78 FR 41392 - Indicated Load-Serving Entities v. Midcontinent Independent System Operator, Inc. and PJM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Indicated Load-Serving Entities v. Midcontinent Independent System Operator, Inc. and PJM Interconnection, L.L.C.; Notice of Complaint Take notice that on July 2, 2013, the Indicated Load-Serving Entities, (Indicated...

  14. 77 FR 72846 - ITC Holdings Corp.; Entergy Corporation; Midwest Independent Transmission System Operator, Inc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission ITC Holdings Corp.; Entergy Corporation; Midwest Independent Transmission System Operator, Inc.; Notice of Filing Take notice that, on November 20, 2012, ITC Holdings Corp....

  15. 78 FR 65641 - Midcontinent Independent System Operator, Inc.; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Independent System Operator, Inc. (MISO) to modify the allocation of real-time Revenue Sufficiency Guarantee... revisions to its real-time RSG cost allocation methodology. A subsequent notice detailing the topics to be..., beginning at 9:00 a.m. (Eastern Time) in Hearing Room 6. The technical conference will be led by...

  16. 78 FR 38023 - Demand Response Supporters v. New York Independent System Operator, Inc.; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... Energy Regulatory Commission Demand Response Supporters v. New York Independent System Operator, Inc... Commission (Commission), 18 CFR 385.206, Demand Response Supporters (Complainant) filed a formal complaint... NYISO to amend its tariffs to allow demand ] response facilitated by behind-the-meter generation to...

  17. 77 FR 24192 - SIG Energy, LLLP v. California Independent System Operator Corporation; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission SIG Energy, LLLP v. California Independent System Operator Corporation; Notice of Complaint Take notice that on April 4, 2012, pursuant to section 206 of the Federal...

  18. 75 FR 49928 - California Independent System Operator Corporation; Green Energy Express LLC; 21st Century...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission California Independent System Operator Corporation; Green Energy Express LLC... Green Energy Express LLC and 21st Century Transmission Holdings, LLC, in Docket No. EL10-76-000,...

  19. FGF19 action in the brain induces insulin-independent glucose lowering.

    PubMed

    Morton, Gregory J; Matsen, Miles E; Bracy, Deanna P; Meek, Thomas H; Nguyen, Hong T; Stefanovski, Darko; Bergman, Richard N; Wasserman, David H; Schwartz, Michael W

    2013-11-01

    Insulin-independent glucose disposal (referred to as glucose effectiveness [GE]) is crucial for glucose homeostasis and, until recently, was thought to be invariable. However, GE is reduced in type 2 diabetes and markedly decreased in leptin-deficient ob/ob mice. Strategies aimed at increasing GE should therefore be capable of improving glucose tolerance in these animals. The gut-derived hormone FGF19 has previously been shown to exert potent antidiabetic effects in ob/ob mice. In ob/ob mice, we found that systemic FGF19 administration improved glucose tolerance through its action in the brain and that a single, low-dose i.c.v. injection of FGF19 dramatically improved glucose intolerance within 2 hours. Minimal model analysis of glucose and insulin data obtained during a frequently sampled i.v. glucose tolerance test showed that the antidiabetic effect of i.c.v. FGF19 was solely due to increased GE and not to changes of either insulin secretion or insulin sensitivity. The mechanism underlying this effect appears to involve increased metabolism of glucose to lactate. Together, these findings implicate the brain in the antidiabetic action of systemic FGF19 and establish the brain’s capacity to rapidly, potently, and selectively increase insulin-independent glucose disposal.

  20. Multiple brain networks underpinning word learning from fluent speech revealed by independent component analysis.

    PubMed

    López-Barroso, Diana; Ripollés, Pablo; Marco-Pallarés, Josep; Mohammadi, Bahram; Münte, Thomas F; Bachoud-Lévi, Anne-Catherine; Rodriguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2015-04-15

    Although neuroimaging studies using standard subtraction-based analysis from functional magnetic resonance imaging (fMRI) have suggested that frontal and temporal regions are involved in word learning from fluent speech, the possible contribution of different brain networks during this type of learning is still largely unknown. Indeed, univariate fMRI analyses cannot identify the full extent of distributed networks that are engaged by a complex task such as word learning. Here we used Independent Component Analysis (ICA) to characterize the different brain networks subserving word learning from an artificial language speech stream. Results were replicated in a second cohort of participants with a different linguistic background. Four spatially independent networks were associated with the task in both cohorts: (i) a dorsal Auditory-Premotor network; (ii) a dorsal Sensory-Motor network; (iii) a dorsal Fronto-Parietal network; and (iv) a ventral Fronto-Temporal network. The level of engagement of these networks varied through the learning period with only the dorsal Auditory-Premotor network being engaged across all blocks. In addition, the connectivity strength of this network in the second block of the learning phase correlated with the individual variability in word learning performance. These findings suggest that: (i) word learning relies on segregated connectivity patterns involving dorsal and ventral networks; and (ii) specifically, the dorsal auditory-premotor network connectivity strength is directly correlated with word learning performance.

  1. Systemic glycerol decreases neonatal rabbit brain and cerebellar growth independent of intraventricular hemorrhage

    PubMed Central

    Traudt, Christopher M; McPherson, Ron J; Studholme, Colin; Millen, Kathleen J; Juul, Sandra E

    2014-01-01

    Background Cerebellar hypoplasia is common problem for preterm infants, and infants that suffer intraventricular hemorrhage (IVH). To evaluate the effects of IVH on cerebellar growth and development, we used a neonatal rabbit model of systemic glycerol to produce IVH. Methods New Zealand White rabbit kits were surgically delivered 2 d preterm, and treated with i.p. glycerol (3.25 to 6.5 g/kg). Controls were born at term. IVH was documented by ultrasound. Brain MRI volumes, cerebellar foliation, proliferation (Ki-67) and Purkinje cell density were done at two weeks of life. Tissue glycerol and glutathione concentrations were measured. Results Glycerol increased IVH, subarachnoid hemorrhages and mortality in a dose-dependent manner. Total cerebellar volumes, cerebellar foliation and cerebellar proliferation were decreased in a dose-dependent manner. Glycerol accumulated rapidly in blood, brain and liver and was associated with increased glutathione concentration. All of these results were independent of IVH status. Conclusions Cerebellar hypoplasia was induced after glycerol administration in a dose-dependent manner. Given rapid tissue accumulation of glycerol, dose dependent decreased brain growth and lack of IVH effect on measured outcomes we question the validity of this model as glycerol toxicity cannot be ruled out. A more physiologic model of IVH is needed. PMID:24346111

  2. Development of an Operator-Independent Method for Seeding Tissue-Engineered Vascular Grafts

    PubMed Central

    Udelsman, Brooks; Hibino, Narutoshi; Villalona, Gustavo A.; McGillicuddy, Edward; Nieponice, Alejandro; Sakamoto, Yuki; Matsuda, Shojiro; Vorp, David A.; Shinoka, Toshiharu

    2011-01-01

    The manual seeding of cells onto a biodegradable scaffold by pipetting is an effective method of cell seeding. However, the widespread use and ultimate clinical utility of this technique is limited by operator variability. This study was conducted to evaluate an operator-independent vacuum-seeding method for use in an upcoming clinical trial. Using bone marrow-derived mononuclear cells, we achieved seeding comparable to manually seeded scaffolds in terms of cellular attachment, distribution, and viability in vacuum-seeded grafts at vacuum pressures of −25 to −50 mmHg. In conclusion, we describe an operator-independent seeding method for use in the clinical setting. PMID:21410308

  3. Association of pre-operative brain pathology with post-operative delirium in a cohort of non-small cell lung cancer patients undergoing surgical resection.

    PubMed

    Root, James C; Pryor, Kane O; Downey, Robert; Alici, Yesne; Davis, Marcus L; Holodny, Andrei; Korc-Grodzicki, Beatriz; Ahles, Tim

    2013-09-01

    Post-operative delirium is associated with pre-operative cognitive difficulties and diminished functional independence, both of which suggest that brain pathology may be present in affected individuals prior to surgery. Currently, there are few studies that have examined imaging correlates of post-operative delirium. To our knowledge, none have examined the association of delirium with existing structural pathology in pre-operative cancer patients. Here, we present a novel, retrospective strategy to assess pre-operative structural brain pathology and its association with post-operative delirium. Standard of care structural magnetic resonance imaging (MRIs) from a cohort of surgical candidates prior to surgery were analyzed for white matter hyperintensities and cerebral atrophy. We identified 23 non-small cell lung cancer patients with no evidence of metastases in the brain pre-operatively, through retrospective chart review, who met criteria for post-operative delirium within 4 days of surgery. 24 age- and gender-matched control subjects were identified for comparison to the delirium sample. T1 and fluid-attenuated inversion recovery sequences were collected from standard of care pre-operative MRI screening and assessed for white matter pathology and atrophy. We found significant differences in white matter pathology between groups with the delirium group exhibiting significantly greater white matter pathology than the non-delirium group. Measure of cerebral atrophy demonstrated no significant difference between the delirium and non-delirium group. In this preliminary study utilizing standard of care pre-operative brain MRIs for assessment of structural risk factors to delirium, we found white matter pathology to be a significant risk factor in post-operative delirium. Limitations and implications for further investigation are discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Brain ACE2 overexpression reduces DOCA-salt hypertension independently of endoplasmic reticulum stress

    PubMed Central

    de Queiroz, Thyago Moreira; Sriramula, Srinivas; Feng, Yumei; Johnson, Tanya; Mungrue, Imran N.; Lazartigues, Eric

    2014-01-01

    Endoplasmic reticulum (ER) stress was previously reported to contribute to neurogenic hypertension while neuronal angiotensin-converting enzyme type 2 (ACE2) overexpression blunts the disease. To assess which brain regions are important for ACE2 beneficial effects and the contribution of ER stress to neurogenic hypertension, we first used transgenic mice harboring a floxed neuronal hACE2 transgene (SL) and tested the impact of hACE2 knockdown in the subfornical organ (SFO) and paraventricular nucleus (PVN) on deoxycorticosterone acetate (DOCA)-salt hypertension. SL and nontransgenic (NT) mice underwent DOCA-salt or sham treatment while infected with an adenoassociated virus (AAV) encoding Cre recombinase (AAV-Cre) or a control virus (AAV-green fluorescent protein) to the SFO or PVN. DOCA-salt-induced hypertension was reduced in SL mice, with hACE2 overexpression in the brain. This reduction was only partially blunted by knockdown of hACE2 in the SFO or PVN, suggesting that both regions are involved but not essential for ACE2 regulation of blood pressure (BP). DOCA-salt treatment did not increase the protein levels of ER stress and autophagy markers in NT mice, despite a significant increase in BP. In addition, these markers were not affected by hACE2 overexpression in the brain, despite a significant reduction of hypertension in SL mice. To further assess the role of ER stress in neurogenic hypertension, NT mice were infused intracerebroventricularlly with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, during DOCA-salt treatment. However, TUDCA infusion failed to blunt the development of hypertension in NT mice. Our data suggest that brain ER stress does not contribute to DOCA-salt hypertension and that ACE2 blunts neurogenic hypertension independently of ER stress. PMID:25519733

  5. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    SciTech Connect

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  6. Intra-operative probe for brain cancer: feasibility study

    NASA Astrophysics Data System (ADS)

    Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.

    2007-07-01

    The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.

  7. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI

    PubMed Central

    Fox, Michael D.; Qian, Tianyi; Madsen, Joseph R.; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-cong; Groppe, David M.; Mehta, Ashesh D.; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20 years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach is demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility. PMID:26408860

  8. Combining task-evoked and spontaneous activity to improve pre-operative brain mapping with fMRI.

    PubMed

    Fox, Michael D; Qian, Tianyi; Madsen, Joseph R; Wang, Danhong; Li, Meiling; Ge, Manling; Zuo, Huan-Cong; Groppe, David M; Mehta, Ashesh D; Hong, Bo; Liu, Hesheng

    2016-01-01

    Noninvasive localization of brain function is used to understand and treat neurological disease, exemplified by pre-operative fMRI mapping prior to neurosurgical intervention. The principal approach for generating these maps relies on brain responses evoked by a task and, despite known limitations, has dominated clinical practice for over 20years. Recently, pre-operative fMRI mapping based on correlations in spontaneous brain activity has been demonstrated, however this approach has its own limitations and has not seen widespread clinical use. Here we show that spontaneous and task-based mapping can be performed together using the same pre-operative fMRI data, provide complimentary information relevant for functional localization, and can be combined to improve identification of eloquent motor cortex. Accuracy, sensitivity, and specificity of our approach are quantified through comparison with electrical cortical stimulation mapping in eight patients with intractable epilepsy. Broad applicability and reproducibility of our approach are demonstrated through prospective replication in an independent dataset of six patients from a different center. In both cohorts and every individual patient, we see a significant improvement in signal to noise and mapping accuracy independent of threshold, quantified using receiver operating characteristic curves. Collectively, our results suggest that modifying the processing of fMRI data to incorporate both task-based and spontaneous activity significantly improves functional localization in pre-operative patients. Because this method requires no additional scan time or modification to conventional pre-operative data acquisition protocols it could have widespread utility.

  9. An independent brain-computer interface based on covert shifts of non-spatial visual attention.

    PubMed

    Zhang, Dan; Gao, Xiaorong; Gao, Shangkai; Engel, Andreas K; Maye, Alexander

    2009-01-01

    Modulation of steady-state visual evoked potential (SSVEP) by directing gaze to targets flickering at different frequencies has been utilized in many brain-computer interface (BCI) studies. However, this paradigm may not work with patients suffering from complete locked-in syndrome or other severe motor disabilities that do not allow conscious control of gaze direction. In this paper, we present a novel, independent BCI paradigm based on covert shift of non-spatial visual selective attention. Subjects viewed a display consisting of two spatially overlapping sets of randomly positioned dots. The two dot sets differed in color, motion and flickering frequency. Two types of motion, rotation and linear motion, were investigated. Both, the SSVEP amplitude and phase response were modulated by selectively attending to one of the two dot sets. Offline analysis revealed a predicted online classification accuracy of 69.3+/-10.2% for the rotating dots, and 80.7+/-10.4% for the linearly moving dots.

  10. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain

    PubMed Central

    Kageyama, Yusuke; Hoshijima, Masahiko; Seo, Kinya; Bedja, Djahida; Sysa-Shah, Polina; Andrabi, Shaida A; Chen, Weiran; Höke, Ahmet; Dawson, Valina L; Dawson, Ted M; Gabrielson, Kathleen; Kass, David A; Iijima, Miho; Sesaki, Hiromi

    2014-01-01

    Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals. PMID:25349190

  11. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain.

    PubMed

    Kageyama, Yusuke; Hoshijima, Masahiko; Seo, Kinya; Bedja, Djahida; Sysa-Shah, Polina; Andrabi, Shaida A; Chen, Weiran; Höke, Ahmet; Dawson, Valina L; Dawson, Ted M; Gabrielson, Kathleen; Kass, David A; Iijima, Miho; Sesaki, Hiromi

    2014-12-01

    Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals.

  12. Fornix deep brain stimulation induced long-term spatial memory independent of hippocampal neurogenesis.

    PubMed

    Hescham, Sarah; Temel, Yasin; Schipper, Sandra; Lagiere, Mélanie; Schönfeld, Lisa-Maria; Blokland, Arjan; Jahanshahi, Ali

    2017-03-01

    Deep brain stimulation (DBS) is an established symptomatic treatment modality for movement disorders and constitutes an emerging therapeutic approach for the treatment of memory impairment. In line with this, fornix DBS has shown to ameliorate cognitive decline associated with dementia. Nonetheless, mechanisms mediating clinical effects in demented patients or patients with other neurological disorders are largely unknown. There is evidence that DBS is able to modulate neurophysiological activity in targeted brain regions. We therefore hypothesized that DBS might be able to influence cognitive function via activity-dependent regulation of hippocampal neurogenesis. Using stimulation parameters, which were validated to restore memory loss in a previous behavioral study, we here assessed long-term effects of fornix DBS. To do so, we injected the thymidine analog, 5-bromo-2'-deoxyuridine (BrdU), after DBS and perfused the animals 6.5 weeks later. A week prior to perfusion, memory performance was assessed in the water maze. We found that acute stimulation of the fornix improved spatial memory performance in the water maze when the probe trial was performed 1 h after the last training session. However, no evidence for stimulation-induced neurogenesis was found in fornix DBS rats when compared to sham. Our results suggest that fornix DBS improves memory functions independent of hippocampal neurogenesis, possibly through other mechanisms such as synaptic plasticity and acute neurotransmitter release.

  13. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    DOE PAGES

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; ...

    2016-09-22

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIGmore » method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.« less

  14. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    SciTech Connect

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-09-22

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry,STIG),which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as out perform traditional within-subject calibration techniques when limited data is available. Here, this method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system.

  15. Spectral Transfer Learning Using Information Geometry for a User-Independent Brain-Computer Interface

    PubMed Central

    Waytowich, Nicholas R.; Lawhern, Vernon J.; Bohannon, Addison W.; Ball, Kenneth R.; Lance, Brent J.

    2016-01-01

    Recent advances in signal processing and machine learning techniques have enabled the application of Brain-Computer Interface (BCI) technologies to fields such as medicine, industry, and recreation; however, BCIs still suffer from the requirement of frequent calibration sessions due to the intra- and inter-individual variability of brain-signals, which makes calibration suppression through transfer learning an area of increasing interest for the development of practical BCI systems. In this paper, we present an unsupervised transfer method (spectral transfer using information geometry, STIG), which ranks and combines unlabeled predictions from an ensemble of information geometry classifiers built on data from individual training subjects. The STIG method is validated in both off-line and real-time feedback analysis during a rapid serial visual presentation task (RSVP). For detection of single-trial, event-related potentials (ERPs), the proposed method can significantly outperform existing calibration-free techniques as well as outperform traditional within-subject calibration techniques when limited data is available. This method demonstrates that unsupervised transfer learning for single-trial detection in ERP-based BCIs can be achieved without the requirement of costly training data, representing a step-forward in the overall goal of achieving a practical user-independent BCI system. PMID:27713685

  16. Characteristics associated with organizational independence in consumer-operated service organizations.

    PubMed

    Tanenbaum, Sandra J

    2011-01-01

    This research compares two types of consumer organizations in one state in order to explore the significance of organizational independence for internal structure/operations and external relationships. The first type, consumeroperated service organizations (COSOs), are independent and fully self-governing; the second are peer-support service organizations (PSSOs), which are part of larger non-consumer entities. Mail surveys were completed by COSO and PSSO directors of a geographically representative sample of organizations; telephone interviews were conducted with a sub-sample. Owing to small sample size, matched COSO-PSSO pairs were analyzed using non-parametric statistics. COSOs and PSSOs are similar in some ways, e.g., types of services provided, but significantly different on internal variables, such as budget size, and external variables, such as number of relationships with community groups. Organizational independence appears to be a significant characteristic for consumer service organizations and should be encouraged by funders and among participants. Funders might establish administrative and/or programmatic measures to support consumer organizations that are independent or moving toward independence; their participants would also benefit from the provision, by authorities or advocates, of materials to guide organizations toward, for example, 501(c)3 status.

  17. Properties of a microtubule-associated cofactor-independent protein kinase from pig brain.

    PubMed Central

    Scott, C W; Caputo, C B; Salama, A I

    1989-01-01

    A protein kinase activity was identified in pig brain that co-purified with microtubules through repeated cycles of temperature-dependent assembly and disassembly. The microtubule-associated protein kinase (MTAK) phosphorylated histone H1; this activity was not stimulated by cyclic nucleotides. Ca2+ plus calmodulin, phospholipids or polyamines. MTAK did not phosphorylate synthetic peptides which are substrates for cyclic AMP-dependent protein kinase, cyclic GMP-dependent protein kinase. Ca2+/calmodulin-dependent protein kinase II, protein kinase C or casein kinase II. MTAK activity was inhibited by trifluoperazine [IC50 (median inhibitory concn.) = 600 microM] in a Ca2+-independent fashion. Ca2+ alone was inhibitory [IC50 = 4 mM). MTAK was not inhibited by heparin, a potent inhibitor of casein kinase II, nor a synthetic peptide inhibitor of cyclic AMP-dependent protein kinase. MTAK demonstrated a broad pH maximum (7.5-8.5) and an apparent Km for ATP of 45 microM. Mg2+ was required for enzyme activity and could not be replaced by Mn2+. MTAK phosphorylated serine and threonine residues on histone H1. MTAK is a unique cofactor-independent protein kinase that binds to microtubule structures. Images Fig. 1. Fig. 6. Fig. 7. PMID:2557823

  18. Dystrophin-dependent and -independent AQP4 pools are expressed in the mouse brain.

    PubMed

    Nicchia, Grazia Paola; Rossi, Andrea; Nudel, Uri; Svelto, Maria; Frigeri, Antonio

    2008-06-01

    In a recent study, we demonstrated that in the plasma membrane AQP4 is organized into several distinct large multisubunit complexes. In this study, we analysed whether these pools are similarly affected in dystrophin-deficient mice and immunolocalized the sites of dystrophin-dependent and -independent AQP4 pools. Western blot performed on two-dimensional Blue Native/SDS-PAGE membranes indicated that, among the AQP4 pools, it was mainly a large multisubunit complex that was specifically affected in dystrophin-deficient mice (DP71 and mdx3cv mice). This dystrophin-dependent AQP4 pool was immunolocalized in perivascular astrocytes, since it was found to be significantly altered in both types of dystrophin-deficient mice. Dystrophin-independent pools were immunolocalized in the granular cell layer of the cerebellum and in the subpial endfoot layer and ependymal cells in the brain. These data provide a better understanding on the association between AQP4 and the dystrophin-glycoprotein complex in the central nervous system.

  19. The Neural Basis of Independence Versus Interdependence Orientations: A Voxel-Based Morphometric Analysis of Brain Volume.

    PubMed

    Wang, Fei; Peng, Kaiping; Chechlacz, Magdalena; Humphreys, Glyn W; Sui, Jie

    2017-04-01

    Sociocultural research has established independence and interdependence as two fundamental ways of thinking about oneself and the social world. Recent neuroscience studies further demonstrate that these orientations modulate brain activity in various self- and socially related tasks. In the current study, we explored whether the traits of independence and interdependence are reflected in anatomical variations in brain structure. We carried out structural brain imaging on a large sample of healthy participants ( n = 265) who also completed self-report questionnaires of cultural orientations. Voxel-based morphometry analysis demonstrated that a relative focus of independence (vs. interdependence) was associated with increased gray-matter volume in a number of self-related regions, including ventromedial prefrontal cortex, right dorsolateral prefrontal cortex, and right rostrolateral prefrontal cortex. These results provide novel insights into the biological basis of sociocultural orientations.

  20. Independent transmission system operators and their role in maintaining reliability in a restructured electric power industry

    SciTech Connect

    1998-01-01

    This report summarizes the current status of proposals to form Independent System Operators (ISOs) to operate high-voltage transmission systems in the United States and reviews their potential role in maintaining bulk power system reliability. As background information, the likely new industry structure, nature of deregulated markets, and institutional framework for bulk power system reliability are reviewed. The report identifies issues related to the formation of ISOs and their roles in markets and in reliability, and describes potential policy directions for encouraging the formation of effective ISOs and ensuring bulk system reliability. Two appendices are provided, which address: (1) system operation arrangements in other countries, and (2) summaries of regional U.S. ISO proposals.

  1. Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis

    PubMed Central

    Brandt, Christine Lycke; Doan, Nhat Trung; Tønnesen, Siren; Agartz, Ingrid; Hugdahl, Kenneth; Melle, Ingrid; Andreassen, Ole A.; Westlye, Lars T.

    2015-01-01

    Schizophrenia (SZ) is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC). Utilizing linked independent component analysis (LICA), a data-driven multimodal analysis approach, we investigated structure–function associations in a large sample of SZ (n = 96) and HC (n = 142). We tested for associations between task-positive (fronto-parietal) and task-negative (default-mode) brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons) was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure–function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation. PMID:26509112

  2. Increasing Independence in Self-Care Tasks for Children with Autism Using Self-Operated Auditory Prompts

    ERIC Educational Resources Information Center

    Mays, Nicole McGaha; Heflin, L. Juane

    2011-01-01

    This study was conducted to determine the effects of self-operated auditory prompting systems (SOAPs) on independent self-care task completion of elementary-school-aged children with autism and intellectual disabilities. Prerecorded verbal prompts on a student-operated tape recorder were employed to facilitate independence in washing hands and…

  3. Increasing Independence in Self-Care Tasks for Children with Autism Using Self-Operated Auditory Prompts

    ERIC Educational Resources Information Center

    Mays, Nicole McGaha; Heflin, L. Juane

    2011-01-01

    This study was conducted to determine the effects of self-operated auditory prompting systems (SOAPs) on independent self-care task completion of elementary-school-aged children with autism and intellectual disabilities. Prerecorded verbal prompts on a student-operated tape recorder were employed to facilitate independence in washing hands and…

  4. Dissociation of vegetative and minimally conscious patients based on brain operational architectonics: factor of etiology.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Bagnato, Sergio; Boccagni, Cristina; Galardi, Giuseppe

    2013-07-01

    Discrimination between patients in vegetative (VS) and minimally conscious state (MCS) is currently based upon the behavioral gold standard. Behavioral assessment remains equivocal and difficult to interpret as evidence for the presence or absence of consciousness, resulting in possible clinical misdiagnosis in such patients. Application of an operational architectonics (OA) strategy to electroencephalogram (EEG) analysis reveals that absence of consciousness in patients in VS is paralleled by significant impairment in overall EEG operational architecture compared to patients in MCS: neuronal assemblies become smaller, their life span shortened, and they became highly unstable and functionally disconnected (desynchronized). However, in a previous study, patients with different brain damage etiologies were intermixed. Therefore, the goal of the present study was to investigate whether the application of OA methodology to EEG could reliably dissociate patients in VS and MCS independent of brain damage etiology. We conclude that the observed EEG OA structure impairment in patients in VS and partial preservation in patients in MCS is a marker of consciousness/unconsciousness rather than physiological damage. Results of this study may have neuroscientific, clinical, and ethical implications.

  5. Independent movement, dimerization and stability of tandem repeats of chicken brain alpha-spectrin

    SciTech Connect

    Kusunoki, H.; Minasov, G.; Macdonald, R.I.; Mondragon, A.

    2010-03-08

    Previous X-ray crystal structures have shown that linkers of five amino acid residues connecting pairs of chicken brain {alpha}-spectrin and human erythroid {beta}-spectrin repeats can undergo bending without losing their {alpha}-helical structure. To test whether bending at one linker can influence bending at an adjacent linker, the structures of two and three repeat fragments of chicken brain {alpha}-spectrin have been determined by X-ray crystallography. The structure of the three-repeat fragment clearly shows that bending at one linker can occur independently of bending at an adjacent linker. This observation increases the possible trajectories of modeled chains of spectrin repeats. Furthermore, the three-repeat molecule crystallized as an antiparallel dimer with a significantly smaller buried interfacial area than that of {alpha}-actinin, a spectrin-related molecule, but large enough and of a type indicating biological specificity. Comparison of the structures of the spectrin and {alpha}-actinin dimers supports weak association of the former, which could not be detected by analytical ultracentrifugation, versus strong association of the latter, which has been observed by others. To correlate features of the structure with solution properties and to test a previous model of stable spectrin and dystrophin repeats, the number of inter-helical interactions in each repeat of several spectrin structures were counted and compared to their thermal stabilities. Inter-helical interactions, but not all interactions, increased in parallel with measured thermal stabilities of each repeat and in agreement with the thermal stabilities of two and three repeats and also partial repeats of spectrin.

  6. Independent component model of the default-mode brain function: Assessing the impact of active thinking.

    PubMed

    Esposito, Fabrizio; Bertolino, Alessandro; Scarabino, Tommaso; Latorre, Valeria; Blasi, Giuseppe; Popolizio, Teresa; Tedeschi, Gioacchino; Cirillo, Sossio; Goebel, Rainer; Di Salle, Francesco

    2006-10-16

    The "default-mode" network is an ensemble of cortical regions, which are typically deactivated during demanding cognitive tasks in functional magnetic resonance imaging (fMRI) studies. Using functional connectivity, this network can be conceptualized and studied as a "stand-alone" function or system. Regardless of the task, independent component analysis (ICA) produces a picture of the "default-mode" function even when the subject is performing a simple sensori-motor task or just resting in the scanner. This has boosted the use of default-mode fMRI for non-invasive research in brain disorders. Here, we studied the effect of cognitive load modulation of fMRI responses on the ICA-based pictures of the default-mode function. In a standard graded working memory study based on the n-back task, we used group-level ICA to explore the variability of the default-mode network related to the engagement in the task, in 10 healthy volunteers. The analysis of the default-mode components highlighted similarities and differences in the layout under three different cognitive loads. We found a load-related general increase of deactivation in the cortical network. Nonetheless, a variable recruitment of the cingulate regions was evident, with greater extension of the anterior and lesser extension of the posterior clusters when switching from lower to higher working memory loads. A co-activation of the hippocampus was only found under no working memory load. As a generalization of our results, the variability of the default-mode pattern may link the default-mode system as a whole to cognition and may more directly support use of the ICA model for evaluating cognitive decline in brain disorders.

  7. A torque-measuring micromotor provides operator independent measurements marking four different density areas in maxillae

    PubMed Central

    Di Stefano, Danilo Alessio; Arosio, Paolo; Piattelli, Adriano; Iezzi, Giovanna

    2015-01-01

    PURPOSE Bone density at implant placement site is a key factor to obtain the primary stability of the fixture, which, in turn, is a prognostic factor for osseointegration and long-term success of an implant supported rehabilitation. Recently, an implant motor with a bone density measurement probe has been introduced. The aim of the present study was to test the objectiveness of the bone densities registered by the implant motor regardless of the operator performing them. MATERIALS AND METHODS A total of 3704 bone density measurements, performed by means of the implant motor, were registered by 39 operators at different implant sites during routine activity. Bone density measurements were grouped according to their distribution across the jaws. Specifically, four different areas were distinguished: a pre-antral (between teeth from first right maxillary premolar to first left maxillary premolar) and a sub-antral (more distally) zone in the maxilla, and an interforaminal (between and including teeth from first left mandibular premolar to first right mandibular premolar) and a retroforaminal (more distally) zone in the lower one. A statistical comparison was performed to check the inter-operators variability of the collected data. RESULTS The device produced consistent and operator-independent bone density values at each tooth position, showing a reliable bone-density measurement. CONCLUSION The implant motor demonstrated to be a helpful tool to properly plan implant placement and loading irrespective of the operator using it. PMID:25722838

  8. Operator Independent Focused High Frequency ISM Band for Fat Reduction: Porcine Model

    PubMed Central

    Weiss, Robert; Weiss, Margaret; Beasley, Karen; Vrba, Jan; Bernardy, Jan

    2013-01-01

    Background Selective fat reduction has been clearly shown for various methods and energy modalities including cryolipolysis and high intensity focused thermal ultrasound. Mathematical modeling of focused high frequency of the EM spectrum has indicated that selective heating of fat is possible using wavelengths not previous explored. The purpose of this study was to demonstrate in the porcine model that selective heating of fat is possible with a non-contact, operator independent device. Methods High frequencies of the Industrial, Scientific and Medical (ISM) RF band were utilized to reduce abdominal fat in a porcine model. Practical application of mathematical modeling allowed an auto-feedback loop to be developed to allow operator independent adjustment of energy to maintain subcutaneous fat at 45–46°C while overlying skin remained at 40–41°C. Results Treatments of three Vietnamese pigs were performed under anesthesia in a certified veterinary facility. Gross and microscopic histologic results demonstrated a marked reduction in adipocytes of the treated area after 4 treatments of a total of 30 minutes each, with incremental fat diminution after each treatment. A final 70% reduction of the abdominal fat layer was seen in the treated areas. Duplex ultrasound revealed a reduction of fat layer from 7.6 to 2.9 mm. Histologic evaluation revealed that epidermis, dermis, and adnexal structures such as hair follicles were unaffected by the treatment, while adipocytes were significantly affected. Conclusion A new model of fat reduction using high frequency RF has been successfully achieved in a porcine model. This has very positive implications in the development of an operator independent, contact free device for reduction of fat in clinical practice. Lasers Surg. Med. © 2013 Wiley Periodicals, Inc. PMID:23619902

  9. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain

    PubMed Central

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-01

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson’s disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases. PMID:26792101

  10. Acupuncture promotes mTOR-independent autophagic clearance of aggregation-prone proteins in mouse brain.

    PubMed

    Tian, Tian; Sun, Yanhong; Wu, Huangan; Pei, Jian; Zhang, Jing; Zhang, Yi; Wang, Lu; Li, Bin; Wang, Lihua; Shi, Jiye; Hu, Jun; Fan, Chunhai

    2016-01-21

    Acupuncture has historically been practiced to treat medical disorders by mechanically stimulating specific acupoints with fine needles. Despite its well-documented efficacy, its biological basis remains largely elusive. In this study, we found that mechanical stimulation at the acupoint of Yanglingquan (GB34) promoted the autophagic clearance of α-synuclein (α-syn), a well known aggregation-prone protein closely related to Parkinson's disease (PD), in the substantia nigra par compacta (SNpc) of the brain in a PD mouse model. We found the protein clearance arose from the activation of the autophagy-lysosome pathway (ALP) in a mammalian target of rapamycin (mTOR)-independent approach. Further, we observed the recovery in the activity of dopaminergic neurons in SNpc, and improvement in the motor function at the behavior level of PD mice. Whereas acupuncture and rapamycin, a chemical mTOR inhibitor, show comparable α-syn clearance and therapeutic effects in the PD mouse model, the latter adopts a distinctly different, mTOR-dependent, autophagy induction process. Due to this fundamental difference, acupuncture may circumvent adverse effects of the rapamycin treatment. The newly discovered connection between acupuncture and autophagy not only provides a new route to understanding the molecular mechanism of acupuncture but also sheds new light on cost-effective and safe therapy of neurodegenerative diseases.

  11. Hyperpolarization-independent maturation and refinement of GABA/glycinergic connections in the auditory brain stem

    PubMed Central

    Lee, Hanmi; Bach, Eva; Noh, Jihyun; Delpire, Eric

    2015-01-01

    During development GABA and glycine synapses are initially excitatory before they gradually become inhibitory. This transition is due to a developmental increase in the activity of neuronal potassium-chloride cotransporter 2 (KCC2), which shifts the chloride equilibrium potential (ECl) to values more negative than the resting membrane potential. While the role of early GABA and glycine depolarizations in neuronal development has become increasingly clear, the role of the transition to hyperpolarization in synapse maturation and circuit refinement has remained an open question. Here we investigated this question by examining the maturation and developmental refinement of GABA/glycinergic and glutamatergic synapses in the lateral superior olive (LSO), a binaural auditory brain stem nucleus, in KCC2-knockdown mice, in which GABA and glycine remain depolarizing. We found that many key events in the development of synaptic inputs to the LSO, such as changes in neurotransmitter phenotype, strengthening and elimination of GABA/glycinergic connection, and maturation of glutamatergic synapses, occur undisturbed in KCC2-knockdown mice compared with wild-type mice. These results indicate that maturation of inhibitory and excitatory synapses in the LSO is independent of the GABA and glycine depolarization-to-hyperpolarization transition. PMID:26655825

  12. Why sex matters: brain size independent differences in gray matter distributions between men and women.

    PubMed

    Luders, Eileen; Gaser, Christian; Narr, Katherine L; Toga, Arthur W

    2009-11-11

    The different brain anatomy of men and women is both a classic and continuing topic of major interest. Among the most replicated and robust sex differences are larger overall brain dimensions in men, and relative increases of global and regional gray matter (GM) in women. However, the question remains whether sex-typical differences in brain size (i.e., larger male and smaller female brains) or biological sex itself account for the observed sex effects on tissue amount and distribution. Exploring cerebral structures in men and women with similar brain size may clarify the true contribution of biological sex. We thus examined a sample of 24 male and 24 female subjects with brains identical in size, in addition to 24 male and 24 female subjects with considerable brain size differences. Using this large set of brains (n = 96), we applied a well validated and automated voxel-based approach to examine regional volumes of GM. While we revealed significant main effects of sex, there were no significant effects of brain size (and no significant interactions between sex and brain size). When conducting post hoc tests, we revealed a number of regions where women had larger GM volumes than men. Importantly, these sex effects remained evident when comparing men and women with the same brain size. Altogether, our findings suggest that the observed increased regional GM volumes in female brains constitute sex-dependent redistributions of tissue volume, rather than individual adjustments attributable to brain size.

  13. Dehydroepiandrosterone formation is independent of cytochrome P450 17alpha-hydroxylase/17, 20 lyase activity in the mouse brain.

    PubMed

    Liu, Ying; Pocivavsek, Ana; Papadopoulos, Vassilios

    2009-07-01

    Cytochrome P450 17alpha-hydroxylase/17, 20 lyase (CYP17) is a microsomal enzyme reported to have two distinct catalytic activities, 17alpha-hydroxylase and 17, 20 lyase, that are essential for the biosynthesis of peripheral androgens such as dehydroepiandrosterone (DHEA). Paradoxically, DHEA is present and plays a role in learning and memory in the adult rodent brain, while CYP17 activity and protein are undetectable. To determine if CYP17 is required for DHEA formation and function in the adult rodent brain, we generated CYP17 chimeric mice that had reduced circulating testosterone levels. There were no detectable differences in cognitive spatial learning between CYP17 chimeric and wild-type mice. In addition, while CYP17 mRNA levels were reduced in CYP17 chimeric compared to wild-type mouse brain, the levels of brain DHEA levels were comparable. To determine if adult brain DHEA is formed by an alternative Fe(2+)-dependent pathway, brain microsomes were isolated from wild-type and CYP17 chimeric mice and treated with FeSO(4). Fe(2+) caused comparable levels of DHEA production by both wild-type and CYP17 chimeric mouse brain microsomes; DHEA production was not reduced by a CYP17 inhibitor. Taken together these in vivo studies suggest that in the adult mouse brain DHEA is formed via a Fe(2+)-sensitive CYP17-independent pathway.

  14. Increasing operational command and control security by the implementation of device independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bovino, Fabio Antonio; Messina, Angelo

    2016-10-01

    In a very simplistic way, the Command and Control functions can be summarized as the need to provide the decision makers with an exhaustive, real-time, situation picture and the capability to convey their decisions down to the operational forces. This two-ways data and information flow is vital to the execution of current operations and goes far beyond the border of military operations stretching to Police and disaster recovery as well. The availability of off-the shelf technology has enabled hostile elements to endanger the security of the communication networks by violating the traditional security protocols and devices and hacking sensitive databases. In this paper an innovative approach based to implementing Device Independent Quantum Key Distribution system is presented. The use of this technology would prevent security breaches due to a stolen crypto device placed in an end-to-end communication chain. The system, operating with attenuated laser, is practical and provides the increasing of the distance between the legitimate users.

  15. A review of market monitoring activities at U.S. independent system operators

    SciTech Connect

    Lesieutre, Bernard C.; Goldman, Charles; Bartholomew, Emily

    2004-01-01

    Policymakers have increasingly recognized the structural impediments to effective competition in electricity markets, which has resulted in a renewed emphasis on the need for careful market design and market monitoring in wholesale and retail electricity markets. In this study, we review the market monitoring activities of four Independent System Operators in the United States, focusing on such topics as the organization of an independent market monitoring unit (MMU), the role and value of external market monitors, performance metrics and indices to aid in market analysis, issues associated with access to confidential market data, and market mitigation and investigation authority. There is consensus across the four ISOs that market monitoring must be organizationally independent from market participants and that ISOs should have authority to apply some degree of corrective actions on the market, though scope and implementation differ across the ISOs. Likewise, current practices regarding access to confidential market data by state energy regulators varies somewhat by ISO. Drawing on our interviews and research, we present five examples that illustrate the impact and potential contribution of ISO market monitoring activities to enhance functioning of wholesale electricity markets. We also discuss several key policy and implementation issues that Western state policymakers and regulators should consider as market monitoring activities evolve in the West.

  16. Cognitive and Emotional Modulation of Brain Default Operation

    ERIC Educational Resources Information Center

    Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J.; Korvenoja, Antti; Gjedde, Albert

    2009-01-01

    Goal-directed behavior lowers activity in brain areas that include the medial frontal cortex, the medial and lateral parietal cortex, and limbic and paralimbic brain regions, commonly referred to as the "default network." These activity decreases are believed to reflect the interruption of processes that are ongoing when the mind is in a restful…

  17. Cognitive and Emotional Modulation of Brain Default Operation

    ERIC Educational Resources Information Center

    Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J.; Korvenoja, Antti; Gjedde, Albert

    2009-01-01

    Goal-directed behavior lowers activity in brain areas that include the medial frontal cortex, the medial and lateral parietal cortex, and limbic and paralimbic brain regions, commonly referred to as the "default network." These activity decreases are believed to reflect the interruption of processes that are ongoing when the mind is in a restful…

  18. Heat synch: inter- and independence of body-temperature fluctuations and brain-state alternations in urethane-anesthetized rats.

    PubMed

    Whitten, Tara A; Martz, Laura J; Guico, Anthony; Gervais, Nicole; Dickson, Clayton T

    2009-09-01

    During sleep, warm-blooded animals exhibit cyclic alternations between rapid-eye-movement (REM) and nonrapid-eye-movement (non-REM) states, characterized by distinct patterns of brain activity apparent in electroencephalographic (EEG) recordings coupled with corresponding changes in physiological measures, including body temperature. Recently we have shown that urethane-anesthetized rats display cyclic alternations between an activated state and a deactivated state that are highly similar in both EEG and physiological characteristics to REM and non-REM sleep states, respectively. Here, using intracranial local field potential recordings from urethane-anesthetized rats, we show that brain-state alternations were correlated to core temperature fluctuations induced using a feedback-controlled heating system. Activated (REM-like) states predominated during the rising phase of the temperature cycle, whereas deactivated (non-REM-like) states predominated during the falling phase. Brain-state alternations persisted following the elimination of core temperature fluctuations by the use of a constant heating protocol, but the timing and rhythmicity of state alternations were altered. In contrast, thermal fluctuations applied to the ventral surface (and especially the scrotum) of rats in the absence or independently of core temperature fluctuations appeared to induce brain-state alternations. Heating brought about activated patterns, whereas cooling produced deactivated patterns. This shows that although alternations of sleeplike brain states under urethane anesthesia can be independent of imposed temperature variations, they can also be entrained through the activation of peripheral thermoreceptors. Overall, these results imply that brain state and bodily metabolism are highly related during unconsciousness and that the brain mechanisms underlying sleep cycling and thermoregulation likely represent independent, yet coupled oscillators.

  19. 78 FR 41805 - In the Matter of FirstEnergy Nuclear Operating Company; Beaver Valley Power Station; Independent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... COMMISSION In the Matter of FirstEnergy Nuclear Operating Company; Beaver Valley Power Station; Independent... fingerprinting for unescorted access to FirstEnergy Nuclear Operating Company. FOR FURTHER INFORMATION CONTACT: L..., the NRC is providing notice in the matter of FirstEnergy Nuclear Operating Company, Beaver Valley...

  20. Proposal Guidelines for Standardized Operating Procedures of Brain Autopsy: Brain Bank in South Korea.

    PubMed

    Lee, Kyung Hwa; Seo, Sang Won; Lim, Tae Sung; Kim, Eun Joo; Kim, Byeong Chae; Kim, Yeshin; Lee, Ho Won; Jeon, Jae Pil; Shim, Sung Mi; Na, Duk L; Huh, Gi Yeong; Lee, Min Cheol; Suh, Yeon Lim

    2017-09-01

    To obtain an in-depth understanding of brain diseases, including neurodegenerative diseases, psychiatric illnesses, and neoplasms, scientific approach and verification using postmortem human brain tissue with or without disease are essential. Compared to other countries that have run brain banks for decades, South Korea has limited experience with brain banking; nationwide brain banks started only recently. The goal of this study is to provide provisional guidelines for brain autopsy for hospitals and institutes that have not accumulated sufficient expertise. We hope that these provisional guidelines will serve as a useful reference for pathologists and clinicians who are involved and interested in the brain bank system. Also, we anticipate updating the provisional guidelines in the future based on collected data and further experience with the practice of brain autopsy in South Korea. © Copyright: Yonsei University College of Medicine 2017.

  1. Independent and interactive effects of blood pressure and cardiac function on brain volume and white matter hyperintensities in heart failure.

    PubMed

    Alosco, Michael L; Brickman, Adam M; Spitznagel, Mary Beth; Griffith, Erica Y; Narkhede, Atul; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-01-01

    Reduced systemic perfusion and comorbid medical conditions are key contributors to adverse brain changes in heart failure (HF). Hypertension, the most common co-occurring condition in HF, accelerates brain atrophy in aging populations. However, the independent and interactive effects of blood pressure and systemic perfusion on brain structure in HF have yet to be investigated. Forty-eight older adults with HF underwent impedance cardiography to assess current systolic blood pressure status and cardiac index to quantify systemic perfusion. All participants underwent brain magnetic resonance imaging to quantify total brain, total and subcortical gray matter volume, and white matter hyperintensities (WMH) volume. Regression analyses adjusting for medical and demographic factors showed decreased cardiac index was associated with smaller subcortical gray matter volume (P < .01), and higher systolic blood pressure predicted reduced total gray matter volume (P = .03). The combination of higher blood pressure and lower cardiac index exacerbated WMH (P = .048). Higher blood pressure and systemic hypoperfusion are associated with smaller brain volume, and these factors interact to exacerbate WMH in HF. Prospective studies are needed to clarify the effects of blood pressure on the brain in HF, including the role of long-term blood pressure fluctuations. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  2. Independent and Interactive Effects of Blood Pressure and Cardiac Function on Brain Volume and White Matter Hyperintensities in Heart Failure

    PubMed Central

    Alosco, Michael L.; Brickman, Adam M.; Spitznagel, Mary Beth; Griffith, Erica Y.; Narkhede, Atul; Raz, Naftali; Cohen, Ronald; Sweet, Lawrence H.; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-01-01

    Background Reduced systemic perfusion and comorbid medical conditions are key contributors to adverse brain changes in heart failure (HF). Hypertension, the most common co-occurring condition in HF, accelerates brain atrophy in aging populations. However, the independent and interactive effects of blood pressure and systemic perfusion on brain structure in HF have yet to be investigated. Methods Forty-eight older adults with HF underwent impedance cardiography to assess current systolic blood pressure status, and cardiac index to quantify systemic perfusion. All participants underwent brain magnetic resonance imaging to quantify total brain, total and subcortical gray matter volume, and white matter hyperintensities (WMH) volume. Results Regression analyses adjusting for medical and demographic factors showed decreased cardiac index was associated with smaller subcortical gray matter volume (p < .01) and higher systolic blood pressure predicted reduced total gray matter volume (p = .03). The combination of higher blood pressure and lower cardiac index exacerbated WMH (p = .048). Conclusions Higher blood pressure and systemic hypoperfusion are associated with smaller brain volume and these factors interact to exacerbate WMH in HF. Prospective studies are needed to clarify the effects of blood pressure on the brain in HF, including the role of long-term blood pressure fluctuations. PMID:23735419

  3. Bidirectional apical-basal traffic of the cation-independent mannose-6-phosphate receptor in brain endothelial cells.

    PubMed

    Siupka, Piotr; Hersom, Maria Ns; Lykke-Hartmann, Karin; Johnsen, Kasper B; Thomsen, Louiza B; Andresen, Thomas L; Moos, Torben; Abbott, N Joan; Brodin, Birger; Nielsen, Morten S

    2017-07-01

    Brain capillary endothelium mediates the exchange of nutrients between blood and brain parenchyma. This barrier function of the brain capillaries also limits passage of pharmaceuticals from blood to brain, which hinders treatment of several neurological disorders. Receptor-mediated transport has been suggested as a potential pharmaceutical delivery route across the brain endothelium, e.g. reports have shown that the transferrin receptor (TfR) facilitates transcytosis of TfR antibodies, but it is not known whether this recycling receptor itself traffics from apical to basal membrane in the process. Here, we elucidate the endosomal trafficking of the retrograde transported cation-independent mannose-6-phosphate receptor (MPR300) in primary cultures of brain endothelial cells (BECs) of porcine and bovine origin. Receptor expression and localisation of MPR300 in the endo-lysosomal system and trafficking of internalised receptor are analysed. We also demonstrate that MPR300 can undergo bidirectional apical-basal trafficking in primary BECs in co-culture with astrocytes. This is, to our knowledge, the first detailed study of retrograde transported receptor trafficking in BECs, and the study demonstrates that MPR300 can be transported from the luminal to abluminal membrane and reverse. Such trafficking of MPR300 suggests that retrograde transported receptors in general may provide a mechanism for transport of pharmaceuticals into the brain.

  4. Development of in situ Imaging Probe for Surgical Operation of Deep Brain Stimulation

    NASA Astrophysics Data System (ADS)

    Noda, Toshihiko; Yi-Li, Pan; Tagawa, Ayato; Kobayashi, Takuma; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Nakano, Naoki; Kato, Amami; Shiosaka, Sadao; Ohta, Jun

    A novel clinical medical tool for surgical operation of deep brain stimulation was fabricated and evaluated. Dedicated micro-CMOS image sensor was mounted on the tip of quite fine probe tube. The probe has the same diameter as a probe that is utilized in surgical operation. A light source LED was also mounted on the tip of probe. Imaging trial using a postmortem brain was performed with the fabricated probe. The probe can be inserted into a brain easily and take still images of the brain.

  5. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    PubMed Central

    Greenwood, Benjamin N.; Strong, Paul V.; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2007-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against stress-induced reductions of hippocampal BDNF protein. The observed prevention of stress-induced deceases in BDNF, however, occurred in a time course inconsistent with the prevention of learned helplessness by wheel running, which is evident following 6 weeks, but not 3 weeks, of wheel running. BDNF suppression in physically active rats was produced by administering a single injection of the selective serotonin reuptake inhibitor fluoxetine (10 mg/kg) just prior to stress. Despite reduced levels of hippocampal BDNF mRNA following stress, physically active rats given the combination of fluoxetine and stress remained resistant against learned helplessness. Sedentary rats given both fluoxetine and stress still demonstrated typical learned helplessness behaviors. Fluoxetine by itself reduced BDNF mRNA in sedentary rats only, but did not affect freezing or escape learning 24 hours later. Finally, bilateral injections of BDNF (1 μg) into the dentate gyrus prior to stress prevented stress-induced reductions of hippocampal BDNF but did not prevent learned helplessness in sedentary rats. These data indicate that learned helplessness behaviors are independent of the presence or absence of hippocampal BDNF because blocking inescapable stress-induced BDNF suppression does not always prevent learned helplessness, and learned helplessness does not always occur in the presence of reduced BDNF. Results also suggest that the prevention of stress-induced hippocampal BDNF suppression is not

  6. Global cerebral glucose utilization is independent of brain size: a PET Study

    SciTech Connect

    Hatazawa, J.; Brooks, R.A.; Di Chiro, G.; Campbell, G.

    1987-07-01

    Cerebral glucose metabolic rates were measured in 80 normal volunteers by studying the uptake of (/sup 18/F)deoxyglucose with positron emission tomography (PET), using three PET scanners. A brain size index was determined from the PET images using either length-width or area measurements of the brain at a standard level. There was a significant negative correlation between glucose metabolism per unit volume and brain size that was well described by an inverse functional relationship, implying that the total glucose consumption of the brain is approximately constant. Analyses of men versus women revealed no sex differences in total brain glucose consumption, although there were differences in brain size and in glucose metabolism per unit volume. Similarly there was no significant correlation of total brain glucose consumption with age. The variation with brain size accounted for 46% of the logarithmic intersubject metabolic variance. When comparing global metabolic rates in different subjects, multiplying the rates by a brain size index has the dual advantage of correcting for differences related to brain size and correcting for differences in cerebrospinal fluid volume.

  7. Stratification of unresponsive patients by an independently validated index of brain complexity

    PubMed Central

    Casarotto, Silvia; Comanducci, Angela; Rosanova, Mario; Sarasso, Simone; Fecchio, Matteo; Napolitani, Martino; Pigorini, Andrea; G. Casali, Adenauer; Trimarchi, Pietro D.; Boly, Melanie; Gosseries, Olivia; Bodart, Olivier; Curto, Francesco; Landi, Cristina; Mariotti, Maurizio; Devalle, Guya; Laureys, Steven; Tononi, Giulio

    2016-01-01

    Objective Validating objective, brain‐based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness—the Perturbational Complexity Index (PCI)—in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). Methods The benchmark population encompassed 150 healthy controls and communicative brain‐injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). Results We found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. Interpretation Given its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high‐PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior. Ann Neurol 2016;80:718–729 PMID:27717082

  8. Comparing pre-operative stereotactic radiosurgery (SRS) to post-operative whole brain radiation therapy (WBRT) for resectable brain metastases: a multi-institutional analysis.

    PubMed

    Patel, Kirtesh R; Burri, Stuart H; Boselli, Danielle; Symanowski, James T; Asher, Anthony L; Sumrall, Ashley; Fraser, Robert W; Press, Robert H; Zhong, Jim; Cassidy, Richard J; Olson, Jeffrey J; Curran, Walter J; Shu, Hui-Kuo G; Crocker, Ian R; Prabhu, Roshan S

    2017-02-01

    Pre-operative stereotactic radiosurgery (pre-SRS) has been shown as a viable treatment option for resectable brain metastases (BM). The aim of this study is to compare oncologic outcomes and toxicities for pre-SRS and post-operative WBRT (post-WBRT) for resectable BM. We reviewed records of consecutive patients who underwent resection of BM and either pre-SRS or post-WBRT between 2005 and 2013 at two institutions. Overall survival (OS) was calculated using the Kaplan-Meier method. Cumulative incidence was used for intracranial outcomes. Multivariate analysis (MVA) was performed using the Cox and Fine and Gray models, respectively. Overall, 102 patients underwent surgical resection of BM; 66 patients with 71 lesions received pre-SRS while 36 patients with 42 cavities received post-WBRT. Baseline characteristics were similar except for the pre-SRS cohort having more single lesions (65.2% vs. 38.9%, p = 0.001) and smaller median lesion volume (8.3 cc vs. 15.3 cc, p = 0.006). 1-year OS was similar between cohorts (58% vs. 56%, respectively) (p = 0.43). Intracranial outcomes were also similar (2-year outcomes, pre-SRS vs. post-WBRT): local recurrence: 24.5% vs. 25% (p = 0.81), distant brain failure (DBF): 53.2% vs. 45% (p = 0.66), and leptomeningeal disease (LMD) recurrence: 3.5% vs. 9.0% (p = 0.66). On MVA, radiation cohort was not independently associated with OS or any intracranial outcome. Crude rates of symptomatic radiation necrosis were 5.6 and 0%, respectively. OS and intracranial outcomes were similar for patients treated with pre-SRS or post-WBRT for resected BM. Pre-SRS is a viable alternative to post-WBRT for resected BM. Further confirmatory studies with neuro-cognitive outcomes comparing these two treatment paradigms are needed.

  9. Multi-partite squash operation and its application to device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Tsurumaru, Toyohiro; Ichikawa, Tsubasa

    2016-10-01

    The squash operation, or the squashing model, is a useful mathematical tool for proving the security of quantum key distribution systems using practical (i.e., non-ideal) detectors. At the present, however, this method can only be applied to a limited class of detectors, such as the threshold detector of the Bennett-Brassard 1984 type. In this paper we generalize this method to include multi-partite measurements, such that it can be applied to a wider class of detectors. We demonstrate the effectiveness of this generalization by applying it to the device-independent security proof of the Ekert 1991 protocol, and by improving the associated key generation rate. For proving this result we use two physical assumptions, namely, that quantum mechanics is valid, and that Alice’s and Bob’s detectors are memoryless.

  10. Optic flow odometry operates independently of stride integration in carried ants.

    PubMed

    Pfeffer, Sarah E; Wittlinger, Matthias

    2016-09-09

    Cataglyphis desert ants are impressive navigators. When the foragers roam the desert, they employ path integration. For these ants, distance estimation is one key challenge. Distance information was thought to be provided by optic flow (OF)-that is, image motion experienced during travel-but this idea was abandoned when stride integration was discovered as an odometer mechanism in ants. We show that ants transported by nest mates are capable of measuring travel distance exclusively by the use of OF cues. Furthermore, we demonstrate that the information gained from the optic flowmeter cannot be transferred to the stride integrator. Our results suggest a dual information channel that allows the ants to measure distances by strides and OF cues, although both systems operate independently and in a redundant manner.

  11. A model technology transfer program for independent operators: Kansas Technology Transfer Model (KTTM)

    SciTech Connect

    Schoeling, L.G.

    1993-09-01

    This report describes the development and testing of the Kansas Technology Transfer Model (KTTM) which is to be utilized as a regional model for the development of other technology transfer programs for independent operators throughout oil-producing regions in the US. It describes the linkage of the regional model with a proposed national technology transfer plan, an evaluation technique for improving and assessing the model, and the methodology which makes it adaptable on a regional basis. The report also describes management concepts helpful in managing a technology transfer program. The original Tertiary Oil Recovery Project (TORP) activities, upon which the KTTM is based, were developed and tested for Kansas and have proved to be effective in assisting independent operators in utilizing technology. Through joint activities of TORP and the Kansas Geological Survey (KGS), the KTTM was developed and documented for application in other oil-producing regions. During the course of developing this model, twelve documents describing the implementation of the KTTM were developed as deliverables to DOE. These include: (1) a problem identification (PI) manual describing the format and results of six PI workshops conducted in different areas of Kansas, (2) three technology workshop participant manuals on advanced waterflooding, reservoir description, and personal computer applications, (3) three technology workshop instructor manuals which provides instructor material for all three workshops, (4) three technologies were documented as demonstration projects which included reservoir management, permeability modification, and utilization of a liquid-level acoustic measuring device, (5) a bibliography of all literature utilized in the documents, and (6) a document which describes the KTTM.

  12. 77 FR 45596 - Shell Energy North America (US), L.P. v. California Independent System Operator Corporation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ...] Shell Energy North America (US), L.P. v. California Independent System Operator Corporation; Notice of... Commission's (Commission) Rules of Practice and Procedure, 18 CFR 385.206, Shell Energy North America (US),...

  13. Allometric Analysis Detects Brain Size-Independent Effects of Sex and Sex Chromosome Complement on Human Cerebellar Organization.

    PubMed

    Mankiw, Catherine; Park, Min Tae M; Reardon, P K; Fish, Ari M; Clasen, Liv S; Greenstein, Deanna; Giedd, Jay N; Blumenthal, Jonathan D; Lerch, Jason P; Chakravarty, M Mallar; Raznahan, Armin

    2017-03-17

    The cerebellum is a large hindbrain structure that is increasingly recognized for its contribution to diverse domains of cognitive and affective processing in human health and disease. Although several of these domains are sex-biased, our fundamental understanding of cerebellar sex differences - including their spatial distribution, potential biological determinants, and independence from brain volume variation - lags far behind that for the cerebrum. Here, we harness automated neuroimaging methods for cerebellar morphometrics in 417 individuals to (i) localize normative male-female differences in raw cerebellar volume, (ii) compare these to sex chromosome effects estimated across five rare X-/Y-chromosome aneuploidy (SCA) syndromes, and (iii) clarify brain size-independent effects of sex and SCA on cerebellar anatomy using a generalizable allometric approach which considers scaling relationships between regional cerebellar volume and brain volume in health. Integration of these approaches shows that (i) sex and SCA effects on raw cerebellar volume are large and distributed, but regionally heterogeneous, (ii) human cerebellar volume scales with brain volume in a highly non-linear and regionally heterogeneous fashion that departs from documented patterns of cerebellar scaling in phylogeny, and (iii) cerebellar organization is modified in a brain size-independent manner by sex (relative expansion of total cerebellum, flocculus, and Crus II-lobule VIIIB volumes in males) and SCA (contraction of total cerebellar, lobule IV and Crus I volumes with additional X- or Y-chromosomes; X-specific contraction of Crus II-lobule VIIIB). Our methods and results clarify the shifts in human cerebellar organization that accompany interwoven variations in sex, sex chromosome complement, and brain size.SIGNIFICANCE STATEMENTCerebellar systems are implicated in diverse domains of sex-biased behavior and pathology, but we lack a basic understanding of how sex differences in the human

  14. 77 FR 52137 - Proposed Order and Request for Comment on a Petition From Certain Independent System Operators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Order Under Section 4(c) of the Commodity Exchange Act by ISO New England Inc.; In the Matter of the... include three RTOs (Midwest Independent Transmission System Operator Inc. (``MISO''); ISO New England, Inc. (``ISO NE''); and PJM Interconnection, L.L.C. (``PJM'')), and two ISOs (California Independent...

  15. Brain microbial populations in HIV/AIDS: α-proteobacteria predominate independent of host immune status.

    PubMed

    Branton, William G; Ellestad, Kristofor K; Maingat, Ferdinand; Wheatley, B Matt; Rud, Erling; Warren, René L; Holt, Robert A; Surette, Michael G; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1⁻/⁻ mouse brains. Intracerebral implantation of human brain homogenates into RAG1⁻/⁻ mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain's microbiome

  16. On the evaporation of solar dark matter: spin-independent effective operators

    SciTech Connect

    Liang, Zheng-Liang; Wu, Yue-Liang; Yang, Zi-Qing; Zhou, Yu-Feng

    2016-09-13

    As a part of the effort to investigate the implications of dark matter (DM)-nucleon effective interactions on the solar DM detection, in this paper we focus on the evaporation of the solar DM for a set of the DM-nucleon spin-independent (SI) effective operators. In order to put the evaluation of the evaporation rate on a more reliable ground, we calculate the non-thermal distribution of the solar DM using the Monte Carlo methods, rather than adopting the Maxwellian approximation. We then specify relevant signal parameter spaces for the solar DM detection for various SI effective operators. Based on the analysis, we determine the minimum DM masses for which the DM-nucleon coupling strengths can be probed from the solar neutrino observations. As an interesting application, our investigation also shows that evaporation effect can not be neglectd in a recent proposal aiming to solve the solar abundance problem by invoking the momentum-dependent asymmetric DM in the Sun.

  17. Group independent component analysis and functional MRI examination of changes in language areas associated with brain tumors at different locations.

    PubMed

    Wang, Liya; Chen, Dandan; Yang, Xiaofeng; Olson, Jeffrey J; Gopinath, Kaundinya; Fan, Tianning; Mao, Hui

    2013-01-01

    This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA). BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group. The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca's and Wernicke's areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca's and Wernicke's areas, while tumors in the left temporal lobe affect mainly Wernicke's area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors. Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity.

  18. Natural world physical, brain operational, and mind phenomenal space-time.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Neves, Carlos F H

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  19. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status

    PubMed Central

    Branton, William G.; Ellestad, Kristofor K.; Maingat, Ferdinand; Wheatley, B. Matt; Rud, Erling; Warren, René L.; Holt, Robert A.; Surette, Michael G.; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain

  20. Capsule Independent Uptake of the Fungal Pathogen Cryptococcus neoformans into Brain Microvascular Endothelial Cells

    PubMed Central

    Sabiiti, Wilber; May, Robin C.

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following ‘trapping’ within capillary beds of the BBB. PMID:22530025

  1. Capsule independent uptake of the fungal pathogen Cryptococcus neoformans into brain microvascular endothelial cells.

    PubMed

    Sabiiti, Wilber; May, Robin C

    2012-01-01

    Cryptococcosis is a life-threatening fungal disease with a high rate of mortality among HIV/AIDS patients across the world. The ability to penetrate the blood-brain barrier (BBB) is central to the pathogenesis of cryptococcosis, but the way in which this occurs remains unclear. Here we use both mouse and human brain derived endothelial cells (bEnd3 and hCMEC/D3) to accurately quantify fungal uptake and survival within brain endothelial cells. Our data indicate that the adherence and internalisation of cryptococci by brain microvascular endothelial cells is an infrequent event involving small numbers of cryptococcal yeast cells. Interestingly, this process requires neither active signalling from the fungus nor the presence of the fungal capsule. Thus entry into brain microvascular endothelial cells is most likely a passive event that occurs following 'trapping' within capillary beds of the BBB.

  2. Deficiency of Calcium-Independent Phospholipase A2 Beta Induces Brain Iron Accumulation through Upregulation of Divalent Metal Transporter 1

    PubMed Central

    Beck, Goichi; Shinzawa, Koei; Hayakawa, Hideki; Baba, Kousuke; Yasuda, Toru; Sumi-Akamaru, Hisae; Tsujimoto, Yoshihide; Mochizuki, Hideki

    2015-01-01

    Mutations in PLA2G6 have been proposed to be the cause of neurodegeneration with brain iron accumulation type 2. The present study aimed to clarify the mechanism underlying brain iron accumulation during the deficiency of calcium-independent phospholipase A2 beta (iPLA2β), which is encoded by the PLA2G6 gene. Perl’s staining with diaminobenzidine enhancement was used to visualize brain iron accumulation. Western blotting was used to investigate the expression of molecules involved in iron homeostasis, including divalent metal transporter 1 (DMT1) and iron regulatory proteins (IRP1 and 2), in the brains of iPLA2β-knockout (KO) mice as well as in PLA2G6-knockdown (KD) SH-SY5Y human neuroblastoma cells. Furthermore, mitochondrial functions such as ATP production were examined. We have discovered for the first time that marked iron deposition was observed in the brains of iPLA2β-KO mice since the early clinical stages. DMT1 and IRP2 were markedly upregulated in all examined brain regions of aged iPLA2β-KO mice compared to age-matched wild-type control mice. Moreover, peroxidized lipids were increased in the brains of iPLA2β-KO mice. DMT1 and IRPs were significantly upregulated in PLA2G6-KD cells compared with cells treated with negative control siRNA. Degeneration of the mitochondrial inner membrane and decrease of ATP production were observed in PLA2G6-KD cells. These results suggest that the genetic ablation of iPLA2β increased iron uptake in the brain through the activation of IRP2 and upregulation of DMT1, which may be associated with mitochondrial dysfunction. PMID:26506412

  3. Effector-independent brain activity during motor imagery of the upper and lower limbs: an fMRI study.

    PubMed

    Mizuguchi, Nobuaki; Nakata, Hiroki; Kanosue, Kazuyuki

    2014-10-03

    We utilized functional magnetic resonance imaging (fMRI) to evaluate the common brain region of motor imagery for the right and left upper and lower limbs. The subjects were instructed to repeatedly imagined extension and flexion of the right or left hands/ankles. Brain regions, which included the supplemental motor area (SMA), premotor cortex and parietal cortex, were activated during motor imagery. Conjunction analysis revealed that the left SMA and inferior frontal gyrus (IFG)/ventral premotor cortex (vPM) were commonly activated with motor imagery of the right hand, left hand, right foot, and left foot. This result suggests that these brain regions are activated during motor imagery in an effector independent manner. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Dehydration increases the magnitude of selective brain cooling independently of core temperature in sheep.

    PubMed

    Fuller, Andrea; Meyer, Leith C R; Mitchell, Duncan; Maloney, Shane K

    2007-07-01

    By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 +/- 3 kg, means +/- SD). The animals, housed in a climatic chamber at 23 degrees C, were exposed for nine days to a cyclic protocol with daytime heat (40 degrees C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 +/- 4% of body mass, and plasma osmolality had increased from 290 +/- 8 to 323 +/- 9 mmol/kg (P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 +/- 0.18 degrees C) than in euhydration (-0.05 +/- 0.14 degrees C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27 degrees C) and dehydration (39.14 degrees C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 +/- 0.31) than in euhydrated animals (0.87 +/- 0.11, P = 0.003). Return of drinking water at 39 degrees C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.

  5. Operational anaesthesia for the management of traumatic brain injury.

    PubMed

    Park, C L; Moor, P; Birch, K; Shirley, P J

    2010-12-01

    The primary brain insult that occurs at the time of head injury, is determined by the degree of neuronal damage or death and so cannot be influenced by further treatment. The focus of immediate and ongoing care from the point of wounding to intensive care management at Role 4 should be to reduce or prevent any secondary brain injury. The interventions and triage decisions must be reassessed at every stage of the process, but should focus on appropriate airway management, maintenance of oxygenation and carbon dioxide levels and maintenance of adequate cerebral perfusion pressure. Early identification of raised intracranial pressure and appropriate surgical intervention are imperative. Concurrent injuries must also be managed appropriately. Attention to detail at every stage of the evacuation chain should allow the head-injured patient the best chance of recovery.

  6. Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection.

    PubMed

    Suganami, Akiko; Iwadate, Yasuo; Shibata, Sayaka; Yamashita, Masamichi; Tanaka, Tsutomu; Shinozaki, Natsuki; Aoki, Ichio; Saeki, Naokatsu; Shirasawa, Hiroshi; Okamoto, Yoshiharu; Tamura, Yutaka

    2015-12-30

    Some tumor-specific near-infrared (NIR) fluorescent dyes such as indocyanine green (ICG), IDRye800CW, and 5-aminolevulinic acid have been used clinically for detecting tumor margins or micro-cancer lesions. In this study, we evaluated the physicochemical properties of liposomally formulated phospholipid-conjugated ICG, denoted by LP-iDOPE, as a clinically translatable NIR imaging nanoparticle for brain tumors. We also confirmed its brain-tumor-specific biodistribution and its characteristics as the intra-operative NIR imaging nanoparticles for brain tumor surgery. These properties of LP-iDOPE may enable neurosurgeons to achieve more accurate identification and more complete resection of brain tumor.

  7. Cognitive and emotional modulation of brain default operation.

    PubMed

    Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J; Korvenoja, Antti; Gjedde, Albert

    2009-06-01

    Goal-directed behavior lowers activity in brain areas that include the medial frontal cortex, the medial and lateral parietal cortex, and limbic and paralimbic brain regions, commonly referred to as the "default network." These activity decreases are believed to reflect the interruption of processes that are ongoing when the mind is in a restful state. Previously, the nature of these processes was probed by varying cognitive task parameters, but the presence of emotional processes, while often assumed, was little investigated. With fMRI, we studied the effect of systematic variations of both cognitive load and emotional stimulus connotation on task-related decreases in the default network by employing an auditory working memory (WM) task with musical sounds. The performance of the WM task, compared to passive listening, lowered the activity in medial and lateral, prefrontal, parietal, temporal, and limbic regions. In a subset of these regions, the magnitude of decrease depended on the memory load; the greater the cognitive load, the larger the magnitude of the observed decrease. Furthermore, in the right amygdala and the left precuneus, areas previously associated with processing of unpleasant dissonant musical sounds, there was an interaction between the experimental condition and the stimulus type. The current results are consistent with the previously reported effect of task difficulty on task-related brain activation decreases. The results also indicate that task-related decreases may be further modulated by the emotional stimulus connotation.

  8. Risk management and market efficiency on the Midwest Independent System Operator electricity exchange

    NASA Astrophysics Data System (ADS)

    Jones, Kevin

    Midwest Independent Transmission System Operator, Inc. (MISO) is a non-profit regional transmission organization (RTO) that oversees electricity production and transmission across thirteen states and one Canadian province. MISO also operates an electronic exchange for buying and selling electricity for each of its five regional hubs. MISO oversees two types of markets. The forward market, which is referred to as the day-ahead (DA) market, allows market participants to place demand bids and supply offers on electricity to be delivered at a specified hour the following day. The equilibrium price, known as the locational marginal price (LMP), is determined by MISO after receiving sale offers and purchase bids from market participants. MISO also coordinates a spot market, which is known as the real-time (RT) market. Traders in the real-time market must submit bids and offers by thirty minutes prior to the hour for which the trade will be executed. After receiving purchase and sale offers for a given hour in the real time market, MISO then determines the LMP for that particular hour. The existence of the DA and RT markets allows producers and retailers to hedge against the large fluctuations that are common in electricity prices. Hedge ratios on the MISO exchange are estimated using various techniques. No hedge ratio technique examined consistently outperforms the unhedged portfolio in terms of variance reduction. Consequently, none of the hedge ratio methods in this study meet the general interpretation of FASB guidelines for a highly effective hedge. One of the major goals of deregulation is to bring about competition and increased efficiency in electricity markets. Previous research suggests that electricity exchanges may not be weak-form market efficient. A simple moving average trading rule is found to produce statistically and economically significant profits on the MISO exchange. This could call the long-term survivability of the MISO exchange into question.

  9. Does Feedback-Related Brain Response during Reinforcement Learning Predict Socio-motivational (In-)dependence in Adolescence?

    PubMed Central

    Raufelder, Diana; Boehme, Rebecca; Romund, Lydia; Golde, Sabrina; Lorenz, Robert C.; Gleich, Tobias; Beck, Anne

    2016-01-01

    This multi-methodological study applied functional magnetic resonance imaging to investigate neural activation in a group of adolescent students (N = 88) during a probabilistic reinforcement learning task. We related patterns of emerging brain activity and individual learning rates to socio-motivational (in-)dependence manifested in four different motivation types (MTs): (1) peer-dependent MT, (2) teacher-dependent MT, (3) peer-and-teacher-dependent MT, (4) peer-and-teacher-independent MT. A multinomial regression analysis revealed that the individual learning rate predicts students’ membership to the independent MT, or the peer-and-teacher-dependent MT. Additionally, the striatum, a brain region associated with behavioral adaptation and flexibility, showed increased learning-related activation in students with motivational independence. Moreover, the prefrontal cortex, which is involved in behavioral control, was more active in students of the peer-and-teacher-dependent MT. Overall, this study offers new insights into the interplay of motivation and learning with (1) a focus on inter-individual differences in the role of peers and teachers as source of students’ individual motivation and (2) its potential neurobiological basis. PMID:27199873

  10. Does Feedback-Related Brain Response during Reinforcement Learning Predict Socio-motivational (In-)dependence in Adolescence?

    PubMed

    Raufelder, Diana; Boehme, Rebecca; Romund, Lydia; Golde, Sabrina; Lorenz, Robert C; Gleich, Tobias; Beck, Anne

    2016-01-01

    This multi-methodological study applied functional magnetic resonance imaging to investigate neural activation in a group of adolescent students (N = 88) during a probabilistic reinforcement learning task. We related patterns of emerging brain activity and individual learning rates to socio-motivational (in-)dependence manifested in four different motivation types (MTs): (1) peer-dependent MT, (2) teacher-dependent MT, (3) peer-and-teacher-dependent MT, (4) peer-and-teacher-independent MT. A multinomial regression analysis revealed that the individual learning rate predicts students' membership to the independent MT, or the peer-and-teacher-dependent MT. Additionally, the striatum, a brain region associated with behavioral adaptation and flexibility, showed increased learning-related activation in students with motivational independence. Moreover, the prefrontal cortex, which is involved in behavioral control, was more active in students of the peer-and-teacher-dependent MT. Overall, this study offers new insights into the interplay of motivation and learning with (1) a focus on inter-individual differences in the role of peers and teachers as source of students' individual motivation and (2) its potential neurobiological basis.

  11. An essential and NSF independent role for α-SNAP in store-operated calcium entry

    PubMed Central

    Miao, Yong; Miner, Cathrine; Zhang, Lei; Hanson, Phyllis I; Dani, Adish; Vig, Monika

    2013-01-01

    Store-operated calcium entry (SOCE) by calcium release activated calcium (CRAC) channels constitutes a primary route of calcium entry in most cells. Orai1 forms the pore subunit of CRAC channels and Stim1 is the endoplasmic reticulum (ER) resident Ca2+ sensor. Upon store-depletion, Stim1 translocates to domains of ER adjacent to the plasma membrane where it interacts with and clusters Orai1 hexamers to form the CRAC channel complex. Molecular steps enabling activation of SOCE via CRAC channel clusters remain incompletely defined. Here we identify an essential role of α-SNAP in mediating functional coupling of Stim1 and Orai1 molecules to activate SOCE. This role for α-SNAP is direct and independent of its known activity in NSF dependent SNARE complex disassembly. Importantly, Stim1-Orai1 clustering still occurs in the absence of α-SNAP but its inability to support SOCE reveals that a previously unsuspected molecular re-arrangement within CRAC channel clusters is necessary for SOCE. DOI: http://dx.doi.org/10.7554/eLife.00802.001 PMID:23878724

  12. Integration Framework of Process Planning based on Resource Independent Operation Summary to Support Collaborative Manufacturing

    SciTech Connect

    Kulvatunyou, Boonserm; Wysk, Richard A.; Cho, Hyunbo; Jones, Albert

    2004-06-01

    In today's global manufacturing environment, manufacturing functions are distributed as never before. Design, engineering, fabrication, and assembly of new products are done routinely in many different enterprises scattered around the world. Successful business transactions require the sharing of design and engineering data on an unprecedented scale. This paper describes a framework that facilitates the collaboration of engineering tasks, particularly process planning and analysis, to support such globalized manufacturing activities. The information models of data and the software components that integrate those information models are described. The integration framework uses an Integrated Product and Process Data (IPPD) representation called a Resource Independent Operation Summary (RIOS) to facilitate the communication of business and manufacturing requirements. Hierarchical process modeling, process planning decomposition and an augmented AND/OR directed graph are used in this representation. The Resource Specific Process Planning (RSPP) module assigns required equipment and tools, selects process parameters, and determines manufacturing costs based on two-level hierarchical RIOS data. The shop floor knowledge (resource and process knowledge) and a hybrid approach (heuristic and linear programming) to linearize the AND/OR graph provide the basis for the planning. Finally, a prototype system is developed and demonstrated with an exemplary part. Java and XML (Extensible Markup Language) are used to ensure software and information portability.

  13. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  14. MRI Study on the Functional and Spatial Consistency of Resting State-Related Independent Components of the Brain Network

    PubMed Central

    Jeong, Bumseok; Kim, Ji-Woong

    2012-01-01

    Objective Resting-state networks (RSNs), including the default mode network (DMN), have been considered as markers of brain status such as consciousness, developmental change, and treatment effects. The consistency of functional connectivity among RSNs has not been fully explored, especially among resting-state-related independent components (RSICs). Materials and Methods This resting-state fMRI study addressed the consistency of functional connectivity among RSICs as well as their spatial consistency between 'at day 1' and 'after 4 weeks' in 13 healthy volunteers. Results We found that most RSICs, especially the DMN, are reproducible across time, whereas some RSICs were variable in either their spatial characteristics or their functional connectivity. Relatively low spatial consistency was found in the basal ganglia, a parietal region of left frontoparietal network, and the supplementary motor area. The functional connectivity between two independent components, the bilateral angular/supramarginal gyri/intraparietal lobule and bilateral middle temporal/occipital gyri, was decreased across time regardless of the correlation analysis method employed, (Pearson's or partial correlation). Conclusion RSICs showing variable consistency are different between spatial characteristics and functional connectivity. To understand the brain as a dynamic network, we recommend further investigation of both changes in the activation of specific regions and the modulation of functional connectivity in the brain network. PMID:22563263

  15. Comparing 3D Gyrification Index and area-independent curvature-based measures in quantifying neonatal brain folding

    NASA Astrophysics Data System (ADS)

    Rodriguez-Carranza, Claudia E.; Mukherjee, P.; Vigneron, Daniel; Barkovich, James; Studholme, Colin

    2007-03-01

    In this work we compare 3D Gyrification Index and our recently proposed area-independent curvature-based surface measures [26] for the in-vivo quantification of brain surface folding in clinically acquired neonatal MR image data. A meaningful comparison of gyrification across brains of different sizes and their subregions will only be possible through the quantification of folding with measures that are independent of the area of the region of analysis. This work uses a 3D implementation of the classical Gyrification Index, a 2D measure that quantifies folding based on the ratio of the inner and outer contours of the brain and which has been used to study gyral patterns in adults with schizophrenia, among other conditions. The new surface curvature-based measures and the 3D Gyrification Index were calculated on twelve premature infants (age 28-37 weeks) from which surfaces of cerebrospinal fluid/gray matter (CSF/GM) interface and gray matter/white matter (GM/WM) interface were extracted. Experimental results show that our measures better quantify folding on the CSF/GM interface than Gyrification Index, and perform similarly on the GM/WM interface.

  16. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  17. Cerebroprotection of Flavanol (−)-Epicatechin after Traumatic Brain Injury via Nrf2-dependent and –independent Pathways

    PubMed Central

    Cheng, Tian; Wang, Wenzhu; Li, Qian; Han, Xiaoning; Xing, Jing; Qi, Cunfang; Lan, Xi; Wan, Jieru; Potts, Alexa; Guan, Fangxia; Wang, Jian

    2016-01-01

    Traumatic brain injury (TBI), which leads to disability, dysfunction, and even death, is a prominent health problem worldwide with no effective treatment. A brain-permeable flavonoid named (−)-epicatechin (EC) modulates redox/oxidative stress and has been shown to be beneficial for vascular and cognitive function in humans and for ischemic and hemorrhagic stroke in rodents. Here we examined whether EC is able to protect the brain against TBI-induced brain injury in mice and if so, whether it exerts neuroprotection by modulating the NF-E2-related factor (Nrf2) pathway. We used the controlled cortical impact model to mimic TBI. EC was administered orally at 3 h after TBI and then every 24 h for either 3 or 7 days. We evaluated lesion volume, brain edema, white matter injury, neurologic deficits, cognitive performance and emotion-like behaviors, neutrophil infiltration, reactive oxygen species (ROS), and a variety of injury-related protein markers. Nrf2 knockout mice were used to determine the role of the Nrf2 signaling pathway after EC treatment. In wild-type mice, EC significantly reduced lesion volume, edema, and cell death and improved neurologic function on days 3 and 28; cognitive performance and depression-like behaviors were also improved with EC administration. In addition, EC reduced white matter injury, heme oxygenase-1 expression, and ferric iron deposition after TBI. These changes were accompanied by attenuation of neutrophil infiltration and oxidative insults, reduced activity of matrix metalloproteinase 9, decreased Keap 1 expression, increased Nrf2 nuclear accumulation, and increased expression of superoxide dismutase 1 and quinone 1. However, EC did not significantly reduce lesion volume or improve neurologic deficits in Nrf2 knockout mice after TBI. Our results show that EC protects the TBI brain by activating the Nrf2 pathway, inhibiting heme oxygenase-1 protein expression, and reducing iron deposition. The latter two effects could represent an

  18. Correlation of pre-operative MRI and intra-operative 3D ultrasound to measure brain tissue shift

    NASA Astrophysics Data System (ADS)

    Gobbi, David G.; Comeau, Roch M.; Lee, Belinda K. H.; Peters, Terence M.

    2000-04-01

    The usefulness of stereotactic neurosurgery performed via a craniotomy is limited because the craniotomy leads to a brain tissue shift of 10 mm on average. We have recently completed an examination of 2D intra-operative ultrasound as a means of visualization and measurement of brain shift. A commercial 3D tracking system was used for real-time registration of the ultrasound video to pre-operative MR images, and annotation of the images was used to measure the shift. More than 15 surgical cases have been performed thus far with the 2D system. We are now undertaking phantom studies with tracked 3D ultrasound, and have developed sophisticated tools for real- time overlay of ultrasound and MRI volumes. These tools include a virtual-reality view of the ultrasound probe with live ultrasound video superimposed over a 3D -rendered MRI of the brain, as well as 3D ultrasound/MRI transparency overlay views. Algorithms to automatically extract landmarks from MRI and 3D ultrasound images are under development. We aim to use these landmarks to automatically generate nonlinear warp transformations to correct the pre-operative MRI as well as surgical target coordinates for brain shift. Portions of the C++ code developed for this project have been contributed to the open-source Visualization Toolkit (VTK).

  19. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action.

    PubMed

    Ost, Mario; Coleman, Verena; Voigt, Anja; van Schothorst, Evert M; Keipert, Susanne; van der Stelt, Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, Anna P; Jastroch, Martin; Schulz, Tim J; Keijer, Jaap; Klaus, Susanne

    2016-02-01

    Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21(-/-)) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPR(mt)) and amino acid biosynthetic pathways did not require the presence of FGF21. Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial

  20. Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action

    PubMed Central

    Ost, Mario; Coleman, Verena; Voigt, Anja; van Schothorst, Evert M.; Keipert, Susanne; van der Stelt, Inge; Ringel, Sebastian; Graja, Antonia; Ambrosi, Thomas; Kipp, Anna P.; Jastroch, Martin; Schulz, Tim J.; Keijer, Jaap; Klaus, Susanne

    2015-01-01

    Objective Fibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood. Methods We made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21−/−) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions. Results Here we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPRmt) and amino acid biosynthetic pathways did not require the presence of FGF21. Conclusions Here we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key

  1. Impact of experience-dependent and -independent factors on gene expression in songbird brain

    PubMed Central

    Drnevich, Jenny; Replogle, Kirstin L.; Lovell, Peter; Hahn, Thomas P.; Johnson, Frank; Mast, Thomas G.; Nordeen, Ernest; Nordeen, Kathy; Strand, Christy; London, Sarah E.; Mukai, Motoko; Wingfield, John C.; Arnold, Arthur P.; Ball, Gregory F.; Brenowitz, Eliot A.; Wade, Juli; Mello, Claudio V.; Clayton, David F.

    2012-01-01

    Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical “constitutive plasticity” (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as “ribosome” (expressed more highly in juvenile brain) and “dopamine metabolic process” (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience. PMID:23045667

  2. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    PubMed

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings.

  3. ROC (Receiver Operating Characteristics) study of maximum likelihood estimator human brain image reconstructions in PET (Positron Emission Tomography) clinical practice

    SciTech Connect

    Llacer, J.; Veklerov, E.; Nolan, D. ); Grafton, S.T.; Mazziotta, J.C.; Hawkins, R.A.; Hoh, C.K.; Hoffman, E.J. )

    1990-10-01

    This paper will report on the progress to date in carrying out Receiver Operating Characteristics (ROC) studies comparing Maximum Likelihood Estimator (MLE) and Filtered Backprojection (FBP) reconstructions of normal and abnormal human brain PET data in a clinical setting. A previous statistical study of reconstructions of the Hoffman brain phantom with real data indicated that the pixel-to-pixel standard deviation in feasible MLE images is approximately proportional to the square root of the number of counts in a region, as opposed to a standard deviation which is high and largely independent of the number of counts in FBP. A preliminary ROC study carried out with 10 non-medical observers performing a relatively simple detectability task indicates that, for the majority of observers, lower standard deviation translates itself into a statistically significant detectability advantage in MLE reconstructions. The initial results of ongoing tests with four experienced neurologists/nuclear medicine physicians are presented. Normal cases of {sup 18}F -- fluorodeoxyglucose (FDG) cerebral metabolism studies and abnormal cases in which a variety of lesions have been introduced into normal data sets have been evaluated. We report on the results of reading the reconstructions of 90 data sets, each corresponding to a single brain slice. It has become apparent that the design of the study based on reading single brain slices is too insensitive and we propose a variation based on reading three consecutive slices at a time, rating only the center slice. 9 refs., 2 figs., 1 tab.

  4. APP and PS-1 mutations induce brain oxidative stress independent of dietary cholesterol: implications for Alzheimer's disease.

    PubMed

    Mohmmad Abdul, Hafiz; Wenk, Gary L; Gramling, McGann; Hauss-Wegrzyniak, Beatrice; Butterfield, D Allan

    2004-09-23

    Epidemiological and biochemical studies strongly implicate a role for cholesterol in the pathogenesis of Alzheimer's disease (AD). Mutation in the PS-1 and APP genes, which increases production of the highly amyloidogenic amyloid beta-peptide (Abeta42), is the major cause of familial AD. The AD brain is under significant oxidative stress, including protein oxidation and lipid peroxidation. In the present study, protein oxidation and lipid peroxidation were compared in the brain homogenates from knock-in mice expressing mutant human PS-1 and APP in relation to the intake of dietary cholesterol. The APP and PS-1 mice displayed increased oxidative stress as measured by protein oxidation and lipid peroxidation, independent of dietary cholesterol. These results are discussed with reference to proposed therapeutic strategies of AD.

  5. Logistical Analysis of the Littoral Combat Ship (LCS) Operating Independently in the Pacific

    DTIC Science & Technology

    2008-03-01

    missions such as Intelligence Surveillance and Reconnaissance (ISR), Maritime Interdiction Operations ( MIO ) in support of the Global War on Terrorism...of the secondary missions that today’s legacy platforms are being used for. Such operations will include Maritime Interception Operations ( MIO ) and...Enhanced MIO in support of Maritime Security Operations (MSO) or other operations (when equipped with an adequate Rigid Hull Inflatable Boat (RHIB

  6. Brain lesion and memory functioning: short-term memory deficit is independent of lesion location.

    PubMed

    Schooler, Carmi; Caplan, Leslie J; Revell, Andrew J; Salazar, Andres M; Grafman, Jordan

    2008-06-01

    We analyzed the effects of patterns of brain lesions from penetrating head injuries on memory performance in participants of the Vietnam Head Injury Study (Grafman et al., 1988). Classes of lesion patterns were determined by mixture modeling (L. K. Muthén & B. O. Muthén, 1998-2004). Memory performance was assessed for short-term memory (STM), semantic memory, verbal episodic memory, and visual episodic memory. The striking finding was that large STM deficits were observed in all classes of brain-injured individuals, regardless of lesion location pattern. These effects persist despite frequent concomitant effects of depressive symptomatology and substance dependence. Smaller deficits in semantic memory, verbal episodic memory, and visual episodic memory depended on lesion location, in a manner roughly consistent with the existing neuropsychological literature. The theoretical and clinical implications of the striking, seemingly permanent STM deficits in individuals with penetrating head injuries are discussed.

  7. Neuroplasticity-dependent and -independent mechanisms of chronic deep brain stimulation in stressed rats

    PubMed Central

    Bambico, F R; Bregman, T; Diwan, M; Li, J; Darvish-Ghane, S; Li, Z; Laver, B; Amorim, B O; Covolan, L; Nobrega, J N; Hamani, C

    2015-01-01

    Chronic ventromedial prefrontal cortex (vmPFC) deep brain stimulation (DBS) improves depressive-like behaviour in rats via serotonergic and neurotrophic-related mechanisms. We hypothesise that, in addition to these substrates, DBS-induced increases in hippocampal neurogenesis may also be involved. Our results show that stress-induced behavioural deficits in the sucrose preference test, forced swim test, novelty-suppressed feeding test (NSFT) and elevated plus maze were countered by chronic vmPFC DBS. In addition, stressed rats receiving stimulation had significant increases in hippocampal neurogenesis, PFC and hippocampal brain-derived neurotrophic factor levels. To block neurogenesis, stressed animals given DBS were injected with temozolomide. Such treatment reversed the anxiolytic-like effect of stimulation in the NSFT without significantly affecting performance in other behavioural tests. Taken together, our findings suggest that neuroplastic changes, including neurogenesis, may be involved in specific anxiolytic effects of DBS without affecting its general antidepressant-like response. PMID:26529427

  8. Global fluctuations of cerebral blood flow indicate a global brain network independent of systemic factors.

    PubMed

    Zhao, Li; Alsop, David C; Detre, John A; Dai, Weiying

    2017-01-01

    Global synchronization across specialized brain networks is a common feature of network models and in-vivo electrical measurements. Although the imaging of specialized brain networks with blood oxygenation sensitive resting state functional magnetic resonance imaging (rsfMRI) has enabled detailed study of regional networks, the study of globally correlated fluctuations with rsfMRI is confounded by spurious contributions to the global signal from systemic physiologic factors and other noise sources. Here we use an alternative rsfMRI method, arterial spin labeled perfusion MRI, to characterize global correlations and their relationship to correlations and anti-correlations between regional networks. Global fluctuations that cannot be explained by systemic factors dominate the fluctuations in cerebral blood flow. Power spectra of these fluctuations are band limited to below 0.05 Hz, similar to prior measurements of regional network fluctuations in the brain. Removal of these global fluctuations prior to measurement of regional networks reduces all regional network fluctuation amplitudes to below the global fluctuation amplitude and changes the strength and sign of inter network correlations. Our findings support large amplitude, globally synchronized activity across networks that require a reassessment of regional network amplitude and correlation measures.

  9. Vibrotactile Feedback for Brain-Computer Interface Operation

    PubMed Central

    Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.

    2007-01-01

    To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734

  10. Operant conditioning of brain steady potential shifts in man.

    PubMed

    Bauer, H; Lauber, W

    1979-06-01

    Steady potential shifts (SPS) recorded from the scalp were conditioned operantly by visual and acoustical feedback. Three groups of seven subjects were each tested with a different response-reinforcement contingency: positive reinforcement for a positive SPS after a cue stimulus, positive reinforcement for a negative SPS after a cue stimulus, and noncontingent reinforcement. The steady potential shifts learned under these three conditions differed significantly. Negative shifts were associated with subjective feelings of activation, positive shifts with inactivation. Cortical genesis and possible artifacts are discussed.

  11. 78 FR 24192 - J.P. Morgan Ventures Energy Corp. v. Midwest Independent System Operator, Inc. PJM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission J.P. Morgan Ventures Energy Corp. v. Midwest Independent System Operator, Inc. PJM Interconnection, L.L.C.; Notice of Complaint Take notice that on April 10, 2013, J.P....

  12. 78 FR 62614 - CalWind Resources, Inc. v. California Independent System Operator Corporation; Notice of Complaint

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission CalWind Resources, Inc. v. California Independent System Operator...) Rules of Practice and Procedure, 18 CFR 385.206 (2013), CalWind Resources, Inc. (Complainant) filed...

  13. 78 FR 18334 - New York Independent System Operator, Inc.; Notice of Motion for Tariff Waiver and Expedited Action

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission New York Independent System Operator, Inc.; Notice of Motion for Tariff... motion for limited tariff waivers of section 5.16.4 and, to the extent necessary, section 5.16.3 of its...

  14. 77 FR 70159 - New York Independent System Operator, Inc.; Notice Establishing Comment Date To Respond to Motion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... To Respond to Motion Requesting Extension of Time On November 9, 2012, New York Independent System Operator, Inc. (NYISO) filed a motion requesting a 2-month extension of time (motion), until February 15... December 20, 2012. NYISO ] indicates that it needs more time for data gathering and analyses for this...

  15. 78 FR 65306 - City of Pella, Iowa v. Midcontinent Independent System Operator, Inc., Mid-American Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission City of Pella, Iowa v. Midcontinent Independent System Operator, Inc., Mid-American Energy Company; Notice of Complaint Take notice that on October 23, 2013, pursuant to section 206 of the Federal Power Act (FPA), 16...

  16. Independent Verification Survey Report for the Operable Unit-1 Miamisburg Closure Project, Miamisburg, OH

    SciTech Connect

    Weaver, P.

    2008-03-17

    The objectives of the independent verification survey were to confirm that remedial actions have been effective in meeting established release criteria and that documentation accurately and adequately describes the current radiological and chemical conditions of the MCP site.

  17. Effects of frequency correlation in linear optical entangling gates operated with independent photons

    SciTech Connect

    Barbieri, M.

    2007-10-15

    Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used as an independent photon source, distinguishability arises form the energy correlation of each photon with its twin. We derive upper bound for the entanglement which can be generated under these conditions.

  18. Social complexity influences brain investment and neural operation costs in ants.

    PubMed

    Kamhi, J Frances; Gronenberg, Wulfila; Robson, Simon K A; Traniello, James F A

    2016-10-26

    The metabolic expense of producing and operating neural tissue required for adaptive behaviour is considered a significant selective force in brain evolution. In primates, brain size correlates positively with group size, presumably owing to the greater cognitive demands of complex social relationships in large societies. Social complexity in eusocial insects is also associated with large groups, as well as collective intelligence and division of labour among sterile workers. However, superorganism phenotypes may lower cognitive demands on behaviourally specialized workers resulting in selection for decreased brain size and/or energetic costs of brain metabolism. To test this hypothesis, we compared brain investment patterns and cytochrome oxidase (COX) activity, a proxy for ATP usage, in two ant species contrasting in social organization. Socially complex Oecophylla smaragdina workers had larger brain size and relative investment in the mushroom bodies (MBs)-higher order sensory processing compartments-than the more socially basic Formica subsericea workers. Oecophylla smaragdina workers, however, had reduced COX activity in the MBs. Our results suggest that as in primates, ant group size is associated with large brain size. The elevated costs of investment in metabolically expensive brain tissue in the socially complex O. smaragdina, however, appear to be offset by decreased energetic costs. © 2016 The Author(s).

  19. Field dependence-independence and brain organization: the confluence of two different ways of describing general forms of cognitive functioning? A theoretical review.

    PubMed

    Tinajero, C; Páramo, M F; Cadaveira, F; Rodriguez-Holguin, S

    1993-12-01

    We reviewed a total of 67 studies of the relationship between the cognitive style dimension of field dependence-independence and brain organization. To date, such studies have followed three basic lines of approach: (1) cerebral localization of processes involved in field dependence-independence; (2) evaluation of the relationship between field dependence-independence and hemisphericity; (3) evaluation of the relationship between field dependence-independence and hemispheric differentiation. The results of all three types of study are largely coherent with the differentiation theory formulated by Witkin and his coworkers. In addition, findings to date are of interest in that they suggest new directions for more detailed investigation of the relationship between field dependence-independence and brain organization. These directions appear very promising for improving our understanding of both the nature of cognitive styles and the functioning of the brain in general.

  20. The Vocabulary of Brain Potentials: Inferring Cognitive Events from Brain Potentials in Operational Settings

    DTIC Science & Technology

    1976-08-01

    Electroencephalographv and Clinical Neurophysiol- ogy, 1966, 20: 433-438. Walter, W. G. Slow potential changes in the human brain associated with expec- tancy...decision and intension. Electroencephalographv and Clinical Neuro- physiology. 1967, Suppl. 26: 123-130. -’ ■ ■■rtfrtf-’Miti&ti^fi...motor potential. Electroencephalograpiy and Clinical Neurophy LO1O8Y. 1968, 25: 1-10. Deecke, L., Scheid, P., and Kornhuber, H. H. Distribution of

  1. Effects on operant learning and brain acetylcholine esterase activity in rats following chronic inorganic arsenic intake.

    PubMed

    Nagaraja, T N; Desiraju, T

    1994-05-01

    1. Very young and adult Wistar rats were given As5+, 5 mg arsenic kg-1 body weight day-1 (sodium arsenate). 2. Operant learning was tested in a Skinner box at the end of exposure and, in the case of developing animals, also after a recovery period. 3. Acetylcholine esterase (AChE) activity was estimated in discrete brain regions of these animals. 4. The animals exposed to arsenic took longer to acquire the learned behaviour and to extinguish the operant. AChE activity was inhibited in some regions of the brain.

  2. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation.

    PubMed

    Halko, Mark A; Connors, Erin C; Sánchez, Jaime; Merabet, Lotfi B

    2014-06-01

    Navigating is a complex cognitive task that places high demands on spatial abilities, particularly in the absence of sight. Significant advances have been made in identifying the neural correlates associated with various aspects of this skill; however, how the brain is able to navigate in the absence of visual experience remains poorly understood. Furthermore, how neural network activity relates to the wide variability in navigational independence and skill in the blind population is also unknown. Using functional magnetic resonance imaging, we investigated the neural correlates of audio-based navigation within a large scale, indoor virtual environment in early profoundly blind participants with differing levels of spatial navigation independence (assessed by the Santa Barbara Sense of Direction scale). Performing path integration tasks in the virtual environment was associated with activation within areas of a core network implicated in navigation. Furthermore, we found a positive relationship between Santa Barbara Sense of Direction scores and activation within right temporal parietal junction during the planning and execution phases of the task. These findings suggest that differential navigational ability in the blind may be related to the utilization of different brain network structures. Further characterization of the factors that influence network activity may have important implications regarding how this skill is taught in the blind community. Copyright © 2013 Wiley Periodicals, Inc.

  3. Real world navigation independence in the early blind correlates with differential brain activity associated with virtual navigation

    PubMed Central

    Halko, Mark A.; Connors, Erin C.; Sánchez, Jaime; Merabet, Lotfi B.

    2014-01-01

    Navigating is a complex cognitive task that places high demands on spatial abilities, particularly in the absence of sight. Significant advances have been made in identifying the neural correlates associated with various aspects of this skill, however, how the brain is able to navigate in the absence of visual experience remains poorly understood. Furthermore, how neural network activity relates to the wide variability in navigational independence and skill in the blind population is also unknown. Using fMRI, we investigated the neural correlates of audio-based navigation within a large scale, indoor virtual environment in early profoundly blind participants with differing levels of spatial navigation independence (assessed by the Santa Barbara Sense of Direction (SBSoD) scale). Performing path integration tasks in the virtual environment was associated with activation within areas of a core network implicated in navigation. Furthermore, we found a positive relationship between SBSoD scores and activation within right temporal parietal junction (TPJ) during the planning and execution phases of the task. These findings suggest that differential navigational ability in the blind may be related to the utilization of different brain network structures. Further characterization of the factors that influence network activity may have important implications regarding how this skill is taught in the blind community. PMID:24027192

  4. Recovering EEG brain signals: artifact suppression with wavelet enhanced independent component analysis.

    PubMed

    Castellanos, Nazareth P; Makarov, Valeri A

    2006-12-15

    Independent component analysis (ICA) has been proven useful for suppression of artifacts in EEG recordings. It involves separation of measured signals into statistically independent components or sources, followed by rejection of those deemed artificial. We show that a "leak" of cerebral activity of interest into components marked as artificial means that one is going to lost that activity. To overcome this problem we propose a novel wavelet enhanced ICA method (wICA) that applies a wavelet thresholding not to the observed raw EEG but to the demixed independent components as an intermediate step. It allows recovering the neural activity present in "artificial" components. Employing semi-simulated and real EEG recordings we quantify the distortions of the cerebral part of EEGs introduced by the ICA and wICA artifact suppressions in the time and frequency domains. In the context of studying cortical circuitry we also evaluate spectral and partial spectral coherences over ICA/wICA-corrected EEGs. Our results suggest that ICA may lead to an underestimation of the neural power spectrum and to an overestimation of the coherence between different cortical sites. wICA artifact suppression preserves both spectral (amplitude) and coherence (phase) characteristics of the underlying neural activity.

  5. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology

    PubMed Central

    Ziebell, Jenna M.; Rowe, Rachel K.; Harrison, Jordan L.; Eakin, Katharine C.; Colburn, Taylor; Willyerd, F. Anthony; Lifshitz, Jonathan

    2016-01-01

    Primary objective A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. We hypothesized that pathology is associated with modification of the vasculature. Methods Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1d, 2d, or 7d post-injury or sham-injury (n=3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology, or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching, and tortuosity of the vessels were evaluated across three regions of interest. Results In M2, average vessel volume (p<0.01) and surface area (p<0.05) were significantly larger at 1d relative to 2d, 7d and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching, or tortuosity were observed. Conclusions Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes. PMID:26646974

  6. Experimental diffuse brain injury results in regional alteration of gross vascular morphology independent of neuropathology.

    PubMed

    Ziebell, Jenna M; Rowe, Rachel K; Harrison, Jordan L; Eakin, Katharine C; Colburn, Taylor; Willyerd, F Anthony; Lifshitz, Jonathan

    2016-01-01

    A dynamic relationship exists between diffuse traumatic brain injury and changes to the neurovascular unit. The purpose of this study was to evaluate vascular changes during the first week following diffuse TBI. It was hypothesized that pathology is associated with modification of the vasculature. Male Sprague-Dawley rats underwent either midline fluid percussion injury or sham-injury. Brain tissue was collected 1, 2 or 7 days post-injury or sham-injury (n = 3/time point). Tissue was collected and stained by de Olmos amino-cupric silver technique to visualize neuropathology or animals were perfused with AltaBlue casting resin before high-resolution vascular imaging. The average volume, surface area, radius, branching and tortuosity of the vessels were evaluated across three regions of interest. In M2, average vessel volume (p < 0.01) and surface area (p < 0.05) were significantly larger at 1 day relative to 2 days, 7 days and sham. In S1BF and VPM, no significant differences in the average vessel volume or surface area at any of the post-injury time points were observed. No significant changes in average radius, branching or tortuosity were observed. Preliminary findings suggest gross morphological changes within the vascular network likely represent an acute response to mechanical forces of injury, rather than delayed or chronic pathological processes.

  7. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    PubMed Central

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  8. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function.

    PubMed

    Vaccaro, Alexandra; Issa, Abdul-Raouf; Seugnet, Laurent; Birman, Serge; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila.

  9. 76 FR 19766 - California Independent System Operator Corporation; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-08

    ... System Operator Corporation's (CAISO) Capacity Procurement Mechanism (CPM) and exceptional dispatch... existing exceptional dispatch market power mitigation provisions. A subsequent notice detailing the...

  10. Association of pre-operative brain pathology with postoperative delirium in a cohort of non-small cell lung cancer patients undergoing surgical resection

    PubMed Central

    Root, James C.; Pryor, Kane O.; Downey, Robert; Alici, Yesne; Davis, Marcus L.; Holodny, Andrei; Korc-Grodzicki, Beatriz; Ahles, Tim

    2017-01-01

    Objective Post-operative delirium is associated with pre-operative cognitive difficulties and diminished functional independence, both of which suggest that brain pathology may be present in affected individuals prior to surgery. Currently, there are few studies that have examined imaging correlates of post-operative delirium. To our knowledge, none have examined the association of delirium with existing structural pathology in pre-operative cancer patients. Here, we present a novel, retrospective strategy to assess pre-operative structural brain pathology and its association with post-operative delirium. Standard of care structural magnetic resonance imaging (MRIs) from a cohort of surgical candidates prior to surgery were analyzed for white matter hyperintensities and cerebral atrophy. Methods We identified 23 non-small cell lung cancer patients with no evidence of metastases in the brain pre-operatively, through retrospective chart review, who met criteria for post-operative delirium within 4 days of surgery. 24 age- and gender-matched control subjects were identified for comparison to the delirium sample. T1 and fluid-attenuated inversion recovery sequences were collected from standard of care pre-operative MRI screening and assessed for white matter pathology and atrophy. Results We found significant differences in white matter pathology between groups with the delirium group exhibiting significantly greater white matter pathology than the non-delirium group. Measure of cerebral atrophy demonstrated no significant difference between the delirium and non-delirium group. Conclusions In this preliminary study utilizing standard of care pre-operative brain MRIs for assessment of structural risk factors to delirium, we found white matter pathology to be a significant risk factor in post-operative delirium. Limitations and implications for further investigation are discussed. PMID:23457028

  11. Brain responses to emotional stimuli during breath holding and hypoxia: an approach based on the independent component analysis.

    PubMed

    Menicucci, Danilo; Artoni, Fiorenzo; Bedini, Remo; Pingitore, Alessandro; Passera, Mirko; Landi, Alberto; L'Abbate, Antonio; Sebastiani, Laura; Gemignani, Angelo

    2014-11-01

    Voluntary breath holding represents a physiological model of hypoxia. It consists of two phases of oxygen saturation dynamics: an initial slow decrease (normoxic phase) followed by a rapid drop (hypoxic phase) during which transitory neurological symptoms as well as slight impairment of integrated cerebral functions, such as emotional processing, can occur. This study investigated how breath holding affects emotional processing. To this aim we characterized the modulation of event-related potentials (ERPs) evoked by emotional-laden pictures as a function of breath holding time course. We recorded ERPs during free breathing and breath holding performed in air by elite apnea divers. We modeled brain responses during free breathing with four independent components distributed over different brain areas derived by an approach based on the independent component analysis (ICASSO). We described ERP changes during breath holding by estimating amplitude scaling and time shifting of the same components (component adaptation analysis). Component 1 included the main EEG features of emotional processing, had a posterior localization and did not change during breath holding; component 2, localized over temporo-frontal regions, was present only in unpleasant stimuli responses and decreased during breath holding, with no differences between breath holding phases; component 3, localized on the fronto-central midline regions, showed phase-independent breath holding decreases; component 4, quite widespread but with frontal prevalence, decreased in parallel with the hypoxic trend. The spatial localization of these components was compatible with a set of processing modules that affects the automatic and intentional controls of attention. The reduction of unpleasant-related ERP components suggests that the evaluation of aversive and/or possibly dangerous situations might be altered during breath holding.

  12. Mapping the structural organization of the brain in conduct disorder: replication of findings in two independent samples.

    PubMed

    Fairchild, Graeme; Toschi, Nicola; Sully, Kate; Sonuga-Barke, Edmund J S; Hagan, Cindy C; Diciotti, Stefano; Goodyer, Ian M; Calder, Andrew J; Passamonti, Luca

    2016-09-01

    Neuroimaging methods that allow researchers to investigate structural covariance between brain regions are increasingly being used to study psychiatric disorders. Structural covariance analyses are particularly well suited for studying disorders with putative neurodevelopmental origins as they appear sensitive to changes in the synchronized maturation of different brain regions. We assessed interregional correlations in cortical thickness as a measure of structural covariance, and applied this method to investigate the coordinated development of different brain regions in conduct disorder (CD). We also assessed whether structural covariance measures could differentiate between the childhood-onset (CO-CD) and adolescence-onset (AO-CD) subtypes of CD, which may differ in terms of etiology and adult outcomes. We examined interregional correlations in cortical thickness in male youths with CO-CD or AO-CD relative to healthy controls (HCs) in two independent datasets. The age range in the Cambridge sample was 16-21 years (mean: 18.0), whereas the age range of the Southampton sample was 13-18 years (mean: 16.7). We used FreeSurfer to perform segmentations and applied structural covariance methods to the resulting parcellations. In both samples, CO-CD participants displayed a strikingly higher number of significant cross-cortical correlations compared to HC or AO-CD participants, whereas AO-CD participants presented fewer significant correlations than HCs. Group differences in the strength of the interregional correlations were observed in both samples, and each set of results remained significant when controlling for IQ and comorbid attention-deficit/hyperactivity disorder symptoms. This study provides new evidence for quantitative differences in structural brain organization between the CO-CD and AO-CD subtypes, and supports the hypothesis that both subtypes of CD have neurodevelopmental origins. © 2016 The Authors. Journal of Child Psychology and Psychiatry

  13. Brain structural concomitants of resting state heart rate variability in the young and old: evidence from two independent samples.

    PubMed

    Yoo, Hyun Joo; Thayer, Julian F; Greening, Steven; Lee, Tae-Ho; Ponzio, Allison; Min, Jungwon; Sakaki, Michiko; Nga, Lin; Mather, Mara; Koenig, Julian

    2017-09-18

    Previous research has shown associations between brain structure and resting state high-frequency heart rate variability (HF HRV). Age affects both brain structure and HF HRV. Therefore, we sought to examine the relationship between brain structure and HF HRV as a function of age. Data from two independent studies were used for the present analysis. Study 1 included 19 older adults (10 males, age range 62-78 years) and 19 younger adults (12 males, age range 19-37). Study 2 included 23 older adults (12 males; age range 55-75) and 27 younger adults (17 males; age range 18-34). The root-mean-square of successive R-R-interval differences (RMSSD) from ECG recordings was used as time-domain measure of HF HRV. MRI scans were performed on a 3.0-T Siemens Magnetom Trio scanner. Cortical reconstruction and volumetric segmentation were performed with the Freesurfer image analysis suite, including 12 regions as regions of interests (ROI). Zero-order and partial correlations were used to assess the correlation of RMSSD with cortical thickness in selected ROIs. Lateral orbitofrontal cortex (OFC) cortical thickness was significantly associated with RMSSD. Further, both studies, in line with previous research, showed correlations between RMSSD and anterior cingulate cortex (ACC) cortical thickness. Meta-analysis on adjusted correlation coefficients from individual studies confirmed an association of RMSSD with the left rostral ACC and the left lateral OFC. Future longitudinal studies are necessary to trace individual trajectories in the association of HRV and brain structure across aging.

  14. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  15. Practical aspects of steam injection processes: A handbook for independent operators

    SciTech Connect

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  16. Aggressive operative treatment of isolated blunt traumatic brain injury in the elderly is associated with favourable outcome.

    PubMed

    Wutzler, Sebastian; Lefering, Rolf; Wafaisade, Arasch; Maegele, Marc; Lustenberger, Thomas; Walcher, Felix; Marzi, Ingo; Laurer, Helmut

    2015-09-01

    Outcome after traumatic brain injury (TBI) in the elderly has not been fully elucidated. The present retrospective observational study investigates the age-dependent outcome of patients suffering from severe isolated TBI with regard to operative and non-operative treatment. Data were prospectively collected in the TraumaRegister DGU. Anonymous datasets of 8629 patients with isolated severe blunt TBI (AISHead≥3, AISBody≤1) documented from 2002 to 2011 were analysed. Patients were grouped according to age: 1-17, 18-59, 60-69, 70-79 and ≥80 years. Cranial fractures (44.8%) and subdural haematomas (42.6%) were the most common TBIs. Independent from the type of TBI the group of patients with operative treatment declined with rising age. Subgroup analysis of patients with critical TBI (AISHead=5) revealed standardised mortality ratios (SMRs) of 0.81 (95% CI 0.75-0.87) in case of operative treatment (n=1201) and 1.13 (95% CI 1.09-1.18) in case of non-operative treatment (n=1096). All age groups ≥60 years showed significantly reduced SMRs in case of operative treatment. Across all age groups the group of patients with low/moderate disability according to the GOS (4 or 5 points) was higher in case of operative treatment. Results of this retrospective observational study have to be interpreted cautiously. However, good outcome after TBI with severe space-occupying haemorrhage is more frequent in patients with operative treatment across all age groups. Age alone should not be the reason for limited care or denial of operative intervention.

  17. 78 FR 57374 - Northern Indiana Public Service Company v. Midcontinent Independent System Operator, Inc., PJM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... Energy Regulatory Commission Northern Indiana Public Service Company v. Midcontinent Independent System... CFR 385.206 (2013), Northern Indiana Public Service Company (Complainant) filed a formal complaint... and is available for review in the Commission's Public Reference Room in Washington, DC. There is an...

  18. Intuitive operability evaluation of surgical robot using brain activity measurement to determine immersive reality.

    PubMed

    Miura, Satoshi; Kobayashi, Yo; Kawamura, Kazuya; Seki, Masatoshi; Nakashima, Yasutaka; Noguchi, Takehiko; Kasuya, Masahiro; Yokoo, Yuki; Fujie, Masakatsu G

    2012-01-01

    Surgical robots have improved considerably in recent years, but intuitive operability, which represents user inter-operability, has not been quantitatively evaluated. Therefore, for design of a robot with intuitive operability, we propose a method to measure brain activity to determine intuitive operability. The objective of this paper is to determine the master configuration against the monitor that allows users to perceive the manipulator as part of their own body. We assume that the master configuration produces an immersive reality experience for the user of putting his own arm into the monitor. In our experiments, as subjects controlled the hand controller to position the tip of the virtual slave manipulator on a target in a surgical simulator, we measured brain activity through brain-imaging devices. We performed our experiments for a variety of master manipulator configurations with the monitor position fixed. For all test subjects, we found that brain activity was stimulated significantly when the master manipulator was located behind the monitor. We conclude that this master configuration produces immersive reality through the body image, which is related to visual and somatic sense feedback.

  19. 77 FR 37032 - Capacity Deliverability Across the Midwest; Independent Transmission System Operator, Inc.; PJM...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... Interconnection, L.L.C. Seam; Notice Establishing Comment Period On June 11, 2012, the Commission issued a notice... Operator, Inc./PJM Interconnection, L.L.C. Seam.'' 139 FERC 61,200 (2012). Notice is hereby given...

  20. Structure of the isotropic transport operators in three independent space variables

    NASA Technical Reports Server (NTRS)

    Abu-Shumays, I. K.; Bareiss, E. H.

    1969-01-01

    Based on the idea of separation of variables, a spectral theory for the three-dimensional, stationary, isotropic transport operator in a vector space of complex-valued Borel functions results in continuous sets of regular and generalized eigenfunctions.

  1. Final Report: Independent Design Review, Celanese Fiber Operations Superfund Site, Shelby, North Carolina, EPA Region 4

    EPA Pesticide Factsheets

    The Celanese site is located in Shelby, North Carolina. Operation of the P&T system was discontinued on a trial basis for two years to evaluate monitored natural attenuation as a potential ground water remedy.

  2. Robust Non-Rigid Registration to Capture Brain Shift from Intra-Operative MRI

    PubMed Central

    Clatz, Olivier; Delingette, Hervé; Talos, Ion-Florin; Golby, Alexandra J.; Kikinis, Ron; Jolesz, Ferenc A.; Ayache, Nicholas; Warfield, Simon K.

    2006-01-01

    We present a new algorithm to register 3D pre-operative Magnetic Resonance (MR) images to intra-operative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method (FEM) in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3D image registration in 35 seconds (including the image update time) on a heterogeneous cluster of 15 PCs. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity. PMID:16279079

  3. Predicting Mortality and Independence at Discharge in the Aging Traumatic Brain Injury Population Using Data Available at Admission.

    PubMed

    Miller, Preston R; Chang, Michael C; Hoth, J Jason; Hildreth, Amy N; Wolfe, Stacey Q; Gross, Jessica L; Martin, R Shayn; Carter, Jeffrey E; Meredith, J Wayne; D'Agostino, Ralph

    2017-04-01

    Aging worsens outcome in traumatic brain injury (TBI), but available studies may not provide accurate outcomes predictions due to confounding associated injuries. Our goal was to develop a predictive tool using variables available at admission to predict outcomes related to severity of brain injury in aging patients. Characteristics and outcomes of blunt trauma patients, aged 50 or older, with isolated TBI, in the National Trauma Data Bank (NTDB), were evaluated. Equations predicting survival and independence at discharge (IDC) were developed and validated using patients from our trauma registry, comparing predicted with actual outcomes. Logistic regression for survival and IDC was performed in 57,588 patients using age, sex, Glasgow Coma Scale score (GCS), and Revised Trauma Score (RTS). All variables were independent predictors of outcome. Two models were developed using these data. The first included age, sex, and GCS. The second substituted RTS for GCS. C statistics from the models for survival and IDC were 0.90 and 0.82 in the GCS model. In the RTS model, C statistics were 0.80 and 0.67. The use of GCS provided better discrimination and was chosen for further examination. Using a predictive equation derived from the logistic regression model, outcome probabilities were calculated for 894 similar patients from our trauma registry (January 2012 to March 2016). The survival and IDC models both showed excellent discrimination (p < 0.0001). Survival and IDC generally decreased by decade: age 50 to 59 (80% IDC, 6.5% mortality), 60 to 69 (82% IDC, 7.0% mortality), 70 to 79 (76% IDC, 8.9% mortality), and 80 to 89 (67% IDC, 13.4% mortality). These models can assist in predicting the probability of survival and IDC for aging patients with TBI. This provides important data for loved ones of these patients when addressing goals of care. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. ATP inhibition of a mouse brain large-conductance K+ (mslo) channel variant by a mechanism independent of protein phosphorylation

    PubMed Central

    Clark, Alan G; Hall, Sarah K; Shipston, Michael J

    1999-01-01

    We investigated the effect of ATP in the regulation of two closely related cloned mouse brain large conductance calcium- and voltage-activated potassium (BK) channel α-subunit variants, expressed in human embryonic kidney (HEK 293) cells, using the excised inside-out configuration of the patch-clamp technique.The mB2 BK channel α-subunit variant expressed alone was potently inhibited by application of ATP to the intracellular surface of the patch with an IC50 of 30 μM. The effect of ATP was largely independent of protein phosphorylation events as the effect of ATP was mimicked by the non-hydrolysable analogue 5′-adenylylimidodiphosphate (AMP-PNP) and the inhibitory effect of ATPγS was reversible.In contrast, under identical conditions, direct nucleotide inhibition was not observed in the closely related mouse brain BK channel α-subunit variant mbr5. Furthermore, direct nucleotide regulation was not observed when mB2 was functionally coupled to regulatory β-subunits.These data suggest that the mB2 α-subunit splice variant could provide a dynamic link between cellular metabolism and cell excitability. PMID:10066921

  5. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images

    PubMed Central

    Peters, James F.; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain. PMID:28203153

  6. Bold-Independent Computational Entropy Assesses Functional Donut-Like Structures in Brain fMRI Images.

    PubMed

    Peters, James F; Ramanna, Sheela; Tozzi, Arturo; İnan, Ebubekir

    2017-01-01

    We introduce a novel method for the measurement of information level in fMRI (functional Magnetic Resonance Imaging) neural data sets, based on image subdivision in small polygons equipped with different entropic content. We show how this method, called maximal nucleus clustering (MNC), is a novel, fast and inexpensive image-analysis technique, independent from the standard blood-oxygen-level dependent signals. MNC facilitates the objective detection of hidden temporal patterns of entropy/information in zones of fMRI images generally not taken into account by the subjective standpoint of the observer. This approach befits the geometric character of fMRIs. The main purpose of this study is to provide a computable framework for fMRI that not only facilitates analyses, but also provides an easily decipherable visualization of structures. This framework commands attention because it is easily implemented using conventional software systems. In order to evaluate the potential applications of MNC, we looked for the presence of a fourth dimension's distinctive hallmarks in a temporal sequence of 2D images taken during spontaneous brain activity. Indeed, recent findings suggest that several brain activities, such as mind-wandering and memory retrieval, might take place in the functional space of a four dimensional hypersphere, which is a double donut-like structure undetectable in the usual three dimensions. We found that the Rényi entropy is higher in MNC areas than in the surrounding ones, and that these temporal patterns closely resemble the trajectories predicted by the possible presence of a hypersphere in the brain.

  7. [Median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of hand].

    PubMed

    Ma, Shanjun; Zhou, Tianjian

    2014-05-01

    To evaluate the effectiveness of the median nerve constrictive operation combined with tendon transfer to treat the brain paralysis convulsive deformity of the hand. The clinical data from 21 cases with brain paralysis convulsive deformity of the hand were analyzed retrospectively between August 2009 and April 2012. Of them, there were 13 males and 8 females with an average age of 15 years (range, 10-29 years). The causes of the convulsive cerebral palsy included preterm deliveries in 11 cases, hypoxia asphyxia in 7, traumatic brain injury in 2, and encephalitis sequela in 1. The disease duration was 2-26 years (mean, 10.6 years). All the 21 patients had cock waists, crooking fingers, and contracture of adductors pollicis, 12 had the forearm pronation deformity. According to Ashworth criteria, there were 2 cases at level I, 5 cases at level II, 8 cases at level III, 4 cases at level IV, and 2 cases at level V. All patients had no intelligence disturbances. The forearm X-ray film showed no bone architectural changes before operation. The contraction of muscle and innervation was analyzed before operation. The median nerve constrictive operation combined with tendon transfer was performed. The functional activities and deformity improvement were evaluated during follow-up. After operation, all the patients' incision healed by first intension, without muscle atrophy and ischemic spasm. All the 21 cases were followed up 1.5-4.5 years (mean, 2.3 years). No superficial sensory loss occurred. The effectiveness was excellent in 13 cases, good in 6 cases, and poor in 2 cases, with an excellent and good rate of 90.4% at last follow-up. The median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of the hand can remove and prevent the recurrence of spasm, achieve the orthopedic goals, to assure the restoration of motor function and the improvement of the life quality.

  8. 77 FR 24950 - Midwest Independent Transmission, System Operator, Inc.; Supplemental Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ..., these commitments are made per operating procedures and guidelines regardless of expected or actual... Procedures and guidelines. ] b. Please identify all Business Practice Manuals that are relevant to Voltage... early 2010. The increase has been evident and sustained through November 2011 based on recurring...

  9. Independent evaluation plan for radiac set AN/VDR-1() Operational Test IIA (OT IIA)

    SciTech Connect

    Not Available

    1980-02-01

    The AN/VDR-1() is being developed in response to a DA approved Qualitative Materiel Requirement (QMR) dated 3 March 1971. The radiac system must provide a means of conducting both dismounted and vehicular radiological surveys and for performing radiological monitoring of personnel and equipment. The system will replace both the IM-174/PD and IM-174A/PD radiacmeters and may replace the AN/PDR-27() radiac set. This system is not envisioned for use as an aerial survey meter, since the AN/ADR-6 is currently under development for that specific task. The system will be operated by the individual soldier. A driver should be able to operate it during vehicular radiological surveys. The system will be a TOE issue item to Army units. The equipment will not normally be pooled at higher echelons, except as maintenance floats. The basis of issue will be one system per platoon, company headquarters and subunit requiring a capability to detect low or high level contamination (e.g., medical section). The system will be operated in various climatic and weather conditions. The system will provide the commander with data concerning gamma dose rates in areas contaminated by fallout, neutron-induced gamma activity or radiological agents. This data will assist in the planning of tactical operations and medical monitoring of radiological casualties.

  10. Brain and mind operational architectonics and man-made "machine" consciousness.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Neves, Carlos F H

    2009-05-01

    To build a true conscious robot requires that a robot's "brain" be capable of supporting the phenomenal consciousness as human's brain enjoys. Operational Architectonics framework through exploration of the temporal structure of information flow and inter-area interactions within the network of functional neuronal populations [by examining topographic sharp transition processes in the scalp electroencephalogram (EEG) on the millisecond scale] reveals and describes the EEG architecture which is analogous to the architecture of the phenomenal world. This suggests that the task of creating the "machine" consciousness would require a machine implementation that can support the kind of hierarchical architecture found in EEG.

  11. Operator experience determines performance in a simulated computer-based brain tumor resection task.

    PubMed

    Holloway, Terrell; Lorsch, Zachary S; Chary, Michael A; Sobotka, Stanislaw; Moore, Maximillian M; Costa, Anthony B; Del Maestro, Rolando F; Bederson, Joshua

    2015-11-01

    Develop measures to differentiate between experienced and inexperienced neurosurgeons in a virtual reality brain surgery simulator environment. Medical students (n = 71) and neurosurgery residents (n = 12) completed four simulated Glioblastoma multiforme resections. Simulated surgeries took place over four days with intermittent spacing in between (average time between surgeries of 4.77 ± 0.73 days). The volume of tumor removed (cc), volume of healthy brain removed (cc), and instrument path length (mm) were recorded. Additionally, surgical effectiveness (% tumor removed divided by % healthy brain removed) and efficiency (% tumor removed divided by instrument movement in mm) were calculated. Performance was compared (1) between groups, and (2) for each participant over time to assess the learning curve. In addition, the effect of real-time instruction ("coaching") was assessed with a randomly selected group of medical students. Neurosurgery residents removed less healthy brain, were more effective in removing tumor and sparing healthy brain tissue, required less instrument movement, and were more efficient in removing tumor tissue than medical students. Medical students approached the resident level of performance over serial sessions. Coached medical students showed more conservative surgical behavior, removing both less tumor and less healthy brain. In sum, neurosurgery residents removed more tumor, removed less healthy brain, and required less instrument movement than medical students. Coaching modified medical student performance. Virtual Reality brain surgery can differentiate operators based on both recent and long-term experience and may be useful in the acquisition and assessment of neurosurgical skills. Coaching alters the learning curve of naïve inexperienced individuals.

  12. Method of independently operating a group of stages within a diffusion cascade

    DOEpatents

    Benedict, Manson; Fruit, Allen J.; Levey, Horace B.

    1976-06-08

    1. A method of operating a group of the diffusion stages of a productive diffusion cascade with countercurrent flow, said group comprising a top and a bottom stage, which comprises isolating said group from said cascade, circulating the diffused gas produced in said top stage to the feed of said bottom stage while at the same time circulating the undiffused gas from said bottom stage to the feed of said top stage whereby major changes in

  13. Operative length independently affected by surgical team size: data from 2 Canadian hospitals.

    PubMed

    Zheng, Bin; Panton, Ormond N M; Al-Tayeb, Thamer A

    2012-12-01

    Knowledge of the composition of a surgical team is the premise for studying efficiency inside the operating room. To investigate the team composition in general surgery procedures, we retrospectively reviewed procedures performed by an expert general surgeon in 2007-08 at 2 tertiary hospitals. For each patient, demographic characteristics, procedure type, team members and procedure length were extracted from intraoperative nursing records. We assessed procedure complexity using a calculated index. Multiple logistic regressions were performed to assess the association between procedure length and team size after adjusting for procedure complexity and patient condition. For the 587 procedures reviewed, the mean procedure length was 88 (standard deviation [SD] 51) minutes. On average, 8 team members (range 4-14), including surgeons, anesthesiologists, nurses and other specialists, were involved in each procedure. Only 47 (8%) procedures were performed by 1 surgeon. Most were performed by 2 (295 [50%]) or 3 surgeons (214 [36%]). Half the team members were nurses (mean 4, range 1-7). Both the complexity of the operation and the team size affected the procedure length significantly. When procedure complexity and patient condition were constant, adding 1 team member predicted a 7-minute increase in procedure length. This study demonstrates that a frequent change of core team members has a negative impact on surgical performance. Management strategies need to improve to optimize team efficiency in the operating room.

  14. Operative length independently affected by surgical team size: data from 2 Canadian hospitals

    PubMed Central

    Zheng, Bin; Panton, Ormond N.M.; Al-Tayeb, Thamer A.

    2012-01-01

    Background Knowledge of the composition of a surgical team is the premise for studying efficiency inside the operating room. Methods To investigate the team composition in general surgery procedures, we retrospectively reviewed procedures performed by an expert general surgeon in 2007–08 at 2 tertiary hospitals. For each patient, demographic characteristics, procedure type, team members and procedure length were extracted from intraoperative nursing records. We assessed procedure complexity using a calculated index. Multiple logistic regressions were performed to assess the association between procedure length and team size after adjusting for procedure complexity and patient condition. Results For the 587 procedures reviewed, the mean procedure length was 88 (standard deviation [SD] 51) minutes. On average, 8 team members (range 4–14), including surgeons, anesthesiologists, nurses and other specialists, were involved in each procedure. Only 47 (8%) procedures were performed by 1 surgeon. Most were performed by 2 (295 [50%]) or 3 surgeons (214 [36%]). Half the team members were nurses (mean 4, range 1–7). Both the complexity of the operation and the team size affected the procedure length significantly. When procedure complexity and patient condition were constant, adding 1 team member predicted a 7-minute increase in procedure length. Conclusion This study demonstrates that a frequent change of core team members has a negative impact on surgical performance. Management strategies need to improve to optimize team efficiency in the operating room. PMID:23177519

  15. Independent Verification of Research Reactor Operation (Analysis of the Georgian IRT-M Reactor by the Isotope Ratio Method)

    SciTech Connect

    Cliff, John B.; Frank, Douglas P.; Gerlach, David C.; Gesh, Christopher J.; Little, Winston W.; Reid, Bruce D.; Tsiklauri, Georgi V.; Abramidze, Sh; Rostomashvili, Z.; Kiknadze, G.; Dzhavakhishvily, O.; Nabakhtiani, G.

    2010-08-11

    The U.S. Department of Energy’s Office of Nonproliferation and International Security (NA-24) develops technologies to aid in implementing international nuclear safeguards. The Isotope Ratio Method (IRM) was successfully developed in 2005 – 2007 by Pacific Northwest National Laboratory (PNNL) and the Republic of Georgia’s Andronikashvili Institute of Physics as a generic technology to verify the declared operation of water-moderated research reactors, independent of spent fuel inventory. IRM estimates the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of trace impurity elements in non-fuel reactor components.The Isotope Ratio Method is a technique for estimating the energy produced over the operating lifetime of a fission reactor by measuring the ratios of the isotopes of impurity elements in non-fuel reactor components.

  16. Exact Virasoro blocks from Wilson lines and background-independent operators

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, A. Liam; Kaplan, Jared; Li, Daliang; Wang, Junpu

    2017-07-01

    Aspects of black hole thermodynamics and information loss can be derived as a consequence of Virasoro symmetry. To bolster the connection between Virasoro conformal blocks and AdS3 quantum gravity, we study sl(2) Chern-Simons Wilson line networks and revisit the idea that they compute a variety of CFT2 observables, including Virasoro OPE blocks, exactly. We verify this in the semiclassical large central charge limit and to low orders in a perturbative 1 /c expansion. Wilson lines connecting the boundary to points in the bulk play a natural role in bulk reconstruction. Because quantum gravity in AdS3 is rigidly fixed by Virasoro symmetry, we argue that sl(2) Wilson lines provide building blocks for background independent bulk reconstruction. In particular, we show explicitly that they automatically `know' about the uniformizing coordinates appropriate to any background state.

  17. Estimation of intra-operative brain shift based on constrained Kalman filter.

    PubMed

    Shakarami, M; Suratgar, A A; Talebi, H A

    2015-03-01

    In this study, the problem of estimation of brain shift is addressed by which the accuracy of neuronavigation systems can be improved. To this end, the actual brain shift is considered as a Gaussian random vector with a known mean and an unknown covariance. Then, brain surface imaging is employed together with solutions of linear elastic model and the best estimation is found using constrained Kalman filter (CKF). Moreover, a recursive method (RCKF) is presented, the computational cost of which in the operating room is significantly lower than CKF, because it is not required to compute inverse of any large matrix. Finally, the theory is verified by the simulation results, which show the superiority of the proposed method as compared to one existing method. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts’ law

    NASA Astrophysics Data System (ADS)

    Willett, Francis R.; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Pandarinath, Chethan; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.

    2017-04-01

    Objective. Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts’ law: \\text{MT}=a+b{{log}2}(D/R) (where MT is movement time, D is target distance, R is target radius, and a,~b are parameters). Fitts’ law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio D/R ) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to D/R ). Approach. Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts’ law. Main results. We found that movement times were better described by the equation \\text{MT}=a+bD+c{{R}-2} , which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the D/R ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user’s motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. Significance. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts’ law-like relationship to iBCI movements may require

  19. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law.

    PubMed

    Willett, Francis R; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Pandarinath, Chethan; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu

    2017-04-01

    Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non

  20. Operant behavior to obtain palatable food modifies ERK activity in the brain reward circuit.

    PubMed

    Guegan, Thomas; Cutando, Laura; Gangarossa, Giuseppe; Santini, Emanuela; Fisone, Gilberto; Martinez, Albert; Valjent, Emmanuel; Maldonado, Rafael; Martin, Miquel

    2013-03-01

    Food palatability produces behavioral modifications that resemble those induced by drugs of abuse. Palatability-induced behavioral changes require both, the activation of the endogenous cannabinoid system, and changes in structural plasticity in neurons of the brain reward pathway. The ERK intracellular pathway is activated by CB1 receptors (CB1-R) and plays a crucial role in neuroplasticity. We investigated the activation of the ERK signaling cascade in the mesocorticolimbic system induced by operant training to obtain highly palatable isocaloric food and the involvement of the CB1-R in these responses. Using immunofluorescence techniques, we analyzed changes in ERK intracellular pathway activation in the mesocorticolimbic system of wild-type and CB1 knockout mice (CB1-/-) trained on an operant paradigm to obtain standard, highly caloric or highly palatable isocaloric food. Operant training for highly palatable isocaloric food, but not for standard or highly caloric food, produced a robust activation of the ERK signaling cascade in the same brain areas where this training modified structural plasticity. These changes induced by the operant training were absent in CB1-/-. We can conclude that the activation of the ERK pathway is associated to the neuroplasticity induced by operant training for highly palatable isocaloric food and might be involved in CB1-R mediated alterations in behavior and structural plasticity.

  1. The accumulation of brain water-free sodium is associated with ischemic damage independent of the blood pressure in female rats.

    PubMed

    Sumiyoshi, Manabu; Kitazato, Keiko T; Yagi, Kenji; Miyamoto, Takeshi; Kurashiki, Yoshitaka; Matsushita, Nobuhisa; Kinouchi, Tomoya; Kuwayama, Kazuyuki; Satomi, Junichiro; Nagahiro, Shinji

    2015-08-07

    Estrogen deficiency worsens ischemic stroke outcomes. In ovariectomized (OVX(+)) rats fed a high-salt diet (HSD), an increase in the body Na(+)/water ratio, which characterizes water-free Na(+) accumulation, was associated with detrimental vascular effects independent of the blood pressure (BP). We hypothesized that an increase in brain water-free Na(+) accumulation is associated with ischemic brain damage in OVX(+)/HSD rats. To test our hypothesis we divided female Wistar rats into 4 groups, OVX(+) and OVX(-) rats fed HSD or a normal diet (ND), and subjected them to transient cerebral ischemia. The brain Na(+)/water ratio was increased even in OVX(+)/ND rats and augmented in OVX(+)/HSD rats. The increase in the brain Na(+)/water ratio was positively correlated with expansion of the cortical infarct volume without affecting the BP. Interestingly, OVX(+) was associated with the decreased expression of ATP1α3, a subtype of the Na(+) efflux pump. HSD increased the expression of brain Na(+) influx-related molecules and the mineralocorticoid receptor (MR). The pretreatment of OVX(+)/HSD rats with the MR antagonist eplerenone reduced brain water-free Na(+) accumulation, up-regulated ATP1α3, down-regulated MR, and reduced the cortical infarct volume. Our findings show that the increase in the brain Na(+)/water ratio elicited by estrogen deficiency or HSD is associated with ischemic brain damage BP-independently, suggesting the importance of regulating the accumulation of brain water-free Na(+). The up-regulation of ATP1α3 and the down-regulation of MR may provide a promising therapeutic strategy to attenuate ischemic brain damage in postmenopausal women. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Humanlike robot hands controlled by brain activity arouse illusion of ownership in operators

    NASA Astrophysics Data System (ADS)

    Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi

    2013-08-01

    Operators of a pair of robotic hands report ownership for those hands when they hold image of a grasp motion and watch the robot perform it. We present a novel body ownership illusion that is induced by merely watching and controlling robot's motions through a brain machine interface. In past studies, body ownership illusions were induced by correlation of such sensory inputs as vision, touch and proprioception. However, in the presented illusion none of the mentioned sensations are integrated except vision. Our results show that during BMI-operation of robotic hands, the interaction between motor commands and visual feedback of the intended motions is adequate to incorporate the non-body limbs into one's own body. Our discussion focuses on the role of proprioceptive information in the mechanism of agency-driven illusions. We believe that our findings will contribute to improvement of tele-presence systems in which operators incorporate BMI-operated robots into their body representations.

  3. Estimation of intra-operative brain shift using a tracked laser range scanner.

    PubMed

    Ding, Siyi; Miga, Michael I; Thompson, Reid C; Dumpuri, Prashanth; Cao, Aize; Dawant, Benoit M

    2007-01-01

    Intra-operative brain shift limits the usefulness of image-guided neurosurgery systems (IGNS), which are based on pre-operative images. Methods that are being developed to address this problem need intra-operative measurements as input. In this work, we present an intra-operative surface shift measurement technique that relies on a tracked 3D laser range scanner. This scanner acquires both 3D range data and 2D images, which are co-registered. We compare two methods to derive displacements at every point in the field of view. The first one relies on the registration of the 2D images; the second relies on the direct 3D registration of the 3D range data. Our results, based on five data sets, show that the 2D method is preferable.

  4. On the Efficiency of the New York Independent System OperatorMarket for Transmission Congestion Contracts

    SciTech Connect

    Siddiqui, Afzal S.; Bartholomew, Emily S.; Marnay, Chris; Oren,Shmuel S.

    2003-04-01

    The physical nature of electricity generation and deliverycreates special problems for the design of efficient markets, notably theneed to manage delivery in real time and the volatile congestion andassociated costs that result. Proposals for the operation of thederegulated electricity industry tend towards one of two paradigms:centralized and decentralized. Transmission congestion management can beimplemented in the more centralized point-to-point approach, a in NewYork state, where derivative transmission congestion contracts (TCCs) aretraded, or in the more decentralized flowgate-based approach. While it iswidely accepted that theoretically TCCs have attractive properties ashedging instruments against congestion cost uncertainty, whetherefficient markets for them can be established in practice has beenquestioned. Based on an empirical analysis of publicly available datafrom years 2000 and 2001, it appears that New York TCCs providedmarketparticipants with a potentially effective hedge against volatilecongestion rents. However, the prices paid for TCCs systematicallydiverged from the resulting congestion rents for distant locations and athigh prices. The price paid for the hedge not being in line with thecongestion rents, i.e. unreasonably high risk premiums are being paid,suggests an inefficient market. The low liquidity of TCC markets and thedeviation of TCC feasibility requirements from actual energy flows arepossible explanations.

  5. Compensatory Cognitive Training for Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn Veterans With Mild Traumatic Brain Injury.

    PubMed

    Storzbach, Daniel; Twamley, Elizabeth W; Roost, Mai S; Golshan, Shahrokh; Williams, Rhonda M; OʼNeil, Maya; Jak, Amy J; Turner, Aaron P; Kowalski, Halina M; Pagulayan, Kathleen F; Huckans, Marilyn

    The purpose of the study was to evaluate the efficacy of group-based compensatory cognitive training (CCT) for Operation Enduring Freedom (OEF)/Operation Iraqi Freedom(OIF)/Operation New Dawn (OND) Veterans with a history of mild traumatic brain injury. One hundred nineteen OEF/OIF/OND Veterans with history of mild traumatic brain injury participated at 3 sites, and 50 of the Veterans were randomized to CCT group, while 69 Veterans were randomized to the usual care control group. The CCT group participated in 10 weeks of CCT. Both CCT and usual care groups were assessed at baseline, 5 weeks (midway through CCT), 10 weeks (immediately following CCT), and 15 weeks (5-week follow-up) on measures of subjective cognitive complaints, use of cognitive strategies, psychological functioning, and objective cognitive performance. Veterans who participated in CCT reported significantly fewer cognitive and memory difficulties and greater use of cognitive strategies. They also demonstrated significant improvements on neurocognitive tests of attention, learning, and executive functioning, which were 3 of the cognitive domains targeted in CCT. Findings indicate that training in compensatory cognitive strategies facilitates behavioral change (ie, use of cognitive strategies) as well as both subjective and objective improvements in targeted cognitive domains.

  6. Stochastic optimal control as a theory of brain-machine interface operation.

    PubMed

    Lagang, Manuel; Srinivasan, Lakshminarayan

    2013-02-01

    The closed-loop operation of brain-machine interfaces (BMI) provides a framework to study the mechanisms behind neural control through a restricted output channel, with emerging clinical applications to stroke, degenerative disease, and trauma. Despite significant empirically driven improvements in closed-loop BMI systems, a fundamental, experimentally validated theory of closed-loop BMI operation is lacking. Here we propose a compact model based on stochastic optimal control to describe the brain in skillfully operating canonical decoding algorithms. The model produces goal-directed BMI movements with sensory feedback and intrinsically noisy neural output signals. Various experimentally validated phenomena emerge naturally from this model, including performance deterioration with bin width, compensation of biased decoders, and shifts in tuning curves between arm control and BMI control. Analysis of the model provides insight into possible mechanisms underlying these behaviors, with testable predictions. Spike binning may erode performance in part from intrinsic control-dependent constraints, regardless of decoding accuracy. In compensating decoder bias, the brain may incur an energetic cost associated with action potential production. Tuning curve shifts, seen after the mastery of a BMI-based skill, may reflect the brain's implementation of a new closed-loop control policy. The direction and magnitude of tuning curve shifts may be altered by decoder structure, ensemble size, and the costs of closed-loop control. Looking forward, the model provides a framework for the design and simulated testing of an emerging class of BMI algorithms that seek to directly exploit the presence of a human in the loop.

  7. Observer-independent characterization of sulcal landmarks and depth asymmetry in the central sulcus of the chimpanzee brain.

    PubMed

    Hopkins, W D; Coulon, O; Mangin, J-F

    2010-12-01

    The central sulcus (CS) divides primary motor and sensory cortex in many mammalian brains. Recent studies have shown that experiential factors can influence the volume and lateralization of the CS in both human and nonhuman primates. In this study, we sought to define specific landmarks and the depth of the CS region corresponding to the motor-hand area of chimpanzees for comparison with humans using a novel, observer independent method applied to sample of 32 magnetic resonance images (MRI) scans. Our results showed that the dorsal-ventral location of the motor-hand region is comparable between humans and chimpanzees, though the depth of the CS was significantly greater in humans compared to chimpanzees. We further found that CS area corresponding to the motor-hand area was significantly larger in the hemisphere contralateral to the chimpanzees preferred hand. The methods employed here offer some potential advantages over traditional region-of-interest in the comparative study of cortical organization and gyrification in primates and are discussed.

  8. A plug-and-play brain-computer interface to operate commercial assistive technology.

    PubMed

    Thompson, David E; Gruis, Kirsten L; Huggins, Jane E

    2014-03-01

    To determine if a brain-computer interface (BCI) could be used as a plug-and-play input device to operate commercial assistive technology (AT), and to quantify the performance impact of such operation. Using a hardware device designed in our lab, participants (11 with amyotrophic lateral sclerosis, 22 controls) were asked to operate two devices using a BCI. Results were compared to traditional BCI operation by the same users. Performance was assessed using both accuracy and BCI utility, a throughput metric. 95% confidence bounds on performance differences were developed using a linear mixed model. The observed differences in accuracy and throughput were small and not statistically significant. The confidence bounds indicate that if there is a performance impact of using a BCI to control an AT device, the impact could easily be overcome by the benefits of the AT device itself. BCI control of AT devices is possible, and the performance difference appears to be very small. BCI designers are encouraged to incorporate standard outputs into their design to enable future users to interface with familiar AT devices. Brain-computer interface (BCI) control of assistive technology (AT) devices is possible. The performance impact of such control is low when BCIs are commercially available, AT providers can use a BCI as an input device to existing AT devices already in use by their clients.

  9. Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy.

    PubMed

    Kochanek, Patrick M; Bramlett, Helen M; Shear, Deborah A; Dixon, C Edward; Mondello, Stefania; Dietrich, W Dalton; Hayes, Ronald L; Wang, Kevin K W; Poloyac, Samuel M; Empey, Philip E; Povlishock, John T; Mountney, Andrea; Browning, Megan; Deng-Bryant, Ying; Yan, Hong Q; Jackson, Travis C; Catania, Michael; Glushakova, Olena; Richieri, Steven P; Tortella, Frank C

    2016-03-15

    Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.

  10. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data.

    PubMed

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of (18)F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of (18)F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Incomplete revascularization after coronary artery bypass graft operations is independently associated with worse long-term survival.

    PubMed

    Mocanu, Valentin; Buth, Karen J; Kelly, Ryan; Légaré, Jean-Francois

    2014-08-01

    Complete revascularization (CR) has been suggested to provide benefits to both early and long-term outcomes, but the magnitude of the benefit and frequency of incomplete revascularization (IR) after coronary artery bypass graft operations is rarely explored and is the subject of the present study. All patients who underwent isolated bypass operations (March 1995 to September 2007) at the Queen Elizabeth II Health Sciences Center (Halifax, NS, Canada) were identified. Revascularization was considered complete if each significantly diseased territory received at least 1 graft. Clinical characteristics of the CR and IR groups were examined to determine barriers of CR. A nonparsimonious Cox proportion model and survival curves were constructed to examine the association of CR and death after adjusting for clinically relevant covariates. A total of 8,570 patients underwent isolated nonredo bypass operations. IR, based on our strict definition, occurred in 19% of the patients. The territories most commonly affected were the right coronary and circumflex coronary territories. After adjustment for relevant clinical differences, IR was a significant independent predictor of long-term mortality (hazard ratio, 1.2; 95% confidence interval, 1.1 to 1.3). IR was also a significant independent predictor of hospital readmission for cardiac reasons after discharge (hazard ratio, 1.2; 95% confidence interval, 1.0 to 1.3). Despite advances in surgical revascularization, IR can occur in up to 19% of patients. IR significantly affects long-term death and readmission to hospital for cardiac reasons, and avoiding IR should therefore be a priority for surgeons during preoperative planning. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. [Low field intra-operative magnetic resonance imaging for brain tumour surgery: preliminary experience].

    PubMed

    Roldán, Pedro; García, Sergio; González, Josep; Reyes, Luis Alberto; Torales, Jorge; Valero, Ricard; Oleaga, Laura; Enseñat, Joaquim

    Intra-operative magnetic resonance imaging (iMRI) is a recently introduced tool in the most advanced neurosurgical operating rooms worldwide. We present our preliminary experience in brain tumour surgery with low field PoleStar N30® intraoperative MRI since its introduction in 2013 in the Barcelona Clinic Hospital. A prospective non-randomised study was conducted on cases operated on using iMRI and intention of complete removal up to October 2015. A record was made of the data as regards surgical times, resection rates, histological diagnosis, hospital stay, and survival rates during follow-up. The study included 50 patients, with a mean age of 55 years (±13.7), a preoperative mean Karnofsky of 92 (being 81 post-operatively), and a mean follow-up of 10.5 months (±6.5). There were 26% re-operations due to recurrence. High-grade gliomas were reported in 56%, low-grade gliomas in 24%, and 20% "Other" tumours. Overall hospital stay was 10 days (±4.5). Depending on the histologiacl diagnosis, the "Others" group had a longer hospital stay. Overall, there were 52% complete removal, 18% of maximum removals, and 30% of partial removals. The overall survival rates during follow-up was 84%. iMRI is a safe and effective tool for brain tumour surgery. Its use allows an increase in resection rates, and minimises post-operative complications. Its implementation involves an increase in surgical time, which improves with the characteristic learning curve. More studies are needed to establish its role in the long-term survival of patients. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Post-operative assessment in Deep Brain Stimulation based on multimodal images: registration workflow and validation

    NASA Astrophysics Data System (ADS)

    Lalys, Florent; Haegelen, Claire; Abadie, Alexandre; Jannin, Pierre

    2009-02-01

    Object Movement disorders in Parkinson disease patients may require functional surgery, when medical therapy isn't effective. In Deep Brain Stimulation (DBS) electrodes are implanted within the brain to stimulate deep structures such as SubThalamic Nucleus (STN). This paper describes successive steps for constructing a digital Atlas gathering patient's location of electrodes and contacts for post operative assessment. Materials and Method 12 patients who had undergone bilateral STN DBS have participated to the study. Contacts on post-operative CT scans were automatically localized, based on black artefacts. For each patient, post operative CT images were rigidly registered to pre operative MR images. Then, pre operative MR images were registered to a MR template (super-resolution Collin27 average MRI template). This last registration was the combination of global affine, local affine and local non linear registrations, respectively. Four different studies were performed in order to validate the MR patient to template registration process, based on anatomical landmarks and clinical scores (i.e., Unified Parkinson's disease rating Scale). Visualisation software was developed for displaying into the template images the stimulated contacts represented as cylinders with a colour code related to the improvement of the UPDRS. Results The automatic contact localization algorithm was successful for all the patients. Validation studies for the registration process gave a placement error of 1.4 +/- 0.2 mm and coherence with UPDRS scores. Conclusion The developed visualization tool allows post-operative assessment for previous interventions. Correlation with additional clinical scores will certainly permit to learn more about DBS and to better understand clinical side-effects.

  14. The use of pre-operative brain natriuretic peptides as a predictor of adverse outcomes after cardiac surgery: a systematic review and meta-analysis.

    PubMed

    Litton, Edward; Ho, Kwok M

    2012-03-01

    The objective of this systematic review was to assess whether pre-operative brain natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT pro-BNP) are independent predictors of adverse outcomes after cardiac surgery. MEDLINE, Embase and the Cochrane Controlled Trials Register databases were searched. Eligible studies included observational or randomized control trials measuring natriuretic peptide concentrations before induction of anaesthesia for cardiac surgery. Two investigators independently extracted the data and assessed the validity of the included studies. The predictive ability of pre-operative BNP or NT pro-BNP on mortality, post-operative atrial fibrillation (AF) and intra-aortic balloon pump (IABP) requirement was meta-analysed. The association between BNP or NT pro-BNP and other outcomes was systematically summarized. A total of 4933 patients from 22 studies were considered in the systematic review. Ten studies with one or more outcomes of interest were included in the meta-analyses. The strength of association between pre-operative natriuretic peptide levels and adverse outcomes after surgery was variable, as was the size and quality of the included studies. The summary areas under the receiver operating characteristic curve for mortality, post-operative AF and post-operative IABP requirement were 0.61 (95% confidence interval [CI] 0.51-0.70), 0.61 (95% CI 0.58-0.64) and 0.81 (95% CI 0.73-0.89), respectively. With the limited data available, the associations between pre-operative natriuretic peptide levels and adverse outcomes after cardiac surgery were moderate. Future studies should assess whether pre-operative natriuretic peptides can provide additional independent predictive information to well-validated prognostic scores of cardiac surgery.

  15. Associations Between Traumatic Brain Injury, Suspected Psychiatric Conditions, and Unemployment in Operation Enduring Freedom/Operation Iraqi Freedom Veterans.

    PubMed

    Pogoda, Terri K; Stolzmann, Kelly L; Iverson, Katherine M; Baker, Errol; Krengel, Maxine; Lew, Henry L; Amara, Jomana H; Meterko, Mark

    2016-01-01

    To examine the relations among demographic characteristics, traumatic brain injury (TBI) history, suspected psychiatric conditions, current neurobehavioral health symptoms, and employment status in Veterans evaluated for TBI in the Department of Veterans Affairs. Retrospective cross-sectional database review of comprehensive TBI evaluations documented between October 2007 and June 2009. Operation Enduring Freedom/Operation Iraqi Freedom Veterans (n = 11 683) who completed a comprehensive TBI evaluation. Veterans Affairs clinicians use the comprehensive TBI evaluations to obtain information about TBI-related experiences, current neurobehavioral symptoms, and to identify suspected psychiatric conditions. Approximately one-third of Veterans in this sample were unemployed, and of these, the majority were looking for work. After simultaneously adjusting for health and deployment-related variables, significant factors associated with unemployment included one or more suspected psychiatric conditions (eg, posttraumatic stress disorder, anxiety, depression), neurobehavioral symptom severity (ie, affective, cognitive, vestibular), former active duty status, injury etiology, age, lower education, and marital status. The associations of these factors with employment status varied by deployment-related TBI severity. Simultaneously addressing health-related, educational, and/or vocational needs may fill a critical gap for helping Veterans readjust to civilian life and achieve their academic and vocational potential.

  16. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  17. Electromagnetic power absorption and temperature changes due to brain machine interface operation.

    PubMed

    Ibrahim, Tamer S; Abraham, Doney; Rennaker, Robert L

    2007-05-01

    To fully understand neural function, chronic neural recordings must be made simultaneously from 10s or 100s of neurons. To accomplish this goal, several groups are developing brain machine interfaces. For these devices to be viable for chronic human use, it is likely that they will need to be operated and powered externally via a radiofrequency (RF) source. However, RF exposure can result in tissue heating and is regulated by the FDA/FCC. This paper provides an initial estimate of the amount of tissue heating and specific absorption rate (SAR) associated with the operation of a brain-machine interface (BMI). The operation of a brain machine interface was evaluated in an 18-tissue anatomically detailed human head mesh using simulations of electromagnetics and bio-heat phenomena. The simulations were conducted with a single chip, as well as with eight chips, placed on the surface of the human brain and each powered at four frequencies (13.6 MHz, 1.0 GHz, 2.4 GHz, and 5.8 GHz). The simulated chips consist of a wire antenna on a silicon chip covered by a Teflon dura patch. SAR values were calculated using the finite-difference time-domain method and used to predict peak temperature changes caused by electromagnetic absorption in the head using two-dimensional bio-heat equation. Results due to SAR alone show increased heating at higher frequencies, with a peak temperature change at 5.8 GHz of approximately 0.018 degrees C in the single-chip configuration and 0.06 degrees C in the eight-chip configuration with 10 mW of power absorption (in the human head) per chip. In addition, temperature elevations due to power dissipation in the chip(s) were studied. Results show that for the neural tissue, maximum temperature rises of 3.34 degrees C in the single-chip configuration and 7.72 degrees C in the eight-chip configuration were observed for 10 mW dissipation in each chip. Finally, the maximum power dissipation allowable in each chip before a 1.0 degrees C temperature

  18. Pre-operative DTI and probabilisitic tractography in four patients with deep brain stimulation for chronic pain.

    PubMed

    Owen, S L F; Heath, J; Kringelbach, M; Green, A L; Pereira, E A C; Jenkinson, N; Jegan, T; Stein, J F; Aziz, T Z

    2008-07-01

    This study aimed to examine, using diffusion tensor imaging (DTI), differences in electrode placement in four patients undergoing deep brain stimulation for chronic neuropathic pain of varying aetiology. A pre-operative DTI was obtained for each patient, who was then implanted with deep brain stimulation electrodes in the periventricular/periaqueductal grey area with good pain relief. Using seeds from the postoperative MRI scan, probabilistic tractography was performed from the pre-operative DTI.

  19. Three independent one-dimensional margins for single-fraction frameless stereotactic radiosurgery brain cases using CBCT

    SciTech Connect

    Zhang, Qinghui; Chan, Maria F.; Burman, Chandra; Song, Yulin; Zhang, Mutian

    2013-12-15

    Purpose: Setting a proper margin is crucial for not only delivering the required radiation dose to a target volume, but also reducing the unnecessary radiation to the adjacent organs at risk. This study investigated the independent one-dimensional symmetric and asymmetric margins between the clinical target volume (CTV) and the planning target volume (PTV) for linac-based single-fraction frameless stereotactic radiosurgery (SRS).Methods: The authors assumed a Dirac delta function for the systematic error of a specific machine and a Gaussian function for the residual setup errors. Margin formulas were then derived in details to arrive at a suitable CTV-to-PTV margin for single-fraction frameless SRS. Such a margin ensured that the CTV would receive the prescribed dose in 95% of the patients. To validate our margin formalism, the authors retrospectively analyzed nine patients who were previously treated with noncoplanar conformal beams. Cone-beam computed tomography (CBCT) was used in the patient setup. The isocenter shifts between the CBCT and linac were measured for a Varian Trilogy linear accelerator for three months. For each plan, the authors shifted the isocenter of the plan in each direction by ±3 mm simultaneously to simulate the worst setup scenario. Subsequently, the asymptotic behavior of the CTV V{sub 80%} for each patient was studied as the setup error approached the CTV-PTV margin.Results: The authors found that the proper margin for single-fraction frameless SRS cases with brain cancer was about 3 mm for the machine investigated in this study. The isocenter shifts between the CBCT and the linac remained almost constant over a period of three months for this specific machine. This confirmed our assumption that the machine systematic error distribution could be approximated as a delta function. This definition is especially relevant to a single-fraction treatment. The prescribed dose coverage for all the patients investigated was 96.1%± 5.5% with an

  20. Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels.

    PubMed

    Branchi, Igor; Curley, James P; D'Andrea, Ivana; Cirulli, Francesca; Champagne, Frances A; Alleva, Enrico

    2013-04-01

    The early social environment has a profound impact on developmental trajectories. Although an impoverished early environment can undermine the acquisition of appropriate social skills, the specific role played by the different components of an individual's early environment in building social competencies has not been fully elucidated. Here we setup an asynchronous communal nesting paradigm in mice to disentangle the influence of maternal care and early peer interactions on adult social behavior and neural systems reportedly involved in the regulation of social interactions. The asynchronous communal nesting consists of three mothers giving birth three days apart, generating three groups of pups - the Old, the Middle and the Young - all raised in a single nest from birth to weaning. We scored the amount of maternal and peer interactions received by these mice and by a fourth group reared under standard conditions. At adulthood, the four experimental groups have been investigated for social behavior in a social interaction test, i.e. facing an unfamiliar conspecific during five 20-min daily encounters, and for oxytocin receptor and brain derived neurotrophic factor (BDNF) levels. Results show that only individuals exposed to high levels of both maternal and peer interactions demonstrated elaborate adult agonistic competencies, i.e. the ability to promptly display a social status, and high BDNF levels in the hippocampus, frontal cortex and hypothalamus. By contrast, only individuals exposed to high levels of peer interactions showed enhanced adult affiliative behavior and enhanced oxytocin receptor levels in selected nuclei of the amygdala. Overall these findings indicate that early interactions with mother and peers independently shape specific facets of adult social behavior and neural systems involved in social interaction.

  1. Hypothermia and rewarming activate a macroglial unfolded protein response independent of hypoxic-ischemic brain injury in neonatal piglets

    PubMed Central

    Lee, Jennifer K.; Wang, Bing; Reyes, Michael; Armstrong, Jillian S.; Kulikowicz, Ewa; Santos, Polan T.; Lee, Jeong-Hoo; Koehler, Raymond C.; Martin, Lee J.

    2016-01-01

    Therapeutic hypothermia provides incomplete neuroprotection after hypoxia-ischemia (HI)-induced brain injury in neonates. We previously showed that cortical neuron and white matter apoptosis are promoted by hypothermia and early rewarming in a piglet model of HI. The unfolded protein response (UPR) may be one of the potential mediators of this cell death. Here, neonatal piglets underwent HI or sham surgery followed by 29 hours of normothermia, 2 hours of normothermia+27 hours of hypothermia or 18 hours of hypothermia+rewarming. Piglets recovered for 29 hours. Immunohistochemistry for endoplasmic reticulum to nucleus signaling-1 protein (ERN1), a marker of UPR activation, was used to determine the ratios of ERN1+ macroglia and neurons in the motor subcortical white matter and cerebral cortex. The ERN1+ macroglia were immunophenotyped as oligodendrocytes and astrocytes by immunofluorescent co-labeling. Temperature (p=0.046) and HI (p<0.001) independently affected the ratio of ERN1+ macroglia. In sham piglets, sustained hypothermia (p=0.011) and rewarming (p=0.004) increased the ERN1+ macroglia ratio above that in normothermia. HI prior to hypothermia diminished the UPR. Ratios of ERN1+ macroglia correlated to white matter apoptotic profile counts in shams (r=0.472; p=0.026), thereby associating UPR activation with white matter apoptosis during hypothermia and rewarming. Accordingly, macroglial cell counts decreased in shams that received sustained hypothermia (p=0.009) or rewarming (p=0.007) compared to those in normothermic shams. HI prior to hypothermia neutralized the macroglial cell loss. Neither HI nor temperature affected ERN1+ neuron ratios. In summary, delayed hypothermia and rewarming activate the macroglial UPR, which is associated with white matter apoptosis. HI may decrease the macroglial endoplasmic reticulum stress response after hypothermia and rewarming. PMID:27622292

  2. Application of a Database-Independent Approach To Assess the Quality of Operational Taxonomic Unit Picking Methods.

    PubMed

    Schloss, Patrick D

    2016-01-01

    Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) allows microbial ecologists to overcome the inconsistencies and biases within bacterial taxonomy and provides a strategy for clustering similar sequences that do not have representatives in a reference database. I have applied the Matthews correlation coefficient to assess the ability of 15 reference-independent and -dependent clustering algorithms to assign sequences to OTUs. This metric quantifies the ability of an algorithm to reflect the relationships between sequences without the use of a reference and can be applied to any data set or method. The most consistently robust method was the average neighbor algorithm; however, for some data sets, other algorithms matched its performance.

  3. Application of a Database-Independent Approach To Assess the Quality of Operational Taxonomic Unit Picking Methods

    PubMed Central

    2016-01-01

    ABSTRACT Assignment of 16S rRNA gene sequences to operational taxonomic units (OTUs) allows microbial ecologists to overcome the inconsistencies and biases within bacterial taxonomy and provides a strategy for clustering similar sequences that do not have representatives in a reference database. I have applied the Matthews correlation coefficient to assess the ability of 15 reference-independent and -dependent clustering algorithms to assign sequences to OTUs. This metric quantifies the ability of an algorithm to reflect the relationships between sequences without the use of a reference and can be applied to any data set or method. The most consistently robust method was the average neighbor algorithm; however, for some data sets, other algorithms matched its performance. PMID:27832214

  4. Stimulus-related independent component and voxel-wise analysis of human brain activity during free viewing of a feature film.

    PubMed

    Lahnakoski, Juha M; Salmi, Juha; Jääskeläinen, Iiro P; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments.

  5. Stimulus-Related Independent Component and Voxel-Wise Analysis of Human Brain Activity during Free Viewing of a Feature Film

    PubMed Central

    Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Lampinen, Jouko; Glerean, Enrico; Tikka, Pia; Sams, Mikko

    2012-01-01

    Understanding how the brain processes stimuli in a rich natural environment is a fundamental goal of neuroscience. Here, we showed a feature film to 10 healthy volunteers during functional magnetic resonance imaging (fMRI) of hemodynamic brain activity. We then annotated auditory and visual features of the motion picture to inform analysis of the hemodynamic data. The annotations were fitted to both voxel-wise data and brain network time courses extracted by independent component analysis (ICA). Auditory annotations correlated with two independent components (IC) disclosing two functional networks, one responding to variety of auditory stimulation and another responding preferentially to speech but parts of the network also responding to non-verbal communication. Visual feature annotations correlated with four ICs delineating visual areas according to their sensitivity to different visual stimulus features. In comparison, a separate voxel-wise general linear model based analysis disclosed brain areas preferentially responding to sound energy, speech, music, visual contrast edges, body motion and hand motion which largely overlapped the results revealed by ICA. Differences between the results of IC- and voxel-based analyses demonstrate that thorough analysis of voxel time courses is important for understanding the activity of specific sub-areas of the functional networks, while ICA is a valuable tool for revealing novel information about functional connectivity which need not be explained by the predefined model. Our results encourage the use of naturalistic stimuli and tasks in cognitive neuroimaging to study how the brain processes stimuli in rich natural environments. PMID:22496909

  6. Diffuse damage in pediatric traumatic brain injury: a comparison of automated versus operator-controlled quantification methods.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Wilde, Elisabeth A; McCauley, Stephen R; Li, Xiaoqi; Merkley, Tricia L; Fearing, Michael A; Newsome, Mary R; Scheibel, Randall S; Hunter, Jill V; Chu, Zili; Levin, Harvey S

    2010-04-15

    This investigation had two main objectives: 1) to assess the comparability of volumes determined by operator-controlled image quantification with automated image analysis in evaluating atrophic brain changes related to traumatic brain injury (TBI) in children, and 2) to assess the extent of diffuse structural changes throughout the brain as determined by reduced volume of a brain structure or region of interest (ROI). Operator-controlled methods used ANALYZE software for segmentation and tracing routines of pre-defined brain structures and ROIs. For automated image analyses, the open-access FreeSurfer program was used. Sixteen children with moderate-to-severe TBI were compared to individually matched, typically developing control children and the volumes of 18 brain structures and/or ROIs were compared between the two methods. Both methods detected atrophic changes but differed in the magnitude of the atrophic effect with the best agreement in subcortical structures. The volumes of all brain structures/ROIs were smaller in the TBI group regardless of method used; overall effect size differences were minimal for caudate and putamen but moderate to large for all other measures. This is reflective of the diffuse nature of TBI and its widespread impact on structural brain integrity, indicating that both FreeSurfer and operator-controlled methods can reliably assess cross-sectional volumetric changes in pediatric TBI. Copyright 2010 Elsevier Inc. All rights reserved.

  7. What's Behind a "+" Sign? Perceiving an Arithmetic Operator Recruits Brain Circuits for Spatial Orienting.

    PubMed

    Mathieu, Romain; Epinat-Duclos, Justine; Sigovan, Monica; Breton, Audrey; Cheylus, Anne; Fayol, Michel; Thevenot, Catherine; Prado, Jérôme

    2017-03-14

    Do mathematical symbols evoke spatial representations? Although behavioral studies have long demonstrated interactions between space and the processing of Arabic digits, how to interpret these results remains controversial. Here, we tested whether activity in regions supporting spatial processing contributes to the processing of symbols conveying fundamental arithmetic concepts-such as operation signs-even in the absence of associated digits. Using functional magnetic resonance imaging, we show that merely perceiving a "+" sign triggers activity in brain regions that support the orienting of spatial attention in adults. Activity in these regions was greater for "+" than for "×" signs, indicating that it is modulated by whether an operator reflects an operation that evokes numerical manipulation (rather than rote memorization). Finally, the degree to which subjects activated a spatial region in response to a "+" sign was correlated with the degree to which subjects benefited from being briefly presented with that sign before having to calculate a single-digit addition problem, an effect termed operator-priming. Therefore, not only are some arithmetic operators linked to spatial intuitions, but such intuitions might also have an important role during arithmetic calculation. More generally, our findings support the view that mathematical symbols inherently evoke spatial representations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Metabolomics Approach to Investigate Estrogen Receptor-Dependent and Independent Effects of o,p'-DDT in the Uterus and Brain of Immature Mice.

    PubMed

    Wang, Dezhen; Zhu, Wentao; Wang, Yao; Yan, Jin; Teng, Miaomiao; Miao, Jiyan; Zhou, Zhiqiang

    2017-05-10

    Previous studies have demonstrated the endocrine disruption of o,p'-DDT. In this study, we used a (1)H NMR based metabolomics approach to investigate the estrogenic effects of o,p'-DDT (300 mg/kg) on the uterus and brain after 3 days of oral gavage administration, and ethynylestradiol (EE, 100 μg/kg) was used as a positive control. A supervised statistical analysis (PLS-DA) indicated that o,p'-DDT exerted both estrogenic receptor-(ER)-dependent and independent effects on the uterus but mainly ER-independent effects on the brain at metabolome levels, which was verified by coexposing with the antiestrogenic ICI 182,780. Four changed metabolites-glycine, choline, fumarate, and phenylalanine-were identified as ER-independent alterations in the uterus, while more metabolites, including γ-aminobutyrate, N-acetyl aspartate, and some amino acids, were disturbed based on the ER-independent mechanism in the brain. Together with biological end points, metabolomics is a promising approach to study potential estrogenic chemicals.

  9. Deployment-related traumatic brain injury among Operation Enduring Freedom/Operation Iraqi Freedom veterans: associations with mental and physical health by gender.

    PubMed

    Iverson, Katherine M; Pogoda, Terri K; Gradus, Jaimie L; Street, Amy E

    2013-03-01

    Traumatic brain injury (TBI) research among Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) veterans has focused primarily on men. We examine associations between probable deployment-related TBI and postdeployment mental and physical health symptoms separately by gender. To identify unique associations of probable TBI with health symptoms, analyses were also conducted separately for veterans with and without probable posttraumatic stress disorder (PTSD). A mail survey, including self-report measures of probable deployment-related TBI and mental and physical health symptoms, was completed by 2348 OEF/OIF veterans (51% female), sampled randomly within gender from a national roster. We conducted logistic regressions stratified by gender and probable PTSD status to evaluate associations between probable TBI and health symptoms. Of the respondents, 10.7% of women and 19.7% of men screened positive for probable deployment-related TBI. Probable TBI was significantly associated with increased risk of mental and physical health symptoms for both genders, even after adjusting for potential confounders. Odds ratios for the associations of probable TBI with health symptoms ranged between 2.63 and 9.20 for women and between 1.94 and 7.44 for men. Among veterans with probable PTSD, symptomatic anxiety and symptomatic physical health remained associated with probable TBI. Among veterans without probable PTSD, TBI remained strongly associated with all health symptoms for women and symptomatic anxiety and physical health for men, suggesting an association between TBI and some health symptoms independent of PTSD. Strong associations between probable TBI and health symptoms for women and men confirm the importance of screening for TBI and treatment of associated health symptoms for all OEF/OIF veterans.

  10. Applications of operant learning theory to the management of challenging behavior after traumatic brain injury.

    PubMed

    Wood, Rodger Ll; Alderman, Nick

    2011-01-01

    For more than 3 decades, interventions derived from learning theory have been delivered within a neurobehavioral framework to manage challenging behavior after traumatic brain injury with the aim of promoting engagement in the rehabilitation process and ameliorating social handicap. Learning theory provides a conceptual structure that facilitates our ability to understand the relationship between challenging behavior and environmental contingencies, while accommodating the constraints upon learning imposed by impaired cognition. Interventions derived from operant learning theory have most frequently been described in the literature because this method of associational learning provides good evidence for the effectiveness of differential reinforcement methods. This article therefore examines the efficacy of applying operant learning theory to manage challenging behavior after TBI as well as some of the limitations of this approach. Future developments in the application of learning theory are also considered.

  11. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior.

    PubMed

    Baslow, Morris H

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.

  12. Brain Tumor Interface Dissection Technique with Surgical Blade from Laboratory to Neurosurgical Operating Room.

    PubMed

    Rai, Survendra Kumar R; Mancarella, Cristina; Goel, Atul H

    2017-04-01

    Ideal tumor resection requires brain/spinal cord tumor interface separation in perfect and precise surgical planes within a few micrometers for radical tumor resection and maximum normal tissue preservation. Despite the availability of several dissection techniques, the search for additional alternatives and an ideal technique continues. We evaluated the feasibility and advantages of dissection using a No. 15-blade scalpel in special brain tumor surgery situations. We developed a leaf model wherein its outer layer is progressively dissected from its inner skeleton using a scalpel. An additional model used was a tomato wherein its skin was peeled off its pulp using the same technique. We developed an inexpensive leaf model. A scalpel knife was used in a microneurosurgical setting, and the leaf's outer layer is peeled off. The technique is then used in an operating room setup where surgery on extra-axial tumors like meningiomas and intra-axial brain and spinal cord tumors is done. A No. 15 scalpel was used for dissection between the layers of the Peltophorum pterocarpum leaf model. This dissection method was compared with other neurosurgical dissecting tools. We dissected 120-μm thick leaves into 2 layers with removal of an 18- to 55-μm thick layer. Leaving behind a transparent layer was possible using a No. 15 blade scalpel. Similarly, it was possible to preserve a 35- to 40-μm thick arachnoid layer that separated a meningioma from the underlying brain parenchyma. A scalpel with a sharp edge could be used to perform precise and fine dissection. The scalpel deserves to occupy a place of pride as a dissecting tool in neurosurgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Linking EEG signals, brain functions and mental operations: Advantages of the Laplacian transformation.

    PubMed

    Vidal, Franck; Burle, Boris; Spieser, Laure; Carbonnell, Laurence; Meckler, Cédric; Casini, Laurence; Hasbroucq, Thierry

    2015-09-01

    Electroencephalography (EEG) is a very popular technique for investigating brain functions and/or mental processes. To this aim, EEG activities must be interpreted in terms of brain and/or mental processes. EEG signals being a direct manifestation of neuronal activity it is often assumed that such interpretations are quite obvious or, at least, straightforward. However, they often rely on (explicit or even implicit) assumptions regarding the structures supposed to generate the EEG activities of interest. For these assumptions to be used appropriately, reliable links between EEG activities and the underlying brain structures must be established. Because of volume conduction effects and the mixture of activities they induce, these links are difficult to establish with scalp potential recordings. We present different examples showing how the Laplacian transformation, acting as an efficient source separation method, allowed to establish more reliable links between EEG activities and brain generators and, ultimately, with mental operations. The nature of those links depends on the depth of inferences that can vary from weak to strong. Along this continuum, we show that 1) while the effects of experimental manipulation can appear widely distributed with scalp potentials, Laplacian transformation allows to reveal several generators contributing (in different manners) to these modulations, 2) amplitude variations within the same set of generators can generate spurious differences in scalp potential topographies, often interpreted as reflecting different source configurations. In such a case, Laplacian transformation provides much more similar topographies, evidencing the same generator(s) set, and 3) using the LRP as an index of response activation most often produces ambiguous results, Laplacian-transformed response-locked ERPs obtained over motor areas allow resolving these ambiguities.

  14. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions

    PubMed Central

    Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping. PMID:28700619

  15. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions.

    PubMed

    Gonen, Tal; Gazit, Tomer; Korn, Akiva; Kirschner, Adi; Perry, Daniella; Hendler, Talma; Ram, Zvi

    2017-01-01

    Direct cortical stimulation (DCS) is considered the gold-standard for functional cortical mapping during awake surgery for brain tumor resection. DCS is performed by stimulating one local cortical area at a time. We present a feasibility study using an intra-operative technique aimed at improving our ability to map brain functions which rely on activity in distributed cortical regions. Following standard DCS, Multi-Site Stimulation (MSS) was performed in 15 patients by applying simultaneous cortical stimulations at multiple locations. Language functioning was chosen as a case-cognitive domain due to its relatively well-known cortical organization. MSS, performed at sites that did not produce disruption when applied in a single stimulation point, revealed additional language dysfunction in 73% of the patients. Functional regions identified by this technique were presumed to be significant to language circuitry and were spared during surgery. No new neurological deficits were observed in any of the patients following surgery. Though the neuro-electrical effects of MSS need further investigation, this feasibility study may provide a first step towards sophistication of intra-operative cortical mapping.

  16. Electroencephalography as a Tool for Assessment of Brain Ischemic Alterations after Open Heart Operations

    PubMed Central

    Golukhova, Elena Z.; Polunina, Anna G.; Lefterova, Natalia P.; Begachev, Alexey V.

    2011-01-01

    Cardiac surgery is commonly associated with brain ischemia. Few studies addressed brain electric activity changes after on-pump operations. Eyes closed EEG was performed in 22 patients (mean age: 45.2 ± 11.2) before and two weeks after valve replacement. Spouses of patients were invited to participate as controls. Generalized increase of beta power most prominent in beta-1 band was an unambiguous pathological sign of postoperative cortex dysfunction, probably, manifesting due to gamma-activity slowing (“beta buzz” symptom). Generalized postoperative increase of delta-1 mean frequency along with increase of slow-wave activity in right posterior region may be hypothesized to be a consequence of intraoperative ischemia as well. At the same time, significant changes of alpha activity were observed in both patient and control groups, and, therefore, may be considered as physiological. Unexpectedly, controls showed prominent increase of electric activity in left temporal region whereas patients were deficient in left hemisphere activity in comparison with controls at postoperative followup. Further research is needed in order to determine the true neurological meaning of the EEG findings after on-pump operations. PMID:21776370

  17. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  18. Unplanned return to operating room after lower extremity arterial bypass is an independent predictor for hospital readmission.

    PubMed

    Aziz, Faisal; Lehman, Erik B; Reed, Amy B

    2016-03-01

    Hospital readmissions after surgical operations are considered serious complications and have an impact on health care-associated costs. The Centers for Medicare and Medicaid Services strongly encourage identification and ramification of factors associated with hospital readmissions after operations. Despite advances in endovascular surgery, lower extremity arterial bypass remains the "gold standard" treatment for severe, symptomatic peripheral arterial disease. The purpose of this study was to retrospectively review the factors associated with hospital readmission after lower extremity bypass surgery. The 2013 lower extremity revascularization-targeted American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database and generalized 2013 general and vascular surgery NSQIP Participant Use Data File were used for this study. Patient, diagnosis, and procedure characteristics of patients undergoing lower extremity bypass surgery were assessed. Multivariate logistic regression analysis was used to determine independent risk factors for hospital readmission within 30 days after surgery. A total of 2646 patients (65% male, 35% female) were identified in the NSQIP database who underwent lower extremity open revascularization during the year 2013. Indications for operations included tissue loss (39%), rest pain (32%), and severe claudication (25%). Preoperative ankle-brachial indices were 0.4 to 0.9 (32%) and <0.4 (16.5%). A total of 425 patients (16%) were readmitted within 30 days of index operation. Risk factors associated with readmission included wound complication (odds ratio [OR], 8.54; 95% confidence interval [CI], 6.68-10.92; P < .001), need for reoperation (OR, 5.95; 95% CI, 4.45-7.97; P < .001), postoperative myocardial infarction (OR, 2.19; 95% CI, 1.25-3.83; P = .006), wound dehiscence (OR, 8.45; 95% CI, 4.54-15.71; P < .001), organ or space surgical site infection (OR, 7.62; 95% CI, 2.89-20.14; P < .001), postoperative pneumonia (OR

  19. Carvacrol attenuates traumatic neuronal injury through store-operated Ca(2+) entry-independent regulation of intracellular Ca(2+) homeostasis.

    PubMed

    Li, Wen-Tao; Zhang, Su-Yuan; Zhou, Yue-Fei; Zhang, Bin-Fei; Liang, Zhen-Qiang; Liu, Yong-Hong; Wei, Yan; Li, Chuan-Kun; Meng, Xi-Jun; Xia, Ming; Dan, Yong; Song, Jin-Ning

    2015-11-01

    Searching for effective pharmacological agents for traumatic brain injury (TBI) treatment has largely been unsuccessful. The transient receptor potential melastatin 7 (TRPM7), a TRP channel that is essential for embryonic development, has been shown to mediate ischemic neuronal injury in vivo and in vitro, but global deletion of TRPM7 in mice is lethal. Here, carvacrol was used to investigate the protective effect of TRPM7 inhibition in an in vitro traumatic neuronal injury model. Carvacrol (0.5 and 1 mM) reduced lactate dehydrogenase (LDH) release, apoptosis and caspase-3 activation after traumatic injury in cortical neurons. These neuroprotective effects were accompanied by alleviated cytoplasmic calcium levels as measured by calcium imaging. In contrast, the thapsigargin (TG) induced store-operated calcium entry (SOCE) and the expression of SOCE related proteins in neurons were not altered by carvacrol treatment. The involvement of TRPM7 sensitive calcium influx in our in vitro model was confirmed by the results that bradykinin induced calcium influx was prevented by carvacrol in neurons. Furthermore, carvacrol significantly inhibited the induction of neuronal nitric oxide synthase (nNOS) after traumatic injury, and treatment with carvacrol and the nNOS inhibitor NLPA together had no extra effect on calcium concentration and neuronal injury. Thus, inhibition of TRPM7 function by carvacrol protects against traumatic neuronal injury, and might be a potential drug development strategy for the treatment of TBI.

  20. Pharmacological Characterization of the Native Store-Operated Calcium Channels of Cortical Neurons from Embryonic Mouse Brain

    PubMed Central

    Chauvet, Sylvain; Jarvis, Louis; Chevallet, Mireille; Shrestha, Niroj; Groschner, Klaus; Bouron, Alexandre

    2016-01-01

    In the murine brain, the first post-mitotic cortical neurons formed during embryogenesis express store-operated channels (SOCs) sensitive to Pyr3, initially proposed as a blocker of the transient receptor potential channel of C type 3 (TRPC3 channel). However, Pyr3 does not discriminate between Orai and TRPC3 channels, questioning the contribution of TRPC3 in SOCs. This study was undertaken to clarify the molecular identity and the pharmacological profile of native SOCs from E13 cortical neurons. The mRNA expression of STIM1-2 and Orai1-3 was assessed by quantitative reverse transcription polymerase chain reaction. E13 cortical neurons expressed STIM1-2 mRNAs, with STIM2 being the predominant isoform. Only transcripts of Orai2 were found but no Orai1 and Orai3 mRNAs. Blockers of Orai and TRPC channels (Pyr6, Pyr10, EVP4593, SAR7334, and GSK-7975A) were used to further characterize the endogenous SOCs. Their activity was recorded using the fluorescent Ca2+ probe Fluo-4. Cortical SOCs were sensitive to the Orai blockers Pyr6 and GSK-7975A, as well as to EVP4593, zinc, copper, and gadolinium ions, the latter one being the most potent SOCs blocker tested (IC50 ∼10 nM). SOCs were insensitive to the TRPC channel blockers Pyr10 and SAR7334. In addition, preventing mitochondrial Ca2+ uptake inhibited SOCs which were unaffected by inhibitors of the Ca2+-independent phospholipase A2. Altogether, Orai2 channels are present at the beginning of the embryonic murine cortico-genesis and form the core component of native SOCs in the immature cortex. This Ca2+ route is likely to play a role in the formation of the brain cortex. PMID:28018223

  1. A plug-and-play brain-computer interface to operate commercial assistive technology

    PubMed Central

    Thompson, David E.; Gruis, Kirsten L.; Huggins, Jane E.

    2013-01-01

    Purpose To determine if a brain-computer interface (BCI) could be used as a plug-and-play input device to operate commercial assistive technology, and to quantify the performance impact of such operation. Method Using a hardware device designed in our lab, participants (11 with amyotrophic lateral sclerosis, 22 controls) were asked to operate two devices using a BCI. Results were compared to traditional BCI operation by the same users. Performance was assessed using both accuracy and BCI Utility, a throughput metric. 95% confidence bounds on performance differences were developed using a linear mixed model. Results The observed differences in accuracy and throughput were small and not statistically significant. The confidence bounds indicate that if there is a performance impact of using a BCI to control an assistive technology device, the impact could easily be overcome by the benefits of the assistive technology device itself. Conclusions BCI control of assistive technology devices is possible, and the performance difference appears to be very small. BCI designers are encouraged to incorporate standard outputs into their design, to enable future users to interface with familiar assistive technology devices. PMID:23590556

  2. Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway.

    PubMed

    Iglesias, Marta; Almuedo-Castillo, Maria; Aboobaker, A Aziz; Saló, Emili

    2011-10-01

    Analysis of anteroposterior (AP) axis specification in regenerating planarian flatworms has shown that Wnt/β-catenin signaling is required for posterior specification and that the FGF-like receptor molecule nou-darake (ndk) may be involved in restricting brain regeneration to anterior regions. The relationship between re-establishment of AP identity and correct morphogenesis of the brain is, however, still poorly understood. Here we report the characterization of two axin paralogs in the planarian Schmidtea mediterranea. Although Axins are well known negative regulators of Wnt/β-catenin signaling, no role in AP specification has previously been reported for axin genes in planarians. We show that silencing of Smed-axin genes by RNA interference (RNAi) results in two-tailed planarians, a phenotype previously reported after silencing of Smed-APC-1, another β-catenin inhibitor. More strikingly, we show for the first time that while early brain formation at anterior wounds remains unaffected, subsequent development of the brain is blocked in the two-tailed planarians generated after silencing of Smed-axin genes and Smed-APC-1. These findings suggest that the mechanisms underlying early brain formation can be uncoupled from the specification of AP identity by the Wnt/β-catenin pathway. Finally, the posterior expansion of the brain observed following Smed-ndk RNAi is enhanced by silencing Smed-APC-1, revealing an indirect relationship between the FGFR/Ndk and Wnt/β-catenin signaling systems in establishing the posterior limits of brain differentiation.

  3. Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice

    PubMed Central

    Khuman, Jugta; Meehan, William P; Zhu, Xiaoxia; Qiu, Jianhua; Hoffmann, Ulrike; Zhang, Jimmy; Giovannone, Eric; Lo, Eng H; Whalen, Michael J

    2011-01-01

    Tumor necrosis factor alpha (TNFα) and Fas receptor contribute to cell death and cognitive dysfunction after focal traumatic brain injury (TBI). We examined the role of TNFα/Fas in postinjury functional outcome independent of cell death in a novel closed head injury (CHI) model produced with weight drop and free rotational head movement in the anterior–posterior plane. The CHI produced no cerebral edema or blood–brain barrier damage at 24 to 48 hours, no detectable cell death, occasional axonal injury (24 hours), and no brain atrophy or hippocampal cell loss (day 60). Microglia and astrocytes were activated (48 to 72 hours). Tumor necrosis factor-α mRNA, Fas mRNA, and TNFα protein were increased in the brain at 3 to 6 hours after injury (P<0.001 versus sham injured). In wild-type (WT) mice, CHI produced hidden platform (P=0.009) and probe deficits (P=0.001) in the Morris water maze versus sham. Surprisingly, injured TNFα/Fas knockout (KO) mice performed worse in hidden platform trials (P=0.036) but better in probe trials than did WT mice (P=0.0001). Administration of recombinant TNFα to injured TNFα/Fas KO mice reduced probe trial performance to that of WT. Thus, TNFα/Fas influence cognitive deficits independent of cell death after CHI. Therapies targeting TNFα/Fas together may be inappropriate for patients with concussive TBI. PMID:20940727

  4. Tumor necrosis factor alpha and Fas receptor contribute to cognitive deficits independent of cell death after concussive traumatic brain injury in mice.

    PubMed

    Khuman, Jugta; Meehan, William P; Zhu, Xiaoxia; Qiu, Jianhua; Hoffmann, Ulrike; Zhang, Jimmy; Giovannone, Eric; Lo, Eng H; Whalen, Michael J

    2011-02-01

    Tumor necrosis factor alpha (TNFα) and Fas receptor contribute to cell death and cognitive dysfunction after focal traumatic brain injury (TBI). We examined the role of TNFα/Fas in postinjury functional outcome independent of cell death in a novel closed head injury (CHI) model produced with weight drop and free rotational head movement in the anterior-posterior plane. The CHI produced no cerebral edema or blood-brain barrier damage at 24 to 48 hours, no detectable cell death, occasional axonal injury (24 hours), and no brain atrophy or hippocampal cell loss (day 60). Microglia and astrocytes were activated (48 to 72 hours). Tumor necrosis factor-α mRNA, Fas mRNA, and TNFα protein were increased in the brain at 3 to 6 hours after injury (P<0.001 versus sham injured). In wild-type (WT) mice, CHI produced hidden platform (P=0.009) and probe deficits (P=0.001) in the Morris water maze versus sham. Surprisingly, injured TNFα/Fas knockout (KO) mice performed worse in hidden platform trials (P=0.036) but better in probe trials than did WT mice (P=0.0001). Administration of recombinant TNFα to injured TNFα/Fas KO mice reduced probe trial performance to that of WT. Thus, TNFα/Fas influence cognitive deficits independent of cell death after CHI. Therapies targeting TNFα/Fas together may be inappropriate for patients with concussive TBI.

  5. Independent benzodiazepine and beta-carboline binding sites in the brain of aggressive and timid-defensive mice

    SciTech Connect

    Sukhotina, I.A.; Rozhanets, V.V.; Poshivalov, V.P.

    1987-11-01

    The authors study the distribution of specific binding sites of labeled benzodiazepine and beta-carboline derivatives in parts of the brain of intact aggressive and timid-defensive mice, and also of animals subjected to subchronic administration of diazepam. The concentrations of /sup 3/H-flunitrazepam and /sup 3/H-beta-carboline-3-carboxylate ethyl ester in the incubation mixture for binding are given. Analysis of their specific binding with brain membranes of animals not receiving diazepam showed that the concentration of specific binding sites for both ligands in both types of mice was significantly higher in the cortex than in other brain regions.

  6. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma

    PubMed Central

    Yao, Xiaoming; Dix, James A; Jin, Byung-Ju

    2017-01-01

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma. PMID:28826498

  7. A Fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: evidence for brain sensing of circulating FFA.

    PubMed

    Oh, Young Taek; Oh, Ki-Sook; Kang, Insug; Youn, Jang H

    2012-08-01

    The brain responds to a fall in blood glucose by activating neuroendocrine mechanisms for its restoration. It is unclear whether the brain also responds to a fall in plasma free fatty acids (FFA) to activate mechanisms for its restoration. We examined whether lowering plasma FFA increases plasma corticosterone or catecholamine levels and, if so, whether the brain is involved in these responses. Plasma FFA levels were lowered in rats with three independent antilipolytic agents: nicotinic acid (NA), insulin, and the A1 adenosine receptor agonist SDZ WAG 994 with plasma glucose clamped at basal levels. Lowering plasma FFA with these agents all increased plasma corticosterone, but not catecholamine, within 1 h, accompanied by increases in plasma ACTH. These increases in ACTH or corticosterone were abolished when falls in plasma FFA were prevented by Intralipid during NA or insulin infusion. In addition, the NA-induced increases in plasma ACTH were completely prevented by administration of SSR149415, an arginine vasopressin receptor antagonist, demonstrating that the hypothalamus is involved in these responses. Taken together, the present data suggest that the brain may sense a fall in plasma FFA levels and activate the hypothalamic-pituitary-adrenal axis to increase plasma ACTH and corticosterone, which would help restore FFA levels. Thus, the brain may be involved in the sensing and control of circulating FFA levels.

  8. Semi-automated nanoprecipitation-system--an option for operator independent, scalable and size adjustable nanoparticle synthesis.

    PubMed

    Rietscher, René; Thum, Carolin; Lehr, Claus-Michael; Schneider, Marc

    2015-06-01

    The preparation of nano-sized carrier systems increasingly moved into focus of pharmaceutical research and industry in the past decades. Besides the drug load and properties of the selected polymer/lipid, the size of such particles is one of the most important parameters regarding their use as efficient drug delivery systems. However, the preparation of nanoparticles with different sizes in a controlled manner is challenging, especially in terms of reproducibility and scale-up possibility. To overcome these hurdles we developed a system relying on nanoprecipitation, which meets all these requirements of an operator independent, scalable and size-adjustable nanoparticle synthesis-the Semi-Automated Nanoprecipitation-System. This system enables the adaption of the particle size to specific needs based on the process parameters-injection rate, flow rate and polymer concentration-identified within this study. The basic set-up is composed of a syringe pump and a gear pump for a precise control of the flow and injection speed of the system. Furthermore, a home-made tube-straightener guarantees a curvature-free injection point. Thus it could be shown that the production of poly(lactide-co-glycolide) nanoparticles from 150 to 600 nm with a narrow size distribution in a controlled semi-automatic manner is possible.

  9. Marginal Emission Factors Considering Renewables: A Case Study of the U.S. Midcontinent Independent System Operator (MISO) System.

    PubMed

    Li, Mo; Smith, Timothy M; Yang, Yi; Wilson, Elizabeth J

    2017-10-03

    Estimates of marginal emission factors (MEFs) for the electricity sector have focused on emitting sources only, assuming nonemitting renewables rarely contribute to marginal generation. However, with increased penetration and improved dispatch of renewables, this assumption may be outdated. Here, we improve the methodology to incorporate renewables in MEF estimates and demonstrate a case study for the Midcontinent Independent System Operator (MISO) system where wind has been commonly dispatched on the margin. We also illustrate spatiotemporal variations of MEFs and explore implications for energy storage technologies. Results show that because the share of renewables in MISO is still relatively low (6.34%), conventional MEFs focused on emitting sources can provide a good estimate in MISO overall, as well as in the Central and South subregions. However, in the MISO North subregion where wind provides 22.5% of grid generation, neglecting nonemitting sources can overestimate MEFs for CO2, SO2, and NOx by about 30%. The application of expanded MEFs in this case also reveals heightened emission increases associated with load shifting of storage technologies. Our study highlights the importance of expanded MEFs in regions with high and growing renewables penetration, particularly as renewable energy policy seeks to incorporate demand-side technologies.

  10. Higher resting-state activity in reward-related brain circuits in obese versus normal-weight females independent of food intake

    PubMed Central

    Hogenkamp, P S; Zhou, W; Dahlberg, L S; Stark, J; Larsen, A L; Olivo, G; Wiemerslage, L; Larsson, E-M; Sundbom, M; Benedict, C; Schiöth, H B

    2016-01-01

    Background: In response to food cues, obese vs normal-weight individuals show greater activation in brain regions involved in the regulation of food intake under both fasted and sated conditions. Putative effects of obesity on task-independent low-frequency blood-oxygenation-level-dependent signals—that is, resting-state brain activity—in the context of food intake are, however, less well studied. Objective: To compare eyes closed, whole-brain low-frequency BOLD signals between severely obese and normal-weight females, as assessed by functional magnetic resonance imaging (fMRI). Methods: Fractional amplitude of low-frequency fluctuations were measured in the morning following an overnight fast in 17 obese (age: 39±11 years, body mass index (BMI): 42.3±4.8 kg m−2) and 12 normal-weight females (age: 36±12 years, BMI: 22.7±1.8 kg m−2), both before and 30 min after consumption of a standardized meal (~260 kcal). Results: Compared with normal-weight controls, obese females had increased low-frequency activity in clusters located in the putamen, claustrum and insula (P<0.05). This group difference was not altered by food intake. Self-reported hunger dropped and plasma glucose concentrations increased after food intake (P<0.05); however, these changes did not differ between the BMI groups. Conclusion: Reward-related brain regions are more active under resting-state conditions in obese than in normal-weight females. This difference was independent of food intake under the experimental settings applied in the current study. Future studies involving males and females, as well as utilizing repeated post-prandial resting-state fMRI scans and various types of meals are needed to further investigate how food intake alters resting-state brain activity in obese humans. PMID:27349694

  11. Cav2-type calcium channels encoded by cac regulate AP-independent neurotransmitter release at cholinergic synapses in adult Drosophila brain.

    PubMed

    Gu, Huaiyu; Jiang, Shaojuan Amy; Campusano, Jorge M; Iniguez, Jorge; Su, Hailing; Hoang, Andy An; Lavian, Monica; Sun, Xicui; O'Dowd, Diane K

    2009-01-01

    Voltage-gated calcium channels containing alpha1 subunits encoded by Ca(v)2 family genes are critical in regulating release of neurotransmitter at chemical synapses. In Drosophila, cac is the only Ca(v)2-type gene. Cacophony (CAC) channels are localized in motor neuron terminals where they have been shown to mediate evoked, but not AP-independent, release of glutamate at the larval neuromuscular junction (NMJ). Cultured embryonic neurons also express CAC channels, but there is no information about the properties of CAC-mediated currents in adult brain nor how these channels regulate transmission in central neural circuits where fast excitatory synaptic transmission is predominantly cholinergic. Here we report that wild-type neurons cultured from late stage pupal brains and antennal lobe projection neurons (PNs) examined in adult brains, express calcium currents with two components: a slow-inactivating current sensitive to the spider toxin Plectreurys toxin II (PLTXII) and a fast-inactivating PLTXII-resistant component. CAC channels are the major contributors to the slow-inactivating PLTXII-sensitive current based on selective reduction of this component in hypomorphic cac mutants (NT27 and TS3). Another characteristic of cac mutant neurons both in culture and in whole brain recordings is a reduced cholinergic miniature excitatory postsynaptic current frequency that is mimicked in wild-type neurons by acute application of PLTXII. These data demonstrate that cac encoded Ca(v)2-type calcium channels regulate action potential (AP)-independent release of neurotransmitter at excitatory cholinergic synapses in the adult brain, a function not predicted from studies at the larval NMJ.

  12. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.

    PubMed

    Xie, Jianwen; Douglas, Pamela K; Wu, Ying Nian; Brody, Arthur L; Anderson, Ariana E

    2017-04-15

    Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Copyright

  13. Direct participation of electrical loads in the California independent system operator markets during the Summer of 2000

    SciTech Connect

    Marnay, Chris; Hamachi, Kristina S.; Khavkin, Mark; Siddiqui, Afzal S.

    2001-04-01

    California's restructured electricity markets opened on 1 April 1998. The former investor-owned utilities were functionally divided into generation, transmission, and distribution activities, all of their gas-fired generating capacity was divested, and the retail market was opened to competition. To ensure that small customers shared in the expected benefit of lower prices, the enabling legislation mandated a 10% rate cut for all customers, which was implemented in a simplistic way that fossilized 1996 tariff structures. Rising fuel and environmental compliance costs, together with a reduced ability to import electricity, numerous plant outages, and exercise of market power by generators drove up wholesale electricity prices steeply in 2000, while retail tariffs remained unchanged. One of the distribution/supply companies entered bankruptcy in April 2001, and another was insolvent. During this period, two sets of interruptible load programs were in place, longstanding ones organized as special tariffs by the distribution/supply companies and hastily established ones run directly by the California Independent System Operator (CAISO). The distribution/supply company programs were effective at reducing load during the summer of 2000, but because of the high frequency of outages required by a system on the brink of failure, customer response declined and many left the tariff. The CAISO programs failed to attract enough participation to make a significant difference to the California supply demand imbalance. The poor performance of direct load participation in California's markets reinforces the argument for accurate pricing of electricity as a stimulus to energy efficiency investment and as a constraint on market volatility.

  14. Operant behavior to obtain palatable food modifies neuronal plasticity in the brain reward circuit.

    PubMed

    Guegan, Thomas; Cutando, Laura; Ayuso, Eduard; Santini, Emanuela; Fisone, Gilberto; Bosch, Fatima; Martinez, Albert; Valjent, Emmanuel; Maldonado, Rafael; Martin, Miquel

    2013-02-01

    Palatability enhances food intake by hedonic mechanisms that prevail over caloric necessities. Different studies have demonstrated the role of endogenous cannabinoids in the mesocorticolimbic system in controlling food hedonic value and consumption. We hypothesize that the endogenous cannabinoid system could also be involved in the development of food-induced behavioral alterations, such as food-seeking and binge-eating, by a mechanism that requires neuroplastic changes in the brain reward pathway. For this purpose, we evaluated the role of the CB1 cannabinoid receptor (CB1-R) in the behavioral and neuroplastic changes induced by operant training for standard, highly caloric or highly palatable isocaloric food using different genetics, viral and pharmacological approaches. Neuroplasticity was evaluated by measuring changes in dendritic spine density in neurons previously labeled with the dye DiI. Only operant training to obtain highly palatable isocaloric food induced neuroplastic changes in neurons of the nucleus accumbens shell and prefrontal cortex that were associated to changes in food-seeking behavior. These behavioral and neuroplastic modifications induced by highly palatable isocaloric food were dependent on the activity of the CB1-R. Neuroplastic changes induced by highly palatable isocaloric food are similar to those produced by some drugs of abuse and may be crucial in the alteration of food-seeking behavior leading to overweight and obesity.

  15. Operation of a brain-computer interface walking simulator for individuals with spinal cord injury.

    PubMed

    King, Christine E; Wang, Po T; Chui, Luis A; Do, An H; Nenadic, Zoran

    2013-07-17

    Spinal cord injury (SCI) can leave the affected individuals with paraparesis or paraplegia, thus rendering them unable to ambulate. Since there are currently no restorative treatments for this population, novel approaches such as brain-controlled prostheses have been sought. Our recent studies show that a brain-computer interface (BCI) can be used to control ambulation within a virtual reality environment (VRE), suggesting that a BCI-controlled lower extremity prosthesis for ambulation may be feasible. However, the operability of our BCI has not yet been tested in a SCI population. Five participants with paraplegia or tetraplegia due to SCI underwent a 10-min training session in which they alternated between kinesthetic motor imagery (KMI) of idling and walking while their electroencephalogram (EEG) were recorded. Participants then performed a goal-oriented online task, where they utilized KMI to control the linear ambulation of an avatar while making 10 sequential stops at designated points within the VRE. Multiple online trials were performed in a single day, and this procedure was repeated across 5 experimental days. Classification accuracy of idling and walking was estimated offline and ranged from 60.5% (p = 0.0176) to 92.3% (p = 1.36×10-20) across participants and days. Offline analysis revealed that the activation of mid-frontal areas mostly in the μ and low β bands was the most consistent feature for differentiating between idling and walking KMI. In the online task, participants achieved an average performance of 7.4±2.3 successful stops in 273±51 sec. These performances were purposeful, i.e. significantly different from the random walk Monte Carlo simulations (p<0.01), and all but one participant achieved purposeful control within the first day of the experiments. Finally, all participants were able to maintain purposeful control throughout the study, and their online performances improved over time. The results of this study demonstrate that

  16. PPARγ-Dependent and -Independent Inhibition of the HMGB1/TLR9 Pathway by Eicosapentaenoic Acid Attenuates Ischemic Brain Damage in Ovariectomized Rats.

    PubMed

    Sumiyoshi, Manabu; Satomi, Junichiro; Kitazato, Keiko T; Yagi, Kenji; Shimada, Kenji; Kurashiki, Yoshitaka; Korai, Masaaki; Miyamoto, Takeshi; Suzue, Ryoko; Kuwayama, Kazuyuki; Nagahiro, Shinji

    2015-06-01

    High mobility group box 1 (HMGB1) elevation after cerebral ischemia activates inflammatory pathways via receptors such as the receptor for advanced glycation end products (RAGE) and toll-like receptors (TLRs) and leads to brain damage. Eicosapentaenoic acid (EPA), a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, attenuates postischemic inflammation and brain damage in male animals. However, postischemic HMGB1 signaling and the effects of EPA on ovariectomized (OVX(+)) rats remain unclear. We hypothesized that EPA attenuates brain damage in OVX(+) rats via the inhibition of HMGB1 signaling in a PPARγ-dependent manner. Seven-week-old female Sprague-Dawley rats were divided into 3 groups; nonovariectomized (OVX(-)) rats and EPA-treated and EPA-untreated OVX(+) rats before cerebral ischemia induction. Another set of EPA-treated OVX(+) rats was injected with the PPARγ inhibitor GW9662. OVX(+) decreased the messenger RNA level of PPARγ and increased that of HMGB1, RAGE, TLR9, and tumor necrosis factor alpha (TNFα) in parallel with ischemic brain damage. EPA restored the PPARγ expression, downregulated the HMGB1 signal-related molecules, and attenuated the ischemic brain damage. Neither OVX(+) nor EPA affected the expression of TLR2 or TLR4. Interestingly, GW9662 partially abrogated the EPA-induced neuroprotection and the downregulation of RAGE and TLR9. In contrast, GW9662 did not affect HMGB1 or TNFα. These results suggest that EPA exerts PPARγ-dependent and PPARγ-independent effects on postischemic HMGB1/TLR9 pathway. The cortical infarct volume exacerbated by OVX(+) is associated with the upregulation of the HMGB1/TLR9 pathway. Suppression of this pathway may help to limit ischemic brain damage in postmenopausal women. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  17. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation.

    PubMed

    Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L

    2014-08-26

    The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The Vertebrate Brain, Evidence of Its Modular Organization and Operating System: Insights into the Brain's Basic Units of Structure, Function, and Operation and How They Influence Neuronal Signaling and Behavior

    PubMed Central

    Baslow, Morris H.

    2011-01-01

    The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525

  19. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    EPA Science Inventory

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  20. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    EPA Science Inventory

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  1. Evidence of CCR2-independent transmigration of Ly6C(hi) monocytes into the brain after permanent cerebral ischemia in mice.

    PubMed

    Chu, Hannah X; Kim, Hyun Ah; Lee, Seyoung; Broughton, Brad R S; Drummond, Grant R; Sobey, Christopher G

    2016-04-15

    Previously we showed that INCB3344, a CCR2 antagonist, inhibits transmigration of Ly6C(hi) monocytes into the brain after ischemia-reperfusion. Here we tested the effect of CCR2 inhibition during permanent cerebral ischemia. Mice were administered either vehicle (dimethyl sulfoxide/carboxymethylcellulose) or INCB3344 (30 or 100mg/kg IP) 1h before middle cerebral artery occlusion and at 2 and 6h after the initiation of ischemia. After 24h, we assessed functional outcome, infarct volume and quantified immune cells in blood and brain. The increase in circulating bone marrow-derived Ly6C(hi) monocytes, but not the infiltration of those cells into the brain, was blocked by the CCR2 antagonist. INCB3344 had no effect on either neurological deficit or infarct volume. Our data confirm that cerebral ischemia triggers a CCR2-dependent increase in circulating Ly6C(hi) monocytes, but suggest that in the absence of reperfusion these cells may transmigrate into the ischemic brain in a CCR2-independent manner.

  2. Multi-modal Learning-based Pre-operative Targeting in Deep Brain Stimulation Procedures.

    PubMed

    Liu, Yuan; Dawant, Benoit M

    2016-02-01

    Deep brain stimulation, as a primary surgical treatment for various neurological disorders, involves implanting electrodes to stimulate target nuclei within millimeter accuracy. Accurate pre-operative target selection is challenging due to the poor contrast in its surrounding region in MR images. In this paper, we present a learning-based method to automatically and rapidly localize the target using multi-modal images. A learning-based technique is applied first to spatially normalize the images in a common coordinate space. Given a point in this space, we extract a heterogeneous set of features that capture spatial and intensity contextual patterns at different scales in each image modality. Regression forests are used to learn a displacement vector of this point to the target. The target is predicted as a weighted aggregation of votes from various test samples, leading to a robust and accurate solution. We conduct five-fold cross validation using 100 subjects and compare our method to three indirect targeting methods, a state-of-the-art statistical atlas-based approach, and two variations of our method that use only a single modality image. With an overall error of 2.63±1.37mm, our method improves upon the single modality-based variations and statistically significantly outperforms the indirect targeting ones. Our technique matches state-of-the-art registration methods but operates on completely different principles. Both techniques can be used in tandem in processing pipelines operating on large databases or in the clinical flow for automated error detection.

  3. Pre-operative stroke and neurological disability do not independently affect short- and long-term mortality in infective endocarditis patients.

    PubMed

    Diab, Mahmoud; Guenther, Albrecht; Sponholz, Christoph; Lehmann, Thomas; Faerber, Gloria; Matz, Anna; Franz, Marcus; Witte, Otto W; Pletz, Mathias W; Doenst, Torsten

    2016-10-01

    Infective endocarditis (IE) is still associated with high morbidity and mortality. The impact of pre-operative stroke on mortality and long-term survival is controversial. In addition, data on the severity of neurological disability due to pre-operative stroke are scarce. We analysed the impact of pre-operative stroke and the severity of its related neurological disability on short- and long-term outcome. We retrospectively reviewed our data from patients operated for left-sided IE between 01/2007 and 04/2013. We performed univariate (Chi-Square and independent samples t test) and multivariate analyses. Among 308 consecutive patients who underwent cardiac surgery for left-sided IE, pre-operative stroke was present in 87 (28.2 %) patients. Patients with pre-operative stroke had a higher pre-operative risk profile than patient without it: higher Charlson comorbidity index (8.1 ± 2.6 vs. 6.6 ± 3.3) and higher incidence of Staphylococcus aureus infection (43 vs. 17 %) and septic shock (37 vs. 19 %). In-hospital mortality was equal but 5-year survival was significantly worse with pre-operative stroke (33.1 % vs. 45 %, p = 0.006). 5-year survival was worst in patients with severe neurological disability compared to mild disability (19.0 vs. 0.58 %, p = 0.002). However, neither pre-operative stroke nor the degree of neurological disability appeared as an independent risk factor for short or long-term mortality by multivariate analysis. Pre-operative stroke and the severity of neurological disability do not independently affect short- and long-term mortality in patients with infective endocarditis. It appears that patients with pre-operative stroke present with a generally higher risk profile. This information may substantially affect decision-making.

  4. An Approach to Life Skills Group Work with Youth in Transition to Independent Living: Theoretical, Practice, and Operational Considerations

    ERIC Educational Resources Information Center

    Allen, Terrence T.; Williams, Larry D.

    2012-01-01

    Group work is fundamental to working with youth learning about independent living and in making the tough and challenging transition to independence. The authors, seasoned and experienced group workers and researchers with youth leaving the child welfare system, will present a conceptual framework and set of practices for helping youth gain those…

  5. Donepezil Rescues Spatial Learning and Memory Deficits following Traumatic Brain Injury Independent of Its Effects on Neurogenesis

    PubMed Central

    Yu, Tzong-Shiue; Kim, Ahleum; Kernie, Steven G.

    2015-01-01

    Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis. PMID:25714524

  6. Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis.

    PubMed

    Yu, Tzong-Shiue; Kim, Ahleum; Kernie, Steven G

    2015-01-01

    Traumatic brain injury (TBI) is ubiquitous and effective treatments for it remain supportive largely due to uncertainty over how endogenous repair occurs. Recently, we demonstrated that hippocampal injury-induced neurogenesis is one mechanism underlying endogenous repair following TBI. Donepezil is associated with increased hippocampal neurogenesis and has long been known to improve certain aspects of cognition following many types of brain injury through unknown mechanisms. By coupling donepezil therapy with temporally regulated ablation of injury-induced neurogenesis using nestin-HSV transgenic mice, we investigated whether the pro-cognitive effects of donepezil following injury might occur through increasing neurogenesis. We demonstrate that donepezil itself enhances neurogenesis and improves cognitive function following TBI, even when injury-induced neurogenesis was inhibited. This suggests that the therapeutic effects of donepezil in TBI occur separately from its effects on neurogenesis.

  7. Motion‐related artifacts in structural brain images revealed with independent estimates of in‐scanner head motion

    PubMed Central

    Savalia, Neil K.; Agres, Phillip F.; Chan, Micaela Y.; Feczko, Eric J.; Kennedy, Kristen M.

    2016-01-01

    Abstract Motion‐contaminated T1‐weighted (T1w) magnetic resonance imaging (MRI) results in misestimates of brain structure. Because conventional T1w scans are not collected with direct measures of head motion, a practical alternative is needed to identify potential motion‐induced bias in measures of brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20–89 years) were analyzed to reveal stable features of in‐scanner head motion. The magnitude of head motion increased with age and exhibited within‐participant stability across different fMRI scans. fMRI head motion was then related to measurements of both quality control (QC) and brain anatomy derived from a T1w structural image from the same scan session. A procedure was adopted to “flag” individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging procedure reliably reduced the influence of head motion on estimates of gray matter thickness across the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of gray matter thickness and volume in comparison to age‐ and gender‐matched samples, resulting in inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter thickness differences were noted in numerous regions previously reported to undergo prominent atrophy with age. Recommendations are provided for mitigating this potential confound, and highlight how the procedure may lead to more accurate measurement and comparison of anatomical features. Hum Brain Mapp 38:472–492, 2017. © 2016 Wiley Periodicals, Inc. PMID:27634551

  8. SOCIAL STATUS AND SEX INDEPENDENTLY INFLUENCE ANDROGEN RECEPTOR EXPRESSION IN THE EUSOCIAL NAKED MOLE-RAT BRAIN

    PubMed Central

    Holmes, Melissa M.; Goldman, Bruce D.; Forger, Nancy G.

    2009-01-01

    Naked mole-rats (Heterocephalus glaber) are eusocial rodents that live in large subterranean colonies including a single breeding female and 1-3 breeding males; all other members of the colony, known as subordinates, are reproductively suppressed. We recently found that naked mole-rats lack many of the sex differences in the brain and spinal cord commonly found in other rodents. Instead, neural morphology is influenced by breeding status, such that breeders, regardless of sex, have more neurons than subordinates in the ventromedial nucleus of the hypothalamus (VMH), and larger overall volumes of the bed nucleus of the stria terminalis (BST), paraventricular nucleus (PVN) and medial amygdala (MeA). To begin to understand how breeding status influences brain morphology, we examined the distribution of androgen receptor (AR) immunoreactivity in gonadally intact breeders and subordinates of both sexes. All animals had AR+ nuclei in many of the same regions positive for AR in other mammals, including the VMH, BST, PVN, MeA, and the ventral portion of the premammillary nucleus (PMv). We also observed diffuse labeling throughout the pre-optic area demonstrating that distribution of the AR protein in presumptive reproductive brain nuclei is well-conserved, even in a species that exhibits remarkably little sexual dimorphism. In contrast to other rodents, however, naked mole-rats lacked AR+ nuclei in the suprachiasmatic nucleus and hippocampus. Males had more AR+ nuclei in the MeA, VMH, and PMv than did females. Surprisingly, breeders had significantly fewer AR+ nuclei than subordinates in all brain regions examined (VMH, BST, PVN, MeA, and PMv). Thus, social status is strongly correlated with AR immunoreactivity in this eusocial species. PMID:18455726

  9. Aberrant Neuronal Dynamics during Working Memory Operations in the Aging HIV-Infected Brain

    PubMed Central

    Wilson, Tony W.; Proskovec, Amy L.; Heinrichs-Graham, Elizabeth; O’Neill, Jennifer; Robertson, Kevin R.; Fox, Howard S.; Swindells, Susan

    2017-01-01

    Impairments in working memory are among the most prevalent features of HIV-associated neurocognitive disorders (HAND), yet their origins are unknown, with some studies arguing that encoding operations are disturbed and others supporting deficits in memory maintenance. The current investigation directly addresses this issue by using a dynamic mapping approach to identify when and where processing in working memory circuits degrades. HIV-infected older adults and a demographically-matched group of uninfected controls performed a verbal working memory task during magnetoencephalography (MEG). Significant oscillatory neural responses were imaged using a beamforming approach to illuminate the spatiotemporal dynamics of neuronal activity. HIV-infected patients were significantly less accurate on the working memory task and their neuronal dynamics indicated that encoding operations were preserved, while memory maintenance processes were abnormal. Specifically, no group differences were detected during the encoding period, yet dysfunction in occipital, fronto-temporal, hippocampal, and cerebellar cortices emerged during memory maintenance. In addition, task performance in the controls covaried with occipital alpha synchronization and activity in right prefrontal cortices. In conclusion, working memory impairments are common and significantly impact the daily functioning and independence of HIV-infected patients. These impairments likely reflect deficits in the maintenance of memory representations, not failures to adequately encode stimuli. PMID:28155864

  10. Aberrant Neuronal Dynamics during Working Memory Operations in the Aging HIV-Infected Brain.

    PubMed

    Wilson, Tony W; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; O'Neill, Jennifer; Robertson, Kevin R; Fox, Howard S; Swindells, Susan

    2017-02-03

    Impairments in working memory are among the most prevalent features of HIV-associated neurocognitive disorders (HAND), yet their origins are unknown, with some studies arguing that encoding operations are disturbed and others supporting deficits in memory maintenance. The current investigation directly addresses this issue by using a dynamic mapping approach to identify when and where processing in working memory circuits degrades. HIV-infected older adults and a demographically-matched group of uninfected controls performed a verbal working memory task during magnetoencephalography (MEG). Significant oscillatory neural responses were imaged using a beamforming approach to illuminate the spatiotemporal dynamics of neuronal activity. HIV-infected patients were significantly less accurate on the working memory task and their neuronal dynamics indicated that encoding operations were preserved, while memory maintenance processes were abnormal. Specifically, no group differences were detected during the encoding period, yet dysfunction in occipital, fronto-temporal, hippocampal, and cerebellar cortices emerged during memory maintenance. In addition, task performance in the controls covaried with occipital alpha synchronization and activity in right prefrontal cortices. In conclusion, working memory impairments are common and significantly impact the daily functioning and independence of HIV-infected patients. These impairments likely reflect deficits in the maintenance of memory representations, not failures to adequately encode stimuli.

  11. [Resting-state functional magnetic resonance study of brain function changes after TIPS operation in patients with liver cirrhosis].

    PubMed

    Liu, C; Wang, H B; Yu, Y Q; Wang, M Q; Zhang, G B; Xu, L Y; Wu, J M

    2016-12-20

    Objective: To investigate the brain function changes in cirrhosis patients after transjugular intrahepatic portosystemic shunt (TIPS), resting-state functional MRI (rs-fMRI) performed and fractional amplitude of low frequency fluctuation (fALFF) was analyzed. Methods: From January 2014 to February 2016, a total of 96 cirrhotic patients from invasive technology department and infection department in the First Affiliated Hospital of Anhui Medical University were selected , the blood ammonia data of 96 cirrhotic patients with TIPS operation in four groups were collected after 1, 3, 6 and 12 month, and all subjects performed rs-fMRI scans. The rs-fMRI data processed with DPARSF and SPM12 softwares, whole-brain fALFF values were calculated, and One-Way analysis of variance , multiple comparison analysis and correlation analysis were performed. Results: There were brain regions with significant function changes in four groups patients with TIPS operation after 1, 3, 6 and 12 month, including bilateral superior temporal gyrus, right middle temportal gyrus , right hippocampus, right island of inferior frontal gyrus, left fusiform gyrus, left olfactory cortex, left orbital superior frontal gyrus (all P<0.005). Multiple comparison analysis showed that compared with patients in the 1-month follow-up, patients in the 3-month follow-up showed that brain function areas increased in left olfactory cortex, left inferior temporal gyrus, left fusiform gyrus, left orbital middle frontal gyrus, left putamen, left cerebelum, and decreased in left lingual gyrus; patients in the 6-month follow-up showed that brain function areas increased in left middle temportal gyrus, right supramarginal gyrus, right temporal pole, right central operculum, and decreased in left top edge of angular gyrus, left postcentral gyrus; patients in the 12-month follow-up showed that brain function areas increased in right hippocampus, right middle cingulate gyrus, and decreased in right middle temportal gyrus

  12. 77 FR 24192 - Energy Spectrum, Inc. and Riverbay Corporation v. New York Independent System Operator; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Energy Spectrum, Inc. and Riverbay Corporation v. New York Independent... Commission (Commission), 18 CFR 385.206, Energy Spectrum, Inc. and Riverbay Corporation...

  13. Deep brain stimulation in early stage Parkinson's disease: operative experience from a prospective randomised clinical trial.

    PubMed

    Kahn, Elyne; D'Haese, Pierre-Francois; Dawant, Benoit; Allen, Laura; Kao, Chris; Charles, P David; Konrad, Peter

    2012-02-01

    Recent evidence suggests that deep brain stimulation of the subthalamic nucleus (STN-DBS) may have a disease modifying effect in early Parkinson's disease (PD). A randomised, prospective study is underway to determine whether STN-DBS in early PD is safe and tolerable. 15 of 30 early PD patients were randomised to receive STN-DBS implants in an institutional review board approved protocol. Operative technique, location of DBS leads and perioperative adverse events are reported. Active contact used for stimulation in these patients was compared with 47 advanced PD patients undergoing an identical procedure by the same surgeon. 14 of the 15 patients did not sustain any long term (>3 months) complications from the surgery. One subject suffered a stroke resulting in mild cognitive changes and slight right arm and face weakness. The average optimal contact used in symptomatic treatment of early PD patients was: anterior -1.1±1.7 mm, lateral 10.7±1.7 mm and superior -3.3±2.5 mm (anterior and posterior commissure coordinates). This location is statistically no different (0.77 mm, p>0.05) than the optimal contact used in the treatment of 47 advanced PD patients. The perioperative adverse events in this trial of subjects with early stage PD are comparable with those reported for STN-DBS in advanced PD. The active contact position used in early PD is not significantly different from that used in late stage disease. This is the first report of the operative experience from a randomised, surgical versus best medical therapy trial for the early treatment of PD.

  14. Regulation of store-operated Ca{sup 2+} entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells

    SciTech Connect

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2015-04-10

    Store-operated Ca{sup 2+} entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca{sup 2+} influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. - Highlights: • Orai1 is essential for SOCE activity in brain capillary endothelial cells (BCECs). • Cell cycle independent expression of Orai1 regulated SOCE and cell proliferation. • Orai2 was up-regulated only at G2/M phase and this consequently reduced SOCE. • Orai2 as well as Orai1 is a key player controlling SOCE and proliferation in BCECs.

  15. Novel approach for independent control of brain hypothermia and systemic normothermia: cerebral selective deep hypothermia for refractory cardiac arrest

    PubMed Central

    Wang, Chih-Hsien; Lin, Yu-Ting; Chou, Heng-Wen; Wang, Yi-Chih; Hwang, Joey-Jen; Gilbert, John R; Chen, Yih-Sharng

    2017-01-01

    A 38-year-old man was found unconscious, alone in the driver's seat of his car. The emergency medical team identified his condition as pulseless ventricular tachycardia. Defibrillation was attempted but failed. Extracorporeal membrane oxygenation (ECMO) was started in the emergency room 52 min after the estimated arrest following the extracorporeal cardiopulmonary resuscitation (ECPR) protocol in our center. The initial prognosis under the standard protocol was <25% chance of survival. A novel adjunctive to our ECPR protocol, cerebral selective deep (<30°C) hypothermia (CSDH), was applied. CSDH adds a second independent femoral access extracorporeal circuit, perfusing cold blood into the patient's common carotid artery. The ECMO and CSDH circuits demonstrated independent control of cerebral and core temperatures. Nasal temperature was lowered to below 30°C for 12 hours while core was maintained at normothermia. The patient was discharged without significant neurological deficit 32 days after the initial arrest. PMID:28108436

  16. Novel approach for independent control of brain hypothermia and systemic normothermia: cerebral selective deep hypothermia for refractory cardiac arrest.

    PubMed

    Wang, Chih-Hsien; Lin, Yu-Ting; Chou, Heng-Wen; Wang, Yi-Chih; Hwang, Joey-Jen; Gilbert, John R; Chen, Yih-Sharng

    2017-01-25

    A 38-year-old man was found unconscious, alone in the driver's seat of his car. The emergency medical team identified his condition as pulseless ventricular tachycardia. Defibrillation was attempted but failed. Extracorporeal membrane oxygenation (ECMO) was started in the emergency room 52 min after the estimated arrest following the extracorporeal cardiopulmonary resuscitation (ECPR) protocol in our center. The initial prognosis under the standard protocol was <25% chance of survival. A novel adjunctive to our ECPR protocol, cerebral selective deep (<30°C) hypothermia (CSDH), was applied. CSDH adds a second independent femoral access extracorporeal circuit, perfusing cold blood into the patient's common carotid artery. The ECMO and CSDH circuits demonstrated independent control of cerebral and core temperatures. Nasal temperature was lowered to below 30°C for 12 hours while core was maintained at normothermia. The patient was discharged without significant neurological deficit 32 days after the initial arrest.

  17. Face learning and the emergence of view-independent face recognition: an event-related brain potential study.

    PubMed

    Zimmermann, Friederike G S; Eimer, Martin

    2013-06-01

    Recognizing unfamiliar faces is more difficult than familiar face recognition, and this has been attributed to qualitative differences in the processing of familiar and unfamiliar faces. Familiar faces are assumed to be represented by view-independent codes, whereas unfamiliar face recognition depends mainly on view-dependent low-level pictorial representations. We employed an electrophysiological marker of visual face recognition processes in order to track the emergence of view-independence during the learning of previously unfamiliar faces. Two face images showing either the same or two different individuals in the same or two different views were presented in rapid succession, and participants had to perform an identity-matching task. On trials where both faces showed the same view, repeating the face of the same individual triggered an N250r component at occipito-temporal electrodes, reflecting the rapid activation of visual face memory. A reliable N250r component was also observed on view-change trials. Crucially, this view-independence emerged as a result of face learning. In the first half of the experiment, N250r components were present only on view-repetition trials but were absent on view-change trials, demonstrating that matching unfamiliar faces was initially based on strictly view-dependent codes. In the second half, the N250r was triggered not only on view-repetition trials but also on view-change trials, indicating that face recognition had now become more view-independent. This transition may be due to the acquisition of abstract structural codes of individual faces during face learning, but could also reflect the formation of associative links between sets of view-specific pictorial representations of individual faces.

  18. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface

    PubMed Central

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them. PMID:24567704

  19. Volitional enhancement of firing synchrony and oscillation by neuronal operant conditioning: interaction with neurorehabilitation and brain-machine interface.

    PubMed

    Sakurai, Yoshio; Song, Kichan; Tachibana, Shota; Takahashi, Susumu

    2014-01-01

    In this review, we focus on neuronal operant conditioning in which increments in neuronal activities are directly rewarded without behaviors. We discuss the potential of this approach to elucidate neuronal plasticity for enhancing specific brain functions and its interaction with the progress in neurorehabilitation and brain-machine interfaces. The key to-be-conditioned activities that this paper emphasizes are synchronous and oscillatory firings of multiple neurons that reflect activities of cell assemblies. First, we introduce certain well-known studies on neuronal operant conditioning in which conditioned enhancements of neuronal firing were reported in animals and humans. These studies demonstrated the feasibility of volitional control over neuronal activity. Second, we refer to the recent studies on operant conditioning of synchrony and oscillation of neuronal activities. In particular, we introduce a recent study showing volitional enhancement of oscillatory activity in monkey motor cortex and our study showing selective enhancement of firing synchrony of neighboring neurons in rat hippocampus. Third, we discuss the reasons for emphasizing firing synchrony and oscillation in neuronal operant conditioning, the main reason being that they reflect the activities of cell assemblies, which have been suggested to be basic neuronal codes representing information in the brain. Finally, we discuss the interaction of neuronal operant conditioning with neurorehabilitation and brain-machine interface (BMI). We argue that synchrony and oscillation of neuronal firing are the key activities required for developing both reliable neurorehabilitation and high-performance BMI. Further, we conclude that research of neuronal operant conditioning, neurorehabilitation, BMI, and system neuroscience will produce findings applicable to these interrelated fields, and neuronal synchrony and oscillation can be a common important bridge among all of them.

  20. Toward independent home use of brain-computer interfaces: a decision algorithm for selection of potential end-users.

    PubMed

    Kübler, Andrea; Holz, Elisa Mira; Sellers, Eric W; Vaughan, Theresa M

    2015-03-01

    Noninvasive brain-computer interfaces (BCIs) use scalp-recorded electrical activity from the brain to control an application. Over the past 20 years, research demonstrating that BCIs can provide communication and control to individuals with severe motor impairment has increased almost exponentially. Although considerable effort has been dedicated to offline analysis for improving signal detection and translation, far less effort has been made to conduct online studies with target populations. Thus, there remains a great need for both long-term and translational BCI studies that include individuals with disabilities in their own homes. Completing these studies is the only sure means to answer questions about BCI utility and reliability. Here we suggest an algorithm for candidate selection for electroencephalographic (EEG)-based BCI home studies. This algorithm takes into account BCI end-users and their environment and should assist in study design and substantially improve subject retention rates, thereby improving the overall efficacy of BCI home studies. It is the result of a workshop at the Fifth International BCI Meeting that allowed us to leverage the expertise of multiple research laboratories and people from multiple backgrounds in BCI research.

  1. Brain activation, affect, and aerobic exercise: an examination of both state-independent and state-dependent relationships.

    PubMed

    Petruzzello, S J; Tate, A K

    1997-09-01

    Resting electroencephalograph (EEG) asymmetry is a biological marker of the propensity to respond affectively to, and a measure of change in affect associated with, acute aerobic exercise. This study examined the EEG-affect-exercise relationship. Twenty participants performed each of three randomly assigned 30-min conditions: (a) a nonexercise control, (b) a cycling exercise at 55% VO2max, and (c) a cycling exercise at 70% VO2max. EEG and affect were assessed pre- and 0, 5, 10, 20, and 30 min postcondition. No significant results were seen in the control or 55% conditions. In the 70% exercise condition, greater relative left frontal activation preexercise predicted increased positive affect and reduced state anxiety postexercise. Participants (n = 7) with extreme relative left frontal activation postexercise reported concomitant decreases in anxiety, whereas participants (n = 7) with extreme relative right frontal activation postexercise reported increases in anxiety. These findings (a) replicate prior work, (b) suggest a dose-response intensity effect, and (c) support the idea that exercise is an emotion-eliciting event. Affective responses seem to be mediated in part by differential resting levels of activation in the anterior brain regions. Ongoing anterior brain activation reflected concurrent postexercise affect.

  2. Amino-terminal fragment of pro-brain natriuretic hormone identifies functional impairment and right ventricular overload in operated tetralogy of Fallot patients.

    PubMed

    Festa, P; Ait-Ali, L; Prontera, C; De Marchi, D; Fontana, M; Emdin, M; Passino, C

    2007-01-01

    To evaluate the relationship between plasma concentration of amino-terminal fragment of pro-brain natriuretic peptide (NT-proBNP), functional capacity, and right ventricular overload in survivors of tetralogy of Fallot (TOF) repair, we prospectively studied 70 operated TOF patients (44 males, 21 +/- 1 years old; mean +/- SEM) who underwent, during the same day, echocardiography, cardiac magnetic resonance imaging, neurohormonal characterization (plasma NT-proBNP, catecholamines, plasma renin activity, and aldosterone assay), and cardiopulmonary exercise testing. Forty-eight age- and sex-matched healthy volunteers served as the control group. Compared to controls, maximal workload and peak oxygen consumption (VO2/kg) were lower in operated TOF patients (p < 0.001), whereas NT-proBNP concentration was elevated (p < 0.001). No difference was found among the other neurohormones. In operated TOF patients, NT-proBNP showed a significant positive correlation with right ventricular (RV) end systolic and end diastolic volumes and RV systolic pressure, and it showed a negative correlation with peak VO2/kg and RV ejection fraction. From multivariable analysis, NT-proBNP concentration was found to be an independent predictor of peak VO2/kg, RV end systolic volume, and RV systolic pressure. These results show an association among RV overload, decrease in functional capacity, and cardiac natriuretic peptide expression in operated TOF patients. NT-proBNP plasma assay may be a useful tool for diagnostic purposes and for decision making in this setting.

  3. Accurate grading of brain gliomas by soft independent modeling of class analogy based on non-negative matrix factorization of proton magnetic resonance spectra.

    PubMed

    Ghasemi, K; Khanmohammadi, M; Saligheh Rad, H

    2016-02-01

    Hydrogen magnetic resonance spectroscopy ((1) H-MRS) is a non-invasive technique which provides a 'frequency-signal intensity' spectrum of biochemical compounds of tissues in the body. Although this method is currently used in human brain studies, accurate classification of in-vivo (1) H-MRS is a challenging task in the diagnosis of brain tumors. Problems such as overlapping metabolite peaks, incomplete information on background component and low signal-to-noise ratio disturb classification results of this spectroscopic method. This study presents an alternative approach to the soft independent modeling of class analogy (SIMCA) technique, using non-negative matrix factorization (NMF) for dimensionality reduction. In the adopted strategy, the performance of SIMCA was improved by application of a robust algorithm for classification in the presence of noisy measurements. Total of 219 spectra from two databases were taken by water-suppressed short echo-time (1) H-MRS, acquired from different subjects with different stages of glial brain tumors (Grade II (26 cases), grade III (24 cases), grade IV (41 cases), as well as 25 healthy cases). The SIMCA was performed using two approaches: (i) principal component analysis (PCA) and (ii) non-negative matrix factorization (NMF), as a modified approach. Square prediction error was considered to assess the class membership of the external validation set. Finally, several figures of merit such as the correct classification rate (CCR), sensitivity and specificity were calculated. Results of SIMCA based on NMF showed significant improvement in percentage of correctly classified samples, 91.4% versus 83.5% for PCA-based model in an independent test set.

  4. Independent Epileptiform Discharge Patterns in the Olfactory and Limbic Areas of the In Vitro Isolated Guinea Pig Brain During 4-Aminopyridine Treatment

    PubMed Central

    Carriero, Giovanni; Uva, Laura; Gnatkovsky, Vadym; Avoli, Massimo; de Curtis, Marco

    2016-01-01

    In vitro studies performed on brain slices demonstrate that the potassium channel blocker 4-aminopyridine (4AP, 50 μM) discloses electrographic seizure activity and interictal discharges. These epileptiform patterns have been further analyzed here in a isolated whole guinea pig brain in vitro by using field potential recordings in olfactory and limbic structures. In 8 of 13 experiments runs of fast oscillatory activity (fast runs, FRs) in the piriform cortex (PC) propagated to the lateral entorhinal cortex (EC), hippocampus and occasionally to the medial EC. Early and late FRs were asynchronous in the hemispheres showed different duration [1.78 ± 0.51 and 27.95 ± 4.55 (SD) s, respectively], frequency of occurrence (1.82 ± 0.49 and 34.16 ± 6.03 s) and frequency content (20–40 vs. 40–60 Hz). Preictal spikes independent from the FRs appeared in the hippocampus/EC and developed into ictal-like discharges that did not propagate to the PC. Ictal-like activity consisted of fast activity with onset either in the hippocampus (n = 6) or in the mEC (n = 2), followed by irregular spiking and sequences of diffusely synchronous bursts. Perfusion of the N-methyl-D-aspartate receptor antagonist 2-amino-5-phosphonopentanoic acid (100 μM) did not prevent FRs, increased the duration of limbic ictal-like discharges and favored their propagation to olfactory structures. The AMPA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (50 μM) blocked ictal-like events and reduced FRs. In conclusion, 4AP-induced epileptiform activities are asynchronous and independent in olfactory and hippocampal-entorhinal regions. Epileptiform discharges in the isolated guinea pig brain show different pharmacological properties compared with rodent in vitro slices. PMID:20220076

  5. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis.

    PubMed

    Cruz, Gabriela; Burgos, Pablo; Kilborn, Kerry; Evans, Jonathan J

    2017-01-01

    Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks.

  6. Involvement of the anterior cingulate cortex in time-based prospective memory task monitoring: An EEG analysis of brain sources using Independent Component and Measure Projection Analysis

    PubMed Central

    Burgos, Pablo; Kilborn, Kerry; Evans, Jonathan J.

    2017-01-01

    Objective Time-based prospective memory (PM), remembering to do something at a particular moment in the future, is considered to depend upon self-initiated strategic monitoring, involving a retrieval mode (sustained maintenance of the intention) plus target checking (intermittent time checks). The present experiment was designed to explore what brain regions and brain activity are associated with these components of strategic monitoring in time-based PM tasks. Method 24 participants were asked to reset a clock every four minutes, while performing a foreground ongoing word categorisation task. EEG activity was recorded and data were decomposed into source-resolved activity using Independent Component Analysis. Common brain regions across participants, associated with retrieval mode and target checking, were found using Measure Projection Analysis. Results Participants decreased their performance on the ongoing task when concurrently performed with the time-based PM task, reflecting an active retrieval mode that relied on withdrawal of limited resources from the ongoing task. Brain activity, with its source in or near the anterior cingulate cortex (ACC), showed changes associated with an active retrieval mode including greater negative ERP deflections, decreased theta synchronization, and increased alpha suppression for events locked to the ongoing task while maintaining a time-based intention. Activity in the ACC was also associated with time-checks and found consistently across participants; however, we did not find an association with time perception processing per se. Conclusion The involvement of the ACC in both aspects of time-based PM monitoring may be related to different functions that have been attributed to it: strategic control of attention during the retrieval mode (distributing attentional resources between the ongoing task and the time-based task) and anticipatory/decision making processing associated with clock-checks. PMID:28863146

  7. 76 FR 49762 - FirstEnergy Service Co. v. Midwest Independent Transmission System Operator, Inc.; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... Multi-Value Project (MVP) transmission usage charges proposed by the Midwest Independent Transmission... Practice and Procedure, alleging that it is unjust and unreasonable to apply MVP transmission usage charges... filing is accessible on-line at http://www.ferc.gov , using the ``eLibrary'' link and is available...

  8. Classroom Demonstration of Behavioral Effects of the Split-Brain Operation.

    ERIC Educational Resources Information Center

    Morris, Edward J.

    1991-01-01

    Presents a method for simulating the behavior and perceptual deficits demonstrated by patients who have undergone the split brain surgical procedure. Presents several activities in which two volunteers are required to accomplish certain tasks as one person. Suggests that these activities show how split brain patients illustrate certain lateralized…

  9. Traumatic Brain Injury in United States Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Hispanic Veterans—A Review Using the PRISMA Method

    PubMed Central

    Arriola, Vanessa D.; Rozelle, Jeffrey W.

    2016-01-01

    Traumatic brain injury (TBI) is commonly defined by Menon et al. as an “alteration of the brain function, or other evidence of brain pathology, caused by an external force.” TBI can be caused by penetrating trauma to the head in which the magnitude of the injury is dependent on the magnitude of the forces that are applied to the head. The consequences of TBI can range from minimal to severe disability and even death. The major objectives of this systematic review are to survey the current literature on Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) Hispanic veterans with TBI. To complete this analysis, the Preferred Reporting Items for Systematic Reviews and MetaAnalysis (PRISMA) identified 875 articles in common and retrieved a total of 34 articles that met the inclusion criteria, consisted of OEF/OIF Hispanic veterans, reported quantitative data, and were conducted with adult U.S. veterans living in the United States. Since TBI diagnosis was unclear in most articles, only five articles that used the VATBIST instrument were analyzed. The results suggested that there is a lack of research on OEF/OIF Hispanic veterans and Hispanic subgroups. Future studies need to be conducted to consider minority groups while analyzing data involving TBI. PMID:26771647

  10. Traumatic Brain Injury in United States Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Hispanic Veterans-A Review Using the PRISMA Method.

    PubMed

    Arriola, Vanessa D; Rozelle, Jeffrey W

    2016-01-12

    Traumatic brain injury (TBI) is commonly defined by Menon et al. as an "alteration of the brain function, or other evidence of brain pathology, caused by an external force." TBI can be caused by penetrating trauma to the head in which the magnitude of the injury is dependent on the magnitude of the forces that are applied to the head. The consequences of TBI can range from minimal to severe disability and even death. The major objectives of this systematic review are to survey the current literature on Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) Hispanic veterans with TBI. To complete this analysis, the Preferred Reporting Items for Systematic Reviews and MetaAnalysis (PRISMA) identified 875 articles in common and retrieved a total of 34 articles that met the inclusion criteria, consisted of OEF/OIF Hispanic veterans, reported quantitative data, and were conducted with adult U.S. veterans living in the United States. Since TBI diagnosis was unclear in most articles, only five articles that used the VATBIST instrument were analyzed. The results suggested that there is a lack of research on OEF/OIF Hispanic veterans and Hispanic subgroups. Future studies need to be conducted to consider minority groups while analyzing data involving TBI.

  11. Novel approach for independent control of brain hypothermia and systemic normothermia: cerebral selective deep hypothermia for refractory cardiac arrest.

    PubMed

    Wang, Chih-Hsien; Lin, Yu-Ting; Chou, Heng-Wen; Wang, Yi-Chih; Hwang, Joey-Jen; Gilbert, John R; Chen, Yih-Sharng

    2017-01-20

    A 38-year-old man was found unconscious, alone in the driver's seat of his car. The emergency medical team identified his condition as pulseless ventricular tachycardia. Defibrillation was attempted but failed. Extracorporeal membrane oxygenation (ECMO) was started in the emergency room 52 min after the estimated arrest following the extracorporeal cardiopulmonary resuscitation (ECPR) protocol in our center. The initial prognosis under the standard protocol was <25% chance of survival. A novel adjunctive to our ECPR protocol, cerebral selective deep (<30°C) hypothermia (CSDH), was applied. CSDH adds a second independent femoral access extracorporeal circuit, perfusing cold blood into the patient's common carotid artery. The ECMO and CSDH circuits demonstrated independent control of cerebral and core temperatures. Nasal temperature was lowered to below 30°C for 12 hours while core was maintained at normothermia. The patient was discharged without significant neurological deficit 32 days after the initial arrest. 2017 BMJ Publishing Group Ltd.

  12. The low affinity neurotensin receptor antagonist levocabastine impairs brain nitric oxide synthesis and mitochondrial function by independent mechanisms.

    PubMed

    Lores-Arnaiz, Silvia; Karadayian, Analía G; Gutnisky, Alicia; Rodríguez de Lores Arnaiz, Georgina

    2017-10-04

    Neurotensin is known to inhibit neuronal Na+, K+ -ATPase, an effect that is rescued by nitric oxide (NO) synthase inhibition. However, whether the neurotensinergic and the nitrergic systems are independent pathways, or are mechanistically linked, is unknown. Here, we addressed this issue and found that the administration of NTS2 antagonist, levocabastine (50 μg/kg, i.p.) inhibited NO synthase (NOS) activity by 74 and 42% after 18 h in synaptosomal and mitochondrial fractions isolated from the Wistar rat cerebral cortex, respectively; these effects disappeared 36 h after levocabastine treatment. Intriguingly, whereas neuronal NOS (nNOS) protein abundance decreased (by 56%) in synaptosomes membranes, it was enhanced (by 86%) in mitochondria 18 h after levocabastine administration. Levocabastine enhanced the respiratory rate of synaptosomes in the presence of oligomycin, but it failed to alter the spare respiratory capacity; furthermore, the mitochondrial respiratory chain (MRC) complexes I-IV activities were severely diminished by levocabastine administration. The inhibition of NOS and MRC complexes activities were also observed after incubation of synaptosomes and mitochondria with levocabastine (1 μM) in vitro. These data indicate that the NTS2 antagonist levocabastine regulates NOS expression and activity at the synapse, suggesting an interrelationship between the neurotensinergic and the nitrergic systems. However, the bioenergetics effects of NTS2 activity inhibition are likely to be independent from the regulation of NO synthesis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. On the definition of the time evolution operator for time-independent Hamiltonians in non-relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.

    2017-09-01

    The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.

  14. Deep white matter hyperintensities affect verbal memory independent of PTSD symptoms in veterans with mild traumatic brain injury.

    PubMed

    Clark, Alexandra L; Sorg, Scott F; Schiehser, Dawn M; Luc, Norman; Bondi, Mark W; Sanderson, Mark; Werhane, Madeleine L; Delano-Wood, Lisa

    2016-01-01

    Although white matter hyperintensity (WMH) pathology has been observed in the context of traumatic brain injury (TBI), the contribution of this type of macrostructural damage to cognitive and/or post-concussive symptomatology (PCS) remains unclear. Sixty-eight Veterans (mTBI = 46, Military Controls [MCs] = 22) with and without history of mild TBI (mTBI) underwent structural MRI and comprehensive cognitive and psychiatric assessment. WMH volume was identified as deep (DWMH) or periventricular (PVWMH) on fluid-attenuated inversion recovery (FLAIR) images. Group analyses revealed that mTBI history was not associated with increased WMH pathology (p's > 0.05). However, after controlling for post-traumatic stress disorder (PTSD) and intracranial volume, DWMH was associated with reduced short-and long-delayed memory performance within the mTBI group (p's < 0.05). Additionally, after adjusting for PTSD and time since injury, regression analyses revealed that WMH was not associated with self-reported ratings of PCS (p's > 0.05) in the mTBI group. The results demonstrate that, in relatively young Veterans with mTBI, DWMH differentially and negatively affects memory performance above and beyond the effects of PTSD symptoms. The findings may help to clarify prior mixed results as well as offer focused treatment implications for Veterans with history of neurotrauma and evidence of macrostructural white matter damage.

  15. Project Career: An individualized postsecondary approach to promoting independence, functioning, and employment success among students with traumatic brain injuries.

    PubMed

    Minton, Deborah; Elias, Eileen; Rumrill, Phillip; Hendricks, Deborah J; Jacobs, Karen; Leopold, Anne; Nardone, Amanda; Sampson, Elaine; Scherer, Marcia; Gee Cormier, Aundrea; Taylor, Aiyana; DeLatte, Caitlin

    2017-09-14

    Project Career is a five-year interdisciplinary demonstration project funded by NIDILRR. It provides technology-driven supports, merging Cognitive Support Technology (CST) evidence-based practices and rehabilitation counseling, to improve postsecondary and employment outcomes for veteran and civilian undergraduate students with traumatic brain injury (TBI). Provide a technology-driven individualized support program to improve career and employment outcomes for students with TBI. Project staff provide assessments of students' needs relative to assistive technology, academic achievement, and career preparation; provide CST training to 150 students; match students with mentors; provide vocational case management; deliver job development and placement assistance; and maintain an electronic portal regarding accommodation and career resources. Participating students receive cognitive support technology training, academic enrichment, and career preparatory assistance from trained professionals at three implementation sites. Staff address cognitive challenges using the 'Matching Person with Technology' assessment to accommodate CST use (iPad and selected applications (apps)). JBS International (JBS) provides the project's evaluation. To date, 117 students participate with 63% report improved life quality and 75% report improved academic performance. Project Career provides a national model based on best practices for enabling postsecondary students with TBI to attain academic, employment, and career goals.

  16. Acute Pre-operative Infarcts and Poor Cerebrovascular Reserve are Independent Risk Factors for Severe Ischemic Complications Following Direct Extracranial-Intracranial Bypass for Moyamoya Disease

    PubMed Central

    Pulling, T. Michael; Rosenberg, Jarrett; Marks, Michael P.; Steinberg, Gary K.; Zaharchuk, Greg

    2015-01-01

    Background and Purpose Severe ischemic changes are a rare but devastating complication following direct superficial temporal artery to middle cerebral artery (STA MCA) bypass in Moyamoya patients. This study was undertaken to determine whether pre-operative MR imaging and/or cerebrovascular reserve (CVR) assessment using reference standard stable xenon enhanced computed tomography (xeCT) could predict such complications. Materials and Methods Among all adult patients receiving direct bypass at our institution between 2005 and 2010 who received a clinically interpretable xeCT examination, we identified index cases (patients with >15 ml post-operative infarcts) and control cases (patients without post-operative infarcts and without transient or permanent ischemic symptoms). Differences between groups were evaluated using the Mann Whitney test. Univariate and multivariate generalized linear model regression were employed to test predictors of post-operative infarct. Results Six index cases were identified and compared with 25 controls. Infarct size in the index cases was 95±55 ml. Four of six index cases (67%), but no control patients, had pre-operative acute infarcts. Baseline CBF was similar, but CVR was significantly lower in the index cases compared with control cases. For example, in the anterior circulation, median CVR was 0.4% (range: −38.0% to 16.6%) in index vs. 26.3% (range: −8.2% to 60.5%) in control patients (p=0.003). Multivariate analysis demonstrated that the presence of a small pre-operative infarct (regardless of location) and impaired CVR were independent, significant predictors of severe post-operative ischemic injury. Conclusion Acute infarcts and impaired CVR on pre operative imaging are independent risk factors for severe ischemic complications following STA MCA bypass in Moyamoya disease. PMID:26564435

  17. ``DMS-R, the Brain of the ISS'', 10 Years of Continuous Successful Operation in Space

    NASA Astrophysics Data System (ADS)

    Wolff, Bernd; Scheffers, Peter

    2012-08-01

    Space industries on both sides of the Atlantic were faced with a new situation of collaboration in the beginning of the 1990s.In 1995, industrial cooperation between ASTRIUM ST, Bremen and RSC-E, Moscow started aiming the outfitting of the Russian Service Module ZVEZDA for the ISS with computers. The requested equipments had to provide not only redundancy but fault tolerance and high availability. The design and development of two fault tolerant computers, (FTCs) responsible for the telemetry (Telemetry Computer: TC) and the central control (CC), as well as the man machine interface CPC were contracted to ASTRIUM ST, Bremen. The computer system is responsible e.g. for the life support system and the ISS re-boost control.In July 2000, the integration of the Russian Service Module ZVEZDA with Russian ZARYA FGB and American Node 1 bears witness for transatlantic and European cooperation.The Russian Service module ZVEZDA provides several basic functions as Avionics Control, the Environmental Control and Life Support (ECLS) in the ISS and control of the docked Automatic Transfer Vehicle (ATV) which includes re-boost of ISS. If these elementary functions fail or do not work reliable the effects for the ISS will be catastrophic with respect to Safety (manned space) and ISS mission.For that reason the responsible computer system Data Management System - Russia (DMS-R) is also called "The brain of the ISS".The Russian Service module ZVEZDA, including DMS-R, was launched on 12th of July, 2000. DMS-R was operational also during launch and docking.The talk provide information about the definition, design and development of DMS-R, the integration of DMS-R in the Russian Service module and the maintenance of the system in space. Besides the technical aspects are also the German - Russian cooperation an important subject of this speech. An outlook finalises the talk providing further development activities and application of fault tolerant systems.The importance of the DMS

  18. Computation by symmetry operations in a structured model of the brain: Recognition of rotational invariance and time reversal

    NASA Astrophysics Data System (ADS)

    McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.

    1994-06-01

    Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.

  19. Origins of task-specific sensory-independent organization in the visual and auditory brain: neuroscience evidence, open questions and clinical implications.

    PubMed

    Heimler, Benedetta; Striem-Amit, Ella; Amedi, Amir

    2015-12-01

    Evidence of task-specific sensory-independent (TSSI) plasticity from blind and deaf populations has led to a better understanding of brain organization. However, the principles determining the origins of this plasticity remain unclear. We review recent data suggesting that a combination of the connectivity bias and sensitivity to task-distinctive features might account for TSSI plasticity in the sensory cortices as a whole, from the higher-order occipital/temporal cortices to the primary sensory cortices. We discuss current theories and evidence, open questions and related predictions. Finally, given the rapid progress in visual and auditory restoration techniques, we address the crucial need to develop effective rehabilitation approaches for sensory recovery. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells.

    PubMed

    Kito, Hiroaki; Yamamura, Hisao; Suzuki, Yoshiaki; Yamamura, Hideto; Ohya, Susumu; Asai, Kiyofumi; Imaizumi, Yuji

    2015-04-10

    Store-operated Ca(2+) entry (SOCE) via Orai1 and STIM1 complex is supposed to have obligatory roles in the regulation of cellular functions of vascular endothelial cells, while little is known about the contribution of Orai2. Quantitative PCR and Western blot analyses indicated the expression of Orai2 and STIM2, in addition to Orai1 and STIM1 in bovine brain capillary endothelial cell line, t-BBEC117. During the exponential growth of t-BBEC117, the knockdown of Orai1 and STIM1 significantly reduced the SOCE activity, whereas Orai2 and STIM2 siRNAs had no effect. To examine whether endogenous SOCE activity contributes to the regulation of cell cycle progression, t-BBEC117 were synchronized using double thymidine blockage. At the G2/M phase, Ca(2+) influx via SOCE was decreased and Orai2 expression was increased compared to the G0/G1 phase. When Orai2 was knocked down at the G2/M phase, the decrease in SOCE was removed, and cell proliferation was partly attenuated. Taken together, Orai1 significantly contributes to cell proliferation via the functional expression, which is presumably independent of the cell cycle phases. In construct, Orai2 is specifically up-regulated during the G2/M phase, negatively modulates the SOCE activity, and may contribute to the regulation of cell cycle progression in brain capillary endothelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Changes in the social environment induce neurogenic plasticity predominantly in niches residing in sensory structures of the zebrafish brain independently of cortisol levels.

    PubMed

    Lindsey, Benjamin W; Tropepe, Vincent

    2014-11-01

    The social environment is known to modulate adult neurogenesis. Studies in mammals and birds have shown a strong correlation between social isolation and decreases in neurogenesis, whereas time spent in an enriched environment has been shown to restore these deficits and enhance neurogenesis. These data suggest that there exists a common adaptive response among neurogenic niches to each extreme of the social environment. We sought to further test this hypothesis in zebrafish, a social species with distinct neurogenic niches within primary sensory structures and telencephalic nuclei of the brain. By examining stages of adult neurogenesis, including the proliferating stem/progenitor population, their surviving cohort, and the resulting newly differentiated neuronal population, we show that niches residing in sensory structures are most sensitive to changes in the social context, and that social isolation or novelty are both capable of decreasing the number of proliferating cells while increasing the number of newborn neurons within a single niche. Contrary to observations in rodents, we demonstrate that social novelty, a form of enrichment, does not consistently rescue deficits in cell proliferation following social isolation, and that cortisol levels do not negatively regulate changes in adult neurogenesis, but are correlated with the social context. We propose that enhancement or suppression of adult neurogenesis in the zebrafish brain under different social contexts depends largely on the type of niche (sensory or telencephalic), experience from the preceding social environment, and occurs independently of changes in cortisol levels.

  2. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  3. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA

    PubMed Central

    Dyall, Simon C.

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer’s disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined. PMID:25954194

  4. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation

    PubMed Central

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation. PMID:27636359

  5. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA.

    PubMed

    Dyall, Simon C

    2015-01-01

    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer's disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system (CNS), where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined.

  6. IRES-mediated translation of cellular messenger RNA operates in eIF2α- independent manner during stress

    PubMed Central

    Thakor, Nehal; Holcik, Martin

    2012-01-01

    Physiological and pathophysiological stress attenuates global translation via phosphorylation of eIF2α. This in turn leads to the reprogramming of gene expression that is required for adaptive stress response. One class of cellular messenger RNAs whose translation was reported to be insensitive to eIF2α phosphorylation-mediated repression of translation is that harboring an Internal Ribosome Entry Site (IRES). IRES-mediated translation of several apoptosis-regulating genes increases in response to hypoxia, serum deprivation or gamma irradiation and promotes tumor cell survival and chemoresistance. However, the molecular mechanism that allows IRES-mediated translation to continue in an eIF2α-independent manner is not known. Here we have used the X-chromosome linked Inhibitor of Apoptosis, XIAP, IRES to address this question. Using toeprinting assay, western blot analysis and polysomal profiling we show that the XIAP IRES supports cap-independent translation when eIF2α is phosphorylated both in vitro and in vivo. During normal growth condition eIF2α-dependent translation on the IRES is preferred. However, IRES-mediated translation switches to eIF5B-dependent mode when eIF2α is phosphorylated as a consequence of cellular stress. PMID:21917851

  7. Early interactions with mother and peers independently build adult social skills and shape BDNF and oxytocin receptor brain levels

    PubMed Central

    Branchi, Igor; Curley, James P.; D’Andrea, Ivana; Cirulli, Francesca; Champagne, Frances A.; Alleva, Enrico

    2012-01-01

    The early social environment has a profound impact on developmental trajectories. Although an impoverished early environment can undermine the acquisition of appropriate social skills, the specific role played by the different components of an individual’s early environment in building social competencies has not been fully elucidated. Here we setup an asynchronous communal nesting paradigm in mice to disentangle the influence of maternal care and early peer interactions on adult social behavior and neural systems reportedly involved in the regulation of social interactions. The asynchronous communal nesting consists of three mothers giving birth three days apart, generating three groups of pups -- the Old, the Middle and the Young – all raised in a single nest from birth to weaning. We scored the amount of maternal and peer interactions received by these mice and by a fourth group reared under standard conditions. At adulthood, the four experimental groups have been investigated for social behavior in a social interaction test, i.e. facing an unfamiliar conspecific during five 20-min daily encounters, and for oxytocin receptor and BDNF levels. Results show that only individuals exposed to high levels of both maternal and peer interactions demonstrated elaborate adult agonistic competencies, i.e. the ability to promptly display a social status, and high BDNF levels in the hippocampus, frontal cortex and hypothalamus. By contrast, only individuals exposed to high levels of peer interactions showed enhanced adult affiliative behavior and enhanced oxytocin receptor levels in selected nuclei of the amygdala. Overall these findings indicate that early interactions with mother and peers independently shape specific facets of adult social behavior and neural systems involved in social interaction. PMID:22910688

  8. Hatchery Evaluation Report / Lyons Ferry Hatchery - Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Teams (IHOT) Performance Measures : Final Report.

    SciTech Connect

    Watson, Montgomery

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Fall Chinook). The audit is being conducted as a requirement of the Northwest Power Planning Council (NPPC) ``Strategy for Salmon`` and the Columbia River Basin Fish and Wildlife Program. Under the audit, the hatcheries are evaluated against policies and related performance measures developed by the Integrated Hatchery Operations Team (IHOT). IHOT is a multi-agency group established by the NPPC to direct the development of new basinwide standards for managing and operating fish hatcheries. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  9. Configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks

    DOEpatents

    Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-03-02

    Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.

  10. [Interdisciplinary neuro-oncology: part 1: diagnostics and operative therapy of primary brain tumors].

    PubMed

    Tabatabai, G; Hattingen, E; Schlegel, J; Stummer, W; Schlegel, U

    2014-08-01

    By combining the expertise of clinical neuroscience, the aim of neuro-oncology is to optimize diagnostic planning and therapy of primary brain tumors in an interdisciplinary setting together with radio-oncology and medical oncology. High-end imaging frequently allows brain tumors to be diagnosed preoperatively with respect to tumor entity and even tumor malignancy grade. Moreover, neuroimaging is indispensable for guidance of biopsy resection and monitoring of therapy. Surgical resection of intracranial lesions with preservation of neurological function is increasingly feasible. Tools to achieve this goal are, for example neuronavigation, functional magnetic resonance imaging (fMRI), tractography, intraoperative cortical stimulation and precise intraoperative definition of tumor margins by virtue of various techniques. In addition to classical histopathological diagnosis and tumor classification, modern neuropathology is supplemented by molecular characterization of brain tumors in order to provide clinicians with prognostic and predictive (of therapy) markers, such as codeletion of chromosomes 1p and 19q in anaplastic gliomas and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation in glioblastomas. Although this is not yet individualized tumor therapy, the increasingly more detailed analysis of the molecular pathogenesis of an individual glioma will eventually lead to specific pharmacological blockade of disturbed intracellular pathways in individual patients. This article gives an overview of the state of the art of interdisciplinary neuro-oncology whereby part 1 deals with the diagnostics and surgical therapy of primary brain tumors and part 2 describes the medical therapy of primary brain tumors.

  11. Operative duration as an independent risk factor for postoperative complications in single-level lumbar fusion: an analysis of 4588 surgical cases.

    PubMed

    Kim, Bobby D; Hsu, Wellington K; De Oliveira, Gildasio S; Saha, Sujata; Kim, John Y S

    2014-03-15

    Multicenter retrospective cohort study. To estimate the impact of increasing surgical duration on outcomes after single-level lumbar fusion. Lumbar fusion is a widely used practice for the treatment of disability and chronic low back pain. Longer operative duration is shown to correlate with increased morbidity and mortality in various surgical disciplines, but no large-scale study has been performed to validate this relationship in lumbar spine surgery. The American College of Surgeons National Surgical Quality Improvement Program was retrospectively reviewed to identify all patients who underwent lumbar fusion procedures during 2006 to 2011. Thirty-day morbidity and mortality rates were reported on the basis of operative time, whereas multivariate logistic regression model was used to examine operative duration as an independent risk factor for outcomes. A total of 4588 patients were included in the analysis. The mean operative duration for all patients was 197 ± 105 minutes. Our multivariate risk-adjusted regression models demonstrated that increasing operative time was associated with step-wise increase in risk for overall complications (odds ratio [OR], 2.09-5.73), medical complications (OR, 2.18-6.21), surgical complications (OR, 1.65-2.90), superficial surgical site infection (OR, 2.65-3.97), and postoperative transfusions (OR, 3.25-12.19). Operative duration of 5 hours or more was also associated with increased risk of reoperation (OR, 2.17), organ/space surgical site infection (OR, 9.72), sepsis/septic shock (OR, 4.41), wound dehiscence (OR, 10.98), and deep vein thrombosis (OR, 17.22). Our data suggest that increasing operative duration is associated with a wide array of complications. Operative duration is, therefore, an important quality metric in the performance of lumbar fusion. Strategies to reduce operative time and further research to identify risk factors that are associated with longer surgical duration are needed for improved patient outcomes

  12. Device- and system-independent personal touchless user interface for operating rooms : One personal UI to control all displays in an operating room.

    PubMed

    Ma, Meng; Fallavollita, Pascal; Habert, Séverine; Weidert, Simon; Navab, Nassir

    2016-06-01

    In the modern day operating room, the surgeon performs surgeries with the support of different medical systems that showcase patient information, physiological data, and medical images. It is generally accepted that numerous interactions must be performed by the surgical team to control the corresponding medical system to retrieve the desired information. Joysticks and physical keys are still present in the operating room due to the disadvantages of mouses, and surgeons often communicate instructions to the surgical team when requiring information from a specific medical system. In this paper, a novel user interface is developed that allows the surgeon to personally perform touchless interaction with the various medical systems, switch effortlessly among them, all of this without modifying the systems' software and hardware. To achieve this, a wearable RGB-D sensor is mounted on the surgeon's head for inside-out tracking of his/her finger with any of the medical systems' displays. Android devices with a special application are connected to the computers on which the medical systems are running, simulating a normal USB mouse and keyboard. When the surgeon performs interaction using pointing gestures, the desired cursor position in the targeted medical system display, and gestures, are transformed into general events and then sent to the corresponding Android device. Finally, the application running on the Android devices generates the corresponding mouse or keyboard events according to the targeted medical system. To simulate an operating room setting, our unique user interface was tested by seven medical participants who performed several interactions with the visualization of CT, MRI, and fluoroscopy images at varying distances from them. Results from the system usability scale and NASA-TLX workload index indicated a strong acceptance of our proposed user interface.

  13. Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Pfurtscheller, Gert; Rupp, Rüdiger

    2006-07-01

    Transferring a brain-computer interface (BCI) from the laboratory environment into real world applications is directly related to the problem of identifying user intentions from brain signals without any additional information in real time. From the perspective of signal processing, the BCI has to have an uncued or asynchronous design. Based on the results of two clinical applications, where 'thought' control of neuroprostheses based on movement imagery in tetraplegic patients with a high spinal cord injury has been established, the general steps from a synchronous or cue-guided BCI to an internally driven asynchronous brain-switch are discussed. The future potential of BCI methods for various control purposes, especially for functional rehabilitation of tetraplegics using neuroprosthetics, is outlined.

  14. A New Operating System for Security Tagged Architecture Hardware in Support of Multiple Independent Levels of Security (MILS) Compliant System

    DTIC Science & Technology

    2014-04-01

    can have more than two security classes, as seen in Figure 15, which has ten classes. The arrows in the figure are used to denote the relation of ≤. An... arrow from class RED to BLUE means RED ≤ BLUE. Figure 15: Multilevel lattice model The notation ⨁ denotes the least upper bound (LUB) operation...username and password to be stolen • Control the browser remotely • Spread worms A simple example: The URL on the site http://www.mysite.com/search

  15. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of operating room light artifacts

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; Tremblay, Marie-Andrée; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic

    2016-09-01

    Invasive brain cancer cells cannot be visualized during surgery and so they are often not removed. These residual cancer cells give rise to recurrences. In vivo Raman spectroscopy can detect these invasive cancer cells in patients with grade 2 to 4 gliomas. The robustness of this Raman signal can be dampened by spectral artifacts generated by lights in the operating room. We found that artificial neural networks (ANNs) can overcome these spectral artifacts using nonparametric and adaptive models to detect complex nonlinear spectral characteristics. Coupling ANN with Raman spectroscopy simplifies the intraoperative use of Raman spectroscopy by limiting changes required to the standard neurosurgical workflow. The ability to detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery and improve patient survival.

  16. Optical Topography of Evoked Brain Activity during Mental Tasks Involving Whole Number Operations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2014-01-01

    Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…

  17. Optical Topography of Evoked Brain Activity during Mental Tasks Involving Whole Number Operations

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2014-01-01

    Students start to memorize arithmetic facts from early elementary school mathematics activities. Their fluency or lack of fluency with these facts could affect their efforts as they carry out mental calculations as adults. This study investigated participants' levels of brain activation and possible reasons for these levels as they solved…

  18. Calculation for path-domain independent J integral with elasto-viscoplastic consistent tangent operator concept-based boundary element methods

    NASA Astrophysics Data System (ADS)

    Yong, Liu; Qichao, Hong; Lihua, Liang

    1999-05-01

    This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independent J integrals (extension of the classical J integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independent J integrals. Applications are presented with two numerical examples for viscoplastic crack problems and J integrals.

  19. [The implementation of an independent and differentiated pain management SOP (Standard Operating Procedure) for the interdisciplinary intensive care unit].

    PubMed

    Aust, Hansjörg; Wulf, Hinnerk; Vassiliou, Timon

    2013-03-01

    Up to the present day, pain management in the ICU (Intensive Care Units) is a unresolved clinical problem due to patient heterogeneity with complex variation in etiopathology and treatment of the underlying diseases. Therefore, therapeutic strategies in terms of standard operating procedure (SOP) are a necessary to improve the pain management for intensive care patients. Common guidelines for analgosedation are often inadequate to reflect the clinical situation. In particular, for an ICU setting without permanent presence of a physician a missing pain management SOP resulting in delayed pain therapy caused by a therapeutic uncertainty of the nurse staff. In addition to our pre-existing SOP for analgosedation we implemented a pain management SOP for our interdisciplinary, anaesthesiologic ICU. A exploratory survey among the nurse staff was conducted to assess the efficacy of the SOP. The results of the evaluation after a 6 month follow-up indicated a faster onset of pain management and good acceptance by the nursing staff.

  20. Plasma Levels of Monocyte Chemoattractant Protein-1, n-Terminal Fragment of Brain Natriuretic Peptide and Calcidiol Are Independently Associated with the Complexity of Coronary Artery Disease

    PubMed Central

    Martín-Reyes, Roberto; Franco-Peláez, Juan Antonio; Lorenzo, Óscar; González-Casaus, María Luisa; Pello, Ana María; Aceña, Álvaro; Carda, Rocío; Martín-Ventura, José Luis; Blanco-Colio, Luis; Martín-Mariscal, María Luisa; Martínez-Milla, Juan; Villa-Bellosta, Ricardo; Piñero, Antonio; Navarro, Felipe; Egido, Jesús; Tuñón, José

    2016-01-01

    Background and Objectives We investigated the relationship of the Syntax Score (SS) and coronary artery calcification (CAC), with plasma levels of biomarkers related to cardiovascular damage and mineral metabolism, as there is sparse information in this field. Methods We studied 270 patients with coronary disease that had an acute coronary syndrome (ACS) six months before. Calcidiol, fibroblast growth factor-23, parathormone, phosphate and monocyte chemoattractant protein-1 [MCP-1], high-sensitivity C-reactive protein, galectin-3, and N-terminal pro-brain natriuretic peptide [NT-proBNP] levels, among other biomarkers, were determined. CAC was assessed by coronary angiogram as low-grade (0–1) and high-grade (2–3) calcification, measured with a semiquantitative scale ranging from 0 (none) to 3 (severe). For the SS study patients were divided in SS<14 and SS≥14. Multivariate linear and logistic regression analyses were performed. Results MCP-1 predicted independently the SS (RC = 1.73 [95%CI = 0.08–3.39]; p = 0.040), along with NT-proBNP (RC = 0.17 [95%CI = 0.05–0.28]; p = 0.004), male sex (RC = 4.15 [95%CI = 1.47–6.83]; p = 0.003), age (RC = 0.13 [95%CI = 0.02–0.24]; p = 0.020), hypertension (RC = 3.64, [95%CI = 0.77–6.50]; p = 0.013), hyperlipidemia (RC = 2.78, [95%CI = 0.28–5.29]; p = 0.030), and statins (RC = 6.12 [95%CI = 1.28–10.96]; p = 0.013). Low calcidiol predicted high-grade calcification independently (OR = 0.57 [95% CI = 0.36–0.90]; p = 0.013) along with ST-elevation myocardial infarction (OR = 0.38 [95%CI = 0.19–0.78]; p = 0.006), diabetes (OR = 2.35 [95%CI = 1.11–4.98]; p = 0.028) and age (OR = 1.37 [95%CI = 1.18–1.59]; p<0.001). During follow-up (1.79 [0.94–2.86] years), 27 patients developed ACS, stroke, or transient ischemic attack. A combined score using SS and CAC predicted independently the development of the outcome. Conclusions MCP-1 and NT-proBNP are independent predictors of SS, while low calcidiol plasma levels

  1. A Link between the Increase in Electroencephalographic Coherence and Performance Improvement in Operating a Brain-Computer Interface.

    PubMed

    Angulo-Sherman, Irma Nayeli; Gutiérrez, David

    2015-01-01

    We study the relationship between electroencephalographic (EEG) coherence and accuracy in operating a brain-computer interface (BCI). In our case, the BCI is controlled through motor imagery. Hence, a number of volunteers were trained using different training paradigms: classical visual feedback, auditory stimulation, and functional electrical stimulation (FES). After each training session, the volunteers' accuracy in operating the BCI was assessed, and the event-related coherence (ErCoh) was calculated for all possible combinations of pairs of EEG sensors. After at least four training sessions, we searched for significant differences in accuracy and ErCoh using one-way analysis of variance (ANOVA) and multiple comparison tests. Our results show that there exists a high correlation between an increase in ErCoh and performance improvement, and this effect is mainly localized in the centrofrontal and centroparietal brain regions for the case of our motor imagery task. This result has a direct implication with the development of new techniques to evaluate BCI performance and the process of selecting a feedback modality that better enhances the volunteer's capacity to operate a BCI system.

  2. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study.

    PubMed

    Holz, Elisa Mira; Botrel, Loic; Kaufmann, Tobias; Kübler, Andrea

    2015-03-01

    Despite intense brain-computer interface (BCI) research for >2 decades, BCIs have hardly been established at patients' homes. The current study aimed at demonstrating expert independent BCI home use by a patient in the locked-in state and the effect it has on quality of life. In this case study, the P300 BCI-controlled application Brain Painting was facilitated and installed at the patient's home. Family and caregivers were trained in setting up the BCI system. After every BCI session, the end user indicated subjective level of control, loss of control, level of exhaustion, satisfaction, frustration, and enjoyment. To monitor BCI home use, evaluation data of every session were automatically sent and stored on a remote server. Satisfaction with the BCI as an assistive device and subjective workload was indicated by the patient. In accordance with the user-centered design, usability of the BCI was evaluated in terms of its effectiveness, efficiency, and satisfaction. The influence of the BCI on quality of life of the end user was assessed. At the patient's home. A 73-year-old patient with amyotrophic lateral sclerosis in the locked-in state. Not applicable. The BCI has been used by the patient independent of experts for >14 months. The patient painted in about 200 BCI sessions (1-3 times per week) with a mean painting duration of 81.86 minutes (SD=52.15, maximum: 230.41). BCI improved quality of life of the patient. In most of the BCI sessions the end user's satisfaction was high (mean=7.4, SD=3.24; range, 0-10). Dissatisfaction occurred mostly because of technical problems at the beginning of the study or varying BCI control. The subjective workload was moderate (mean=40.61; range, 0-100). The end user was highy satisfied with all components of the BCI (mean 4.42-5.0; range, 1-5). A perfect match between the user and the BCI technology was achieved (mean: 4.8; range, 1-5). Brain Painting had a positive impact on the patient's life on all three dimensions: competence

  3. Age-related alterations of brain network underlying the retrieval of emotional autobiographical memories: an fMRI study using independent component analysis

    PubMed Central

    Ge, Ruiyang; Fu, Yan; Wang, Dahua; Yao, Li; Long, Zhiying

    2014-01-01

    Normal aging has been shown to modulate the neural underpinnings of autobiographical memory and emotion processing. Moreover, previous researches have suggested that aging produces a “positivity effect” in autobiographical memory. Although a few imaging studies have investigated the neural mechanism of the positivity effect, the neural substrates underlying the positivity effect in emotional autobiographical memory is unclear. To understand the age-related neural changes in emotional autobiographical memory that underlie the positivity effect, the present functional magnetic resonance imaging (fMRI) study used the independent component analysis (ICA) method to compare brain networks in younger and older adults as they retrieved positive and negative autobiographical events. Compared to their younger counterparts, older adults reported relatively higher positive feelings when retrieving emotional autobiographical events. Imaging data indicated an age-related reversal within the ventromedial prefrontal/anterior cingulate cortex (VMPFC/ACC) and the left amygdala of the brain networks that were engaged in the retrieval of autobiographical events with different valence. The retrieval of negative events compared to positive events induced stronger activity in the VMPFC/ACC and weaker activity in the amygdala for the older adults, whereas the younger adults showed a reversed pattern. Moreover, activity in the VMPFC/ACC within the task-related networks showed a negative correlation with the emotional valence intensity. These results may suggest that the positivity effect in older adults' autobiographical memories is potentially due to age-related changes in controlled emotional processing implemented by the VMPFC/ACC-amygdala circuit. PMID:25177285

  4. Hatchery Evaluation Report/Rapid River Hatchery - Spring Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.

    SciTech Connect

    Watson, Montgomery.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  5. Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320.

    PubMed

    Sarter, N B; Woods, D D

    1997-12-01

    Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.

  6. Team play with a powerful and independent agent: operational experiences and automation surprises on the Airbus A-320

    NASA Technical Reports Server (NTRS)

    Sarter, N. B.; Woods, D. D.

    1997-01-01

    Research and operational experience have shown that one of the major problems with pilot-automation interaction is a lack of mode awareness (i.e., the current and future status and behavior of the automation). As a result, pilots sometimes experience so-called automation surprises when the automation takes an unexpected action or fails to behave as anticipated. A lack of mode awareness and automation surprises can he viewed as symptoms of a mismatch between human and machine properties and capabilities. Changes in automation design can therefore he expected to affect the likelihood and nature of problems encountered by pilots. Previous studies have focused exclusively on early generation "glass cockpit" aircraft that were designed based on a similar automation philosophy. To find out whether similar difficulties with maintaining mode awareness are encountered on more advanced aircraft, a corpus of automation surprises was gathered from pilots of the Airbus A-320, an aircraft characterized by high levels of autonomy, authority, and complexity. To understand the underlying reasons for reported breakdowns in human-automation coordination, we also asked pilots about their monitoring strategies and their experiences with and attitude toward the unique design of flight controls on this aircraft.

  7. A statistical analysis of weekday operating room anesthesia group staffing costs at nine independently managed surgical suites.

    PubMed

    Dexter, F; Epstein, R H; Marsh, H M

    2001-06-01

    At many surgical suites, surgeons and patients schedule elective cases on whatever future workday they choose, resulting in there being no limit on the number of cases performed each day. Staff are then scheduled in the manner that satisfies the marketing guarantee to the surgeons, satisfies labor contracts, and minimizes staffing costs. We assessed weekday nurse anesthesia group staffing at nine such suites to determine whether statistical methods can identify staffing solutions whereby all the cases are covered but for which staffing costs are less than those obtained using the staffing plans implemented by anesthesia groups' managers. Two years of operating room information system case duration and staffing data were analyzed. First- and second-shift staffing was assessed using previously published algorithms. The statistical methods identified staffing solutions with significantly decreased labor costs than those currently being used at eight of the nine surgical suites. The statistical methods relied more on overtime than second-shift staffing. The incremental decrease in staffing costs achievable by using overlapping 8-, 10-, and 13-h shifts was negligible. Overall, we found that statistical methods can identify, for some surgical suites, staffing solutions whereby all the cases are covered but for which costs are significantly less and productivity significantly more than those obtained using the plans developed by the managers based on their experience and the data. Statistical methods can identify, for some surgical suites, anesthesia staffing solutions whereby all the cases are covered but for which labor costs are significantly less than those obtained using the staffing plans developed by the managers based on data and their experience.

  8. Brain-based translation: fMRI decoding of spoken words in bilinguals reveals language-independent semantic representations in anterior temporal lobe.

    PubMed

    Correia, João; Formisano, Elia; Valente, Giancarlo; Hausfeld, Lars; Jansma, Bernadette; Bonte, Milene

    2014-01-01

    Bilinguals derive the same semantic concepts from equivalent, but acoustically different, words in their first and second languages. The neural mechanisms underlying the representation of language-independent concepts in the brain remain unclear. Here, we measured fMRI in human bilingual listeners and reveal that response patterns to individual spoken nouns in one language (e.g., "horse" in English) accurately predict the response patterns to equivalent nouns in the other language (e.g., "paard" in Dutch). Stimuli were four monosyllabic words in both languages, all from the category of "animal" nouns. For each word, pronunciations from three different speakers were included, allowing the investigation of speaker-independent representations of individual words. We used multivariate classifiers and a searchlight method to map the informative fMRI response patterns that enable decoding spoken words within languages (within-language discrimination) and across languages (across-language generalization). Response patterns discriminative of spoken words within language were distributed in multiple cortical regions, reflecting the complexity of the neural networks recruited during speech and language processing. Response patterns discriminative of spoken words across language were limited to localized clusters in the left anterior temporal lobe, the left angular gyrus and the posterior bank of the left postcentral gyrus, the right posterior superior temporal sulcus/superior temporal gyrus, the right medial anterior temporal lobe, the right anterior insula, and bilateral occipital cortex. These results corroborate the existence of "hub" regions organizing semantic-conceptual knowledge in abstract form at the fine-grained level of within semantic category discriminations.

  9. A Gene Co-Expression Network in Whole Blood of Schizophrenia Patients Is Independent of Antipsychotic-Use and Enriched for Brain-Expressed Genes

    PubMed Central

    de Jong, Simone; Boks, Marco P. M.; Fuller, Tova F.; Strengman, Eric; Janson, Esther; de Kovel, Carolien G. F.; Ori, Anil P. S.; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D.; Cahn, Wiepke; Kahn, René S.; Horvath, Steve; Ophoff, Roel A.

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network. PMID:22761806

  10. Alterations in CaS -dependent and CaS -independent release of catecholamines in preparations of rat brain produced by ethanol treatment in vivo

    SciTech Connect

    Lynch, M.A.; Pagonis, C.; Samuel, D.; Littleton, J.M.

    1985-01-01

    Compared to preparations from control animals, superfused striatal slice preparations from brains of rats treated chronically with ethanol released a significantly greater fraction of stored (TH) dopamine on depolarisation in 40 mM K . Similarly, the electrically-evoked release of (TH)-norepinephrine from cortical slices and of (TH)-dopamine from striatal slices is also increased, although with this mechanism of depolarisation the change is significant only in the case of (TH) norepinephrine release. In contrast to this tendency to enhancement of CaS -dependent depolarisation-induced release, a reduced fraction of stored (TH)-catecholamines was released from these preparations by the indirect sympathomimetics tyramine and (+)-amphetamine. The catecholamine release induced by these indirect sympathomimetics is largely independent of external CaS and the results are interpreted as suggesting that chronic alcohol treatment changes the distribution of catecholamine neurotransmitters between storage pools in the nerve terminal which do or do not require CaS entry for release.

  11. Auditory and visual impairments in patients with blast-related traumatic brain injury: Effect of dual sensory impairment on Functional Independence Measure.

    PubMed

    Lew, Henry L; Garvert, Donn W; Pogoda, Terri K; Hsu, Pei-Te; Devine, Jennifer M; White, Daniel K; Myers, Paula J; Goodrich, Gregory L

    2009-01-01

    The frequencies of hearing impairment (HI), vision impairment (VI), or dual (hearing and vision) sensory impairment (DSI) in patients with blast-related traumatic brain injury (TBI) and their effects on functional recovery are not well documented. In this preliminary study of 175 patients admitted to a Polytrauma Rehabilitation Center, we completed hearing and vision examinations and obtained Functional Independence Measure (FIM) scores at admission and discharge for 62 patients with blast-related TBI. We diagnosed HI only, VI only, and DSI in 19%, 34%, and 32% of patients, respectively. Only 15% of the patients had no sensory impairment in either auditory or visual modality. An analysis of variance showed a group difference for the total and motor FIM scores at discharge (p < 0.04). Regression model analyses demonstrated that DSI significantly contributed to reduced gain in total ( t = -2.25) and motor ( t = -2.50) FIM scores ( p < 0.05). Understanding the long-term consequences of sensory impairments in the functional recovery of patients with blast-related TBI requires further research.

  12. A gene co-expression network in whole blood of schizophrenia patients is independent of antipsychotic-use and enriched for brain-expressed genes.

    PubMed

    de Jong, Simone; Boks, Marco P M; Fuller, Tova F; Strengman, Eric; Janson, Esther; de Kovel, Carolien G F; Ori, Anil P S; Vi, Nancy; Mulder, Flip; Blom, Jan Dirk; Glenthøj, Birte; Schubart, Chris D; Cahn, Wiepke; Kahn, René S; Horvath, Steve; Ophoff, Roel A

    2012-01-01

    Despite large-scale genome-wide association studies (GWAS), the underlying genes for schizophrenia are largely unknown. Additional approaches are therefore required to identify the genetic background of this disorder. Here we report findings from a large gene expression study in peripheral blood of schizophrenia patients and controls. We applied a systems biology approach to genome-wide expression data from whole blood of 92 medicated and 29 antipsychotic-free schizophrenia patients and 118 healthy controls. We show that gene expression profiling in whole blood can identify twelve large gene co-expression modules associated with schizophrenia. Several of these disease related modules are likely to reflect expression changes due to antipsychotic medication. However, two of the disease modules could be replicated in an independent second data set involving antipsychotic-free patients and controls. One of these robustly defined disease modules is significantly enriched with brain-expressed genes and with genetic variants that were implicated in a GWAS study, which could imply a causal role in schizophrenia etiology. The most highly connected intramodular hub gene in this module (ABCF1), is located in, and regulated by the major histocompatibility (MHC) complex, which is intriguing in light of the fact that common allelic variants from the MHC region have been implicated in schizophrenia. This suggests that the MHC increases schizophrenia susceptibility via altered gene expression of regulatory genes in this network.

  13. Brain preservation with selective cerebral perfusion for operations requiring circulatory arrest: protection at 25 degrees C is similar to 18 degrees C with shorter operating times.

    PubMed

    Salazar, Jorge; Coleman, Ryan; Griffith, Stephen; McNeil, Jeffrey; Young, Haven; Calhoon, John; Serrano, Faridis; DiGeronimo, Robert

    2009-09-01

    Hypothermic circulatory arrest (HCA) is employed for aortic arch and other complex operations, often with selective cerebral perfusion (SCP). Our previous work has demonstrated real-time evidence of improved brain protection using SCP at 18 degrees C. The purpose of this study was to evaluate the utility of SCP at warmer temperatures (25 degrees C) and its impact on operating times. Piglets undergoing cardiopulmonary bypass (CPB) and 60 min of HCA were assigned to three groups: 18 degrees C without SCP, 18 degrees C with SCP and 25 degrees C with SCP (n=8 animals per group). CPB flows were 100 ml kg(-1) min(-1) using pH-stat management. SCP flows were 10 ml kg(-1) min(-1) via the innominate artery. Cerebral oxygenation was monitored using NIRS (near-infrared spectroscopy). A microdialysis probe placed into the cerebral cortex had samples collected every 15 min. Animals were recovered for 4h after separation from CPB. All data are presented as mean+/-standard deviation (SD; p<0.05, significant). Cerebral oxygenation was preserved during deep and tepid HCA with SCP, in contrast to deep HCA without SCP (p<0.05). Deep HCA at 18 degrees C without SCP resulted in significantly elevated brain lactate (p<0.01) and glycerol (p<0.01), while the energy substrates glucose (p<0.001) and pyruvate (p<0.001) were significantly depleted. These derangements were prevented with SCP at 18 degrees C and 25 degrees C. The lactate/pyruvate ratio (L/P) was profoundly elevated following HCA alone (p<0.001) and remained persistently elevated throughout recovery (p<0.05). Piglets given SCP during HCA at 18 degrees C and 25 degrees C maintained baseline L/P ratios. Mean operating times were significantly shorter in the 25 degrees C group compared to both 18 degrees C groups (p<0.05) without evidence of significant acidemia. HCA results in cerebral hypoxia, energy depletion and ischaemic injury, which are attenuated with the use of SCP at both 18 degrees C and 25 degrees C. Procedures

  14. Postconcussive symptom reporting among US combat veterans with mild traumatic brain injury from Operation Iraqi Freedom.

    PubMed

    MacGregor, Andrew J; Dougherty, Amber L; Tang, Janet J; Galarneau, Michael R

    2013-01-01

    To examine the association between postconcussive symptoms and mild traumatic brain injury (MTBI) among combat veterans while adjusting for posttraumatic stress disorder (PTSD) and depression. Military personnel with provider-diagnosed MTBI (n = 334) or nonhead injury (n = 658) were identified from the Expeditionary Medical Encounter Database. Post-Deployment Health Assessments and Re-Assessments were used to examine postconcussive symptoms and self-rated health. Personnel with MTBI were more likely to report headache (odds ratio [OR] = 3.37; 95% confidence interval [CI] = 2.19-5.17), back pain (OR = 1.79; 95% CI = 1.23-2.60), memory problems (OR = 1.86; 95% CI = 1.20-2.88), tinnitus (OR = 1.63; 95% CI = 1.10-2.41), and dizziness (OR = 2.13; 95% CI = 1.06-4.29) compared with those with non-head injuries. Among those with MTBI, self-reported decline in health was associated with memory problems (OR = 5.07; 95% CI = 2.56-10.02) and dizziness (OR = 10.60; 95% CI = 3.48-32.27). Mild traumatic brain injury is associated with reports of negative health consequences among combat veterans even when accounting for co-occurring psychological morbidity. The identification of postconcussive symptoms related to declines in a service member's self-rated health may be important in targeting and prioritizing clinical interventions.

  15. A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people.

    PubMed

    Corralejo, Rebeca; Nicolás-Alonso, Luis F; Alvarez, Daniel; Hornero, Roberto

    2014-10-01

    The present study aims at developing and assessing an assistive tool for operating electronic devices at home by means of a P300-based brain-computer interface (BCI). Fifteen severely impaired subjects participated in the study. The developed tool allows users to interact with their usual environment fulfilling their main needs. It allows for navigation through ten menus and to manage up to 113 control commands from eight electronic devices. Ten out of the fifteen subjects were able to operate the proposed tool with accuracy above 77 %. Eight out of them reached accuracies higher than 95 %. Moreover, bitrates up to 20.1 bit/min were achieved. The novelty of this study lies in the use of an environment control application in a real scenario: real devices managed by potential BCI end-users. Although impaired users might not be able to set up this system without aid of others, this study takes a significant step to evaluate the degree to which such populations could eventually operate a stand-alone system. Our results suggest that neither the type nor the degree of disability is a relevant issue to suitably operate a P300-based BCI. Hence, it could be useful to assist disabled people at home improving their personal autonomy.

  16. Sensory sensitivity in operation enduring freedom/operation Iraqi freedom veterans with and without blast exposure and mild traumatic brain injury.

    PubMed

    Callahan, Megan L; Binder, Laurence M; O'Neil, Maya E; Zaccari, Belle; Roost, Mai S; Golshan, Shahrokh; Huckans, Marilyn; Fann, Jesse R; Storzbach, Daniel

    2016-12-08

    To examine factors associated with noise and light sensitivity among returning Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans with a self-reported history of mild traumatic brain injury (mTBI) due to blast exposure, we compared the self-report of noise and light sensitivity of 42 OEF/OIF Veterans diagnosed with mTBI resulting from combat blast-exposure to that of 36 blast-exposed OEF/OIF Veterans without a history of mTBI. Results suggest a statistically significant difference between Veterans with and without a history of mTBI in the experience of noise and light sensitivity, with sensory symptoms reported most frequently in the mTBI group. The difference remains significant even after controlling for symptoms of PTSD, depression, and somatization. These data suggest that while psychological distress is significantly associated with the complaints of noise and light sensitivity, it may not fully account for the experience of sensory sensitivity in a population with mTBI history.

  17. Detection of Volume-Changing Metastatic Brain Tumors on Longitudinal MRI Using a Semiautomated Algorithm Based on the Jacobian Operator Field.

    PubMed

    Shearkhani, O; Khademi, A; Eilaghi, A; Hojjat, S-P; Symons, S P; Heyn, C; Machnowska, M; Chan, A; Sahgal, A; Maralani, P J

    2017-09-07

    Accurate follow-up of metastatic brain tumors has important implications for patient prognosis and management. The aim of this study was to develop and evaluate the accuracy of a semiautomated algorithm in detecting growing or shrinking metastatic brain tumors on longitudinal brain MRIs. We used 50 pairs of successive MR imaging datasets, 30 on 1.5T and 20 on 3T, containing contrast-enhanced 3D T1-weighted sequences. These yielded 150 growing or shrinking metastatic brain tumors. To detect them, we completed 2 major steps: 1) spatial normalization and calculation of the Jacobian operator field to quantify changes between scans, and 2) metastatic brain tumor candidate segmentation and detection of volume-changing metastatic brain tumors with the Jacobian operator field. Receiver operating characteristic analysis was used to assess the detection accuracy of the algorithm, and it was verified with jackknife resampling. The reference standard was based on detections by a neuroradiologist. The areas under the receiver operating characteristic curves were 0.925 for 1.5T and 0.965 for 3T. Furthermore, at its optimal performance, the algorithm achieved a sensitivity of 85.1% and 92.1% and specificity of 86.7% and 91.3% for 1.5T and 3T, respectively. Vessels were responsible for most false-positives. Newly developed or resolved metastatic brain tumors were a major source of false-negatives. The proposed algorithm could detect volume-changing metastatic brain tumors on longitudinal brain MRIs with statistically high accuracy, demonstrating its potential as a computer-aided change-detection tool for complementing the performance of radiologists, decreasing inter- and intraobserver variability, and improving efficacy. © 2017 American Society of Neuroradiology.

  18. Balloon atrial septostomy and pre-operative brain injury in neonates with transposition of the great arteries: a systematic review and a meta-analysis.

    PubMed

    Polito, Angelo; Ricci, Zaccaria; Fragasso, Tiziana; Cogo, Paola E

    2012-02-01

    To perform a systematic review and a meta-analysis of the effects of balloon atrial septostomy on peri-operative brain injury in neonates with transposition of the great arteries. We conduct a systematic review of the literature to identify all observational studies that included neonates born with transposition of the great arteries who had peri-operative evidence of brain injury. The search strategy produced three prospective and two retrospective cohort studies investigating the association between balloon atrial septostomy and brain injury totalling 10,108 patients. In two studies, the outcome was represented by the presence of a coded diagnosis of a clinically evident stroke at discharge, whereas in three studies the outcome was represented by the finding of pre-operative brain injury identified by magnetic resonance scans. The overall brain injury rate for neonates who underwent balloon atrial septostomy versus control patients was 60 of 2273 (2.6%) versus 45 of 7835 (0.5%; pooled odds ratio, 1.90; 95% confidence intervals, 0.93-3.89; p = 0.08). A subgroup analysis of the three studies that used pre-operative brain injury as the primary outcome found no significant association between balloon atrial septostomy and brain injury (pooled odds ratio, 2.70; 95% confidence intervals, 0.64-11.33; p = 0.17). Balloon atrial septostomy frequency was 22.4% (2273 of 10,108), with reported rates ranging from 20% to 75%. Our analysis shows that balloon atrial septostomy is not associated with increased odds for peri-operative brain injury. Balloon atrial septostomy should still be used for those patients with significant hypoxaemia, haemodynamic instability, or both.

  19. Operations

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson; Boyce, Steven J.

    2013-01-01

    Previous research has documented schemes and operations that undergird students' understanding of fractions. This prior research was based, in large part, on small-group teaching experiments. However, written assessments are needed in order for teachers and researchers to assess students' ways of operating on a whole-class scale. In this study,…

  20. Neuropsychological performance in treatment-seeking Operation Enduring Freedom/Operation Iraqi Freedom Veterans with a history of mild traumatic brain injury.

    PubMed

    Jak, Amy J; Gregory, Amber; Orff, Henry J; Colón, Candice; Steele, Norma; Schiehser, Dawn M; Delano-Wood, Lisa; Jurick, Sarah M; Twamley, Elizabeth W

    2015-01-01

    Clinical neuropsychological presentation of treatment-seeking Veterans with a remote history of mild traumatic brain injury (mTBI) is widely variable. This manuscript seeks to better characterize cognitive concerns in the post-acute phase following mTBI and to identify the neuropsychological profiles of a large sample of clinically referred Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND) Veterans with a history of mTBI and current cognitive complaints. We hypothesized that a minority of cases would exhibit valid and widespread neuropsychological deficits. Retrospective chart reviews of neuropsychological testing and mental health symptoms and diagnoses were conducted on 411 clinically referred OEF/OIF/OND Veterans with a history of mTBI. Groups were created based on scores on performance validity measures and based on overall neuropsychological performance. A total of 29.9% of the sample performed below normative expectations on at least one performance validity test (PVT). Of those Veterans performing adequately on PVTs, 60% performed within normal limits on virtually all neuropsychological measures administered, leaving only 40% performing below expectations on two or more measures. Mood and neurobehavioral symptoms were significantly elevated in Veterans performing below cutoff on PVTs compared to Veterans who performed within normative expectations or those with valid deficits. Neurobehavioral symptoms were significantly correlated with mental health symptom reports but not with injury variables. In summary, in a large sample of clinically referred Veterans with persistent cognitive complaints after mild TBI, a third demonstrated invalid clinical neuropsychological testing, and, of those performing at or above cutoff on PVTs, over half performed within normative expectations across most neuropsychological tests administered. Results highlight the importance of objective assessment of cognitive functioning in this population

  1. Hatchery Evaluation Report/Lyons Ferry Hatchery - Summer Steelhead : an Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.

    SciTech Connect

    Watson, Montgomery.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Summer Steelhead). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of tall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead, and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  2. Hatchery Evaluation Report / Bonneville Hatchery - Tule Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures : Final Report.

    SciTech Connect

    Watson, Montgomery

    1996-05-01

    This report presents the findings of the independent audit of the Bonneville Hatchery (Tule Fall Chinook). The hatchery is located on the Columbia River just west of Cascade Locks, Oregon. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall Chinook and URB Fall Chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S. Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  3. Hatchery Evaluation Report / Bonneville Hatchery - Urb Fall Chinook : An Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures : Final Report.

    SciTech Connect

    Watson, Montgomery

    1996-05-01

    This report presents the findings of the independent audit of the Bonneville Hatchery (Upriver bright [URB] Fall Chinook). The hatchery is located on the Columbia River just west of Cascade Locks, Oregon. The hatchery is used for adult collection, egg incubation, and rearing of Tule Fall Chinook and URB Fall Chinook. The audit was conducted in April 1996 as part of at two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S. Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  4. Hatchery Evaluation Report/Lyons Ferry Hatchery - Spring Chinook : an Independent Audit Based on Integrated Hatchery Operations Team (IHOT) Performance Measures.

    SciTech Connect

    Watson, Montgomery.

    1996-05-01

    This report presents the findings of the independent audit of the Lyons Ferry Hatchery (Spring Chinook). Lyons Ferry Hatchery is located downstream of the confluence of the Palouse and Snake rivers, about 7 miles west of Starbuck, Washington. The hatchery is used for adult collection of fall chinook and summer steelhead, egg incubation of fall chinook, spring chinook, steelhead. and rainbow trout and rearing of fall chinook, spring chinook, summer steelhead, and rainbow trout. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the U.S Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  5. Insulin dependence and pancreatic enzyme replacement therapy are independent prognostic factors for long-term survival after operation for chronic pancreatitis.

    PubMed

    Winny, Markus; Paroglou, Vagia; Bektas, Hüseyin; Kaltenborn, Alexander; Reichert, Benedikt; Zachau, Lea; Kleine, Moritz; Klempnauer, Jürgen; Schrem, Harald

    2014-02-01

    This retrospective, single-center, observational study on postoperative long-term results aims to define yet unknown factors for long-term outcome after operation for chronic pancreatitis. We analyzed 147 consecutive patients operated for chronic pancreatitis from 2000 to 2011. Mean follow-up was 5.3 years (range, 1 month to 12.7 years). Complete long-term survival data were provided by the German citizen registration authorities for all patients. A quality-of-life questionnaire was sent to surviving patients after a mean follow-up of 5.7 years. Surgical principles were resection (n = 86; 59%), decompression (n = 29; 20%), and hybrid procedures (n = 32; 21%). No significant influences of different surgical principles and operative procedures on survival, long-term quality of life and pain control could be detected. Overall 30-day mortality was 2.7%, 1-year survival 95.9%, and 3-year survival 90.8%. Multivariate Cox regression analysis revealed that only postoperative insulin dependence at the time of hospital discharge (P = .027; Exp(B) = 2.111; 95% confidence interval [CI], 1.089-4.090) and the absence of pancreas enzyme replacement therapy at the time of hospital discharge (P = .039; Exp(B) = 2.102; 95% CI, 1.037-4.262) were significant, independent risk factors for survival with significant hazard ratios for long-term survival. Long-term improvement in quality of life was reported by 55 of 76 long-term survivors (73%). Pancreatic enzyme replacement should be standard treatment after surgery for chronic pancreatitis at the time of hospital discharge, even when no clinical signs of exocrine pancreatic failure exist. This study underlines the potential importance of early operative intervention in chronic pancreatitis before irreversible endocrine dysfunction is present. Copyright © 2014 Mosby, Inc. All rights reserved.

  6. Role of Ca2+-independent phospholipase A2 and store-operated pathway in urocortin-induced vasodilatation of rat coronary artery.

    PubMed

    Smani, Tarik; Domínguez-Rodríguez, Alejandro; Hmadcha, Abdelkrim; Calderón-Sánchez, Eva; Horrillo-Ledesma, Angélica; Ordóñez, Antonio

    2007-11-26

    Urocortin has been shown to produce vasodilatation in several arteries, but the precise mechanism of its action is still poorly understood. Here we demonstrate the role of store operated Ca2+ entry (SOCE) regulated by Ca2+-independent phospholipase A2 (iPLA2) in phenylephrine hydrochloride (PE)-induced vasoconstriction, and we present the first evidence that urocortin induces relaxation by the modulation of SOCE and iPLA2 in rat coronary artery. Urocortin produces an endothelium independent relaxation, and its effect is concentration-dependent (IC50 approximately = 4.5 nmol/L). We show in coronary smooth muscle cells (SMCs) that urocortin inhibits iPLA2 activation, a crucial step for SOC channel activation, and prevents Ca2+ influx evoked by the emptying of the stores via a cAMP and protein kinase A (PKA)-dependent mechanism. Lysophophatidylcholine and lysophosphatidylinositol, products of iPLA2, exactly mimic the effect of the depletion of the stores in presence of urocortin. Furthermore, we report that long treatment with urocortin downregulates iPLA2 mRNA and proteins expression in rat coronary smooth muscle cells. In summary, we propose a new mechanism of vasodilatation by urocortin which involves the regulation of iPLA2 and SOCE via the stimulation of a cAMP/PKA-dependent signal transduction cascade in rat coronary artery.

  7. Lessons from Iowa : development of a 270 megawatt compressed air energy storage project in midwest Independent System Operator : a study for the DOE Energy Storage Systems Program.

    SciTech Connect

    Holst, Kent; Huff, Georgianne; Schulte, Robert H.; Critelli, Nicholas

    2012-01-01

    The Iowa Stored Energy Park was an innovative, 270 Megawatt, $400 million compressed air energy storage (CAES) project proposed for in-service near Des Moines, Iowa, in 2015. After eight years in development the project was terminated because of site geological limitations. However, much was learned in the development process regarding what it takes to do a utility-scale, bulk energy storage facility and coordinate it with regional renewable wind energy resources in an Independent System Operator (ISO) marketplace. Lessons include the costs and long-term economics of a CAES facility compared to conventional natural gas-fired generation alternatives; market, legislative, and contract issues related to enabling energy storage in an ISO market; the importance of due diligence in project management; and community relations and marketing for siting of large energy projects. Although many of the lessons relate to CAES applications in particular, most of the lessons learned are independent of site location or geology, or even the particular energy storage technology involved.

  8. Designing Image Operators for MRI-PET Image Fusion of the Brain

    SciTech Connect

    Marquez, Jorge; Gastelum, Alfonso; Padilla, Miguel A.

    2006-09-08

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  9. Injury-Specific Correlates of Combat-Related Traumatic Brain Injury in Operation Iraqi Freedom

    DTIC Science & Technology

    2010-01-01

    previous conflicts.4 One study found that among combat casualties of Operation Iraqi Freedom (OIF), more than 50% sustained an injury to the head, neck ...al7 found that 64% of head, neck , and face injuries were caused by IEDs compared with 41% of extremity injuries. Of all patients admitted to Walter...head or neck .7 The present study aimed to elucidate the demographic and injury-specific characteristics of combat-related TBI across all levels of

  10. Program for Research on Dietary Supplements in Military Operations and Healthcare Metabolically Optimized Brain - JWF

    DTIC Science & Technology

    2014-05-01

    minerals (17.9%), combination products (9.1%), and herbal supplements (8.3%).7 Reasons for DS use among military members were to improve health (64...Alcohol; Vitamins / Minerals / Antioxidants / Dietary supplements (not specified); Herbal Medicine (Subsets: Ginseng and Gingko Biloba); Diet...AWARD NUMBER: W81XWH-13-1-0068 TITLE: Program for Research on Dietary Supplements In Military Operations and Healthcare Metabolically

  11. Brain slow potential and ERP changes associated with operator load in a visual tracking task.

    PubMed

    McCallum, W C; Cooper, R; Pocock, P V

    1988-05-01

    Brain electrophysiological changes occurring during the course of a visual tracking task were recorded from 24 normal subjects under varying conditions of workload. Recordings were made with directly coupled amplifiers from 4 scalp midline locations and of vertical and horizontal EOG. The task was to track with a joystick a moving letter on a video monitor screen. Various decisions and button pressing responses were required from the subject during the course of each tracking trial, the total duration of a trial being 28 sec. Trial difficulty was varied by requiring identification of 'targets' or 'non-targets' based on a pre-learned 1-, 3- or 6-letter set of possible targets, by varying speed and distance travelled by the letter and by the introduction of movement perturbation. Sustained negative slow potential (SP) shifts were associated with the introduction and course of each trial. These had 2 phases: an early phase related to memorization and rehearsal and a later stage associated with the tracking itself. Increasing tracking difficulty resulted in an increased negative DC shift during the tracking stage. Increased memory set size caused a reduction in the negative shift during the preparatory, memorization phase. The experimental manipulations of difficulty also resulted in a number of changes in the amplitude and/or latency of ERP components associated with the various points of decision or response.

  12. Workload measurement in a communication application operated through a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Leotta, F.; Bianchi, L.; Aloise, F.; Zickler, C.; Hoogerwerf, E.-J.; Kübler, A.; Mattia, D.; Cincotti, F.

    2011-04-01

    Advancing the brain-computer interface (BCI) towards practical applications in technology-based assistive solutions for people with disabilities requires coping with problems of accessibility and usability to increase user acceptance and satisfaction. The main objective of this study was to introduce a usability-oriented approach in the assessment of BCI technology development by focusing on evaluation of the user's subjective workload and satisfaction. The secondary aim was to compare two applications for a P300-based BCI. Eight healthy subjects were asked to use an assistive technology solution which integrates the P300-based BCI with commercially available software under two conditions—visual stimuli needed to evoke the P300 response were either overlaid onto the application's graphical user interface or presented on a separate screen. The two conditions were compared for effectiveness (level of performance), efficiency (subjective workload measured by means of NASA-TXL) and satisfaction of the user. Although no significant difference in usability could be detected between the two conditions, the methodology proved to be an effective tool to highlight weaknesses in the technical solution.

  13. A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm.

    PubMed

    Dethier, Julie; Nuyujukian, Paul; Eliasmith, Chris; Stewart, Terry; Elassaad, Shauki A; Shenoy, Krishna V; Boahen, Kwabena

    2011-01-01

    Motor prostheses aim to restore function to disabled patients. Despite compelling proof of concept systems, barriers to clinical translation remain. One challenge is to develop a low-power, fully-implantable system that dissipates only minimal power so as not to damage tissue. To this end, we implemented a Kalman-filter based decoder via a spiking neural network (SNN) and tested it in brain-machine interface (BMI) experiments with a rhesus monkey. The Kalman filter was trained to predict the arm's velocity and mapped on to the SNN using the Neural Engineering Framework (NEF). A 2,000-neuron embedded Matlab SNN implementation runs in real-time and its closed-loop performance is quite comparable to that of the standard Kalman filter. The success of this closed-loop decoder holds promise for hardware SNN implementations of statistical signal processing algorithms on neuromorphic chips, which may offer power savings necessary to overcome a major obstacle to the successful clinical translation of neural motor prostheses.

  14. Cocaine Inhibits Store-Operated Ca2+ Entry in Brain Microvascular Endothelial Cells: Critical Role for Sigma-1 Receptors

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Console-Bram, Linda M; Soboloff, Jonathan; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2015-01-01

    Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum. Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca2+ entry (SOCE), a Ca2+ influx mechanism promoted by depletion of intracellular Ca2+ stores, in rat brain microvascular endothelial cells. Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies provide an unprecedented role for Sig-1R as a SOCE inhibitor. PMID:26467159

  15. Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors.

    PubMed

    Brailoiu, G Cristina; Deliu, Elena; Console-Bram, Linda M; Soboloff, Jonathan; Abood, Mary E; Unterwald, Ellen M; Brailoiu, Eugen

    2016-01-01

    Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum (ER). Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca(2+) entry (SOCE), a Ca(2+) influx mechanism promoted by depletion of intracellular Ca(2+) stores, in rat brain microvascular endothelial cells (RBMVEC). Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies indicate an unprecedented role for Sig-1R as a SOCE inhibitor.

  16. Snapshots of the Brain in Action: Local Circuit Operations through the Lens of γ Oscillations.

    PubMed

    Cardin, Jessica A

    2016-10-12

    γ oscillations (20-80 Hz) are associated with sensory processing, cognition, and memory, and focused attention in animals and humans. γ activity can arise from several neural mechanisms in the cortex and hippocampus and can vary across circuits, behavioral states, and developmental stages. γ oscillations are nonstationary, typically occurring in short bouts, and the peak frequency of this rhythm is modulated by stimulus parameters. In addition, the participation of excitatory and inhibitory neurons in the γ rhythm varies across local circuits and conditions, particularly in the cortex. Although these dynamics present a challenge to interpreting the functional role of γ oscillations, these patterns of activity emerge from synaptic interactions among excitatory and inhibitory neurons and thus provide important insight into local circuit operations. Copyright © 2016 the authors 0270-6474/16/3610496-09$15.00/0.

  17. Co-operative action of calcium ions in dopamine release from rat brain synaptosomes.

    PubMed Central

    Nachshen, D A; Sanchez-Armass, S

    1987-01-01

    1. The release of [3H]dopamine from isolated presynaptic nerve terminals (synaptosomes) prepared from rat striata was measured as a function of the external Ca2+ concentration ([Ca2+]o). 2. In synaptosomes depolarized by the addition of 50 mM-K+, release of [3H]dopamine increased in a highly non-linear manner with [Ca2+]o. The release could be described as a third power function of [Ca2+]o. 3. Both 45Ca2+ influx and the change in the free cytosolic Ca2+ concentration ([Ca2+]i, measured with the fluorescent Ca2+ indicator fura-2) that were evoked by depolarization increased in a linear manner with [Ca2+]o. 4. These results suggest that non-linearity in the [Ca2+]o dependence of transmitter release originates in a co-operative relation between [Ca2+]i and exocytosis. PMID:3656180

  18. Snapshots of the Brain in Action: Local Circuit Operations through the Lens of γ Oscillations

    PubMed Central

    2016-01-01

    γ oscillations (20–80 Hz) are associated with sensory processing, cognition, and memory, and focused attention in animals and humans. γ activity can arise from several neural mechanisms in the cortex and hippocampus and can vary across circuits, behavioral states, and developmental stages. γ oscillations are nonstationary, typically occurring in short bouts, and the peak frequency of this rhythm is modulated by stimulus parameters. In addition, the participation of excitatory and inhibitory neurons in the γ rhythm varies across local circuits and conditions, particularly in the cortex. Although these dynamics present a challenge to interpreting the functional role of γ oscillations, these patterns of activity emerge from synaptic interactions among excitatory and inhibitory neurons and thus provide important insight into local circuit operations. PMID:27733601

  19. Soluble syndecan-1 (SDC1) serum level as an independent pre-operative predictor of cancer-specific survival in prostate cancer.

    PubMed

    Szarvas, Tibor; Reis, Henning; Vom Dorp, Frank; Tschirdewahn, Stephan; Niedworok, Christian; Nyirady, Peter; Schmid, Kurt W; Rübben, Herbert; Kovalszky, Ilona

    2016-08-01

    PSA-screening detects many cases of clinically non-aggressive prostate cancer (PC) leading to significant overtreatment. Therefore, pre-operatively available prognostic biomarkers are needed to help therapy decisions. Syndecan-1 (SDC1) is a promising prognostic tissue marker in several cancers including PC but serum levels of shedded SDC1-ectodomain (sSDC1) have not been assessed in PC. A total of 150 patients with PC were included in this study (n = 99 serum samples, n = 103 paraffin-embedded samples (FFPE), n = 52 overlap). SDC1 protein expression and cellular localization was evaluated by immunohistochemistry (IHC), while sSDC1 serum concentrations were measured by ELISA. Serum sSDC1 levels were compared to those of MMP7, which is known to be a protease involved in SDC1 ectodomain-shedding. Clinico-pathological and follow-up data were collected and correlated with SDC1 tissue and serum levels. Disease (PC)-specific (DSS) and overall-survival (OS) were primary endpoints. Median follow-up was 167 months in the serum- and 146 months in the FFPE-group. SDC1-reactivity was higher in non-neoplastic prostate glands compared to PC. In addition, cytoplasmatic, but not membranous SDC1 expression was enhanced in PC patients with higher Gleason-score >6 PC (P = 0.016). Soluble SDC1-levels were higher in patients with Gleason-score >6 (P = 0.043) and metastatic disease (P = 0.022) as well as in patients with progressed disease treated with palliative transurethral resection (P = 0.002). In addition, sSDC1 levels were associated with higher MMP7 serum concentration (P = 0.005). In univariable analyses, only sSDC1-levels exhibited a trend to unfavorable DSS (P = 0.077). In a multivariable pre-operative model, high pre-operative sSDC1-level (>123 ng/ml) proved to be an independent marker of adverse OS (P = 0.048) and DSS (P = 0.020). The present study does not confirm the prognostic relevance of SDC1-IHC. The significant higher s

  20. Operant conditioning of a multiple degree-of-freedom brain-machine interface in a primate model of amputation.

    PubMed

    Balasubramanian, Karthikeyan; Southerland, Joshua; Vaidya, Mukta; Qian, Kai; Eleryan, Ahmed; Fagg, Andrew H; Sluzky, Marc; Oweiss, Karim; Hatsopoulos, Nicholas

    2013-01-01

    Operant conditioning with biofeedback has been shown to be an effective method to modify neural activity to generate goal-directed actions in a brain-machine interface. It is particularly useful when neural activity cannot be mathematically mapped to motor actions of the actual body such as in the case of amputation. Here, we implement an operant conditioning approach with visual feedback in which an amputated monkey is trained to control a multiple degree-of-freedom robot to perform a reach-to-grasp behavior. A key innovation is that each controlled dimension represents a behaviorally relevant synergy among a set of joint degrees-of-freedom. We present a number of behavioral metrics by which to assess improvements in BMI control with exposure to the system. The use of non-human primates with chronic amputation is arguably the most clinically-relevant model of human amputation that could have direct implications for developing a neural prosthesis to treat humans with missing upper limbs.

  1. Structurally diverse peroxisome proliferator-activated receptor agonists induce apoptosis in human uro-epithelial cells by a receptor-independent mechanism involving store-operated calcium channels.

    PubMed

    Chopra, B; Georgopoulos, N T; Nicholl, A; Hinley, J; Oleksiewicz, M B; Southgate, J

    2009-10-01

    Peroxisome proliferator-activated receptors (PPARs) are implicated in epithelial cell proliferation and differentiation, but investigation has been confounded by potential off-target effects of some synthetic PPAR ligands. Our aim was to determine mechanisms underlying the pro-apoptotic effect of synthetic PPAR agonists in normal human bladder uro-epithelial (urothelial) cells and to reconcile this with the role of PPARs in urothelial cytodifferentiation. Normal human urothelial (NHU) cells were grown as non-immortal lines in vitro and exposed to structurally diverse agonists ciglitazone, troglitazone, rosiglitazone (PPARgamma), ragaglitazar (PPARalpha/gamma), fenofibrate (PPARalpha) and L165041 (PPARbeta/delta). NHU cells underwent apoptosis following acute exposure to ciglitazone, troglitazone or ragaglitazar, but not fenofibrate, L165041 or rosiglitazone, and this was independent of ERK or p38 MAP-kinase activation. Pro-apoptotic agonists induced sustained increases in intracellular calcium, whereas removal of extracellular calcium altered the kinetics of ciglitazone-mediated calcium release from sustained to transient. Cell death was accompanied by plasma-membrane disruption, loss of mitochondrial membrane-potential and caspase-9/caspase-3 activation. PPARgamma-mediated apoptosis was unaffected following pre-treatment with PPARgamma antagonist T0070907 and was strongly attenuated by store-operated calcium channel (SOC) inhibitors 2-APB and SKF-96365. Our results provide a mechanistic basis for the ability of some PPAR agonists to induce death in NHU cells and demonstrate that apoptosis is mediated via PPAR-independent mechanisms, involving intracellular calcium changes, activation of SOCs and induction of the mitochondrial apoptotic pathway.

  2. Language and motor function thresholds during pediatric extra-operative electrical cortical stimulation brain mapping.

    PubMed

    Zea Vera, Alonso; Aungaroon, Gewalin; Horn, Paul S; Byars, Anna W; Greiner, Hansel M; Tenney, Jeffrey R; Arthur, Todd M; Crone, Nathan E; Holland, Katherine D; Mangano, Francesco T; Arya, Ravindra

    2017-10-01

    To examine current thresholds and their determinants for language and motor mapping with extra-operative electrical cortical stimulation (ECS). ECS electrocorticograph recordings were reviewed to determine functional thresholds. Predictors of functional thresholds were found with multivariable analyses. In 122 patients (age 11.9±5.4years), average minimum, frontal, and temporal language thresholds were 7.4 (± 3.0), 7.8 (± 3.0), and 7.4 (± 3.1) mA respectively. Average minimum, face, upper and lower extremity motor thresholds were 5.4 (± 2.8), 6.1 (± 2.8), 4.9 (± 2.3), and 5.3 (± 3.3) mA respectively. Functional and after-discharge (AD)/seizure thresholds were significantly related. Minimum, frontal, and temporal language thresholds were higher than AD thresholds at all ages. Minimum motor threshold was higher than minimum AD threshold up to 8.0years of age, face motor threshold was higher than frontal AD threshold up to 11.8years age, and lower subsequently. UE motor thresholds remained below frontal AD thresholds throughout the age range. Functional thresholds are frequently above AD thresholds in younger children. These findings raise concerns about safety and neurophysiologic validity of ECS mapping. Functional and AD/seizure thresholds relationships suggest individual differences in cortical excitability which cannot be explained by clinical variables. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  3. Correlation of free-response and receiver-operating-characteristic area-under-the-curve estimates: Results from independently conducted FROC/ROC studies in mammography

    PubMed Central

    Zanca, Federica; Hillis, Stephen L.; Claus, Filip; Van Ongeval, Chantal; Celis, Valerie; Provoost, Veerle; Yoon, Hong-Jun; Bosmans, Hilde

    2012-01-01

    Purpose: From independently conducted free-response receiver operating characteristic (FROC) and receiver operating characteristic (ROC) experiments, to study fixed-reader associations between three estimators: the area under the alternative FROC (AFROC) curve computed from FROC data, the area under the ROC curve computed from FROC highest rating data, and the area under the ROC curve computed from confidence-of-disease ratings. Methods: Two hundred mammograms, 100 of which were abnormal, were processed by two image-processing algorithms and interpreted by four radiologists under the FROC paradigm. From the FROC data, inferred-ROC data were derived, using the highest rating assumption. Eighteen months afterwards, the images were interpreted by the same radiologists under the conventional ROC paradigm; conventional-ROC data (in contrast to inferred-ROC data) were obtained. FROC and ROC (inferred, conventional) data were analyzed using the nonparametric area-under-the-curve (AUC), (AFROC and ROC curve, respectively). Pearson correlation was used to quantify the degree of association between the modality-specific AUC indices and standard errors were computed using the bootstrap-after-bootstrap method. The magnitude of the correlations was assessed by comparison with computed Obuchowski-Rockette fixed reader correlations. Results: Average Pearson correlations (with 95% confidence intervals in square brackets) were: Corr(FROC, inferred ROC) = 0.76[0.64, 0.84] > Corr(inferred ROC, conventional ROC) = 0.40[0.18, 0.58] > Corr (FROC, conventional ROC) = 0.32[0.16, 0.46]. Conclusions: Correlation between FROC and inferred-ROC data AUC estimates was high. Correlation between inferred- and conventional-ROC AUC was similar to the correlation between two modalities for a single reader using one estimation method, suggesting that the highest rating assumption might be questionable. PMID:23039631

  4. Correlation of free-response and receiver-operating-characteristic area-under-the-curve estimates: Results from independently conducted FROC/ROC studies in mammography

    SciTech Connect

    Zanca, Federica; Hillis, Stephen L.; Claus, Filip; Van Ongeval, Chantal; Celis, Valerie; Provoost, Veerle; Yoon, Hong-Jun; Bosmans, Hilde

    2012-10-15

    Purpose: From independently conducted free-response receiver operating characteristic (FROC) and receiver operating characteristic (ROC) experiments, to study fixed-reader associations between three estimators: the area under the alternative FROC (AFROC) curve computed from FROC data, the area under the ROC curve computed from FROC highest rating data, and the area under the ROC curve computed from confidence-of-disease ratings. Methods: Two hundred mammograms, 100 of which were abnormal, were processed by two image-processing algorithms and interpreted by four radiologists under the FROC paradigm. From the FROC data, inferred-ROC data were derived, using the highest rating assumption. Eighteen months afterwards, the images were interpreted by the same radiologists under the conventional ROC paradigm; conventional-ROC data (in contrast to inferred-ROC data) were obtained. FROC and ROC (inferred, conventional) data were analyzed using the nonparametric area-under-the-curve (AUC), (AFROC and ROC curve, respectively). Pearson correlation was used to quantify the degree of association between the modality-specific AUC indices and standard errors were computed using the bootstrap-after-bootstrap method. The magnitude of the correlations was assessed by comparison with computed Obuchowski-Rockette fixed reader correlations. Results: Average Pearson correlations (with 95% confidence intervals in square brackets) were: Corr(FROC, inferred ROC) = 0.76[0.64, 0.84] > Corr(inferred ROC, conventional ROC) = 0.40[0.18, 0.58] > Corr (FROC, conventional ROC) = 0.32[0.16, 0.46]. Conclusions: Correlation between FROC and inferred-ROC data AUC estimates was high. Correlation between inferred- and conventional-ROC AUC was similar to the correlation between two modalities for a single reader using one estimation method, suggesting that the highest rating assumption might be questionable.

  5. Temporal Stress in the Operating Room: Brain Engagement Promotes "Coping" and Disengagement Prompts "Choking".

    PubMed

    Modi, Hemel N; Singh, Harsimrat; Orihuela-Espina, Felipe; Athanasiou, Thanos; Fiorentino, Francesca; Yang, Guang-Zhong; Darzi, Ara; Leff, Daniel R

    2017-05-09

    To investigate the impact of time pressure (TP) on prefrontal activation and technical performance in surgical residents during a laparoscopic suturing task. Neural mechanisms enabling surgeons to maintain performance and cope with operative stressors are unclear. The prefrontal cortex (PFC) is implicated due to its role in attention, concentration, and performance monitoring. A total of 33 residents [Postgraduate Year (PGY)1-2 = 15, PGY3-4 = 8, and PGY5 = 10] performed a laparoscopic suturing task under "self-paced" (SP) and "TP" conditions (TP = maximum 2 minutes per knot). Subjective workload was quantified using the Surgical Task Load Index. PFC activation was inferred using optical neuroimaging. Technical skill was assessed using progression scores (au), error scores (mm), leak volumes (mL), and knot tensile strengths (N). TP led to greater perceived workload amongst all residents (mean Surgical Task Load Index score ± SD: PGY1-2: SP = 160.3 ± 24.8 vs TP = 202.1 ± 45.4, P < 0.001; PGY3-4: SP = 123.0 ± 52.0 vs TP = 172.5 ± 43.1, P < 0.01; PGY5: SP = 105.8 ± 55.3 vs TP = 159.1 ± 63.1, P < 0.05). Amongst PGY1-2 and PGY3-4, deterioration in task progression, error scores and knot tensile strength (P < 0.05), and diminished PFC activation was observed under TP. In PGY5, TP resulted in inferior task progression and error scores (P < 0.05), but preservation of knot tensile strength. Furthermore, PGY5 exhibited less attenuation of PFC activation under TP, and greater activation than either PGY1-2 or PGY3-4 under both experimental conditions (P < 0.05). Senior residents cope better with temporal demands and exhibit greater technical performance stability under pressure, possibly due to sustained PFC activation and greater task engagement. Future work should seek to develop training strategies that recruit prefrontal resources, enhance task engagement, and improve performance under pressure.

  6. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    SciTech Connect

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.; Johnson, Christian D.

    2015-02-23

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amount of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.

  7. Standard Operating Procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing?

    PubMed

    Ravid, Rivka

    2008-06-01

    The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP's which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, "financial gain" and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.

  8. Standard Operating Procedures, ethical and legal regulations in BTB (Brain/Tissue/Bio) banking: what is still missing?

    PubMed

    Ravid, Rivka

    2008-09-01

    The use of human biological specimens in scientific research is the focus of current international public and professional concern and a major issue in bioethics in general. Brain/Tissue/Bio banks (BTB-banks) are a rapid developing sector; each of these banks acts locally as a steering unit for the establishment of the local Standard Operating Procedures (SOPs) and the legal regulations and ethical guidelines to be followed in the procurement and dissemination of research specimens. An appropriat Code of Conduct is crucial to a successful operation of the banks and the research application they handle. What are we still missing ? (1) Adequate funding for research BTB-banks. (2) Standard evaluation protocls for audit of BTB-bank performance. (3) Internationally accepted SOP's which will facilitate exchange and sharing of specimens and data with the scientific community. (4) Internationally accepted Code of Conduct. In the present paper we review the most pressing organizational, methodological, medico-legal and ethical issues involved in BTB-banking; funding, auditing, procurement, management/handling, dissemination and sharing of specimens, confidentiality and data protection, genetic testing, "financial gain" and safety measures. Taking into consideration the huge variety of the specimens stored in different repositories and the enormous differences in medico-legal systems and ethics regulations in different countries it is strongly recommend that the health-care systems and institutions who host BTB-Banks will put more efforts in getting adequate funding for the infrastructure and daily activities. The BTB-banks should define evaluation protocols, SOPs and their Code of Conduct. This in turn will enable the banks to share the collected specimens and data with the largest possible number of researchers and aim at a maximal scientific spin-off and advance in public health research.

  9. Human Cytomegalovirus Tegument Protein pp65 Is Detected in All Intra- and Extra-Axial Brain Tumours Independent of the Tumour Type or Grade

    PubMed Central

    Libard, Sylwia; Popova, Svetlana N.; Amini, Rose-Marie; Kärjä, Vesa; Pietiläinen, Timo; Hämäläinen, Kirsi M.; Sundström, Christer; Hesselager, Göran; Bergqvist, Michael; Ekman, Simon; Zetterling, Maria; Smits, Anja; Nilsson, Pelle; Pfeifer, Susan; de Ståhl, Teresita Diaz; Enblad, Gunilla; Ponten, Fredrik; Alafuzoff, Irina

    2014-01-01

    Human cytomegalovirus (HCMV) has been indicated being a significant oncomodulator. Recent reports have suggested that an antiviral treatment alters the outcome of a glioblastoma. We analysed the performance of commercial HCMV-antibodies applying the immunohistochemical (IHC) methods on brain sample obtained from a subject with a verified HCMV infection, on samples obtained from 14 control subjects, and on a tissue microarray block containing cores of various brain tumours. Based on these trials, we selected the best performing antibody and analysed a cohort of 417 extra- and intra-axial brain tumours such as gliomas, medulloblastomas, primary diffuse large B-cell lymphomas, and meningiomas. HCMV protein pp65 immunoreactivity was observed in all types of tumours analysed, and the IHC expression did not depend on the patient's age, gender, tumour type, or grade. The labelling pattern observed in the tumours differed from the labelling pattern observed in the tissue with an active HCMV infection. The HCMV protein was expressed in up to 90% of all the tumours investigated. Our results are in accordance with previous reports regarding the HCMV protein expression in glioblastomas and medulloblastomas. In addition, the HCMV protein expression was seen in primary brain lymphomas, low-grade gliomas, and in meningiomas. Our results indicate that the HCMV protein pp65 expression is common in intra- and extra-axial brain tumours. Thus, the assessment of the HCMV expression in tumours of various origins and pathologically altered tissue in conditions such as inflammation, infection, and even degeneration should certainly be facilitated. PMID:25268364

  10. Brain-Mind Dyad, Human Experience, the Consciousness Tetrad and Lattice of Mental Operations: And Further, The Need to Integrate Knowledge from Diverse Disciplines

    PubMed Central

    Singh, Ajai R.; Singh, Shakuntala A.

    2011-01-01

    Brain, Mind and Consciousness are the research concerns of psychiatrists, psychologists, neurologists, cognitive neuroscientists and philosophers. All of them are working in different and important ways to understand the workings of the brain, the mysteries of the mind and to grasp that elusive concept called consciousness. Although they are all justified in forwarding their respective researches, it is also necessary to integrate these diverse appearing understandings and try and get a comprehensive perspective that is, hopefully, more than the sum of their parts. There is also the need to understand what each one is doing, and by the other, to understand each other’s basic and fundamental ideological and foundational underpinnings. This must be followed by a comprehensive and critical dialogue between the respective disciplines. Moreover, the concept of mind and consciousness in Indian thought needs careful delineation and critical/evidential enquiry to make it internationally relevant. The brain-mind dyad must be understood, with brain as the structural correlate of the mind, and mind as the functional correlate of the brain. To understand human experience, we need a triad of external environment, internal environment and a consciousness that makes sense of both. We need to evolve a consensus on the definition of consciousness, for which a working definition in the form of a Consciousness Tetrad of Default, Aware, Operational and Evolved Consciousness is presented. It is equally necessary to understand the connection between physical changes in the brain and mental operations, and thereby untangle and comprehend the lattice of mental operations. Interdisciplinary work and knowledge sharing, in an atmosphere of healthy give and take of ideas, and with a view to understand the significance of each other’s work, and also to critically evaluate the present corpus of knowledge from these diverse appearing fields, and then carry forward from there in a spirit of

  11. [Deep brain stimulation in a patient with ocd and the intensive pre- and post-operative psychiatric/psychotherapeutic follow-up. A case study].

    PubMed

    Corveleyn, P; Nuttin, B; Gabriëls, L

    2013-01-01

    Deep brain stimulation (DBS) is a neurosurgical intervention carried out in meticulously selected patients with a therapy-resistant obsessive-compulsive disorder (OCD). We describe the pre- and post-operative psychiatric care given to a 51-year-old woman before, during and after treatment with deep brain stimulation. The psychiatric follow-up included an intensive search for the optimal stimulation parameters, and considerable attention was given to psycho-education, psychotherapy and counselling. The procedure resulted in a marked improvement in the patient's OCD and made it easier for the patient to re-construct a meaningful life.

  12. Operation Brain Trauma Therapy

    DTIC Science & Technology

    2012-10-01

    model. We have completed studies with nicotinamide , erypthropoietin (EPO), and cyclosporine-A (CsA), and have just begun testing of simvastatin. We...plan to test Minocycline and levetiracetam this year of funding. Studies with nicotinamide suggest some benefit of 50 mg/kg on motor outcomes, but...may be useful for drug screening, since nicotinamide treatment significantly reduced serum GFAP levels in two models. A consortium overview was

  13. Operation Brain Trauma Therapy

    DTIC Science & Technology

    2013-10-01

    Injury, treatment , therapy, biomarker, combat casualty care, neuroprotection 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...Glibenclamide [Glyburide]). We have also collected and assessed nearly 1000 serum biomarker samples across the models and treatments . We are also...each agent, 4 experimental groups have been used in primary screening, namely, sham, injury plus vehicle, and injury plus treatment at two different

  14. Cortical Grey Matter and Subcortical White Matter Brain Microstructural Changes in Schizophrenia Are Localised and Age Independent: A Case-Control Diffusion Tensor Imaging Study

    PubMed Central

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18–65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18–65 year age range. PMID:24124469

  15. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    PubMed

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  16. Are Independent Probes Truly Independent?

    ERIC Educational Resources Information Center

    Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene

    2009-01-01

    The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…

  17. Are Independent Probes Truly Independent?

    ERIC Educational Resources Information Center

    Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene

    2009-01-01

    The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…

  18. Traumatic brain injury during Operation Iraqi Freedom: findings from the United States Navy-Marine Corps Combat Trauma Registry.

    PubMed

    Galarneau, Michael R; Woodruff, Susan I; Dye, Judy L; Mohrle, Charlene R; Wade, Amber L

    2008-05-01

    The purpose of this study was to characterize traumatic brain injuries (TBIs) among military personnel (primarily Marines) during the second phase of Operation Iraqi Freedom from early in the medical care chain of evacuation through Landstuhl Regional Medical Center, a Level 4 American hospital in Germany. Data were obtained from the Navy-Marine Corps Combat Trauma Registry (CTR) and included both battle and nonbattle injuries. Follow-up of patients with TBI was conducted to examine the short-term medical and personnel-related effects of TBI among those surviving. Those injured in battle were more likely than those not injured in battle to have multiple TBI diagnoses, a greater number of all diagnoses, more severe TBIs, and to be medically evacuated. Intracranial injuries (for example, concussions) were the predominant type of TBI, although skull fractures and open head wounds were also seen. Improvised explosive devices were the most common cause of TBIs among battle injuries; blunt trauma and motor vehicle crashes were the most common causes among nonbattle injuries. Short-term follow-up of surviving patients with TBI indicated higher morbidity and medical utilization among the patients with more severe TBI, although mental conditions were higher among patients with milder TBI. Data from the Navy-Marine Corps CTR provide useful information about combatants' TBIs identified early in the combat casualty process. Results may improve clinical care for those affected and suggest strategies for primary prevention. The CTR staff plans to conduct additional follow-up studies of this group of patients with TBI.

  19. Ginkgo biloba Extract Prevents Female Mice from Ischemic Brain Damage and the Mechanism Is Independent of the HO1/Wnt Pathway.

    PubMed

    Tulsulkar, Jatin; Glueck, Bryan; Hinds, Terry D; Shah, Zahoor A

    2016-04-01

    It is well known that gender differences exist in experimental or clinical stroke with respect to brain damage and loss of functional outcome. We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia using male mice, and the mechanism of action was attributed to the upregulation of the heme oxygenase 1 (HO1)/Wnt pathway. Here, we sought to investigate whether EGb 761's protective effect in ovariectomized female mice following stroke is also mediated by the HO1/Wnt pathway. Female mice were ovariectomized (OVX) to remove the protective effect of estrogen and were treated with EGb 761 for 7 days prior to inducing permanent middle cerebral artery occlusion (pMCAO) and allowed to survive for an additional 7 days. At day 8, animals were sacrificed, and the brains were harvested for infarct volume analysis, western blots, and immunohistochemistry. The OVX female mice treated with EGb 761 showed significantly lower infarct size as compared to Veh/OVX animals. EGb 761 treatment in female mice inhibited apoptosis by preventing caspase-3 cleavage and blocking the extrinsic apoptotic pathway. EGb 761 pretreatment significantly enhanced neurogenesis in OVX mice as compared to the Veh/OVX group and significantly upregulated androgen receptor expression with no changes in HO1/Wnt signaling. These results suggest that EGb 761 prevented brain damage in OVX female mice by improving grip strength and neurological deficits, and the mechanism of action is not through HO1/Wnt but via blocking the extrinsic apoptotic pathway.

  20. Your Brain and Nervous System

    MedlinePlus

    ... Room? What Happens in the Operating Room? Your Brain & Nervous System KidsHealth > For Kids > Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  1. Post-operative delirium is an independent predictor of 30-day hospital readmission after spine surgery in the elderly (≥65years old): A study of 453 consecutive elderly spine surgery patients.

    PubMed

    Elsamadicy, Aladine A; Wang, Timothy Y; Back, Adam G; Lydon, Emily; Reddy, Gireesh B; Karikari, Isaac O; Gottfried, Oren N

    2017-07-01

    In the last decade, costs of U.S. healthcare expenditures have been soaring, with billions of dollars spent on hospital readmissions. Identifying causes and risk factors can reduce soaring readmission rates and help lower healthcare costs. The aim of this is to determine if post-operative delirium in the elderly is an independent risk factor for 30-day hospital readmission after spine surgery. The medical records of 453 consecutive elderly (≥65years old) patients undergoing spine surgery at Duke University Medical Center from 2008 to 2010 were reviewed. We identified 17 (3.75%) patients who experienced post-operative delirium according to DSM-V criteria. Patient demographics, comorbidities, and post-operative complication rates were collected for each patient. Elderly patients experiencing post-operative delirium had an increased length of hospital stay (10.47days vs. 5.70days, p=0.009). Complication rates were similar between the cohorts with the post-operative delirium patients having increased UTI and superficial surgical site infections. In total, 12.14% of patients were re-admitted within 30-days of discharge, with post-operative delirium patients experiencing approximately a 4-fold increase in 30-day readmission rates (Delirium: 41.18% vs. No Delirium: 11.01%, p=0.002). In a multivariate logistic regression analysis, post-operative delirium is an independent predictor of 30-day readmission after spine surgery in the elderly (p=0.03). Elderly patients experiencing post-operative delirium after spine surgery is an independent risk factor for unplanned readmission within 30-days of discharge. Preventable measures and early awareness of post-operative delirium in the elderly may help reduce readmission rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The Gully in the "Brain Glitch" Theory

    ERIC Educational Resources Information Center

    Willis, Judy

    2007-01-01

    Learning to read is a complex process that requires multiple areas of the brain to operate together through intricate networks of neurons. The author of this article, a neurologist and middle school teacher, takes exception to interpretations of neuroimaging research that treat reading as an isolated, independent cognitive process. She…

  3. The Gully in the "Brain Glitch" Theory

    ERIC Educational Resources Information Center

    Willis, Judy

    2007-01-01

    Learning to read is a complex process that requires multiple areas of the brain to operate together through intricate networks of neurons. The author of this article, a neurologist and middle school teacher, takes exception to interpretations of neuroimaging research that treat reading as an isolated, independent cognitive process. She…

  4. Different effects of strength and endurance exercise training on COX-2 and mPGES expression in mouse brain are independent of peripheral inflammation.

    PubMed

    Krüger, K; Bredehöft, J; Mooren, F C; Rummel, C

    2016-07-01

    Acute endurance exercise has been shown to modulate cyclooxygenase (COX)-2 expression, which is suggested to affect neuronal plasticity and learning. Here, we investigated the effect of regular strength and endurance training on cerebral COX-2 expression, inflammatory markers in the brain, and circulating cytokines. Male C57BL/6N mice were assigned to either a sedentary control group (CG), an endurance training group (EG; treadmill running for 30 min/day, 5 times/wk, 10 wk), or a strength training group (SG; strength training by isometric holding, same duration as EG). Four days after the last bout of exercise, blood and brain were collected and analyzed using real-time PCR, Western blot, and a multiplexed immunoassay. In EG, COX-2 mRNA expression in the cortex/hippocampus increased compared with CG. A significant increase of COX-2 protein levels was observed in both cortex/hippocampus and hypothalamus of mice from the SG. Nuclear factor (NF)κB protein levels were significantly increased in mice from both exercise groups (hypothalamus). A significant increase in the expression of microsomal prostaglandin E synthase (mPGES), an enzyme downstream of COX-2, was found in the hypothalamus of both the EG and SG. While most inflammatory factors, like IL-1α, IL-18, and IL-2, decreased after training, a positive association was found between COX-2 mRNA expression (cortex/hippocampus) and plasma IL-6 in the EG. Taken together, this study demonstrates that both endurance as well as strength training induces COX-2 expression in the cortex/hippocampus and hypothalamus of mice. A potential mediator of COX-2 expression after training might be circulating interleukin (IL)-6. However, further research is necessary to elucidate the role of inflammatory pathways on brain plasticity after training.

  5. Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

    PubMed Central

    Enge, Sören; Fleischhauer, Monika; Gärtner, Anne; Reif, Andreas; Lesch, Klaus-Peter; Kliegel, Matthias; Strobel, Alexander

    2016-01-01

    Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged

  6. Independent Test

    NASA Astrophysics Data System (ADS)

    Nomoto, Hideki; Katahira, Masafumi; Fukatsu, Tsutomu; Okabe, Hideki; Yamanaka, Kohji

    2005-12-01

    This paper describes IV&V (Independent Verification & Validation) methodology applied for the Rendezvous Flight Software (RVFS) of the H-IIA Transfer Vehicle (HTV).HTV is a cargo transportation vehicle to the International Space Station (ISS). RVFS not only controls the HTV's flight sequence autonomously, but also is deployed with two-fault tolerant FDIR (Fault Detection Isolation Recovery) functionality. Since software such as RVFS is very critical for safe and successful HTV operations, exhaustive IV&V is being conducted.RVFS is required to function to avoid HTV's collision to the ISS. The biggest challenge is thoroughness of the verification. Due to its complicated software algorithm to accomplish fully autonomous rendezvous to the ISS, required numbers of test cases can easily go beyond realistic for conventional verification methodologies.IV&V team developed a verification environment on which 1) formal specification model was made from the detailed software design specification and 2) C source code and test sequence were generated/executed from the model automatically.One of the main efforts of this activity was to increase fidelity of the model and the quality of the generated code sufficiently. This will be discussed in the modeling, the model checking and code generation technology sections. The other issue that had to be resolved was the methodology to generate exhaustive test cases for the developed model that takes continuous input values (so called hybrid model). Conventional random test case generation or boundary condition generation does not assure the sufficiency/validity of the test cases because combinations of inputs becomes theoretically infinite for this kind of model [1]. To resolve this problem, IV&V team developed a unique algorithm to generate finite number test cases that satisfies full-scale test requirement. This will be discussed in the testing section.The generated code was put through 550 billion full-path test cases. We succeeded to

  7. Salam's independence

    NASA Astrophysics Data System (ADS)

    Fraser, Gordon

    2009-01-01

    In his kind review of my biography of the Nobel laureate Abdus Salam (December 2008 pp45-46), John W Moffat wrongly claims that Salam had "independently thought of the idea of parity violation in weak interactions".

  8. Predictors of Outcome in Traumatic Brain Injury: New Insight Using Receiver Operating Curve Indices and Bayesian Network Analysis

    PubMed Central

    Zador, Zsolt; Sperrin, Matthew; King, Andrew T.

    2016-01-01

    Background Traumatic brain injury remains a global health problem. Understanding the relative importance of outcome predictors helps optimize our treatment strategies by informing assessment protocols, clinical decisions and trial designs. In this study we establish importance ranking for outcome predictors based on receiver operating indices to identify key predictors of outcome and create simple predictive models. We then explore the associations between key outcome predictors using Bayesian networks to gain further insight into predictor importance. Methods We analyzed the corticosteroid randomization after significant head injury (CRASH) trial database of 10008 patients and included patients for whom demographics, injury characteristics, computer tomography (CT) findings and Glasgow Outcome Scale (GCS) were recorded (total of 13 predictors, which would be available to clinicians within a few hours following the injury in 6945 patients). Predictions of clinical outcome (death or severe disability at 6 months) were performed using logistic regression models with 5-fold cross validation. Predictive performance was measured using standardized partial area (pAUC) under the receiver operating curve (ROC) and we used Delong test for comparisons. Variable importance ranking was based on pAUC targeted at specificity (pAUCSP) and sensitivity (pAUCSE) intervals of 90–100%. Probabilistic associations were depicted using Bayesian networks. Results Complete AUC analysis showed very good predictive power (AUC = 0.8237, 95% CI: 0.8138–0.8336) for the complete model. Specificity focused importance ranking highlighted age, pupillary, motor responses, obliteration of basal cisterns/3rd ventricle and midline shift. Interestingly when targeting model sensitivity, the highest-ranking variables were age, severe extracranial injury, verbal response, hematoma on CT and motor response. Simplified models, which included only these key predictors, had similar performance (pAUCSP = 0

  9. SU-E-T-01: (In)dependence of Plan Quality On Treatment Modalities and Target-To-Critical Structure Geometry for Brain Tumor

    SciTech Connect

    Ruan, D; Shao, W; Low, D; Kupelian, P; Qi, S X

    2015-06-15

    Purpose: To evaluate and test the hypothesis that plan quality may be systematically affected by treatment delivery techniques and target-tocritical structure geometric relationship in radiotherapy for brain tumor. Methods: Thirty-four consecutive brain tumor patients treated between 2011–2014 were analyzed. Among this cohort, 10 were planned with 3DCRT, 11 with RadipArc, and 13 with helical IMRT on TomoTherapy. The selected dosimetric endpoints (i.e., PTV V100, maximum brainstem/chiasm/ optic nerve doses) were considered as a vector in a highdimensional space. A Pareto analysis was performed to identify the subset of Pareto-efficient plans.The geometric relationships, specifically the overlapping volume and centroid-of-mass distance between each critical structure to the PTV were extracted as potential geometric features. The classification-tree analyses were repeated using these geometric features with and without the treatment modality as an additional categorical predictor. In both scenarios, the dominant features to prognosticate the Pareto membership were identified and the tree structures to provide optimal inference were recorded. The classification performance was further analyzed to determine the role of treatment modality in affecting plan quality. Results: Seven Pareto-efficient plans were identified based on dosimetric endpoints (3 from 3DCRT, 3 from RapicArc, 1 from Tomo), which implies that the evaluated treatment modality may have a minor influence on plan quality. Classification trees with/without the treatment modality as a predictor both achieved accuracy of 88.2%: with 100% sensitivity and 87.1% specificity for the former, and 66.7% sensitivity and 96.0% specificity for the latter. The coincidence of accuracy from both analyses further indicates no-to-weak dependence of plan quality on treatment modality. Both analyses have identified the brainstem to PTV distance as the primary predictive feature for Pareto-efficiency. Conclusion: Pareto

  10. How T-Cell-Dependent and -Independent Challenges Access the Brain: Vascular and Neural Responses to Bacterial Lipopolysaccharide and Staphylococcal Enterotoxin B

    PubMed Central

    Serrats, Jordi; Sawchenko, Paul E.

    2009-01-01

    Bacterial lipopolysaccharide (LPS) is widely used to study immune influences on the CNS, and cerebrovascular prostaglandin (PG) synthesis is implicated in mediating LPS influences on some acute phase responses. Other bacterial products, such as staphylococcal enterotoxin B (SEB), impact target tissues differently in that their effects are T-lymphocyte-dependent, yet both LPS and SEB recruit a partially overlapping set of subcortical central autonomic cell groups. We sought to compare neurovascular responses to the two pathogens, and the mechanisms by which they may access the brain. Rats received iv injections of LPS (2 μg/kg), SEB (1 mg/kg) or vehicle and were sacrificed 0.5–3 hr later. Both challenges engaged vascular cells as early 0.5 hr, as evidenced by induced expression of the vascular early response gene (Verge), and the immediate-early gene, NGFI-B. Cyclooxygenase-2 (COX-2) expression was detected in both endothelial and perivascular cells (PVCs) in response to LPS, but only in PVCs of SEB-challenged animals. The non-selective COX inhibitor, indomethacin (1 mg/kg, iv), blocked LPS-induced activation in a subset of central autonomic structures, but failed to alter SEB-driven responses. Liposome mediated ablation of PVCs modulated the CNS response to LPS, did not affect the SEB-induced activational profile. By contrast, disruptions of interoceptive signaling by area postrema lesions or vagotomy (complete or hepatic) markedly attenuated SEB-, but not LPS-, stimulated central activational responses. Despite partial overlap in their neuronal and vascular response profiles, LPS and SEB appear to use distinct mechanisms to access the brain. PMID:19524662

  11. Endogenous opioids upregulate brain-derived neurotrophic factor mRNA through δ- and μ-opioid receptors independent of antidepressant-like effects

    PubMed Central

    Zhang, Huina; Torregrossa, Mary M.; Jutkiewicz, Emily M.; Shi, Yong-Gong; Rice, Kenner C.; Woods, James H.; Watson, Stanley J.; Ko, M. C. Holden

    2006-01-01

    Systemic administration of δ-opioid receptor (DOR) agonists decreases immobility in the forced swim test (FST) and increases brain-derived neurotrophic factor (BDNF) mRNA expression in rats, indicating that DOR agonists may have antidepressant-like effects. The aim of this study was to investigate the effects of central administration of endogenous opioid peptides on behavior in the FST and on brain BDNF mRNA expression in rats. Effects of endogenous opioids were compared with those produced by intracerebroventricular administration of a selective non-peptidic DOR agonist (+)BW373U86. Antidepressant-like effects were measured by decreased immobility in the FST. BDNF mRNA expression was determined by in situ hybridization. Centrally administered (+)BW373U86 decreased immobility and increased BDNF mRNA expression in the frontal cortex through a DOR-mediated mechanism, because these effects were blocked by the DOR antagonist naltrindole, but not by the μ-opioid receptor (MOR) antagonist naltrexone (NTX) or the κ-opioid receptor antagonist nor-binaltorphimine. Of all the endogenous opioids tested, only leuand met-enkephalin produced behavioral effects like those of (+)BW373U86 in the FST. Unlike (+)BW373U86, the enkephalins upregulated BDNF mRNA expression in the hippocampus through DOR- and MOR-mediated mechanisms. β-Endorphin, endomorphin-1 and endomorphin-2 significantly increased BDNF mRNA levels in the frontal cortex, hippocampus and amygdala without reducing immobility; and most of these effects were reversed by NTX. This study is the first to provide evidence that endogenous opioids can upregulate BDNF mRNA expression through the DOR and MOR, and that leu- and met-enkephalin have similar pharmacological profiles to synthetic DOR agonists in producing antidepressant-like effects. PMID:16519663

  12. How T-cell-dependent and -independent challenges access the brain: vascular and neural responses to bacterial lipopolysaccharide and staphylococcal enterotoxin B.

    PubMed

    Serrats, Jordi; Sawchenko, Paul E

    2009-10-01

    Bacterial lipopolysaccharide (LPS) is widely used to study immune influences on the CNS, and cerebrovascular prostaglandin (PG) synthesis is implicated in mediating LPS influences on some acute phase responses. Other bacterial products, such as staphylococcal enterotoxin B (SEB), impact target tissues differently in that their effects are T-lymphocyte-dependent, yet both LPS and SEB recruit a partially overlapping set of subcortical central autonomic cell groups. We sought to compare neurovascular responses to the two pathogens, and the mechanisms by which they may access the brain. Rats received iv injections of LPS (2 microg/kg), SEB (1mg/kg) or vehicle and were sacrificed 0.5-3h later. Both challenges engaged vascular cells as early 0.5h, as evidenced by induced expression of the vascular early response gene (Verge), and the immediate-early gene, NGFI-B. Cyclooxygenase-2 (COX-2) expression was detected in both endothelial and perivascular cells (PVCs) in response to LPS, but only in PVCs of SEB-challenged animals. The non-selective COX inhibitor, indomethacin (1mg/kg, iv), blocked LPS-induced activation in a subset of central autonomic structures, but failed to alter SEB-driven responses. Liposome mediated ablation of PVCs modulated the CNS response to LPS, did not affect the SEB-induced activational profile. By contrast, disruptions of interoceptive signaling by area postrema lesions or vagotomy (complete or hepatic) markedly attenuated SEB-, but not LPS-, stimulated central activational responses. Despite partial overlap in their neuronal and vascular response profiles, LPS and SEB appear to use distinct mechanisms to access the brain.

  13. Original memoirs: the control of bleeding in operations for brain tumors: with the description of silver "clips" for the occlusion of vessels inaccessible to the ligature. 1911.

    PubMed

    Cushing, H

    2001-01-01

    One of the chief objects of concern in intracranial surgery should be the avoidance of any unnecessary loss of blood, for at best, in many cases of brain tumor associated with venous stasis, bleeding is likely to be so excessive as to necessitate postponement of the final steps of the procedure until a second or even a third session. The common methods of blood stilling by sponge, clamp, and ligature are largely inapplicable to intracranial surgery, particularly in the presence of bleeding from the nervous tissues themselves, and any device which serves as an aid to hemostasis in these difficult operations will bring a number of them to a safe termination at a single sitting, with less loss of blood and less damage to the brain itself. In addition to the more familiar tourniquet for the scalp, and wax for diploetic and emissary bleeding, suggestions are offered as to the use of gauze pledgets, dry sterile cotton, fragments of raw muscle and other tissues, as well as sections of organizing blood-clots for superficial meningeal bleeding, and silver "clips" for inaccessible individual points ether in dura or brain. The successful consummation of any critical operation often depends upon seeming trifles. It is, however, the scrupulous observance of surgical minutiae that makes possible the safe conduct of major intracranial performances--performances which a few years ago were attended in most cases by a veritable dance Macaber.

  14. Original memoirs: the control of bleeding in operations for brain tumors: with the description of silver "clips" for the occlusion of vessels inaccessible to the ligature. 1911.

    PubMed Central

    Cushing, H.

    2001-01-01

    One of the chief objects of concern in intracranial surgery should be the avoidance of any unnecessary loss of blood, for at best, in many cases of brain tumor associated with venous stasis, bleeding is likely to be so excessive as to necessitate postponement of the final steps of the procedure until a second or even a third session. The common methods of blood stilling by sponge, clamp, and ligature are largely inapplicable to intracranial surgery, particularly in the presence of bleeding from the nervous tissues themselves, and any device which serves as an aid to hemostasis in these difficult operations will bring a number of them to a safe termination at a single sitting, with less loss of blood and less damage to the brain itself. In addition to the more familiar tourniquet for the scalp, and wax for diploetic and emissary bleeding, suggestions are offered as to the use of gauze pledgets, dry sterile cotton, fragments of raw muscle and other tissues, as well as sections of organizing blood-clots for superficial meningeal bleeding, and silver "clips" for inaccessible individual points ether in dura or brain. The successful consummation of any critical operation often depends upon seeming trifles. It is, however, the scrupulous observance of surgical minutiae that makes possible the safe conduct of major intracranial performances--performances which a few years ago were attended in most cases by a veritable dance Macaber. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:11922187

  15. Brain activation during fear conditioning in humans depends on genetic variations related to functioning of the hypothalamic–pituitary–adrenal axis: first evidence from two independent subsamples

    PubMed Central

    Ridder, S.; Treutlein, J.; Nees, F.; Lang, S.; Diener, S.; Wessa, M.; Kroll, A.; Pohlack, S.; Cacciaglia, R.; Gass, P.; Schütz, G.; Schumann, G.; Flor, H.

    2012-01-01

    Background Enhanced acquisition and delayed extinction of fear conditioning are viewed as major determinants of anxiety disorders, which are often characterized by a dysfunctional hypothalamic–pituitary–adrenal (HPA) axis. Method In this study we employed cued fear conditioning in two independent samples of healthy subjects (sample 1: n=60, sample 2: n=52). Two graphical shapes served as conditioned stimuli and painful electrical stimulation as the unconditioned stimulus. In addition, guided by findings from published animal studies on HPA axis-related genes in fear conditioning, we examined variants of the glucocorticoid receptor and corticotropin-releasing hormone receptor 1 genes. Results Variation in these genes showed enhanced amygdala activation during the acquisition and reduced prefrontal activation during the extinction of fear as well as altered amygdala–prefrontal connectivity. Conclusions This is the first demonstration of the involvement of genes related to the HPA axis in human fear conditioning. PMID:22410078

  16. Brain Hyper-Connectivity and Operation-Specific Deficits during Arithmetic Problem Solving in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who…

  17. Brain Hyper-Connectivity and Operation-Specific Deficits during Arithmetic Problem Solving in Children with Developmental Dyscalculia

    ERIC Educational Resources Information Center

    Rosenberg-Lee, Miriam; Ashkenazi, Sarit; Chen, Tianwen; Young, Christina B.; Geary, David C.; Menon, Vinod

    2015-01-01

    Developmental dyscalculia (DD) is marked by specific deficits in processing numerical and mathematical information despite normal intelligence (IQ) and reading ability. We examined how brain circuits used by young children with DD to solve simple addition and subtraction problems differ from those used by typically developing (TD) children who…

  18. Brain-derived neurotrophic factor mediates neuroprotection against Aβ-induced toxicity through a mechanism independent on adenosine 2A receptor activation.

    PubMed

    Jerónimo-Santos, André; Fonseca-Gomes, João; Guimarães, Diogo Andrade; Tanqueiro, Sara Ramalho; Ramalho, Rita Mira; Ribeiro, Joaquim Alexandre; Sebastião, Ana Maria; Diógenes, Maria José

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) promotes neuronal survival through TrkB-FL activation. The activation of adenosine A2A receptors (A2AR) is essential for most of BDNF-mediated synaptic actions, such as synaptic plasticity, transmission and neurotransmitter release. We now aimed at evaluating the A2AR influence upon BDNF-mediated neuroprotection against Aβ25-35 toxicity in cultured neurons. Results showed that BDNF increases cell survival and reduces the caspase-3 and calpain activation induced by amyloid-β (Aβ) peptide, in a mechanism probably dependent on PLCγ pathway. This BDNF-mediated neuroprotection is not affected by A2AR activation or inhibition. Moreover neither activation nor inhibition of A2AR, per se, significantly influenced Aβ-induced neuronal death on calpain-mediated cleavage of TrkB induced by Aβ. In conclusion, these results suggest that, in opposition to the fast synaptic actions of BDNF, the neuroprotective actions of this neurotrophin against a strong Aβ insult do not require the activation of A2AR.

  19. Evidence of a direct influence between the thalamus and hMT+ independent of V1 in the human brain as measured by fMRI.

    PubMed

    Gaglianese, Anna; Costagli, Mauro; Bernardi, Giulio; Ricciardi, Emiliano; Pietrini, Pietro

    2012-04-02

    In the present study we employed Conditional Granger Causality (CGC) and Coherence analysis to investigate whether visual motion-related information reaches the human middle temporal complex (hMT+) directly from the Lateral Geniculate Nucleus (LGN) of the thalamus, by-passing the primary visual cortex (V1). Ten healthy human volunteers underwent brain scan examinations by functional magnetic resonance imaging (fMRI) during two optic flow experiments. In addition to the classical LGN-V1-hMT+ pathway, our results showed a significant direct influence of the blood oxygenation level dependent (BOLD) signal recorded in LGN over that in hMT+, not mediated by V1 activity, which strongly supports the existence of a bilateral pathway that connects LGN directly to hMT+ and serves visual motion processing. Furthermore, we evaluated the relative latencies among areas functionally connected in the processing of visual motion. Using LGN as a reference region, hMT+ exhibited a statistically significant earlier peak of activation as compared to V1. In conclusion, our findings suggest the co-existence of an alternative route that directly links LGN to hMT+, bypassing V1. This direct pathway may play a significant functional role for the faster detection of motion and may contribute to explain persistence of unconscious motion detection in individuals with severe destruction of primary visual cortex (blindsight).

  20. Dynamic imaging reveals that brain-derived neurotrophic factor can independently regulate motility and direction of neuroblasts within the rostral migratory stream.

    PubMed

    Bagley, J A; Belluscio, L

    2010-09-01

    Neuronal precursors generated in the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB). Although, the mechanisms regulating this migration remain largely unknown. Studies have shown that molecular factors, such as brain-derived neurotrophic factor (BDNF) emanating from the OB, may function as chemoattractants drawing neuroblasts toward their target. To better understand the role of BDNF in RMS migration, we used an acute slice preparation from early postnatal mice to track the tangential migration of GAD65-GFP labeled RMS neuroblasts with confocal time-lapse imaging. By quantifying the cell dynamics using specific directional and motility criteria, our results showed that removal of the OB did not alter the overall directional trajectory of neuroblasts, but did reduce their motility. This suggested that additional guidance factors present locally within the RMS region also contribute to this migration. Here we report that BDNF and its high affinity receptor, tyrosine kinase receptor type 2 (TrkB), are indeed heterogeneously expressed within the RMS at postnatal day 7. By altering BDNF levels within the entire pathway, we showed that reduced BDNF signaling changes both neuroblast motility and direction, while increased BDNF levels changes only motility. Together these data reveal that during this early postnatal period BDNF plays a complex role in regulating both the motility and direction of RMS flow, and that BDNF comes from sources within the RMS itself, as well as from the olfactory bulb.

  1. Amphetamine induced endogenous opioid release in the human brain detected with [¹¹C]carfentanil PET: replication in an independent cohort.

    PubMed

    Mick, Inge; Myers, Jim; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Bowden-Jones, Henrietta; Clark, Luke; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Nutt, David J; Lingford-Hughes, Anne R

    2014-12-01

    This study aimed to replicate a previous study which showed that endogenous opioid release, following an oral dose of amphetamine, can be detected in the living human brain using [11C]carfentanil positron emission tomography (PET) imaging. Nine healthy volunteers underwent two [11C]carfentanil PET scans, one before and one 3 h following oral amphetamine administration (0.5 mg/kg). Regional changes in [11C]carfentanil BPND from pre- to post-amphetamine were assessed. The amphetamine challenge led to significant reductions in [11C]carfentanil BPND in the putamen, thalamus, frontal lobe, nucleus accumbens, anterior cingulate, cerebellum and insula cortices, replicating our earlier findings. None of the participants experienced significant euphoria/'high', supporting the use of oral amphetamine to characterize in vivo endogenous opioid release following a pharmacological challenge. [11C]carfentanil PET is able to detect changes in binding following an oral amphetamine challenge that reflects endogenous opioid release and is suitable to characterize the opioid system in neuropsychiatric disorders.

  2. Independent Living.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1994-01-01

    This issue of "OSERS" addresses the subject of independent living of individuals with disabilities. The issue includes a message from Judith E. Heumann, the Assistant Secretary of the Office of Special Education and Rehabilitative Services (OSERS), and 10 papers. Papers have the following titles and authors: "Changes in the…

  3. A modality-independent, neurobiological grounding for the combinatory capacity of the language-ready brain. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by Michael A. Arbib

    NASA Astrophysics Data System (ADS)

    Bornkessel-Schlesewsky, Ina; Alday, Phillip M.; Schlesewsky, Matthias

    2016-03-01

    In this comprehensive review of his past and current work on language evolution, Arbib [1] argues that "the capability for protosign - rather than elaborations intrinsic to the core vocalization systems - may [...] have provided the essential scaffolding for protospeech and evolution of the human language-ready brain" (p. 25). He hypothesises that this evolutionary trajectory is based on the mirror system and mechanisms of complex imitation that developed by drawing on systems "beyond the mirror". As Arbib himself discusses in detail, the claim that gestural combinatorics of increasing complexity and symbolisation formed a prerequisite for the evolution of auditory speech and language is rather controversial. Though, in our own previous work, we have emphasised the importance of the computational properties of the auditory system in defining the language-ready brain [2], we would like to focus on a somewhat different, and perhaps even more foundational issue for the purposes of this commentary: are there basic neurobiological mechanisms that underlie combinatory processing irrespective of modality?

  4. Mutation of the 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) Substrate-Docking Site in the Developing Brain Causes Microcephaly with Abnormal Brain Morphogenesis Independently of Akt, Leading to Impaired Cognition and Disruptive Behaviors

    PubMed Central

    Cordón-Barris, Lluís; Pascual-Guiral, Sònia; Yang, Shaobin; Giménez-Llort, Lydia; Lope-Piedrafita, Silvia; Niemeyer, Carlota; Claro, Enrique; Lizcano, Jose M.

    2016-01-01

    The phosphoinositide (PI) 3-kinase/Akt signaling pathway plays essential roles during neuronal development. 3-Phosphoinositide-dependent protein kinase 1 (PDK1) coordinates the PI 3-kinase signals by activating 23 kinases of the AGC family, including Akt. Phosphorylation of a conserved docking site in the substrate is a requisite for PDK1 to recognize, phosphorylate, and activate most of these kinases, with the exception of Akt. We exploited this differential mechanism of regulation by generating neuron-specific conditional knock-in mice expressing a mutant form of PDK1, L155E, in which the substrate-docking site binding motif, termed the PIF pocket, was disrupted. As a consequence, activation of all the PDK1 substrates tested except Akt was abolished. The mice exhibited microcephaly, altered cortical layering, and reduced circuitry, leading to cognitive deficits and exacerbated disruptive behavior combined with diminished motivation. The abnormal patterning of the adult brain arises from the reduced ability of the embryonic neurons to polarize and extend their axons, highlighting the essential roles that the PDK1 signaling beyond Akt plays in mediating the neuronal responses that regulate brain development. PMID:27644329

  5. Identifying non-toxic doses of manganese for manganese-enhanced magnetic resonance imaging to map brain areas activated by operant behavior in trained rats.

    PubMed

    Gálosi, Rita; Szalay, Csaba; Aradi, Mihály; Perlaki, Gábor; Pál, József; Steier, Roy; Lénárd, László; Karádi, Zoltán

    2017-04-01

    Manganese-enhanced magnetic resonance imaging (MEMRI) offers unique advantages such as studying brain activation in freely moving rats, but its usefulness has not been previously evaluated during operant behavior training. Manganese in a form of MnCl2, at a dose of 20mg/kg, was intraperitoneally infused. The administration was repeated and separated by 24h to reach the dose of 40mg/kg or 60mg/kg, respectively. Hepatotoxicity of the MnCl2 was evaluated by determining serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, albumin and protein levels. Neurological examination was also carried out. The animals were tested in visual cue discriminated operant task. Imaging was performed using a 3T clinical MR scanner. T1 values were determined before and after MnCl2 administrations. Manganese-enhanced images of each animal were subtracted from their baseline images to calculate decrease in the T1 value (ΔT1) voxel by voxel. The subtracted T1 maps of trained animals performing visual cue discriminated operant task, and those of naive rats were compared. The dose of 60mg/kg MnCl2 showed hepatotoxic effect, but even these animals did not exhibit neurological symptoms. The dose of 20 and 40mg/kg MnCl2 increased the number of omissions and did not affect the accuracy of performing the visual cue discriminated operant task. Using the accumulated dose of 40mg/kg, voxels with a significant enhanced ΔT1 value were detected in the following brain areas of the visual cue discriminated operant behavior performed animals compared to those in the controls: the visual, somatosensory, motor and premotor cortices, the insula, cingulate, ectorhinal, entorhinal, perirhinal and piriform cortices, hippocampus, amygdala with amygdalohippocampal areas, dorsal striatum, nucleus accumbens core, substantia nigra, and retrorubral field. In conclusion, the MEMRI proved to be a reliable method to accomplish brain activity mapping in correlation with the operant behavior of

  6. Understanding independence

    NASA Astrophysics Data System (ADS)

    Annan, James; Hargreaves, Julia

    2016-04-01

    In order to perform any Bayesian processing of a model ensemble, we need a prior over the ensemble members. In the case of multimodel ensembles such as CMIP, the historical approach of ``model democracy'' (i.e. equal weight for all models in the sample) is no longer credible (if it ever was) due to model duplication and inbreeding. The question of ``model independence'' is central to the question of prior weights. However, although this question has been repeatedly raised, it has not yet been satisfactorily addressed. Here I will discuss the issue of independence and present a theoretical foundation for understanding and analysing the ensemble in this context. I will also present some simple examples showing how these ideas may be applied and developed.

  7. A telepresence robotic system operated with a P300-based brain-computer interface: initial tests with ALS patients.

    PubMed

    Escolano, Carlos; Ramos Murguialday, Ander; Matuz, Tamara; Birbaumer, Niels; Minguez, Javier

    2010-01-01

    Brain-computer interfaces (BCIs) open a new valuable communication channel for people with severe neurological or motor degenerative diseases, such as ALS patients. On the other hand, the ability to teleoperate robots in a remote scenario provides a physical entity embodied in a real environment ready to perceive, explore, and interact. The combination of both functionalities provides a system with benefits for ALS patients in the context of neurorehabilitation or maintainment of the neural activity. This paper reports a BCI telepresence system which offers navigation, exploration and bidirectional communication, only controlled by brain activity; and an initial study of applicability with ALS patients. The results show the feasibility of this technology in real patients.

  8. Different brain activations between own- and other-race face categorization: an fMRI study using group independent component analysis

    NASA Astrophysics Data System (ADS)

    Wei, Wenjuan; Liu, Jiangang; Dai, Ruwei; Feng, Lu; Li, Ling; Tian, Jie

    2014-03-01

    Previous behavioral research has proved that individuals process own- and other-race faces differently. One well-known effect is the other-race effect (ORE), which indicates that individuals categorize other-race faces more accurately and faster than own-race faces. The existed functional magnetic resonance imaging (fMRI) studies of the other-race effect mainly focused on the racial prejudice and the socio-affective differences towards own- and other-race face. In the present fMRI study, we adopted a race-categorization task to determine the activation level differences between categorizing own- and other-race faces. Thirty one Chinese participants who live in China with Chinese as the majority and who had no direct contact with Caucasian individual were recruited in the present study. We used the group independent component analysis (ICA), which is a method of blind source signal separation that has proven to be promising for analysis of fMRI data. We separated the entail data into 56 components which is estimated based on one subject using the Minimal Description Length (MDL) criteria. The components sorted based on the multiple linear regression temporal sorting criteria, and the fit regression parameters were used in performing statistical test to evaluate the task-relatedness of the components. The one way anova was performed to test the significance of the component time course in different conditions. Our result showed that the areas, which coordinates is similar to the right FFA coordinates that previous studies reported, were greater activated for own-race faces than other-race faces, while the precuneus showed greater activation for other-race faces than own-race faces.

  9. Triiodothyronine and Brain Natriuretic Peptide

    PubMed Central

    Kozdag, Guliz; Ertas, Gokhan; Kilic, Teoman; Acar, Eser; Sahin, Tayfun; Ural, Dilek

    2010-01-01

    Although low levels of free triiodothyronine and high levels of brain natriuretic peptide have been shown as independent predictors of death in chronic heart failure patients, few studies have compared their prognostic values. The aim of this prospective study was to measure free triiodothyronine and brain natriuretic peptide levels and to compare their prognostic values among such patients. A total of 334 patients (mean age, 62 ± 13 yr; 218 men) with ischemic and nonischemic dilated cardiomyopathy were included in the study. The primary endpoint was a major cardiac event. During the follow-up period, 92 patients (28%) experienced a major cardiac event. Mean free triiodothyronine levels were lower and median brain natriuretic peptide levels were higher in patients with major cardiac events than in those without. A significant negative correlation was found between free triiodothyronine and brain natriuretic peptide levels. Receiver operating characteristic curve analysis showed that the predictive cutoff values were <2.12 pg/mL for free triiodothyronine and >686 pg/mL for brain natriuretic peptide. Cumulative survival was significantly lower among patients with free triiodothyronine <2.12 pg/mL and among patients with brain natriuretic peptide >686 pg/mL. In multivariate analysis, the significant independent predictors of major cardiac events were age, free triiodothyronine, and brain natriuretic peptide. In the present study, free triiodothyronine and brain natriuretic peptide had similar prognostic values for predicting long-term prognosis in chronic heart failure patients. These results also suggested that combining these biomarkers may provide an important risk indicator for patients with heart failure. PMID:20978564

  10. Neurocognitive function and quality of life in patients with newly diagnosed brain metastasis after treatment with intra-operative cesium-131 brachytherapy: a prospective trial.

    PubMed

    Pham, Anthony; Yondorf, Menachem Z; Parashar, Bhupesh; Scheff, Ronald J; Pannullo, Susan C; Ramakrishna, Rohan; Stieg, Philip E; Schwartz, Theodore H; Wernicke, A Gabriella

    2016-03-01

    Intraoperative permanent Cesium-131 (Cs-131) brachytherapy can provide a viable alternative to WBRT with excellent response rates and minimal toxicity. This study reports the results of the prospective trial of the impact of intraoperative Cs-131 on neurocognitive function and quality of life (QoL) in patients with resected brain metastases. Between 2010 and 2012, 24 patients with newly diagnosed metastasis to the brain were accrued on a prospective protocol and treated with Cs-131 brachytherapy seeds after surgical resection. Physicians administered the mini-mental status examination (MMSE) and functional assessment of cancer therapy-brain (FACT-Br) questionnaire to all patients before treatment and again every 2 months for the duration of 6 months with additional follow-up again at 12 months. Wilcoxon rank sum test was used to analyze statistically significant changes in MMSE over time and paired t test was used to analyze changes in FACT-BR. There was a statistical improvement in overall FACT-BR score at 4 and 6 months of follow-up when compared to baseline (162 vs. 143, P = 0.004; 164 vs. 143, P = 0.005 respectively) with a non-significant trend toward improvement at 2 and 12 months (154 vs. 143, P = 0.067; 159 vs. 149, P = 0.4). MMSE score was statistically improved at 4 and up to 12 months compared to pre-treatment MMSE (30 vs. 29, P = 0.017; 30 vs. 29, P = 0.001 respectively). Patients with brain metastasis who received intra-operative permanent Cs-131 brachytherapy implants saw an improvement of their neurocognitive status and self-assessment of QoL. In addition to the excellent local control of metastasis, this approach may contribute to the improvements in cognitive function and QOL.

  11. Stress Granule Induction after Brain Ischemia Is Independent of Eukaryotic Translation Initiation Factor (eIF) 2α Phosphorylation and Is Correlated with a Decrease in eIF4B and eIF4E Proteins.

    PubMed

    Ayuso, María I; Martínez-Alonso, Emma; Regidor, Ignacio; Alcázar, Alberto

    2016-12-30

    Stress granules (SGs) are cytoplasmic ribonucleoprotein aggregates that are directly connected with the translation initiation arrest response to cellular stresses. Translation inhibition (TI) is observed in transient brain ischemia, a condition that induces persistent TI even after reperfusion, i.e. when blood flow is restored, and causes delayed neuronal death (DND) in selective vulnerable regions. We previously described a connection between TI and DND in the hippocampal cornu ammonis 1 (CA1) in an animal model of transient brain ischemia. To link the formation of SGs to TI and DND after brain ischemia, we investigated SG induction in brain regions with differential vulnerabilities to ischemia-reperfusion (IR) in this animal model. SG formation is triggered by both eukaryotic translation initiation factor (eIF) 2α phosphorylation and eIF4F complex dysfunction. We analyzed SGs by immunofluorescence colocalization of granule-associated protein T-cell internal antigen-1 with eIF3b, eIF4E, and ribosomal protein S6 and studied eIF2 and eIF4F complex. The results showed that IR stress induced SG formation in the CA1 region after 3-day reperfusion, consistent with TI and DND in CA1. SGs were formed independently of eIF2α phosphorylation, and their appearance was correlated with a decrease in the levels of eIF4F compounds, the cap-binding protein eIF4E, and eIF4B, suggesting that remodeling of the eIF4F complex was required for SG formation. Finally, pharmacological protection of CA1 ischemic neurons with cycloheximide decreased the formation of SGs and restored eIF4E and eIF4B levels in CA1. These findings link changes in eIF4B and eIF4E to SG induction in regions vulnerable to death after IR. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Mass Independent Fractionation of Sulphur Isotopes in Precambrian Sedimentary Rocks: Indicator for Changes in Atmospheric Composition and the Operation of the Global Sulphur Cycle

    NASA Astrophysics Data System (ADS)

    Peters, M.; Farquhar, J.; Strauss, H.

    2005-12-01

    Large mass independent fractionation (MIF) of sulphur isotopes in sedimentary rocks older than 2.3 Ga and the absence of this isotopic anomaly in younger rocks seem to be the consequence of a change in Earth's atmospheric composition from essentially oxygen-free or to oxygen-rich conditions. MIF is produced by photochemical reactions of volcanogenic sulphur dioxide with UV radiation in the absence of an ozone shield. The products of such processes are elemental sulphur with positive and sulphate with negative Δ33S values. Here we present isotope data (32S, 33S, 34S) for sedimentary pyrites from Archaean and Palaeoproterozoic rocks of the Kaapvaal Craton (South Africa), the Pilbara Craton (Australia) and the Greenland Shield (Isua Supercrustal Belt). Their ages range from 3.85 to 2.47 Ga. Large positive Δ33S values up to +9.13 ‰ in several Archaean units from the Kapvaal and Pilbara Cratons are attributed to low atmospheric oxygen at that time. Interestingly, very low Δ33S values between -0.28 and +0.57 ‰ appear to characterize the Witwatersrand succession of South Africa (3.0 Ga). This rather small MIF signature was previously detected in rocks of the same age in Western Australia (OHMOTO et al., 2005). The signature is interpreted as a global signal, which could be the consequence of a shielding effect induced by one or more atmospheric components. The most probable chemical compounds for this process are methane and carbon dioxide. Rocks of the Kameeldoorns Fm. (2.71 Ga), Kaapvaal Craton, display also low values between -0.46 and +0.33 ‰, which are consistent with the small (absent) MIF signal in rocks of the Hardey Fm. (2.76 Ga) of Western Australia (OHMOTO et al., 2005). Very low carbon isotope values between -51 and -40 ‰ in late Archaean kerogens (2.6 - 2.8 Ga) indicate a high concentration of methane in the atmosphere (PAVLOV et al., 2001). This high methane level could produce an organic haze, which absorbed most of the UV radiation and prevented

  13. Technologic advances in surgery for <